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Abstract. In [1], an example of a P system generating exactly all the squares of natural numbers
greater than or equal to 1 is given. Nevertheless, only an informal proof of this result is presented.
In this paper we study a similar P system (only one evolution rule is modified). A formalization of
the syntax of the P system following [3] is given, and we perform the verification of this P system
through soundness and completeness: (a) every successful computation generates a square greater
than or equal to 1 (soundness); (b) every natural number greater or equal to 1 is the output of a
successful computation of the system (completeness). Then we establish the formal verification
through the study of the critical points of the computations of the P system that give to us important
information to characterize the successful computations.

1. Introduction

In October 1998, Gheorghe Paun ([1]) introduced a new computability model, of a distributed parallel
type, based on the notion of membrane structure. This model, called transition P system, start from the
observation that the processes which take place in the complex structure of a living cell can be considered
computations. Following [1], we can consider the P systems as devices which generate numbers: the sum
of multiplicities of objects in the output membrane is the generated number by a computation.

In [1], the P system from Figure 1 is considered, where membrane 4 is the output one. Also, it is said
that the set of natural numbers generated by the above P system is N (II) = {n?: n > 1}.
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This paper is structured in the following way. In Section 2 some preliminaries about formalization of
transition P systems is presented, following [3]. In Section 3 the formal syntax, following Section 2, of II
is given. In Section 4 characterizations of successful computations of the above P system is established.
In Section 5 we show that the output of every successful configuration of II encodes the square of a
natural number greater than or equal to 1 (the soundness of the P system) and, also, that the square of
every natural number greater than or equal to 1 is generated by some successful computation of II (the
completeness of the P system).

2. Preliminaries About Transition P Systems

Following [3], a membrane structure is a rooted tree, where the nodes are called membranes, the root is
called skin, and the leaves are called elementary membranes. Usually, we represent a rooted tree by an
ordered pair such that the first component of the pair is the root of the tree and the second component is
the adjacency list that consists of n lists, one for each vertex 7. The list for vertex ¢ contains just those
vertices adjacent from 1.

A cell (or super-cell) over an alphabet, A, is a pair (u, M), where = (V(u), E(p)) is a membrane
structure (we consider E*(p) as follows: (z,y) € E*(u) <= y is a child of x in p), and M is an
application, M : V(1) — M(A) (the set of multisets over A; following [1] and [2], the multisets are
represented by strings).

Let (u, M) be a cell over an alphabet A. Let z € V(u). An evolution rule associated with z
is a 3-tuple r = (ci;, Uyr, 0y ), where (1) ci; is a multiset over A, (ii) ¥, is a function with the domain
V(u) U {here, out} and the range contained in M(A), where here, out ¢ V (u) (here # out), and (iii)
O € {9,0}, with 6,6 ¢ A (=5 # 0).

A collection R of evolution rules associated with C' is a function with the domain V(1) such that
for every membrane x € V(u), Ry = {r{,...,r% } is a finite set (possibly empty) of (evolution) rules
associated with x. A priority relation over R is a function p, with the domain V' (1), such that for every
membrane x € V(u), p, is a strict partial order over R, (possibly empty).

A transition P-system is a 4-tuple II = (A, Cp, R,1ip), where A is a non-empty finite set (usually
called base alphabet), Cy = (119, Mp) is a cell over A, R is an ordered pair (R, p) where R is a collection
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of (evolution) rules associated with Cjy and p is a priority relation over R, and i is a node of o which
specifies the output membrane of II.

A configuration, C, of a P system IT = (A, Cy, R, ip) with Cy = (uo, My), is acell C = (u, M)
over A, where V(1) C V(10), and p has the same root as y9. The configuration Cj will be called the
initial configuration of 1. Let x € V(). We say that the (evolution) rule r € R, is semi-applicable to
C if: (a) the membrane associated to node x exists in C, that is, x € V(u); (b) dissolution is not allowed
in the root node, that is, if x is the root node of y, then é,, = —6; (c) the membrane associated with x has
all the necessary objects to apply the rule, that is, ci; < M (z); and (d) nodes where the rule tries to send
objects (by means of in,) are children of z, that is, Vy € V(1) (7, (y) # 0— (z,y) € E*(n)).

