
Set-Based Particle Swarm Optimization
by

JoostLangeveld

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

September 2015

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Publication data:

JoostLangeveld. Set-Based Particle Swarm Optimization. Master’s dissertation, University of Pretoria, Department of Com-
puter Science, Pretoria, South Africa, September 2015.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://cirg.cs.up.ac.za/

Set-Based Particle Swarm Optimization

by

JoostLangeveld

E-mail: jclangev@gmail.com

Abstract

Particle swarm optimization (PSO) algorithms have been successfully applied to discrete-valued op-

timization problems. However, in many cases the algorithms have been tailored specifically for the

problem at hand. This study proposes a generic set-based particle swarm optimization algorithm, called

SBPSO, for use on discrete-valued optimization problems that can be formulated as set-based prob-

lems. The performance of the SBPSO is then evaluated on two different discrete optimization problems:

the multidimensional knapsack problem (MKP) and the feature selection problem (FSP) from machine

learning. In both cases, the SBPSO is compared to three other discrete PSO algorithms from literature.

On the MKP, the SBPSO is shown to outperform, with statistical significance, the other algorithms. On

the FSP and using ak-nearest neighbor classifier, the SBPSO is shown to outperform, with statistical

significance, the other algorithms. When a Gaussian Naive Bayes or a J48 decision tree classifier is used,

no algorithm can be shown to outperform on the FSP.

Keywords: Particle Swarm Optimization, Swarm Intelligence, Computational Intelligence, Discrete

Optimization, Mathematical Sets, Multidimensional Knapsack Problem, Machine Learning, Feature Se-

lection Problem

Supervisor : Prof. Andries P. Engelbrecht

Department : Department of Computer Science

Degree : Master of Science

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Pre-face

The document before you is the dissertation of Joost Langeveld for the purpose of obtaining a Master

Degree from the University of Pretoria, department of Computer Science. Parts of this work have previ-

ously been presented at the 2011 International Conference on Swarm Intelligence, in Cergy, France as “A

generic set-based particle swarm optimization algorithm” [79] and published in the journal of Swarm In-

telligence as “Set-based particle swarm optimization applied to the multidimensional knapsack problem”

[80].

Problem statement

Swarm intelligence research has yielded positive results in a variety of application areas. Particle swarm

optimization (PSO) was introduced by Kennedy and Eberhart [62] in 1995, and it forms a key area

of swarm intelligence research. Originally used to solve continuous optimization problems, PSO was

adapted for discrete optimization problems as well [62]. Later work has seen PSO algorithms built

around the concept of mathematical sets [24, 102, 143].

This study claims that a functioning, generic, set-based PSO algorithm does not yet exist. Further-

more, this study proposes a new algorithm and claims that this algorithmis a functioning, generic, set-

based PSO algorithm. An abstract formulation of the SBPSO’s update equations in terms of set-theory

will be derived. Then the new algorithm will be applied and evaluated on two set-based optimization

problems, namely the multi-dimensional knapsack problem (MKP), and the feature selection problem

(FSP). The influence of the algorithms’ control parameters on performance will also be investigated.

Set-based optimization problems are discrete or combinatorial optimization problems thatallow for a

natural representation using elements, whereby the problem is to find an optimal subset of these elements.

Many combinatorial problems can be defined using sets of elements, but for most problems this is not

the natural representation: such a set based representation makes the problem harder to solve. Set-based

problems thus form a subset of discrete optimization problems.

The MKP is a discrete optimization problem where the value of a number of items to be included

in a knapsack is to be maximized, subject to 0-1 constraints on the items and multiple further “weight“

constraints. It was first formulated in 1955 in terms of a capital allocation problem by Lorie and Savage

[89].

The FSP arises in machine learning where algorithms are used to classify data [46]. The context for

the FSP is a supervised learning problem in which a classifier is used to determine to which discrete class

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

PREFACE iii

a given instance of data belongs. The FSP itself is defined as the problem to selectan optimal subset of

features and use only those features to train the classifier for the original classification problem.

Objectives

The main objective of this thesis is to develop and investigate a functioning, generic, set-based PSO

algorithm that can solve discrete optimization problems (DOPs). To reach this goal, the following sub-

objectives are identified:

• To give an overview of existing discrete and set-based PSO algorithms from literature to show that

a functioning, generic, set-based PSO algorithm does not yet exist;

• To determine the basic components that make up a PSO algorithm in order to determine what

components should be present to make the new set-based algorithm a PSO algorithm;

• To determine which additional components are required to make the new algorithm a functioning

algorithm;

• To define the new algorithm by formulating the PSO update equations in terms of set-theory;

• To ensure the new algorithm is generic and doesnot include any problem domain specific features

in the algorithm itself - the only link to the problem domain should lie in the fitness function;

• To test the new algorithm on different DOPs, for which the MKP and the FSP are selected;

• To compare the performance (in terms of quality of the solution found) of the new algorithm

against discrete PSO algorithms known from literature which have been applied to the MKP and

FSP; and

• To investigate the new algorithm’s control parameters to determine which values yield good results.

For clarity, it is important to note which possible objectives are leftoutsideof this thesis’ scope:

• To find an algorithm that is better at solving the MKP or the FSP than known state-of-the-art

algorithms;

• To find the most efficient algorithm in terms of number of iterations or fitness function evaluations,

total number of computations (flops) or total time needed to complete; and

• To compare the performance of the new algorithm against non-PSO methods used to solve DOPs.

Contributions

The main contributions of this thesis to the field of swarm intelligence are:

• Developing a functioning, generic, set-based PSO algorithm called SBPSO;

• A first application and investigation of SBPSO on MKP and FSP;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iv PREFACE

• Developing a new scoring mechanism for use in the PSO’s parameter tuning that can also be used

for a sensitivity analysis to determine good control parameter values for SBPSO and the relative

importance of each parameter; and

• Performing a thorough comparison between SBPSO and three other discrete PSO algorithms on a

large enough set of problems to determine statistically significant difference in quality of solutions

found.

Outline

The remainder of this thesis consists of five parts. Part I introduces concepts, algorithms and problems

from literature that form the basis and further context for the original research presented in this the-

sis. Chapter 1 introduces the field of particle swarm optimization (PSO), with a focus on discrete PSO

algorithms. Chapter 2 defines and discussed the MKP as a problem for testing discrete optimization

algorithms. A well-known set of benchmark problems is listed and approaches to solve the MKP from

literature are reviewed. Chapter 3 defines the FSP, another optimization problem. Besides a formal

definition, the concepts of classifiers and cross-validation from the domain of machine learning are dis-

cussed. Both are important in relation to the FSP and solving the FSP using PSO. This is followed by an

overview of the literature on solving the FSP.

In the second part, chapter 4 introduces the new algorithm called the set-based PSO (SBPSO). The

concepts of position and velocity as sets are defined, forming the basis of the SBPSO. Also defined are

the operators required to manipulate the position and velocity sets as determined by the PSO paradigm.

Additional operations are defined outside of the basic PSO paradigm in order to ensure that the algo-

rithm can work. These are then all combined in a description of SBPSO’s velocity and position update

equations, and the flow of the new algorithm.

Part III describes the experiments in which the SBPSO is applied to the MKP and the FSP. For

both problems well-known benchmark problems and three other PSO algorithms to compare against

the SBPSO are chosen. The full experimental procedure is outlined in both cases, describing the cho-

sen swarm sizes, swarm topologies, starting and stopping conditions and number of repetitions of the

experiments. For the FSP, the chosen classifiers are also listed and the approach used to tune them is

described. An extensive tuning process is described and conducted to tune the PSO algorithms using

different topologies and on different problem sets: two such sets for the MKP and one for the FSP. The

results of the experiments on the tuned algorithms are than summarized and discussed.

Chapter 7 revisits the objectives of this dissertation and determines whether these have been met. An

outline of potential future work is also given.

Finally, part V deals mainly with the detailed results of the experiments outlined in part III, split

into appendix A for results on the small MKP, appendix B for results on the large MKP, and appendix C

for results on the FSP. Furthermore, a description is given of all the classification datasets used in the

experiments on the FSP in appendix D. Appendix E details the statistical methods employed in the

various comparisons made in this thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

“It does not matter how slowly you go, so long as you do not stop.”

Confucius

First of all, I wish to acknowledge the support and encouragement of Professor Andries Engelbrecht.

He gave me the opportunity to enroll for a research Master’s degree in Computer Science, even though

my previous education had been in the different field of mathematics, and he has patiently corrected my

work conceptually and aesthetically. Any remaining errors in this work are fully attributable to my own

stubbornness.

I would also like to thank my fellow post-graduate students at the University of Pretoria, who wel-

comed me during my time on campus and tried to teach me things about Computer Science, superhero

movies, computer games, and Afrikaans: Bennie Leonard, Julien Duhain, Nelis Franken, Christoff En-

slin, Leo Langenhoven, Will van Heerden, and Koos de Beer. Additional kudos to Bennie for fixing all

my Ubuntu and server problems.

A very special thanks must go to my loving wife Marjolein, who supported me in my work and also

provided for our whole family during our time in South Africa. She also gave me the best gift while we

were living in Pretoria: my son Jonathan Thabiso.

Joost Langeveld

September 2015

Utrecht, the Netherlands

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

Pre-face ii

Acknowledgements v

Contents viii

List of Figures ix

List of Tables xii

List of Algorithms xiii

I Background

1 Particle swarm optimization 2

1.1 Introduction . 2

1.2 Continuous PSO . 3

1.3 Discrete PSO . 5

1.4 Conclusions . 11

2 Multidimensional knapsack problem 13

2.1 Introduction . 13

2.2 Definition of the MKP . 14

2.3 Benchmark problems . 15

2.4 Literature on solving the MKP . 16

2.5 Conclusions . 24

3 Feature selection problem 26

3.1 Introduction . 26

3.2 The classification problem in machine learning . 27

3.3 Definition of the FSP . 41

3.4 Literature on solving the FSP . 43

3.5 Conclusions . 53

II Generic set-based particle swarm optimization

4 Set-based particle swarm optimization 57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CONTENTS vii

4.1 Introduction . 57

4.2 Set-based Concepts . 59

4.3 Operators . 61

4.4 Update equations . 64

4.5 Conclusions . 65

III Empirical analysis

5 Experiments on the multidimensional knapsack problem 69

5.1 Introduction . 69

5.2 Experimental procedure . 71

5.3 PSO parameter tuning . 76

5.4 Sensitivity analysis of SBPSO’s parameters . 82

5.5 Experimental results . 88

5.6 Conclusions . 104

6 Experiments on the feature selection problem 109

6.1 Introduction . 109

6.2 Experimental procedure . 111

6.3 Exhaustive search to test the fitness function . 125

6.4 Exhaustive search of classifier parameter space . 131

6.5 PSO parameter tuning . 140

6.6 Experimental results . 142

6.7 Conclusions . 153

IV Conclusions and future work

7 Conclusions and future work 161

7.1 Conclusions . 161

7.2 Future work . 166

Bibliography 169

V Appendices

A Detailed results for small MKPs 182

A.1 Detailed tuning results per algorithm . 184

A.2 Summarized testing results per topology . 188

A.3 Detailed testing results per topology . 189

A.4 Summarized testing results per algorithm . 192

A.5 Detailed testing results per algorithm . 193

B Detailed results for large MKPs 197

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

viii CONTENTS

B.1 Detailed tuning results per algorithm .199

B.2 Summarized testing results per topology . 203

B.3 Detailed test results per topology . 204

B.4 Summarized testing results per algorithm . 207

B.5 Detailed test results per algorithm . 208

C Detailed results for the FSP 212

C.1 Detailed FSP results for exhaustive search on J48 parameters 212

C.2 Detailed FSP tuning results . 218

C.3 Detailed FSP testing results . 222

D Description of datasets used for the FSP 232

E Statistical methodology 246

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

1.1 Swarm topologies used in experiments . 5

4.1 Particle positions in SBPSO . 59

4.2 Particle attraction and movement in SBPSO . 61

5.1 Sensitivity analysis of gbest SBPSO . 85

5.2 Sensitivity analysis of lbest SBPSO . 86

5.3 Sensitivity analysis of Von Neumann SBPSO . 87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

2.1 Summary of results from Wanget al. on 10 small MKPs 22

2.2 Average error results from Wanget al. on 10 small MKPs 23

2.3 Success rate results from Wanget al. on 10 small MKPs 23

5.1 Split of small MKPs into tuning and test problems . 72

5.2 Split of large MKPs into tuning and test problems . 73

5.3 Parameter ranges used in tuning the four PSO algorithms on the MKP 77

5.4 Tuned parameters for small MKPs . 78

5.5 Average rank of best parameter combination in tuning small MKPs 79

5.6 Tuned parameters for large MKPs . 80

5.7 Average rank of best parameter combination in tuning large MKPs 82

5.8 Performance distribution per individual control parameter 88

5.9 Summary of small MKP test results for the star topology 90

5.10 Summary of small MKP test results for the ring topology 91

5.11 Summary of small MKP test results for the Von Neumann topology 91

5.12 Summary of small MKP test results across topologies for BPSO 92

5.13 Summary of small MKP test results across topologies for MBPSO 93

5.14 Summary of small MKP test results across topologies for PBPSO 94

5.15 Summary of small MKP test results across topologies for SBPSO 94

5.16 Summary of large MKP test results for the star topology 96

5.17 Summary of large MKP test results for the ring topology 97

5.18 Summary of large MKP test results for the von Neumann topology 98

5.19 Summary of large MKP test results across topologies for BPSO 100

5.20 Summary of large MKP test results across topologies for MBPSO 100

5.21 Summary of large MKP test results across topologies for PBPSO 101

5.22 Summary of large MKP test results across topologies for SBPSO 102

5.23 Summary of large MKP test results for the best algorithm-topology pairs per algorithm . 103

6.1 Datasets used in the FSP testing experiments . 112

6.2 Datasets used in the FSP tuning experiments . 113

6.3 Parameter values used to tune the J48 classifier . 118

6.4 Parameter values used to tune thek-NN classifier . 118

6.5 Classifier parameters used in exhaustive search on fitness function 127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF TABLES xi

6.6 Number of best subsets in exhaustive search 127

6.7 Exhaustive search for best features using GNB classifier. 129

6.8 Exhaustive search for best features using J48 classifier. 130

6.9 Exhaustive search for best features usingk-NN classifier. 130

6.10 Datasets used in exhaustive search of classifier parameter space 132

6.11 Best and chosen parameter values in exhaustive search for the J48 classifier 136

6.12 Detailed results of the exhaustive search for J48 parameter values 137

6.13 Best and chosen parameter values found in exhaustive search for thek-NN classifier . . . 138

6.14 Detailed results of the exhaustive search fork-NN parameter values 139

6.15 Parameter ranges used in tuning the four PSO algorithms on the FSP 141

6.16 Tuned PSO parameters for FSPs . 142

6.17 Datasets with significant differences on the one-way ANOVAF-test 144

6.18 Overview of statistical results on the FSP using the GNB classifier 145

6.19 Overview of statistical results on the FSP using the J48 classifier 147

6.20 Overview of statistical results on the FSP using thek-NN classifier 149

6.21 Detailed rankings of the four PSO algorithms on the FSP combining all three classifiers . 151

6.22 Overview of statistical results on the FSP combining all three classifiers 152

6.23 Overview of average rank and variability across classifiers on the FSP 153

A.1 Guide to tables in Appendix A . 183

A.2 Details of the small MKP tuning results for BPSO . 184

A.3 Details of the small MKP tuning results for MBPSO . 185

A.4 Details of the small MKP tuning results for PBPSO . 186

A.5 Details of the small MKP tuning results for SBPSO . 187

A.6 Summary of the small MKP test results per topology. 188

A.7 Details of the small MKP test results for the star topology. 189

A.8 Details of the small MKP test results for the ring topology. 190

A.9 Details of the small MKP test results for the Von Neumann topology. 191

A.10 Summary of the small MKP test results per algorithm. 192

A.11 Details of the small MKP test results for BPSO. 193

A.12 Details of the small MKP test results for MBPSO. 194

A.13 Details of the small MKP test results for PBPSO. 195

A.14 Details of the small MKP test results for SBPSO. 196

B.1 Guide to tables in Appendix B . 198

B.2 Details of the large MKP tuning results for BPSO . 199

B.3 Details of the large MKP tuning results for MBPSO . 200

B.4 Details of the large MKP tuning results for PBPSO . 201

B.5 Details of the large MKP tuning results for SBPSO . 202

B.6 Summary of the large MKP test results per topology. 203

B.7 Details of the large MKP test results for the star topology 204

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

xii LISTOF TABLES

B.8 Details of the large MKP test results for the ring topology 205

B.9 Details of the large MKP test results for the Von Neumann topology 206

B.10 Summary of the large MKP test results per algorithm 207

B.11 Details of the large MKP test results for BPSO . 208

B.12 Details of the large MKP test results for MBPSO . 209

B.13 Details of the large MKP test results for PBPSO . 210

B.14 Details of the large MKP test results for SBPSO . 211

C.1 Detailed results classifier parameter values for J48 classifier on iris dataset 213

C.2 Detailed results classifier parameter values for J48 classifier on corral dataset 214

C.3 Detailed results classifier parameter values for J48 classifier on liver dataset 214

C.4 Detailed results classifier parameter values for J48 classifier on monk-1 dataset 215

C.5 Detailed results classifier parameter values for J48 classifier on monk-2 dataset 215

C.6 Detailed results classifier parameter values for J48 classifier on pima dataset 216

C.7 Detailed results classifier parameter values for J48 classifier on breasttissue dataset . . . 216

C.8 Detailed results classifier parameter values for J48 classifier on glass dataset 217

C.9 Detailed results classifier parameter values for J48 classifier on tic-tac-toe dataset 218

C.10 Detailed accuracy results for the GNB classifier on the FSP tuning datasets 219

C.11 Detailed feature selection results for the GNB classifier on the FSP tuning datasets . . . 219

C.12 Detailed accuracy results for the J48 classifier on the FSP tuning datasets 220

C.13 Detailed feature selection results for the J48 classifier on the FSP tuning datasets 220

C.14 Detailed accuracy results for thek-NN classifier on the FSP tuning datasets 221

C.15 Detailed feature selection results for thek-NN classifier on the FSP tuning datasets . . . 221

C.16 Final accuracy results on the FSP using the GNB classifier 223

C.17 Statistical tests on final accuracy results on the FSP using the GNB classifier 224

C.18 Number of features selected using the GNB classifier 225

C.19 Final accuracy results on the FSP using the J48 classifier 226

C.20 Statistical tests on final accuracy results on the FSP using the J48 classifier 227

C.21 Number of features selected using the J48 classifier . 228

C.22 Final accuracy results on the FSP using thek-NN classifier 229

C.23 Statistical tests on final accuracy results on the FSP using thek-NN classifier 230

C.24 Number of features selected using thek-NN classifier 231

D.1 Overview of statistics for datasets used for FSP . 233

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Algorithms

1 ContinuousPSO for maximization problems . 4

2 Catfish reset algorithm for Catfish Binary PSO . 8

3 Decision Tree Induction Algorithm . 33

4 Performance measurement for classification task: single calculation 40

5 Performance measurement for classification task: cross validation 41

6 k-Tournament Selection(A,N) . 63

7 SBPSO algorithm for maximization problems . 65

8 Fitness function for use in experiments on FSP . 121

9 PSO wrapper approach to solve FSP: overview . 122

10 PSO wrapper approach to solve FSP: initialization . 122

11 PSO wrapper approach to solve FSP: main loop . 123

12 PSO wrapper approach to solve FSP: final classification 124

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part I

Background

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Particle swarm optimization

This first chapter introduces the particle swarm optimization (PSO) paradigm. A first objective is to

determine what components define a PSO algorithm, the second objective is to determine whether a

functioning, generic, set-based PSO algorithm already exists. In the first section of this chapter the

continuous PSO is used to present the most relevant parts of the PSO paradigm. Following this, the

literature on discrete PSO methods is reviewed with the main focus on binary approaches and PSO

algorithms using mathematical sets.

1.1 Introduction

This first chapter describes the general PSO paradigm, starting at its origin in the work of Kennedy and

Eberhart [63], in order to fulfill two objectives. The first objective is to determine what components

define a PSO algorithm. These same components will be used in the construction of a set-based PSO

algorithm in chapter 4. Besides this conceptual overview, the second objective of this chapter is to

determine whether a functioning, generic, set-based PSO algorithm already exists. For this a review of

the appropriate literature on discrete PSO algorithms is presented.

Section 1.2 outlines the concepts that define PSO, i.e. particles, velocity, and the social and cognitive

components of the velocity update. The elements that were added shortly after and now help form

the canonical PSO are also introduced, i.e. the inertia weight and velocity clamping. The high-level

overview of PSO ends with the introduction of the concept of swarm topologies and three specific swarm

topologies are defined for later use, namely, the star, ring, and Von Neumann topologies.

Section 1.3 contains a review of PSO algorithms developed for use on DOPs. This review is divided

into three parts: first the binary PSO and its variants are reviewed, followed in by an overview of existing

PSO algorithms that are defined using mathematical sets. Finally, other discrete PSO algorithms are

mentioned that do not fall in the two previous categories to provide a full picture.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 3

1.2 Continuous Particle Swarm Optimization

Thissection describes the continuous PSO algorithm from its roots to the currently more used form with

velocity clamping and inertia weight. Also, the concept of swarm topology is introduced.

1.2.1 Original Particle Swarm Optimization algorithm

Kennedy and Eberhart [63] proposed an optimization algorithm inspired by bird flocking behavior. The

first PSO algorithm was developed to solve optimization problems with continuous-valued parameters.

Each particle has a position~xi in the search space, and a velocity~vi indicating direction and step-size of

change in the current position. Each particle keeps track of the quality of the solution to the optimization

problem it represents, the best position it has visited in the past,~yi , and the best position visited in the

past by a particle in its neighborhood, denoted~̂yi .

Let i be a particle in ann-dimensional search space with velocity~vi = (vi)
n
j=1, position~xi = (xi)

n
j=1,

personal best position~yi = (yi)
n
j=1, and neighborhood best position~̂yi = (ŷi)

n
j=1. The original velocity

update equation,

vi, j(t +1) = vi, j(t)+c1r1, j(t) [yi, j(t)−xi, j(t)]+c2r2, j(t) [ŷi, j(t)−xi, j(t)] (1.1)

computes the magnitude of change in the particle’s position in each dimensionj, wherec1 is the cognitive

component weight,c2 is the social component weight, and~r1 and~r2 aren-dimensional random vectors

with eachr1. j , r2, j ∼U(0,1)drawn independently. The position is updated by adding the updated velocity

to the current position:

xi, j(t +1) = xi, j(t)+vi, j(t +1) (1.2)

1.2.2 Additions to original Particle Swarm Optimization algorithm

To improve the performance of the algorithm and to better control the balance between exploration of

new areas of the search space and exploitation of promising areas, various additions have been proposed.

A first addition was by Eberhartet al. [32], who proposedvelocity clampingwhich restricts the velocity

to a predetermined maximum in each dimension. After the velocity has been updated, but before the

position update, the velocity clamping,

vi, j(t +1) = min{max{vi, j(t +1),Vmin, j},Vmax, j} (1.3)

is applied, whereVmin, j andVmax,j with Vmin, j <Vmax,j denote the minimum and maximum velocity in a

single dimensionj.

An addition proposed by Shi and Eberhart [126] was a scalar,ω , called theinertia weight, which

determines the acceleration or deceleration in the current direction. The inertia weight scales the compo-

nent indicating the particle’s current velocity,vi, j(t), in equation (1.1), resulting in an alternative velocity

update equation,

vi, j(t +1) = ω vi, j(t)+c1r1, j(t) [yi, j(t)−xi, j(t)]+c2r2, j(t) [ŷi, j(t)−xi, j(t)] (1.4)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 CHAPTER1. PARTICLE SWARM OPTIMIZATION

A higher value (usually chosen≤ 1) for ω causes particles to change direction more slowly and thus

to explore further along the currect direction of movement. A lower value forω causes particles to

be more strongly attracted to the personal best and neighbourhood best positions, which leads to better

exploitation.

Algorithm 1 describes the flow of the PSO algorithm for a maximization problem with objective

function f : Rn −→ R. A similar definition is easily obtained for a minimization problem.

Algorithm 1: ContinuousPSO for maximization problems

SetN equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize~xi uniformly random over the search space ;

Initialize~vi =~0 ;
Calculatef (~xi) ;
Initialize f (~yi) =−∞ ;

Initialize f (~̂yi) =−∞ ;
end
while stopping condition is falsedo

for i = 1, . . . ,N do
// set the personal best position ;
if f (~xi)> f (~yi) then

~yi =~xi ;
end
// setthe neighborhood best position ;
for all neighbors l of particle ido

if (f (~yi)> f (~̂yl) then
~̂yl =~yi ;

end
end

end
for i = 1, . . . ,N do

Update~vi according to equation (1.4);
Update~xi accordingto equation (1.2);
Calculate solution qualityf (~xi);

end
end

1.2.3 Swarm topologies

Oneof the strengths of PSO is the flow of information through the swarm due to the interaction of the

particles. Particles with a good objective function value attract other particles, hopefully to good areas

of the search space. Particles that have found a good solution attract particles for which they are the best

neighbor. If two particlesi and j are not connected (not in each other’s neighborhood), then they can

not directly attract each other. If a common neighbork is attracted to a good solutioni and becomes a

good solution itself, such that it is the best solution in the neighborhood ofj, then j can be said to be

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 5

indirectly influenced byi. For each particle, the social structure, called the swarm topology, determines

which particles it can be attracted to.

Kennedy and Eberhart [63] proposed two possible social structures for the particle neighborhoods,

and called the two resulting algorithms the global best (gbest) PSO and local best (lbest) PSO. The

gbest PSO uses astar topology, while the lbest PSO uses aring topology. The ring topology is a

loosely connected topology, while the star topology is one where each particle is directly connected to

all other particles in the swarm. A study of the impact of the swarm topology was done by Kennedy and

Mendes [64], considering various topologies, including random, star, Von Neumann and ring topologies.

Kennedy and Mendes [64] suggested that theVon Neumanntopology, which has an intermediate level of

connectivity, can be a good choice for a particle swarm.

Figure 1.1 illustrates three of the topologies investigated by Kennedy and Mendes [64]: the star topol-

ogy (figure 1.1(a)), the ring topology with neighborhood size four (figure 1.1(b)), and the Von Neumann

topology (figure 1.1(c)). The ring topology with neighborhood size four means that the particles lie in a

ring, with each particle connected to its two nearest neighbors on each side, so to four other particles in

total.

(a) (b) (c)

Figure1.1: Swarm topologies: (a) star topology, (b) ring-4 topology, and (c) Von Neumann topology.

1.3 Discrete Particle Swarm Optimization

This section reviews discrete PSO algorithms developed to solve DOPs. First the binary PSO and its

variants are reviewed in section 1.3.1, followed in section 1.3.2 by an overview of existing PSO algo-

rithms that are defined using mathematical sets. Section 1.3.3 mentions other discrete PSO algorithms

that do not fall in the two previous categories to provide a full picture.

1.3.1 Binary Particle Swarm Optimization approaches

A number of PSO algorithms that can be applied to DOPs closely follow the binary PSO algorithm first

proposed by Kennedy and Eberhart [62]. The variants reviewed here are the (original) binary PSO, the

modified binary PSO, the probability binary PSO, and the catfish PSO.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6 CHAPTER1. PARTICLE SWARM OPTIMIZATION

1.3.1.1 Binary Particle Swarm Optimization

Kennedyand Eberhart [62] were the first to define a discrete version of the PSO algorithm, referred to

as the binary PSO (BPSO). In this algorithm the particle positions are binary strings, while the velocities

exist in continuous space. Velocities are mapped to a scalar value between 0 and 1 using a sigmoidal

transformation function,S. This scalar value is interpreted as the probability that the corresponding part

of the binary position string is bit 1 or bit 0. The velocity update equation of the BPSO algorithm is the

same as equation (1.4). Using the transformation function,

S
(
vi, j(t +1)

)
=

1

1+e−vi, j (t+1)
(1.5)

theposition update becomes

xi, j(t +1) =

{
1 if r3, j < S

(
vi, j(t +1)

)

0 otherwise
(1.6)

wherer3, j is an independent random variable, uniformly distributed on(0,1). Eberhartet al. [30] pro-

posed to use velocity clamping as defined in equation (1.3) in BPSO to prevent saturation of the sigmoid

function.

Many variants of the BPSO algorithm have been proposed, e.g., Khanesaret al. [66] defined a BPSO

that has separate velocity terms depending on whether a bit in the current position vector~x is 0 or 1, Gao

et al. [39] removed the randomness from the position update step, and Yanget al. [153] proposed the

quantum BPSO by introducing the idea of a superposition of states.

1.3.1.2 Modified Binary Particle Swarm Optimization

Shenet al. [125] introduced a new PSO algorithm called Modified PSO, which here will be called the

modified binary PSO (MBPSO). They investigated quantitative structure-activity relationships (QSAR),

the process by which a chemical structure is quantitatively correlated with a well defined process, such as

biological activity or chemical reactivity. The new PSO algorithm was applied to the problem of variable

selection in multiple linear regression (MLR) and partial least squares (PLS), which in turn are used in

many QSAR models.

The velocity update equation of MBPSO is the same as equation (1.4) used for continuous PSO with

inertia weight. For the position update in MBPSO, each bitxi, j(t) in the position vector~xi(t) is updated

according to:

xi, j(t +1) =





xi, j(t) if 0 ≤ vi, j(t +1)≤ pstat

yi, j(t) if pstat< vi, j(t +1)≤ 0.5(1+ pstat)

ŷi, j(t) if 0.5(1+ pstat)< vi, j(t +1)≤ 1

(1.7)

wherepstat is a parameter in(0,1) called thestatic probability.

Shenet al. [125] stated that after the velocity and position updates have been applied, a fraction

of particles “are forced to fly randomly not following the two best particles”. This statement has been

interpreted as a random re-initialization of both the velocity and the position of a percentage of the swarm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 7

at each iteration, similar to Maet al. [91]. The fraction of particles that is re-initialized at each iteration

is denoted bypreset.

1.3.1.3 Probability Binary Particle Swarm Optimization

Wanget al. [146] proposed a binary variant of PSO called the probability binary PSO (PBPSO) and ap-

plied this to the multidimensional knapsack problem. Both the velocity and the position update equations

are the same as for PSO in equations (1.4) and (1.2). The continuous position labeled~x′ (which is also

called the pseudo-probability) is transformed to a binary position vector~x using a linear transformation

L(.):

L
(
x′i, j(t +1)

)
=

x′i, j(t +1)−Rmin

Rmax−Rmin
(1.8)

xi, j(t +1) =

{
1 if r j < L

(
x′i, j(t +1)

)

0 otherwise
(1.9)

wherer j is a uniform random variable chosen from(0,1). The parametersRmin andRmax define the

linear transformation and are usually chosen such thatRmax> 0 andRmin =−Rmax.

The PBPSO algorithm was extended in [96] to also include a mutation operator. For each particle,

after the velocity and position of each particle have been updated, the mutation operator is applied. Each

bit then has a probabilitypmut ∈ [0,1] of mutating:

xi, j(t +1) =

{
1−xi, j(t +1) if r j < pmut

xi, j(t +1) otherwise
(1.10)

wherer j again is a uniform random variable chosen from(0,1). This second version of PBPSO is used

in the experiments reported in this thesis.

Note that the mutation operator has a direct effect on the position only for one iteration, as the velocity

~v and the pseudo-probability~x′ are left unchanged by the mutation. At the next iteration,~x′ is used to

rebuild the binary position vector~x according to equation (1.9), and no direct impact of the mutation

made during the previous iteration remains in~x. An indirect impact of the mutation is in the update of

the velocity~v according to equation (1.4), which uses the mutated position, and possibly through the

personal best position~y, if the mutated position~x caused the personal best to be updated.

1.3.1.4 Catfish Binary Particle Swarm Optimization

Chuanget al. [20] introduced the catfish effect for PSO, with the new method called the catfish PSO

(CFPSO). The effect is based on the practice by Norwegian fishermen to introduce catfish predators

into tanks in which captured sardines are held on their fishing vessels. This makes the sardines move

and keeps them alive before they are delivered to shore. The catfish effect for PSO is that, if the best

found fitness in the swarm stays constant for a given number of iterations, catfish particles are introduced

at extreme positions of the search space to replace the worst performing swarm particles. Continuous

CFPSO has two additional parameters to the normal parameters for the PSO algorithm: the number

of iterations the best found fitness needs to stay constant for the catfish effect to be activated, denoted

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8 CHAPTER1. PARTICLE SWARM OPTIMIZATION

Nconstant, and the proportion of worst particles in the swarm to be replaced by catfish particles, denoted

preplace.

The CFPSO algorithm closely follows the continuous PSO algorithm with velocity update equa-

tion (1.4) and position update equation (1.2). During each iteration, after the positions of all particles has

been updated, a check is made to see if the global best fitness has stayed constant forNconstantiterations.

If this is the case, the catfish effect is activated and the particles in the swarm are ordered based on their

current fitness. ThepreplaceN worst particles are then removed from the swarm, and an equal number of

catfish particles are added to the swarm in their place. Each catfish particle’s position is constructed by

setting the value for each dimension separately to either the minimum value or maximum value for that

dimension randomly. So for a two-dimensional search space labeled(x,y), a catfish particle’s position

is set to one of the following options:(minx,miny),(minx,maxy),(maxx,miny),(maxx,maxy). Chuang

et al. [20] did not mention how the velocity of each catfish particle is set. The implementation of CF-

PSO that is used in the experiments reported in this thesis set the initial velocity of the catfish particle

according to the method used at the swarm’s initialization.

Chuanget al. [21] adjusted the algorithm and applied it to feature selection. Instead of continuous

PSO, the basic algorithm followed is the Binary PSO outlined in section 1.3.1.1. This binary algorithm

is called Catfish Binary PSO (CFBPSO). The positions of any catfish particles that are added to the

swarm are chosen randomly as either zero ({0}d) or one ({1}d), whered is the number of dimensions of

the search space. Note that this is different from the original CFPSO algorithm such that for CFBPSO

particles are reset to one of only two extremes of the search space.

The full Catfish reset algorithm for the CFBPSO is detailed in algorithm 2. The CFPSO and CFBPSO

algorithms can be used with any swarm topology, but the Catfish reset algorithm requires that track is

kept of the best fitness of the entire swarm.

Algorithm 2: Catfishreset algorithm for Catfish Binary PSO

if f (~̂y) is unchanged for Nconstant iterationsthen
Sort theN particlesxi from best to based on their current fitnessf (~xi) ;
for N× preplaceparticles~xi with the worst fitness in the swarmdo

if r i < 0.5 (where ri is an uniform random number drawn from(0,1)) then
;
~xi = {0}d

end
else~xi = {1}d

end
end

1.3.2 Discrete Particle Swarm Optimization using sets

This section describes and critiques existing discrete PSO algorithms using sets. These existing al-

gorithms are important in light of the stated objective of this thesis to construct a functional, generic

set-based PSO algorithm. The goal is to determine whether the existing algorithms already fulfill this

objective, and if not, in what manner the existing algorithms are lacking.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 9

The algorithm proposed by Correaet al. [24] for attribute selection and the related algorithm by

Bock and Hettenhausen [10] for ontology alignment both have set-like characteristics, but both contain

problem specific elements. Especially, the concept of apersonal likelihoodthat requires each element in

a particle position to have its own partial objective function value, prevents these algorithms from being

applied to many discrete optimization problems, including the MKP.

Veenhuis [143] proposed a generic, set-based definition of a PSO algorithm. Velocities and positions

in this algorithm are both defined as sets. However, the chosen update equations lead the velocities and

positions to always increase in size, an effect calledset bloating. To counter this, a reduction operator

with a relatively complex clustering mechanism was introduced. This clustering mechanism requires a

function that defines the distance between any two set elements, while a general mathematical set does

not support the concept of distance. Veenhuis [143] has chosen a problem specific distance function,

meaning that the algorithm is no longer truly generic, and in its current form is not applicable to discrete

problems such as the MKP.

Neethling and Engelbrecht [102] proposed the set-based algorithm called SetPSO and applied it to

RNA structure prediction. The problem is defined as finding the correct stems (bindings of base pairs)

in the RNA structure from the set of all possible stems. Particle positions are defined as sets of stems. In

the position update, three probabilities help determine which elements are added and which elements are

removed from the position. Although generically applicable, recent work [79] has shown that SetPSO

performs less well on the MKP than other PSO methods: SetPSO was outperformed by a large margin by

the SBPSO (see chapter 4) and BPSO (see section 1.3.1.1) algorithms. Hence, the SetPSO in its current

form can not be considered to be truly functioning on DOPs in general.

Chenet al. [17] proposed a generic set-based PSO method called S-PSO that can be used to adjust a

continuous PSO algorithm to a discrete one. S-PSO was applied to the TSP and the MKP. The candidate

solution represented by a particle position is called a set, but has a fixed size where for each “dimension”

of the set an element is chosen from a set of available elements. Thus the position can not be called a true

set. Velocity is defined as aset with possibilities, which grows in size as the algorithm runs. Positions are

rebuilt at each iteration using a constructive process that may include heuristic operators. Wuet al. [149]

applied a variant of S-PSO based on (continuous) constriction PSO to the problem of cloud computing

workflow scheduling.

Khan and Engelbrecht [65] proposed an algorithm called fuzzy PSO (FPSO) to optimize the topol-

ogy design of distributed local area networks (DLANs). The term fuzzy in FPSO refers to the fuzzy

aggregation operator, theunified And-Or operator, that is used to aggregate the multiple objectives in the

DLAN topology design problem into a single objective function. The particle position is defined as a set

of links between nodes in the network. The number of links in the position is exactlyN−1, whereN is

the number of nodes in the network. The particle velocity is defined as a set oflink exchange operations,

which removes a single link in the position and replaces it by another. Because the size of the position is

fixed, the algorithm is not generally applicable to discrete problems such as the MKP.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10 CHAPTER1. PARTICLE SWARM OPTIMIZATION

1.3.3 Other discrete Particle Swarm Optimization algorithms

This section reviews a number of discrete PSO algorithms that do not follow the binary PSO paradigm

and which also are not set-based approaches. The discrete approaches reviewed in this section are the

angle modulated PSO, PSOs based on fuzzy logic, rank-based PSO algorithms, and PSO algorithms that

redefine the meaning of particle positions, velocities, and arithmetic operators.

1.3.3.1 Angle Modulation Particle Swarm Optimization

Pamparaet al.[110] developed a different approach to converting the continuous-valued velocity of PSO

to a binary string by applying the concept ofangle modulation. Angle modulation PSO starts with a

swarm of particles in a continuous four dimensional space, and uses a continuous PSO algorithm to up-

date the particle velocities and positions. For each particle, the four position components are used as pa-

rameters for a trigonometric function, and this function is sampledn times to generate ann-dimensional

bit-string. If the function produces a positive value, then bit 1 is recorded, otherwise bit 0 is recorded.

1.3.3.2 Fuzzy Binary Particle Swarm Optimization

Fuzzy logic has also been used to construct discrete PSO algorithms. Where the particle position in

binary PSO is a binary vector with a “crisp” separation of bits into 0 and 1, fuzzy binary PSO instead has

a position vector with fuzzy bits. It uses a membership functionµ to indicate a truth value in[0,1] for

the degree to which each fuzzy bit has value 1. The fuzzy PSO algorithm works in continuous space and

a separate mechanism calleddefuzzificationis used to convert the fuzzy particle position into a binary

vector. The first published article on using a fuzzy approach to the discrete PSO is by [127]. Panget al.

