Los  Poliedros

Los poliedros son sólidos cuyas caras son polígonos regulares.

En los poliedros distinguimos:

Además podemos fijarnos en:

En un vértice pueden concurrir m polígonos regulares de n lados unidos vértice a vértice. La suma de los ángulos de cada uno de estos polígonos no debe ser mayor de 360º, pues de lo contrario no formarían un “ángulo sólido”.

Por tanto debe considerarse que: < 360º                                                                         

          Los más sencillos son aquellos que se forman a partir de un solo polígono regular. Este grupo de poliedros ya era conocido por Euclides (330 a.C.) y estos cinco sólidos estuvieron acompañados de cierto misticismo. Se asociaban con los cuatro elementos supuestos y con el Universo y reciben el nombre de sólidos platónicos. Los únicos poliedros regulares son:

  1. El TETRAEDRO: Formado por tres triángulos equiláteros. Es el que tiene menor volumen de los cinco en comparación con su superficie. Representa el fuego. Está formado por 4 caras, 6 aristas y 4 vértices
  2. El CUBO: Formado por seis cuadrados. Permanece estable sobre su base. Por eso representa la tierra. Está formado por 6 caras, 12 aristas y 8 vértices.
  3. El OCTAEDRO: Formado por ocho triángulos equiláteros. Gira libremente cuando se sujeta por vértices opuestos. Por ello, representa al aire en movimiento. Está formado por 8 caras, 12 aristas y 6 vértices.
  4. El DODECAEDRO: Formado por doce pentágonos regulares. Corresponde al Universo, pues sus doce caras pueden albergar los doce signos del Zodiaco. Tiene 12 caras, 30 aristas y 20 vértices.
  5. El ICOSAEDRO: Formado por veinte triángulos equiláteros. Es el tiene mayor volumen en relación con su superficie y representa al agua. Tiene 20 caras, 30 aristas y 12 vértices.

En todos ellos se cumple la relación: CARAS + VÉRTICES – ARISTAS = 2

 

           También pueden construirse poliedros con más de un tipo de polígono regular. Reciben el nombre de sólidos arquimedianos. Existe un número infinito de ellos, pues incluye a dos grupos:

Volver a   Los  Poliedros                                                                                   Ir al          DIRECTORIO de MATES