
On the Reachability Problem for

P Systems with Symport/Antiport

Gheorghe Păun1 Mario J. Pérez-Jiménez2

Fernando Sancho-Caparrini2

1Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania, and

Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

gpaun@imar.ro, gp@astor.urv.es

2Department of Computer Science and Artificial Intelligence
University of Seville. {Mario.Perez,Fernando.Sancho}@cs.us.es

Abstract. We address the problem of deciding whether or not a given configuration of
a P system can be reached by correct transitions starting from a given initial configuration.
Specifically, we consider P systems with symport/antiport rules, an attractive class which
was recently introduced. As expected, the problem is undecidable in general, due to
the large generative power of P systems, but, somewhat surprisingly, the reachability
is decidable for configurations which take into account also the objects which are sent
out of the system during the computation (the language describing such configurations
is proved to be context-sensitive, hence recursive). These assertions are true both for
halting configurations and for arbitrary configurations.

1 Introduction

P systems are distributed parallel computing models which start from the observation that
the processes which take place in the complex structure of a living cell can be considered
computations. Abstracting from the structure and the functioning of living cells, the basic
ingredients of a P system are the membrane structure, consisting of several membranes
embedded in a main membrane (called the skin) and delimiting regions where multisets of
objects are placed; the objects evolve according to given evolution rules, which are applied
non-deterministically (the rules to be used and the objects to evolve are randomly chosen)
in a maximally parallel manner (in each step, all objects which can evolve must do it).
The objects can also be communicated from a region to another one. In this way, we
get transitions from a configuration of the system to another configuration. A sequence

1

of transitions constitutes a computation; with each halting computation we associate a
result, the number of objects in a specified output membrane (this is an elementary mem-
brane, that is, a membrane without any other membrane inside). The objects can also be
described by strings over a given alphabet, and in this case the evolution rules are based
on string processing operations, and the result of a computation can be a number or a set
of strings (a language), but we do not consider this case here.

Since these computing devices were introduced ([11]) several variants have been consid-
ered. Many of them were proved to be computationally complete, able to compute all Tur-
ing computable sets of natural numbers (all recursively enumerable languages, in the case
of string-objects). Moreover, it was shown that when membrane division, membrane cre-
ation, or string replication is allowed, NP-complete problems can be solved in linear time.
Details (including the current bibliography of the domain and several papers which can
be downloaded) can be found at the web address http://psystems.disco.unimib.it.

The communication of objects through membranes is one of the most important in-
gredients of a P system, and, roughly speaking, communication gives power to these
computing devices. This led to the question (see [12]) to closely investigate the power
of communication, to consider “purely communicative” systems, where the objects are
not changed during a computation, but they just change their place with respect to the
compartments of a P system. A first attempt to solve this problem was done in [8], where
the idea of plasmids, or of vectors from gene cloning is captured by considering certain
“vehicle-objects” which carry other objects through membranes. Another biochemical
idea, that of membrane transport in pairs of chemicals, was recently followed in [10].
When two chemicals can pass through a membrane only together, in the same direction,
the process is called symport. When the two chemical pass simultaneously, but in opposite
directions, the process is called antiport. For biochemical details about symport/antiport
processes at the level of alive cell membranes we refer to [1] and to [2].

The idea of coupled transport through membranes was captured in [10] by considering
rules of the form (ab, in), (ab, out) (for symport), and (a, out; b, in) (for antiport). Also,
more complex rules can be allowed, for instance, of the form (ab, out; cd, in). (In all cases,
a, b, c, d are symbol-objects.)

Both P systems with carriers and with symport/antiport were shown to
be computationally universal. In the latter case, when rules of the forms
(ab, in), (ab, out), (a, out; b, in) are used, five membranes were necessary, while systems
with only two membranes are universal in the case of rules (u, out; v, in), with u, v strings
of length at most two.

P systems with symport/antiport are attractive from several points of view: (i) they
are directly inspired from biochemistry and do not contain any “artificial” ingredient,
inspired from theoretical computer science, (2) they observe the conservation law, as no
object is created or destroyed during a computation, (3) they essentially take into account
the environment, (4) they are mathematically elegant and computationally powerful. Note
that usually the first three features are not present in the case of other types of P systems.

Here we address a question which was not considered yet in the membrane computing
area, that of reachability of a given configuration with respect to a given system.

2

The question can be raised for any type of P systems, and we expect similar results
in all cases: (i) undecidability of the reachability for systems which are computationally
universal (intuitively, because there are P systems which generate non-recursive sets of
numbers/languages, just consider a configuration which is precisely associated with the
result of a computation; whether or not it is reachable is equivalent with the membership
of the associated result to the generated non-recursive set/language), (ii) decidability
of the reachability of extended configurations (this result is obtained both for halting
configurations and for configurations which are not necessarily halting). In the case of
conservative systems, those which observe the conservation law, we call extended configu-
ration a description of both the system (membranes and objects present in their regions)
and of objects sent out of the system during the computation. When also erasing rules
are allowed, we have to also take into account the objects which are “erased”. Because
here we deal only with systems with symport/antiport, and they are conservative, we do
not enter into details for the latter case, its study remains as a research topic (the first
problem is to give a precise meaning to the idea of “taking into account the objects which
are erased”).

An “explanation” for the decidability of the reachability of extended configurations
is the fact that they preserve the whole “working space”, hence, intuitively, they can be
computed by context-sensitive Chomsky rules. Because the context-sensitive languages
are recursive, we find that the reachability of extended configurations is decidable. Actu-
ally, we will prove a stronger result: the language of extended configurations (halting or
not) which are reachable in a given P system with symport/antiport rules can be gene-
rated by a so-called matrix grammar with appearance checking without using λ-rules;
such grammars generate a strict subfamily of the family of context-sensitive languages.

2 P Systems with Symport/Antiport

In this section, we introduce the notion of P systems with symport/antiport in a semi-
formal manner, following [10]; a completely formal definition will be given in Section
3.

The language theory notions we use here are standard, and can be found in any of the
many monographs available, in particular, in [20]; also, one can use [19]. In particular,
we denote by V ∗ the free monoid generated by an alphabet V under the operation of
concatenation; the empty string is denoted by λ and the length of x ∈ V ∗ is denoted by
|x|. The families of context-free, context-sensitive, and recursively enumerable languages
are denoted by CF, CS, RE, respectively.