[111] and Shenet al. [124] provided refinements to the fuzzy method and applied it to the traveling

salesman problem (TSP). Duet al. [28] applied their fuzzy PSO to the shape matching problem, while

Abrahamet al. [1], Liu and Abraham [87], Liuet al. [88] applied fuzzy discrete PSO algorithms to job

scheduling problems and to the quadratic assignment problem.

1.3.3.3 Rank ordering in discrete Particle Swarm Optimization

The concept of rank ordering has been used to construct discrete PSO algorithms. These algorithms

transform a continuous-valued position to a discrete-valued position by determining the relative order

(rank) of the continuous values in a particle’s position. Tasgetirenet al. [135] introduced such a modifi-

cation to the continuous PSO algorithm and applied it to scheduling problems, exemplified by the single

machine total weighted tardiness problem. Solutions for such scheduling problems are sequences or

permutations of tasks that indicate the order in which the tasks are performed. A candidate solution is

represented as a sequenceSi = [si,1, . . . ,si,n] of the numbers 1, . . . ,n, where eachsi,k is unique and denotes

one of then tasks to be scheduled.

The particle velocities and positions are updated according to equations (1.4) and (1.2) respectively.

Each position,~xi , is then translated to a sequenceSi using thesmallest position value(SPV) rule. The

SPV rule takes the position component,xi, j , with the smallest value in~xi , and setssi,1 equal to j. Then

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 11

it takes the next smallest position component,xi,k, andsetssi,2 = k. This process continues until the

sequenceSi has been filled.

Similar algorithms have been proposed by Panget al. [112], who used thegreater value priorityto

transform the continuous-valued position~xi to a sequenceSi and applied the resulting PSO algorithm

to the TSP. Liuet al. [86] used an almost identical approach calledrank order valueand applied this

method to the flow shop scheduling problem (FSSP).

1.3.3.4 Redefined Particle Swarm Optimization operators

Clerc [23] formulated a discrete PSO algorithm by redefining the particles, velocities and operators used

in PSO. A general mathematical specification is given as well as an implementation that is then applied

to the TSP. A particle position is defined as a sequence ofN+ 1 arcs between nodes, whereN is the

number of nodes in the TSP. A velocity is defined as a list ofexchange operations(i, j), where nodes

i and j in a position are swapped. Special operations are also defined for subtraction of two positions,

the addition of two velocities, and the multiplication of a scalar and a velocity. These new operators

are then used in a formulation of the velocity update equation in the discrete PSO that is very similar to

equation (1.4) used in continuous PSO.

Wanget al. [145], Zhanget al. [156], and Zhonget al. [158] proposed similar approaches to mod-

ifying the PSO operators and each applied the resulting PSO to the TSP. Garcı́a et al. [40] applied an

adapted PSO algorithm to the response time variability problem, where the particle velocity is defined

as an ordered list of transformations calledmovements. Benameuret al. [7] proposed a similar discrete

PSO and applied it to the frequency assignment problem. Chandrasekaranet al. [16] applied a discrete

PSO with redefined operators to the FSSP, where the velocity is a set of transpositions with ordering

values. The transpositions contained in the velocity are applied to the position in the order of high to low

ordering values.

1.4 Conclusions

A first objective outlined for this chapter was to determine the components that define a PSO algorithm,

so that these components can later be used to construct a set-based PSO algorithm in chapter 4. To

do this, the canonical version of the continuous PSO algorithm was described and its constituent parts

considered in turn. The components of a PSO algorithm are identified as:

• A swarm of particles which each have a position and a velocity, whereby the position is updated

by adding the velocity to the current position. The algorithm’s power comes form the simple but

effective way the velocity is updated.

• The velocity update equation contains three components that together determine how a particle’s

velocity changes:

– a cognitive component that describes the attraction of the particle to the best position in the

search space found by that particle previously,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

12 CHAPTER1. PARTICLE SWARM OPTIMIZATION

– a social component that describes the attraction of the particle to the best position in the

searchspace found by any particle in its neighborhood, and

– an inertia component that causes the velocity to retain part of the direction it currently has.

• The impact of the swarm topology is highlighted and a trio of possible topologies were introduced.

Together with a description of the algorithm’s flow, this provides the framework to construct a set-based

algorithm in chapter 4 that is also a PSO algorithm.

The second objective of this chapter was to determine whether a functioning, generic, set-based PSO

algorithm already exists. For this a review of the appropriate literature was presented. It can be concluded

that such an algorithm is not yet available, as the reviewed algorithms all lack at least one of the attributes

of (i) functioning such that its use leads to good results in solving DOPs, (ii) being generically applicable

to all DOP and thus not contain any problem specific features like heuristics or operators specifically

defined for the problem domain, or (iii) not being truly set based:

• The SetPSO proposed by Neethling and Engelbrecht [102] was shown in [79] to perform badly on

the MKP and hence it does not fulfill the criterion of being an algorithm that is truly functioning

on this DOP.

• The algorithms proposed by Correaet al. [24], Bock and Hettenhausen [10] and Veenhuis [143]

are not generic but each contains problem specific elements.

• In the algorithms proposed by Chenet al. [17], Wu et al. [149], and Khan and Engelbrecht [65]

the candidate solution is represented by a particle position with a fixed size and which thus can not

be called a true set.

A functioning, generic set-based PSO algorithm is thus shown to not yet exist. Hence the generally

applicable, functioning set-based PSO algorithm that will be detailed in chapter 4 is a real contribution

to the domain of discrete PSO algorithms.

The remaining two chapters in part I formally introduce two well-known DOPs: the multidimensional

knapsack problem in chapter 2 and the feature selection problem in chapter 3. These two problems will

be used in part III to prove that the new algorithm proposed in chapter 4 is able to solve such DOPs and

to compare its performance against existing discrete PSO algorithms.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Multidimensional knapsack problem

This chapter describes the multidimensional knapsack problem (MKP), an optimization problem that

has been used to test the performance of discrete optimization algorithms. This is one of the two sets

of problems that will be used in this thesis to test such algorithms, the other being the feature selection

problem that is described in chapter 3. This chapter has two objectives, the first of which is to formally

define the MKP and list its main characteristics. The second and more important objective is to give

a brief overview of the various methods that have been employed to solve the MKP, with a focus on

approaches using PSO, and thereby convince the reader that the MKP is a valid problem on which to test

discrete PSO algorithms. The sections of this chapter follow these two objectives, while also introducing

a commonly used set of benchmark problems and the variables that help describe these problems.

2.1 Introduction

The previous chapter dealt with the PSO algorithm and laid a strong emphasis on PSO variants that have

been used to solve DOPs. This gave a background against which a new discrete PSO algorithm will

be introduced in chapter 4. In order to determine the usefulness of this new algorithm and whether it

forms a relevant contribution to the field of swarm intelligence, the algorithm will need to be tested on

actual DOPs. This chapter introduces one such problem, the MKP. First mentioned in 1955 by Lorie and

Savage [89] in the form of the problem of capital budgeting, the MKP has become the catch-all name for

any zero-one integer problem with non-negative coefficients, as such problems can all be re-formulated

as MKPs.

The first and relatively simple objective of this chapter is to introduce the MKP and list its main

characteristics. By exhibiting the exact definition of the problem, all further analysis is set on a solid and

unambiguous base. Besides the exact equations that define the problem, some further features are sought

that can be useful in categorizing MKPs. These categories not only deal with whether a particular set of

problem is easy or hard to solve, but can also be used to gain insight on what parameter values for a PSO

algorithm can be expected to work well on a specific problem.

The second and more important objective of this chapter is to give a brief overview of the vari-

ous methods that have been employed to solve the MKP, with a focus on approaches using PSO. This

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

14 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

overview is meant to convince the reader of the non-trivial nature of the problemand show that a wide

range of approaches including PSO have been employed in solving the MKP. So convinced, the MKP

can be seen as a valid choice test bed of the new PSO algorithm introduced in chapter 4 and other discrete

PSO algorithms it will be compared to. A well known test-bed ensures that no simple exploits exist, and

proves that the MKP is sufficiently hard to test the quality of the optimization algorithms. The introduc-

tion of work done on MKPs using discrete PSO algorithms will also help to determine later in part III

which PSO algorithms are included in the comparison to the newly developed set-based algorithm.

This chapter begins with a formal definition of the MKP in section 2.2, followed in section 2.3

with a description of a number of benchmark problems that recent studies into the MKP frequently

use. The introduction of these benchmark problems allows to naturally mention some of the features of

MKP that can help determine whether a particular MKP is simple or hard to solve. Then a review is

made of previous work on solving the MKP in section 2.4, with a more detailed view on approaches to

solve the MKP using PSO outlined in section 2.4.2. With the specific view to help determine which PSO

algorithms are to be included in a comparison of PSO algorithms on the MKP in chapter 5, section 2.4.2.3

reviews and analyzes in detail the work of Wanget al. [146] who have already made such a comparison.

2.2 Definition of the Multidimensional Knapsack Problem

The MKP, also called the multidimensional zero-one knapsack or rucksack problem, is a discrete op-

timization problem. The aim of the problem is to maximize the total value of all items to be put in a

knapsack, i.e.

max
n

∑
i=1

vixi (2.1)

subject to the zero-one constraints

xi ∈ {0,1}, ∀i ∈ {1, . . . ,n} (2.2)

and weight constraints
n

∑
i=1

wi, jxi ≤Cj , ∀ j ∈ {1, . . . ,m} (2.3)

There aren items in total, each with valuevi . The binary variablexi indicates whether the itemi is present

in the knapsack or not. These in-or-out constraints make the problem adiscreteoptimization problem

and increase its complexity above, for example, relaxations of the problem where thexi are only limited

to lie within the range[0,1].

The problem also containsm weight constraints. Items have a separate and distinct weight for each

weight constraint, such that the weight itemi has with regards to weight constraintj can be denoted

wi, j . The weight constraint itself is defined such that∑i wi, j xi , the total weight for constraintj, may not

exceed the capacityCj . In the remainder of this thesis, all mention of the MKP’s constraints refer to the

weightconstraints, as the zero-one constraints are considered part of the definition of the MKP as a class

of discrete optimization problems.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 15

A well-formulated multidimensional knapsack problem also adheres to the value constraints,

vi > 0, ∀i ∈ {1, . . . ,n} (2.4)

and constraints on the total weight

wi, j ≤Cj <
n

∑
i=1

wi, j , ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} (2.5)

The value constraint means that each item has a positive value and thus ensures that no items can be

simply disregarded as having no contribution to the value to be maximized. The constraints on the total

weight have two implications. The first implication is that each item can indeed be included in the

knapsack. This means that for each weight constraint in equation (2.3) the capacity,Cj , exceeds the

j-weight of each itemi denoted bywi, j . The second implication is that each weight constraint indeed

constrains the problem and can not be ignored, by virtue of the fact that the capacityCj is less than the

sum of j-weights of all items.

The MKP has been proven to be an NP-complete optimization problem [43]. This means that no

method of solving the problem can exist that is guaranteed to find the solution within polynomial time

ζ xN for some finite orderN wherex is the number of items in the MKP andζ is a constant. Note

furthermore that any zero-one integer problem with non-negative coefficients can be formulated as a

MKP. The first mention of such problems was with regards to capital budgeting [89].

2.3 Benchmark problems

Recent studies into the MKP frequently use the same benchmark problems to compare the performance

of algorithms. Two sets of problems are distinguished, which are here denoted as the large MKP and

the small MKP. The large MKPs were constructed and introduced by Chu and Beasley [18]. The small

MKPs form a collection of 55 problems that have been mentioned in literature prior to the paper by

Chu and Beasley [18]. Both sets of problems are available on-line at the Operations Research Library

(ORLib) athttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html.

For these small MKPs, the number of itemsn ranges from 6 to 90 and the number of constraintsm

ranges from 2 to 30. The optimal solution is known for all small MKPs. The small MKPs are listed in

table 5.1 in section 5.2.1.1. Note that for each problem, the problem name reflects the filename from the

ORLib source the problem comes from, plus a number indicating which problem from that file it refers

to. For example, “mknap2-3” is the third problem found in the filemknap2.txt. Table 5.1 also includes

the number of timesn and the number of constraintsm for each of the 55 small MKPs.

Chu and Beasley [18] have generated the large MKPs randomly. Note that for each such problem

generated, the number of items,n, the number of constraints,m, and another variable called tightness

ratio, r, which is defined below, were determined by the problem specification before the weights and

capacity were generated randomly. The latter began by randomly choosing the weightswi, j and values

vi . The capacity constraint variablesCj in equation (2.3) were determined by the random weights and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

16 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

the chosen tightness ratior, accordingto the formula

Cj = r
m

∑
i=1

wi, j , ∀ j ∈ {1, . . . ,m} (2.6)

The large MKP consists of a collection of 270 MKPs with number of itemsn= 100,250, or 500, number

of constraintsm= 5,10, or 30, and tightness ratio 0.25,0.50, or 0.75. The three choices for each of the

three parameters,n,m, andr, yield 27 different problem specifications. For each problem specification,

10 problem instances are included in the problem set.

The large MKPs are labeled according to the filename they are found in combined with the number

of the problem in that file. There are nine files named “mknapcb1” to “mknapcb9” which each contains

30 problems with the same parametersn andm. The 30 problems are 10 random instances each with

tightness ratior = 0.25 for problems 1 to 10,r = 0.50 for problems 11 to 20 andr = 0.75 for problems

21 to 30. An example label is thus “mknapcb3-24”, which is the 24th problem found in file “mknapcb3”.

In general, these three problem parameters,n,m, andr, have the following effects on the MKP search

space:

• a larger number of items,n, increases the search space and hence makes the problem of finding the

optimum harder,

• a larger number of constraints,m, makes the feasible part of the search space smaller, but no simple

relationship exists between the size of the feasible search space and the difficulty in solving the

MKP, and

• a larger tightness ratio,r, means that the weight constraints arelessrestrictive and that the feasible

part of the search space becomes larger.

The optimal solution is known for some but not all large MKPs. In order to be able to compare the

quality of solutions across problems for the large MKPs, Chu and Beasley [18] obtained an upper bound

for the objective function value by solving the linear programming (LP) relaxation of the large MKPs.

The LP relaxation of the problem changes the zero-one constraint in equation (2.2) onxi from an integer

constraint to a continuous constraints:

xi ∈ [0,1], ∀i ∈ {1, . . . ,n} (2.7)

thereby making the problem easier to solve and no longer NP-hard. The LP relaxed version of the

MKP can be efficiently solved using standard LP solvers [18]. The bounds found by solving the relaxed

problem are available at the ORLib website.

2.4 Literature on solving the Multidimensional Knapsack Problem

This section describes some of the main approaches from literature used to solve the MKP. The descrip-

tions are split between approaches involving PSO and other methods, where the latter are mentioned

first. For methods used to solve the MKP using PSO, a further distinction is made between approaches

that use repair operators and those using penalty functions.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 17

2.4.1 Approaches not involving Particle Swarm Optimization

An overview of exact methods and heuristics used to solve the MKP can be found in [18, 67] and

a recent update in [115]. This section mentions work that uses exact approaches, primal heuristics

and approximations, bound based heuristics, and work on worst-case analysis, before moving on to

population based methods.

Early exact approaches to solve the MKP used branch-and-bound methods combined with various

relaxations of the integer constraints of the MKP, including linear programming (LP), Lagrangian, sur-

rogate and composite relaxations [42]. Dynamic programming and iterative schemes for LP were devel-

oped, but only limited success was reported [104, 132].

As exact methods are impractical for larger problems given the NP-hardness of the MKP, heuristic

methods were then employed. Early heuristic approaches used primal heuristics starting with an empty

solution and building this up using greedy methods with different functions to weigh the utility of each

item to be added [90]. Kellerer [61] proposed an approximation scheme based on a generalized greedy

algorithm and proved it could approximate a solution for the MKP in linear time.

Bound based heuristics use an upper bound on the optimal solution to the MKP. Similar relaxation

techniques as used in the exact approaches were utilized: Lagrangian, LP, surrogate, and composite

relaxations. Chu and Beasley [18] and Khuriet al. [67] employed a LP relaxation technique. Vasquez

and Hao [141] implemented a tabu search heuristic which they combined with LP to form an efficient

way to solve the MKP.

Another approach used is to investigate the worst-case or probabilistic performance of different mod-

els on a given MKP. Averbakh [4] used this approach to develop a fast statistically efficient approximate

algorithm with linear running time complexity for problems with random coefficients.

Population based optimization algorithms have also been applied to the MKP including genetic al-

gorithms (GA) [18, 67], ant colony optimization (ACO) [73], cuckoo search [82], and PSO.

The current state of the art consists of hybrid algorithms that include MKP specific heuristics.

Smaller MKP benchmark problem are consistently and perfectly solved be all of these algorithms. There

is, however, no single algorithm that performs best on all of the larger benchmark problems, like those

introduced by Chu and Beasley [18]. The algorithms that are considered state-of-the-art for the MKP

are:

• The tabu-search algorithms embedding effective preprocessing by Vasquez and Hao [141] and

Vasquez and Vimont [142],

• a heuristic combining two specific constraint propagations by Vimontet al. [144],

• an algorithm that solves the MKP by solving a series of smaller sub-problems generated by subse-

quent linear programming relaxations of the original MKP by Hanafi and Wilbaut [51], and

• an exact method based on a multi-level search strategy by Boussieret al. [13].

The next section deals with PSO based approaches to solving the MKP. A number of issues that are

relevant for any population based approach to solving the MKP are addressed in this next section, dealing

with the use of repair operators and penalty functions.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

18 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

2.4.2 Approaches involving Particle Swarm Optimization

PSOhas proven to be a popular choice of population based approaches to the MKP, primarily due to

its simplicity. When applying PSO or other population based methods to the MKP, it is possible that

particles stray into infeasible parts of the solution space: the candidate solution represented by a particle

does not satisfy all the constraints posed by the MKP. Two different mechanisms have been used to

address this problem: repair operators and penalty functions. The overview of previous work on the

MKP using PSO presented below is grouped according to these two mechanisms.

2.4.2.1 Repair operators

A first method used to deal with a swarm of particles in a PSO algorithm leaving the feasible part of the

MKP’s solution space is to use repair operators. These operators ensure that once a particle leaves the

feasible part of the solution space it is immediately “repaired” and converted to a feasible solution.

Kong and Tian [72] used the binary PSO from section 1.3.1.1, and constructed two variants: PSO-R

which included a heuristic repair operator to avoid infeasible solutions, and PSO-P which applied a

penalty function. The repair operator process consists of first determining the so-called pseudo-utility of

each item before the PSO algorithm itself is run. The pseudo-utility draws closely on information specific

to the MKP domain. Then, if during the run of the PSO-R algorithm a particle leaves the space of feasible

solutions, it is moved back into feasible space in two phases. In the first phase labeled “DROP”, the items

that are included in the particle’s position are listed in order of increasing pseudo-utility and removed

one-by-one until no constraints are violated. Then in the second “ADD” phase, items are investigated

in order ofdecreasingpseudo-utility and added to the particle’s position as long as no constraints are

violated. The two algorithms PSO-P and PSO-R were compared using the quality of the solution found

on 7 small MKPs and 10 large MKPs. PSO-R outperformed the PSO-P algorithm on all but one simple

problem, on which both algorithms performed equally well. The PSO-P algorithm is described below in

section 2.4.2.2. Kong and Tian [72] noted that the repair operator plays a critical role in quickly finding

good solutions.

Labedet al. [78] developed the Modified Hybrid Particle Swarm Optimization (MHPSO) algorithm

which combines PSO with two different particle repair operators and a crossover operator from GAs.

The first repair operator called the Particle Repair Algorithm (PRA) randomly choses items to remove

from an infeasible candidate solution until it no longer violates any constraint. A second operator called

Check and Repair Operator calculates a measure called profit density to determine which item to remove

from an infeasible solution. Which repair operator is used in a specific iteration of the algorithm is not

made clear.

The algorithm was tested on 25 small and 10 large MKPs from the benchmark problems mentioned

in sections 2.3 and 5.2.1. It is not possible to determine how well the algorithm performed, as no details

were given for the experimental set-up, nor was the algorithm compared to any other known algorithm.

Gherboudjet al. [44] proposed the New Hybrid Binary PSO algorithm (NHBPSO) which combined

PSO with a crossover operator from GAs and a repair operator equal to the PRA operator used in [78].

This NHBPSO method is compared to a gbest BPSO algorithm with an unspecified penalty function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 19

Details on chosen parameters, swarm size and number of iterations are missing.Gherboudjet al. [44]

ran 30 independent runs of both algorithms on 25 small MKPs and 10 large MKPs, with the NHBPSO

showing the best average result on all 35 problems. Although no such analysis is included in the paper,

this indicates statistically significant outperformance.

The work by Chenet al.[17] was already mentioned in section 1.3.2 as having introduced a set-based

PSO algorithm. They listed two variants that were applied to the MKP, i.e. the PSO algorithms labeled

S-CLPSO-V1 and S-CLPSO-V2, where CLPSO refers to the comprehensive learning PSO algorithm

introduced by Lianget al. [85]. The first variant, S-CLPSO-V1, only selects feasible elements in the

position updating procedure so that the feasibility of the solutions are always guaranteed. The second

variant paired the S-CLPSO algorithm with the MKP repair operator introduced by Chu and Beasley

[18], which is similar to the “DROP” and “ADD” operators described above for the work by Kong and

Tian [72]. S-CLPSO-V2 compared favorably to the PSO-P and PSO-R algorithms from Kong and Tian

[72] mentioned above, and was also shown to achieve similar quality of solutions as two ACOs and

one evolutionary algorithm. The S-CLPSO algorithms use domain specific information to either only

construct feasible solutions or use a repair operator to achieve feasible solutions for the MKP.

The PSO algorithms using repair operators described in this section have been shown to help PSO

achieve a higher efficiency in solving the MKP than algorithms without repair operators. The repair

operator incorporates knowledge from the domain of knapsack problems to avoid searching known sub-

optimal regions of the solution space. Results seem to indicate that the appropriate repair operator is of

bigger influence on the success of the PSO algorithm than the PSO algorithm itself. However, no specific

study was found that focused on the exact contribution of a repair operatorvis-a-visthe PSO algorithm.

A benefit of the dominance of the repair operator is that less effort needs to be expended on choosing the

best PSO algorithm or finding the best parameters for that algorithm. These domain-specific operators,

however, make it harder or impossible to apply the algorithms to different problem domains.

2.4.2.2 Penalty functions

A second method to deal with particles that leave the feasible part of the MKP’s solution space is to

allow the particles to remain in the infeasible part of the solution space, but to apply a penalty to the

fitness of the particle. Different kinds of penalty functions have been proposed, ranging from penalties

proportional to the amount with which a constraint is breached to functions that apply an infinite penalty

to infeasible solutions. The work by Olsen [107] is an early overview of the main penalty functions that

are in use.

Hembeckeret al. [52] used the binary PSO combined with a penalty function to steer the search

towards solutions that satisfy the MKP’s constraints. The penalty was set proportional to the total amount

of excess in the knapsacks. The problem set to which the algorithm was applied consisted of 10 small

MKPs with the number of items,n, ranging from 28 to 105 and the number of constraints,m, equal to

2 or 30. Only 300 iterations were performed and the algorithm was run 100 times on each of the 10

problems. For only one problem the optimum was found in at least one of the 100 runs, with the author

suggesting that more iterations would be required to achieve better results. Thus the study by Hembecker

et al. [52] does not give an indication of whether the penalty function approach is effective.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

20 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

As discussed in section 2.4.2.1, Kong and Tian [72] used the binary PSO on theMKP and constructed

two variants: PSO-R which included a heuristic repair operator, and PSO-P which applied a penalty

function. The penalty function used in PSO-P applies a penalty that increases linearly with the amount

that constraints are violated. The formula for the objective functionf including this penalty is

f =
n

∑
i=1

vixi − poslin
(

Mi

(n

∑
i=1

wi, jxi −Cj

))
(2.8)

where the penalty parametersMi are large scalars and the functionposlin is defined as

poslin(s) =





s if s> 0,

0 if s≤ 0.
(2.9)

The two algorithms, PSO-P and PSO-R, were compared using the quality of the solutions found for

seven small MKPs and 10 large MKPs. PSO-R outperformed the PSO-P algorithm on all but one simple

problem, on which both algorithms performed equally well. The results showed that a penalty function

approach applying PSO on the MKP can work, but also that in this case problem domain specific repair

operators performed better than a problem domain specific penalty function.

The PBPSO algorithm introduced by Wanget al. [146] was discussed in section 1.3.1.3. In their

study Wanget al. [146] applied PBPSO to the MKP and the performance of the PBPSO algorithm was

compared to that of the BPSO (see section 1.3.1.1) and MBPSO (see section 1.3.1.2) algorithms. Wang

et al. [146] mentioned that a penalty function was used and in the article they referred to the work by

Olsen [107]. Unfortunately, the exact penalty function used is not mentioned. The authors concluded

that the PBPSO algorithm exhibited better optimization performance in terms of convergence speed and

global search ability than BPSO and MBPSO. Only 10 small MKPs were used and no statistical test was

performed by Wanget al. [146]. Because the aim of the study reviewed corresponds closely to some

of the objectives of this thesis, it is important to determine the statistical validity of this conclusion. It

proved possible to test for statistical significance of the results reported in the study and the outcome

of this statistical analysis is listed in section 2.4.2.3. The PBPSO algorithm could only be shown to

outperform MBPSO but not the BPSO. The work by Wanget al. [146] shows that it is possible to

compare discrete PSO algorithms, but that it is also clear that a larger number of problems is required in

order to be able to draw statistically significant conclusions about relative performance. It is also noted

that the control parameters of MBPSO and BPSO were not tuned, but values known from earlier studies

were used, while for PBPSO only a minimal investigation was conducted on the values ofRmin and

Rmax. It is unclear whether better tuned versions of the three algorithms would show the same relative

performance.

Deep and Bansal [26] proposed a new method called Socio-Cognitive Particle Swarm Optimization

(SCPSO) and applied it to the MKP, comparing the new algorithm’s performance to that of BPSO. The

objective function including an unspecified penalty function approach was used for handling capacity

constraints. A star topology was used with a fixed swarm size of 40 particles. No tuning was performed

for either algorithm. Both algorithms were applied to the seven small MKPs from the filemknap1.txt.

Thirty independent runs were performed for each problem and the number of function evaluations was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 21

limited in each run to 1000 times the number of itemsn. Thisresulted in a maximum number of iterations

ranging from 150 for mknap1-1 to 1250 iterations for mknap1-7. For details on the specifications of these

seven problems, see table 5.1. Deep and Bansal [26] showed that for four out of seven problems SCPSO

outperformed BPSO. For the first three problems, both algorithms were able to solve the problems, but

the paper did not include a statistical analysis. Due to the limited number of problems and the fact that

both algorithms achieved a perfect success in solving the first three problems, no statistically significant

outperformance could be determined using the method outlined in appendix E. Because only small

MKPs were considered, it is as yet unclear whether the SCPSO algorithm works well on larger MKPs.

Recapping the work done on using PSO with penalty functions on the MKP, one first observes that

the work of Olsen [107] showed that many variants of penalty functions exist. These variants range from

a simple penalty function that applies a value of minus infinity to infeasible solutions, to those that try to

incorporate more information about the problem domain to better steer the search. The latter approach

more closely links the PSO algorithm’s objective function to the domain of the MKP, and does not allow

such linked PSO algorithms to be easily applied in the same form to DOPs from a different domain. This

use of domain specific information is, however, weaker than that used by the repair operators reviewed in

section 2.4.2.1. The work by Kong and Tian [72] and Gherboudjet al.[44] indicates that PSO algorithms

using repair operators can achieve better solutions than PSO algorithms using penalty functions.

2.4.2.3 PSO comparisons on MKP by Wanget al.

As mentioned previously in section 2.4.2.2, Wanget al.[146] compared the BPSO, MBPSO, and PBPSO

algorithms on a number of MKPs and concluded that the PBPSO exhibited better optimization perfor-

mance in terms of convergence speed and global search ability than BPSO and MBPSO. This section

contains a statistical analysis of the results reported in the study by Wanget al. [146]. The BPSO,

MBPSO, and PBPSO algorithms are described in sections 1.3.1.1, 1.3.1.2, and 1.3.1.3 respectively.

This section uses two different measures of the quality of results achieved by the different algorithms.

Firstly, the average error denotes the percentage deviation from the known optimum for a given instance.

Secondly, the success rate denotes the percentage of independent runs that found the optimum for a given

instance.

All average error and success rate numbers in this section are copied or computed directly from [146].

Table 2.1 summarizes the average errors and success rates of three PSO algorithms on 10 small MKPs.

The number of problems solved perfectly in all 20 runs of the algorithm is listed as “# perfect”, while “#

failure” indicates the number of problems for which the algorithm was not able to find the optimum in

any of the runs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

22 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 2.1: Summary of results from Wanget al. on 10 small MKPs. Bold face indicates statistically
significant outperformance of one or more algorithms.

BPSO (rank) MBPSO (rank) PBPSO (rank)

avg error 1.09 % (2.20) 1.59 % (2.40) 0.80 % (1.40)
stdev error 1.40 % 2.64 % 1.02 %

average SR 41.0 % (2.30) 36.5 % (2.40) 49.0 % (1.30)
stdev SR 44.9 % 45.0 % 41.6 %

perfect 3 (2) 3 (2) 3 (2)
failure 3 (2.5) 3 (2.5) 0 (1)

P-value avg error 3.68 % 1.27 %
significant avg error Best Best

P-value SR 1.27 % 0.70 %
significant SR Best

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 23

The detailed results underlying table 2.1 are found in table 2.2 for the average errorper problem and

in table 2.3 for the success rate per problem.

Table 2.2: Average error results from Wanget al. on 10 small MKPs. Results shown are the average
of 20 independent runs of the algorithms. Bold face indicates statistically significant outperformance of
one or more algorithms. Note that Wanget al. used the acronym KBPSO to denote what is called BPSO
here.

Problem Name Group n m avg error (rank)avg error (rank)avg error (rank)

mknap1-1 Pet1 Simple 6 10 0.00 % (2) 0.00 % (2) 0.00 % (2)
mknap1-2 Pet2 Simple 10 10 0.00 % (2) 0.00 % (2) 0.00 % (2)
mknap1-3 Pet3 Simple 15 10 0.00 % (2) 0.00 % (2) 0.00 % (2)
mknap2-43Pb4 Simple 29 2 3.46 % (3) 2.89 % (2) 2.16 % (1)
mknap2-44Pb5 Simple 20 10 0.37 % (2) 1.31 % (3) 0.21 % (1)
mknap2-45Pb6 Simple 40 30 3.74 % (2) 8.69 % (3) 2.98 % (1)

mknap2-1 Sent1 Complex60 30 1.48 % (3) 1.01 % (2) 0.98 % (1)
mknap2-2 Sent2 Complex60 30 0.60 % (2) 0.69 % (3) 0.58 % (1)
mknap2-22Weish12 Complex50 5 0.69 % (3) 0.35 % (2) 0.11 % (1)
mknap2-30Weish20 Complex70 5 0.59 % (1) 0.97 % (3) 0.93 % (2)

average 1.09 % (2.20) 1.59 % (2.40) 0.80 % (1.40)
perfect 3 (2) 3 (2) 3 (2)
failure 3 (2.5) 3 (2.5) 0 (1)

Table 2.3: Success rate results from Wanget al. on 10 small MKPs. Results shown are the combined
success rate over 20 independent runs of the algorithms. Bold face indicates statistically significant
outperformance of one or more algorithms. Note that Wanget al. used the acronym KBPSO to denote
what is called BPSO here.

Problem Name Group n m SR (rank) SR (rank) SR (rank)

mknap1-1 Pet1 Simple 6 10 100 % (2) 100 % (2) 100 % (2)
mknap1-2 Pet2 Simple 10 10 100 % (2) 100 % (2) 100 % (2)
mknap1-3 Pet3 Simple 15 10 100 % (2) 100 % (2) 100 % (2)
mknap2-43Pb4 Simple 29 2 20 % (2) 15 % (3) 40 % (1)
mknap2-44Pb5 Simple 20 10 65 % (2) 5 % (3) 75 % (1)
mknap2-45Pb6 Simple 40 30 10 % (2.5) 10 % (2.5) 15 % (1)

mknap2-1 Sent1 Complex60 30 0 % (2.5) 0 % (2.5) 5 % (1)
mknap2-2 Sent2 Complex60 30 0 % (2.5) 0 % (2.5) 5 % (1)
mknap2-22Weish12 Complex50 5 15 % (3) 35 % (2) 45 % (1)
mknap2-30Weish20 Complex70 5 0 % (2.5) 0 % (2.5) 5 % (1)

average 41 % (2.2) 37 % (2.4) 49 % (1.4)
perfect 3 (2) 3 (2) 3 (2)
failure 3 (2.5) 3 (2.5) 0 (1)

The specifications of the three algorithms and the experimental procedure followed by Wanget al.

[146] are repeated here. For the first six problems, together called the “simple group” of problems, the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

24 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

swarm size was set to 30 particles and a maximum of 3000 iterations of the algorithmswere performed.

For the final four problems, together called the “complex group” of problems, the swarm size was set

to 60 particles and a maximum of 4000 iterations of the algorithms were performed. In all cases 20

independent runs of the algorithm were performed. For MBPSO the parametera was set equal to 0.5

and kept constant. For BPSO and PBPSO the common parameters were kept equal and set toω = 0.8,

c1= 2.0 andc2= 2.0. No velocity clamping was used in the BPSO. For PBPSO the remaining parameters

Rmin andRmax were set to -50 and 50 respectively.

The newly introduced PBPSO algorithm performed best measured in average error (0.80% versus

1.09% for BPSO and 1.59% for MBPSO) as well as success rate (49.0% versus 41.0% for BPSO and

36.5% for MBPSO). The BPSO and MBPSO algorithms showed a somewhat similar performance, with

BPSO achieving a slightly better average rank. Due to the limited number of problems in the problem set,

however, statistically significant outperformance is not clear cut. Using a significance level ofα = 5%,

only based on the success rate is PBPSO shown to outperform the other two algorithms. Based on

the average rank of the average error numbers, PBPSO is shown to outperform MBPSO, but then no

significant difference in performance is seen compared to BPSO. The statistical procedure used to make

these comparisons is outlined in appendix E.

Note that, although the appearance of the tables in this section is similar to that used when reporting

on the experiments performed for the purpose of this thesis in chapter 5, the results for each algorithm and

problem reported in this section are different and not directly comparable to the results from chapter 5:

Wang et al. [146] used much less extensive tuning for the algorithms; the number of iterations, the

swarm size and the number of independent runs of the algorithm all differ from the choices made for the

experiments reported in this thesis.

To repeat the conclusion from the previous section, the work by Wanget al. [146] showed that

it is possible to compare discrete PSO algorithms, but that a larger number of problems is required

in order to be able to draw statistically significant conclusions about relative performance. Also, the

control parameters for MBPSO and BPSO were not tuned, but values known from earlier studies were

used, while for PBPSO only a minimal investigation was conducted on the values ofRmin andRmax. It is

unclear whether better tuned versions of the three algorithms would show the same relative performance.

2.5 Conclusions

The first objective of this chapter was to introduce the MKP, list its main characteristics, and identify

further features that can be useful in categorizing MKPs. A formal mathematical definition of the MKP

as a maximization optimization problem was given, with the variablesn for the number of items,m for

the number of constraints and the weightswi, j for item i relative to constraintj.

By reviewing a well-known set of benchmark problems in section 2.3, more insight was gained on the

impact of the variablesn andm on the hardness of a MKP. Another feature considered to be relevant for

the randomly generated problems in the large benchmark problems was the tightness ratior. The insights

pointed to the conclusion that different algorithms, or even different tunings of the same algorithm, can

perform better on a set of problems with a certain combination ofn, m, andr, while it will perform less

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 25

well on sets of MKPs with different specifications ofn, m, andr.

Thesecond and more important objective of this chapter was to give a brief overview of the various

methods that have been employed to solve the MKP, with a focus on approaches using PSO. A brief

overview was given of exact methods and some recent work using population based methods other than

PSO. Then a more detailed review was made of work from literature where the PSO was applied to

the MKP. A defining characteristic in these approaches was how the algorithms reviewed dealt with

the problem of swarm particles straying into infeasible parts of the solution space where the candidate

solution represented by a particle does not satisfy all the constraints posed by the MKP. Two different

mechanisms have been used to address this problem: repair operators and penalty functions.

The best solutions for the MKP have been achieved by algorithms that explicitly use features from

the problem domain. Some of the most successful of these have been population based methods using

repair operators. Some authors, for example Kong and Tian [72], have combined such repair operators

with the PSO, while others used different population based methods, like Chu and Beasley [18] who

used a GA. The conclusion is that the repair operator makes these methods more successful than other

population based approaches, but there is no clear indication that PSO underperforms or outperforms

other population based approaches in this setup.

Approaches to solve the MKP using PSO and penalty functions were shown to be effective, though

these yielded poorer results than PSO algorithms using a repair operator. A benefit of the penalty function

approach is that the amount of problem domain specific knowledge that is used can be proportioned.

Thus, it is possible to chose a penalty function that is generic and can be employed on problem domains

other than the MKP without the need for redesign. Most articles reviewed that use penalty functions,

however, do not specify the exact penalty function used. Therefore it is not known if using a generic

penalty function with the minimum number of domain specific features is an effective way to solve the

MKP.

The review of methods to solve the MKP using PSO should be considered sufficient to prove the

non-trivial nature of the problem: first, new discrete PSO algorithms are introduced and first tested on

the MKP, indicating that it is an important set of problems to use for testing new algorithms. Second,

note that for some of the benchmark problems that have been used in research on the MKP since 1998, it

is still not clear if the optimal solution has been found. Thus, it seems fair to conclude that the MKP is a

valid test bed of the new PSO algorithm to be introduced in chapter 4 and other discrete PSO algorithms

it will be compared to.

The next chapter will introduce a second DOP, namely the feature selection problem. Besides a for-

mal definition and cursory investigation of salient aspects of the problem, the main objective of chapter 3

will be the same as this chapter’s: review the literature on methods used to solve the DOP to see if it

can form a test bed for the new PSO algorithm to be introduced in chapter 4 and other discrete PSO

algorithms it will be compared to. For the MKP itself, the experiments conducted and reported in this

thesis in order to test PSO algorithms are detailed in chapter 5.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Feature selection problem

This chapter describes the feature selection problem (FSP), an optimization problem from the domain of

machine learning. This is the second of two sets of problems that will be used in this thesis to test the

SBPSO algorithm, the other being the MKP that was described in the previous chapter.

This chapter has two objectives, the first of which is to formally define the FSP as well as the underly-

ing classification problem and list the FSP’s main characteristics. The second objective is to give a brief

overview of the various methods that have been employed to solve the FSP, with a focus on approaches

using PSO. This overview is meant to convince the reader that the FSP is a valid problem on which to

test discrete PSO algorithms like the SBPSO.

This chapter formally defines the classification problem and the FSP, followed by a brief overview of

the literature on solving the FSP. The final section also introduces a set of benchmark datasets from the

UCI Machine Learning Repository that help define a set of benchmark FSP’s.

3.1 Introduction

The FSP is a problem in the domain of machine learning where an algorithm is used to label or classify

data. The goal in the FSP is to select the optimum subset of variables that will result in the best accuracy

for the underlying classification problem. This chapter aims to formally introduce the FSP, its relation

with the underlying classification problem, and the place of both within the wider field of machine

learning. In the course of this brief review, important concepts like classifiers, classification accuracy,

and cross validation will be introduced. These concepts will be important in the construction of the

experiments for the FSP in chapter 6. In those experiments four PSO algorithms will each be used to

select a subset of features which in turn will act as input for the underlying classification problem. Three

different classifiers will use the input features to determine the class labels, i.e. thek-nearest neighbor

classier, decision trees, and the Gaussian Naive Bayes classier. This chapter will also introduce these

three classifiers in some detail.

