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Abstract. In this paper we analyse the dynamics of one-dimensional
piecewise maps (PAMs). We show that one-dimensional PAMs are equiv-
alent to pseudo-billiard or so called “strange billiard” systems. We also
show that the more general class of rational functions leads to undecid-
ability of reachability problem for one-dimensional piecewise maps with
a finite number of intervals.
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1 Introduction

In the present work we investigate a class of hybrid systems defined by one-
dimensional piecewise maps. We are mainly interested in a class of one-dimensional
piecewise-affine maps (PAMS) [2]. The analysis of piecewise-affine maps is one of
the simplest model that generate complex behaviour, see [2–4, 6, 7]. It is known
that the reachability problem is undecidable for the two-dimensional case and it
is open for dimension one [1, 2].

It was recently shown that PAM is equivalent to hierarchical piecewise con-
stant derivatives system (HPCD)[2]. In this paper we show that PAM is also
equivalent to planar pseudo-billiard systems (PBSs) or so called “strange bil-
liards” model that is a well known object in bifurcation and chaos theory [10,
11]. In contrast to HPCD which is a hybrid automaton where each state is de-
fined by planar piecewise constant derivatives system (PCD), the model of PBS
can also be seen as two dimensional linear hybrid automaton but with only one
state.

Although the reachability for PAMs is known to be open we think that the
shown equivalence between PBSs and PAMs can be useful and the results from
chaos theory about “strange billiards” [10, 5, 11] could help understand the com-
plexity in one-dimensional piecewise-affine maps.



In the second part of this paper we are exploring the complexity of more
general class of rational maps that includes affine maps. It was shown in [8]
that piecewise iterative maps defined by a very restricted basis of elementary
functions:

{x2, x3, 2
√

x, 3
√

x, x± 1, 10 · x}
can simulate a Minsky machine even in dimension one. Comparing to [8], we
found a new way how to create a copy of information for a temporal use in
dimension one. We show that it is possible to avoid square root and cube root
functions using only rational functions. However in the current construction two
of the finite number of intervals we define are infinite. As a main result in this part
we show how to simulate (in direct way) a Minsky machine in one-dimensional
piecewise rational maps (PRM) of degree 2. From it follows that the reachability
problem for PRM is undecidable.

It would be interesting to investigate a natural class of one-dimensional piece-
wise linear rational maps that is in between affine and rational maps. The main
motivation for this class of systems is based on the fact that the reachability
in one-dimensional piecewise linear rational maps can be seen as parameterized
reachability in two dimensional linear4 maps. Another interesting question is
nondeterministic maps where transformations can be applied in any order. In
this case reachability problems for nondeterministic linear rational maps corre-
sponds to parametrized membership in 2 × 2 matrix semigroups. According to
undecidability in PRM we think that it is also very likely to find undecidability of
reachability problems in a nondeterministic version of one-dimensional rational
maps.

2 Preliminaries

In what follows we use traditional denotations N, Q and R for the sets of natu-
rals, rationals and reals respectively.

A function from a set A to a set B, we will denote by f : A → B. If f is
an injection such that dom(f) = A, then it will be denoted by f : A ↪→ B. In
some cases we put x 7→ y under the definition of a function f to express that
y = f(x), for example:

f : R→ R

x 7→ ax + b

is a way to say that f(x) = ax + b.
If we have a set A in a topological space (usually we will consider R or R2

with the euclidian topology), we will denote by int(A) (the interior of A) the
greatest open subset of A (int(A) = ∪{G : G open and G ⊆ A}).
4 A two dimensional linear function f is a function of the following type f(x, y) =

ax + by



2.1 Dynamical Systems

Definition 1. A dynamical transition system is a triple S = (X, T, Σ), where
X is a set (the set of points of the system), T : X → X (the transition function
that produces the evolution of the system), and Σ is a collection of subsets of X
(this component is only considered in the case we are interested in the symbolic
behavior of the system).

Remark 1. Usually, we will require Σ to be a partition of X, or at least to be a
collection of pairwise disjoint subsets of X (in the case we are interested in the
dynamical behavior of some parts of X, using the rest as auxiliary computation).
Also, we will see Σ as an alphabet, and we will study the language generated by
the system on this alphabet.

