
Decision P systems and the P6=NP conjecture

Mario J. PÉREZ JIMÉNEZ, Álvaro ROMERO JIMÉNEZ, and
Fernando SANCHO CAPARRINI

Dpto. Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla, España

{Mario.Perez,Alvaro.Romero,Fernando.Sancho}@cs.us.es

Abstract. In this paper we present the model of decision P systems
with external output and prove the following main result: if there exists
an NP–complete problem that cannot be solved in polynomial time, with
regard to the input length, by the deterministic variant of such P systems,
constructed in polynomial time, then P 6= NP . From Zandron-Ferreti-
Mauri’s theorem it follows that if P 6= NP then no NP–complete problem
can be solved in polynomial time, with regard to the input length, by a
deterministic P system with active membranes but without membrane
division, constructed in polynomial time from the input. Both results give
a characterization of P 6= NP through the solvability by deterministic
P systems.

1 Introduction

In [2] a new model of computation, called P Systems, within the framework of
Natural Computing (bio-inspired computing), is introduced by G. Păun. It is
based upon the notion of membrane structure that is used to enclose computing
cells in order to make them independent computing units. Also, a membrane
serves as a communication channel between a given cell and other cells “adja-
cent” to it. This model comes from the observation that the processes which take
place in the complex structure of a living cell can be considered as computations.

Since these computing devices were introduced several variants have been
considered. A fairly complete compendium about P systems can be found at [7].
In particular, P systems with external output are studied in [4].

The different variants of P systems found in the literature are generally
thought as generating devices. Many of them have been proved to be computa-
tionally complete: they compute all Turing computable sets of natural numbers
or all recursively enumerable languages, depending on the variant considered.

The model we research here has two characteristics that have seldom been
considered before: we work with decision devices with input data. The aim is
that this kind of P systems allows us to deal with decision problems.

The main goal of this paper is to show a sufficient condition for P 6= NP :
if there exists an NP–complete problem that cannot be solved in polynomial
time, with regard to the input length, by deterministic decision P systems with
external output, constructed in polynomial time, then P 6= NP .

To achieve it, we prove that every decision problem which can be solved
by a deterministic Turing machine in polynomial time can also be solved by
deterministic decision P systems in polynomial time.

The paper is organized as follows: Section 2 briefly presents some basic con-
cepts about P systems with external output; Section 3 introduces the new model
of decision P systems with external output; Section 4 studies how to simulate de-
terministic Turing machines by families of such P systems; Section 5 establishes
our main results about decision P systems and the P 6= NP conjecture.

2 Multisets. Membrane structures. Evolution rules

A multiset over a set, A, is an application m : A → IN. A multiset is said to be
empty (resp. finite) if its support, supp(m) = {a ∈ A : m(a) > 0}, is empty (resp.
finite). If m is a finite multiset over A, we will denote it m = {{a1, . . . , am}},
where the elements ai ∈ supp(m) are possibly repeated. We write M(A) for the
set of all the multisets over A.

The set of membrane structures, MS, is defined by recursion as follows:
1. [] ∈ MS; 2. If µ1, . . . , µn ∈ MS, then [µ1 . . . µn] ∈ MS.

A membrane structure, µ, can also be seen as a rooted tree,
(
V (µ), E(µ)

)
.

Then, the nodes of this tree are called membranes, the root node the skin mem-
brane and the leaves elementary membranes of the membrane structure. The
degree of a membrane structure is the number of membranes in it.

The membrane structure with external environment associated with a mem-
brane structure, µ, is µE = [

E
µ]

E
. If we consider the latter as a rooted tree, the

root node is called the external environment of µ.
Given an alphabet, Γ , we associate with every membrane of a membrane

structure a finite multiset of elements of Γ , which are called the objects of the
membrane.