The reader may also want to consult [15] for an introduction to the membrane com-
puting area.

A membrane structure is pictorially represented by a Venn diagram, and it can be
mathematically represented by a tree or by a string of matching parentheses. Let X
be a finite and non-empty set (that is, X is an alphabet). A multiset over a set X is
a mapping M : X −→ N ∪ {∞} (we allow infinite multiplicity); the support of M is

3

the set supp(M) = {a ∈ X | M(a) > 0}. The multisets whose elements have only finite
multiplicities can be represented in a natural way by strings over X, such that the number
of occurrences of symbols a ∈ X in a string w ∈ X∗ gives the multiplicity of a in the
multiset associated with w; clearly, all permutations of w represent the same multiset.

We consider here only P systems with symport/antiport with rules of the general form
(u, out; v, in), where u, v are strings of a length which is not prescribed in advance; the
strings u, v are interpreted as representing multisets.

A P system with symport/antiport (of degree m ≥ 1) is a construct

Π = (V, µ,M1, . . . , Mn,Me, R1, . . . , Rn, io),

where:

1. V is the alphabet of objects ;

2. µ is a membrane structure with n membranes (injectively labelled by positive inte-
gers 1, 2, . . . , n; the skin membrane is labelled with 1);

3. M1, . . . ,Mn are the multisets of objects initially present in the regions of the system,
and Me is the multiset of objects present outside the system, in the environment ;
the “internal multisets” have finite multiplicities of objects, while for each a ∈ V
we have either Me(a) = 0 or Me(a) = ∞ (outside the system, an object is either
absent, or present in arbitrarily many copies); due to these restrictions, in what
follows we will represent the internal multisets by strings, as mentioned before, and
the multiset Me by its support;

4. R1, . . . , Rn are finite sets of rules of the form (u, out; v, in), for u, v ∈ V ∗ with
uv 6= λ;

5. io ∈ {1, . . . , n} is an elementary membrane of µ (the output membrane).

For a rule (u, out; v, in), we say that (|u|, |v|) is the radius of the rule; if all rules from
Π have the radius componentwise smaller than or equal to (r, s), for given r, s ≥ 0, then
we say that Π is of radius (r, s). If u = λ or v = λ, then instead of (u, out; v, in) we write
(v, in), (u, out), respectively (and such a rule is a symport rule).

The meaning of the rules (u, out; v, in) from Ri, 1 ≤ i ≤ n, is obvious: when applying
such a rule, the objects indicated by u will exit the region of membrane i while the objects
indicated by v will enter this region. Of course, in order to use such a rule, all objects
specified by u must be present in the region of membrane i and all objects specified by
v must be present in the region immediately outside (in the environment, if the rule is
applied in the skin membrane), with the multiplicity at least as large as specified by u, v,
respectively.

The multisets of objects present in the m regions of Π constitute the configuration of
the system; (M1, . . . , Mn) is the initial configuration. We pass from a configuration to
another configuration by using the rules from R1, . . . , Rn, as customary in P systems: the

4

rules are applied in the non-deterministic maximally parallel manner, in the sense that
we apply the rules in parallel, to all objects which can be processed, non-deterministically
choosing the rules and the objects. Thus, a transition means a redistribution of objects
among regions (and environment), which is maximal for the chosen set of rules. A se-
quence of transitions between configurations of the system constitutes a computation; a
computation is successful if it halts, i.e., it reaches a configuration where no rule can be
applied to any of the objects.

The result of a successful computation is the number of objects present within the
membrane with the label io in the halting configuration. A computation which never
halts yields no result. The set of all the numbers computed by Π is denoted by N(Π).

The family of all sets N(Π), computed as above by systems Π of degree at most
n ≥ 1 and of radius at most (r, s), r, s ≥ 0, is denoted by NPPn(r, s). When one of the
parameters n, r, s is not bounded, we replace it with ∗.

Also, we use NRE to denote the family of recursively enumerable sets of natural
numbers; this is the family of the length sets of recursively enumerable languages (the
family of sets of natural numbers which can be recognized by a Turing machine).

The following result is proved in [10].

Theorem 2.1 NRE = NPPn(r, s), for all n, r, s ≥ 2.

It is important to note that if in a P system Π with symport/antiport rules we have
rules of the form (v, in) in R1, and v specifies objects which are available in the environ-
ment in an arbitrarily large number of copies, then no computation with respect to Π
can halt, hence N(Π) = ∅. Indeed, by using such a rule we bring arbitrarily many copies
of the objects from v into the system, but, because we assume that the environment is
inexhaustible, the rule can be used again and again. Because the existence of such a rule
can easily be decided by simply inspecting the system, in what follows we always assume
that such rules are not allowed (this does not means that always our systems generate
non-empty sets of numbers, as the computations can run forever also because of other
rules). This restriction is crucial for the positive decidability result from Section 6.

3 A Formalization

In this section we give a mathematical formalization of the definition of a P system with
symport/antiport rules, as well as of its functioning (hence also of the set of numbers
generated by it). This formalization follows the style of [18], where P systems with
multiset rewriting rules, regulated by a priority relation, also providing the membrane
dissolving action, were considered; as the reader can see, the case of P systems with
symport/antiport rules is much easier, because simpler ingredients are used. We also
mention that the problem of completely formalizing the definition of a P system of a given
type and, mainly, of its computations and results of computations, is a non-trivial one, it
was explicitly formulated in [13], and addressed with completely different techniques in
[3] and [9].

5

3.1 A syntax for P systems with symport/antiport

Definition 3.1 A multiset over a set, V , is an application m : V −→ N ∪ {∞}. The
support of m is the set supp(m) = {a ∈ V | m(a) > 0}. We denote by M(V) the set of
multisets over V (usually we denote it briefly by M). The following subsets of M will be
considered:

M∞ = {m ∈ M | ∀ a ∈ V (m(a) = 0 ∨m(a) = ∞)}
M∗ = {m ∈ M | ∀ a ∈ V (m(a) ∈ N)}

Definition 3.2 Given m1,m2 ∈ M, we define:

• Inclusion: m1 ≤ m2 ⇔ ∀ a ∈ V (m1(a) ≤ m2(a)).

• Strict inclusion: m1 < m2 ⇔ m1 ≤ m2 ∧ m1 6= m2.