We say that the rule r € R, is applicable to C, if it is semi-applicable to C' and there is no semi-
applicable rules in R, with a higher priority. Thatis: =37/ (v € Ry A p.(r',7) Ar’ semi-applicable to C).

We say that 7 € NN is an applicability vector over x € V() for C, and we denote it as 7 €
Ap(z,C), if: (a) the node is still alive, that is, p’ # 0=z ¢ V(u); (b) it has correct size, that is,
Vi(j > se — p(j) = 0) (where s, is the number of rules associated with x); (c) every rule can be
applied as many times as the vector p'indicates, that is, Vj (1 < j < s; — p(j) < Nap(ry, C,x)); (d)
all the rules can be applied simultaneously, that is, >, p(j) ® aﬁ; < M (z); and (e) it is maximal, that
is, 37 € NN (5 < ¥ A 7 € Ap(z,C)).

We say that P : V(o) — NN is an applicability matrix over C, denoted P € Ma,(C), if for
every € V(o) we have that P(z) € Ap(x,C). We define

APC)={z: z€V(n) /\Elj(lgjgsx/\Px(j)#O/\cST;c:cg)}.

If P is an applicability matrix over C' = (u, M) and V(1) = {i1,..., 4%}, then we denote P =
71 i1 ik ik

((pl PR 7psi1)7 ey (pl PR 7p51k))
For each node x € V (1), we define the donors of x for C' in the application of P as follows:

0, ifx e A(P,C),
D ,P,C) = Vi(p) : AP,C) Nx~py A .
on(z, P, C) {yeVp:ye APC) Na~py Cifrd A(P.C).
AVzeV(p)(x ~yz~uy—zeAP0))}
We define the execution of P over C, denoted P(C), as the configuration C' = (p/, M) of II, where:
e 4/ is the rooted tree obtained from p by means of:
- V(') =V (p) — A(P,0).
- Ifz,y € V(i/), then:

(x,y) € E*(¢) & Fzo,...,xn € V()(21,... 201 € A(P,C) A 29 = A\
T =y AVi(0<i<n-— (x;,ziy1) € E*(1)))

M'(z)u | My, ifz¢APC),
° M’(l’) = yeDon(z,P,C)
0, if v € A(P,C).
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We say that a configuration C' of a P system II yields a configuration C> by a transition in one
step of 11, denoted C; =11 Cj, if there exists a non—zero applicability matrix over C;, P, such that
P(Cy) = Cs.

The computation tree of a P system 11, denoted Comp(II), is a rooted labeled maximal tree defined
as follows: The root of the tree is the initial configuration, Cj, of II. The children of a node are the
configurations that follow in one step of transition. Nodes and edges are labeled by configurations and
applicability matrices, respectively, in such way that two labeled nodes C', C" are adjacent in Comp(1I),
by means an edge labeled with P, if and only if P € Map(C) — {0} A ¢’ = P(C'). The maximal
branches of Comp(II) will be called computations of II. We will say that a computation of II halts if it
is a finite branch. The configurations verifying M s, (C') = {0} will be called halting configurations.

We say that a computation C = Cy =1 C =1 ... =11 Cp of a P system IT = (A, Cy, R, ip)
is successful if it halts and i¢ is a leaf of the rooted tree f,, where C,, = (pn, My). Then we say
that configuration C,, is successful, and n is the length of C. The numerical output of a successful
computation, C, is O(C) = |Mg¢,, (i0)| where C,, is the successful configuration of C. The output of a P
system IT is O(IT) = {O(C) : C is a successful computation of IT}.

Let IT = (A, Cy, R, ig) be a P system. The set of natural numbers generated by II, denoted N (IT),
is defined as follows: N(II) = {O(C) : C is a successful computation of IT}.

3. A Formalization of the Syntax of the P System II

Next, we are going to formalize the syntax of the P system II from Figure 1, following the definitions of
the above section.
The P system we deal with is IT = (A, Cy, R, i), where:

(a) The base alphabetis A = {a,b,V',c, f}.

(b) The initial configuration, Cy = (o, M), is defined as follows:
Ho = (17 ((17 2)7 (27 1,3, 4)7 (37 2)? (47 2)))

That is, pg is the membrane structure given by means of the following rooted tree:

1

My is the application from {1,2,3,4} to M(A) defined as: My(1) = My(2) = My(4) = () and
Mo(3) = {af}.