Definition 2. Let S = (X, T, Σ) a dynamical system, and x ∈ X. The sequence
{xn}n≥0, such that:

– x0 = x,
– for every n ≥ 0, xn+1 = T (xn).

is called the orbit of x by the system S, and it will be denoted as OS(x).

x0
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X

Fig. 1. Example of a dynamical system with an orbit in it

In Figure 1 we have a dynamical system S = (X,T,Σ) = {I1, I2, I3, I4}),
where a partial orbit of a point, x0, is shown.

Definition 3. Let S = (X,T,Σ) be a dynamical system, and x ∈ X. Let’s
associate the set X \ ∪w∈Σw to the element ε (the empty word). The symbolic
dynamics of x in terms of Σ is the set:

SS(x) = {w ∈ Σ∗ : ∀n ≥ 0 (OS(x)n ∈ wn)}

Where we use the notation w = w1w2 . . ..
In example above, SS(x0) = I1I2I2I1εI4I2 = I1I2I2I1I4I2. Note that point

x5 in the orbit has no representation in its symbolic dynamics.

Remark 2. If Σ is a collection of pairwise disjoint subsets of X, then for every
point x ∈ X, SS(x) has only one element.



Definition 4. Let S1 = (X1, T1, Σ1) and S2 = (X2, T2, Σ2) two dynamical sys-
tems. We will say that S2 simulates S1 if there exists an injection ϕ : X1 ↪→ X2,
and an injection σ : Σ1 ↪→ Σ2 such that for every x ∈ X1, we have:

SS2(ϕ(x)) = σ̂(SS1(x))

where σ̂ : Σ∗
1 ↪→ Σ∗

2 is the morphism generated by σ.

2.2 Pseudo Billiard Systems

Let us introduce the pseudo billiard model that already appeared in a different
context and became an abstract framework for some practical problems. In this
system we consider a number of segments with vector fields assigned to them.
The computation in this system can be described by the dynamics of the particle,
which initially moves with the constant velocity (in a particular direction) inside
a given region (not necessarily a polyhedron) and changes it instantaneously at
the moment of a collision with the boundary to the velocity defined by a given
vector field on the boundary.

We start with a more general definition for PBS’s, where we have no con-
straints on distributing the segments around the space. In this case, a particle
can touch the segments by both faces, and therefore it may cross them by the
action of their projection vectors.

Definition 5. A Pseudo Billiard System (PBS) is a pair (A,V), where A is a
set of pairwise disjoint segments in R2 (closed, open or semi-open), and V =
{vA}A∈A is a set of vectors in R2 − {(0, 0)} (vA is called the projection vector
of A).

The dynamics of a particle in PBS can be defined as follows. Let a particle P
that is represented by a vector x and is located on a segment A ∈ A, i.e. x ∈ A.
The transition function that moves P from x to a position x′ can be defined as
follows: x′ = x + λvA, where λ = min{δ > 0 : x + δvA ∈ ⋃

A′∈AA′}. We will
suppose that for every x ∈ A there exists such a λ (the particle is trapped inside
the system).

a)
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Fig. 2. An example of partial orbit: a) in a PBS, b) in a reflecting PBS

The PBS can be seen as a dynamical transition system S = (X,T,Σ) where:



– X =
⋃

A∈AA,
– T (x) = x + λvA, where x ∈ A and λ = min{δ > 0 : x + δvA ∈

⋃
A′∈AA′}

– Σ is any collection of subsets of X (usually it will be a subset of A).

Definition 6. A PBS is reflecting, if for every A ∈ A, the set T−1(A) and
T (A) are in the same half-plane determined by A.

2.3 Piecewise Affine Maps

Definition 7. We say that f : R→ R is a piecewise affine map (PAM) if there
exists a partition of dom(f) in a finite number of intervals of R (we allow the
intervals to be closed, open or semi-open intervals), I, and for every I ∈ I, there
exists aI , bI ∈ R such that: ∀x ∈ I, f(x) = aIx + bI .

Remark 3. If we have f(dom(f)) ⊆ dom(f), then we can consider a dynamical
system associated to it, S = (X, T, Σ) where:

– X = dom(f),
– T = f(x) and
– Σ is any collection of subsets of X (usually it will be a subset of I).

I1 I2

I3 I4 I5
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x2

x0

x3

Fig. 3. An example of partial orbit in a PAM (represented on the diagonal)

Definition 8. A rational function is a function defined as a ratio of polyno-
mials. For a single variable x a typical rational function is therefore f(x) =
P (x)/Q(x), where P and Q are polynomials in x as indeterminate, and Q is not
the zero polynomial.