• Union: + : M2 → M, (m1 + m2; a) = m1(a) + m2(a), ∀a ∈ V .

• Difference: − : M2 → M, (m1 −m2; a) = max{m1(a)−m2(a), 0}, ∀a ∈ V .

• Amplification: ⊗ : N×M → M, (n⊗m1; a) = n ·m1(a),∀a ∈ V .

In above inequalities the following conventions are used: n + ∞ = ∞ + n = ∞ − n =
∞, n ≤ ∞, ∞ ≤∞, n · ∞ = ∞.

Definition 3.3 A membrane structure is a rooted tree µ = (N(µ), E(µ)), where the nodes
from N(µ) are called membranes, the root (denoted below by x0) is called skin, and the
leaves are called elementary membranes.

As in [18], for a given node x of µ, we will denote by f(x) the father of x in µ, that
is, the membrane immediately external to x, and by Ch(x), the set of children of x in µ,
that is, the collection of membranes delimiting “from bellow” the region x.

Definition 3.4 A cell with environment over an alphabet V is a 3-tuple (µ,M, Me), where
µ = (N(µ), E(µ)) is a membrane structure, M is an application M : N(µ) −→ M(V),
such that ∀x ∈ N(µ) (M(x) ∈ M∗), and Me ∈ M∞.

In the sequel, if x0 is the root of the tree of a cell with environment (µ,M,Me), then
we will assume M(f(x0)) = Me.

Definition 3.5 Let (µ,M,Me) be a cell with environment over an alphabet V , and let
x ∈ N(µ). A transport rule associated with x is a 2-tuple r = (ur, vr) ∈ M∗ ×M∗, with
ur + vr 6= 0. If x is the skin membrane, then the restriction ur 6= 0 ∨ ¬(vr ⊆ Me) is
considered.

Informally, an evolution rule, r, for a membrane x ∈ N(µ), has the form:

(u, out; v, in), with uv 6= λ.

In this formalization ur = u and vr = v.

6

Definition 3.6 Let C = (µ,M, Me) be a cell with environment over an alphabet V , and
x ∈ N(µ). A collection R of transporter rules associated with C is a function with the
domain N(µ) such that for every membrane x ∈ N(µ), R(x) = {rx

1 , . . . , r
x
sx
} (denoted Rx)

is a finite (possibly empty) set of transport rules associated with x.

Definition 3.7 A P system with symport/antiport is a 4-tuple Π = (V, C0,R, i0), where:

• V is a non-empty finite set (usually called base alphabet).

• C0 = (µ0,M0,M
0
e) is a cell with environment over V , such that M0

e ∈ M∞.

• R is a collection of transporter rules associated with C0.

• i0 is a distinguished node of µ0, which specifies the output membrane of Π.

3.2 A semantic for P systems with symport/antiport

Definition 3.8 A configuration, C, of a P system with symport/antiport, Π =
(V,C0,R, i0), with C0 = (µ0,M0,M

0
e), is a cell with environment, C = (µ0, M,Me),

over V . The configuration C0 will be called the initial configuration of Π.

Definition 3.9 Let C = (µ0,M, Me) be a configuration of a P system with sym-
port/antiport Π = (V, C0,R, i0), and x ∈ N(µ0). We say that the rule r ∈ Rx is applicable
to C if the membrane associated with x has all necessary objects to apply the rule, that
is, ur ≤ M(x), and the membrane immediately outside to x has all necessary objects to
apply the rule, that is, vr ≤ M(f(x)).

Definition 3.10 We define the index of applicability of r ∈ Rx in C over the node x,
denoted NAp(r, C, x), as the maximum number of times the rule r can be applied to C in
the node x. That is, NAp(r, C, x) = 0 if r is not applicable to C, otherwise

NAp(r, C, x) = min{max{n | n⊗ ur ≤ M(x)}, max{n | n⊗ vr ≤ M(f(x))}}

In transition P systems, the application of a rule in a membrane is not affected by
the content of the other membranes [18], but in P systems with symport/antiport a rule
of a membrane can be applied only when this membrane and the membrane immediately
external to it verifies the applicability conditions imposed the rule says.

Definition 3.11 Let C = (µ,M, Me) a configuration of a P system with sym-
port/antiport, Π. We will say that H : N(µ) −→ NN is an applicability matrix over
C, denoted H ∈ MAp(C), if the following conditions are satisfied (usually, we write Hx

instead of H(x)):

• Hx has a correct size, i.e., ∀x ∈ N(µ) ∀ j (j > sx → Hx(j) = 0) (by sx we have
denoted the number of rules associated with x).

7

• Every rule can be applied as many times as H indicates, i.e.,

∀x ∈ N(µ) ∀ j (1 ≤ j ≤ sx → Hx(j) ≤ NAp(r
x
j , C, x)).

• All the rules can be applied simultaneously, i.e.,

∀x ∈ N(µ) (
∑

j

Hx(j)⊗ urx
j

+
∑

y∈Ch(x)

(
∑

i

Hy(i)⊗ vry
i
) ≤ M(x)).

• There are enough elements in the environment, i.e.,
∑

j

Hx0(j)⊗ vr
x0
j
≤ Me.

• It is maximal, i.e., ¬∃H ′ (H < H ′ ∧ H ′ ∈ MAp(C)).

Definition 3.12 The execution of an applicability matrix, H, over a given configuration,
C = (µ,M, Me), produces the configuration PH(C) = (µ,M ′,M ′

e), where:

M ′(x) = M(x) − ∑

j

Hx(j)⊗ urx
j

+
∑

j

Hx(j)⊗ vrx
j
+

+
∑

y∈Ch(x)

(
∑

j

Hy(j)⊗ ury
j
−∑

j

Hy(j)⊗ vry
j
),

M ′
e = Me +

∑

j

Hx0(j)⊗ ur
x0
j
−∑

j

Hx0(j)⊗ vr
x0
j

.

Definition 3.13 We will say that a configuration C1 of a P system with symport/antiport
Π yields a configuration, C2, by a transition in one step of Π, denoted C1 ⇒Π C2, if there
exists a non–zero applicability matrix H over C1 such that H(C1) = C2.

Once we have defined the relationship of transition in one step among configurations,
we can define the relation of transition as its transitive closure.