(¢) R = (R, p), where:
e R is a collection of rules associated with Cp; that is, R is an application with the domain

{1,2,3,4}, defined as: R(1) = R(4) = 0, R(2) = {r{,r3,r3,73} y R(3) = {r},r3,r3},
where:
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- r? = (d,2,v,2,8,2), with d, 2 = v}, v, 2:{1,2,3,4}U here,out} — M(A) given as
1 LS T
vp2(1) = 0,2(2) = v,2(3) = v 2(4) v 2(0ut) = 0; v,2(here) = {b}, and 6,2 = —d.
-3 = (dyz,v,2,0,2), with dp2 = {b}, v,2 : {1,2,3,4} U {here, out} — M(A) given
as v,2(1) = vr§(2) = 3(3) = g(out) = 0; v,2(4) = {c},v,2(here) = {b}, and

T’T‘77‘

as vg(l) = 03(2) = 1,2(3) = v2(4) = v2(out) = 0; vz(here) = {f}, and

- r3 = (d,2,v,2,6 2), withdyo = {ff}, vz : {1,2,3,4} U {here, out} — M(A) given

Ty Ty

v2(l) =v 2(2) = 1,2(3) = v,2(4) = v,2(out) = 0; v,2(here) = {a}, and 6,2 = +4.
-3 = (d,3,v,3,6 5), with s = {a}, v,s : {1,2,3,4} U {here,out} — M(A) given

Ty UTryY T

as v3(1) = 0,3(2) = v,33) = v,3(4) = vs(out) = 0; v3(here) = {ab'}, and
G,3 = —0.
-3 = (dv3,v,3,0,3), with d,s = {a}, v,z : {1,2,3,4} U {here, out} — M(A) given as
vp3(1) = v,3(2) = v,3(3) = vrg(4) — s(out) = 0; v,z (here) = {V'}, and 6,3 = +4.
-3 = (dn3,v,3,0,3), with s = {f}, 0,3 : {1,2,3,4} U {here, out} — M(A) given
as v,3(1) = f 3(2) = 0,3(3) = vr§(4) = vg(out) = 0; v,g(here) = {ff}, and
9,3 = —0.
r3

- r?=(d2,v,2,0 r2), withdo = {f}, v,2 : {1,2,3,4} U {here, out} — M(A) given as

e p is the application with the domain {1,2,3,4} defined as: p(1) = p(3) = p(4) = 0 and
p(2) ={(r3,r3)}.

(d) The output membrane is iy = 4.

4. Characterizing Successful Configurations of I1

Let IT' be any P system designed to generate a set B of natural numbers. To establish the verification
of I’ in relation to the set B, a predicate over configurations (that is, over Comp(II') x N) is looked
for, which is, in some way, an invariant of the process of computation in the P system II’. That is, this
predicate will be true for every computation, C, of II' and every natural number from B. Also, the truth
of the predicate over all the configurations of II' must extract important information to establish the
soundness and completeness of II related to the generation of the set B.

The process of verification of our P system II is based on the analysis of the content of every mem-
brane in every computation that can be obtained in II. Given a computation C of II, we will denote
Co=nC =mu...=uCk=r.... Thatis, Cy represents the configuration obtained after the execution
of k steps in the computation C. In a natural way, a partial function, STEP : Comp(II) x N x V (ug) —
M(A), can be defined to assign to every computation C, of II, every natural number & and every mem-
brane 7 of the P system, the content of the membrane ¢ after the execution of k steps in the computation
C. If, after the execution of the k-th step, the membrane i is dissolved, then STEP(C, k, 7) is not defined
and in this case we denote STEP(C, k,i) 1. Otherwise, we denote STEP(C, k,7) |. In general, we
denote STEP(C, k, i) = Cx(i). We denote by |C| the length of the computation C (it can be infinite)
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Definition 4.1. For every membrane i and every computation C of II, we define 6(C,7) = min{m :

Cm(2) T}

Having in mind that no membrane is dissolved in the initial configuration of a P system, we have that
d(C,i) > 1, for every C € Comp(1l) and every membrane 7 of II.