The second objective of this chapter is to convince the reader that the FSP is a valid test problem

on which to compare the SBPSO algorithm to other PSO algorithms. In order to achieve this goal a

review is made of the literature on the FSP and ways that have been employed to solve the problem. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 27

main approaches will be touched upon, with specific focus on those methods thatuse population based

methods such as PSO.

Thus it will be made clear that the manner in which PSO algorithms will be used to solve the FSP in

chapter 6 has been used successfully in other studies.

The MKP was introduced in chapter 2, where it was argued that the MKP formed a good problem in

which to test the SBPSO. This chapter will attempt to do the same for the FSP. The idea is that testing the

SBPSO on two different DOPs will lead to better evidence on whether the SBPSO has merit as a generic

algorithm, and not applicable to just one problem. For this argument of wider scope to carry weight, the

MKP and the FSP need to be sufficiently different. It is important to remember from chapter 2 that the

MKP is a completely deterministic problem that has a clear way to determine what candidate solution is

best: the solution that leads to the highest value of items in the knapsack. Although the optimal solution

need not be known, it is always possible to compare two candidate solutions and determine which is

better. By clearly defining the FSP and the underlying classification problem, it will be shown that the

FSP differs fundamentally from the MKP. Hence, the FSP forms a test bed for the SBPSO that is truly

different from the MKP.

This introductory section is followed by three main parts and a conclusion that links back to the

objectives outlined above. The first main section sketches the broader field of machine learning and the

place that classification has in this field. It also includes an explanation of the concept of classifiers,

performance measures and the use of cross validation, as well as some notes on data preprocessing. The

second main part formally defines the FSP within the framework of the first section. The third part is a

review of the literature on various approaches used to solve the FSP. A special focus will be on methods

that use PSO. Contained in this review is an introduction to the UCI Machine Learning Repository, which

houses a collection of problems which serve as a benchmark for testing machine learning algorithms.

3.2 The classification problem in machine learning

This section first defines the field of machine learning and gives a very broad overview of the three

main ways in which algorithms learn from experience, i.e. unsupervised, supervised and reinforcement

learning. Following this, the classification problem that underlies the FSP is formally defined.

3.2.1 Machine learning

Machine learning was defined by Simon [129] as “any change in a system that allows it to perform better

the second time on repetition of the same task or on another task drawn from the same population”.

Mitchell [97] has a more formal approach and defines machine learning to mean that a computer program

or algorithmlearnsfrom experienceE with respect to some class of tasksT and a performance measure

P, if its performance at tasks inT, as measured byP, improves with experienceE. For the classification

problem the performance measure,P, is usually taken to be some measure of the accuracy achieved by

the algorithm in classifying a set of known examples. Performance measures are discussed in more detail

in section 3.2.5.

Some examples of learning problems that are well-defined such that machine learning can be applied

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

28 CHAPTER3. FEATURE SELECTION PROBLEM

include: learn to win at a board game (checkers, chess), learn to recognizespeech or other patterns, or

learn to drive an autonomous vehicle.

One way to segment the field of machine learning is along the lines of what kind of experience is

used to learn: is the algorithm given no feedback, limited feedback, or explicit feedback on what the

correct outcome is in a given learning situation? This results in three main branches of machine learning:

unsupervised learning, reinforcement learning, and supervised learning.

In unsupervised learning the aim is to find hidden structure in unlabeled data [29]. Since the examples

given to the algorithm are unlabeled, there is no error or reward signal to evaluate a potential solution.

This distinguishes unsupervised learning from supervised learning and reinforcement learning. Unsuper-

vised learning approaches include clustering, hidden Markov models, and feature extraction techniques

such as principal component analysis.

Reinforcement learning was inspired by behaviorist psychology, and is concerned with how software

agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Ac-

cording to Mitchell [97] reinforcement learning addresses the question of how an autonomous agent that

senses and acts in its environment can learn to choose optimal actions to achieve its goal. It differs from

standard supervised learning in that data is not labeled, nor are sub-optimal actions explicitly corrected.

Further, there is a focus on on-line performance. Real world problems on which these techniques are

applied include robot control or real-time anomaly detection. Algorithms in the field of reinforcement

learning are often closely related to those from dynamic programming. An example algorithm is the Q

algorithm [147].

Supervised learning is defined by Mohriet al. [99] as learning which aims to infer a function from a

set of labeled training examples. Each example is a pair consisting of an input object (typically a vector)

and a desired output value (the class). A supervised learning algorithm analyzes the training data and

produces an inferred function, which can be used to map examples not in the training set. The algorithm

thus tries to generalize from the training data to unseen situations. Two large branches of supervised

learning are classification and regression. Classification is the subject of section 3.2. Regression or

regression analysis is a statistical process for estimating the relationships between a dependent variable

and one or more independent variables. Regression analysis is widely used for prediction and forecasting,

for example in the world of finance by Liet al. [84] and Claessenset al. [22]. An example regression

technique is linear regression or least squares.

3.2.2 Classification problem

The classification problem in machine learning is the problem of automatically labeling data: an algo-

rithm is used to perform the task of determining in whichclassfrom a finite set a giveninstanceof input

data is to be classified. An example of such classification tasks is to determine the outcome of a game

of tic-tac-toe from the end-state of Xs and Os on the board. The possible classes are “game won by X”,

“game won by O”, or “draw”. In this case the output class for a given set of inputs is fully determined

and the tasks is for the algorithm to learn this target concept [94]. A different example classification task

is to use a number of measurements for a patient regarding temperature, blood pressure, and the levels of

various blood chemicals, to determine whether or not the patient suffers from a specific disease. In this

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 29

case the relationship between input and output is not known: a human doctor usesthe measurements of

the patient to diagnose whether he/she suffers from the disease in question, but this human diagnosis is

not infallible and a direct link between the measurements and the diagnosis in usually not known.

Within the taxonomy of machine learning from the previous section, the classification problem is a

supervised learning problem because the experience,E, which the algorithm uses to improve its perfor-

mance consists of known examples: a set of inputs to be classified for which the correct output classes are

known. Formally, these examples form a training set of data instances(I ,c) with input vectorI and the

correct or desired output classc. The input vectorI = {ik}k = 1n containsn features or attributes, which

each can have different values. In this thesis the terms “feature” is used in most places, but sometimes

convention calls for the use of “attribute” instead; for example in the field of decision trees discussed in

section 3.2.3.3. There is no difference in meaning implied between the two terms. Attribute values are

considered to be finite. Possible value types are numeric (a continuous value), and nominal or discrete (a

fixed and finite number of possibilities). The discrete values can just be a finite number of choices with-

out structure (for example the colors red, yellow, and blue) or contain an internal hierarchy or structure

(for example the outcomes of a hotel review “excellent”, “good”, “average”, “bad”, and “appalling”).

The output classc is one from a known and finite set of possible classes. Using the elements involved in

the definition of machine learning by Mitchell [97] from the previous section, classification is thus the

class of tasks to be performed,T. The other elements are

• the algorithm that does the learning and which, after being trained, performs the classification task.

This algorithm is called aclassifierand is the subject of section 3.2.3;

• the performance measureP used in learning, which will be discussed in section 3.2.5; and

• the experienceE on which to train the classifier. If the task contains of a fixed set of training

instances, this is included in the problem. But in many cases only a dataset of labeled instances

is given. In this case it is important how the dataset is divided into a training set from which to

learn and a second set on which to measure the performance of the trained classifier. The concept

of cross-validationdeals with this division of a dataset, and is the subject of section 3.2.5.2, and

follows after the discussion on performance measures to which cross-validation is closely linked.

3.2.3 Classifiers

This sections briefly further elaborates on the the concept of a classifier used to solve the classifica-

tion problem, including detail on of three classifiers that are used in the experiments on the FSP in

this thesis, i.e. the Gaussian Naive Bayes classifier in subsection 3.2.3.2, the decision tree classifier in

subsection 3.2.3.3, and thek-Nearest Neighbor classifier in subsection 3.2.3.4.

3.2.3.1 Definition of a classifier

A classification problem involves a learning algorithm trained by experience, producing an induced

model or function. This induced model is used to classify new instances for which the output class is

not known. The induced model is called aclassifier. Strictly speaking, a difference thus exists between

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

30 CHAPTER3. FEATURE SELECTION PROBLEM

the (abstract) learning algorithm and the induced model, which is an instance of thelearning algorithm

trained on a specific dataset. This difference is dropped in the remainder of this thesis, however, and the

term classifier is used for both algorithm and induced model.

The first phase in which the classifier learns from the labeled instances is called thetraining phase.

The learning algorithm needs to generalize from the training data to new unseen data as best as possible.

The trained classifier can then be used to classify previously unseen instances in theclassification phase.

Kotsiantis [76] mentioned that classifiers were developed from different types of learning approaches:

• Logic based learning has yielded decision trees and rule based learners.

• Statistical approaches include Gaussian Naive Bayes (GNB) and Bayesian networks.

• The best-known example of instance based learning is thek-Nearest Neighbor (k-NN).

• Perceptron based learning comes in the form of artificial neural networks (ANN) and radial basis

function (RBF) networks.

• Support vector machines (SVM) form their own separate class.

The classifier may have no parameters (for example GNB), one (e.g.k-NN) or more parameters (e.g.

decision trees, SVM). For some classifiers further choices need to be made, e.g. a choice of distance

measure (metric) for thek-NN classifier or a choice of kernel function to transform the feature space for

SVM. These parameters and other metrics greatly determine the accuracy of the resulting classifier. For

the classifiers described in the next sections, particular attention is given to these parameters and metrics.

3.2.3.2 Gaussian Naive Bayes classifier

The name Gaussian Naive Bayes classifier [60] indicates that three concepts are combined to form the

classifier. The termBayesis related to Bayes’ Theorem [6] which states how the mathematical proba-

bilities of two eventsA andB relate to theconditionalprobabilities ofA givenB (what is the probability

of A, given thatB is known) denoted asP(A|B) and the conditional probability ofB givenA denoted as

P(B|A). In its simplest form this relationship is given as

P(A|B) = P(B|A)P(A)
P(B)

. (3.1)

ThetermGaussianindicates that the classifier assumes the values for each feature to be distributed

according to a Gaussian or normal probability distribution. A Gaussian distribution is fully determined

by two values: the mean valueµ and the standard deviationσ2. The probability density function which

describes the probability distribution is

φ(x,µ ,σ2) =
1

σ
√

2π
e

(x−µ)2

2σ2 , (3.2)

such that

P(X < x) =
∫ x

−∞
φ(t)dt. (3.3)

The termNaive involves the mathematical concept of conditional independence. To introduce this

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 31

concept, first note that two eventsA andB areconsideredindependentif the following holds:

P(A,B) =P(A)P(B) (3.4)

whereP(A,B) denotes the joint probability ofA andB. In words, this can be interpreted as that the value

of A doesnot depend on the value ofB and vice-versa. Two eventsA andB are consideredconditionally

independent given a third event C, if the following holds:

P(A|B,C) = P(A|C). (3.5)

In words, this can be interpreted as given thatC is known, the value ofA does not depend on the value

of B. Or less rigorously, the only link betweenA andB is via the third event,C. The concept Naive in

the GNB classifier refers to the (strong) assumption that the values of featuresFi andFj are pair-wise

conditionally independent (fori 6= j) given the value of the class labelC.

The GNB classifier calculates the probability that an instance belongs to a classC, given the values of

the featuresFi . Assuming the data contains only two features, this probability is denoted asP(C|F1,F2).

The GNB classifier tries to find thatC which maximizesP(C|F1,F2).

Since the feature valuesF1 andF2 are given,P(F1,F2) is a constant. Hence, maximizingP(C|F1,F2)

will yield the same result as maximizingP(C|F1,F2) / P(F1,F2). Maximizing the latter term has some

mathematical benefits, as is made clear below.

Bayes’ Theorem tells us that

P(C|F1,F2) =
P(C)P(F1,F2|C)

P(F1,F2)
(3.6)

Usingthe assumption thatF1 andF2 are conditionally independent givenC, it is possible to use the chain

rule of probability1 to write

P(C|F1,F2) / P(F1,F2) = P(C)P(F1,F2|C)
= P(C)P(F1|C)P(F2|F1,C)

= P(C)P(F1|C)P(F2|C). (3.7)

In order to calculateP(C|F1,F2)/ P(F1,F2) it is thus sufficient to calculate the simpler probabilitiesP(C),

P(F1|C), andP(F2|C). The general case ofn features can be written as

P
′(C|F1, . . . ,Fn) = P(C)Πn

i=1P(Fi |C) (3.8)

3.2.3.2.1 Training phase: The training phase for the GNB classifier consists of determining the val-

ues for all probabilitiesP(C= c) andP(Fi |C= c) for featuresFi andc ranging over all possible values of

the class labelC. The probabilitiesP(C= c) are called theclass priorand need to be estimated for each

value ofc based on the training data. The Gaussian assumption means thatP(Fi |C= c) is assumed to be

normally distributed for all featuresFi and class valuec. To determine this distribution, the parameters

µi andσ2
i need to be estimated.

First the class prior probabilitiesP(C= c) are set equal to themaximum likelihood estimatebased on

1Thechain rule of probability isP(A,B) =P(B)P(A|B)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

32 CHAPTER3. FEATURE SELECTION PROBLEM

the class count in the training set:

P(C= c) =
#instanceswith class labelc

#instancesc
(3.9)

Note that this means that only class labels that exist in the training set have a probability greater than

zero and that the GNB classifier will never assign to an instance a class label that does not exist in the

training set. A mechanism to overcome this shortcoming is to apply Laplace smoothing. The class prior

probabilities in that case are calculated as

P(C= c) =
#instances with class labelc+α

#instancesc+α #classes
(3.10)

with α an integer greater than zero. In simple terms, this can be understood as assuming that for each

class an additionalα instances are present in the training set. The most commonly used value forα is

one. A higher value ofα means that the class priors are more smoothed, or pushed towards the uniform

distribution where each class has the same class prior probability.

The Gaussian parameters are also set equal to their maximum likelihood estimates, which are just

the class mean and standard deviation in the training set. Denote by Train(c) the set of instances from

the training set that have class labelc and letFi(t|c) be the value of featureFi for instancet ∈ Train(c).

Then the maximum likelihood estimates for parametersµi(c) andσ2
i (c) of Fi givenC= c are

µi(c) = ∑
t∈Train(c)

Fi(t)
|Train(c)| (3.11)

σ2
i (c) = ∑

t∈Train(c)

[Fi(t)−mui(c)]2

|Train(c)| (3.12)

(3.13)

3.2.3.2.2 Classification phase: Classification using the GNB classifier requires finding the class label

c that maximizes the conditional probabilityP(C= c|F1, . . . ,Fn) for the unlabeled instancet with feature

values(f1, . . . , fn). Written as a mathematical equation, this is equivalent to equation (3.8):

GNB-classification(t) = argmax
c

P(C= c)
n

∏
i=1

P(Fi = fi |C= c) (3.14)

Should an instance have two or more classes which have the same conditional probability, the tie is

broken randomly.

In short, the GNB classifier makes the (strong) assumptions that

1. all the features in the data have values that are normally distributed given the class labelC, and

2. if the class valueC is known, all features are pair-wise conditionally independent.

GNB then uses maximum likelihood estimates to determine the class priorP(C) and the Gaussian pa-

rametersµi andσ2
i of the conditional distributions of the featuresFi givenC. Classification is finding

thatc which maximizes the conditional probabilityP(C= c|F1, . . . ,Fn) for the feature values given in the

unlabeled instance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 33

Even though in reality the assumptions of normality and conditional independenceare often broken,

the GNB classifier has proven to be quite robust [120]. One of its strengths is that it handles large

feature spaces quite well, as the conditional independence assumption means that training consists only

in calculating|C| averages and standard deviations without considering any of the many covariances.

3.2.3.3 Decision tree classifier

A decision tree classifier uses a tree as the basis of a model, with the leaves of the tree representing

the class labels, and higher nodes in the tree encode decisions based on the values of the attributes.

Classification of an instance with a decision tree involves starting at the root of the tree and flowing

down the branches of the tree, where the decision node determines which branch is chosen based on

the value of a single attribute. This process continues until a leaf node is reached which contains the

classification for the instance.

A first mention of the decision tree concept is the concept learning system from Huntet al. [54],

but the field of decision trees is considered to have really started with the work of Quinlan [117] who

developed the ID3 algorithm. This was later expanded upon and improved into the C4.5 algorithm [118]

and its latest version C5.0.

Training a decision tree consists of building the whole tree structure with leaves and decision nodes.

This training is done using a decision tree induction algorithm. Following the work by Kotsiantis [76], a

decision tree induction algorithm (here shown for C4.5 using the information gain) can be summarized

by the recursive algorithm 3 which returns the root of the final decision tree.

Algorithm 3: DecisionTree Induction Algorithm
DecisionTree(SetS):
begin

beginCheck base cases:
if all instances in the data have the same class labelthen

return a leaf node with the unique class label ;
end
if theinstances in S contains 0 attributesthen

return a leaf node with the most common class label inS ;
end

end
beginRecursive step:

forall the attributes A in Sdo calculateIG(S,A) ;
Abest:= argmaxA{IG(S,A)} (ties broken randomly) ;
forall the values ai of Abestdo

SetSi := { s′ ∈ S : Abest = ai , attributeAbestremoved froms′ } ;
Nodedi := DecisionTree(Si) ;

end
return noded which splits based onAbest into childrendi ;

end
end

The Check base casesstepat the start of algorithm 3 deals with those sets of instances where a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

34 CHAPTER3. FEATURE SELECTION PROBLEM

decision tree with a single leaf node is the best classification. In theRecursive stepa node is created that

splits data based on them values ofAbest and hasm child-nodes. These child nodesdi are each made

by calling theDecisionTree algorithm on the subsetSi which contains all instances inS that have

Abest= ai , but with the attributeA itself removed from all the instances. So if the setScontains instances

with n attributes, then allSi contain instances withn−1 attributes.

The most important step in the induction algorithm is constructing the decision nodes that lead to

splits in the dataset based on a single attribute. At each step an attribute needs to be selected that, for

some metric, leads to the best split in the data. In other words: which attribute gives the “best” split of

the instances in that branch of the tree. The C4.5 algorithm usesinformation gainas the metric to be

maximized. To define information gain denote the following:

• S is a set of labeled instances withn different class labels,c1, . . . ,cn;

• A is an attribute of the instances inS, with mdiscrete values,a1, . . . ,am;

• SA=ai is the subset ofSwith all instances where attributeA has valueai ;

• fS(cond) is the fraction of instances inS for whichcond is true, e.g.fS(A= ai) = |SA=ai | / |S|.

The information entropyof the setS is defined by its class distribution according to

E(S) :=−
n

∑
j=1

fS(C= c j) log2 fS(C= c j) (3.15)

The information entropy of the setS on attributeA is defined equivalently based on the distribution of

the valuesai of A:

E(S,A) :=−
m

∑
j=1

fS(A= ai) log2 fS(A= ai) (3.16)

Combining the two information entropies above, the information gainIG(S,A) indicates the decrease in

information entropy for setSby splitting the set based on the values of attributeA:

IG(S,A) := E(S)−E(S,A) (3.17)

At each step in the decision tree induction algorithm the attributeAbest is selected which maximizes

IG(S,A) over all attributesA present in the instances inS.

Note that the description of information entropyE(S,A)and algorithm 3 all assume that the attributes

A have a finite set of discrete values, leading to decision nodes(A= ai). In the induction algorithm C4.5,

Quinlan [119] added the functionality to also deal with continuous attributes. These decision nodes take

the form of(A ≤ t) for some thresholdt. The algorithm checks different values of the threshold. IfS

containsN instances, each with a continuous valueacont,i , then the thresholds to check are theN−1 mid-

points,tk = 1
2(acont,(k)−acont,(k+1)), between the (ranked) values and the algorithm selects the threshold

that maximizes the information gain for the attributeA.

After the main loop of the algorithm has created a decision tree, a further pruning step can be made.

In the pruning step, the algorithm attempts to remove those branches from the tree that may cause over-

fitting. This is done because a smaller tree requires less memory and leads to quicker classification. For

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 35

more details about the pruning of decision trees, see for example the work by Espositoet al. [33] and

Oliver and Hand [106].

3.2.3.4 k-Nearest Neighbor classifier

The k-nearest neighbor classifier is one of the oldest classifiers, with roots going back to the work of

Fix and Hodges [35]. It is a popular choice of classifier because it is simple and easily implemented.

It classifies a new instance by calculating the distance from the new instance to each of the labeled

instances in the training set using a pre-defined distance metric. Then thek instances from the training

set that have the shortest distance to the instance to be classified are selected - itsk nearest neighbors. Ties

in the shortest distance are broken randomly. The classification of the unlabeled instance is by majority

rule for the classes present in thek nearest neighbors, again with ties broken randomly. As such, no

distinct training phase can be identified for this classifier, as calculating the distances to the instance to

be classified can only be done in the classification phase.

Different distance metrics can be used to determine the distance between two instances. For instances

with continuous valued attributes, the Euclidean distance metric is often used. This metric is defined as

dEuclidean(icont, jcont) :=

√
N

∑
n=1

(icont,n− jcont,n)2 (3.18)

whereicont and jcont aretwo instances withN continuous valued attributes. For instances with nominal or

categorical attributes, the Hamming distance is popular, which counts the number of attributes for which

the instances have different values. This metric is defined as

dHamming(inom, jnom) :=
N

∑
n=1

1I{inom,n 6= jnom,n} (3.19)

whereinom and jnom are two instances withN nominal attributes. The 1I denotes the indicator function

that equals 1 if the condition following is true, and 0 otherwise. Other metrics that can be used are

Minkowsky, Manhattan, Chebysev, Camberra, or Kendall’s rank correlation [76].

The parameterk of how many nearest neighbors to include in the class voting needs to be determined

beforehand. The value 1 is popular, taking only the single nearest neighbor into account in determining

the classification. It benefits from a slightly faster implementation in which only the nearest neighbor

needs to be found.

Incorporating feature selection into thek-Nearest Neighbor is simple, as only those attributes or

chosen in the feature selection process are taken into account when the distances between instances

are calculated. For example, consider the case of the Euclidean distance metric for two instances with

n attributes, where the attributes with indicesa1, . . . ,am are selected. Then the distance between two

instancesi and j is calculated as

dEuclidean[a1, . . . ,am](icont, jcont) :=

√
m

∑
k=1

(icont,ak − jcont,ak)
2, (3.20)

wherethe two instances are treated as having only themselected attributes.

A downside of using thek-nearest neighbor classifier is that it is computationally expensive and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

36 CHAPTER3. FEATURE SELECTION PROBLEM

locating the nearest neighbor is itself a problem that is studied in computer science.Therefore, work

is ongoing to optimize the classifier, for example by methods called prototype selection [41] and by

combining nearest neighbor with clustering [57]. In this thesis the standard version of thek-Nearest

Neighbor algorithm is used, as computational efficiency is not the main goal but instead the comparison

of different PSO algorithms under the same (in this case sub-efficient) circumstances.

3.2.4 Data preprocessing

The representation and quality of the data is one of the main factors which affect the success of machine

learning in general and classification in particular [77]. Data pre-processing is used to transform the

raw dataset into one that can be handled by the chosen classifier and is likely to yield the most accurate

classifications. Data pre-processing in general includes methods such as data cleaning, transformation,

normalization, and feature selection. The product of data pre-processing is a final dataset that can be

used effectively by machine learning algorithms.

Irrelevant and redundant information also makes knowledge discovery during the training phase dif-

ficult. This is the problem that feature selection tries to address. Feature selection can be seen as part of

the data pre-processing. In this thesis, however, the focus lies specifically on using the FSP as a problem

to solve and therefore feature selection isnot treated as a step in the data pre-processing.

The other three general methods of data pre-processing are discussed in turn below.

3.2.4.1 Data cleaning

Data cleaning deals with incorrect values in the dataset. These come in two types: missing or illegal

values for an attribute or class, or legal but incorrect values. The former two types are easily recognized,

while the latter can be much harder to spot.

Such missing or illegal values can make the task of classification impossible for specific classifiers,

although other classifiers may be able to cope with these errors. For example, it is not possible to

calculate the Euclidean distance between two data instances if one attribute value is missing in one of

the instances, hence making ank-nearest neighbor classifier fail. Illegal values occur especially in real-

life datasets, e.g. where a letter is stated as value for a numerical attribute, or a negative number for an

attribute that must be positive (like the number of children for an individual). If a dataset contains such

illegal or missing data, these instances need to be discarded or cleaned the ensure all classifiers work

properly.

The methods to deal with illegal values and missing values are the same and can mostly be applied

on an attribute-by-attribute manner, meaning that each case of a missing or illegal value can be resolved

separately. Note that illegal combinations of attribute values can also exist (for example, an instance of

data with the attributes “Gender” = Male, and “Pregnant” = Yes). Such combinations can often only

be caught by understanding the underlying concepts encoded in the data, and thus an expert needs to

construct checks to catch such illegal combinations. If it is not possible to identify which of the multiple

attributes has a correct value, all conflicting attribute values should be treated as illegal individually.

Kotsiantiset al. [77] mentioned the following methods to to fill in missing values or overwrite illegal

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 37

values:

• Ignoring instances with unknown feature values: All instances with at least one missing or illegal

feature value are ignored.

• Most common feature value: The value of the feature that occurs most often is selected to be the

value for all the unknown values of the feature.

• Concept most common feature value: This time the value which occurs the most common within

the same class is selected to be the value for all the unknown values of the feature.

• Mean substitution: Substitute a feature’s mean value computed from available cases to fill in miss-

ing data values on the remaining cases. Usually, the mean for all samples belonging to the same

class is used to fill in the missing value.

• Regression or classification methods: Develop a regression or classification model based on com-

plete case data for a given feature, treating that feature as the outcome and using all other relevant

features as predictors.

• Hot deck imputation: Identify the most similar case to the case with a missing value and substitute

the most similar case’s Y value for the missing case’s Y value.

• Treating missing feature values as special values: Treating unknown itself as a new value for the

features that contain missing values.

Each of these methods introduces its own, sometimes subtle, bias into the resulting dataset and they

should therefore be used with care. In general, the larger the dataset is and the smaller the proportion of

instances with errors, the less important the errors become and removing the incorrect instances from the

set or replacing the missing values with the most common or average value is fine. In a smaller dataset or

if the error occurs in an instance that is classified as a relatively rare class, more effort should be expended

to find a replacement value that is expected to introduce the smallest possible bias: a regression, hot deck

imputation might be better, although more work. In real-life applications, using a special value for the

missing or illegal values will make explicit the problem the missing values pose. If this problem leads to

poor performance on the classification task, one can compare the costs and benefits of additional effort

to obtain better data.

The second type of incorrect values is just that: an attribute has a value (it is not missing) and that

value is a legal value, but it is an incorrect value. This can be due to measurement errors, incorrect data

entry, or copying errors. Whereas for illegal and missing values an error is clearly recognizable, for this

second type of errors there is no such clear distinction. If the value of an attribute shows a large deviation

from the other values for that attribute, it can be considered anoutlier. The main approach to search for

such outliers is by statistical analysis of the values for that attribute in the dataset. An even more difficult

problem is if an attribute’s value is in error, but still falls within the probable range of values for that

attribute. In this case the single-attribute statistical analysis for outliers will yield no result. These errors

are therefore calledinliers. Only by multi-variate statistical analysis across multiple or all attributes can

such errors be found. For both outliers as well as inliers the expert performing the experiments has a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

38 CHAPTER3. FEATURE SELECTION PROBLEM

large subjective influence on the choice of what constitutes an outlier or inlier error. Once recognized,

this value can be treated the same as illegal or missing values in the data cleaning.

3.2.4.2 Data transformation

Data transformation alters the representation of an attribute’s value. The transformation makes the dataset

better suitable for the classifier that is subsequently applied to the dataset and hence is intended to im-

prove classification. Several methods of transformation are recognized: discretization, smoothing, and

aggregation [50]. It is also possible to see normalization, the subject of the next section, as a specific

form of transformation. Note that this description of transformation deals with the transformation of

single attributes or features only, not with combining multiple features into new features.

3.2.4.2.1 Discretization: Discretization can refer to both the conversion of non-numerical data to

numbers, and the conversion of continuous-valued data into categories. When converting non-numerical

data into numbers, one should be careful not to remove concepts embedded in the data, nor to add struc-

ture that does not exist in the original data. For example, if the answers to a question in a questionnaire

are “seldom”, “sometimes”, “often”, “always” these answers are an ordered description of frequency.

The numerical representation of this attribute should retain this order.

When discretization is applied to attributes that already have numerical values, the transformation

is about reducing the number of different values. This is usually done by assigning all values within an

interval to a category. The problem hereby is how to chose the interval borders and also the number of

categorical values for the discretization.

3.2.4.2.2 Smoothing: Smoothing means removing noise from the data. Noise is usually due to mea-

surement error. The main smoothing techniques employed in machine learning include binning, regres-

sion, and clustering. In binning all values within a range of values (the bin) are assigned a single value

form the bin. Regression contains the assumption that the measurement error is distributed randomly

around the “true” value to be measured. The data is fitted to a function which then no longer contains the

error noise. Further classification is then done using the function output for the attribute instead of the

original noise attribute values.

3.2.4.2.3 Aggregation: Aggregation refers to the summarization of data. This can serve to reduce the

amount of data to more manageable proportions, but can also be a form of smoothing. A classic example

is daily sales data, which is quite noisy due to the vagaries of life: most retail shops see large sales jumps

on Saturday, while Sundays and Mondays see no or little sales. Aggregation of the data to a weekly level

removes these vagaries for the most part. Also, data structures that are beneficial for classification are

sometimes more easily spotted by classifiers in aggregated data and hence lead to better classification.

3.2.4.3 Data normalization

Classifiers like neural networks andk-NN are known to perform better if all attributes are scaled to the

same range of values [77]. If one or more attributes have values with a much wider range, these attributes

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 39

will dominate in a naive (Euclidean) distance calculation and this will negatively effect the effectiveness

of the classifier. Two well-known methods to conduct this scaling are min-max normalization andZ-

score normalization.

Min-max normalizationtransforms each attribute to lie within the range[a,b] using linear scaling:

first the minimum valueamin and maximum valueamax of the attribute are determined. For each instance

the attribute’s scaled valuea′i is set equal toa plus b times the ratio of (i) its original numerical value

ai minus the minimum valueamin, divided by (ii) the difference between the maximum valueamax and

minimum valueamin:

a′i = a+b
ai −amin

amax−amin
(3.21)

Z-score normalizationtransforms each attribute not to lie in a fixed range, but such that the mean

value of the transformed attributes is 0 with a standard deviation of 1. This is done by first determining

the mean mean(a) and standard deviation stdev(a) of the original attribute valuesai . Then the transformed

value is calculated by:

a′i =
ai −mean(a)

stdev(a)
(3.22)

3.2.5 Performance measures for classification

In order for a learning algorithm to improve in its task based on experience, a metric is needed to measure

the performance on that task. In the case of the classification problem, the learning algorithm is the

classifier as defined in section 3.2.3. The performance measure for classification is defined by two

components: the actual metric used and the way the dataset is divided. Both components are discussed

in separate sections below.

3.2.5.1 Performance metrics

The simplest metric for the performance of a classifier is theclassification accuracy, the fraction of a

given test set of labeled instances that is correctly classified by the classifier, defined as:

Accuracy=
instances classified correctly

instances in test set
(3.23)

Theclassification problem contains a dataset of examples that is used to train the classifier. Because

no other data is available, this same dataset must also be used to determine the classification accuracy.

This leads to two problems: what data from the dataset to use to train the classifier, and what data to use

to determine the classification accuracy. If the same or overlapping data is used for both purposes, the

classification accuracy is not a fair estimate of the classifier’s performance. Hence the dataset of examples

needs to be split into two disjoint parts: one for training the classifier and one for generalization. The

latter part is the test set mentioned in equation (3.23).

Other measures for the classification performance can be defined for binary classification (problems

with only two output classes with one class called “positive” and one called “negative”). In binary

classification accurately classified instances can be split into true positives and true negatives, while

misclassified instances can be split into false positives (incorrectly labeled positive) and false negatives

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

40 CHAPTER3. FEATURE SELECTION PROBLEM

(incorrectly labeled negative). These other measures are precision, i.e.

Precision=
true positives

true positives + # false positives
, (3.24)

sensitivity (true positive rate or recall rate), i.e.

Sensitivity=
true positives

true positives + # false negatives
, (3.25)

andspecificity (true negative rate), i.e.

Speci f icy=
true negatives

true negatives + # false positives
. (3.26)

Thesemeasures can also be combined into even more measures like balanced accuracy, informedness,

andF-score [114].

Another way of combining these measures is by a method called Receiver Operating Characteristics

(ROC) analysis [34]. ROC analysis consists of constructing a plot of the true positive rate (tp rate) on

the y axis and the false positive rate (fp rate) on thex axis. The performance metric is the area under

the ROC-curve (AUC): starting at the bottom left, visiting all outcomes (tp rate, fp rate) measured for

the classifier and ending in the top right corner. A random classification would result in an AUC of 0.5,

while perfect classification yields an AUC of 1.0.

The classification accuracy for a classifier on a specific dataset can be determined simply by follow-

ing algorithm 4. This process is the same for the other metrics mentioned above.

Algorithm 4: Performancemeasurement for classification task: single calculation

Consider a classification task with datasetD andchosen classifierC ;
Let f be the performance metric chosen to evaluateC ;
Randomly split the dataset,D, into a training setL and test setT = D\L ;
Train classifierC on training setL ;
Determinef (T;C), the performance of classifierC onT using metricf .

3.2.5.2 Cross validation

The result of calculating the classification accuracy following algorithm 4 from the previous section is

that the outcome is dependent onhowthe dataset,D, is split into a training set and test set. The simplest

way to do this is by defining a single, fixed, training and test set and perform all required classification

accuracy calculations using the same training and test set. The downside of this approach is that the

resulting accuracy depends strongly on the chosen split between training and testing data, and this split

may not be representative of the classifier’s behavior on the dataset in general: a different choice of

training set and test set could lead to a different accuracy.

A better method (i.e. one that better represents the classifier’s performance on the dataset in general)

is to divide the dataset into training and test sets multiple times, calculate the accuracy on each such split

and determine the average accuracy over all splits. This was already recognized in the work of Mosier

[100]. The problem of determining the classification accuracy of a classifier on a particular dataset can

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 41

then be refined as finding a way to estimate thegeneral classification accuracy of the classifier on the

dataset, which in theory should be independent of the actual split of the dataset into training and test data.

Cross validation is a method to get an estimate of this general classification accuracy by calculating the

accuracy as an average accuracy over multiple splits of the data. This process is outlined in algorithm 5.

Algorithm 5: Performancemeasurement for classification task: cross validation

Consider a classification task with datasetD andchosen classifierC ;
Let f be the performance metric chosen to evaluateC ;
Let CV be the chosen cross validation method to split the dataset ;
for i = 1, . . . ,k do

UsingCV divideD into multiple training setsLi and testing setsTi = D\Li ;
Train classifierC on training setLi ;
Determinef (Ti ,C), the performance of classifierC on testing setTi using metricf ;

end
Set f (T,C), the final performance measure, as the average over allf (Ti ,C).

Various ways exist for the cross validation to split the dataset into training and testsets:

• Repeated random sub-sampling validationrepeatedly splits the dataset at random into a training

set and a test set, with the proportion of the dataset assigned to each determined beforehand. The

number of times this random split is repeated can be chosen arbitrarily.

• k-fold cross validationmeans splitting the dataset intok equally sized (as best as possible) subsets.

Each of thek subsets is used as the test set once, and in each such case the remainingk−1 subsets

are combined to form the training set. So for a dataset ofn instances, a total ofk splits of the data

are made (wherek≤ n).

• Leave one out cross validation(LOOCV) uses each instance in the data as test set once, and in

each such case the remainder of the data is used as the training set. So for a dataset consisting ofn

instances, a total ofn splits of the data are made. This can be seen as a special case ofk-fold cross

validation withk= n.

3.3 Definition of the Feature Selection Problem

The FSP, also known as the variable subset selection problem or feature reduction problem, arises in

machine learning where algorithms are used to classify data. The classification problem underlying the

FSP is a supervised learning problem in which the task is to determine in which discreteclassa given

instanceof data is to be classified. Classification was discussed in section 3.2. If the underlying classifi-

cation problem has a large number of features, this causes problems for the classification algorithms.

Intuitively it seems that if more information is available in the way of more features, a better classifier

can be build. However, two intertwined problems surface: firstly, classifiers will tend tooverfit the

training set if the number of features is large compared to the number of instances available for training:

the classifier picks up idiosyncrasies in the training set that may not be generally applicable. It can be that

many features are redundant, irrelevant or too noisy for practical use for the classification task at hand

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

42 CHAPTER3. FEATURE SELECTION PROBLEM

[46]. Instances outside of the training set are then often misclassified, leadingto a poor performance on

the classification task. A second problem is that the classifier becomes muchslowerwith an increasing

number of features. These two problems are related in that the problem of overfitting can be addressed

by increasing the number of training instances, which then causes the classifier to become slower.

The two problems of overfitting and slowness can be addressed bydimensionality reductionin which

the aim is to reduce the number of features used to perform the underlying classification task. Dimen-

sionality reduction comes in two flavors: feature extraction (FE) and feature selection (FS). FE defines

new features that are combinations or transformations of the original features. In FS no new features are

generated, but instead the optimum subset of features is selected from the original set of features such

that, if used, the underlying classification problem can be best solved. In a very strict sense, FS can be

seen as a form of FE without transformations and all combinations of features are binary: each feature is

either in or out.

Somolet al. [131] mentioned that the benefit of using FS over FE is that if the resulting classification

algorithm is used in real life to classify new inputs, only those features selected need to be measured

and collected in order to classify the data. This is especially useful in application of medical diagnosis

where data collection can be costly and time consuming. A second benefit of FS over FE can be that the

features retain their original interpretation, whereas the transformed features generated by FE may not

have a clear physical meaning. This interpretation can be important to understand the process underlying

the classification problem.

Transformed features generated by FE may provide a better discriminative ability than the best subset

of given features, leading to a better accuracy in solving the underlying classification problem. Generic

feature construction methods include clustering; basic linear transforms of the input variables like prin-

ciple component analysis (PCA) or linear discriminant analysis (LDA); and also spectral transforms (e.g.

Fourier, Hadamard), wavelet transforms, or convolutions of kernels [46]. In the remainder of this thesis

FE will not be studied further, but the focus will be on FS only.

The FSP is thus the problem of identifying those features that lead to the best possible classification.

Kohavi and John [70] formalize this as selecting an optimal subset of featuresik from the set of all

features,I , and use only those features to train the classifier. The trained classifier then yields maximal

accuracy on the original classification problem.

The FSP is mathematically defined as follows: Given a set of features,I , with n features, thenP(I)

denotes the set of all possible subsets ofI . Let J(X) be a fitness function that evaluates feature subset

X ∈ P(I), assuming that a higher value ofJ indicates a better feature subset. Then the feature selection

problem can be formulated to find the subsetX for which

J(X) = max{J(S)|S∈ P(I)}. (3.27)

Note that the definition by Kohavi and John [70] makes this mathematical definition somewhat less

general by stating thatJ(X) is the classification accuracy using the feature subsetX.