Definition 3.14 We say that configuration C yields configuration C ′ in k transition steps
(k ≥ 0), if there are configurations C1, . . . , Ck+1 such that

C1 = C ∧ Ck+1 = C ′ ∧ ∀i (1 ≤ i ≤ k ⇒ Ci ⇒Π Ci+1).

We say that configuration C yields configuration C ′, denoted C
?⇒Π C ′, if there is k ≥ 0

such that C yields C ′ in k transition steps.

Starting from the initial configuration, we can build the computation tree associated
with the P system: the nodes of this tree are the configurations of the computation, and
the edges are the applicability matrices used to get one configuration from another.

Definition 3.15 The computation tree of a P system with symport/antiport Π, denoted
Comp(Π), is a rooted labelled maximal tree defined as follows: The root of the tree is the
initial configuration, C0, of Π. The children of a node are the configurations that follow in
one step of transition. Nodes and edges are labelled by configurations and applicability ma-
trices, respectively, in such a way that two labelled nodes C,C ′ are adjacent in Comp(Π),
by means of an edge labelled with H, if and only if H ∈ MAp(C)− {0} ∧ C ′ = H(C).

8

The maximal branches of Comp(Π) will be called computations of Π. We will say
that a computation of Π halts if it is a finite branch. The configurations verifying
MAp(C) = {0} will be called halting configurations, and we will denote the set of halting
configurations by Halt(Π) = {C | MAp(C) = {0}}.

In the case of P systems with symport/antiport, every halting configuration is a
successful configuration.

Definition 3.16 Given C ≡ (C0 ⇒Π . . . Ck ⇒Π Ck+1 . . .) a computation of a P system
Π = (V, C0,R, i0) with symport/antiport, the extended configuration associated with the
configuration Ci = (µ,M, Me) of C is the tuple (M, ei) where ei is the multiset of elements
sent into the environment during the computation C until reaching the configuration Ci.

That is, if H(k) is the applicability matrix over Ck−1 such that Ck = H(k)(Ck−1),
then we define by recursion the multiset of elements sent into the environment during the
computation C until reaching the configuration Ci as follows:

e0 = ∅,
ei = ei−1 +

∑

j

H(i)
x0

(j)⊗ ur
x0
j

, for i ≥ 1.

Definition 3.17 Let Π = (A,C0,R, i0) a P system. The set of natural numbers gene-
rated by Π, denoted N(Π), is defined as follows:

N(Π) = {|MC(i0)| | C ∈ Halt(Π) ∧ C = (µC ,MC ,MC
e)}.

4 Matrix Grammars with Appearance Checking

In the proofs from the next two sections we need the notion of a matrix grammar with
appearance checking, hence we briefly introduce it here; details can be found in [4] and in
the chapter of [19] devoted to regulated rewriting.

Such a grammar is a construct G = (N, T, S, M, F), where N, T are disjoint alphabets,
S ∈ N , M is a finite set of ordered sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1,
of context-free rules over N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F is a set
of occurrences of rules in M (N is the nonterminal alphabet, T is the terminal alphabet,
S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈ (N ∪ T)∗, or wi = wi+1,

Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a matrix are
applied in order, possibly skipping the rules in F if they cannot be applied – therefore we
say that these rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family
of languages of this form generated by grammars with arbitrary rules (that is, including
erasing rules) is denoted by MAT λ

ac. If the set F is empty, then the grammar is said to

9

be without appearance checking; if no erasing rule is used, then the grammar is said to
be λ-free. If we use only grammars without appearance checking or without erasing rules,
then we remove the symbols ac and λ, respectively, from the notation MAT λ

ac.
The relations CF ⊂ MAT ⊂ MATac ⊂ CS ⊂ MAT λ

ac = RE, MAT ⊆ MAT λ ⊂ RE
are known. The languages L ∈ MAT λ, L ⊆ a∗, are regular [5]; hence, CS −MAT λ 6= ∅,
but it is not known whether or not MAT λ contains languages which are not in CS.

5 A Non-Decidable Reachability Case

The fact that P systems with symport/antiport are computationally universal makes
expected the fact that most decidability questions about them are not solvable algorith-
mically. This is obviously the case with questions about the generated sets of numbers,
such as membership, emptiness, finiteness, etc. Although not directly following from the
universality, the same assertion holds true for questions about the configurations a P
system can reach during a computation, in particular, for the reachability question:

Given a P system Π and a configuration C of Π, determine whether or not the initial
configuration C0 of Π yields configuration C.

In the proof of this result we will make an essential use of the proof of the inclusion
NRE ⊆ NPP2(2, 2) on which Theorem 2.1 is based, hence we recall its proof from [10],
also slightly simplifying it.

To this aim, we use the equality RE = MAT λ
ac, with the obvious consequence that

any set from NRE is the length set of a language from MATac. In particular, we can
consider a language over the one-letter alphabet.

Thus, let G = (N, {a}, S, M, F) be a matrix grammar with appearance checking in
the binary normal form, with N = N1 ∪ N2 ∪ {S, #}, and with M containing matrices
mi : (X → α, A → x), X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, x ∈ (N2 ∪ {a})∗, for i = 1, . . . , k
(matrices without rules used in the appearance checking manner), and mi : (X → Y,A →
#), X, Y ∈ N1, A ∈ N2, for i = k + 1, . . . , n (matrices with rules to be used in the
appearance checking manner), for some k ≥ 1, n ≥ k. We denote the initial matrix
(S → XA) of G by (S → X0A0), where X0 ∈ N1 and A0 ∈ N2.

We construct the P system with symport/antiport rules (the internal multisets are
represented by strings)

Π = (V, (µ, M,Me),R, 2),

with

V = N1 ∪N2 ∪ {a, c, f, h, Z} ∪ {ci, c
′
i, di | 1 ≤ i ≤ n},

µ = ({1, 2}, {(1, 2)}), (that is, µ = [1[2]2]1)

M(1) = cX0A0,

M(2) = λ,

supp(Me) = N1 ∪N2 ∪ {a, f, h, Z} ∪ {ci, c
′
i, di | 1 ≤ i ≤ n},

10

and with the following sets of rules:

R1 = {(cX, out; ciY, in), (ciA, out; cc′i, in), (c′i, out; u, in) |
for mi : (X → Y, A → u), 1 ≤ i ≤ k, with X, Y ∈ N1, A ∈ N2, u ∈ (N2 ∪ {a})∗}

∪ {(cX, out; cif, in), (ciA, out; u, in) |
for mi : (X → λ,A → u), 1 ≤ i ≤ k, with X ∈ N1, A ∈ N2, u ∈ {a}∗}

∪ {(cX, out; cidi, in), (di, out; Y h, in), (ciA, out; Z, in), (cih, out; c, in) |
for mi : (X → Y, A → #), k + 1 ≤ i ≤ n, with X, Y ∈ N1, A ∈ N2},

R2 = {(a, in)}
∪ {(α, in), (α, out) | α ∈ {Z} ∪ {ci | 1 ≤ i ≤ k}}
∪ {(fD, in), (fD, out) | D ∈ N2}.