Given a P system II and a membrane ¢ of I, we can define in a natural way a partial function
D; : Comp(Il) — N — {0} by D;(C) = 6(C,1). That is, D; assigns to every computation C of IT a
natural number representing the instant where the membrane ¢ of II is dissolved (if any).

To establish that the considered P system IT generates the set {n? : n > 1}, we will try to characterize
the successful computations of II.

For that, first we will give a predicate over the configurations of II to be an invariant along the
execution of the P system II. Let us consider the formula
0(C,n) = (n < 6(C,3) — Cp = (uo, (0,0,ab’™f2",0))) A (n=3(C,3) — C success. A O(C) = n?)

To make easier the proofs and following Section 2, the applicability vector will be expressed with a
finite number of components (as many as rules the membrane has). We denote by O the vector with all
null components,irrespectively which is its size.

If C = (u, M) is a cell, where V(u) = {a1,...,a,} C Nwitha; < -+ < ap, we note M =
(M(ay),...,M/(ay)). For simplicity of notation, we represent the multisets by means of the associated
word, and () will be the empty multiset.

First, we are going to determine every configuration of the P system before membrane 3 is dissolved.

Proposition 4.1. For every computation C of IT we have:
Vn (n < 6(C,3) — Cp= (1o, (0,0,ab™ %", 0))).

Proof:
Let C be a computation of II. Let us prove the result by induction on n. For the base case, n = 0, it is
enough to consider that 6(C,3) > 1 and Cy = (o, (0,0, af,0)).

Let n € N such that (n < 6(C,3) — C» = (po, (0,0,ad™f?",0)). If n+1 < 6(C,3), then
n < §(C,3) and, hence, C,, = (po, (0,0, ab™f?",0)). As Cny1(3) |, we deduce that the configura-
tion Cp,1 is obtained from C,, by applying the matrix p" = (0,0, (1,0,2"), 0) (the applicability matrix
over Cp), since no dissolution is applied over membrane 3. Then, we have that C,11 = p(C,) =
(t0, (0,0, ab/ @ +D £ ). O

Next, we will prove that a critical point of the computations of the P system II appears in the moment
when membrane 3 is dissolved. That is, we will justify that knowing when membrane 3 is dissolved is
important in order to characterize the successful computations of II.

Proposition 4.2. For every computation C of the P system IT such that n = §(C, 3) < oo, we have:
L Cop= (1, (0,6 f*",0)), where 1t/ = (1,((1,2), (2,1,4), (4,2))).

2. For every k such that 0 < k < n — 1, we have Cpp145 = (i, (0,67 f2" 7" ¢™)), where 4/ is as
above.

3. CQ?H-l = (,u/lv (abn7 ch))’ where :u'// = (17 ((17 4)? (47 1)))
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4. The computation C is successful, its length is |C| = 2n + 1, and, also, the numerical output of this

computation is O(C) = n?.

Proof:

1. If n = §(C,3) < oo, then 0 < n — 1 < §(C,3). From Proposition 4.1, we deduce that C,,—; =
(10, (0,0, ab’™=D £2"~" ()}, Having in mind that §(C,3) = n, we obtain that the configuration
C,, is obtained from C,_; by executing the applicability matrix 5 = (0,0, (0,1,2"~1),0) over
Cn—1. Hence, C;, = p(Cn1) = (¢, (0,0 2", 0)), where i/ = (1, ((1,2), (2,1,4), (4,2))).

2. We provethis assertion by induction on k. For the base case, k = 0, let us observe that from (1) we
obtain that C, = (1/, (), '™ £2",0)). In this situation, since n > 1, it is possible to apply the rule
73 to the membrane 2 and then, by the way in which the priority is interpreted, the rule r3 cannot
be applied to C,, (this rule would dissolve membrane 2). Hence, the only matrix applicability over
C,, will be 7= (0, (n,0,2""1,0),0). In consequence, Cp1 = p(Cpn) = (1, (0,6 f2" ", 0)).
Let k be such that 0 < k < n — 1, and let us suppose that Cos 14 = (1, (0,67 f2" 7", ).