We also associate with every one of these membranes a finite set of evolution
rules. A evolution rule over Γ is a pair (u, v), usually written u → v, where u is
a string over Γ and v = v′ or v = v′δ, where v′ is a string over

Γ × ({here, out} ∪ {inl : l ∈ V (µ)})

and δ is a special symbol not in Γ . The idea behind a rule is that the objects
in u “evolve” into the objects in v′, moving or not to another membrane and
possibly dissolving the original one.

The length of a rule is the number of symbols involved in the rule.

3 Decision P Systems with External Output

Definition 1. A decision P system with external output is a tuple

Π = (Γ,Σ, µ
Π

, i
Π

,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp))

where

– Σ is an alphabet, called the input alphabet.
– Γ is an alphabet such that Σ ⊆ Γ ; its elements are called objects.
– µ

Π
is a membrane structure of degree p, the membranes of which we suppose

labeled from 1 to p.
– The input membrane of Π is labeled by i

Π
∈ {1, . . . , p}.

– Mi is a multiset over Γ −Σ associated with the membrane labeled by i, for
every i = 1, . . . , p.

– Ri is a finite set of evolution rules over Γ associated with the membrane
labeled by i, for every i = 1, . . . , p.

– Y ES,NO ∈ Γ −Σ.

To formalize the semantics of this model we define first what a configuration
of such a P system is, from what follows the notion of computation.

Definition 2. Let Π be a decision P system with external output.

1. A configuration of Π is a pair (µE ,M), where µ is a membrane structure
such that V (µ) ⊆ V (µ

Π
) and it has the same root than µ

Π
, and M is an

application from V (µE) into M(Γ). For every node nd ∈ V (µE) we denote
Mnd = M(nd).

2. The initial configuration of Π for the multiset m ∈ M(Σ) is the pair (µE ,M),
where µ = µ

Π
, ME = ∅, Mi

Π
= m ∪Mi

Π
and Mj = Mj, for every j 6= i

Π
.

The idea is that for every input multiset m ∈ M(Σ), we add that multiset
to the input membrane, i

Π
, of the P system and then “start” this latter one.

We can pass, in a non-deterministically manner, from one configuration of
Π to another by applying to its multisets the evolution rules associated with
their corresponding membranes. This is done as follows: given a rule u → v of a
membrane i, the objects in u are removed from Mi; then, for every (ob, out) ∈ v
an object ob is put into the multiset associated with the parent membrane (or
the external environment if i is the skin membrane); for every (ob, here) ∈ v an
object ob is added to Mi; finally, for every (ob, inj) ∈ v an object ob is added
to Mj (if j is not a child membrane of i, the rule cannot be applied). Finally, if
δ ∈ v, then the membrane i is dissolved, that is, it is removed from the membrane
structure. Moreover, the priority relation among the rules forbids the application
of a rule if another one of higher priority is applied.

Given two configurations, C and C ′, of Π, we say that C ′ is obtained from C
in one transition step, and we write C ⇒ C ′, if we can pass from the first to the
second one by using the evolutions rules appearing in the membrane structure
of C in a parallel and maximal way, and for all the membranes at the same time.

Definition 3. Let Π be a decision P system with external output. A computa-
tion, C, of Π with input m ∈ M(Σ) is a sequence, possibly infinite, of configu-
rations of Π, C0 ⇒ C1 ⇒ . . . ⇒ Cq, q ≥ 0, such that

– C0 is the initial configuration of Π for m.
– Each Ci is obtained from the previous configuration by one transition step.

We say that C is a halting computation of Π, if q ∈ IN and there is no rule
applicable to the objects present in its last configuration. In this case, we say
that Cq is the halting configuration of C.

We say that Π is deterministic if for each m ∈ M(Σ) there exists an unique
computation with input m.

The philosophy of the P systems with external output is that we cannot
know what is happening inside the membrane structure, but we can only collect
the information thrown from it to the external environment. In accordance with
it, it seems natural that the halting computations of these P systems report
to the outside when they have reached their final configurations (accepting or
rejecting). Furthermore, the idea behind the decision P systems is to use them as
languages decision devices. These considerations lead us to the following notions.