We also give the definition of a more general class of rational functions that
we are going to study in the paper. We define it over Q to show that even in
this case the predictability of its behaviour is an undecidable problem.

Definition 9. A Piecewise (one-dimensional) rational map (PRM) is a function
that is defined on a finite sequence of disjoint intervals I− = (−∞, r−], I+ =
[l+,+∞), Ii = [li, ri] with r−, l+, li,ri ∈ Q, i = 1..k and uses rational functions
for different parts of its domain.



The computation in the above system can be understood as a generation of
sequence of points. One of the obvious problems that arises in such systems is a
point-to-point reachability problem that can be formulated as follows:

Problem 1. Given two points x, y ∈ Q and a one-dimensional piecewise map P .
Decide whether y is reachable from x in P .

3 Equivalence between Dynamical Systems

In this section we will study the equivalence between the models introduces
above. We will say that two models are equivalent if for every system of one
type there exists a system of another type that simulates it and vice versa. In
particular we are giving geometrical constructions to show the equivalence of one-
dimensional PAM, planar PBS and planar reflective PBS. Moreover using the
result that model of hierarchical piecewise constant derivative systems (HPCDs)
is equivalent to one-dimensional PAMs we can state that planar PBS is equivalent
to two-dimensional HPCDs (see [2]). Hence the complexity that can be obtained
with any of them is the same.

3.1 PAM simulates PBS

The first step through the equivalence will be devoted to prove that any PBS
system (reflecting or not) can be simulated by a PAM system.

Theorem 1. For every Pseudo Billiard System, {A,V}, there exists a Piecewise
Affine Map that simulates it.

Proof. Let us consider a PBS given by a set of segments A = {Ai} and a set of
associated projection vectors {vi}. You can see an example on Figure 4 .a.
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Fig. 4. a) Example of PBS to be simulated by a PAM; b) Projection of A1 on other
segments of the PBS, and the partition on A1 that it generates

The dynamics of the PBS is defined by projecting every point of Ai on some
other segment by using the projection vector vi. It is clear, from the definition
of PBS, that we can make a partition of Ai in segments, {Ak

i,j}, in such a way
that every point of {Ak

i,j} is projected on a point of Aj (see Figure 4 .b). The
next step is to associate for every segment of the system, Ai, an interval on



the line, Ii, by using an affine bijection, µi : Ai → Ii. Also, we will require
these intervals to be pairwise disjoint. For every i, j, k such that Ak

i,j 6= ∅, the
projection P k

i,j : Ak
i,j → Aj is an affine transformation. Also, all the functions µi

are affine transformations.

a) b) c) d)

Fig. 5. Projections: a) from A1; b) from A2; c) from A3; d) from A4

Hence, we can define an affine map

fi,j,k : µi(Ak
i,j) → µj(Aj)

x 7→ µj(P k
i,j(µ

−1
i (x)))

Since {Ak
i,j}i,j,k is a partition of the points of the PBS, {Ik

i,j}i,j,k is a partition
of the set of intervals considered, hence we obtain that the map

f :
⋃

i,j,k

Ik
i,j →

⋃

i,j,k

Ik
i,j

x 7→ fi,j,k(x), if x ∈ Ik
i,j is a piecewise affine map.

A1 A2 A3 A4

A1

A2

A3

A4

Fig. 6. PAM obtained after the process

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ai ↪→ ⋃
Ii

x 7→ µi(x), if x ∈ Ai.

If Σ is the subset of A that produces the symbolic dynamics, then Σ′ =
{ϕ(I) : I ∈ Σ} is the collection to be considered in the PAM, and σ : Σ → Σ′



defined by σ(I) = ϕ(I) is the injection for the dynamics. From the construction,
it is obvious that f simulates the given PBS.

Lemma 1. The number of affine functions we need in order to simulate a PBS
is bounded5 by |A|(|A|+ 2).

Proof. Idea: for every segment of the PBS, the partition we need to make all
possible projections on the other segments is bounded in size by |A|+ 2.

3.2 PBS simulates PAM

Next, we will prove that for any PAM we can build a PBS simulating its dynami-
cal behavior. Indeed, we will see that they can be simulated using only reflecting
PBS’s, hence there is no difference (regarding the dynamical complexity of the
system) in using a general PBS or restrict ourselves to reflecting PBS’s.