The symbols c, ci control the simulation of matrices mi, 1 ≤ i ≤ k, in the following way.
After using the rule (cX, out; ciY, in), we have ci in the system. If the rule (ciA, out; c′ic, in)
cannot be used, then the symbol ci will go forever back and forth through membrane 2,
hence the computation will never finish. If the rule (ciA, out; c′ic, in) is used, then at the
next step c′i will exit, bringing into the system the string u, which completes the simulation
of the matrix mi : (X → Y, A → u).

In the case of terminal matrices, that is, with the first rule of the form X → λ, we
bring the symbols ci, f in the system, ci simulates the second rule of the matrix, and f
checks whether or not the derivation was a terminal one. In the negative case, the rules
(fD, in), (fD, out) of R2, for D ∈ N2, are used forever (the symbol c is no longer present,
hence no other rule can be used).

If we start with a rule of the form (cX, out; cidi, in), for some k + 1 ≤ i ≤ n, for
mi : (X → Y,A → #), then at the next step we have to use the rule (di, out; Y h, in). If in
the skin membrane there is any copy of A, then at the same time the rule (ciA, out; Z, in)
has to be used, and the computation will never finish, because of the rules (Z, in), (Z, out)
from R2. If no copy of A is present, then ci waits in the skin membrane. At the next step,
together with H, the symbol ci can leave the system, and at the same time c is brought
again inside. In this way, the application of matrix mi is simulated.

Note that in all cases the symbol c is again available, hence the process can be iterated.
Consequently, N(Π) = {n | an ∈ L(G)}, which completes the proof of the inclusion
NRE ⊆ NPP2(2, 2).

Now, the undecidability of the reachability problem immediately follows: a configu-
ration C = (µ,M, Me) where M(1) = f and M(2) = an can be reached if and only if
n ∈ N(Π); for a set N(Π) which is not recursive, this question cannot be algorithmically
answered; because NPP2(2, 2) = NRE, there are such non-recursive sets N(Π).

It is important to note that the previous result directly follows from the proof of the
equality NRE = NPP2(2, 2) because of the fact that in any halting configuration we
precisely know which are the objects present in the system: only f in the skin membrane,
and a certain number of copies of a in the inner membrane. However, if some other objects
would be present in the system in a halting configuration, when also a distinguished

11

symbol f is introduced, then we can arrange that f will help them to leave the system,
by using rules of the form (fα, out), for all objects α which we want not to have them
inside, and (f, in). A similar trick can probably be used also for other types of P systems,
hence a negative result concerning the reachability question is expected to be valid for all
classes of P systems which are computationally universal.

Clearly, the previous negative decidability result holds both for halting configurations
and, by default, for arbitrary configurations.

6 A Decidable Reachability Case

We consider now an apparently inoffensive extension of the notion of a configuration, also
taking into account the objects which were sent out of the system during the computation.
Because we do not allow rules of the form (v, in) for multisets v whose elements appear in
the environment in arbitrarily many copies, the number of objects sent out of the system
is always finite. Thus, we can represent their multiset by a string, as usual for internal
multisets.

If the membrane structure has m membranes, {1, . . . , m}, following Definition 3.16, an
extended configuration (M, e) can be represented as the (m + 1)-tuple (z1, . . . , zm, zm+1),
of strings over V , where zi, 1 ≤ i ≤ m represents M(i), the multiset of objects present
in membrane i, and zm+1 represents the multiset of objects sent into the environment
during a computation in Π which has led to (z1, . . . , zm). For an easier representation, we
write such a configuration as a string over V ∪{d}, where d is a new symbol (a delimiter),
representing the comma, namely, by z1dz2d . . . dzmdzm+1. Furthermore, we assume the
alphabet V ordered, V = {a1, . . . , ap}, and we write the strings zj in the “standard form”,
that is, in the form ai1

1 . . . aip
p , where i1, . . . , ip are the multiplicities of objects a1, . . . , ap,

respectively, in the multiset represented by zj (of course, we can have ik = 0, which means
that the corresponding symbol ak does not appear in zj). We will denote by wi the string
that represents the objects present in the membrane i in the initial configuration

We denote by econ(Π) the language of all strings of this form, describing (in the
standard form) extended configurations of Π which can be reached from the initial con-
figuration w1dw2d . . . dwmd (with λ describing the multiset of objects sent into the en-
vironment before starting any computation), and by ehalt(Π) the language of strings
describing (in the standard form) halting extended configurations which can be reached
from w1dw2d . . . dwmd.

The following two lemmas are the main results of this section.

Lemma 6.1 For every P system Π with symport/antiport, the language econ(Π) belongs
to the family MATac.

Proof. Let us consider a P system with symport/antiport Π = (V, (µ,M, Me),R, io).
As usual, we assume that the skin membrane has label 1 and that different membranes
have different labels; specifically, N(µ) = {1, . . . , m}. Remember that for a membrane i
from µ we denote by f(i) the membrane immediately outside i; for i = 1 we put f(1) = 0.

12

Assume that V contains g elements. Moreover, we assume that the rules of R are labelled
in a one-to-one manner, by r1, . . . , rs, with r1 being a rule from R1 (if R1 is empty, then
the changes in the construction below are straightforward and it is left to the reader).

We construct the matrix grammar

G = (N, T, S, M, F),

with

N = {d, S, X, Y, Z, #} ∪ {Xi | 1 ≤ i ≤ s}
∪ {(a, i)′, (a, i)′′ | a ∈ V, 0 ≤ i ≤ m},

T = {(a, i) | a ∈ V, 0 ≤ i ≤ m} ∪ {d},
and the set of matrices constructed in the following way.