Ironically, the problem that FS is supposed to solve (reducing the high number of dimensions) also

affects the FSP itself: the search space grows exponentially because the number of possible subsets on

a domain withn features equals 2n. Thus, a brute force approach to solving the FSP is impractical.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 43

Furthermore, the FSP is known to be an NP-hard optimization problem [3], meaningthat any algorithm

guaranteed to find the optimal solution to an FSP will not scale to large number of features.

The fact that the FSP is NP-hard also makes it an interesting problem to address using stochastic

optimization methods like PSO. Since the FSP can also be formulated using mathematical sets, it is a

potential test-bed for the SBPSO algorithm described in chapter 4. The next section performs a review

of earlier attempts to solve the FSP from literature.

3.4 Literature on solving the Feature Selection Problem

This section gives a brief overview of different approaches from literature to solve the FSP. The search

space for FSP with|I | = N has 2N points, making exhaustive search infeasible for large feature sets.

Actually, Amaldi and Kann [3] have proved the FSP to be NP-hard. Although accelerated methods exist

that guarantee that an optimal solution is found, like methods based on the branch and bound principle

proposed by Narendra and Fukunaga [101], these are still too slow for large feature sets. The focus of

research has thus been on sub-optimal methods that are not guaranteed to find the optimal solution, but

that are able to find a “good” solution in a reasonable amount of time.

Heuristic methods using search for finding feature subsets were one of the first approaches to solve

the FSP. Sequential backward elimination, sometimes called sequential backward selection, was intro-

duced by Marill and Green [93]. Kittleret al. [69] generalized the different heuristic variants including

forward methods, stepwise methods, and “plusq take awayr”. Cover and Van Campenhout [25] showed,

however, that even for multivariate normally distributed features, no greedy search algorithm that uses a

monotonic measure and that selects one feature at a time can find the optimal feature subset of a desired

size. Conversely, the focus of feature selection no longer lies with these heuristic methods.

Guyon and Elisseeff [46] stated that approaches to solving the FSP can also be split into three main

groups: filter methods, wrapper methods, and embedded methods. Filters select subsets of variables as

a pre-processing step, independently of the chosen classifier. Wrappers consider the classifier and the

underlying classification problem as a black box and scores subsets of variables directly by their perfor-

mance on the underlying classification problem. Wrapper methods are thus also defined independently

of the chosen classifier. Embedded methods perform variable selectionduring the training of the classi-

fier and are usually specific to a given classifier. Each of these three main approaches is detailed below

in a separate section with references given to published work on specific implementations of the general

approach. After this review of the main methods, section 3.4.4 focuses on research that uses PSO in

solving the FSP.

3.4.1 Filter methods

Filter methods are based on performance evaluation functions calculated directly from the training data

such as distance, information, dependency, and consistency, and select features subsets without involv-

ing any specific classifier. Filters can thus be seen as part of the data pre-processing, with the goal of

removing those features that are considered redundant. The crux lies in the fact that “redundant” here has

no direct link with the classification process. The premise is that the performance evaluation function is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

44 CHAPTER3. FEATURE SELECTION PROBLEM

able to identify those features that are relevant in classifying the data.

Theflow of a filter algorithm for feature selection is to start with the full set of features. The filter

method is then used to select the feature subset. This selected feature subset is fed into a classifier to

perform the classification task underlying the FSP. The performance on the underlying classification task

is then used to evaluate the performance of the filter method for FS.

Two major approaches exist in feature selection using filters: univariate or multivariate filters [11],

each discussed in more detail below.

3.4.1.1 Univariate filter methods

Univariate filtering use individual evaluation of features. This approach is also known asfeature ranking

and assesses individual features by assigning them weights according to their degrees of relevance to

solving the underlying classification problem. Once the features are ranked, a method is needed to

decide a cut off point: all features ranked above the cut-off are included in the feature subset, all those

ranked below are excluded. The method to determine this cut-off is called thefilter. The heart of the

method lies in the metric used to determine each feature’s relevance. Relevance metrics that have been

used are for exampleχ2, t-test, information gain [121], or Wilcoxon rank sum [136].

Strong points of univariate filtering are its speed and scalability and the fact that filter methods are

independent of the classifier used in the subsequent classification. This independence is also its main

weakness - the filtering does not take the peculiarities of the classifier into account and the resulting

subset of features may well not be optimal for the classifier used. Also, the relation between features is

completely disregarded, and there is a risk that features that are individually considered less important

may jointly be of paramount importance. A problem related to the fact that feature selection is discon-

nected from the classification, is that the threshold levels for the ranking or outright choice of the number

of features to select are chosen without reference to the classifier.

Two well-known univariate filter algorithms are:

• The FOCUS algorithm originally designed by Almuallim and Dietterich [2] for boolean domains.

FOCUS exhaustively searches the space of feature subsets until it finds the minimum combination

of features that divides the training data into single classes. This is referred to as themin-features

bias. Following feature selection, the final feature subset is passed to a decision tree classifier.

• The RELIEF algorithm designed by Kira and Rendell [68], which assigns arelevance weightto

each feature, which is meant to denote the relevance of the feature to the target concept. The algo-

rithm is randomized: it samples instances randomly from the training set and updates the relevance

values based on the difference between the selected instance and the two nearest instances of the

same and opposite class. RELIEF is therefore an instance based filter method for feature selection.

Kononenko [74] later extended the method to ReliefF, which can handle multi-class problems and

is robust and can handle incomplete and noisy data.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 45

3.4.1.2 Multivariate filter methods

A commondisadvantage of univariate filter methods is that they ignore the interaction with the classifier

as the search in the feature subset space is separated from the classification task. This means that each

feature is considered separately, thereby ignoring feature dependencies, which may lead to worse clas-

sification performance when compared to other types of feature selection techniques [121]. In order to

overcome the problem of ignoring feature dependencies, a number of multivariate filter techniques were

introduced, aiming at the incorporation of feature dependencies to some degree. Multivariate filtering

thus considers subsets of features together, but still as a form of pre-processing and without reference to

any classifier.

The crux of multivariate filter methods lies in how subsets of features are scored on relevance for the

underlying classification task and redundancy (i.e. roughly containing the same information) with other

features. A popular choice was to look at pair-wise comparisons to identify redundancy using measures

like Pearson correlation [98], Fishers criterion [38], or the t-test criterion [138]. These methods all look

at pairs of features and can therefore become computationally impractical with large numbers of features,

reducing one of the core strengths of filter techniques. Therefore other approaches tried to directly select

the feature subset based on data information, but without resorting to exhaustive pairwise comparisons.

Market blanket theory is one such approach [71] which is referred to in more detail in the examples

below.

Strong points of multivariate filtering are the fact that filter methods are independent of the classifier

used in the subsequent classification and that feature interactions can be taken into account - a benefit

over univariate filtering. Multivariate filtering is slower and less scalable than univariate methods, but still

has better computational complexity than wrapper methods. The main weakness of univariate filtering is

that for all filtering approaches, the relation between features is completely disregarded and the choice

of the number of features to select contains some subjective choices uncoupled from the classifier [121].

Some examples of multivariate filter algorithms are:

• Correlation-based Feature Selection(CFS) was introduced by Hall [49]. CFS is a filter method

that uses correlation measures to rank the features. It assumes that useful feature subsets contain

features that are predictive of the class but uncorrelated with one another. CFS computes a heuristic

measure of the merit of a feature subset from pair-wise feature correlations and a formula adapted

from test theory. Heuristic search is used to traverse the space of feature subsets in reasonable

time; the subset with the highest merit found during the search is reported.

• Markov blanket filter(MBF) is a filter method for feature selection proposed by Koller and Sahami

[71] based on information theory. The method uses cross-entropy to minimize the amount of

predictive information lost during feature selection. The Markov blanket criterion removes features

if and only if it is unnecessary. MBF can be used in both a forward selection and backward

elimination setup. The algorithm was tested on six datasets from the UCI Machine Learning

repository, i.e. Corral, LED24, Vote, DNA, Reuters1, and Reuters2. These experiments showed

limited gains in classification accuracy compared to classification on the full datasets (i.e. without

feature selection) using either a naive Bayes classifier or a C4.5 decision tree classifier.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

46 CHAPTER3. FEATURE SELECTION PROBLEM

• Fast Correlation-Based Filter(FCBF)is a filter method proposed by Yu and Liu [154]. Underlying

this method is the concept of predominant correlation, which can identify relevant features as well

as redundancy among relevant features without pairwise correlation analysis. The authors per-

formed experiments using FCBF on 10 datasets with the number features ranging from 57 to 650

and compared the average classification accuracy to three other filter methods (ReliefF, CorrSF,

ConsSF) using either a naive Bayes classifier or a C4.5 decision tree classifier. No statistical anal-

ysis was performed, but accuracy was comparable to the other filter methods, while computation

time was 8 to 100 times shorter.

3.4.2 Wrapper methods

Wrappers use the classifier to score subsets of variables according to their classification power. Wrapper

methods were first proposed by [59]. These methods require one predetermined classifier and use its

estimated performance as a scoring function to determine the quality of the selected subset of features.

They attempt to find features better suited to the classifier aiming to improve its performance. Note

that wrapper methods select feature subsets optimized for the given classifier and the same subset may

perform worse for a different classifier.

According to Guyon and Elisseeff [46] a wrapper method for FS is defined by three choices:

1. how the space of all possible feature subsets is searched,

2. how the performance of a classifier which guides and halts the search is assessed, and

3. which classifier is used.

Often-used strategies to search the space of all possible feature subsets include best-first, branch-and-

bound, simulated annealing [121], but population based algorithms have also been popular, for exam-

ple genetic algorithms (GA) [58, 140], genetic programming (GP) [116, 123], ant colony optimization

(ACO) [134, 151], and PSO. Studies that used the PSO to solve the FSP are reviewed in more depth in

section 3.4.4 below.

The performance of the classifier (fitness function) is usually measured as the classification accuracy

over a single validation set or using cross-validation. But other performance measures like those men-

tioned in section 3.2.5.1 have also been used in practice. Additionally, the number of features (to be

minimized) is sometimes added to the fitness function [59], especially for problems where it is assumed

that a small number of features is preferred, or this reduction in the number of features is a goal in and

of itself.

Wrapper methods can be used in combination with any classifier. Section 3.2.3 lists possible choices

for classifiers. Popular classifiers include decision trees, naive Bayes, least-square linear predictors, and

SVM [46].

The flow of a wrapper algorithm for feature selection is to start with the full set of features. This is

fed into a recurring loop whereby the wrapper method selects candidate feature subsets. These subsets

are then passed onto a classifier and the performance of this classifier on the dataset drives the choice for

the subsequent subsets to be evaluated in the wrapper. At some point the loop is exited, resulting in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 47

final subset of features as solution for the FSP. This subset of featuresis then used by the classifier to

perform the final classification.

In general, wrapper methods achieve better performance than filter methods as they can take the

idiosyncrasies of the underlying classifier into account when selecting the optimal subset of features.

However, wrapper methods tends to be more computationally expensive than the filter approach, espe-

cially if the number of features and number of instances in the dataset grows. Also, wrapper methods

run the risk of overfitting, in that the feature subset they select is only optimal for the classifier used and

this subset may be a poor choice when using a different classifier [121].

Besides the studies already mentioned in this section, a few other approaches to wrapper methods for

FSP should be mentioned:

• Johnet al. [59] introduced the concept of a wrapper. First three concepts were defined: irrelevance

and two different degrees of relevance. Then the three parts of the wrapper were chosen and

applied in experiments on three artificial and three real world datasets:

– To search the space of feature subsets, various search algorithms were used, i.e. backward

elimination, forward selection, and a deterministic version of the Relief method;

– To assess the classification accuracy of subsets of features, 25-fold cross validation was used;

and

– To classify the data instances, both ID3 and C4.5 classifiers were used.

• Langley and Sage [81] combined the concept of wrapper methods with a naive Bayes classifier to

form the selective Bayesian classifier (SBC). To search the space of feature subsets sequential for-

ward selection was used. Subsets of features were assessed on the average classification accuracy

over 20 random splits of the dataset. The SBC was compared to the a naive Bayesian classifier

and C4.5 both using all features. The experiments were performed on six datasets from the UCI

machine learning repository, with three datasets selected where naive Bayes generally outperforms

C4.5, and three with the reverse bias. The feature selection in SBC was successful in that the SBC

significantly outperformed naive Bayes on those datasets were Bayesian classifier usually perform

less well.

• Sequential search was used by Inzaet al. [56] in their wrapper method for feature selection on

two well-known DNA microarray datasets. They compared their method with a group of different

filter metrics. The wrapper method was tested using different supervised classifiers, namely a C4.5

decision tree, simple naive Bayes, and a SVM. The wrapper approach showed a more accurate

behavior than filter metrics, but it required significantly more computation time.

3.4.3 Embedded methods

Embedded methods try to combine the advantages of the speed of filter methods and the way that wrapper

methods optimize their performance linked to the underlying classifier. They do this by integrating the

feature selection process into the classifier training. Training the classifier and selecting features is thus

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

48 CHAPTER3. FEATURE SELECTION PROBLEM

one inseparable learning process, that may be looked upon as a special formof wrappers. Embedded

methods are thus usually specific to given classifiers.

The CART algorithm introduced by Breimanet al. [14] is a decision tree classifier that has feature

selection built into it, and can thus be seen as an early version of embedded methods. According to

Guyon and Elisseeff [46], embedded methods can be divided into two sub-classes: nested feature subsets

and direct objective optimization.

Nested feature subset methods search the space of feature subsets by estimating changes in the per-

formance measure (this can be classification accuracy or other metrics) value incurred by making moves

in that space. These estimates are combined with greedy search strategies such as backward elimination

or forward selection to yield nested subsets of features. The search strategy which estimates changes

in the performance measure are a crucial part of this method. Strategies employed are finite difference

calculation [133], quadratic approximation of the cost function [83], and sensitivity of the performance

measure calculation [113].

In direct objective optimization the objective function to be optimized directly combines the classi-

fication and the feature selection. Generally, the objective function consists of two terms that compete

with each other: the goodness-of-fit (to be maximized), and the number of variables (to be minimized).

The number of variables can be minimized using so-called shrinking regularizers, which enforce a pre-

determined maximum number of features. An important point to note is thus that these methods require

a choice for the maximum number of features to be selected. These shrinking regularizers can be effec-

tively combined into training some classifier. This was done for linear predictors by Westonet al. [148]

and for SVM classifiers by Boseret al. [12].

The flow of an embedded method starts with the full set of features. This is fed into a single loop

whereby the embedded method performs a joint estimation of the classifier model (training) while reduc-

ing the number of selected features used in training. Note that embedded methods thus work well with

classifiers such as linear predictors and SVMs that are built up in discrete steps for each of the feature

dimensions. At each such step the chosen feature can be eliminated by the embedded feature selection

method. The resulting classifier is already trained on the selected features. Only at this point is the final

performance measure for the classification determined.

Embedded methods offer computational performance competitive to wrappers, enable faster learning,

but produce results tightly coupled with a particular classifier. In order to use a different classifier,

the learning process needs to be rebuilt to a certain extent. Also, the need to chose either the number

of features to select or a threshold that indirectly defines this number as an input is a weakness that

embedded methods share with filter methods. Embedded methods are able to take the relations between

multiple features into account in the feature selection process [121].

Other examples of embedded methods for FSP can be found in the work of Dı́az-Uriarte and De

Andres [27] who embedded FS into a random forest classifier, Guyonet al. [47] who embedded FS into

the weight vector of an SVM classifier, and Ma and Huang [92] who did so for the weights in a logistic

regression.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 49

3.4.4 PSO applied to FSP

This section focuses on the literature on the use of PSO in the domain of feature selection. A number of

recent surveys have focused on the use of PSO on solving the FSP: Kothariet al. [75] surveyed a number

of different PSO algorithms used in FS in general, while Omaret al. [108] reviewed nine recent studies

applying PSO in feature selection for classification. Of these nine studies, six compared a PSO algorithm

to other methods including rough set theory, fuzzy-rough feature selection, and GA. Omaret al. [108]

claimed that PSO offered better feature selection leading to a higher classification accuracy, but offered

no statistical proof for this statement. Xueet al. [150] looked at different fitness functions that can be

used for PSO in FS, and included a review of applications of the binary PSO on the FSP.

A number of studies from these aforementioned surveys and other PSO methods used on the FSP

are reviewed below. The studies are split into separate sections based on which FS method is used in

conjunction with PSO: filters, wrappers or embedded methods.

3.4.4.1 PSO and filter methods

Cervanteet al. [15] proposed a somewhat rare approach to using PSO to solve the FSP that uses the filter

approach. Two different methods were proposed, the first of which combines the binary PSO with a filter

that uses the the mutual information of each pair of features to determine relevance and redundancy of

the selected feature subset. The second algorithm combines the binary PSO with a filter that uses the

entropy of a subset of features to evaluate that subset’s relevance and redundancy. Different weights

for the relevance and redundancy in the fitness functions of the two proposed algorithms were tuned to

further improve their performance in terms of the number of features and the classification accuracy.

The binary PSO’s parameters were 0.7298 for the inertia weight,c1= c2= 1.49618 and a maximum

velocity per dimension of 6. The swarm consisted of 30 particles with a star topology, and the algorithms

ran for 500 iterations. While the PSO algorithms run, the filter methods are used to determine the

fitness of the particles and thus drive the PSO’s search. At the end of the PSO algorithms’ runs, the

subsets with the highest fitness determine the features selected. These were then fed into a decision tree

classifier to evaluate the classification accuracy. For each dataset, 30 independent runs were performed

of the PSO algorithms. Four different datasets from the UCI machine learning repository were used

in experiments to compare the algorithms, with the number of features ranging from 18 to 61 and the

number of instances from 148 to 3196. The results of this well-structured study show that, after tuning,

the two proposed algorithms can significantly reduce the number of features and achieve similar or even

higher classification accuracy.

3.4.4.2 PSO and wrapper methods

Chuanget al. [19] designed the improved binary PSO (IBPSO) for use in feature selection for gene

expression data. The PSO is used in a wrapper method setup for a total of 100 iterations. Thek-

nearest neighbor classifier withk = 1 is used as the classifier and LOOCV is used as cross validation

method. The PSO algorithm itself is mainly a standard binary PSO with velocity clamping using a star

topology, but thegbestfitness is reset to zero if it has been stagnant for 3 iterations. No tuning of the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

50 CHAPTER3. FEATURE SELECTION PROBLEM

PSO parameters is performed. Experimental results show that this method effectively simplifies feature

selection and reduces the total number of features needed. The classification accuracy obtained by the

IBPSO method has the highest classification accuracy in nine of the 11 datasets tested when compared

to a range of classifiers that did not include feature selection. This result thus does not give any insight

into the strength of the IBPSO in FS compared to other FS approaches.

Xueet al.[150] looked at different fitness functions for use in feature selection with PSO in a wrapper

method. The PSO algorithm used was the binary PSO which was not tuned but parameters were set to

standard values from literature. The swarm contained 30 particles with a star topology. A maximum

of 100 iterations were performed and for each dataset 40 independent runs were performed. Three

different fitness functions were compared. The first was normal classification accuracy. The second

fitness function was a weighted sum of (i) the classification accuracy and (ii) the portion of features left

out. For this second fitness function, the weight of the second part increased from 0.0 at the start to 0.2

at the end of the 100 iterations. The third fitness function looked only at the classification accuracy for

the first 50 iterations, and used the same weighted sum approach as the second fitness function for the

last 50 iterations. During these last 50 iterations the weight of the proportion of features left out was

set at a constant 0.2. Experiments were performed on 10 different datasets with 13 to 617 features, 2

to 4 classes and 32 to 4400 instances. For each dataset, the instances were randomly divided with 70%

serving as the training set and 30% as the test set. The classifier used was thek-nearest neighbor with

k equal to 5. Although no statistical test was included, results show that the BPSO with the second and

third fitness functions could not be distinguished from each other, but they both outperformed the first

fitness function that only looked at accuracy. Care should be taken to interpret the results of this study

that a fitness function that “rewards” feature subsets with fewer features are to be preferred. For datasets

with a large number of features of which many are redundant, this approach can improve the results, but

in a real life setting the optimal number of features is not known.

Tuet al.[137] combined the binary PSO with an SVM classifier in a wrapper method to solve the FSP.

No information is given about the PSO’s parameters used, nor about the swarm size. The star topology

was employed for the swarm and the algorithm was run for 100 iterations on each dataset, but only a

single run of the algorithm was performed in each case. The classifier used was the SVM with a radial

basis function kernel. This classifier was tuned for each dataset to find optimal values for its parameters

r andC. Performance was measured by classification accuracy using 10-fold cross validation. Five

datasets from the UCI machine learning repository were used to test and compare the algorithms. The

number of features ranged from 10 to 60 and the number of instances from 104 to 990. The PSO-SVM

algorithm was compared to eight filter methods using a 1-nearest neighbor classifier from the study of

Ohet al.[105]. For the filter methods, the number of features to select is fixed beforehand. Four different

choices of the number of features to select are tested for each filter method. The PSO-SVM algorithm

performed best on four of the five datasets. However, the comparison is flawed on different levels: no

reason is given for why these five datasets were chosen from the 11 datasets evaluated in the study by

Oh et al. [105]. Also, because different classifiers are used and the comparison is made on classification

accuracy, little information is gained as to the contribution of the feature selection, nor of the contribution

of the PSO to this process. Since only one classifier is used, this can subtly bias the resulting accuracies

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 51

and impact of the feature selection. Finally, simply comparing a wrapped method to filtermethods is

wrought with danger as the computational costs vary greatly.

Yun et al. [155] studied the application of the PSO feature selection and compared it against a GA in

the same setup. Besides a basic wrapper approach, a second variant combining the wrapper with a filter

method was also used. The filter called minimal-redundancy and maximal-relevance (mRMR) is used in

the PSO to override the selection of a single feature if the filter considers it minimal-redundant, and to

override a feature’s exclusion if it is considered maximal-relevant. The standard binary PSO was used

with parametersc1 = c2 = 2.0 and a swarm of 20 particles with a star topology. The PSO was run for 40

iterations on each dataset. Three different classifiers were used, namely naive Bayes, the C4.5 decision

tree, and a SVM with a linear kernel. The performance measure used in the study was classification

accuracy using 10-fold cross validation. In the experiments, 20 real-world datasets were used from

the UCI machine learning repository. The number of features ranged from 19 to 649. The number

of instances ranged from 32 to 6236. The basic wrapper methods, both using the GA and the PSO,

outperformed the filter methods to which they were compared. The PSO wrapper outperformed the GA

wrapper using each of the three classifiers in a statistically significant manner. The variants combining

the wrapper with the mRMR filter performed even better. Here the PSO-mRMR outperformed the GA-

mRMR using the Naive Bayes and C4.5 classifiers. Using the SVM classifier, no difference could be

discerned between the PSO-mRMR and GA-mRMR. This well-built study shows how population based

methods can be used in a wrapper setup and compared. It is shown that the choice of classifier is

important for the outcome and that multiple classifiers should ideally be used in the comparison. A point

of critique is that in each case the PSO and GA algorithms are run only once, disregarding the fact that

multiple independent runs are necessary to compare algorithms with a stochastic component.

Yanget al.[152] adapted the binary PSO by using two different chaotic maps to form two versions of

the chaotic binary PSO (CBPSO). The purpose of the chaotic maps was to determine the inertia weight

of the BPSO. The CBPSO was used in a wrapper method approach to solve the FSP. The PSO algorithm

used a star topology with parametersc1 = c2 = 2 and velocity clamping with maximum velocity of 6. No

further details were given on the specification. Thek-nearest neighbor classifier withk = 1 was used to

determine the classification accuracy, which was measured using LOOCV. Five different datasets from

the UCI machine learning repository were studied with the number of features ranging from 13 to 60

and the number of instances from 178 to 846. The CBPSO was compared to filter methods for solving

the FSP, including sequential forward search with and without plus and take away, sequential forward

floating search, sequential GA, and different hybrid GAs. CBPSO performed the best on four of the five

datasets. The same critique as on the work by Tuet al. [137] applies to this study: no reason was given

for why these five datasets were chosen from the 11 datasets evaluated in the study by Ohet al. [105].

Also, because different classifiers were used and the comparison was made on classification accuracy,

little information was gained as to the contribution of the feature selection, nor of the contribution of

the PSO to this process. Since only one classifier was used, this can subtly bias the resulting accuracies

and impact of the feature selection. Finally, simply comparing a wrapped method to filter methods is

wrought with danger as the computational costs vary greatly.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

52 CHAPTER3. FEATURE SELECTION PROBLEM

3.4.4.3 PSO and embedded methods

Gomezet al. [45] introduced a two-phased wrapper based approach to solving the FSP. The heuristic

search for the optimal feature subset is split into two stages, in an algorithm called the two step PSO. The

PSO algorithm used is the binary PSO with parametersc1 = c2 = 2, with the inertia weight decreasing

over time from 1.4 to 1.0. The swarm size was set to 21 and 120 total iterations were performed, split

over the two steps. Candidate solutions from the first stage are used to help initialize the swarm for the

second stage: features that are present in many of the candidate solutions are seeded into the swarm for

the second phase, while features that occur in few candidate solutions are filtered out of the swarm at this

mid point. The thresholds of these in- and exclusions, as well as the length of stage 1 versus stage 2 are

parameters of the two step PSO algorithm. Instead of a classifier, the reduct concept of rough set theory

is used. A reduct is a minimal set of features that preserves the partitioning of the dataset in classes

and hence the ability to perform classifications. The FSP is thus transformed from finding the optimal

subset for classification, to finding the minimal reduct. Performance was measured as the weighted sum

of classification accuracy of the reduct and the proportion of features excluded from the selected feature

subset: less features meaning a better performance. The accuracy was weighted by 0.54 versus 0.46 for

the number of features. Experiments were performed on six datasets with 9 to 56 features and 32 to 1000

instances. The two step PSO was compared to the same PSO wrapper setup but without the two step

approach and to a two step approach involving ACO. The two step PSO was able to find the smallest

minimal reducts. The two step PSO algorithm, however, also introduces three parameters, in addition to

the regular PSO parameters, to the process of solving the FSP with PSO.

Unler and Murat [139] proposed an embedded feature selection method using an adjusted version

of the binary PSO. The algorithm contains a procedure called “adaptive feature subset selection” which

constructs a feature subset by selecting features in turn until the pre-determined number of features is

reached. The PSO particle’s position is a probability weighted input for the adaptive feature subset

selection procedure. The binary PSO algorithm was adjusted in two ways: first, a time-decreasing inertia

weight was used which decreased from 0.995 to 0.5 in a linear fashion during the PSO’s run. Secondly, an

extra term was introduced to the velocity update equation with parameterc3 for attraction to the swarm’s

best performing particle in that iteration. The PSO parameters were tuned in an unspecified manner to

c1 = 2, c2 = 1.5, c3 = 0.5. A star topology was used on a swarm of 20 particles, with a maximum

number of 300 iterations. The embedded PSO feature selection algorithm was run only once on each

dataset. The algorithm was tested on 11 large datasets. The number of features ranges from 8 to 93, but

the number of instances ranged from 351 to 581012, with most datasets having more than 4500 instances.

The classifier used for the final classification was the logistic regression model. Due to the large number

of instances in the datasets, the validation method for each dataset consisted of a single training set of up

to 1300 instances and 10 test datasets of 200 instances chosen randomly. The performance measure was

the average accuracy over these 10 independently chosen test sets. The resulting classification accuracy

was compared to and exceeded the accuracy reported in an earlier study [109]. This earlier study used

two filter methods as well as a tabu search combined with a logistic regression model. The embedded

PSO algorithm showed slightly better results, but not statistically significant. This well-constructed study

showed the potential benefit of an embedded approach using PSO for large datasets, where a wrapper

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 53

approach may become computationally burdensome. The need to determine beforehandthe correct

number of features to select, however, becomes a problem in datasets with a large number of features

where the optimal feature subset size is unknown.

3.5 Conclusions

The first and foremost objective of this chapter consisted in formally introducing the FSP. This was done

by starting with an overview of the field of machine learning and then shifting focus to the problem

of classification. This problem was defined as a supervised learning problem in which the goal is to

determine the correct class label of a data instance based on its input features. An investigation of

the classification problem led to a review of the concept of a classifier and a detailed discussion of

three specific classifiers: thek-nearest neighbor classifier, the decision tree, and the Gaussian naive

Bayes classifier. Also, ancillary technical issues were discussed that will play a role in later numerical

experiments on the FSP: data preprocessing and how to measure performance of an algorithm on a

classification task. The latter led to the introduction of various variants of classification accuracy and the

use of cross validation in training and testing.

A large number of features in classification leads to the curse of dimensionality which shows itself

in two intertwined ways: if the number of features grows larger, classifiers increasingly suffer from

overfitting and they require an increasing number of computational resources. Feature selection was

introduced as a technique that can help overcome this curse. Hence, the FSP was defined as selecting

those input features in a classification problem that allow for better classification: a higher classification

accuracy due to less overfitting and also faster classification.

A second objective for this chapter was to show that, similarly to what was done for the MKP in

the previous chapter, the FSP can serve as a valid test problem on which to compare the performance

of various PSO algorithms used to solve it. This objective naturally led to a review of the different

approaches from literature used in solving the FSP. The wide range of these approaches and ongoing

research into them showed that the FSP is a complex, even NP hard, optimization problem with many

real world applications especially in the realm of bio-informatics.

A review of the use of PSO on the FSP showed that this is also an active area of research. The

approaches using PSO on the FSP were divided along the lines of the three main approaches in solving

the FSP, namely filters, wrappers, and embedded methods. The wrapper method has been the most

popular way in which the PSO is used to solve the FSP. Studies that use filter or embedded methods

also exist, but are less numerous. At first glance, though, each method can be used as a framework in

which various PSO methods can be compared fairly. Two reasons can be given to prefer using a wrapper

method with PSO to solve the FSP over filter and embedded methods, if the goal is to compare different

PSOs. A first reason why a wrapper works better for this particular comparison is because a wrapper

puts the biggest onus on the PSO algorithm to search the space of feature subsets. In contrast, filter

and embedded methods use information measures on single or multiple features as the main driver of

the search for successful feature subsets. Hence, if a difference in performance on discrete optimization

problems exists between PSO algorithms, the wrapper approach should be better able to illuminate this

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

54 CHAPTER3. FEATURE SELECTION PROBLEM

difference. Conversely, using a filter or embedded approach might not show any difference between

PSO algorithms at all, as success in the search for good feature subsets is mainly driven by the filter.

A second reason to prefer a wrapper is because filter and embedded methods require an a-priori choice

for the number of features to be selected. This is either done explicitly, or implicitly by setting a cut-off

level for the filter. This choice adds a layer of complexity to comparisons of algorithms, as the relative

performance of different PSO algorithms may differ based on the number of features to be selected. It

follows that a wrapper method setup is preferable when comparing the performance of different PSO

algorithms using the FSP.

A separate finding is that the quality of the studies reviewed in section 3.4.4 varies: some studies are

well structured and take care to perform a valid comparison of the proposed algorithm to others from

literature. Other studies fall short in a number of ways, as listed below:

• A new method for feature selection using a wrapper and/or combining new concepts is compared

to older methods, mainly filter methods. The comparison then only looks at classification accu-

racy. This approach ignores two important differences between filters and wrappers: for filters

the number of features to select needs to be set manually and this is usually confined to a small

number of a-priori guesses. The wrapper method is able to select any number of features during

the search of feature subspace. The drawback of wrapper methods is that they require much more

computation time. By only looking at the classification accuracy, the wrapper method is given an

unfair advantage.

• Assume that classification accuracy is compared between algorithmA1 used to solve the FSP with

classifierC1 specifically, and algorithmA2 used to solve the FSP with classifierC2. Also, assume

that the combination of algorithmA1 and classifierC1 achieved the higher classification accuracy.

Then it is impossible to determine whether it was the difference in algorithm or the difference

in classifier which (primarily) caused the difference in classification accuracy. In order to fairly

compare algorithmsA1 and A2, all settings need to be kept equal for the experiments on both

algorithms. The work by Yunet al. [155] also showed that different classifiers can lead to different

relative performance on the algorithms used to solve the FSP: using classifierC1 algorithmA1

may outperformA2, while using classifierC2 algorithmA2 performs better than algorithmA1. It

is therefore advisable to use a number of different classifiers and perform multiple comparisons of

the PSO algorithms on the FSP, one for each classifier.

• The performance of two or more stochastic algorithms was compared incorrectly. Sometimes

only a single run of the stochastic algorithm (which PSO is) is performed instead of multiple

independent runs. In other cases algorithms are compared on a single or very few datasets only. In

order to achieve statistically significant results, instead, a large enough number of datasets should

be used. Even if enough different datasets are included in the comparison, it is important that

proper statistical tests are performed to ensure that any difference in performance recorded is more

than a random fluctuation.

Avoiding these shortcoming will help to properly structure the numerical experiments on the FSP to be

conducted in chapter 6.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3. FEATURE SELECTION PROBLEM 55

This chapter concludes the first part of this thesis which laid the theoretical groundwork for the

remainder of the text. This theoretical introduction consisted of the PSO algorithm in chapter 1 and the

two optimization problems on which a new and various existing PSO algorithms are to be tested and

compared: the MKP in chapter 2 and the FSP in this chapter. The next two parts describe new research.

The first of those two parts introduces a new PSO algorithm called the set-based PSO in chapter 4. The

second part of new research applies the set-based PSO and other PSO problems to the MKP and the FSP.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part II

Genericset-based particle swarm

optimization

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Set-basedparticle swarm optimization

A number of known discrete PSO adaptions using sets were discussed in chapter 1, leading to the con-

clusion that a functioning, generic, set-based PSO algorithm does not yet exist. The current chapter

introduces a PSO algorithm called Set-Based PSO that is intended to be such an algorithm. The ob-

jective of this chapter is therefore to define SBPSO as a generic, set-based PSO algorithm that can be

applied to discrete optimization problems. The algorithm is intended to contain the features identified in

chapter 1 to determine a PSO algorithm, but formulated using mathematical sets. This chapter is struc-

tured by first defining the PSO concepts of position and velocity in a universe of mathematical sets. Then

set-based operators are defined that are used to combine and transform these sets. Finally, these defini-

tions are combined in update equations for velocity and position, and the general flow of the algorithm

is made explicit.

4.1 Introduction

Part I forms the theoretical background for this thesis. Chapter 1 provided an overview of the PSO

field, specifically of discrete PSO algorithms, in chapter 1. Chapters 2 and 3 respectively discussed

the MKP and the FSP. Those two problems were introduced to form a testbed for the set-based PSO

algorithm presented in this chapter. Part II of this thesis consists of only a single chapter and contains

the specification of the Set-Based PSO algorithm, which is intended as a functioning, generic, set-based

PSO algorithm. A question that arises naturally is whether such an algorithm already exists. In order to

answer this question, a review of the literature was presented in chapter 1. Section 1.3.2 listed a number

of PSO algorithms that use mathematical sets. However, each of the existing methods reviewed fell short

in one of three areas:

1. it was not truly set-based,

2. it was not a truly functioning algorithm in that it did not yield sufficiently good results on discrete

optimization problems, or

3. it was not generically applicable to all discrete optimization problems, but instead contained prob-

lem specific features that severely restricted its application.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

58 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

Hence there is room for a functioning, truly set-based, generically applicablePSO algorithm and such an

algorithm would be a contribution to the field of swarm intelligence. The abbreviation SBPSO is used in

the remainder of this thesis for the new algorithm intended to fill this void.

Note that two papers outlining the SBPSO algorithm have already appeared in print, namely “A

Generic Set-Based Particle Swarm Optimization Algorithm” [79] and a later revised version and with

a much expanded analysis in “Set-based particle swarm optimization applied to the multidimensional

knapsack problem” [80].

The current chapter addresses a number of the sub-objectives of this thesis identified in the preface,

most directly the objective to formally define the SBPSO algorithm by formulating the PSO update

equations in terms of set-theory. This is done using the basic components that make up a PSO algorithm

as identified in chapter 1. On top of these basic features, a further objective is to identify if, and if so

which, additional components are required to make the new algorithm a functioning algorithm. Finally,

the new algorithm needs to be formulated generically to not include any problem domain specific features

in the algorithm itself: the only link to the problem domain should lie in the fitness function.

This chapter is divided into three main parts, excluding this introduction and a final section of con-

clusions. The PSO concepts of position and velocity are defined in a universe of mathematical sets in

section 4.2. The universe of discourse is defined, and elements within this universe are elements that

define the position of a particle in the swarm. The discrete make up of the velocity is defined mathe-

matically and illustrated graphically. The second part of this chapter deals with the operators that are

needed to formulate position and velocity update equations in keeping with the general PSO paradigm.

Six different operators are defined in section 4.3, the first four of which directly correspond to parts of

the position update equation (1.2) and velocity update equation (1.4) from chapter 1:

1. the addition of two velocities,

2. the difference between two positions,

3. the multiplication of a velocity by a scalar, and

4. the addition of a velocity and a position.

Two further operators are introduced to ensure to functioning of the algorithm regardless of the initial

positions and velocities by preventing that parts of the search space become inaccessible to the particles

in the swarm:

1. the removal of elements from the cross section of the current position, and the personal and neigh-

borhood best positions,

2. the addition of elements from outside the current position, and the personal and neighborhood best

positions.

Section 4.4 combines the set-based position and velocity with the newly defined operators to formulate

SBPSO’s position and velocity update equations. This section also contains a schematic overview of the

flow of the SBPSO algorithm in solving a discrete optimization problem.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 59

4.2 Set-based Concepts

SBPSOdefines a particle’s position and velocity as mathematical sets. The position is a set of elements

from the universe of discourseU , that is, the universe of elements defined by the problem. The velocity

is a set ofoperation pairsdefined below. The solution that SBPSO finds for the optimization problem is

thus the best position found by the swarm, represented as a set of elements fromU .

The definitions below assume that SBPSO is applied to a maximization task, but a similar definition

for a minimization task is easily derived from this. Let

• U = {en}n∈NU be the universe of discourse containing all elements,en, of which there are a finite

numberNU ,

• Xi(t) be the position of particlei at iterationt, a subset ofU ,

• Vi(t) be the velocity of particlei at iterationt,

• f be the objective function to be optimized,

• Yi(t) be the personal best position of particlei, that is,Yi(t) = Xi(τ), τ ∈ {1, . . . ,t}, such that

f
(
Yi(t)

)
= f

(
Xi(τ)

)
= max{ f (Xi(s)

∣∣s= 1, . . . ,t},

• Ŷi(t) be the neighborhood best position for particlei at iterationt, that is,Ŷi(t) = Yj(t) for the

particle j in i’s neighborhood that maximizesf
(
Yj(t)

)
.

Figure 4.1(a) shows a particle positionX(t) as a set in the universeU . This universe and mathematical

sets in general do not have a spatial structure, so the placements of the elements denoted with small

squares is arbitrary and no elements can be said to be close to or far away from each other.

r

r

r

r

r

r

rr
r

r

r

r r

r

r

r

r
r

r

r

r r

r

r

r

r

r
r

r r

X(t)

(a)

ld

r

r

r

r

r

*r
r

r

r

r r

r

r

r

r
r

r

r

r r

r

*

*

r

ld
ld

r r

X(t)

Y(t)

(b)

Figure4.1: Particle positions in SBPSO: (a) shows a particle positionX(t) in SBPSO is a set in the
universeU . The small squares represent elements in the universeU . (b) shows a particle positionX(t)
and a particle’s personal best positionY(t). The open diamonds (⋄) represent elements inX(t) that are
not in Y(t), and the asterisks (*) represent elements inY(t) that arenot in X(t).