Nevertheless, we will prove in a first step that, for every PAM we can get a
general PBS (usually not reflecting) that simulates the given PAM. The proof is
based on the graphical idea about how to compute the orbit of a point directly
on the graph generated by the PAM (where we consider the dynamics on the
diagonal rather than on the X axis) using the iterated projections between the
affine map and the diagonal.

Fig. 7. PBS associated to a PAM

In this example we can see that the PBS obtained by the dynamics of the
PAM over the diagonal is, in general, a non reflecting one, because depending
its definition, we will need to cross some of the affine map graphs to reach the
diagonal. In any case, it is not a problem, because if we must cross one map
from another one, it is because both of them are in the same half-plane from the
diagonal, and then their associated vectors are parallel and in the same direction.

It is easy to see that, if we restrict the dynamics on the set of segments over
the diagonal, rather than on the X axis, the system we obtain is equivalent to
the original one.

5 In case of reflecting PBSs, the bound can be reduced to |A|+ 2



Theorem 2. For every Piecewise Affine Map there exists a Pseudo Billiard
System that simulates it.

Proof. Let f =
⋃n

i=1 fi a PAM where every fi is an affine map over an interval
Ii. We consider the following segments on R2:

– For every Ii = [ai, bi], we consider its projection on the diagonal, x = y, that
we note as Ai.

– For every Ii we consider the segment given by (ai, fi(ai))− (bi, fi(bi)), that
we note as f(Ai).

We can consider that there is no intersection between the interior of seg-
ments of the PAM (otherwise if any Ai intersects with some f(Aj), we consider
the intersection point, and subdivide both segments, leaving this point in the
diagonal segment (in Figure 7 we have split the second affine function in order
to have segments with no intersection in their interiors). Of course, the obtained
PAM is equivalent to the original one.

The vectors associated with every segment is given by the following rule: for
every i

– if int(f(Ai)) is inside the half-plane x < y (the upper half) then the vector
associated to Ai is (0, 1), and the vector associated to f(Ai) is (1, 0).

– if int(f(Ai)) is inside the half-plane x > y (the lower half) then the vector
associated to Ai is (0,−1), and the vector associated to f(Ai) is (−1, 0).

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ii ↪→ ⋃
Ai

x 7→ (x, x)

and, following the same procedure as in theorem 1, the same injection be-
tween the dynamics of the systems.

From the construction, it is obvious that the resulting PBS simulates the
given PAM (note that we use only a part of the dynamics of the PBS, considering
only the dynamics on the diagonal, and not the evolution of the points through
the other segments, necessary for the correct computing of the evolution, but
not for the dynamics itself).

3.3 Reflecting PBS simulates PAM

Theorem 3. For every Piecewise Affine Map there exists a Reflecting Pseudo
Billiard System that simulates it.

Proof. Let f : I → I be a PAM expressed in such a way that I =
⋃n

i=1 Ii is union
of pairwise disjoint intervals, and for every i, f|Ii

= fi, where fi(x) = aix + bi is
an affine function.

The first step of the proof consists in assigning to every interval of the PAM
a segment in R2 where we simulate the dynamics of the system. Since fi : Ii → I
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Fig. 8. PAM to be simulated

is affine, and Ii is an interval, fi(Ii) must be an interval too. Hence, the image of
every interval of our partition must be inside an union of intervals of our partition
that constitutes a larger interval. To make more direct the proof, we will maintain
the continuity among intervals of f by considering for every interval, Ii ⊆ R, of
f , the segment Ai = Ii × {0} ⊆ R2.

Now, we will simulate the dynamics of each affine map separately. Because
the segments Ai are in the same line, we can’t go directly from one to another
by using projections, therefore we will make use of auxiliary reflection segments
to produce the same result as f produces.

Depending on the coefficients of the affine map, there are three different
cases:

1. Case 1: ai > 0. In this case there is no flip from Ai to fi(Ai), so we will
need only one reflecting auxiliary segment to simulate the application of f ,
Bi (see figure 9 .a).

a) Ai fi(Ai)

Bi

Figure 11: Case 1: 0
b) Ai fi(Ai)

Bi B′

i

c) Ai
fi(Ai)

Bi

Fig. 9. a) Case 1: ai > 0 b) Case 2: ai < 0 c) Case 3: ai = 0

2. Case 2: ai < 0. In this case there is a flip from Ai to fi(Ai), so we will need
two reflecting auxiliary segments, Bi and B′

i, to simulate the application of
f (see figure 9 .b).