Definition 4. A deterministic decision P system with external output, Π, is
said to be valid when the following is verified:

– All of its computations halt.
– For each computation of Π only one rule of the form u → v(ob, out), where

ob = Y ES or ob = NO, must have been applied in the skin membrane of
µ

Π
, and only in the last step of the computation.

Definition 5. Let Π be a deterministic valid decision P system with external
output. We say that a configuration (µE ,M) of Π is an accepting (resp., reject-
ing) configuration if Y ES ∈ ME (resp., NO ∈ ME).

We say that C is an accepting (resp., rejecting) computation of Π if its as-
sociated halting configuration is an accepting (resp., rejecting) configuration.

Definition 6. A deterministic valid decision P system with external output, Π,
accepts (respectively, rejects) a multiset m ∈ M(Σ) if the computation of Π with
input m is an accepting (resp. rejecting) computation.

4 Simulating Turing Machines by Decision P systems

In what follows we are going to define what is meant by simulating a Turing ma-
chine (as a languages decision device) through decision P systems with external
output. This has to be done in such a way that every solution for a decision prob-
lem by a Turing machine provides a solution for the same problem by a decision
P system. Moreover, the additional costs of the reduction from one solution to
another must be basically polynomial over the input size.

We take as a model the concept of complexity classes in membranes intro-
duced by G. Păun in [1].

Definition 7. We say that a deterministic Turing machine, TM , is simulated
in polynomial time by a family of deterministic decision P systems ΠTM =
(ΠTM (1),ΠTM (2), . . . ,ΠTM (k), . . .) if

1. For each k ∈ N, ΠTM (k) is a deterministic valid decision P system with
external output.

2. ΠTM is an uniform family; that is, there exists a deterministic Turing ma-
chine which constructs ΠTM (k) in polynomial time starting from k ≥ 1. So,
ΠTM (k) has a polynomial size in the following sense: the size of the working
alphabet, the number of membranes, the size of the initial multisets, and the
sum of the lengths of all the rules, is bounded by kr, for some constant r
depending on TM .

3. Each ΠTM (k) is polynomially confluent; that is, there exists a polynomial
p(k), depending on TM , such that every computation of ΠTM (k) always
halts in less than p(k) steps.

4. Each ΠTM (k) is sound; that is, TM accepts (resp. rejects) the input string
ai1 . . . aik

if and only if ΠTM (k) accepts (resp. rejects) g(ai1 . . . aik
) (being g

a suitable polynomial encoding of strings by multisets).

Theorem 1. Each deterministic Turing machine can be simulated in polynomial
time by a family of deterministic decision P systems.

Proof. We consider deterministic Turing machines following [5].
Suppose we have QTM = {qN , qY , q0, . . . , qn}, ΓTM = {B, ., a1, . . . , am},

ΣTM = {a1, . . . , ap}, with p ≤ m, and δTM (qi, aj) = (qQ(i,j), aA(i,j), D(i, j)) as
set of states, working alphabet, input alphabet and transition function for TM ,
respectively. We denote aB = B and a0 = ..
We construct the family of deterministic decision P systems ΠTM = (ΠTM (1),
ΠTM (2), . . . ,ΠTM (k), . . .) which simulates TM as follows: for each k ∈ N, the
decision P system ΠTM (k) is:

Σk = {〈a, i〉 : a ∈ ΣTM , 1 ≤ i ≤ k}
Γk = {〈a, i〉 : a ∈ ΣTM , 0 ≤ i ≤ k} ∪ {s−i , s+

i , si : 1 ≤ i ≤ 9}∪
{s, qN , qY , h, h′, Y ES, NO} ∪ {qi : 0 ≤ i ≤ n} ∪ {bi, b

′
i, b

′′
i , ci : 0 ≤ i ≤ m}

µ
Π

= [1]1 , i
Π

= 1, M1 = {{q0, b0, s
−
1 , . . . , s−9 , s}}

R = R0 ∪R1 ∪R2 ∪R3 ∪R4,where

•R0 ≡
〈ai, j〉 → 〈ai, j − 1〉2 (1≤i≤p,1≤j≤k)