The PSO paradigm is built on the idea of movement through the search space, using the concept

of velocity. For SBPSO this idea of movement needs to be defined. In continuous PSO, attraction of

a particle to its personal best position partly determines the particle’s velocity. In SBPSO the same

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

60 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

attraction to the personal best applies. Figure 4.1(b) shows a particle positionX(t) andpersonal best

positionY(t). HereX(t) andY(t) are shown to partially overlap, though this is not necessarily true. The

movementof X(t) towards Y(t) in SBPSO means that the two sets are made more similar by removing

elements fromX(t) that are not inY(t) (pictured as⋄), and by adding toX(t) missing elements that are

in Y(t) (pictured as *). Elements that are in bothX(t) andY(t) are not affected by this attraction, nor are

elements that lie outside bothX(t) andY(t).

The velocity is defined as a set ofoperation pairs, where an operation pair is the additionor deletion

of a single element. An operation pair is denoted as(±,e), with(+,e) for the addition of elemente∈U

and(−,e) for the deletion of elemente. The velocity of particlei, Vi(t), is then written as{vi,1, . . . ,vi,k}=
{(±,eni,1), . . . ,(±,eni,k)}, wherek is the number of operation pairs inVi(t), and eacheni, j is an element in

U identified by the indexni, j .

As an example, consider positionX = {a,c} and velocityV = {(+,b),(−,c)} consisting of two

operation pairs. Adding velocityV to positionX means that elementb is added while elementc is

removed, resulting in a new position,X′ = {a,b}.

Attraction towards the personal bestY(t) does not have to mean that the positionX(t) moves to the

personal best position in one step such thatX(t +1) =Y(t). Velocity update equation (1.4) contains the

attraction to~yi(t) asc1~r1(t) [~yi(t)−~xi(t)], meaning that the difference betweenyi, j(t) andxi, j(t) is scaled

by a factorγ j(t) = c1r1, j(t), for all j = 1, . . . ,n. If γ j(t) = 1, thenxi, j(t +1) = yi, j(t), if the other terms

of equation (1.4) are disregarded. Ifγ j(t)< 1 then~xi(t) is pulled only partly towards~yi(t) in dimension

j, while if γ j(t) > 1 then~xi(t) will overshoot~yi(t) in dimension j. In a set-based representation, this

overshooting can not be defined because there is no direction in whichX(t) can overshootY(t) sinceU

has no spatial structure. In contrast, forX(t +1) =~γ(t)[Y(t)−X(t)], the case~γ(t)< 1 can be defined in

a set-based representation, by making some but not all of the changes required to turn setX(t) intoY(t).

Figure 4.2(a) illustrates this in action, assuming~γ(t) = 0.5. The setX(t) requires six changes to “move

to” Y(t): the three elements indicated as⋄ need to be deleted fromX(t), and the three elements indicated

as * need to be added toX(t). The scaling of the “move” by a factor of 0.5 is set to mean that only three

of these changes, selected randomly, are made toX(t). This results in the new position,X(t +1). The

attraction ofX(t) to the particle’s neighborhood best positionŶ(t) works in a similar manner.

Figure 4.2(b) shows positionsX(t),Y(t), andŶ(t) to partially overlap, with one common element

indicated by a triangle (△), although this does not necessarily happen in practice. However, should an

element be present in all three setsX(t),Y(t), andŶ(t), then the above described attraction toY(t) and

Ŷ(t) cannot lead to the removal of this element fromX(t). Also the attraction toY(t) andŶ(t) can

not lead to the addition of any element toX(t) that is outside of bothY(t) andŶ(t). Such elements are

indicated with symbol ‘+’ in figure 4.2(b). For both cases a mechanism needs to be included in SBPSO

to ensure that the whole universeU is in theory reachable from every possible starting position1. These

two mechanisms are defined in section 4.3.

1 Considera particlei in SBPSO. Because the swarm usually consists of multiple particles, movement of particles other
thani can changêYi(t) by finding a new best candidate solution. This can then causeŶi(t) to contain an elemente that was first
outside ofXi(t),Yi(t), andŶi(t). So strictly speaking only elements that are outside ofXj (t) andYj (t) for all particles j in the
swarm (and hence also outsideŶj (t) for all j) can not be added toXi(t) by the attraction mechanism. Similarly, only an element
e that is contained inXj (t) andYj (t) for all particlesj in the swarm is one that can not be removed by the attraction mechanism.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 61

ld

r

r

r

r

r

*r
r

r

r

r r

r

r

r

r
r

r

r

r r

r

*

*

r

ld
ld

r r

X(t)

Y(t)

X(t +1)

removed

added

(a)

r

+

+

+

r

+

rr
+

r

+

r r
+

+

+
+

+
+

+

+ +

+

r

r

+

r
r

u t r

X(t)

Y(t)
Ŷ(t)

(b)

Figure4.2: Particle attraction and movement in SBPSO: (a) shows how a particle moves from its current
positionX(t) in direction of its personal best positionY(t) to its new positionX(t + 1), (b) shows a
particle positionX(t), its personal best positionY(t), and the neighborhood best positionŶ(t).

For a strict mathematical definition of position, velocity, and objective function, denote withP(U)

the power set (that is, the set of all subsets) ofU . A positionXi(t) is an element ofP(U). The objective

function f maps a position to a quality score inR, written as f : P(U)→ R . The velocityVi(t) is

generally defined as a function that maps a position to a new position, that is,Vi(t) : P(U)→ P(U).

Note that the definition of velocity using operation pairs is narrower than the general mapping,

V : P(U)→ P(U). Consider for exampleU = {0,1}, and mappingV such that

1. V(/0) = /0 (V can not contain any additions),

2. V(U) =U (V can not contain any deletions),

3. V({0}) = {1} (requires one addition and one deletion), and

4. V({1}) = {0} (requires one addition and one deletion).

Then,V is a valid mapping fromP(U) to P(U) that can not be denoted as a set of additions and

deletions.

4.3 Operators

To describe SBPSO mathematically, new operators need to be defined. These operators act on velocities

(sets of operation pairs) and positions (sets of elements fromU) in ways equivalent to the additions,

subtractions and scalings of positions and velocities in the canonical continuous PSO algorithm. Two

special operators that ensure SBPSO can reach the entire search space are defined to allow (i) adding

elements to a particle’s position that are not in the personal bestYi(t) nor in the neighborhood bestŶi(t),

and (ii) removing elements from a particle’s position that are present inXi(t) as well as bothYi(t) and

Ŷi(t).

The addition of two velocities,V1⊕V2, is a mapping⊕ : P({+,−}×U)2 → P({+,−}×U), that

takes two velocities as input and yields a new velocity. Denoted asV1⊕V2, the mapping is defined as the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

62 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

simple union of the two sets of operation pairs:

V1⊕V2 =V1∪V2. (4.1)

The difference between two positions,X1⊖X2, is a mapping⊖ : P(U)2 →P({+,−}×U), that takes

two positions as input and yields a velocity. If a particle moves by the resulting velocity, the difference

between the two positionsX1 andX2 is the “distance” that is traversed in one step. This mapping is

defined as a set of velocity pairs that indicate the steps required to convertX2 into X1 using additions and

removals of single elements:

X1⊖X2 =
(
{+}× (X1\X2)

)
∪

(
{−}× (X2\X1)

)
. (4.2)

Therefore,X1 ⊖X2 is the union of (i) the product of{+} and all elements inX1 not in X2 (all such

elements are added) and (ii) the product of{−} and all elements inX2 not in X1 (all such elements are

removed). This operator thus yields the velocityV to get fromX2 to X1.

The multiplication of a velocity by a scalar, η ⊗V, is a mapping⊗ : [0,1]×P({+,−}×U) →
P({+,−}×U) that takes a scalar and a velocity and yields a velocity. The mapping is defined to mean

picking a subset of⌊η ×|V|⌋ elements at random from velocityV to yield a new velocity. Here⌊x⌋ for

x∈ R
+ denotes the largestν ∈ N for which x≥ ν . The operandη is restricted to values in[0,1] since

sets can not have a negative number of elements and sets do not allow multiple instances of the same

element. Note that 0⊗V = /0 and 1⊗V =V.

The addition of a velocity and a position,X⊞V, is a mapping⊞ : P(U)×P({+,−}×U)→ P(U)

that takes a position and a velocity and yields a position. Recall that a velocity is itself a function that

maps a position to a new position. The operator⊞ is defined as the action of applying the velocity

functionV to the positionX:

X⊞V =V(X) (4.3)

This is further specified as applying the full set of operation pairsV = {v1, . . .vn} to the positionX

one-by-one and, for each operation pair, one element is added toX or removed fromX.

Section 4.2 referred to two special mechanisms to remove elements fromX(t) that are inX(t)∩Y(t)∩
Ŷ(t) and to add elements toX(t) from outside ofX(t)∪Y(t)∪ Ŷ(t). These mechanisms are explained

below.

The removal of elementsin X(t)∩Y(t)∩ Ŷ(t) from a positionX(t) uses the operator⊙−. Denoted

β ⊙− S, whereS is shorthand for the set of elementsX(t)∩Y(t)∩Ŷ(t), this is a mapping⊙− : [0,|S|]×
P(U)→P({+,−}×U), which takes a scalar and a set of elements, and yields a velocity. The operator

⊙− is implemented asrandomly selectinga number of elements determined byβ from Sto remove from

X(t) and constructs operation pairs that are deletions:

β ⊙− S= {−}× Nβ ,S
|S| ⊗S) (4.4)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 63

The number of elements that are selected fromS is denotedby Nβ ,S, and defined as

Nβ ,S= min{|S|,⌊β⌋+1I{r<β−⌊β⌋}} (4.5)

for a random numberr ∼U(0,1). Here 1I{bool} is the indicator function with 1I{bool} = 1 if bool= true

and 1I{bool} = 0 if bool= f alse. Thus the number of elements selected is at least⌊β⌋, and the fractional

remainderβ −⌊β⌋ is the probability of the number of elements selected being one larger. The number

of elements is also capped at the number of elements inS, which in turn means thatβ is also capped at

the number of elements inS.

The choice is made torandomlyselect elements fromS instead of spending more computational

effort to select good candidate elements for removal fromX(t). Note that the aim of this operation is

to allow exploration of the entire search space. It will likely lead to a worse objective function value at

present, as the element removed fromX(t) is likely of “good quality” given that it is included in both

the personal best and the neighborhood best. The assumption is that any extra effort to select a better

element to remove fromX(t) will yield only a limited return above that from random selection.

The addition of elementsoutside ofX(t)∪Y(t)∪Ŷ(t) to X(t) uses the operator⊙+. Denotedβ ⊙+ A,

whereA is shorthand for the set of elementsU\
(
X(t)∪Y(t)∪ Ŷ(t)

)
, this is a mapping⊙+ : [0,|A|]×

P(U)→P({+,−}×U), which takes a scalar and a set of elements, and yields a velocity. The operator

⊙+ is implemented to usemarginal objective functioninformation for the positionX(t) to choose which

elements fromA to add toX(t), and constructs operation pairs that are additions. The marginal objective

function value of elemente for a particle with positionX(t) is defined as the objective function value of

a new particle with position equal toX(t) plus e, that is,X(t)∪{e}. A k-tournament selection algorithm

incorporating this marginal objective function information is used to select elements to add toX(t), as

outlined in algorithm 6. The implementation of the operator⊙+ thus depends on the parameterk used in

the tournament selection, and is denoted as⊙+
k . The operator⊙+

k thus is defined as

β ⊙+
k A= {+}×k-Tournament Selection(A,Nβ ,A) (4.6)

whereNβ ,A, the number of elements to be added toX(t), is defined as in equation (4.5). The number of

elements to be added is capped at the number of elements inA, which in turn means thatβ is also capped

at the number of elements inA.

Algorithm 6: k-Tournament Selection(A,N)

SetVtemp = /0 ;
for n= 1, . . . ,N do

for j = 1, . . . ,k do
Randomly selectej from A;
Setscorej = f

(
X(t)∪{ej}

)
;

end
Selectm∈ {1, . . . ,k} such thatscorem = maxj{scorej};
SetVtemp=Vtemp⊕ ({+}×em);

end
ReturnVtemp;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

64 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

In summary,β ⊙+
k A means selectingNβ ,A, possibly overlapping, elements{ej}

Nβ ,A
j=1 , where each

elementej in turn is the best performing in a tournament ofk elements selected randomly fromA. The

best performing elemente′ here means maximizing the objective function value ofXi ∪{e′}. Note that a

higher value ofβ leads to more elements fromA being added to the positionX(t), while a higher value

of k means the algorithm is more greedy in selecting which elements to add.

Extra computational effort is exerted in SBPSO by using thek-tournament selection to find a “good“

element to add toX(t): an additionalk objective function evaluations are required. This is done because

the setA will, in general, contain many elements that lead to a worse objective function value when

added toX(t). Good elements to add toX(t) will thus tend to be rare. The assumption made in this paper

is that the extra effort to locate these good elements is worth the extra objective function evaluations.

4.4 Update equations

Using the redefined operators from section 4.3, the velocity update equation for SBPSO becomes

Vi(t +1) = c1r1⊗
(
Yi(t)⊖Xi(t)

)
⊕ c2r2⊗

(
Ŷi(t)⊖Xi(t)

)

⊕
(
c3r3⊙+

k Ai(t)
)
⊕

(
c4r4⊙− Si(t)

)
(4.7)

whereAi(t) = U\
(
Xi(t)∪Yi(t)∪ Ŷi(t)

)
andSi(t) = Xi(t)∩Yi(t)∩ Ŷi(t). Parameters arec1,c2 ∈ [0,1],

c3,c4 ∈ [0,|U |], and the random numbersr i are all independently drawn from the uniform distribution on

(0,1). Besides the additional velocity components involving⊙− and⊙+
k , one more difference between

equation (4.7) for SBPSO and equation (1.4) is the absence of an inertia term. This can be explained by

first looking at the position update equation for SBPSO:

Xi(t +1) =Xi(t)⊞Vi(t +1) (4.8)

The velocityVi(t+1) is a set of operation pairs{(±,e1), . . . ,(±,em)} that is fully applied to the position

Xi(t), where each operation pair is an addition or a deletion. Once an elemente has been added to the

positionXi(t), adding the element again has no impact as a set can only contain a single instance of each

element. Therefore, once the velocity has been applied toXi(t), each operation pair inVi(t+1)will have

no impact if applied toXi(t +1). Hence, there is no need to include part ofVi(t) in Vi(t +1), which is

what the inertia term would do. The SBPSO algorithm combining the update equations (4.7) and (4.8) is

given in algorithm 7.

Note that the order in which the operation pairs fromVi(t +1) are applied toXi(t) is not relevant,

because the individual additions and deletionsvi, j in Vi(t+1) from equation (4.7) can overlap, but cannot

cancel each other out. In other words, there can not be aj1 6= j2 such thatvi, j1 = (+,e)andvi, j2 = (−,e)

are two operation pairs inVi(t +1) for the same elemente. To illustrate, assume thatVi(t +1) contains

both(+,e)and(−,e) for some elemente:

• Since attraction towardsYi(t) or Ŷi(t) can only create deletions for elements inXi(t)\
(
Yi(t)∪Ŷi(t)

)
,

while the⊙− operation can only create deletions for elements inSi(t), the presence of deletion

(−,e) in Vi(t +1) implies thate∈ Xi(t).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 65

Algorithm 7: Set-BasedPSO algorithm (SBPSO) for maximization problems

SetN equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize Xi asrandom subset ofU ;
Initialize Vi = /0;
Calculatef (Xi);
Initialize f (Yi) =−∞;

Initialize f (Ŷi) =−∞;
end
while stopping condition is falsedo

for i = 1, . . . ,N do
// set the personal best position;
if f (Xi)> f (Yi) then

Yi = Xi ;
end
// setthe neighborhood best position;
for all neighbors l of particle ido

if (f (Yi)> f (Ŷl) then
Ŷl =Yi ;

end
end

end
for i = 1, . . . ,N do

UpdateVi according to equation (4.7);
UpdateXi accordingto equation (4.8);
Calculatef (Xi);

end
end

• Since attraction towardsYi(t) or Ŷi(t) canonly create additions for elements inXi(t)\
(
Yi(t)∪Ŷi(t)

)
,

while the⊙+
k operation can only create additions for elements inAi(t), the presence of addition

(+,e) in Vi(t +1) implies thate /∈ Xi(t) or e∈
(
U\Xi(t)

)
.

• For e it must then hold thate∈ Xi(t)∩
(
U\Xi(t)

)
= /0. Therefore, such ane can not exist in

Vi(t +1).

4.5 Conclusions

This chapter formally introduced SBPSO as an algorithm to solve discrete optimization problems that

allow for a set-based representation. By doing so, this chapter has addressed three of this thesis’ sub-

objectives identified in the preface, namely:

• the objective to formally define the SBPSO algorithm by formulating the PSO update equations in

terms of set-theory;

• the objective to identify which additional components, on top of the basic features that define a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

66 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

PSO algorithm, are required to make the SBPSO algorithm a functioning algorithm; and

• theobjective to ensure that the algorithm is formulated generically and does not include any prob-

lem domain specific features in the algorithm itself - the only link to the problem domain should

lie in the objective function.

The main concepts that form a PSO algorithm were identified in chapter 1 as a swarm of particles

which each have a position and a velocity, whereby a velocity update equation forms the elegant but

effective mechanism that provides PSO’s effectiveness. Before being able to define a position or ve-

locity update equation for SBPSO, first the position and velocity were defined as mathematical sets in

section 4.2. The definition of position used as the universe of discourseU a (finite) set of elements de-

termined by the DOP to be solved. A particle’s position is a subset of elements fromU , without any

further structure or order, other than that elements can only be included at most once as is prescribed

for true mathematical sets. A particle’s velocity was defined as a mathematical set containing so-called

operation-pairs. Each operation pair defines an operation of adding a single element to, or removing a

single element from the particle’s position.

Using these definitions, the goal was to define SBPSO’s update equations in line with the basic

components identified for the PSO in chapter 1. These core components of PSO are (i) the position of

a particle is updated in consecutive iterations by adding the particle’s velocity to its current position and

(ii) the velocity itself evolves iteratively according to the velocity update equation which contains three

components:

1. a cognitive component that describes the attraction of the particle to the best position in the search

space found by that particle previously,

2. a social component that describes the attraction of the particle to the best position in the search

space found by any particle in its neighborhood, and

3. an inertia component that causes the velocity to retain part of the direction it currently has.

Four operators were defined that form the set-based equivalent of basic multiplication, addition and

subtraction used in the update equations for continuous PSO. Using the above definitions of position and

velocity and these four operators, position and velocity update equations could be defined corresponding

to that for continuous PSO.

Two findings became apparent when trying to translate the three components of the continuous PSO

algorithm into their set-based equivalents for SBPSO: firstly, the concept of an inertia component was

inapplicable to the SBPSO as the velocity consists of discrete additions and deletions. Once these ad-

ditions and deletions are applied to the particle’s position, there is no longer a “direction” in which to

continue the “movement” implied by the velocity: an element that has been removed from the position

can not be removed again. Hence the inertia component of the PSO paradigm was not incorporated into

SBPSO.

Secondly, depending on the positions of all particles in the swarm at any point during the search,

certain parts of the search space could become inaccessible. Denote byX the position of a particle,Y

the personal best position of a particle, andŶ the neighborhood best position for a particle. If forall the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 67

particles in the swarm the cross sectionX∩Y∩Ŷ containedthe same elemente, this element could not

be removed from any particle’s position and such points in the search space can no longer be reached. A

similar problem arises for elements that lie outside the unionX∪Y∪Ŷ for all particles in the swarm: such

elements can not be added to the position of any particle in the swarm. In order to solve these problems,

two further operators were introduced that for each particle in isolation can (i) remove elements from the

cross sectionX∩Y∩ Ŷ, or (ii) add elements from outside the unionX∪Y∪ Ŷ. In this way the SBPSO

algorithm is guaranteed to be able to access the whole search space. The two mechanisms were defined

generally, but for both a specific implementation was chosen for use in the remainder of this thesis.

It was shown that the manner in which the velocity update equation is constructed explicitly prevents

offsetting operation pairs to be present in the velocity. Hence, the order in which the additions and

deletion defined by the velocity’s operation pairs are applied to the position is irrelevant. It may therefore

be concluded that SBPSO is a well-defined set-based algorithm to solve DOPs which follows the PSO

paradigm as closely as possible.

The way the SBPSO algorithm was set up also ensures that it is indeed a generic algorithm and

no heuristics or components specific to the problem domain are used other than the objective function.

SBPSO can thus be applied to any DOP as long as the DOP has recognizable elements that can be used

to form the universe of discourseUand an objective functionf can be constructed which needs to be

minimized or maximized.

This chapter in itself completes part II of this thesis, in which the SBPSO algorithm was described.

The SBPSO algorithm is tested and compared to alternative discrete PSO algorithms on two different

DOPs in part III: the MKP in chapter 5 and the FSP in chapter 6. The next part therefore forms the test

of whether the SBPSO algorithm is indeed a fully functioning PSO algorithm for use on discrete opti-

mization problems that allow for a set-based representation and of how well its performance compares

to that of alternative discrete PSO algorithms.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part III

Empirical analysis

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Experimentson the multidimensional

knapsack problem

The previous chapter defined and described the SBPSO algorithm. Before that, in part I the MKP was

introduced in chapter 2 as a discrete optimization problem that can be used as a test-bed for the new

algorithm. This chapter applies SBPSO to the MKP and will compare its performance to that of three

other PSO algorithms from literature. The objectives of this chapter are three-fold, where the first objec-

tive is to determine if it is possible to successfully apply the SBPSO algorithm to the MKP, which in this

case means yielding quality solutions. A second objective is to compare the performance of the SBPSO

algorithm on the MKP to three other PSO algorithms known from literature and the third objective is to

investigate what parameter values work well for the SBPSO. This chapter is organized into four sections:

experimental setup, parameter tuning, sensitivity analysis for SBPSO, and the results of the experiments

on the four tuned PSO algorithms.

5.1 Introduction

The current chapter can be seen as the culmination of the path outlined in the previous chapters. Chapter 1

provided the background to show that a generic, functioning, set-based PSO algorithm did not yet exist

and what components such an algorithm should contain. Chapter 4 introduced the SBPSO algorithm with

the claim that it is a generic, functioning, set-based PSO algorithm. In order to validate this claim, the

SBPSO algorithm needs to be tested on discrete optimization problems (DOP). The MKP was introduced

in chapter 2 and it was argued that the MKP is a non-trivial DOP that forms a valid test-bed for the SBPSO

and other discrete PSO algorithms. This chapter brings together the two parts and applies SBPSO to the

MKP. The review of the literature in chapter 2 also suggested a number of other discrete PSO algorithms

the SBPSO can be compared to.

As mentioned above, the following objectives from the preface are addressed in this chapter:

• To test the new algorithm on DOPs;

• To compare the performance (in terms of quality of the solution found) of the new algorithm

against known discrete PSO algorithms from literature which have been applied on the MKP;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

70 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

• To investigate the new algorithm’s control parameter values that yield good results.

Thefirst two of these objectives are self-explanatory: any new algorithm that is introduced needs to go

through vigorous tests and comparisons in order to assess what its value is and in what situations it can

be a good choice to use in practice. Such tests can also help identify possible limitations and areas of

improvement.

The third objective is linked to the fact that SBPSO is a new algorithm and little is yet known about

which choices of parameters yield adequate or good results. The variant of SBPSO outlined in chapter 4

contains five control parameters to be tuned:c1,c2,c3,c4 and k, the size of the tournament used to

select elements to add to particle positions. An extensive method of tuning is used to find SBPSO’s best

parameter combination for use on the small and large MKP separately. Besides finding the best parameter

combination to use in the experiments, a sensitivity analysis is conducted on the tuning results to better

understand what areas of the parameter space yield the best results. Also, the impact of SBPSO’s five

parameters is compared to see which parameters have the most influence on the quality of the solutions

and which parameters are thus most important to be tuned well.

At this point it is also important to repeat the objectives from the preface involving the MKP that are

defined to beoutsidethe scope of this thesis, and by extension, outside the scope of this chapter:

• find an algorithm that is better at solving the MKP than known state-of-the-art algorithms;

• find the most efficient algorithm in terms of number of iterations or fitness function evaluations,

total number of computations (flops) or total time needed to complete;

• to compare the performance of the new algorithm against non-PSO methods used to solve DOPs.

The main goal of this research is to define the SBPSO as a generic, set-based PSO algorithm and show

that it is able to find good solutions to different DOPs with a performance that is on par or even better

than other generic discrete PSO algorithms. The review of previous work on the MKP in chapter 2

showed that the state-of-the-art algorithms rely heavily on heuristics like repair operators to find the best

solutions. Because the goal is to define SBPSO without problem domain specific features, it is expected

that SBPSO will not be able to compete with more specialized algorithms.

Although performance can be defined in many different ways, this first detailed investigation of

SBPSO focused purely on the quality of the solutions found. Any comparison based on the efficiency

of the algorithm would require at the minimum a rebuild of the code used to perform all experiments

to ensure an optimal implementation of the algorithm. The question of efficiency and (relative) speed is

left for later investigation, as such work is only of interest if the algorithm can first be shown to yield

sufficiently good solutions.

Lastly, this thesis compares SBPSO only to other PSO algorithms. This is done because the main

novelty of SBPSO lies in the way it uses a set-based approach to PSO; thus it is interesting to see how

that approach compares to other existing PSO algorithms. In that way the contribution of the set-based

aspect in SBPSO can be determined more clearly than if SBPSO was compared to, say, ACOs or GAs.

The structure of the chapter is as follows: first the experimental setup is described, including pa-

rameter tuning of the PSO algorithms. The tuning results for the SBPSO algorithm are then used to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM71

perform a sensitivity analysis on SBPSO’s parameters to find good values foreach and which parameters

are most influential on SBPSO’s performance. This is then followed by a summary of the results on the

experiments performed on the PSO algorithms, split into results for the small MKP and large MKP. The

chapter ends with conclusions drawn from the tuning and testing.

The experimental setup used to produce the results in this chapter is described in detail in section 5.2.

This setup begins with the selection of the MKP benchmark problems to be used in the experiments. This

is followed by listing the three PSO algorithms which are chosen to be compared with the SBPSO. In

order to allow for full replication of the results in this thesis, all aspects of the configuration of the four

PSO algorithms are given next and explained in a sequence of subsections dealing with swarm size,

swarm topologies, objective function, initialization mechanisms, stopping conditions, and number of

independent runs performed.

Section 5.3 then details how the parameters of each of the four PSO algorithms were tuned: parameter

combinations are generated that span the parameter space of the PSO algorithms and performance on the

tuning problems is weighed to find the best parameter combinations. Note that all four PSO algorithms

are tuned separately on the small and the large MKPs. This is done to gain insight in the tuning procedure:

since the large MKPs form a well-described and homogeneous set for which a perfect tuning set can be

constructed, the tuning is expected to work quite well. The small MKP set is more heterogeneous, so

the tuning might work less well or provide quite different results. Section 5.4 uses the results of this

parameter tuning to analyze the sensitivity of SBPSO to different values of its control parameters. Each

of SBPSO’s five parameters is investigated separately and the order of their importance to the quality of

the tuned solution is determined.

The final results obtained for the four PSO algorithms are then given in section 5.5, split into those

for the small MKP and large MKP separately. Since experiments are performed on four PSO algorithms,

each combined with three different swarm topologies, results are first compared per topology (all four

algorithms use the same topology) and then per algorithm (a single PSO algorithm with the three differ-

ent swarm topologies). All results are subjected to statical analysis in order to determine if any algorithm

or topology has performed better than the competing ones, and if any pattern can be detected in the per-

formance. Although a number of tables are included in this results section that summarize the outcomes

of the experiments performed, the volume of such results does not allow all details to be included in

this chapter. Therefore, two appendices are included at the end of this thesis with more detailed results:

appendix A for those on the small MKPs and appendix B for those on the large MKPs.

5.2 Experimental procedure

This section describes the procedure that is used in the experiments for tuning the PSO algorithms and

evaluating their performance. The following design choices are touched upon in separate sub-sections:

the selection of benchmark problems, the selection of PSO algorithms to compare with the SBPSO, the

swarm size, the swarm topologies, the objective function used in the optimization process, the initializa-

tion process for each PSO algorithm, stopping conditions, and the number of independent runs performed

in each experiment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

72 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.2.1 Benchmark problems used

TheMKPs used in the experiments consist of both problem sets used by Chu and Beasley [18]: 55 small

MKPs and 270 large MKPs as described in section 2.3. The two sets of problems were each further split

into a tuning set used to find the best parameters for the algorithms, and a test set that is used to compare

the performance of the tuned algorithms. This section describes how these splits were made and the

exact resulting tuning and test sets.

5.2.1.1 Small MKP

For the small MKPs, a tuning set of 15 problems was manually chosen. The remaining 40 problems

formed the test set. Which small MKPs were selected for the tuning set and which for the test set is

summarized in table 5.1. The tuning set was chosen to reflect the range of problem sizes in the entire set

of 55 problems, with the number of variablesn ranging from 20 to 90, and the number of constraintsm

ranging from 2 to 30.

Table 5.1: Split of small MKPs into tuning and test problems

Tuning Set Test Set
problem n m problem n m problem n m problem n m

mknap1-4 20 10 mknap1-1 6 10 mknap2-23 50 5 mknap2-42 34 4
mknap1-5 28 10 mknap1-2 10 10 mknap2-24 60 5 mknap2-43 18 2
mknap2-10 71 2 mknap1-3 15 10 mknap2-25 60 5 mknap2-44 20 10
mknap2-15 30 5 mknap1-6 39 5 mknap2-27 60 5 mknap2-46 37 30
mknap2-17 40 5 mknap1-7 50 5 mknap2-29 70 5 mknap2-47 28 4
mknap2-2 60 30 mknap2-1 60 30 mknap2-3 24 2 mknap2-5 24 2
mknap2-20 50 5 mknap2-11 30 5 mknap2-30 70 5 mknap2-6 24 2
mknap2-26 60 5 mknap2-12 30 5 mknap2-31 70 5 mknap2-7 24 2
mknap2-28 70 5 mknap2-13 30 5 mknap2-32 80 5 mknap2-8 24 2
mknap2-33 80 5 mknap2-14 30 5 mknap2-34 80 5 mknap2-9 71 2
mknap2-39 90 5 mknap2-16 40 5 mknap2-35 80 5
mknap2-4 24 2 mknap2-18 40 5 mknap2-36 90 5
mknap2-41 27 4 mknap2-19 40 5 mknap2-37 90 5
mknap2-45 40 30 mknap2-21 50 5 mknap2-38 90 5
mknap2-48 35 4 mknap2-22 50 5 mknap2-40 90 5

The three smallest problems (mknap1-1, mknap1-2, mknap1-3) were left outof the tuning set on

purpose, as the search spaces for these problems are small. Since each item in the MKP is either in or out

of the knapsack (two options), the number of points in the search space is equal to 2 to the power of the

number of items in the problem. For the three smallest problems this amounts to 26 = 64, 210 = 1024,

and 215 = 32768 points in the search space respectively. For such simple problems, little difference is

to be expected in the performance of the algorithm using different control parameters, so the problems

yield little information on which parameters are best.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM73

5.2.1.2 Large MKP

For the large MKP, the total set of 270 problems consists of 27 subsets of problems, each of which

contains 10 random instances for a given combination of problem parametersn,m, and tightness ratio

r as described in section 2.3. For the tuning set, one problem was selected at random from each of the

27 subsets, and the remaining 243 problems formed the test set. The 27 tuning problems, each with the

number of variables, the number of constraints, and tightness ratios are summarized in table 5.2.

Table 5.2: Split of large MKPs into tuning and test problems. Only the 27 tuning problems are shown,
the remaining 243 problems form the test set.

problem n m r problem n m r problem n m r

mknapcb1-6 100 5 0.25mknapcb4-3 250 5 0.25mknapcb7-1 500 5 0.25
mknapcb1-17 100 5 0.50 mknapcb4-12 250 5 0.50mknapcb7-19 500 5 0.50
mknapcb1-27 100 5 0.75 mknapcb4-27 250 5 0.75mknapcb7-30 500 5 0.75

mknapcb2-7 100 10 0.25mknapcb5-7 250 10 0.25mknapcb8-10 500 10 0.25
mknapcb2-11 100 10 0.50 mknapcb5-20 250 10 0.50mknapcb8-16 500 10 0.50
mknapcb2-22 100 10 0.75 mknapcb5-21 250 10 0.75mknapcb8-26 500 10 0.75

mknapcb3-3 100 30 0.25mknapcb6-7 250 30 0.25mknapcb9-8 500 30 0.25
mknapcb3-20 100 30 0.50 mknapcb6-16 250 30 0.50mknapcb9-18 500 30 0.50
mknapcb3-24 100 30 0.75 mknapcb6-23 250 30 0.75mknapcb9-26 500 30 0.75

5.2.2 PSO algorithms

The SBPSO algorithm is compared to three other PSO algorithms: BPSO by Kennedy and Eberhart

[62], MBPSO by Shenet al. [125], and PBPSO by Zhenet al. [157]. Refer to sections 1.3.1.1, 1.3.1.2,

and 1.3.1.3 for detailed descriptions of these algorithms. The reason these three algorithms were chosen

for comparison was that they do no incorporate any domain specific methods such as a repair operator.

Also, these algorithms have been used on the MKP before and this resulted in reasonable results, see for

example Wanget al. [146].

BPSO, MBPSO, and PBPSO are all so-called binary PSO algorithms: the candidate solution in the

algorithms is represented by binary-valued particle positions. In terms of the MKP this means that the

bit values in the position are directly interpreted as thexi values in equation (2.1). That is, a particle

indicates the assignment of items to the knapsack. For SBPSO, in order to evaluate a solution, thexi

from equation (2.1) are set to 1 for all items that are included in the particle position set, and set to 0 for

all items that are not.

5.2.3 Swarm size

An important parameter in PSO algorithms is the number of particles in the swarm. While the optimal

number of particles for a specific algorithm-problem pair can be problem dependent, this study used the

same number of particles for all algorithms and for all problems in each problem set: for small MKPs

the number of particles was set to 25, while for large MKPs the number of particles was set to 50. Using

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

74 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

the optimum number of swarm particles is not too important because the objective isnot find the best

possible solution to the MKP, but to compare the relative performance of the different algorithms and

swarm topologies. Hence using the same number of particles in each case that is comparable is important.

5.2.4 Swarm topologies

Each of the four PSO algorithms is used with each of the following three topologies: star, ring, and Von

Neumann. This results in 12 algorithm-topology pairs. The pairs with a star topology are referred to as

global best PSO shortened to GB in the tables in the remainder of this document. Similarly, the pairs

with a ring topology are referred to as local best PSO shortened to LB, and the pairs with a Von Neumann

topology are referred to as VN in the tables.

Particles organized in a swarm topology are considered connected if they are in each other’s neigh-

borhood. Particles that are not in each other’s neighborhood are connected indirectly due to overlap

between neighborhoods. If, for example, particlei is not connected to particlej, but the two particles

share a common neighbork, then the pathi−k− j connects particlesi and j in the topology. The distance

between two particles in a topology is determined by theshortestpath that connects the two particles.

For particlesi and j from the example, thei − k− j path is the shortest path, and the distance between

i and j thus is 2. The average distance across all possible pairs in a swarm, called theaverage shortest

path length, is a measure of how connected the swarm is.

A swarm with the star topology always has an average shortest path length of 1, as each particle is

in each other particle’s neighborhood. For the Von Neumann topology, the average shortest path length

depends on the number of particles in the swarm. For swarms of 25 and 50 particles, the Von Neumann

topology leads to average shortest path lengths of 2.5 and 3.5 respectively. For the ring topology, the

average shortest path length depends not only on the swarm size, but also on the neighborhood size. A

neighborhood size of 4 was chosen for the experiments of this study, such that the swarms with a ring

topology are less connected than those using either of the other two topologies. This resulted in average

shortest path lengths for swarms with the ring topology of 3.5 for a swarm of 25 particles, and 6.6 for a

swarm of 50 particles.

Therefore, in the experiments conducted, swarms with the star topology were the most connected,

swarms with the ring topology were the least connected, and swarms with the Von Neumann topology

had an intermediate level of connectedness.

5.2.5 Objective function

The MKP is defined as a maximization problem. The objective function used is the same for all the

PSO algorithms. For particles that represent a feasible solution to the MKP, that is, which satisfy allm

constraints in equation (2.3), the objective function value was set equal to the sum of the values of the

items in the particle. Particles that do not represent a feasible solution because they violate at least one

of the constraints in equation (2.3), were assigned an objective function value of minus infinity. Since a

particle uses its position to represent a solution, the objective function value of a particle is computed as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM75

f
(
X(t)

)
, defined as

f
(
X(t)

)
=





n

∑
i=1

vi xi if ∀ j ∈ {1, . . . ,m} :
n

∑
i=1

wi, jxi ≤Cj

−∞ if ∃ j ∈ {1, . . . ,m} :
n

∑
i=1

wi, jxi >Cj

(5.1)

Using the terminology from chapter 2, this objective function means that a penalty function approach

is used. By setting the value of the objective function to minus infinity for all infeasible positions, no

detailed domain specific information is used. In other words, there is no difference in the objective value

of a position that is only just breaching one of the MKP’s constraints and of a position that is breaching

many constraints and therefore also no gradient in the infeasible part of the solution space that can be

exploited by the PSO algorithms. Although an approach that uses a penalty proportional to the breach

of the constraints would probably work better, such an approach also makes the algorithms less generic

and generality of the algorithms plays a large role in the objectives in this thesis. By making the problem

harder, any differences in performance between the four algorithms should also stand out more.

In order to facilitate a comparison of results across different problems, the results in this thesis for

experiments on the MKP do not show the raw objective function values. For the small MKPs, the error

between the best objective function value found and the known optimum is shown. Since the optimal

solutions are not known for all the large MKPs, for these problems the error between the best found

objective function value and the LP relaxation bound is shown instead. The LP relaxation bounds were

obtained using the Java wrapper oflp solve 5.5, which is based on the revised simplex method [8]. The

boundsfound corresponded perfectly with those made available by Chu and Beasley [18].

5.2.6 Initialization procedure

Particles were initialized randomly for each algorithm-topology pair. For the BPSO, MBPSO, and

PBPSO algorithms, the positions were initialized randomly in{0,1}n, while the velocities for BPSO

and PBPSO were initialized randomly in[−1,1]n, following [31]. For PBPSO the continuous-valued

positions,~x′i(0), were initialized as~0, to ensure that no initial bias was included in the discrete-valued

positions,~xi(0). For the SBPSO algorithm, the positions were randomly initialized, such that each ele-

ment had a 0.5 chance of being included, and all velocities were initialized as an empty set.

5.2.7 Stopping conditions

For each independent run of an algorithm, the same three stopping conditions were applied. These

stopping conditions were:

1. the best objective function value in the swarm equaled the known optimum (in case of small MKPs)

or equaled the LP relaxed bound (in case of large MKPs),

2. the best objective function value in the swarm had not improved for 2500 iterations, or

3. more than 5000 iterations had passed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

76 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.2.8 Number of independent runs

PSOis a stochastic optimization algorithm, and individual runs of the algorithm can have different results

even if all circumstances other than the random number generator are kept the same. Hence, multiple

independent runs of the algorithms have to be executed and the average performance reported. For the

small MKPs, 30 independent runs were used for tuning the algorithms and 100 independent runs were

used to ascertain the average performance on the test problems. For the large MKPs, 30 independent

runs were used both for tuning the algorithms and to determine the performance on the test problems.