3. Case 3: ai = 0. In this case f(Ai) is a point, and we will make use of only
one reflecting auxiliary segment, Bi, to project to this point (see Figure 9 .c).
Indeed, it can be seen as a extremal subcase of case 1.



We can construct simultaneously all these segments with projection vectors
on R2 without disturbing one to each other, obtaining a reflecting PBS (see
Figure 10 for a complete construction for PAM in Figure 8).

a) A1 A2 A3 A4 A5
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B
′
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′

4

b) A1 A2

A3

A4

A5

B2

B4

Fig. 10. a) Reflecting PBS simulating PAM b) PBS with reduced number of segments

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ii ↪→ ⋃
Ai

x 7→ (x, 0)

and the same injection between the dynamics as in the previous theorems.
From the construction, it is obvious that the resulting PBS simulates the

given PAM (note that, again, we use only a part of the dynamics of the PBS,
considering only the dynamics on the segments Ai, and not the evolution of the
points through the other segments, necessary for the correct computing of the
evolution, but not for the dynamics itself).

From above construction, we obtain an upper bound to the number of seg-
ments we need in a reflecting PBS to simulate a PAM.

Corollary 1. Let f be a PAM with N affine functions. Let R be the number of
affine maps, fi, with ai < 0. Then, there is a reflecting PBS simulating f using,
at most, 2N + R reflecting segments.

Remark 4. The method of construction presented previously is not efficient in
general, but it works for any possible PAM. In a number of PAM’s, it is possible
to reduce the number of elements of the PBS simulating the PAM. For example,
in Figure 10 .a, we can identify segment A3 with B3 (of course, taking A3 out of
the X-axis), making unnecessary the use of B1, B3 and B5. Also, in this example,
if we change the orientation of A4 and A5 we can avoid the use of some auxiliary
segments, B′

2 and B′
4. We have reduced the construction from 12 segments to

only 7 (it is easy to check that in this example we need, at least, 5 segments in
order to simulate the dynamics), see Figure 10 .b.



Since Q is closed under linear rational transformations, if we restrict segments
and vectors in Q2 for the PBS, and intervals and coefficients in Q for the PAMs,
everything can be proved in the same way and the equivalence remains true.

4 Unpredictability in rational piecewise maps

In this section we show that the reachability problem in one dimensional ratio-
nal piecewise maps is undecidable since for every Minsky machine [9] we can
define a PRM that simulates its computation. Actually we need to show how
the states, transition function and updates of integer counters can be simulated
by a piecewise rational map P .

We found a new way how to create a copy of information for a temporal use in
dimension one by means of rational functions. It allows us to simulate (in direct
way) a Minsky machine in one-dimensional piecewise rational maps (PRM) of
degree 2. Note that one-dimensional piecewise affine maps is a subclass of PRMs.

Let A be a 2-counter machine with a set of states S = {1, 2, . . . , n}. The
configuration of A is a triple [k, l, s] where k and l are values of two counters
and s is a current state of A. Let us define the mapping φ : N×N×N→ Q that
is an isomorphism between a configuration [k, l, s] of A and a rational number
s + 1

2k+13l+1 that is shifted to the interval (0,1)

φ([k, l, s]) → 1
10H

(s +
1

2k+13l+1
),H = dlg(|S|)e

Instead of classical Minsky machine from now on we will consider a well-
known equivalent model of two counter machine where one of the counters is used
as a scratchpad. Another, counter holds an integer whose prime factorization is
2c · 3d. The exponents c, d can be thought of as two virtual counters that are
being simulated. If the real counter is set to zero then incremented once, that
is equivalent to setting all the virtual counters to zero. If the real counter is
doubled, that is equivalent to incrementing c, and if it is halved, that is equivalent
to decrementing c. By a similar procedure, it can be multiplied or divided by 3,
which is equivalent to incrementing or decrementing d.

To check if a virtual counter such as c (d) is equal to zero, just divide the
real counter by 2 (3), see what the remainder is, then multiply by 2 (3) and add
back the remainder. That leaves the real counter unchanged. The remainder will
have been nonzero if and only if c (d) was zero.

Let A be in configuration [k, l, s] and it is represented by a number

x =
1

10H
(s +

1
2k+13l+1

).