〈ai, 0〉 → bi (1≤i≤p)

}
> s → s1

•R1 = R1,1 ∪R1,2 ∪R1,3, with

R1,1 ≡ s1s
−
1 → s+

1 > s−1 → s−1 >


h → hh′

bi → bib
′
i (0≤i≤m)

s+
1 → s−1 s2

R1,2 ≡


h′s2s

−
2 → s+

2 > s2 → s3 > s−2 → s−2 >

> b′
2
i → b′′i (0≤i≤m) >


b′i → λ (0≤i≤m)

b′′i → b′i (0≤i≤m)

s+
2 → s−2 s2

R1,3 ≡ s3s
−
3 → s+

3 > s−3 → s−3 >

{
b′

2
i → λ (0≤i≤m)

s+
3 → s−3 s4

•R2 = R2,1 ∪R2,2, with

R2,1 ≡ s4s
−
4 → s+

4 > s−4 → s−4 >

{
h → hh′

s+
4 → s−4 s5

R2,2 ≡ s5s
−
5 → s+

5 > s−5 → s−5 >


Rules for the transition
function
s+
5 → s−5 s6

The rules for the transition function, δTM , are the following:
Case 1: state qr, element as 6= B

Movement Rules

left
qrb

′
sh → qQ(r,s)b

′
scA(r,s), if A(r, s) 6= B

qrb
′
sh → qQ(r,s)b

′
s, if A(r, s) = B

stand
qrb

′
s → qQ(r,s)b

′
scA(r,s), if A(r, s) 6= B

qrb
′
s → qQ(r,s)b

′
s, if A(r, s) = B

right
qrb

′
s → qQ(r,s)b

′
scA(r,s)h, if A(r, s) 6= B

qrb
′
s → qQ(r,s)b

′
sh, if A(r, s) = B

Case 2: state qr, no element

Movement Rules

left
qrh → qQ(r,s)cA(r,s), if A(r, s) 6= B
qrh → qQ(r,s), if A(r, s) = B

stand
qr → qQ(r,s)cA(r,s), if A(r, s) 6= B
qr → qQ(r,s), if A(r, s) = B

right
qr → qQ(r,s)cA(r,s)h, if A(r, s) 6= B
qr → qQ(r,s)h, if A(r, s) = B

To avoid conflicts, every rule in case 1 has higher priority than
any rule in case 2.

•R3 = R3,1 ∪R3,2, with

R3,1 ≡ h′s6s
−
6 → s+

6 > s6 → s7 > s−6 → s−6 >


b′i → b′

2
i (0≤i≤m)

ci → c2
i (0≤i≤m)

s+
6 → s−6 s6

R3,2 ≡ s7s
−
7 → s+

7 > s−7 → s−7 >


bib

′
i → λ (0≤i≤m)

ci → bi (0≤i≤m)

s+
7 → s−7 s8

•R4 = R4,1 ∪R4,2, with

R4,1 ≡ s8s
−
8 → s+

8 > s−8 → s−8 >


qY → qY s9, qN → qNs9

qi → qis1 (0≤i≤n)

s+
8 → s−8

R4,2 ≡ s9s
−
9 → λ > s−9 → s−9 >


s−1 . . . s−8 → λ

qY → (Y ES, out), qN → (NO, out)
h → λ

bi → λ (0≤i≤m)

Let us see that ΠTM = (ΠTM (1),ΠTM (2), . . . ,ΠTM (k), . . .) is a family of de-
terministic decision P systems which simulates TM .