The difference in the number of independent runs used for determining the average performance on

the test set for the small MKPs and the large MKPs is solely due to the computational load: for the

large MKPs the test set contains more problems (243 versus 40 for the small MKPs) and the number of

variables per problem range from 100 to 500 for the large MKPs while only from 6 to 90 for the small

MKPs.

5.3 PSO parameter tuning

This section describes how the twelve PSO algorithm-topology pairs were tuned on the small MKP

and the large MKP problem sets separately. Section 5.3.1 describes how the parameter tuning was

performed. Sections 5.3.2 and 5.3.3 list and discuss the resulting best control parameter values per

algorithm-topology pair for the small MKP and the large MKP respectively.

5.3.1 Tuning process

While efficient parameter tuning approaches like F-Race [9] exist, a different process was chosen to tune

the parameters of the four PSO algorithms in these experiments. This was done because the chosen

process was deemed more appropriate for the sensitivity analysis conducted in Section 5.4, while speed

of the tuning process was not a priority in the experiments. All four algorithms were tuned in the same

manner to preserveceteris paribusin the final comparison of test results. Besides the main tuning

process, a sensitivity analysis was conducted for the SBPSO algorithm only.

For each of the 12 algorithm-topology pairs, the same process was used to tune the algorithm’s

parameters, although the number of control parameters differed: MBPSO has only two parameters, while

BPSO has four, PBPSO has six, and SBPSO has five parameters. Each algorithm-topology was tuned

twice: once on the tuning set of small MKPs and once on the large MKPs. The end result of the parameter

tuning was a total of 24 tuned parameter combinations.

Table 5.3 lists the ranges of possible parameter values used in the tuning process. The Cartesian

product of the parameter value ranges for one algorithm forms the parameter space for that algorithm. For

each of the four PSO algorithms, 128 parameter combinations were generated that span each algorithm’s

parameter space. Only static control parameters were considered. In order to generate the parameter

combinations in a manner that ensures that the parameter space was covered well, sequences of Sobol

pseudo-random numbers were used according to the method proposed by Franken [36].

Even though the number of parameters differs across the algorithms, the same number (128) of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM77

Table 5.3: Parameter ranges used in tuning the four PSO algorithms on the MKP

algorithm BPSO PBPSO algorithm MBPSO SBPSO

ω [0.50, 0.99] [0.50, 0.99] pstat [0.00,1.00]
c1 [0.00, 5.00] [0.00, 5.00] preset [0.00, 1.00]
c2 [0.00, 5.00] [0.00, 5.00] c1 [0.00,1.00]

Vmax [1.00, 10.00] [1.00, 10.00] c2 [0.00,1.00]
R [1.00, 100.00] c3 [0.50,5.00]

pmut [0.00, 0.50] c4 [0.50,5.00]
k {1, .. . ,9}

parameter combinations were used in tuning each of the algorithm-topology pairs onthe two problem

sets. Hence, for the MBPSO algorithm, which has only two parameters, the parameter combinations

provided a denser covering of the two-dimensional parameter space than for the other PSO algorithms

which each have at least four parameters. Thus the amount of effort expended in tuning was the same,

but the MBPSO was rewarded for having fewer parameters by having those parameters tuned in more

detail.

Note that the tuning process for each algorithm used the same 128 parameter combinations for each

of the three topologies, and on both problem sets. Thus, for example, in tuning BPSO using a star

topology on the small MKPs, the same 128 parameter combinations were considered as in tuning BPSO

using a Von Neumann topology on the large MKPs.

The next step in the tuning process was to determine the best parameter combination for each of the

algorithm-topology pairs on each of the problem sets. To do this, 30 independent runs were conducted

for each of the parameter combinations, on all the tuning problems in the problem set. For each problem,

the average of the best objective function value achieved by each of the 128 parameter combinations over

the 30 runs was determined. The parameter combinations wererankedin order of the average objective

function value for each problem separately: the parameter combination with the highest objective func-

tion value (or equivalently the lowest error) thus was assigned rank 1, while the worst combination was

assigned rank 128. In case two or more combinations achieved the exact same average objective function

value, the ranks for each were combined and averaged: three combinations ranked 36th, 37th and 38th,

for example, would all have been assigned the average rank of 37.

Finally, theaverage rankwas determined for each parameter combination by averaging over all the

problems in the set. The parameter combination with the lowest average rank was deemed best and

chosen as the tuning result. This method weighed the contribution of each tuning problem equally, and

by using the rank of the objective function value instead of the objective function itself, a fair comparison

was made using problems that have different optima and different search landscapes.

An overview of the results of tuning the 12 algorithm-topology pairs on the small MKPs and the

large MKPs, in the form of the best parameter combination found for each topology-algorithm pair, are

shown and discussed in sections 5.3.2 and 5.3.3 respectively. Detailed results for the small MKPs and

the large MKPs can be found in appendices A and B respectively.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

78 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.3.2 Tuning results for small MKPs

This section describes and discusses the results for the small MKPs of the tuning procedure for the PSO

algorithms described in the previous section. Table 5.4 summarizes the best parameters found, for each

of the algorithm-topology pairs on the small MKPs.

Table 5.4: Tuned parameters for small MKPs

algorithm BPSO PBPSO
topology GB LB VN GB LB VN

ω 0.9211 0.9594 0.9709 0.6876 0.6455 0.6455
c1 4.6094 2.8125 4.4141 0.7422 4.2969 4.2969
c2 1.3281 1.5625 1.9922 0.5078 4.7656 4.7656

Vmax 5.9219 7.1875 5.1484 3.3203 4.2344 4.2344
R 37.352 64.422 64.422

pmut 0.0742 0.0391 0.0391

algorithm MBPSO SBPSO
topology GB LB VN GB LB VN

pstat 0.4844 0.4766 0.4766
preset 0.3906 0.3203 0.3203
c1 0.9297 0.5156 0.5156
c2 0.2266 0.4531 0.4531
c3 1.3086 1.8359 1.8359
c4 2.1523 2.2578 2.2578
k 7 7 7

For BPSO, the attraction to the neighborhood best particle,c1, increasedas the swarm topology was

less connected: highest for gbest BPSO, lowest for lbest BPSO. The attraction to the personal best,c2,

ranged from 1.3 for the star topology to 2.0 for the Von Neumann topology, and was clearly smaller than

the values forc1. The inertia weightω was high for each of the three topologies, as was theVmax, which

was above 5 in all cases.

For PBPSO, the best parameter value combinations for lbest PBPSO and the Von Neumann topology

were the same, but the best parameter values found for gbest PBPSO were quite different, mainly with

much lowerc1 andc2 values. Note that, compared to BPSO, the inertia weight for the best parameter

value combinations for PBPSO was much smaller.

For MBPSO, the three values found for the static probability,pstat, were similar and comparable to

the value of 0.5 used by the original authors, Shenet al. [125]. The value ofpresetof 32% to 39% was,

however, more than triple the 10% used by Shenet al. [125], indicating that a high proportion of random

resets was beneficial.

For SBPSO, the parameter value combinations for the ring and Von Neumann topologies were the

same, while for the star topology a different parameter value combination was optimal with a much

higherc1 and lowerc2. Section 5.4 gives a detailed analysis of the sensitivity of SBPSO’s parameters

using the tuning results.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM79

Section A.1 in appendix A contains the detailed results for the chosen best parametercombination

for each of the 12 algorithm-topology pairs on the small MKPs. For these 15 tuning problems, the best

parameter combination for each algorithm-topology pair could often find the known optimum in all of the

30 independent runs of the algorithm. The average over all 12 pairs is 5.2 problems solved perfectly out

of 15 tuning problems each. The problem with solving the problems perfectly during tuning is that the

discriminatory power of the tuning problems diminishes due to a ceiling effect. A quick example using

the GB BPSO algorithm-topology pair is indicative: for this pair the chosen parameter combination was

able to perfectly solve three tuning problems: mknap1-4, mknap2-15, and mknap2-4. For these three

problems respectively, 118, 71 and 96 parameter combinations were able to perfectly solve the MKP. On

these three problems the tuning process was not able to distinguish the quality of more than half of the

128 parameter combinations, making the effective tuning set closer to 12 problems than 15.

Another result that can be derived from the detailed tuning results for small MKPs on BPSO, MBPSO

and PBPSO is that the best parameter combination found by the tuning process is one that is the best com-

promise to work effectively on the whole set of problems, and not a single best parameter combination

that works best on all problems. The SBPSO algorithm instead does not seem so affected on the set of

15 tuning problems. This can be seen from the average rank of the chosen parameter combination out of

128 combinations. A single combination that works better than all other combinations on all 15 tuning

problems would score an average of 1. Table 5.5 lists the average ranks for the 12 algorithm-topology

pairs tuned on the 15 small MKP tuning problems. The left-hand side of the table shows the average

rank across all 15 tuning problems, while the right-hand side shows the average rank on all problems not

solved perfectly. The number of such problems is indicated between brackets.

Table 5.5: Average rank out of 128 of best parameter combination in tuning small MKPs across the
15 tuning problems. The columns labeled “#” indicate the number of problems that were not solved
perfectly by the algorithm-topology pair.

All 15 tuning problems Not perfectly solved problems
GB LB VN GB LB VN

algorithm avg. rank avg. rank avg. rank avg. rank (#) avg. rank (#) avg. rank (#)

BPSO 26.5 15.2 15.8 21.1 (12) 9.7 (8) 10.1 (10)
MBPSO 16.1 8.2 7.2 15.5 (13) 6.8 (12) 5.3 (13)
PBPSO 15.2 12.9 13.3 11.4 (12) 10.1 (9) 10.2 (10)
SBPSO 8.3 11.5 11.2 2.4 (7) 2.2 (6) 1.8 (6)

Using the average rank on the non-perfectly solved problems the BPSO, MBPSO,and PBPSO algo-

rithms show a higher average rank than SBPSO. The average rank for the three non-SBPSO algorithms

ranges between 5.3 (for VN MBPSO) to 21.1 (for GB BPSO). This indicates that, for these three al-

gorithms, performance of the best parameter combination is not uniform across the tuning set: other

parameter combinations work better on some problems, but worse on others such that the average per-

formance is worse. This is not optimal, as it is preferable that a single combination of parameters works

best across a range of problems leading to what could be called a robust tuning result.

For the SBPSO algorithm, the tuning result on the small MKPs was much more robust. Disregarding

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

80 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

the problems solved perfectly (which discriminate less in quality between parametercombination), the

average ranks became 2.4, 2.2, and 1.8 for GB SBPSO, LB SBPSO, and VN SBPSO respectively. In

other words, for SBPSO the chosen parameter combination was on average in the top 3 out of 128

possible combinations, and the worst ranks on the non-perfectly solved problems were 8th, 4th and 3rd

for the chosen parameter combinations for GB SBPSO, LB SBPSO, and VN SBPSO respectively. Note

that the average errors and the average errors on the non-perfectly solved problems in table A.5 were

skewed by the fact that the local optimum found for problem “mknap2-10” had an error of more than

5% to the known optimum. Excluding this problem, the average errors over the remaining 14 problems

were 0.049%,0.023%,and 0.024% for GB SBPSO, LB SBPSO and VN SBPSO respectively. The non-

perfectly solved tuning problems in table A.5 posed similar problems for the BPSO, MBPSO and PBPSO

algorithms.

5.3.3 Tuning results for large MKPs

Table 5.6 summarizes the best parameter values found using the parameter tuning procedure described

in section 5.3.1 for each of the algorithm-topology pairs on the large MKPs.

Table 5.6: Tuned parameters for large MKPs

algorithm BPSO PBPSO
topology GB LB VN GB LB VN

ω 0.9785 0.9785 0.9785 0.6263 0.7373 0.7373
c1 2.4609 2.4609 2.4609 3.8672 2.7344 2.7344
c2 4.1016 4.1016 4.1016 3.6328 1.9531 1.9531

Vmax 9.2266 9.2266 9.2266 8.9453 7.0469 7.0469
R 74.477 82.984 82.984

pmut 0.0117 0.0078 0.0078

algorithm MBPSO SBPSO
topology GB LB VN GB LB VN

pstat 0.4531 0.2266 0.3828
preset 0.1094 0.0703 0.1016
c1 0.9297 0.3672 0.3672
c2 0.2266 0.9141 0.9141
c3 1.3086 1.5898 1.5898
c4 2.1523 1.3086 1.3086
k 7 3 3

For BPSO, the best parameter value combinations found on the large MKPs wereexactly the same

for each of the three topologies, characterized by a high inertia weightω , highVmax andc2 > c1. The

latter inequality indicates a stronger attraction to the neighborhood best position than to the personal best

position, which is the reverse of the results found for BPSO on the small MKPs, wherec1 > c2.

For PBPSO, the ring and the Von Neumann topologies yielded the same best parameter value com-

bination. For all three topologies, the values found for the inertia weight,ω , were similar. These values

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM81

are also very similar to the corresponding values found during tuning on the smallMKPs: a relative

difference of only 10%-14% was seen. For all three topologies, the parameter values found forVmax, R,

and pmut showed some differences between those for gbest PBPSO and the other two topologies. But

these differences are much smaller than the large difference for these parameter values compared to the

tuning results on the small MKPs. On the large MKPs, the best values forVmax andRwere much higher.

Also, the values forpmut were lower, indicating that having many random mutations was less helpful

on the large MKPs. For the gbest PBPSO, the best values forc1 andc2 resulted in much higher values

than those found for the small MKPs, while lbest PBPSO and the Von Neumann topology yielded lower

values than on the small MKPs.

For MBPSO there was some variation in the best values ofpstat compared to the values found on the

small MKPs: a lower value was found on the large MKPs for both the gbest and lbest MBPSO, while

for the Von Neumann topology,pstat was higher on the large MKP. Forpreset, the best values found were

close to the 10% used by Shenet al. [125].

For SBPSO, the best parameter values found for gbest SBPSO were exactly the same as those found

on the small MKPs. The best parameter values for lbest SBPSO and the Von Neumann topology matched,

but were quite different than those found on the small MKP: the attraction to the personal best,c2, was

much higher for the larger MKPs, while the attraction to the neighborhood best,c1, was lower.

Section B.1 in appendix B contains the detailed results for the chosen best parameter combination

for each of the 12 algorithm-topology pairs on the large MKPs. Results for the chosen parameter com-

binations for each algorithm-topology pair are shown separately for each of the 27 tuning problems. In

general the issue of a ceiling effect identified in tuning the small MKPs is not present for the large MKPs:

there is no case of the average error leveling of at the same result for multiple parameter combinations

because the optimal solution has been found in all 30 independent runs. Instead a different average error

is seen for almost all 128 parameter combinations in each of the 12 algorithm-parameter combinations

tested. Hence it can be concluded that, across the 27 tuning problems, the various parameter combina-

tions can be discriminated from each other with regards to the quality of results generated.

Also in general a good overall performance is seen of the chosen parameter combination across the

set of 27 tuning problems. This can be noted from the average rank of the chosen parameter combination

out of the 128 combinations averaged over the tuning set summarized in table 5.7. The “worst” average

rank is 6.5 out of 128 for GB MBPSO which is the best performing parameter combination on only 3

out of 27 tuning problems. All pairs involving the BPSO algorithm, LB PBPSO, VN PBPSO and GB

SBPSO show the most robust performance of the chosen parameter combination: almost two thirds of

the tuning problems are solved best by the chosen parameters. This contrasts with the results on the small

MKP tuning problems in table 5.5 and indicates that the tuning set for large MKPs is more homogeneous

with regard which parameter combinations perform best.

The detailed tuning results for the BPSO algorithm in table B.2 indicate that the chosen parameter

combinations are the best (rank = 1) of the 128 combinations tested for all problems with tightness ratio

α = 0.75 or 0.50. This is not the case, however, for combinations withα = 0.25: here the chosen

combination performs well (always in top 10%) but other parameter combinations are better suited to

these problems.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

82 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.7: Average rank out of 128 of best parameter combination in tuning large MKPs across the 27
tuning problems. The columns labeled “# 1’s” indicate the number of problems for which the chosen
parameter combination performed best out of 128 combinations.

GB LB VN
algorithm avg. rank (# 1’s)avg. rank (# 1’s)avg. rank (# 1’s)

BPSO 2.3 (20) 2.5 (19) 2.6 (18)
MBPSO 6.5 (3) 4.1 (5) 3.1 (3)
PBPSO 2.5 (11) 1.4 (17) 1.2 (22)
SBPSO 1.7 (20) 2.8 (5) 2.1 (6)

The tuning results in table B.3 indicate that for MBPSO the chosen parameter combinationthat

performed best in tuning has a much higher average rank than that of the other three algorithms in

tables B.2, B.4 and B.5. This indicates that for MBPSO no single one parameter combination was

superior to the other 127 combinations used in tuning. For the Von Neumann topology this effect is less

pronounced, but even here the chosen parameter combination scored best (rank = 1) on only two out of

27 tuning problems.

Table B.4 lists the detailed tuning results for the PBPSO algorithm. For VN PBPSO the chosen pa-

rameter combination scores best for 22 out of 27 problems and scores second best on the other five. VN

PBPSO thus has a clear best performing parameter combination in the universe of 128 tuning combina-

tions and it seems the algorithm can be tuned to the whole set of problems. For LB PBPSO a similar, if

slightly less pronounced pattern, can be seen. The GB PBPSO performs slightly worse on the problems

with a low (n= 5) number of constraints: the average rank on the nine problems withn= 5 is 4.7 versus

1.4 on the other 18 tuning problems. On problems with fewer constraints other parameter combinations

thus seem to offer a better performance, but no clear link with the tightness ratioα is seen.

Table B.5 lists the detailed tuning results for the SBPSO algorithm. For GB SBPSO the best param-

eter combination stands out more than for LB SBPSO and VN SBPSO with a rank of 1 for 22 out of

tuning 27 problems. A slightly worse relative performance is seen for problems withm= 5 andα = 0.25

in other words problems with few constraints, but where the constraints are themselves very restrictive.

Such problems are likely to have a solution space with more widely spaced local optima, which seems

to cause the star topology to be more sensitive to its chosen parameters. This is somewhat similar to the

behavior seen for PBPSO in table B.4.

5.4 Sensitivity analysis of SBPSO’s parameters

This section analyzes the sensitivity of SBPSO to different values of its control parameters. Such sensi-

tivity analysis is important, as little is yet known about what are good values for its control parameters.

The sensitivity analysis procedure is summarized in section 5.4.1, followed by the results for each

of the three topologies: the star topology in section 5.4.3, the ring topology with neighborhood size 4 in

section 5.4.4, and the Von Neumann topology in section 5.4.5. A discussion of the relative importance

of each of SBPSO’s parameters in respect of the algorithm’s performance is given in section 5.4.6.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM83

5.4.1 Procedure

The sensitivity of the performance of SBPSO to each individual control parameter was investigated

and visualized using cumulative histograms. For each individual parameter, the horizontal axis of the

histogram consists of bins which divide the parameter range into equally sized sub-ranges. The vertical

axis displays the number of parameter value combinations that fall in each bin, split into four groups

based on the performance of the parameter value combination in the tuning process. If a particular

bin for an individual parameter contains a large number of parameter combinations that are considered

“good”, this implies that the sub-range for the individual parameter associated with the bin is good. This

section describes how the histograms were constructed, resulting in a histogram for each of the three

SBPSO-topology combinations, for each of the five control parameters. In total, 15 histograms were

generated.

Note that a good parameter value combination for SBPSO requires that all five parameters individu-

ally have a good or at least reasonable value: if even one parameter has a bad value, the parameter value

combination as a whole performs badly. The consequence of this is that, if a specific parameter value

combination performs badly, this gives little information on whether theindividual parameter values in

that combination are good or bad: any single individual parameter value could be bad, or all values could

be bad. Therefore, it is the parameter value combinations that perform wellas a wholewhich contain in-

formation on the individual parameters. Hence, the sensitivity analysis focused on the 25% of parameter

value combinations that performed best in the tuning process.

The performance of a parameter value combination was set equal to its average rank on the small

MKPs and the large MKPs tuning sets combined, with each of the two tuning sets weighed equally. The

full procedure to construct the histograms used in the following sections consisted of the following steps:

1. For each parameter value combination, the performance was set equal to 0.5 times the average

rank on the small MKPs tuning set plus 0.5 times the average rank on the large MKPs tuning set.

2. The parameter value combinations were then themselves ranked based on the performance calcu-

lated in step 1.

3. The ranked parameter value combinations were split into quartiles, labeled A for the best 25%,

B and C for the next two quartiles respectively, and D for the worst 25% of parameter value

combinations1.

4. Then, for each individual parameter, the parameter range was split into bins:

(a) parameter values forc1 andc2 took values in the range[0.0,1.0], with the values grouped

into the 10 bins,[0.0,0.1), [0.1,0.2), . . . , [0.9,1.0];

(b) parameter values forc3 andc4 took values in the range[0.5,5.0], with the values grouped

into the nine bins,[0.5,1.0), [1.0,1.5), . . . , [4.5,5.0]; and

(c) parameter values fork took values in the range 1, . . . ,9, with the values grouped into nine

bins containing one value each.

1Theparameter value combinations with label A are considered to be good combinations, those with label B are considered
reasonable combinations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

84 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

These bins form the horizontal axis of the histogram.

5. For each individual parameter, the parameter value combinations were allocated one by one to a

bin, based on the value of the individual parameter in the combination. In each bin, a count was

kept of the number of parameter value combinations labeled A, B, C, and D separately. Consider,

for example, the parameter value combination labeled A with values(0.95,0.52,2.03,3.17,3).

Allocating this parameter value combination to a bin for the individual parameterc1 entailed in-

creasing by one the count of label A combinations in the sub-range bin[0.9,1.0].

6. For each individual parameter, a cumulative histogram was then constructed with, for each bin,

the number of label A combinations at the bottom in black, on top of which the number of label

B combinations is given in dark gray, and on top of that the number of label C combinations in

light gray. The remaining parameter value combinations with label D were stacked at the top and

“shown” in white.

7. As a final step, each of the bins was scaled to[0,1] for ease of comparison, as not all parameter

value bins contained the same number of parameter value combinations2.

Each histogram can be interpreted in the same manner: the black graph at the bottom shows the

distribution of good parameter value combinations (labeled A for the best 25% combinations) for the

individual parameter across the bins. The dark grey graph stacked on top of the black graph similarly

shows the distribution of reasonable-but-not-good parameter value combinations (labeled B). Because

the histogram is stacked, the top of the dark grey graph is the sum of the fractions of label A and label B

combinations in each bin, indicating the fraction of parameter value combinations that are reasonable or

better.

Note that, for the acceleration parametersc1 to c4, the bin labels on the horizontal axis of the his-

tograms identify thelower boundaryof the sub-range linked to that bin. For example, the bin forc1

labeled 0.3 identifies the sub-range[0.3,0.4), and the bin forc3 labeled 1.5 identifies the sub-range

[1.5,2.0).

5.4.2 Results

The results of the sensitivity analysis of SBPSO’s parameters based on the tuning results on the small

and large MKP are presented in this section. Results are split according to the three SBPSO-topology

pairs: gbest SBPSO, lbest SBPSO, and Von Neumann SBPSO.

5.4.3 Global best SBPSO

Figure 5.1 shows the histograms for the parameter sensitivity analysis on the gbest SBPSO resulting from

the procedure described in section 5.4.1.

2Note that, by construction, the parameter value bins for an individual parameter contain almost the same number of pa-
rameter value combinations. For parametersc1 andc2, the 128 combinations were divided over 10 equally sized bins, resulting
in 12 or 13 combinations in each bin. For parametersc3, c4, andk, the 128 combinations were divided over nine equally sized
bins, resulting in 14 or 15 combinations in each bin. By dividing the results in each bin by the total number of combinations in
the bin, the number of combinations with each label was changed instead into the fraction of all combinations with that label,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM85

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - k

(e)

Figure5.1: Sensitivity analysis of gbest SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

For gbest SBPSO, highc1 values led to better results: parameters in the rangec1 ≥ 0.8 covered

20% of the parameter space but accounted for more than 45% of label A (the best quantile) parameter

combinations. For thec1 bins withc1 < 0.4, only a few combinations were labeled A. For parameterc2,

the best results were found in the sub-range[0.3,0.6), which accounted for half the combinations labeled

A. Values forc2 up to 0.3 resulted in bad performance. Forc3 most of the best parameter values were

in the range[1.5,3.5), while the performance of those four bins was approximately the same. Forc4

parameter values between 1.5 and 4.0 scored best, with higher bins performing slightly better, except for

the[3.0,3.5) bin. Larger values ofk (indicating that a larger tournament was used to select each element

to add based on marginal objective function values) led to better results, but the difference across the bins

was quite small.

5.4.4 Local best SBPSO

Figure 5.1 shows the histograms for the parameter sensitivity analysis on the lbest SBPSO with neigh-

borhood size 4 resulting from the procedure described in section 5.4.1.

For lbest SBPSO, highc1 values led to better performance: parameters in the rangec1 ≥ 0.8 covered

20% of the parameter space but accounted for more than 47% of label A parameter value combinations.

Low c1 values had few results labeled A, especially those forc1 < 0.3. For parameterc2, the best

values were found in the range[0.5,0.6), but all bins withc2 > 0.4 scored comparably well, while

valuesc2 < 0.4 clearly performed worse. The bestc3 parameter values were in the range[1.0,2.5), and

performance worsened proportionally for parameter values further away from 2.0. Forc4, the two bins

[2.0,2.5) and [3.5,4.0) clearly had the most good results, while the parameter values between 2.5 and

so that results are better comparable across bins.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

86 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - k

(e)

Figure5.2: Sensitivity analysis of lbest SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

3.5 scored worse. Larger values ofk led to more good results, but onlyk = 1 clearly performed worse

based on the fraction of label A combinations. Combining label A and label B contributions resulted in

no significant difference between the performance of each of the nine values ofk: any value ofk led to

the same number of reasonable parameter value combinations.

5.4.5 Von Neumann SBPSO

Figure 5.3 shows the histograms for the parameter sensitivity analysis on the Von Neumann SBPSO

resulting from the procedure described in section 5.4.1.

For SBPSO with the Von Neumann topology, highc1 values led to better performance: parameters

in the rangec1 ≥ 0.8 covered 20% of the parameter space but accounted for more than 46% of good

parameter value combinations. Lowc1 values had few good parameter value combinations, especially

those forc1 < 0.3. For parameterc2, the best results were found in the range[0.5,0.6), but all bins with

c2 > 0.4 scored comparably well. Forc3, the best parameter values were in the range[1.5,2.5), and

performance worsened proportionally for parameter values further away from 2.0. Forc4 the two bins

[2.0,2.5) and[3.5,4.0) clearly had the best results, while the values between 2.5 and 3.5 scored worse.

Combining label A and label B, the valuesc4 < 1.5 scored worse, but all valuesc4 ≥ 1.5 performed

at least reasonably. For parameterk, high values led to a higher proportion of label A results, but all

valuesk≥ 6 scored comparably. Combining label A and label B contributions, there was no significant

difference between the performance of each of the nine values ofk: any value ofk led to the same number

of reasonable parameter value combinations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM87

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v
e

sc
o
re

s

parameter value bins - k

(e)

Figure5.3: Sensitivity analysis Von Neumann SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

5.4.6 Relative importance of SBPSO’s control parameters

There is no reason to assume that all SBPSO’s control parameters have an equal impact on performance.

The tuning experiments described above instead indicate that the five control parameters each effect per-

formance differently. For example, the conclusion in sections 5.4.3 to 5.4.5 for parameterk was that very

little difference was seen between values 1 through 9 with respect to reasonable-to-good performance.

In contrast, for parameterc1, values of 0.8 or higher clearly were an indication of better performance,

while values of 0.3 or lower were detrimental. Therefore, the performance of the SBPSO algorithm

on the MKP is more sensitive to parameterc1, than to parameterk. This section contains a systematic

investigation of the relative sensitivity of the five SBPSO parameters.

A measure of the distribution of performance of an individual parameter can serve as an indication

of the sensitivity of SBPSO to that parameter. As argued in section 5.4.1, most information about the

performance of an individual parameter can be gained from looking at “good” parameter value combina-

tions only, where good was defined as the best 25% (label A) parameter value combinations. Therefore,

for each individual parameter, the distribution of the label A combinations was used as a proxy for the

distribution of the performance.

For each parameter, and each of the three topologies, the distribution of label A combinations across

bins was converted to a single measurement using the following steps:

1. For each bin, the fraction of label A parameter value combinations was obtained, and the fractions

themselves were ordered from high to low.

2. The sum of thehighestfive fractions was labeledfractionhigh.

3. The sum of thelowestfive fractions was labeledfractionlow.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

88 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

4. The sensitivity score was then defined as the difference,fractionhigh− fractionlow.

Note that for parametersc3, c4, andk, only nine bins were used, such that the bin ranked fifth was

included in bothfractionhigh and fractionlow and drops out of the sensitivity score.

The sensitivity score ranges between 0% and 100%. A score of 0% means that all bins contained ex-

actly the same fraction of label A combinations, indicating that good parameter value combinations show

little to no sensitivity to the individual parameter. A score of 100% means that at least five bins contained

zero label A combinations, but that these combinations are instead concentrated in the remaining bins.

For this case, good parameter value combinations show a high sensitivity to the individual parameter.

Table 5.8 summarizes the resulting sensitivity score for each individual parameter, split by the topol-

ogy used, and ranks the sensitivity scores of the five parameters for each topology.

Table 5.8: Performance distribution per individual control parameter

parameter GB SBPSO rank GB LB SBPSO rank LB VN SBPSO rank VN

c1 58% (1) 52% (2) 48% (2)
c2 31% (4) 25% (4) 16% (5)
c3 53% (2) 62% (1) 65% (1)
c4 41% (3) 39% (3) 33% (3)
k 20% (5) 22% (5) 25% (4)

The sensitivity scores indicated that the performance of SBPSO had the highestsensitivity to control

parametersc1 (attraction to the personal best) andc3 (the maximum number of elements to add to the

solution set randomly). Hence, it can be concluded that, when applying SBPSO to the MKP, these two

parameters are the most important to be tuned well. This result held for all three topologies investigated.

All three topologies were the least sensitive to parametersc2 (attraction to the neighborhood best) andk

(the size of the tournament used).

Note that an equal amount of tuning effort was expended on all five SBPSO parameters: the process

described in section 5.3.1 meant finding the best out of 128 randomly chosen parameter value combina-

tions spread evenly across the five dimensional parameter space.

5.5 Experimental results

This section describes the results of the experiments conducted on the MKP. The benchmark problems

that are used in testing the tuned PSO algorithms were listed in section 5.2.1. The process used to tune

each of the twelve PSO algorithm-topology pairs on the small and large MKPs separately was outlined

in section 5.3. The experiments were split into those involving the small MKPs, with results given in

sections 5.5.1, and those involving the large MKPs with results given in section 5.5.2.

For both the small MKPs and the large MKPs, the respective results sections each contain five tables

comparing the performance of the algorithm-topology pairs: the first three tables each summarize and

compare the performance of the four PSO algorithms using a single topology. The fourth table compares

the results of each of the four PSO algorithms, across all of the topologies. The final table has more de-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM89

tailed results per problem and compares the four PSO algorithms using each algorithm’s best performing

topology.

The performance of the algorithm-topology pairs was compared for statistical significance using the

Iman-Davenport (ID) test and post-hoc analysis was conducted using the Nemenyi-test. Details on the

statistical procedure used can be found in appendix E.

TheZ-score from the ID-test, the associatedp-value, and the Holm-adjustedα are provided in the

bottom rows of each of the results tables. If ap-value is smaller than the corresponding Holmα , the

algorithm-topology pairunderperformedthe best pair in the comparison by a statistically significant

margin. For the best performing algorithm-topology pair, the average error or classification accuracy

is shown inbold. If the ID-test indicated a statistically significant difference in performance, but the

Nemenyi post-hoc tests did not indicate a single best pair, all algorithm-topology pairs that were indis-

tinguishable from the best are shown in bold.

5.5.1 Testing results for small MKP

This section list the results of the test experiments on the tuned algorithm-topology pairs on the small

MKPs, each using the parameters listed in table 5.4. First a comparison is made across algorithms for

each of the three topologies in section 5.5.1.1, to determine which algorithm performs best when using

the same topology. Following this, in section 5.5.1.2 a comparison is made across topologies for each of

the four PSO algorithms, to determine which topology is best for use with each PSO algorithm on the

small MKPs.

Both sections 5.5.1.1 and 5.5.1.2 are split into subsections per topology and algorithm respectively.

Each such subsection contains a table with a summary of the results. Appendix A provides the same

comparisons on the level of single problems used in testing.

5.5.1.1 Results per topology

This section compares the performance of the four PSO algorithms on the small MKPs by topology: the

star topology in section 5.5.1.1.1, the ring topology in section 5.5.1.1.2, and the Von Neumann topology

in section 5.5.1.1.3.

Each section contains a table listing the average and standard deviation of the error (the best fitness

found compared to the known optimum), and the average rank of the errors. This is followed by the

average and standard deviation of the success rate (shortened SR in the tables), and the average rank of

the success rate. The success rate of an algorithm-topology pair on a single MKP was defined as the

percentage of independent runs that were successful in finding the optimum. The next two rows in each

table shed light on the consistency of the algorithm: the row labeled “# perfect” reports the number of

problems for which all independent runs found the optimum, and the row labeled “# failure” reports the

number of problems for which all independent runs failed to find the optimum.

For the algorithm-topology comparisons that are reported in each of the tables in this section, the

ID-test indicated that the median performance showed statistically significant differences. Hence, in all

three cases, post-hoc tests were conducted and the results are reported at the bottom of the respective

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

90 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

tables.

5.5.1.1.1 Star topology Table 5.9 shows that the gbest SBPSO outperformed the other three algo-

rithms with a star topology by a statistically significant margin. If success rate was used as the perfor-

mance measure instead of average error, gbest SBPSO also performed best in a statistically significant

manner (p-values andα ’s are not shown). The average success rate of gbest SBPSO was 82.5%, while

the second best performer was gbest PBPSO with an average success rate of 51.4%.

Table 5.9: Summary of small MKP test results for the star topology. Bold face indicates statistically
significant outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error 1.117 % (2.80) 1.089 % (3.56) 0.628 % (2.45) 0.444 % (1.19)
stdev error 1.913 % 1.592 % 1.625 % 1.640 %

average SR 42.8 % (2.81) 29.9 % (3.38) 51.4 % (2.50) 82.5 % (1.31)
stdev SR 41.3 % 34.7 % 35.1 % 31.8 %

perfect 5 (2.5) 3 (4) 5 (2.5) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.58 8.21 4.36
p-value 0.0000 0.0000 0.0000
Holm α 0.0250 0.0500 0.0167

For all 40 problems, the success rate for the gbest SBPSO exceeded or matchedthat of the other three

gbest PSO algorithms. Gbest SBPSO was also more consistent than the other gbest PSO algorithms, as

the optimum was found in all independent runs for 21 out of 40 problems. For the other three algorithms,

the optimum was found in all independent runs for at most five problems.

5.5.1.1.2 Ring topology Table 5.10 shows that the lbest SBPSO outperformed the other three algo-

rithms with a ring topology by a statistically significant margin. If success rate was used as the perfor-

mance measure instead of average error, lbest SBPSO also performed best in a statistically significant

manner. The average success rate of lbest SBPSO was 81.9%, while the second best performer was lbest

PBPSO, scoring an average success rate of 63.4%.

For 38 out of 40 problems, the success rate for the lbest SBPSO exceeded or matched that for the

other three lbest PSO algorithms. Lbest SBPSO was also more consistent than the other local best PSO

algorithms, as the optimum was found in all independent runs for 23 out of the 40 problems. For the

other three algorithms, the optimum was found in all independent runs for at most 12 problems. Note

that the number of problems solved perfectly by lbest PBPSO (that is, 12) is significantly higher than

was the case for the gbest PBPSO (that is, five).

5.5.1.1.3 Von Neumann topology Table 5.11 shows that SBPSO with a Von Neumann topology out-

performed the other three PSO algorithms by a statistically significant margin. If success rate was used

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM91

Table 5.10: Summary of small MKP test results for the ring topology. Bold face indicatesstatistically
significant outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error 0.841 % (2.95) 0.639 % (3.35) 0.521 % (2.31) 0.440 % (1.39)
stdev error 1.716 % 1.620 % 1.634 % 1.641 %

average SR 50.3 % (2.93) 45.7 % (3.24) 63.4 % (2.28) 81.9 % (1.56)
stdev SR 43.3 % 37.4 % 36.8 % 33.2 %

perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.40 6.79 3.19
p-value 0.0000 0.0000 0.0007
Holm α 0.0250 0.0500 0.0167

as the performance measure instead of average error, SBPSO with a Von Neumanntopology also per-

formed best in a statistically significant manner. The average success rate of the Von Neumann SBPSO

was 82.7%, while the second best performer was the Von Neumann PBPSO with an average success rate

of 64.8%.

Table 5.11: Summary of small MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
BPSO VN MBPSO VN PBPSO VN SBPSO VN

problem error (rank) error (rank) error (rank) error (rank)

average error 0.609 % (2.81) 0.613 % (3.45) 0.510 % (2.28) 0.439 % (1.46)
stdev error 1.635 % 1.623 % 1.633 % 1.641 %

average SR 56.6 % (2.76) 48.6 % (3.31) 64.8 % (2.36) 82.7 % (1.56)
stdev SR 41.1 % 35.3 % 36.8 % 32.6 %

perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

Z-score 4.68 6.89 2.84
p-value 0.0000 0.0000 0.0023
Holm α 0.0250 0.0500 0.0167

For 37 out of the 40 problems the success rate for SBPSO with the Von Neumanntopology exceeded

or matched that for the other three PSO algorithms. SBPSO was also more consistent than the other PSO

algorithms using the Von Neumann topology, as the optimum was found in all independent runs for 23

out of 40 problems. For the other three algorithms, the optimum was found in all independent runs for at

most 12 problems. The number of problems solved perfectly by PSO algorithms using the Von Neumann

topology closely matched the results for the corresponding lbest PSO algorithms, with only lbest BPSO

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

92 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

(seven out of 40) scoring differently than BPSO with the Von Neumann topology(nine out of 40).

A problem by problem comparison of the four algorithms each using the Von Neumann topology

can be found in table A.9 in appendix A. The four problems for which SBPSO with the Von Neumann

topology failed to find the optimum in all independent runs are mknap2-6, mknap2-11, mknap2-13, and

mknap2-18. The other 11 algorithm-topology pairs all similarly failed for these four problems. For

the algorithm-topology pairs combining the Von Neumann topology with SBPSO, PBPSO, and MBPSO

respectively, these four problems were also the only failures. For the Von Neumann-BPSO pair, addi-

tionally problems mknap2-43 and mknap2-47 caused failures.

Combining the results shown in tables 5.9, 5.10, and 5.11 one can seen that for each of the four PSO

algorithms the Von Neumann topology performed best.

5.5.1.2 Results per algorithm

This section compares the performance of the four PSO algorithms on the small MKPs by algorithm:

BPSO in section 5.5.1.2.1, MBPSO in section 5.5.1.2.2, PBPSO in section 5.5.1.2.3, and SBPSO in

section 5.5.1.2.4. Each section contains a table listing the results of the experiment by algorithm. These

tables are constructed as described in section 5.5.1.1, but here each table compares results across all

algorithm-topology pairs that involve the same algorithm.