Let us show that we can perform the operations of multiplication and division
by 2 and 3 in a piecewise rational map P . To multiply/divide virtual counter by
2 or/and 3 we can use the following expression for x, where a,b are integers:

(10Hx− s)2a3b + s

10H



Now, we construct a system of intervals with rational functions, associated to
them, that allows us to check divisibility of the value of the virtual counter by 2
and 3 or in other words to perform a zero testing on counters of original Minsky
machine. For each state s of a counter machine we define the following intervals
and functions:

Let us assume that the current configuration [k, l, s] of a machine M is rep-
resented by a rational number x. If M is in a state s then x belongs to the
interval [ s

10H , s+1
10H ]. Assuming that we know the current state we can add to x

an integer 2k+13l+1 by expression 1
(10Hx−s)

+ x. In fact for further simulation
of checking the emptiness of the one Minsky machine counter we would need to
add an integer 2k3l+1 using the expression 1

2(10Hx−s)
+ x. Such operation gives

us an extra information about the counter values in integer part of the number.
It is important that we can use it now for some temporal computations and keep
another copy of the current state and counter values in the decimal part of the
number.

Now we can easily check whether a virtual counter is divisible by 2 iteratively
applying x − 2 while the point x is in the interval [3, +∞). Finally a point x
should reach either the interval [2, 3], which corresponds to k 6= 0, or the interval
[1, 2], which corresponds to k = 0.

In a similar way we can check divisibility by 3 from a state s using nega-
tive numbers. If x ∈ [ s

10H , s+1
10H ] we apply −( 1

3(10Hx−s)
+ x) and then x + 3 for

any point in the interval (−∞,−4]. Next the number x should appear in the
interval [−4,−3], which corresponds to l 6= 0 or in the interval [−3,−1], which
corresponds to l = 0.

Now we define a piecewise rational map to simulate all operations of Minsky
machine such as state transitions, update of counters and testing them for zero.
Initially let us define two intervals for intermediate computations related to the
zero testing in counters:

If x ∈ [3, +∞) then apply x− 2, If x ∈ (−∞,−4] then apply x + 3

Next for every command of the Minsky machine

State s: IF k 6= 0 THEN k=k+a, l=l+b GOTO State t ELSE GOTO State p

we define a set of intervals with assigned rational functions:

If x ∈ [ s
10H , s+1

10H ] then apply 1
2(10Hx−s)

+ x

If x ∈ [2 + s
10H , 2 + s+1

10H ] then apply (10H(x−2)−s)·2a3b+t
10H

If x ∈ [1 + s
10H , 1 + s+1

10H ] then apply (10H(x−1)−s)+p
10H



where a ∈ Z stands for increasing (decreasing) of the first counter by an
integer a, and b ∈ Z stands for increasing (decreasing) of the second counter by
an integer b.

Next for every command of the Minsky machine with testing of the second
counter for zero

State s: IF l 6= 0 THEN k=k+a, l=l+b GOTO State t ELSE GOTO State p

We define a set of intervals in a similar way:

If x ∈ [ s
10H , s+1

10H ] then apply −( 1
3(10Hx−s)

+ x)

If x ∈ [−(3 + s
10H ),−(3 + s+1

10H )] then apply (10H(x+4)−s)·2a3b+t
10H

If x ∈ [−(2 + s
10H ),−(2 + s+1

10H )] then apply (10H(x+3)−s)+p
10H

If x ∈ [−(1 + s
10H ),−(1 + s+1

10H )] then apply (10H(x+2)−s)+p
10H

Since the computation of a Minsky machine can be simulated by a specially
designed PRM the following theorem holds:

Theorem 4. One-dimensional piecewise rational map with a finite number of
intervals is the universal model of computations.

Corollary 2. The reachability problem (Problem 1) for one-dimensional PRM
is undecidable.

Corollary 3. There exists a particular one-dimensional PRM , that corresponds
to the universal Minsky machine, for which the point-to-point reachability prob-
lem is undecidable.

5 Conclusion

In this paper we show that the model of one-dimensional PAMs is equivalent to
a known model of strange billiards from bifurcation and chaos theory. On the
other hand we show that predictability in more general one-dimensional class
of functions (that includes one-dimensional PAMs) is not possible since we can
encode a universal model of computation such as Minsky Machine.

It would be interesting to investigate a natural class of one-dimensional lin-
ear rational maps that is in between affine and rational maps. As far as we
know the reachability problem for piecewise or nondeterministic maps is open
in both cases. The reachability in piecewise linear rational maps related to pa-
rameterized reachability in two-dimensional linear maps and the reachability in
nondeterministic linear rational maps can be interpreted as parameterized vector
reachability problem in 2× 2-matrix semigroups.
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