Since n — k — 1 > 0, we deduce that it is possible to apply the rule 73 to membrane 2 and then,
the only applicability matrix over C,, 414 is p = (0, (0,7, 2"~*~2,0),0). Hence, we have that

Cotisner = (i, (0,07 277 (rlnyy,

3. By applying (2) to the case k = n — 1, we obtain that Ca,, = (1/, (0, b™ f, c(*=Dn)).

Then, the only applicability matrix over Co), is 7 = (0, (0,7,0,1),0). Hence, we have that the
configuration Cap i1 is (1, (ab™, ), where 1/ = (1, ((1,4), (4,1))).

4. From (3) we deduce that Co,yy = (i, (ab™, ¢*)). Having in mind that V(i) = {1,4} and
Ry = R4 = () we deduce that M Ap(Can41) = {(0,0)}. Then the configuration Cop1 is a
halting one. Also, since 4 € V(1/”") and 4 is a leaf of i it follows that the configuration Coy, 11 is
successful. Hence, the computation C is successful, its length is 2n + 1, and its numerical output
is O(C) = |Cany1(4)] = n2.

a

As a first consequence of this proposition, let us see that after the moment when membrane 3 is
dissolved, the P system evolves in a “deterministic”” way.

Corollary 4.1. For every n > 1 and every C,C’ € Comp(II) such that n = 6(C,3) = §(C’, 3) we have
that Vk (n <k <2n+1— Cp =Cp).

Proof:
The case k = n follows from (1) in the previous proposition, the case n < k < 2n follows from (2), and
the case k£ = 2n + 1 follows from (3). O

Next, let us see that if two computations have the same moment of dissolution of membrane 3, then these
computations are equal.
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Corollary 4.2. For every n > 1 and every C,C’ € Comp(II) such that n = §(C, 3) = §(C’, 3) we have
that C = C'.

Proof:

Letn > 1and C,C’ € Comp(II) such that n = §(C, 3) = 6(C’,3). By applying (4) in Proposition 4.2,
and the prevoous corollary, it is sufficient to prove that Vk (0 < k <n—1— C; = C’,’c) But, this last
relation follows directly from Proposition 4.1. O

Corollary 4.3. There exists at most one computation of II which is not successful.

Proof:
Let C be a computation of IT which is not successful. From Proposition 4.2 we deduce that Vk (k <

§(C,3)). Hence, from Proposition 4.1 it follows that Cj, = (1o, (0,0, ab’* f2",0))). Then, C is unique.
g

Next, let us see that the formula 6(C, n) is true for every configuration C,, of the P system II.

Corollary 4.4. The formula 6(C, n) is an invariant of the P system II. That is, VC € Comp(Il) Vn €
N (6(C, n)).

Proof:
It follows directly from Proposition 4.1 and (4) in Proposition 4.2. O

Next, we are going to characterize the successful computations of II by means of the moment when
membrane 3 is dissolved.

Corollary 4.5. Let C be a computation of II. The following assertions are equivalents:
(a) C is a successful computation.
(b) 4(C,3) < .

(c) 0(C,3) <ocand|C|=2-4(C,3)+ 1.

Proof:
Let C be a successful computation. Let k = |C|. Then 1 < k < oo. Let us prove that §(C, 3) < k. If this
is not the case, then from Proposition 1 we have that C = (uo, (0,0, ab’® £2°, 1)), and this contradicts
the equality £ = |C|, since from the existence of no null applicability matrix over Cj (for example,
7= (0,0,(1,0,2%),0)) we would have that Cy, is not a halting configuration.

If §(C,3) < oo then, from (4) in Proposition 4.2, it follows that |C| = 2n + 1. Finally, (¢) = (a) it
follows directly from (4) in Proposition 4.2. O
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5. Soundness and Completeness of the P System 1

To establish that the set of natural numbers generated by ITis N(II) = {n? : n > 1} we must prove two
results:

e The numerical output of any successful computation of the P system II encodes the square of a
natural number greater than or equal to 1 (the soundness of the P system).

e For every n > 1 there exists at least one successful computation, C, of the P system II with the
numerical output O(C) = n? (the completeness of the P system).

Theorem 5.1. (Soundness) If C is a successful computation of the P system II, then there exists n > 1
such that the output of C is O(C) = n?.