Consider the morphisms hi, 1 ≤ i ≤ m, defined by hi(a) = (a, i)′, for each a ∈ V .
Then,

M = {(S → X h1(w1)d h2(w2)d . . . d hm(wm)d),

(S → Z h1(w1)d h2(w2)d . . . d hm(wm)d)}
∪ {(X → X, (a1, i)

′ → (a1, f(i))′′, . . . , (au, i)
′ → (au, f(i))′′,

(b1, f(i))′ → (b1, i)
′′, . . . , (bv, f(i))′ → (bv, i)

′′) |
(a1 . . . au, out; b1 . . . bv, in) ∈ Ri, 2 ≤ i ≤ m,u, v ≥ 0,

where aj, bj ∈ V for all j}
∪ {(X → X(bj1 , 1)′′ . . . (bjq , 1)′′, (a1, 1)′ → (a1, 0)′, . . . , (au, 1)′ → (au, 0)′,

(bk1 , 0)′ → (bk1 , 1)′′(bk1 , 0), . . . , (bkr , 0)′ → (bkr , 1)′′(bkr , 0)) |
(a1 . . . au, out; b1 . . . bv, in) ∈ R1, u, v ≥ 0, where

aj, bj ∈ V for all j, {1, 2, . . . , v} = {j1, . . . , jq} ∪ {k1, . . . , kr},
{j1, . . . , jq} ∩ {k1, . . . , kr} = ∅, and Me(bjl

) = ∞, for 1 ≤ l ≤ r}
∪ {(X → X1, (a1, 1)′ → ck((a1, 1)′), . . . , (au, 1)′ → ck((au, 1)′),

(bk1 , 0)′ → ck((bk1 , 0)′), . . . , (bkr , 0)′ → ck((bkr , 0)′)) |
r1 = (a1 . . . au, out; b1 . . . bv, in) ∈ R1, u, v ≥ 0, where aj, bj ∈ V

for all j, ck((α, j)′) ∈ {(α, j)′, #}, for all α and j as above, and there is

at least one j such that ck((aj, i)
′) = #, or

ck((bj, f(i))′) = #; moreover, Me(bkl
) = 0, 1 ≤ l ≤ r, and, if

l ∈ {1, 2, . . . , v} − {k1, . . . , kr}, then Me(bl) = ∞}
∪ {(Xt−1 → Xt, (a1, i)

′ → ck((a1, i)
′), . . . , (au, i)

′ → ck((au, i)
′),

(b1, f(i))′ → ck((b1, f(i))′), . . . , (bv, f(i))′ → ck((bv, f(i))′)) |
rt = (a1 . . . au, out; b1 . . . bv, in) ∈ Ri, 2 ≤ i ≤ m,u, v ≥ 0, where aj, bj ∈ V

for all j, ck((α, j)′) ∈ {(α, j)′, #}, for all α and j as above, and there is

at least one j such that ck((aj, i)
′) = #, or

13

ck((bj, f(i))′) = #, 2 ≤ t ≤ s− 1}
∪ {(Xt−1 → Xt, (a1, 1)′ → ck((a1, 1)′), . . . , (au, 1)′ → ck((au, 1)′),

(bk1 , 0)′ → ck((bk1 , 0)′), . . . , (bkr , 0)′ → ck((bkr , 0)′)) |
rt = (a1 . . . au, out; b1 . . . bv, in) ∈ R1, u, v ≥ 0, where aj, bj ∈ V

for all j, ck((α, j)′) ∈ {(α, j)′, #}, for all α and j as above, and there is

at least one j such that ck((aj, i)
′) = #, or

ck((bj, f(i))′) = #; moreover, Me(bkl
) = 0, 1 ≤ l ≤ r, and, if

l ∈ {1, 2, . . . , v} − {k1, . . . , kr}, then Me(bl) = ∞, 2 ≤ t ≤ s− 1}
∪ {(Xs−1 → Y, (a1, i)

′ → ck((a1, i)
′), . . . , (au, i)

′ → ck((au, i)
′),

(b1, f(i))′ → ck((b1, f(i))′), . . . , (bv, f(i))′ → ck((bv, f(i))′) |
rs = (a1 . . . au, out; b1 . . . bv, in) ∈ Ri, 2 ≤ i ≤ m,u, v ≥ 0, where aj, bj ∈ V

for all j, ck((α, j)′) ∈ {(α, j)′, #}, for all α and j as above,

and there is at least one j such that ck((aj, i)
′) = #, or ck((bj, f(i)′) = #}

∪ {(Xs−1 → Y, (a1, 1)′ → ck((a1, 1)′), . . . , (au, 1)′ → ck((au, 1)′),

(bk1 , 0)′ → ck((bk1 , 0)′), . . . , (bkr , 0)′ → ck((bkr , 0)′)) |
rs = (a1 . . . au, out; b1 . . . bv, in) ∈ R1, u, v ≥ 0, where aj, bj ∈ V

for all j, ck((α, j)′) ∈ {(α, j)′, #}, for all α and j as above,

and there is at least one j such that ck(aj, i) = #, or

ck((bj, f(i))′) = #; moreover, Me(bkl
) = 0, 1 ≤ l ≤ r, and, if

l ∈ {1, 2, . . . , v} − {k1, . . . , kr}, then Me(bl) = ∞}
∪ {(Y → Y, (a, i)′′ → (a, i)′) | a ∈ V, 1 ≤ i ≤ m}
∪ {(Y → X, (a1, i)

′′ → #, . . . , (ag, i)
′′ → #),

(Y → Z, (a1, i)
′′ → #, . . . , (ag, i)

′′ → #) | 1 ≤ i ≤ m,V = {a1, . . . , ag}}
∪ {(Z → Z, (a, i)′ → (a, i)) | a ∈ V, 0 ≤ i ≤ m}
∪ {(Z → d)}.

The set F , of rules to be used in the appearance checking mode, consists of all rules
of the form α → # from the matrices of M .