Obviously it is a family of deterministic valid P systems. Moreover, ΠTM is
an uniform family. Indeed, let TM be a deterministic Turing machine such that
the set of states has size n + 2, the working alphabet has size m + 2 and the
input alphabet has size p (with p ≤ m). The necessary resources to construct
ΠTM (k) are the following:

1. The size of the working alphabet Γk is p · k + 4m + n + 33 ∈ θ(k · (m + n)).
2. The degree of the P system is 1.
3. The size of the initial configuration for each x ∈ Σk

TM is k + 12 ∈ θ(k).
4. The total number of rules is in the order of O(p · k +n ·m) = O(k · (m+n)).
5. The greatest length of a rule is 8 ∈ O(1).

Let us see now that, for each k ∈ N, ΠTM (k) is sound: let L be the language
decided by TM . In order to decide if a string ai1 . . . aik

∈ ΣTM , of size k, belongs
to L, we encode it by the multiset {{(ai1 , 1), . . . , (aik

, k)}} which is the input
given to ΠTM (k). The rules of this P system have been carefully chosen in such
a way that its operation goes through the following main stages:

1. Transform the input multiset into another multiset which encode the string
in base 2.

2. Read the element in the cell scanned by the head.
3. Calculate the new element to write in the cell, move the head and change

state.
4. Erase the old element and write the new element.
5. Check if a final state is reached: if not, repeat from stage 2; if qY is the final

state reached, then accept the string; if qN is the final state reached, then
reject the string.

These stages will be carried out in several small steps, each of them managed by
a group of rules. To avoid rules from distinct steps being applied together, we
will use s−j as forbidding objects and s+

j as permitting objects; if s−j is present
in the P System, then rules for step j cannot be executed; if, instead, s+

j is the
object present, then rules for step j must be executed (if possible). Of course, at
any time, for each step only the corresponding forbidding or permitting object
will be present. Also there will always be only one permitting object at the same
time.

To indicate that we want to perform a step, we will use sj as promoter
objects. When sj appears in the P System, it will transform its corresponding
forbidding object s−j into the permitting one s+

j , thus allowing the rules for step

j to be applied. Then the permitting object will transform itself again into the
forbidding one, and into a suitable promoter object.

In order to simulate the running of the Turing Machine, it is obvious that
we have to fix a representation for several elements of it: which is the current
state of the Turing Machine, which are the elements in the cells of the tape, and
which cell is scanning the head.

To represent the states we will use objects qN , qY , q0, . . . , qn.
Through the simulation, objects b0, . . . , bm will represent, in base 2, which

cells contain symbols a0, . . . , am, respectively (note that, at any time, the num-
ber of non-empty cells in the tapes of the Turing machine is finite); objects
b′0, . . . , b

′
m, b′′0 , . . . , b′′m will be used as working copies of the previous objects; the

single prime objects will also serve to save the symbols read from the cells, and
objects c0, . . . , cm will serve to indicate the new symbols to write into them.

The cell scanned by the head, numbered from zero, will be represented by
the object h, in base one; object h′ will be used, when needed, as a working copy
of object h; it will be utilized as a counter.

Finally, let us see that, for each k ∈ N, ΠTM (k) is polynomially confluent.
Indeed, if x ∈ Σk

TM is an input string of size k to the Turing machine then we
have:

1. The generation of the multiset coding, in base 2, the non-empty cells in the
initial configuration of TM for x requires k + 2 steps of the P system.

2. The simulation of each transition step of the Turing machine requires a cost
in the order of O(5j +12), where j is the cell being read by the head of TM .

3. Checking if a final state has been reached requires 2 steps.
4. The output after the detection of a final state requires 2 steps.

Therefore, if TM accepts or rejects x in O(t(k)) steps then ΠTM (k) needs O(k+
t(k)) steps to do the same. �

5 Main result

In [6], C. Zandron, C. Ferretti y G. Mauri prove the following result.