For three out of the four algorithm-topology comparisons (BPSO, MBPSO, PBSPO) that are reported

in this section, the ID-test indicated that the median performance showed statistically significant differ-

ences. In these cases, post-hoc tests were conducted and the results are reported at the bottom of the

respective tables. For SBPSO no statistically significant difference was found between the performance

of using either of the three topologies with SBPSO.

5.5.1.2.1 BPSO Table 5.12 compares the results of the BPSO algorithm on the small MKP for the

three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.12: Summary of small MKP test results across topologies for BPSO. Bold face indicates statis-
tically significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)

avg error 1.117 % (2.65) 0.841 % (1.80) 0.609 % (1.55)
stdev error 1.913 % 1.716 % 1.635 %

average SR 42.8 % (2.45) 50.3 % (2.03) 56.6 % (1.53)
stdev SR 41.3 % 43.3 % 41.1 %

perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)

Z-score 4.92 1.12
p-value 0.0000 0.1314
Holm α 0.0500 0.0250

For BPSO the ID-test yielded ap-value less than 0.0001, indicating that a statistically significant

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM93

difference in performance existed. It was the star topology that underperformed,while the difference in

performance between the ring topology and the Von Neumann topology yielded ap-value of 0.1314 using

the Nemenyi post-hoc test at a Holmα of 0.0250. Therefore, although Von Neumann BPSO performed

best, the difference in error with lbest BPSO was not statistically significant. The Von Neumann BPSO

also scored best on the average success rate, the number of problems solved perfectly, and the number of

problems on which the algorithm failed.

5.5.1.2.2 MBPSO Table 5.13 compares the results of the MBPSO algorithm on the small MKP for

the three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.13: Summary of small MKP test results across topologies for MBPSO. Bold face indicates
statistically significant outperformance.

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)

avg error 1.089 % (2.93) 0.639 % (1.65) 0.613 % (1.43)
stdev error 1.592 % 1.620 % 1.623 %

average SR 29.9 % (2.78) 45.7 % (1.68) 48.6 % (1.55)
stdev SR 34.7 % 37.4 % 35.3 %

perfect 3 (3) 4 (1.5) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)

Z-score 6.71 0.98
p-value 0.0000 0.1635
Holm α 0.0500 0.0250

For MBPSO the ID-test yielded ap-value less than 0.0001, indicating that a statistically significant

difference in performance existed. It was the star topology that underperformed, while the difference

in performance between the ring topology and the Von Neumann topology yielded ap-value of 0.1635

using the Nemenyi post-hoc test at a Holmα of 0.0250. Therefore, although Von Neumann MBPSO

performed best, the difference in error with lbest MBPSO was not statistically significant. There was

little difference in the number of problems which the MBPSO algorithm-topology pairs solved perfectly,

and no difference at all in the number of problems on which they failed. With reference to success rate,

gbest MBPSO clearly underperformed lbest MBPSO and Von Neumann MBPSO.

5.5.1.2.3 PBPSO Table 5.14 compares the results of the PBPSO algorithm on the small MKP for the

three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

For PBPSO the ID-test yielded ap-value less than 0.0001, indicating that a statistically significant

difference in performance existed. It was the star topology that underperformed, while the difference

in performance between the ring topology and the Von Neumann topology yielded ap-value of 0.1515

using the Nemenyi post-hoc test at a Holmα of 0.0250. Therefore, although Von Neumann PBPSO

performed best, the difference in error with lbest PBPSO was not statistically significant. In all listed

measures, gbest PBPSO clearly underperformed, while there was very little difference between lbest

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

94 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.14: Summary of small MKP test results across topologies for PBPSO. Boldface indicates
statistically significant outperformance.

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.628 % (2.68) 0.521 % (1.78) 0.510 % (1.55)
stdev error 1.625 % 1.634 % 1.633 %

average SR 51.4 % (2.4) 63.4 % (1.9) 64.8 % (1.7)
stdev SR 35.1 % 36.8 % 36.8 %

perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)

Z-score 5.05 1.03
p-value 0.0000 0.1515
Holm α 0.0500 0.0250

PBPSO and the Von Neumann PBPSO, with tied scores in the number of perfectly solved problems as

well as the number of problems on which they both failed.

5.5.1.2.4 SBPSO Table 5.15 compares the results of the SBPSO algorithm on the small MKP for the

three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.15: Summary of small MKP test results across topologies for SBPSO. Bold face indicates
statistically significant outperformance.

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.444 % (2.13) 0.440 % (2.01) 0.439 % (1.86)
stdev error 1.640 % 1.641 % 1.641 %

average SR 82.5 % (2.09) 81.9 % (2.04) 82.7 % (1.88)
stdev SR 31.8 % 33.2 % 32.6 %

perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)

Z-score 1.21 0.67
p-value 0.1131 0.2514
Holm α 0.0500 0.0250

For SBPSO, the ID-test yielded ap-value of 0.5134, which indicated that the null hypothesis of equal

performance of gbest SBPSO, lbest SBPSO, and Von Neumann SBPSO wasnot rejected. Therefore,

no statistically significant difference in performance could be found between the three topologies for

SBPSO.

The listed measures for SBPSO all indicated that there was little difference in performance between

the three SBPSO algorithm-topology pairs: the relative difference in the average errors of the three pairs

was 1.1%, while the relative difference in the average success rate of the three pairs was 1.0%. Only the

number of problems solved perfectly showed some differentiation, as gbest SBPSO solved 21 out of the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM95

40 problems perfectly, while lbest SBPSO completely solved 23 problems, and VonNeumann SBPSO

25 problems.

Excluding the four problems on which SBPSO completely failed to find the optimum (a success

rate of 0%), thelowest success raterecorded for SBPSO on any of the remaining 36 problems was

reasonable: 50% for gbest SBPSO (average success rate on the 36 problems of 89.2%), 20% for lbest

SBPSO (average success rate of 88.5%), and 30% for SBPSO using the Von Neumann topology (average

success rate of 89.4%). Thus SBPSO can be said to be successful not only in achieving a low average

error, but it is able to find the actual optimum in a good portion of the independent runs. Gbest SBPSO

score best of all twelve algorithm-topology pairs in this measure of minimum success rate, although not

by a significant margin.

5.5.2 Testing results for large MKP

This section list the results of the test experiments on the tuned algorithm-topology pairs on the large

MKP, each using the parameters listed in table 5.6. First a comparison is made across algorithms for

each of the three topologies in section 5.5.2.1, to determine which algorithm performs best when using

the same topology. Following this, in section 5.5.2.2 a comparison is made across topologies for each of

the four PSO algorithms, to determine which topology is best for use with each PSO algorithm on the

large MKP. Finally, a comparison is made between four algorithm-topology pairs, one for each of the

four PSO algorithms combined with the topology that performed best for that algorithm. The results of

this comparison are given in section 5.5.2.3.

Both sections 5.5.2.1 and 5.5.2.2 are split further into subsections per topology and algorithm respec-

tively. Each such subsection contains a table with a summary of the results. Appendix B provides the

same comparisons on the level of single problems used in testing.

5.5.2.1 Results per topology

This section shows the results of the test experiments performed on the large MKP, comparing perfor-

mance of the four PSO algorithms (BPSO, MBPSO, PBPSO, and SBPSO) across one topology at a time.

Results are summarized in three tables 5.16, 5.17, and 5.18 for the star, ring, and Von Neumann topol-

ogy respectively. Each table lists the average and standard deviation of the error (the best fitness found

compared to the LP relaxation bound), and the average rank of the errors. The average error is shown on

three different cross-sections of the problem set:

1. The number of items,n, with values 100, 250, and 500.

2. The number of constraints,m, with values 5, 10, and 30.

3. The tightness ratio,r, with values 0.25, 0.50, and 0.75.

Please refer to section 2.3 for details on these parameters and the problem set.

The ID-test indicated that, for the algorithm-topology comparisons that are reported in each of the

tables, the median performance showed statistically significant differences. Hence, where required post-

hoc tests were conducted and the results are reported at the bottom of the respective tables.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

96 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.5.2.1.1 Star topology Table5.16 summarizes the large MKP results for the four PSO algorithms,

each using the star topology. The table shows that the gbest SBPSO was the best performing algorithm:

it scored the smallest average error of 1.74%, and the average rank of the error shown on the same

line was exactly 1, meaning that gbest SBPSO was the best performing algorithm on each of the 243

test problems. The post-hoc tests showed that the outperformance of gbest SBPSO was also statistically

significant: pair-wise comparisons with the three other PSO algorithms yieldedZ-scores above 10, which

resulted inp-values smaller than 10−22. Gbest PBPSO was the second best performer on 193 problems,

gbest BPSO performed second best for the remaining 50 problems, and gbest MBPSO usually ranked

last out of the four algorithm-topology pairs.

Table 5.16: Summary of large MKP test results for the star topology. Bold face indicates statistically
significant outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 4.679 % (2.909)5.619 % (3.885)3.250 % (2.206)1.740 % (1.000)
stdev error 3.468 % 2.723 % 1.718 % 1.170 %

n 100 3.831 % (2.877)5.160 % (3.889)2.568 % (2.235)1.260 % (1.000)
n 250 4.679 % (2.877)5.663 % (3.889)3.286 % (2.235)1.758 % (1.000)
n 500 5.526 % (2.975)6.034 % (3.877)3.896 % (2.148)2.201 % (1.000)

m 5 3.037 % (2.383)4.354 % (4.000)3.134 % (2.617)1.875 % (1.000)
m 10 3.942 % (3.012)5.521 % (3.988)2.763 % (2.000)1.553 % (1.000)
m 30 7.057 % (3.333)6.983 % (3.667)3.853 % (2.000)1.791 % (1.000)

r 0.25 8.253 % (3.122)8.664 % (3.659)5.264 % (2.220)3.141 % (1.000)
r 0.50 3.751 % (2.831)5.344 % (4.000)2.799 % (2.169)1.355 % (1.000)
r 0.75 1.909 % (2.769)2.712 % (4.000)1.613 % (2.231)0.676 % (1.000)

Z-score 16.30 24.63 10.30
p-value 0.0000 0.0000 0.0000
Holm α 0.0250 0.0500 0.0167

The relative performance of the four PSO algorithms using the star topology wasstable across each

of the three splits of the problem set, with gbest SBPSO> gbest PBPSO> gbest BPSO> gbest MBPSO

in each individual split except one: for the 243/3= 81 problems withm= 5, gbest BPSO (average rank

2.383) scored better than gbest PBPSO (average rank 2.617). Here the symbol ‘>’ is used to mean “has

a lower (better) average rank than”.

A difference in performance was seen with regards to the split of the problems based on the number

of items,n: a larger number of items led to a higher average error for each of the gbest PSO algorithms.

However, this effect was not equally strong for each of the algorithms: for problems withn = 500

compared to those withn = 100, the average error of gbest SBPSO was 75% higher, while for gbest

MBPSO the increase in average error was only 16%.

Problems with tightness ratior = 0.25 were most challenging for all gbest PSO algorithms, with the

average error substantially higher than for problems withr = 0.50 or 0.75. A smallerr means that each

of themweight constraints is more restrictive (lower capacity), which,in general, has two effects on the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM97

optimal solution compared to that for problems with a higher tightness ratio:

1. the optimal solution using a smallr contains fewer items, and

2. the fitness value at the optimum using a smallr is lower, as fewer items are included in the knap-

sack.

Detailed results for the star topology on the large MKPs can be found in table B.7 in appendix B.

5.5.2.1.2 Ring topology Table 5.17 summarizes the large MKP results for the four PSO algorithms,

each using the ring topology. The table shows that the lbest SBPSO was the best performing algorithm

with an average rank of 1.333. The ID-test and post-hoc tests confirmed that lbest SBPSO outperformed

each of the other three pairs, but the difference in performance between lbest SBPSO and lbest PBPSO

was smaller than that seen between gbest SBPSO and gbest PBPSO in table 5.16.

Table 5.17: Summary of large MKP test results for the ring topology. Bold face indicates statistically
significant outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 7.006 % (3.737)3.922 % (2.959) 3.650 % (1.971)2.292 % (1.333)
stdev error 5.037 % 2.059 % 2.591 % 1.331 %

n 100 6.348 % (3.778)3.044 % (2.852) 3.101 % (2.037)1.767 % (1.333)
n 250 6.951 % (3.753)3.917 % (2.938) 3.626 % (1.975)2.366 % (1.333)
n 500 7.719 % (3.679)4.805 % (3.086) 4.221 % (1.901)2.743 % (1.333)

m 5 3.091 % (3.210)3.289 % (3.790)1.994 % (1.000) 2.334 % (2.000)
m 10 7.520 % (4.000)3.654 % (2.963) 3.112 % (2.037)2.075 % (1.000)
m 30 10.407 % (4.000)4.824 % (2.123) 5.842 % (2.877)2.468 % (1.000)

r 0.25 11.961 % (3.829)6.185 % (2.817) 6.059 % (2.024)3.893 % (1.329)
r 0.50 5.817 % (3.723)3.608 % (3.060) 3.066 % (1.892)1.957 % (1.325)
r 0.75 3.063 % (3.654)1.878 % (3.000) 1.738 % (2.000)0.966 % (1.346)

Z-score 20.53 13.88 5.45
p-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

The relative performance of the four PSO algorithms using the ring topology wasstable across each

of the three splits of the problem set into three subsets, with lbest SBPSO> lbest PBPSO> lbest MBPSO

> lbest BPSO, except for two cases:

1. for the problems withm= 5, lbest PBPSO (average rank 1.000) scored better than lbest SBPSO

(average rank 2.000) on all 81 problems in the subset, while lbest BPSO (average rank 3.210)

scored better than lbest MBPSO (average rank 3.790), and

2. for the problems withm= 30, lbest MBPSO (average rank 2.123) scored better than lbest PBPSO

(average rank 2.877).

The relative performance of the lbest MBPSO and lbest PBPSO algorithm-pairs was correlated with

the number of constraints,m: lbest MBPSO performed relatively better for an increasing number of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

98 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

constraints, while lbest PBPSO performed relatively worse with increasingm. For both lbest PBPSO

and lbest MBPSO the average error increased whenm increased, but for lbest PBPSO this deterioration

was worse. For all the lbest PSO algorithms, the average error was most sensitive to changes inr.

A possible explanation for lbest PBPSO having outperformed lbest SBPSO on problems withm= 5,

is that the lbest SBPSO algorithm was better tuned to the problems with a larger number of constraints

(m= 10 or 30), while the lbest PBPSO algorithm was better tuned for problems with fewer constraints.

An alternative explanation is that thek-tournament selection used in LB SBPSO helped the particles to

stay in the feasible part of the solution space. This feature has extra value in the case of a larger number

of constraints, where particles will encounter the edge of the feasible part of the solution space more

often.

Detailed results for the ring topology on the large MKPs can be found in table B.8 in appendix B.

5.5.2.1.3 Von Neumann topology Table 5.18 shows that the Von Neumann SBPSO was the best

performing algorithm with an average rank of 1.342. The ID-test and post-hoc tests confirmed that the

Von Neumann SBPSO outperformed each of the other three pairs, with the Von Neumann PBPSO scoring

second best. The difference in performance between the Von Neumann SBPSO and the Von Neumann

PBPSO was approximately the same as seen between lbest SBPSO and lbest PBPSO in table 5.17.

Table 5.18: Summary of large MKP test results for the von Neumann topology. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 6.973 % (3.823)3.403 % (2.811) 3.348 % (2.025)2.249 % (1.342)
stdev error 5.039 % 1.742 % 2.533 % 1.275 %

n 100 6.291 % (3.815)2.647 % (2.790) 2.762 % (2.049)1.772 % (1.346)
n 250 6.920 % (3.864)3.418 % (2.765) 3.330 % (2.037)2.294 % (1.333)
n 500 7.707 % (3.790)4.145 % (2.877) 3.954 % (1.988)2.680 % (1.346)

m 5 3.076 % (3.469)2.980 % (3.506)1.783 % (1.000) 2.433 % (2.025)
m 10 7.465 % (4.000)3.191 % (2.914) 2.847 % (2.086)2.046 % (1.000)
m 30 10.377 % (4.000)4.039 % (2.012) 5.416 % (2.988)2.266 % (1.000)

r 0.25 11.943 % (3.976)5.382 % (2.610) 5.739 % (2.085)3.789 % (1.329)
r 0.50 5.775 % (3.855)3.089 % (2.819) 2.693 % (2.000)1.917 % (1.325)
r 0.75 3.023 % (3.628)1.658 % (3.013) 1.533 % (1.987)0.981 % (1.372)

Z-score 21.18 12.54 5.83
P-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

The relative behavior of the four PSO algorithms using the Von Neumann topologywas the same as

that seen for the lbest PSO algorithms in table 5.17: across each of the three splits of the problem set, the

result was Von Neumann SBPSO> Von Neumann PBPSO> Von Neumann MBPSO> Von Neumann

BPSO in each individual split, except for two cases:

1. for the problems withm= 5, the Von Neumann PBPSO (average rank 1.000) performed best on

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM99

all 81 problems in the subset, with the Von Neumann SBPSO (average rank 2.025)scoring second

best. Also the Von Neumann BPSO (average rank 3.469) narrowly outperformed the Von Neumann

MBPSO (average rank 3.506), and

2. for the problems withm= 30, the Von Neumann MBPSO (average rank 2.012) scored better than

the Von Neumann PBPSO (average rank 2.988).

Detailed results for the Von Neumann topology on the large MKPs can be found in table B.9 in

appendix B.

5.5.2.2 Results per algorithm

This section shows the results of the test experiments performed on the large MKP, comparing perfor-

mance of the three topologies (star, ring, and Von Neumann) across one PSO algorithm at a time. Results

are summarized in four tables 5.19, 5.20, 5.21, and 5.22 for BPSO, MBPSO, PBPSO, and SBPSO respec-

tively. Each table lists the average and standard deviation of the error (the best fitness found compared

to the LP relaxation bound), and the average rank of the errors. The average error is shown on three

different cross-sections of the problem set:

1. The number of items,n, with values 100, 250, and 500.

2. The number of constraints,m, with values 5, 10, and 30.

3. The tightness ratio,r, with values 0.25, 0.50, and 0.75.

Please refer to section 2.3 for details on these parameters and the problem set.

The ID-test indicated that, for all the algorithm-topology comparisons reported in this section, the

median performance showed statistically significant differences. Hence, post-hoc tests were conducted

and the results are reported at the bottom of the respective tables resulting in each case in one topology

outperforming the other two.

5.5.2.2.1 BPSO Results comparing the BPSO algorithm across three different topologies on the large

MKPs are given in table 5.19. The gbest BPSO performed much better than BPSO using either of the

other two topologies. The average error was 4.68% for gbest BPSO, with lbest BPSO and the Von

Neumann BPSO scoring 7.01% and 6.97% respectively. The gbest BPSO scored best on 198 out of

243 problems, but was outperformed on problems with few constraints (m= 5) combined with a high

tightness ratio ofr = 0.75. Here gbest BPSO performed worst out of the three BPSO pairs on the entire

subset of 27 problems. For problems withm= 5 andr = 0.5, gbest BPSO’s performance was comparable

to the other two pairs and yielded an average rank of 1.944. Detailed results for the BPSO algorithm on

the large MKPs can be found in table B.11 in appendix B.

5.5.2.2.2 MBPSO Results comparing the MBPSO algorithm across three different topologies on the

large MKPs are given in table 5.20. For MBPSO, the relative performance of the three topologies was

very stable across the entire problem set with the Von Neumann MBPSO scoring the best (with an average

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

100 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.19: Summary of large MKP test results across topologies for BPSO. Boldface indicates statis-
tically significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)

average error 4.679 % (1.340) 7.006 % (2.510) 6.973 % (2.150)
stdev error 3.468 % 5.000 % 5.000 %

n 100 3.831 % (1.296) 6.348 % (2.537) 6.291 % (2.167)
n 250 4.679 % (1.327) 6.951 % (2.531) 6.920 % (2.142)
n 500 5.526 % (1.395) 7.719 % (2.451) 7.707 % (2.154)

m 5 3.037 % (2.019) 3.091 % (2.179) 3.076 % (1.802)
m 10 3.942 % (1.000) 7.520 % (2.704) 7.465 % (2.296)
m 30 7.057 % (1.000) 10.407 % (2.636) 10.377 % (2.364)

r 0.25 8.253 % (1.037) 11.961 % (2.555) 11.943 % (2.409)
r 0.50 3.751 % (1.307) 5.817 % (2.530) 5.775 % (2.163)
r 0.75 1.909 % (1.692) 3.063 % (2.429) 3.023 % (1.878)

p-value 0.0000 0.0000
Holm α 0.0250 0.0167

rank of 1.010), lbest MBPSO achieved an average rank of 1.990, and gbestMBPSO scored worst on all

problems. The Von Neumann MBPSO failed to outperform lbest MBPSO on only three of the 243

problems. Detailed results for the MBPSO algorithm on the large MKPs can be found in table B.12 in

appendix B.

Table 5.20: Summary of large MKP test results across topologies for MBPSO. Bold face indicates
statistically significant outperformance.

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)

average error 5.619 % (3.000) 3.922 % (1.990) 3.403 % (1.010)
stdev error 2.723 % 2.100 % 1.700 %

n 100 5.160 % (3.000) 3.044 % (1.988) 2.647 % (1.012)
n 250 5.663 % (3.000) 3.917 % (2.000) 3.418 % (1.000)
n 500 6.034 % (3.000) 4.805 % (1.975) 4.145 % (1.025)

m 5 4.354 % (3.000) 3.289 % (1.963) 2.980 % (1.037)
m 10 5.521 % (3.000) 3.654 % (2.000) 3.191 % (1.000)
m 30 6.983 % (3.000) 4.824 % (2.000) 4.039 % (1.000)

r 0.25 8.664 % (3.000) 6.185 % (2.000) 5.382 % (1.000)
r 0.50 5.344 % (3.000) 3.608 % (1.988) 3.089 % (1.012)
r 0.75 2.712 % (3.000) 1.878 % (1.974) 1.658 % (1.026)

p-value 0.0000 0.0000
Holm α 0.0250 0.0167

5.5.2.2.3 PBPSO Resultscomparing the PBPSO algorithm across three different topologies on the

large MKPs are given in table 5.21. The Von Neumann PBPSO performed best with reference to the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM101

average rank of errors, with an average rank of 1.5. However, gbestPBPSO achieved a lower average

error, scoring 3.25% while the Von Neumann PBPSO had an average error of 3.35%. This can be

explained by the more consistent behavior of gbest PBPSO: its standard deviation of the error was 1.72%,

while for the Von Neumann PBPSO this was 2.5%. The Von Neumann PBPSO scored well for problems

with m= 5, but scored badly for problems withm= 30: the difference in average error on the two subsets

was 5.42%−1.78%= 3.63%. For gbest PBPSO the sensitivity to the problem parameterm was much

smaller, and the difference between the subset on which it performed best (m= 10) and worst (m= 30)

was only 3.85%−2.76%= 1.09%. Detailed results for the PBPSO algorithm on the large MKPs can be

found in table B.13 in appendix B.

Table 5.21: Summary of large MKP test results across topologies for PBPSO. Bold face indicates
statistically significant outperformance.

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)

average error 3.250 % (1.860) 3.650 % (2.650) 3.348 % (1.500)
stdev error 1.718 % 2.600 % 2.500 %

n 100 2.568 % (1.790) 3.101 % (2.667) 2.762 % (1.543)
n 250 3.286 % (1.864) 3.626 % (2.654) 3.330 % (1.481)
n 500 3.896 % (1.914) 4.221 % (2.617) 3.954 % (1.469)

m 5 3.134 % (3.000) 1.994 % (2.000) 1.783 % (1.000)
m 10 2.763 % (1.568) 3.112 % (2.951) 2.847 % (1.481)
m 30 3.853 % (1.000) 5.842 % (2.988) 5.416 % (2.012)

r 0.25 5.264 % (1.695) 6.059 % (2.646) 5.739 % (1.659)
r 0.50 2.799 % (1.904) 3.066 % (2.663) 2.693 % (1.434)
r 0.75 1.613 % (1.974) 1.738 % (2.628) 1.533 % (1.397)

p-value 0.0011 0.0000
Holm α 0.0167 0.0250

5.5.2.2.4 SBPSO Resultscomparing the SBPSO algorithm across three different topologies on the

large MKPs are given in table 5.22. The star topology was most successful, with gbest SBPSO perform-

ing best on all 243 problems. Little difference in performance was observed between lbest SBPSO and

the Von Neumann SBPSO, which is probably related to the fact that the same control parameter values

were used for both pairs (refer to table 5.6 for the parameter values). Hence, the only difference between

the pairs was that the Von Neumann SBPSO has a more closely connected swarm compared to lbest

SBPSO. Only for the split of the problem set based on the number of constraints,m, some difference in

performance was seen between lbest SBPSO and the Von Neumann SBPSO, where lbest SBPSO per-

formed better on problems withm= 5, and the Von Neumann PBPSO performed better on problems

with m= 30. Considering the number of constraints, both lbest SBPSO and the Von Neumann SBPSO

performed best on the subset of problems withm= 10. Having a more closely connected swarm helped

the Von Neumann SBPSO on problems with more constraints. Detailed results for the SBPSO algorithm

on the large MKPs can be found in table B.14 in appendix B.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

102 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.22: Summary of large MKP test results across topologies for SBPSO. Boldface indicates
statistically significant outperformance.

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)

average error 1.740 % (1.000) 2.292 % (2.570) 2.249 % (2.430)
stdev error 1.170 % 1.300 % 1.300 %

n 100 1.260 % (1.000) 1.767 % (2.519) 1.772 % (2.481)
n 250 1.758 % (1.000) 2.366 % (2.636) 2.294 % (2.364)
n 500 2.201 % (1.000) 2.743 % (2.543) 2.680 % (2.457)

m 5 1.875 % (1.000) 2.334 % (2.173) 2.433 % (2.827)
m 10 1.553 % (1.000) 2.075 % (2.549) 2.046 % (2.451)
m 30 1.791 % (1.000) 2.468 % (2.975) 2.266 % (2.025)

r 0.25 3.141 % (1.000) 3.893 % (2.659) 3.789 % (2.341)
r 0.50 1.355 % (1.000) 1.957 % (2.566) 1.917 % (2.434)
r 0.75 0.676 % (1.000) 0.966 % (2.468) 0.981 % (2.532)

p-value 0.0000 0.0000
Holm α 0.0250 0.0167

5.5.2.3 Compare best topology per algorithm

Theresults in the previous sections showed that, for each PSO algorithm, a single topology performed

best by a statistically significant margin: for MBPSO and PBPSO the Von Neumann topology scored

best, while for BPSO and SBPSO it was the star topology that scored best. In order to see which

algorithm has performed best on solving the large MKP, regardless of which topology was chosen, these

four best algorithm-topology pairs are compared in this section. Note that a similar comparison was not

performed for the small MKPs in section 5.5.1, as the Von Neumann topology was the best performing

topology for each of the four PSO algorithms on the small MKPs.

A detailed comparison of the four PSO algorithms, each using its best performing topology, is

given in table 5.23. The four best performing algorithm-topology pairs are gbest BPSO, Von Neu-

mann MBPSO, Von Neumann PBPSO, and gbest SBPSO. With an average error of 1.72%, gbest SBPSO

scored better than the other three pairs, with the second best pair, Von Neumann PBPSO, scoring an av-

erage error of 3.32 %. The ID-test followed by post-hoc tests indicated that gbest SBPSO outperformed

the other three pairs by a statistically significant margin.

For gbest SBPSO, the average rank was 1.26, followed by Von Neumann PBPSO, Von Neumann

MBPSO, and gbest BPSO with average ranks of 2.13, 2.81, and 3.80 respectively. The gbest SBPSO had

the lowest error on 179 of the 243 problems, and was second best on the remaining 64, for which the

Von Neumann PBPSO scored best each time. Gbest BPSO performed worst on 194 problems, and the

second worst on the remaining 47.

Each of the first 27 rows of table 5.23 represents results for the subset of nine problems that cor-

respond to the given MKP parametersn,m, andr. For all 27 problem subsets, the ID-test indicated a

difference in performance across the four algorithm-topology pairs. However, in only two cases was a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM103

single algorithm-topology pair shown to outperform the other three3: GbestSBPSO statistically outper-

formed forn= 100,m= 10, r = 0.25 andn= 250,m= 10,α = 0.25.

Table 5.23: Summary of large MKP test results for the best algorithm-topology pairs per algorithm.
Bold face indicates statistically significant outperformance.

GB BPSO VN MBPSO VN PBPSO GB SBPSO
n m r error (rank) error (rank) error (rank) error (rank)

100 5 0.25 3.772 % (3.67) 3.625 % (3.33) 1.757 % (1) 1.951 % (2)
100 5 0.50 1.835 % (3.56) 1.774 % (3.44) 0.796 % (1) 0.873 % (2)
100 5 0.75 1.155 % (3.89) 1.077 % (3.11) 0.504 % (1.56) 0.505 % (1.44)

100 10 0.25 5.334 % (4) 4.064 % (2.56) 4.052 % (2.44) 2.181 % (1)
100 10 0.50 2.384 % (4) 2.160 % (3) 1.868 % (2) 0.853 % (1)
100 10 0.75 1.217 % (3.56) 1.206 % (3.44) 1.031 % (2) 0.399 % (1)

100 30 0.25 11.396 % (4) 5.132 % (2) 8.411 % (3) 2.773 % (1)
100 30 0.50 4.786 % (4) 3.057 % (2) 3.902 % (3) 1.195 % (1)
100 30 0.75 2.327 % (3.13) 1.566 % (2) 2.364 % (3.88) 0.540 % (1)

250 5 0.25 5.182 % (3.67) 4.995 % (3.33) 3.066 % (1) 3.294 % (2)
250 5 0.50 2.680 % (3.67) 2.617 % (3.33) 1.437 % (1) 1.541 % (2)
250 5 0.75 1.390 % (3.67) 1.362 % (3.33) 0.740 % (1.56) 0.735 % (1.44)

250 10 0.25 6.917 % (4) 4.895 % (2.67) 4.801 % (2.33) 2.845 % (1)
250 10 0.50 3.161 % (3.95) 2.904 % (3.05) 2.312 % (2) 1.186 % (1)
250 10 0.75 1.546 % (3.75) 1.522 % (3.25) 1.237 % (2) 0.561 % (1)

250 30 0.25 12.765 % (4) 6.333 % (2) 9.356 % (3) 3.451 % (1)
250 30 0.50 5.556 % (4) 3.921 % (2) 4.308 % (3) 1.471 % (1)
250 30 0.75 2.738 % (4) 2.055 % (2) 2.595 % (3) 0.670 % (1)

500 5 0.25 6.349 % (3.67) 6.299 % (3.33) 4.565 % (1) 4.749 % (2)
500 5 0.50 3.134 % (3.33) 3.219 % (3.67) 2.026 % (1.44) 2.066 % (1.56)
500 5 0.75 1.837 % (3.5) 1.849 % (3.5 1.157 % (1.33) 1.160 % (1.67)

500 10 0.25 8.357 % (4) 5.943 % (3) 5.652 % (2) 3.404 % (1)
500 10 0.50 3.776 % (4) 3.522 % (3) 2.677 % (2) 1.455 % (1)
500 10 0.75 1.889 % (3.5) 1.905 % (3.5 1.399 % (2) 0.726 % (1)

500 30 0.25 14.189 % (4) 7.089 % (2) 10.003 % (3) 3.592 % (1)
500 30 0.50 6.398 % (4) 4.655 % (2.11) 4.822 % (2.89) 1.593 % (1)
500 30 0.75 3.083 % (4) 2.378 % (2) 2.811 % (3) 0.764 % (1)

average 4.635 % (3.80) 3.375 % (2.81) 3.320 % (2.13) 1.723 % (1.26)

Z-score 21.68 13.22 7.34
p-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

For each of the remaining 25 problems, the post-hoc tests did not indicate a singlebest algorithm-

topology pair, but instead resulted in two best pairs with indistinguishable performance: no significant

difference could be seen between the two best performing pairs, while the two worst pairs underper-

3 Even if all problems yield the same ranks, resulting in average rankings of 1, 2, 3, and 4 for the four algorithm-topology
pairs, the post-hoc Nemenyi test didnot show a statistically significant difference between ranks 1 and 2, at a confidence level
of α = 0.05, which led to a Holm-α of 0.0167 for the comparison of the two best performing pairs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

104 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

formed the best two in a statistically significant manner. For nine out of 25 problemspecifications, all

with m= 30, gbest SBPSO and the Von Neumann MBPSO performed best, while gbest BPSO and the

Von Neumann PBPSO underperformed. For the remaining 16 out of 25 cases, gbest SBPSO and the Von

Neumann PBPSO performed best, while gbest BPSO and the Von Neumann MBPSO underperformed.

The performance of the Von Neumann PBPSO deteriorated for larger values ofm, compared to the

other algorithm-topology pairs in table 5.23. The Von Neumann PBPSO outperformed the other three

pairs on problems withm= 5, but the difference with gbest SBPSO became smaller for larger values

of α . For problems withm= 10, the Von Neumann PBPSO performed second best on 74 out of 81

problems. However, for problems withm= 30, the Von Neumann PBPSO ranked better than third only

once out of 81 problems, and performed worse than both gbest SBPSO and the Von Neumann MBPSO.

As mentioned in the discussion of the results in table 5.17, the parameters chosen for the Von Neumann

PBPSO (which were the same as for lbest PBPSO) were probably better suited to problems with a lower

number of constraints.

5.6 Conclusions

This chapter had three objectives. The most important objective was to determine if it is possible to

successfully apply the SBPSO algorithm to the MKP, where success meant yielding solutions of suffi-

cient quality, but not necessarily solutions on par with algorithms that directly incorporate MKP specific

heuristics. The investigation of SBPSO’s efficiency in the number of iterations, fitness function evalu-

ations or flops was explicitly set out of scope. The second objective was to compare the performance

of the SBPSO algorithm on the MKP to that of three other PSO algorithms known from literature. The

third objective was to investigate what parameter values work well for the SBPSO.

5.6.1 Comparing the algorithms

Comparing results on the test problems, SBPSO has outperformed the other three PSO algorithms by a

considerable margin. PBPSO yielded better results than SBPSO in a small number of cases (for large

MKPs with m= 5 constraints when a ring or Von Neumann topology was used for both PBPSO and

SBPSO). The problems on which PBPSO outperformed, were likely caused by PBPSO having been

better attuned to those specific MKPs than the SBPSO algorithm. In all other cases the SBPSO algorithm

was superior, regardless of problem set or topology, to the other three algorithms. Therefore it can be

concluded that the first two objectives of this chapter were achieved: SBPSO was successfully applied

to the MKP yielding high quality solutions, and SBPSO outperformed the three PSO algorithms it was

compared to in a statically significant manner.

A separate finding was that for SBPSO the relative performance of the three swarm topologies dif-

fered between the small and the large MKP. On the large MKP, gbest SBPSO performed significantly

better than lbest SBPSO and Von Neumann SBPSO: gbest SBPSO achieved the smallest error onall of

the 243 large test problems. On the small MKPs the difference between gbest SBPSO, lbest SBPSO

and Von Neumann SBPSO was marginal and no algorithm-topology pair statistically outperformed or

underperformed the other two. Also all three algorithm-topology pairs involving the SBPSO were able

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM105

to perfectly solve at least 21 out of 40 small test MKPs while they all failed to findthe optimum in any

of the 100 runs on the same four small test MKPs. Two factors can be identified that possibly caused this

difference in relative performance: the first factor is that the problems in the small MKPs were probably

not hard enough to allow for meaningful differentiation between gbest SBPSO, lbest SBPSO and Von

Neumann SBPSO, while the problems in the large MKP were hard enough to do so. This argument

is somewhat undermined, however, by the fact that SBPSO was able to outperform the other PSO al-

gorithms on the small MKP in a statistically significant manner using each of the three topologies. A

second possible factor is that, for the large MKP, the tuning set arguably formed a better approximation

of the problems in the test set than was the case for the small MKP. For the large MKP, the tuning set

consists of the exact same 27 problem definitions as the test set: the tuning set for the large MKPs con-

tained one random implementation for each of the 27 definitions (the same values for MKP parameters

n, m, andr) and the test set contained nine random implementations of each of these same 27 definitions.

This could mean that the SBPSO algorithm was better attuned in the case of the large MKPs (for each of

the three topologies), and in that situation the superiority of the star topology was able to come to light.

Weighing these two factors it should be concluded, however, that the results in this chapter did not lead to

a definitive explanation for the difference in relative performance between gbest SBPSO, lbest SBPSO,

and Von Neumann SBPSO on the small MKPs on the one hand and the large MKPs on the other.

The results from the experiments in this chapter were consistent with the results reported by Wang

et al.[146] that were described in section 2.4.2.3: in the study by Wanget al.[146] the PBPSO algorithm

was shown to perform better than both BPSO and MBPSO on 10 small MKPs. The same pattern was

seen in the experiments in this chapter, with PBPSO outperforming MBPSO and BPSO on the small

MKPs on all three topologies, in all possible measures: best rank, lowest average error, highest success

rate, most problems solved perfectly, and least problems where it failed to find a solution at all. Note

that the characteristics of the experiments performed by Wanget al.[146] were different from those used

in this chapter: Wanget al. [146] did not perform any tuning of the algorithms, considered on a single

swarm topology, used a slightly larger swarm size (30 versus 25 here) and used fewer iterations (3000 or

4000 versus 5000 here).

The solutions for the MKP found by the SBPSO algorithm falls short of the results achieved by

state-of-the-art algorithms, which incorporate domain specific information, mentioned in section 2.4.1.

The state-of-the-art algorithms for the MKP were all able to find the optimal solution in each run of

the algorithm for all 55 small MKP. In contrast, SBPSO combined with the Von Neumann topology

was able to find the solution in all independent runs on only 25 out of 40 test problems. On a further

11 test problems, Von Neumann SBPSO found the optimal solution in at least some independent runs.

On the remaining four test problems, Von Neumann SBPSO failed to find the optimal solution in all

independent runs. For many, but not all, of the large MKP, optimal solutions have been found by state-

of-the-art methods and proven to be optimal. Based on the results listed athttp://www.cs.nott.ac.

uk/~jqd/mkp/results.html in July 2015, the optimal solution is known for 196 problems out of the

243 large MKP in the test set. SBPSO combined with the Von Neumann topology was able to find 16

of these optima. For the 47 large MKP in the test set for which the optimum is not yet known, Von

Neumann SBPSO was not able to find a better solution than those already known.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.cs.nott.ac.uk/~jqd/mkp/results.html
http://www.cs.nott.ac.uk/~jqd/mkp/results.html

106 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.6.2 Tuning and control parameter values

The third objective to be addressed in this chapter was to investigate what parameter values work well

for SBPSO. The tuning process compared performance results on a subset of MKPs for many parameter

combinations. These parameter combinations were generated using Sobol pseudo-random numbers and

spanned the whole parameter space. This allowed for a detailed sensitivity analysis of SBPSO’s param-

eters on the MKP, indicating which values for SBPSO’s control parameters led to good results. For the

five control parameters,c1, c2, c3, c4, andk the results of the analysis are summarized in a short list here:

c1 (attraction to the personal best): For control parameterc1 the sensitivity analysis very clearly showed

that higher values lead to better results with 0.8≤ c1 < 1.0 leading to the best results, regardless

of which topology was used. A small drop-off was seen for parameter combinations with 0.9 ≤
c1 < 1.0 compared to 0.8 ≤ c1 < 0.9, indicating that the optimal value forc1 lies above 0.8 but

still some distance below the theoretical maximum of 1.0.

c2 (attraction to the neighborhood best): For control parameterc2 the area of good results was less clearly

marked than forc1. The best results were achieved by SBPSO using parameter combinations with

0.5≤ c2 < 1.0 for lbest SBPSO and Von Neumann SBPSO, equivalent to half the parameter space

for c2. For gbest SBPSO in contrast, 0.3≤ c2 < 0.6 yielded the best results.

c3 (the maximum number of elements to add to the solution set usingk-tournament selection): For

control parameterc3 lbest SBPSO and Von Neumann SBPSO achieved the best results for values

1.5≤ c3 < 2.5, but all values ofc3 between 1.0 and 3.0 looked adequate. For gbest SBPSO, the

area of the parameter space that yielded good results was more evenly spread at slightly higher

values with 1.5≤ c3 < 3.5 yielding the best results.

c4 (the maximum number of elements to remove from the solution set randomly): For control parameter

c4 all values 1.5 ≤ c4 < 5.0 showed adequate results, regardless of which topology SBPSO was

paired with. The best results were found for parameter combinations wherec4 had values in either

the range 2.0≤ c3 < 2.5 or 3.5≤ c3 < 4.0. It is not clear why two distinct peaks showed and pa-

rameter combinations with 2.5≤ c4 < 3.5 underperformed: this will require further investigation.

k (the size of the tournament used to select elements to add to the solution set): For control parameter

k, in general performance increased for higher values ofk regardless of which topology was used.