Let us briefly examine the work of the grammar G.
The symbols X,Y, Z, as well as Xi, 1 ≤ i ≤ s, control the work of the other rules, in

such a way that a computation in Π is simulated by a derivation in G. Specifically, in
the presence of X one simulates a nondeterministic maximally parallel use of rules from
R, while the symbols X1, . . . , Xs are used for checking that no further application of the
rules r1, . . . , rs, respectively, is possible at that step. One starts from a description of the
initial configuration where all symbols a present in a region i are replaced by the new
symbol (a, i)′. When simulating the rules of Π, one passes from primed symbols (a, i)′ to
double primed symbols (a, j)′′, where j is the membrane outside membrane i in the case
when the symbol a is sent out, and, conversely, i is the membrane outside j, in the case
when a is sent in. The symbols sent out of the system are written in the form (a, 0)′. All

14

double primed symbols present inside the system are replaced by single primed symbols
in the presence of Y . When this operation is complete, we either return to X, hence
the process can be iterated, or we replace Y by Z. In the presence of Z we replace each
primed or double primed symbol by the non-primed symbol, which is considered terminal
with respect to G, and the derivation stops. All these operations are performed by using
the rules of the form α → # in the appearance checking manner, with # being a trap
symbol, which is never removed.

The first sentential form generated by G from its axiom S is X h1(w1)d h2(w2)d
. . . d hm(wm)d. During the work of G, the symbols corresponding to various membranes
are mixed, while the symbols d are never rewritten. However, the second component of
symbols of the form (a, i)′ present in any current sentential form identifies the membrane
i where the symbol a is placed; the symbols sent out of the system appear in the form
(a, 0)′. After using any rule, the symbols from the system change their second component,
according to the in/out indication of the rule, and it is double primed. This latter fact
prevents the use of the same symbol by another rule at the same step.

In the case of membranes 2 ≤ i ≤ m, the simulation of rules from Ri is rather easy.
Some precautions should be taken in the case of rules from R1 with the symbols which
are introduced from the environment into the system. If these symbols appear in the
environment in arbitrarily many copies, then again there is no difficulty (such symbols
are introduced by the rules of the form X → X(bj1 , 1)′′ . . . (bjq , 1)′′). If the symbols to
be introduced in the system are not from Me, but previously sent out of the system,
then they appear in a bounded number of copies in the environment, hence we have to
make sure that enough copies of them are present; moreover, we still preserve copies
of them in the environment, but without any prime (the corresponding rules are of the
form (bk1 , 0)′ → (bk1 , 1)′′(bk1 , 0), . . . , (bkr , 0)′ → (bkr , 1)′′(bkr , 0)). The non-primed symbols
which remain in the environment cannot be used by a further rule, they remain unchanged
until the end of the derivation.

At any moment, we can use the matrix which starts with the rule X → X1. This
matrix checks whether or not the rule r1 can be applied once again to the symbols which
are single primed. If this is the case, then the trap symbol # is introduced and the
sentential form will never lead to a terminal string. Otherwise, we continue by introducing
the symbol X2, a step when we check whether or not the rule r2 can be applied. One
continues with X3, . . . , Xs−1; in each case, the applicability of the corresponding rules
r2, . . . , rs is checked, and always the trap symbol is introduced if the rule can be applied.
If no rule can be applied, that is, the computation was maximally parallel (hence correct
with respect to Π), then the symbol Y is introduced.

In the presence of Y we simply replace each double primed symbol with its single
primed variant. When this process is complete (this is checked by the rules of the form
(aj, i)

′′ → #, from the matrix which start with the rule Y → X, then we return to the
symbol X and the process can be iterated, we can simulate another transition with respect
to Π.

At any moment when Y can be replaced by X, we can also introduce the control
symbol Z. In the presence of this symbol we replace each primed symbol with its non-

15

primed version. When all symbols are thus replaced by terminal symbols, we can also
the symbol Z by d. Therefore, all configurations which can be reached after at least one
transition in Π correspond to a sentential form generated by G.

In order to produce also the initial configuration, we use the matrix (S →
Z h1(w1)d h2(w2)d . . . d hm(wm)d), then Z assists the removing of primes, and after that
it is replaced by d.

Therefore, the strings from L(G) are of the form dw, where w is a permutation of a
string over V ∪ {d} describing a configuration which can be reached by a correct compu-
tation in Π. Let us now consider the regular language

R = (a1, 1)∗(a2, 1)∗ . . . (ag, 1)∗d(a1, 2)∗(a2, 2)∗ . . . (ag, 2)∗d . . .

d(a1,m)∗(a2, m)∗ . . . (ag,m)∗d(a1, 0)∗(a2, 0)∗ . . . (ag, 0)∗

We denote by Perm(L) the permutation closure of a language L. Consider also the
morphism h which maps each symbol (a, i), a ∈ V, 0 ≤ i ≤ m, into a, and also maps d
into d. Denote (as usually) by ∂x(L) the left derivative of a language L with respect to a
string x, that is, ∂x(L) = {y | xy ∈ L}. Then we obtain

econ(Π) = h(R ∩ Perm(∂d(L(G))))

Indeed, ∂d removes the leftmost occurrence of the symbol d (the symbol obtained from
the symbol Z), Perm rearranges arbitrarily the symbols, the intersection with R selects
only those strings which have the symbols in the “correct” place, first the multiset from
the first membrane, then the multiset from the second membrane, and so on, with the
symbols in the standard order; finally, the morphism h returns the symbols (a, i) to a.
(Note that this morphism is, in fact, a coding.)

Because the family MATac is closed under left derivatives, intersection with regular
languages, permutation, and λ-free morphisms, it follows that econ(Π) ∈ MATac, which
concludes the proof. 2

In the previous proof we have considered all configurations which are accessible from
the initial configuration, without taking care whether or not the corresponding compu-
tations will eventually halt. In order to obtain a matrix grammar which generates only
the halting accessible configurations, we have to modify the previous construction in a
way which is already suggested in the proof of Lemma 6.1. Specifically, after introducing
the symbol Z, we do not directly replace all symbols (a, i)′ by (a, i), but we first check
whether or not any further transition is possible. This amounts at checking whether or
not any rule r1, . . . , rs is applicable to the current configuration, and this can be done in
the same way as when we have checked the maximality of the use of rules (in the phase
starting with the use of the rule X → X1). Namely, by using new symbols Z1, . . . , Zs in
the same way as we have used the symbols X1, . . . , Xs, we can check whether or not the
rules r1, . . . , rs, respectively, can be applied. In the affirmative case, we introduce the trap
symbol, in the negative case we (conclude that the computation halts, and we) remove
the primes. We leave the technical details to the reader and we conclude by stating this
observation as a lemma:

16

Lemma 6.2 For every P system Π with symport/antiport, the language ehalt(Π) belongs
to the family MATac.