Proof:

Let C be a successful computation of II. If n = §(C, 3), then from Corollary 4.2 it follows that 1 < n <
oo. Since the formula 6(C, n) is true and n = §(C, 3), we infer that the computation C is successful and,
also, O(C) = n?. 0

To establish the completeness of II to generate the set {n? : n > 1}, we consider the formula ¢(n) =
3C € Comp(II) (n = §(C, 3)). Let us see that this formula is true for every natural number greater than
or equal to 1.

Proposition 5.1. For every natural number n > 1 there exists a unique computation, C, of II such that
5(C,3) =n.

Proof:
We prove the existence by induction on n. For the base case, n = 1, the configuration C;, obtained from
the initial configuration, Cy, by applying the matrix p'= (0,0, (0,1, 1), 0) (applicability matrix over Cp)
is considered. Since 73 = a — 5, we obtain that §(C, 3) = 1.

Let n > 1 and let us suppose the result is true for n. Let C be a computation of II such that
§(C,3) = n. From Proposition 4.1, we deduce that C,,_; = (o, (0,0, ab/ ™=V f2"7" ).

The set of applicability matrices over C,,—1 is M ap(Cp—1) = {p1, P2}, where
7 =(0,0,(0,1,2"71),0), 5> = (0,0,(1,0,2"1),0)

Let C), = p2(Cn—1). Then C;, = (po,(0,0,ab™f*",0)). Let Cl,,, = p3(C,), where g3 =
(0,0, (0,1,2"),0), and in this step membrane 3 is dissolved. We have C,, | = (1//, (0, b () p27 gy,
where the membrane structure is ¢/ = (1, ((1,2), (2,1,4), (4,2))). Hence, the computation C' = Cy =3
Ci=mn...=1Ch1 =1 C;l =11 C7/1+1 =71 ..., verifies that (5(6’,3) =n+1.

Given n > 1, the uniqueness of the computation C verifying §(C,3) = n follows directly from
Corollary 4.2. O

Proposition 5.2. There exists an unique computation, C, of IT which is not successful.
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Proof:
First, let us prove that such a computation exists. For every k € N, let us consider the configuration Cj, =
(o, (0,0, ab'* £2", 0))). If we take the matrix 5 = (0,0, (1,0,2%),0), then we have that V k (Cpy1 =
P(Ck)). ThenC = Cy =11 C1 =11 ...Cx =11 Ckr1 =11 ... is a computation of II. Also, from the
construction, it is obvious that C is not a halting computation.

The uniqueness of such a computation follows from Corollary 4.3. O

Corollary 5.1. For every n > 1 the formula ¢(n) is true.

Corollary 5.2. The partial function D3 : Comp(II) — N — {0}, defined by D3(C) = 6(C,3) is a
bijection from the set S(II) of successful configurations of II to the set N — {0}.

Note: D; = D, = (), and D5 is not bijective.

Theorem 5.2. (Completeness) For every natural number n > 1 there exists a successful computation,

C, of the P system TI, such that its numerical output is O(C) = n?.

Proof:
Let n € N such that n > 1. Since the formula ¢(n) is true, there exists a computation C of IT such
that (C, 3) = n. Having in mind that the formula 6(C, n) is true, we conclude that the computation C is

successful, and, also, O(C) = n?. 0

6. Conclusions

The formal verification of a computing model is usually a hard task. If the procedures in the model are
not defined through an imperative language, then this task is harder. This is the case of P systems, that,
basically, is a procedural computing model.

The formal verification of a P system is based on the characterization of its successful computations,
and for this an analysis of the content of its membranes in every configuration is needed. The study of
critical points of the computations can give formulas over the configurations that will be invariants of the
whole process of evolution of the P system. Also, the truth of such formula in every configuration must
give important information to characterize the successful computations.

In this paper the formal verification of a P system given by Paun ([1]) to generate squares of natural
numbers greater than or equal to 1 has been obtained. The process of verification is based on the analysis
of a critical point appearing in every halting configuration: the moment when a relevant membrane is
dissolved. Moreover, in this work a detailed study of every computations of the P system is given, and
a classification of these computations is obtained. The formalization and study of the verification of P
systems may represent an important step to the treatment of them through reasoning systems.
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