Theorem 2. If P 6= NP then no NP–complete problem can be solved in poly-
nomial time, with regard to the input length, by a deterministic P system with
active membranes but without membrane division.

In this section we prove a kind of reciprocal result of the previous theorem
through the solvability of a decision problem by a family of deterministic decision
P systems with external output.

Recall that a decision problem, X, is a pair (EX , fX) such that EX is a
language over a certain alphabet and fX is a boolean mapping over EX . The
elements of EX are called instances of the problem X. For each k ∈ N we note
Ek

X the language of all the instances of X with size k.

Definition 8. We say that a decision problem, X, is solvable in polynomial
time by a family of deterministic decision P systems ΠX = (ΠX(1),ΠX(2), . . . ,
ΠX(k), . . .) if

1. For each k ∈ N, ΠX(k) is a deterministic valid decision P system with
external output.

2. ΠX is an uniform family; that is, there exists a Turing machine which con-
structs ΠX(k) in polynomial time starting from k ≥ 1. So, ΠX(k) has a
polynomial size in the following sense: the size of the working alphabet, the
number of membranes, the size of the initial multisets, and the sum of the
lengths of all the rules, is bounded by kr, for some constant r depending on
X.

3. Each ΠX(k) is polynomially confluent; that is, there exists a polynomial p(k)
depending on X such that every computation of ΠX(k) always halts in less
than p(k) steps.

4. Each ΠX(k) is sound; that is, for every a ∈ Ek
X , fX(a) = 1 if and only if

ΠX(k) accepts (resp. rejects) the multiset g(a) (being g a suitable polynomial
encoding of elements of EX by multisets).

Theorem 3. If there exists an NP-complete problem that cannot be solved in
polynomial time, with regard to the input length, by a family of deterministic
decision P system with external output, then P 6= NP .

Proof. Let us suppose that P = NP . Then, there exists an NP–complete prob-
lem, X, and a deterministic Turing machine, TMX , solving X in polynomial
time with regard to the input length. From theorem 1, TMX is simulated in
polynomial time by a family of deterministic decision P systems, ΠTMX

. Then,
according with definition 2, ΠTMX

solves the problem X in polynomial time
with regard to the input length. What leads to a contradiction.

�

6 Final Remarks

In this work we make clear an apparent theoretical interest of P systems without
membrane division as a tool which allows us to attack the P 6= NP conjecture.
The search of an adequate NP–complete problem and the study of its solvability
through such P systems will give us a direct answer to the conjecture. If the
considered problem is solvable in polynomial time then the conjecture will have
an affirmative answer; on the other case, it will have a negative answer.

We think that this result provides an additional attractiveness to the research
of P systems because it allows us to attack the P 6= NP conjecture within this
model.

Of course, we cannot get round the real hardness that we found when trying
to prove the unsolvability of a problem in an unconventional model of computa-
tion, as P systems are.

References

1. Păun, G.: Membrane Computing. An introduction, Springer-Verlag, to appear.
2. Păun, G.: Computing with membranes, Journal of Computer and System Sciences,

61(1), 2000, 108–143.
3. Păun, G., Rozenberg, G.: A guide to membrane computing, Theoretical Computer

Sciences, to appear.
4. Păun, G., Rozenberg, G., Salomaa, A.: Membrane Computing with External Out-

put, Fundamenta Informaticae, 41(3), 2000, 313–340.
5. Romero-Jiménez, A., Pérez-Jiménez, M.J.: Simulating Turing Machines by P Sys-

tems with External Output, Fundamenta Informaticae, 49(1-3), 2002, 273–287.
6. Zandron, C., Ferretti, C., Muri, G.: Solving NP-Complete Problems Using P Systems

with Active Membranes, in Unconventional Models of Computation (I. Antoniou,
C.S. Calude, M.J. Dinneen, eds.), Springer, 2000, 289–301.

7. The P Systems Web Page:
http://bioinformatics.bio.disco.unimib.it/psystems/