As we have mentioned in Section 4, MATac ⊂ CS, while the context-sensitive lan-
guages are recursive. Therefore, the membership problem with respect to he languages
econ(Π), ehalt(Π) is decidable, and this proves the following result:

Theorem 6.1 The reachability of extended configurations of P systems with sym-
port/antiport is decidable, both in the general case, of considering arbitrary configurations,
and when considering halting configurations.

The proofs of Lemmas 6.1 and 6.2 also imply the inclusion NPP∗(∗, ∗) ⊆ NRE: if also
erasing rules are used, then we can get the language {an | n ∈ N(Π)}, hence this language
is in the family MAT λ

ac, which is equal to RE, and this implies that N(Π) ∈ NRE. Note
that always in the P systems area, when proving equality of the form NPP∗(∗, ∗) = NRE,
one proves the inclusion NRE ⊆ NPPn(r, t), for some n, r, t, and one says that “the
opposite inclusion is straightforward”. Actually, the opposite inclusion is implied by
the Turing-Church thesis, if we accept this thesis, and it is routine task – but a rather
cumbersome one – to construct a Turing machine which simulates a P system of a given
type. The constructions in the proofs of Lemmas 6.1 and 6.2 give for the first time a
proof for the inclusion NPP∗(∗, ∗) ⊆ NRE, moreover, not in terms of Turing machines
(or Chomsky type-0 grammars), but in terms of the more restrictive formalism of matrix
grammars with appearance checking.

7 Final Remarks

We have considered here a problem which so far was not investigated in the membrane
computing area, namely, the reachability of a configuration in a given P system. We
have dealt with systems with symport/antiport, but the same question can be formulated
for any type of P systems. As expected, the problem is undecidable for the case of
usual configurations, but it becomes decidable when taking into account also the symbols
which are sent out of the system during a computation. Nothing was said here about
the computation complexity of these positive decidability questions – this remains as a
research topic.

These results refer to systems of arbitrary degree and form, hence known to be com-
putationally universal. The case of systems of a particular type, with rules of a restricted
form, and/or with a limited number of membranes, remains to be investigated, in the
hope to find classes of systems with a decidable reachability problem even for restricted
configurations. Techniques used in other areas, when dealing with the reachability ques-
tion can be useful in this respect. For instance, we refer the reader to [6], [7], where also
other types of decidability questions can be found, dealing with safety, blocking, etc.

We conclude with the remark that this paper can also be seen as a first answer to the
(meta)question formulated in [13], to address new research problems about P systems,

17

different from the “classic” ones, about the power, the normal forms, and the possibility of
solving NP-complete problems in polynomial time. The decidability questions are such a
class of new problems, and up to now only [16] has considered such questions (namely, the
decidability of dissolving a membrane in a system where this operation is possible, with
multiset rewriting rules, not with symport/antiport). In [17] a simulation of deterministic
Turing machines by P systems with external output is given, and it is expected that
this simulation can be also used to attack decidability questions about P systems by
transferring corresponding results from Turing machines to P systems.

Acknowledgements

First author’s research was partially supported under the Programa Cátedra of the Fun-
dación Banco Bilbao Vizcaya Argentaria (BBVA), and by the Department of Computer
Science and Artificial Intelligence of Sevilla University, and under the project TIC2002-
04220-C03-03 of the Ministerio de Ciencia y Tecnoloǵıa of Spain.

Last authors wish to thank the support of the project TIC2002-04220-C03-01 of the
Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds.

References

[1] B. Alberts et al., Essential Cell Biology. An Introduction to the Molecular Biology of
the Cell, Garland Publ. Inc., New York, London, 1998.

[2] I.I. Ardelean, The relevance of biomembranes for P systems, Fundamenta Informa-
ticae, 49, 1-3 (2002), 35–43.

[3] A. V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo, Towards an electronic imple-
mentation of membrane computing: A formal description of nondeterministic evolu-
tion in transition P systems, Proc. 7th Intern. Meeting on DNA Based Computers
(N. Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001, 273–282.

[4] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

[5] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars,
Acta Informatica, 31 (1994), 719–728.

[6] O.H. Ibarra, Verification in Queue-Connected Multicounter Machines, International
Journal of Foundations of Computer Science, 13 (2002), 115–127.

[7] O. H. Ibarra, T. Bultan, J. Su, Reachability Analysis for Some Models of Infinite-state
Transition Systems, Proceedings of 11th International Conference on Concurrency
Theory, Pennsylvania, 2000, 183–198.

18

[8] C. Martin-Vide, Gh. Păun, G. Rozenberg, Membrane systems with carriers, Theo-
retical Computer Science, 270 (2002), 779–796.

[9] A. Obtulowicz, Membrane computing and one-way functions, Intern. J. Found. Com-
puter Science, 12, 4 (2001), 551–558.

[10] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport,
New Generation Computers, 20, 3 (2002), 295–306.

[11] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

[12] Gh. Păun, Computing with membranes (P Systems): Twenty six research topics,
CDMTCS TR 119, Univ. of Auckland, 2000 (www.cs.auckland.ac.nz/ CDMTCS).

[13] Gh. Păun, Further research topics about P systems, Pre-Proceedings of Workshop on
Membrane Computing, Curtea de Argeş, Romania, August 2001, Technical Report
17/01 of Research Group on Mathematical Linguistics, Rovira i Virgili University,
Tarragona, Spain, 2001, 243–250.

[14] Gh. Păun, Membrane Computing. An introduction, Springer-Verlag, Berlin, 2002.

[15] Gh. Păun, G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, 287, 1 (2002), 73–100.

[16] Gh. Păun, G. Rozenberg, A. Salomaa, Membrane computing with external output,
Fundamenta Informaticae, 41, 3 (2000), 259–266.

[17] M. J. Pérez-Jiménez, A. Romero-Jiménez, Simulating Turing Machines by P systems
with external output, Fundamenta Informaticae, 49, 1-3 (2002), 273–287.

[18] M. J. Pérez-Jiménez, F. Sancho-Caparrini, A formalization of transition P systems,
Fundamenta Informaticae, 49, 1-3 (2002), 261–272.

[19] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes, Springer-
Verlag, Berlin, 1997.

[20] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

19