For lbest SBPSO and Von Neumann SBPSO parameter combinations withk = 1 (which means

excluding the tournament selection completely) underperformed, while the performance increase

for higher values ofk topped off atk = 6. For gbest SBPSO a different pattern was seen, with

parameter combinations withk= 1 not underperforming, but valuesk≥ 7 outperforming.

Besides identifying which parameter values yielded the best results on the MKP, a further analysis

was performed to determine which of SBPSO’s five control parameters were the most important to tune

well. The relative importance of SBPSO’s five control parameters was approximately the same for gbest

SBPSO, lbest SBPSO and Von Neumann SBPSO: parametersc1 and c3 were most important to the

overall performance of the SBPSO algorithm. For each of the three topologies used with SBPSO, the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM107

parameterc4 ranked third out of five in importance. The parametersc2 andk were least influential on the

overall performance of the SBPSO algorithm.

The fact that parameterc2 has a relatively small influence in the performance of the SBPSO algorithm

may seem surprising given that the choice of topology was itself important for SBPSO’ performance

with gbest SBPSO outperforming the lbest SBPSO and Von Neumann SBPSO on all 243 large test

problems: the network structure in the swarm was clearly important. However, the SBPSO algorithm

was insensitive to the exact amount of attraction to the best neighboring particle in the network. It must

be added that looking solely at the ranking of the importance of SBPSO’s five control parameters hides

the fact that the sensitivity score forc2 using gbest SBPSO shown in table 5.8 was 31%, higher than that

for lbest SBPSO (25%) and almost double that for Von Neumann SBPSO (16%). So, although even for

gbest SBPSO thec1 andc3 parameters are most important, the attraction to the best particle in the whole

swarm indicated byc2 has some importance when a star topology is used.

The tuning process was successful in finding parameter combinations for each algorithm-topology

pair that worked well on the test set, thereby validating the approach of using part of each problem set as

a separate tuning set. When tuning SBPSO on the small MKP, however, the SBPSO algorithm performed

so well that it actually made the tuning process harder: as evidenced in table 5.5, more than half of the

15 tuning problems were solved in all independent runs of the algorithm. Since this also happened for a

number of other parameter combinations, all these combinations achieved the same average rank. Only

on the problems that were not solved perfectly could the best parameter combination stand out. This

poses a difficulty for using this tuning method if it is hard to identify beforehand problems that will be

hard enough to provide discernibility. A similar problem arises in other cases where many runs of the

algorithm yield the exact same objective function value, for example a MKP with a local optimum that

traps the PSO’s particles, such that the global optimum is not found: in such cases the tuning method

used also is not able to distinguish between different parameter combinations.

5.6.3 Tournament selection in SBPSO

One could argue that SBPSO had an advantage over the other three PSO algorithms because it contained

a special operator to add elements to a particle’s position using ak-tournament selection that required

additional objective function evaluations. By using a more intelligent way to select elements to add to the

position, the search was improved. As the swarm size and the number of iterations were kept the same

for all algorithms, the additional objective function evaluations meant that more computational effort was

expended on SBPSO compared to the other three algorithms.

The tuning process results and subsequent sensitivity analysis of SBPSO’s parameters provided con-

flicting evidence for the claim that the tournament selection used in SBPSO led to better performance and

that larger tournaments were helpful. The sensitivity analysis showed an improvement in performance

for SBPSO with increasing values ofk, while for lbest SBPSO and Von Neumann SBPSO parameter

combinations withk = 1 (i.e. without the tournament selection) clearly underperformed. However, two

findings from the tuning process provided counterarguments that the influence of the tournament selec-

tion may have been small: firstly, the tuning process for SBPSO combined with three topologies on the

small MKPs and large MKPs yielded six parameter combinations and thus six values for the control

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

108 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

parameterk, thesize of the tournament. If the tournament selection provided a large enough advantage

to SBPSO, it is to be expected that the chosen parameter combinations had higher than average values

for k. If there was no benefit to having tournament selection, the parameter combinations would be

chosen solely on the merit of the values forc1 to c4. Because of the way the parameter combinations

were constructed using Sobol sequences, this would have led to “random” values fork in the parameter

combinations that resulted from the tuning process. The six values fork that resulted from the tuning

process were 7, 7, 7, 7, 3, and 3. Hence the average of the six values fork was 5.7, larger than but close to

the average 5.0 of the possible values of 1 to 9 fork in the tuning process. The value of 5.7 is insufficient

to reject a statistical hypothesis that the six values fork were drawnrandomlyfrom the range of 1 to 9

(p-value of 0.25), and it therefore does not indicate a significantly above average value fork. Secondly,

in the analysis of relative importance, control parameterk scored lowest for gbest and lbest SBPSO,

while it scored second-lowest for Von Neumann SBPSO. The fact that the value ofk was a less impor-

tant in explaining performance, seems to contradict the idea that larger tournaments provided a benefit

to SBPSO. Further analysis is needed to see if the effect of the added objective function evaluations on

SBPSO’s performance was significant.

5.6.4 Next steps

The next chapter applies the SBPSO algorithm to a different discrete optimization problem, namely the

feature selection problem (FSP) from the domain of machine learning. Again the performance of the

SBPSO will be compared to three other PSO algorithms in order to determine its relative merit within

the universe of PSO algorithms for DOPs. The FSP not only lies in a completely different domain than

the MKP, it also poses challenges to the successful method employed in solving the MKP on tuning

the PSO algorithms: a noisy objective function and classifiers that themselves require tuning. The next

chapter thus can help determine if the success achieved by SBPSO over the other three PSO algorithms

on the MKP is specific to the MKP domain, or whether it can be shown to be more widely applicable.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6

Experimentson the feature selection

problem

The previous chapter described the numerical experiments in which the SBPSO was compared to other

PSO algorithms on the MKP. This chapter describes another such set of experiments in which the SBPSO

is applied to solve the FSP. The FSP was introduced in chapter 3 as a second test-bed for the new SBPSO

algorithm. The current chapter compares the performance of the SBPSO on the FSP to that of three other

PSO algorithms from literature.

The objectives of this chapter are two-fold, where the first objective is to determine if it is possible to

successfully apply the SBPSO algorithm to the FSP, which in this case means yielding quality solutions.

The second objective is to compare the performance of the SBPSO algorithm on the FSP to other PSO

algorithms known from literature.

This chapter is organized into an introduction, five main sections, and conclusions. The first three

main sections consist of a description of the procedure used in conducting the experiments on the FSP,

followed by two exhaustive searches on a number of smaller datasets to investigate if this procedure is

viable. The first exhaustive search in section 6.3 tests if the chosen fitness function and classifiers lead to

sufficient differentiation across the feature subsets for the PSO algorithm to work. A second exhaustive

search described in section 6.4 investigates if the method chosen to tune the parameterized classifiers

(J48 andk-NN) works well enough. The penultimate main section describes the PSO parameter tuning

and resulting PSO parameters, which is followed by the results of the comparisons between the tuned

SBPSO and the tuned PSO algorithms from literature.

6.1 Introduction

Similar to the previous chapter, the current chapter can be seen as the culmination of the path outlined

in parts I and II. Chapter 1 provided the background to show that a generic, functioning, set-based PSO

algorithm did not yet exist and what components such an algorithm should contain. Chapter 4 introduced

the SBPSO algorithm with the claim that it is a generic, functioning, set-based PSO algorithm. In order

to validate this claim, the SBPSO algorithm needs to be tested on discrete optimization problems (DOPs).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

110 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

This was done for the MKP in chapter 5. Chapter 3 then argued that the FSP is alsoa non-trivial DOP that

forms a valid test-bed for the SBPSO and other discrete PSO algorithms. This chapter brings together

the two parts and applies the SBPSO to the FSP. The review of the literature in chapter 3 also suggested

a number of other discrete PSO algorithms the SBPSO can be compared to.

As mentioned above, two objectives from the preface are addressed in this chapter: firstly, to test

the new algorithm on DOPs, in this case the FSP, and secondly, to compare the performance (in terms

of quality of the solution found) of the new algorithm against known discrete PSO algorithms from

literature. Recall from the experiments on the MKP that, in chapter 5, a third objective was addressed as

well, namely to investigate SBPSO’s control parameter values that see which values yield good results.

Although a similar parameter tuning as on the MKP will be conducted on the FSP, the sensitivity analysis

on SBPSO’s parameters from chapter 5 will not be repeated in this chapter.

The objectives from the preface involving the FSP are recalled that are defined to beoutsidethe scope

of this thesis, and by extension, outside the scope of this chapter:

• find an algorithm that is better at solving the FSP than known state-of-the-art algorithms;

• find the most efficient algorithm in terms of number of iterations or fitness function evaluations,

total number of computations (flops) or total time needed to complete; and

• to compare the performance of the new algorithm against non-PSO methods used to solve the FSP.

This chapter is organized into an introduction, five main sections, and conclusions. The purpose and

contents of each of the main sections are described in turn below.

Section 6.2 describes the choices made in the setup of the main experiments, in which the tuned

SBPSO is compared to three other tuned PSO algorithms on the FSP. First the design choices with re-

gards to the classification problem that underlies the FSP are set out, namely the selection of benchmark

datasets for tuning and testing, the way the data in these datasets is pre-processed, which classifiers are

used in the experiments, and what their respective setup is. Further details on the background of the

datasets used is listed in appendix D. Next, the design choices with regards to the PSO algorithms them-

selves are discussed. This concerns all the most important considerations that go into the PSO algorithm,

and which details allow for reproduction of the experimental results. Therefore, the choices discussed

are: the selection of PSO algorithms to compare with the SBPSO, the swarm size, the swarm topology

used, the fitness function used in the optimization process, the initialization process for each PSO al-

gorithm, the stopping conditions, and the number of independent runs performed in each experiment.

These elements are combined into a wrapper method using a PSO algorithm to solve the FSP.

The fitness function chosen for the PSO algorithms on the FSP is the classification accuracy achieved

by the classifier on the dataset. Section 6.3 tests if the classification accuracy for the three chosen

classifiers lead to sufficiently different fitness values for different feature subsets. As determining the

classification accuracy contains some random elements, repeated calculations of the fitness value for the

same feature subset will contain some variation in outcomes. If this variation exceeds the difference

between the fitness values of the various subsets, it will be hard to determine whether one PSO has found

a better solution than another PSO. The experiments conducted in section 6.3 are thus to investigate if

the FSP testbed can differentiate in performance between the PSO algorithms.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 111

Besides the fitness function, a second design choice is investigated in more detailfor its potential

influence on the numerical experiments conducted in this chapter: Section 6.4 looks at the way the

parameterized classifiers (J48 andk-NN) are tuned, and what impact this particular method of tuning

may have on the classification accuracy. If this leads to poorly tuned classifiers, the fitness function used

may not perform well enough for the PSO algorithms to effectively search the feature subspace.

Section 6.5 describes the PSO parameter tuning process used for the experiments on the FSP and

the resulting PSO parameters. This process mainly follows the one used in chapter 5 to tune the PSO

algorithms on the MKP, but with some small differences. Both the process and the resulting parameters

are discussed. Detailed results for the PSO tuning experiments can be found in appendix C, section C.2.

Finally, section 6.6 summarizes the results of the main experiments where the SBPSO was applied

on the FSP. Detailed results are listed separately in appendix C, section C.3. The results are discussed

for each of the three classifiers separately, as well as for all three classifiers combined.

6.2 Experimental procedure

This section describes the procedure that is used in the experiments that compare the SBPSO to other PSO

algorithms on the FSP. The overall setup of the experiments in this chapter was strongly influenced by the

recommendations by Salzberg [122] on comparing classifiers. The experiments performed and described

in this chapter do not directly compare classifiers but instead compare PSO algorithms wrapped around

a single classifier, but the same caveats hold. Salzberg [122] recommended the following approach:

1. use a separate data set for parameter tuning than for evaluating classification performance.

2. choose other algorithms to include in the comparison, making sure to include algorithms that are

similar to the new algorithm.

3. divide the data set intok subsets for cross validation (a typical experiment usesk = 10).

4. calculate overall accuracy averaged across allk partitions, which also gives an estimate of the

variance of the algorithms’ performance.

5. use correct statistical analysis to compare algorithms, adjusting the confidence level appropriately.

The first three subsections, 6.2.1 through 6.2.3, describe the design choices made regarding the un-

derlying classification problem, namely the selection of benchmark datasets for tuning and testing, the

way the datasets are pre-processed, and which classifiers are used in the experiments and what their

respective setup is. Subsection 6.2.4 deals with the design choices made with regards to the PSO algo-

rithms used and compared in the experiments. Finally, subsection 6.2.5 combines both these parts and

describe the flow of the wrapper method using a PSO algorithm to solve the FSP, given an underlying

classification problem.

6.2.1 Benchmark datasets used

This section describes the datasets that are used in the experiments in solving the FSP. First the chosen

datasets themselves are listed in two separate sections, one for those used in tuning and one for those

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

112 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

used in testing the tuned algorithms. Then the considerations that went into selectingthe datasets for the

experiments are listed.

6.2.1.1 Datasets selected for PSO testing

Table 6.1 lists the 30 datasets that were selected for use in testing the tuned PSO algorithms on the FSP.

Besides the abbreviated name, the number of instances, classes and features are listed, with the latter

split between features with numerical and nominal values. For a detailed description of these datasets,

see appendix D.

Table 6.1: Datasets used in the FSP testing experiments

dataset # instances # classes # features# numerical # nominal

arrhythmia 452 13 279 267 12
audiology 226 24 69 0 69
australian 690 2 14 8 6
bands 540 2 39 20 19
breasttissue 106 6 9 9 0
corral 64 2 6 0 6
crx 690 2 15 6 9
dermatology 366 6 34 1 33
german 1000 2 24 7 13
glass 214 7 9 9 0

hill-valley 1212 2 100 100 0
horse-colic 368 2 36 7 29
ionosphere 351 2 34 34 0
iris 150 3 4 4 0
liver 345 2 6 6 0
monk-1 432 2 6 6 0
monk-2 432 2 6 6 0
movement-libras 360 15 90 90 0
musk-1 476 2 166 166 0
parity5-5 1024 2 10 0 10

parkinsons 195 2 22 22 0
pima 768 2 8 8 0
sonar 208 2 60 60 0
soybean 683 19 35 0 35
spectf 267 2 44 44 0
tic-tac-toe 958 2 9 9 2
vehicle 847 5 18 18 0
vote 435 2 16 0 16
vowel 990 11 10 10 0
wdbc 569 2 30 30 0

6.2.1.2 Datasets selected for PSO tuning

Table6.2 lists the eight datasets that were selected for use in tuning the various PSO algorithms on the

FSP. Besides the abbreviated name, the number of instances, classes and features are listed, with the latter

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 113

split between features with numerical and nominal values. For a detailed descriptionof these datasets,

see appendix D.

Table 6.2: Datasets used in the FSP tuning experiments

dataset # instances # classes # features# numerical # nominal

echocardiogram 132 2 12 12 0
hepatitis 155 2 19 19 0
labor 57 2 16 8 8
lung-cancer 32 3 56 0 56
lymphography 148 4 18 3 15
promoter 106 2 57 0 57
wine 178 3 13 13 0
zoo 101 7 16 0 16

6.2.1.3 Considerations in choosing datasets

Datasetsfor classification and feature selection come in different types: some are real-world datasets,

while others are constructed artificially. In shape and size, there is also an enormous variety of spec-

ifications for these datasets. The main consideration was to use only datasets that can be considered

benchmarks, and which have been used in classification and feature selection studies before. The UCI

machine learning repository [5] is meant to provide exactly this and therefore all datasets used in this

thesis come from this repository.

The next step was to determine which of the 320 datasets from the repository should be used. A first

selection was to only consider the 231 datasets that can be used to study classification. Other than this

simple step, selection was mainly driven by practical considerations, namely the time it would take to run

the experiments. Since the goal of this chapter is to compare PSO algorithms on the FSP, and not to study

classification and feature selection algorithms for very large datasets, limiting the size of the datasets

makes sense from the viewpoint of keeping the computational effort manageable. This led to choosing

datasets with a limited number of features and instances. The number of features was limited to roughly

100, although two datasets (arrhythmia with 279 and musk-1 with 166 features) were added with a higher

number of features. Note that most datasets in the repository have less than 100 features, although large

datasets with up to 3 million features are also present. The number of instances was limited to roughly

1000, which can be considered up to medium size. Note that half the datasets available in the repository

havemore than 1000 instances, and datasets can contain up to 11 million instances. From the set of

datasets that were small enough, a number were selected using a mix of real-world and artificial datasets.

Also, the goal was to include as many datasets as possible within the practical bounds of computation

time, so smaller datasets (fewer features and instances) were included more often.

Considerations also went into selecting which datasets to use for tuning the PSO algorithms and

which to use for testing and comparing the tuned algorithms. For the testing phase, the aim is to use

a larger number of problems such that the comparison of the PSO algorithms can yield statistically

significant results. For tuning, a smaller number of problems can be used, although some care should be

taken to prevent overfitting to a set of problems that are not representative of the testing problems. In

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

114 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

tuning, however, it is important to make the problems challenging enough that differentcombinations of

PSO parameters lead to a difference in performance: if the tuning problems are too easy, many different

parameter combinations will yield equivalent results. Too easy in this case means too few features.

Hence the tuning were chosen to contain at least 12 features. This meant that the space of features

subsets contained at least 212 = 4096 points, making the optimization non-trivial given the number of

particles and iterations to be used as described in section 6.2.4.

Using all these considerations, eight datasets were selected for use in tuning the PSO algorithms,

listed in table 6.2. For testing the tuned PSO algorithms, a further 30 datasets were selected, listed in

table 6.1.

6.2.2 Preprocessing of datasets

The reason for pre-processing datasets in machine learning and the methods available to do so were

outlined in section 3.2.4. This section describes the actual pre-processing performed on the datasets

described in the previous sectionbeforethese datasets were used in the classification experiments dis-

cussed in this chapter. Data cleaning, transformation and normalization are all applied to make the

datasets amenable to classification using the selected classifiers.

6.2.2.1 Data cleaning

Data cleaning was performed in this thesis only to fill in missing values. Any values that were present in

the datasets were assumed to be correct, and no outlier detection or instance selection was performed to

discard or transform suspect data. Missing values were filled in using two different methods, depending

on the type of data that is missing:

• For attributes that contain numeric values, any instance for which this attribute’s value was un-

known, the attribute’s value was set to the mean of all known values for this attribute. This method

is known asmean substitution. Note that no distinction was made based on the class of the instance

with the missing value.

• For attributes that contain nominal values, any instance for which this attribute’s value was un-

known, the attribute’s value was set to the most frequently occurring value for this attribute in the

dataset. This method is known as themost common feature value method. Note that no distinction

was made based on the class of the instance with the missing value.

No statistical analysis was performed to look for outliers or inliers among the known and legal values

in the datasets: all legal values were taken at face value. This was done because the datasets in question

are well-studied benchmark datasets and as such other studies will have used the same outliers and inliers

without correction.

6.2.2.2 Data transformation

Data transformation was used to convert data into a single format that can be handled by all classifiers

used in these experiments. Note that this is not a prerequisite for comparing different PSO algorithms

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 115

using the same classifier, because a different format of the dataset can beused with different classifiers

without jeopardizing this goal. In order to allow some global comparison across classifiers, the data

transformation step was still undertaken. During the data transformation, all data was converted into

numerical values. The main reason for this choice is that this thesis combines thek-nearest neighbor

classifier with an Euclidean metric, which only works with numerical values.

Attributes with nominal values were converted using the following method: first, a list is determined

of all different attribute values in the order found in the dataset, starting at the first instance and working

down until the last instance. Then, the nominal value is converted to a number equal to the order in which

the nominal value appeared in the aforementioned list. If, for example, the attribute values in the dataset

in order of appearance were A, C, C, A, B, C, then the nominal values A, B, and C were converted to the

numerical values 1, 3, and 2 respectively.

6.2.2.3 Data normalization

Data normalization was applied as a last step. Due to the application of the previous two steps of data

cleaning and data transformation, at this point no attribute values were missing and all attribute values

were numerical. Normalization was then performed to scale each attribute separately to lie within the

range[0,1] usingmin-max normalization.

The end result of the three data preprocessing steps was 38 datasets without missing or unknown

values, in which each instance was represented as a vector of attributes scaled to lie in the range of[0,1],

and a class label indicated by an integer number. These same representations were used for all three

classifiers and all PSO algorithms.

6.2.3 Classifiers

An important role in solving the FSP using a wrapper method is reserved for the classifier. The classifier

is used to measure the quality of the classification using a selected subset of features, and the PSO

uses this measurement in steering the search towards, hopefully, better feature subsets. This section

describes the classifiers used in the experiments on the FSP. It consists of three parts: firstly, which

classifiers were chosen to be used in the experiments in this chapter, secondly, which implementations

of these classifiers, what parameters, metrics and settings were used, and thirdly, how the parameterized

classifiers were tuned.

6.2.3.1 Choice of classifiers

The goal in choosing a classifier to help solve the FSP was not to achieve a higher accuracy than previ-

ously reported in literature. Instead, only therelative ranking of various subset of features is important

in the PSO algorithms to steer the search. As such, any classifier that benefits from feature selection can

be used in this task. As a separate consideration, classifiers that have no or few parameters are to be

preferred. This is because these classifier parameters will need to be tuned in order to achieve a good

classification performance.

A total of three classifiers were used in the experiments so that the PSO algorithms could be compared

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

116 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

to each other in multiple settings. This was done because classifiers can potentiallyintroduce a bias into

the comparison of the PSO algorithms. When considering which classifiers to use in the experiments, the

choice was made to use those classifiers that have a track-record in literature of use in feature selection

with wrapper methods, which are easy to use, and which are relatively quick to train and evaluate on the

datasets used.

The three classifiers chosen to be used in the experiments on the FSP in this thesis were the Gaussian

naive Bayes (GNB), a specific implementation the C4.5 decision tree classifier called J48, and thek-NN

classifier. The implementation details of these three classifiers are given in the following section.

6.2.3.2 Implementation of classifiers

This section lists the choices made in implementing and using the chosen classifiers in the numerical

experiments. Such changes are not always listed in literature, but are required in order to allow for

replication of the experimental results.

6.2.3.2.1 GNB classifier: The implementation of the GNB used was that from Weka 3: Data Mining

Software in Java [48]. Some small alterations were made to the Weka code to allow control of the pseudo-

random number sequence used. This was done to ensure replicability of the numerical experiments.

Laplace smoothing wasnot applied in calculating the class prior probabilities (see section 3.2.3.2).

The GNB classifier does not have any further settings or parameters that had to be tuned.

6.2.3.2.2 J48 classifier: The experiments in this thesis that involved a decision tree classifier all used

the implementation of the C4.5 algorithm called J48 which is part of Weka 3: Data Mining Software in

Java [48]. The J48 implementation of the C4.5 decision tree has a number of options and variables that

can be customized. Two of these variables are kept as parameters for the classifier:

• The minimum number of instances required for a leaf node in the tree,l . This parameter must be

at least 1, with a default value of 2. This parameter can be used to obtain smaller trees and thus

simpler models by explicitly setting the minimal number of instances in a single leaf. A higher

number forl thus restricts the size of the decision tree.

• The confidence threshold used in the pruning process,γ. This parameter ranges between 0 and 1,

with a default value of 0.25. The parameter determines a threshold of the allowed inherent error in

the data when pruning the decision tree. By lowering the threshold, more pruning is applied and

consequently a smaller tree and a more general model is generated.

Other options available in the J48 implementation were kept constant at the default values in Weka 3:

• The option for binary splits was set to the default valuefalse;

• The optionsetUnpruned was set tofalse such that pruning of the treeis performed;

• The number of folds for reduced error pruning was set to the default value 3;

• The option for reduced error pruning was set to the default valuefalse;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 117

• The option for Laplace smoothing for predicted probabilities was set to the default valuefalse;

• The option for subtree raising (a technique where a node may be moved upwards towards the root

of the tree, replacing other nodes along the way during a process of pruning) was set to the default

valuetrue.

6.2.3.2.3 k-NN classifier: The implementation of thek-nearest neighbor classifier was written in Java

specifically for these experiments. The Euclidean distance function was used as the metric to determine

which instances are nearest. Ties were broken randomly using a controlled pseudo-random number

sequence to ensure replicability.

6.2.3.3 Tuning of classifiers

The implementations of the J48 andk-NN classifiers used in this thesis are both parameterized and

thus values needed to be chosen for these parameters before the classifier can be used. In order for

the classifiers to work well, a tuning process was performed to select parameters that allow for good

classification accuracy. The GNB classifier has no parameters and thus had no need of tuning. In the

experiments described in this chapter, the J48 andk-NN classifiers were tuned at various moments in the

process of solving the FSP, but always in the same manner. This section describes the tuning process

used.

Tuning was done by choosing the parameter value (for thek-NN classifier) or values for the param-

eter combination (for the J48 classifier) that maximize the classification accuracy on the dataset under

consideration. This classification was performed usingall features in the dataset. The most impactful

moment where classifier tuning was used, was at the start of the PSO wrapper algorithm. At that time

the classifier was tuned and this tuned classifier was subsequently used forall classifications during the

PSO run, regardless of how many features were selected at that point of the search. In section 6.4 an

investigation is made of the impact of the choice to tune the classifiers on a dataset using all features and

then using the tuned classifier also on smaller features subset in the PSO run.

The classification accuracy in the classifier tuning process was determined as the average over 10

independent runs of a 10-fold cross validation accuracy calculation. By repeating the cross validation 10

times, extra computational effort was expended to ensure an as good as possible tuning, meaning that the

classification accuracies for each of the parameters contained little numerical noise.

The sets of parameter values that were used in tuning the J48 andk-NN classifiers respectively are

given below.

6.2.3.3.1 J48 classifier: To tune the J48 classifier, both its parameters needed to be optimized to-

gether: l , the minimum number of instances required for a leaf node in the tree, andγ, the confidence

level. This simultaneous tuning was done by choosing the combinations of the two parameters that

maximized the classification accuracy measured on a given dataset. For each parameter seven different

equally spaced choices were considered in the tuning, for a total of 49 different combinations. The val-

ues forl ranged from 2 to 50, the values forγ ranged from 0.050 to 0.500. The exact values used in the

tuning are given in table 6.3.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

118 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.3: Parameter values used to tune the J48 classifier

l 2 10 18 26 34 42 50

γ 0.050 0.125 0.200 0.275 0.350 0.425 0.500

6.2.3.3.2 k-NN classifier: To tune thek-NN classifier, only the value fork, the number of nearest

neighbors to include in the vote to determine an to-be-classified instance’s class label, needed to be

optimized. In the tuning process, 10 different values ofk were investigated, ranging from 1 to 19.

Because ties in the nearest neighbors are broken randomly by thek-NN classifier, it is preferable to

prevent a large number of such ties. Therefore, only odd values were considered in the tuning ofk. The

exact values used are given in table 6.4.

Table 6.4: Parameter values used to tune thek-NN classifier

k 1 3 5 7 9 11 13 15 17 19

6.2.4 Setup of PSO in solving the FSP

This section describes the experimental setup of the PSO algorithms that were used to solve the FSP.

The following design choices for the PSO algorithms are touched upon in separate sub-sections: the

selection of PSO algorithms to compare with the SBPSO, the swarm size, the swarm topology, the

fitness function used in the optimization process, the initialization procedure for each PSO algorithm,

the stopping conditions, and the number of independent runs performed in each experiment.

6.2.4.1 Choice of PSO algorithms

The proposed SBPSO algorithm is compared to three other PSO algorithms: BPSO by Kennedy and

Eberhart [62], CFBPSO by Chuanget al.[21], and PBPSO by Zhenet al.[157]. Refer to sections 1.3.1.1,

1.3.1.4, and 1.3.1.3 for detailed descriptions of these algorithms.

To decide which PSO algorithms to compare the SBPSO to on the FSP, a logical first thought would

be to select the same three PSO algorithms that were used in the comparison on the MKP, as described

in section 5.2.2: the BPSO, MBPSO, and PBPSO. Two of these were indeed used in the comparison

again, but the MBPSO algorithm was replaced in the experiments on the FSP by the CFBPSO algorithm.

The MBPSO algorithm was left out because the results from the experiments on the MKP in chapter 5

showed it performed quite poorly. The CFBPSO was used as a replacement, as the work by Chuanget al.

[21] showed it can be used in a wrapper approach in solving the FSP and performed well when compared

to the BPSO in that study.

For BPSO, CFBPSO, and PBPSO the candidate solution was represented by binary-valued particle

positions: the bit valuesbi were interpreted as whether thei-th feature in an FSP was used in the classi-

fication or not. The SBPSO algorithm treated the features in the FSP as elements to be in- or excluded

from a position.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 119

6.2.4.2 Swarm size

Section5.2.3 in the chapter on experiments on the MKP already indicated the impact that the number

of particles in a swarm can have on the search performance. It should be noted, however, that using

the optimal number of swarm particles is not too important because the objective is not to find the best

possible solution to the FSP, but to compare the relative performance of the different algorithms. Hence

using the same number of particles in each case that is important, but this swarm size need only to be

adequate for the problems studied.

Because the search space for the FSP in this chapter is smaller than that for the MKP studied in the

previous chapter, it seems logical to use a smaller number of particles in the swarm than the 25 that were

used on the MKP. Therefore in the experiments on the FSP the swarm size was set to 20 particles in all

cases. This is also in line with the majority of studies that used PSO on the FSP reviewed in section 3.4.4.

6.2.4.3 Swarm topology

In the experiments on the MKP in chapter 5, three different topologies were used to investigate the

SBPSO and the relative performance of SBPSO versus other PSO algorithms, namely the star, ring and

Von Neumann topologies. This was done to prevent a bias that the choice of topology might introduce

in the relative performance of the PSO algorithms. The results on the MKP showed that the choice of

topology indeed has an impact on the performance of the PSO algorithms.

In the experiments on the FSP a similar approach to prevent bias was taken, but in this case the

swarm topology was not the only choice to be made. The choice of whichclassifier to use can also

bias the relative performance of different algorithms on the FSP, see for example the work by Yunet al.

[155] discussed in section 3.4.4.2. The choice was made in this thesis to prevent a bias by using three

different classifiers for the experiments in this chapter. In order to prevent the number of experiments to

be conducted from becoming very large, the choice was made to use only one of the swarm topologies

for all experiments on the FSP. The question then becomeswhichtopology should be chosen.

Almost all papers reviewed in section 3.4.4 that apply a form of PSO on the FSP used a star topology.

The review of literature does not, however, indicate that this is the result of a conscious choice in which

other topologies were also considered. This is worrying, because the work by Kennedy and Mendes [64]

shows that the choice of topology can significantly impact the performance of a PSO algorithm. No study

could be found that investigated the specific issue of which topology works well for PSO in the domain

of feature selection and classification. Instead of following the previous studies which applied PSO to

the FSP in using a star topology, a Von Neumann topology was used for all different PSO algorithms

and in all experiments on the FSP. This is in line with the suggestion by Kennedy and Mendes [64]. The

Von Neumann topology offers a medium level of connectedness for the swarm: the ring topology is less

connected and the star topology has direct connections between all different particles.

6.2.4.4 Fitness function

Swarm intelligence methods like PSO use a fitness function to steer the stochastic search. PSO steers

each particle through attraction to the particle’s best position from history and the best known position in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

120 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

the particle’s neighborhood, where best means the best fitness value. Thefitness function must be linked

to the goal of the problem to be optimized. The goal in the FSP is to find the best subset of features for

classification by a classifier, so the PSO’s fitness function needs to contain a performance measure for

that classification. The task was to determine which performance metric to use and what cross validation

method.

Xue et al. [150] argued that the inclusion of the proportion of features left out of the feature subset

can be included in the fitness function to improve performance. The results of that study are, however,

limited and not proven to be statistically significant. In order to avoid extra design choices to determine

the relative importance of classification performance and the number of features, the fitness function

used contained only a performance measure for classification.

6.2.4.4.1 Performance metric: Sokolovaet al. [130] discuss different performance measures used

in classification and indicate that the empirical evaluation of algorithms and classifiers is a matter of

on-going debate. Classification accuracy using cross validation is considered an acceptable performance

metric in general. Specific situations such as the medical domain could call for other measures, i.e.

sensitivity or ROC analysis, that put more emphasis on failure avoidance or class discrimination.

In this thesis classification accuracy was used as the performance metric. One reason for this was

that some of the benchmark datasets used (see sections 6.2.1.1 and 6.2.1.2) contained problems that have

more than two classes. This implies that other frequently used performance measures such as precision,

sensitivity, and specificity are not universally applicable, since these can only be calculated for datasets

with two classes.

6.2.4.4.2 Cross validation method: The cross validation method used in the experiments presented

in this chapter isk-fold cross validation, withk set to 10 in most cases. This is in line with the recom-

mendations by Salzberg [122]. A side benefit of the repeated calculations is that the standard deviation

across multiple calculations can also be determined. This gives insight into the stability of the classi-

fication accuracy across thek folds. The preference is for a low standard deviation, which indicates

stability.

Usingk-fold cross validation is computationally intensive, however, and needs to be performed for

each candidate solution during each iteration of the PSO algorithm. Therefore, the choice is made to keep

the number of repetitions of thek-fold cross validation small during the main loop of the algorithm. This

is a trade-off between stability of the fitness value calculated for a particle position, and the computational

effort required. Hence the number of repetitions of thek-fold cross validation is set to:

• 10 in determining the best parameters for the classifier (in case of the J48 ork-NN classifier);

• 5 in the fitness function used during the main loop of the PSO algorithm; and

• 10 in determining the final classification accuracy of the found feature subset.

The various phases of the wrapper method mentioned here will be explained more fully in section 6.2.5.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 121

6.2.4.4.3 Fitness function algorithm: Thefitness functionf (.) combines simple classification accu-

racy as the performance metric withk-fold cross validation and is described in algorithm 8.

Algorithm 8: Fitnessfunction for use in experiments on FSP

Consider an FSP with underlying datasetD andclassifierC;
Let X = {x1, . . . ,xm} be a candidate solution of selected attributes determined by the PSO;
Randomly divideD into k disjunct foldsDi ;
for i = 1, . . . ,k do

Set training setLi = Di andtest setsTi = D\Li ;
Train classifierC on training setLi usingonly the attributes inX;
Determine accuracy(Ti ,C,X), the accuracy ofC on test setTi usingonlyattributes inX;

end
The fitnessf (X) of X is equal to the average over allk measures of accuracy(Ti ,C,X).

6.2.4.5 Initialization

Particleswere initialized randomly for each PSO algorithm. For the BPSO, CFBPSO, and PBPSO algo-

rithms, the positions were initialized randomly in{0,1}n, while the velocities for each were initialized

randomly in[−1,1]n, following [31]. For PBPSO the continuous-valued positions,~x′i(0), were initialized

as~0, to ensure that no initial bias was included in the discrete-valued positions,~xi(0). For the SBPSO

algorithm, the positions were randomly initialized, such that each element had a 0.5 chance of being

included, and all velocities were initialized as the empty set.

6.2.4.6 Stopping conditions

Due to computational considerations, much fewer fitness function evaluations could be used in the exper-

iments on the FSP than used for MKP in chapter 5. This is because, while the fitness function evaluation

of a single candidate solution for the MKP takes very little time (checking the constraints and, if all

are met, summing the value of the included weights), for the FSP this involves five cycles of training a

classifier and determining the classification accuracy. Both a large number of features or a large number

of instances in the training and testing sets can make this a slow process.

For each independent run of an algorithm, the same three stopping conditions were applied:

1. the best fitness function value found in the swarm equaled a classification accuracy of 100%,

2. the best fitness function value found in the swarm had not improved for 50 iterations, or

3. more than 100 iterations had passed.

6.2.4.7 Number of independent runs

PSO is a stochastic optimization algorithm, and thus individual runs of the algorithm can have different

results. Hence, multiple independent runs of the algorithms have to be executed and the average perfor-

mance reported. For all experiments on the FSP, both in tuning and in testing, 30 independent runs were

used.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

122 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.2.5 PSO wrapper algorithm for FSP

All the components from the previous parts of this section combined do not yet fully describe the exper-

iments run in order to test and compare the PSO algorithms on the FSP. The final part is the flow of the

PSO wrapper method, which is described in this section.

The main construction of the PSO wrapper is very basic and is described in algorithm 9. It returns

the feature subset found by the PSO search and the average classification accuracy using that feature

subset. The experiments started with the initialization of the classifier and particle swarm, followed by

the main PSO wrapper loop, and a final accuracy calculation. These three steps are described in separate

algorithms below. After these descriptions, some observations are made about the use of pseudo-random

number sequences in the numerical experiments on the FSP.

Algorithm 9: PSOwrapper approach to solve FSP: overview

Initialize classifier and swarm according to algorithm 10;
Runmain loop of PSO algorithm according to algorithm 11;
Determine final accuracy and according to algorithm 12;
Return values:
· best position found̂Y;

· ffinal(Ŷ);
· standard deviation of 10 independent final classification accuracy calculations;

6.2.5.1 Initialization of PSO wrapper

Algorithm 10 describes in detail the initialization at the start of the PSO wrapper method.

Algorithm 10: PSOwrapper approach to solve FSP: initialization

Define classifierC′ asclassifierC with best parameters:
· from parameter gridG;
· “best“ defined as highest classification accuracy;
· using alln features;
· by 10-fold cross validation;
· accuracy calculation repeated 10 times;

Set fitness calculatorfC′ to:
· average of 5 independent calculations;
· of average classification accuracy by classifierC′;
· using 10-fold cross validation;

SetN equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize Vi accordingto algorithm’s velocity initialisation strategy;
Initialize Xi := random subset ofU ;
calculatefC′(Xi);
Initialize fC′(Yi) :=−∞;

end

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 123

This description assumes that a parametrized classifier (J48 ork-NN) is used and the PSO search

is performed by the SBPSO. If the GNB classifier is used instead, the steps to tune the classifierC

resulting inC′ are skipped, and the classifierC′ is just equal to the original GNB classifierC. If another

PSO algorithm is used, the initialization of the particle swarm is not a random subset ofU , but instead

(though equivalently) a random vector in{0,1}n, wheren is the number of features in the dataset.

6.2.5.2 Main loop of PSO wrapper

After initialization, the main loop of the PSO wrapper is executed. This loop is described in algorithm 11.

The only link to the FSP was via the fitness functionf , for which each evaluation meant determining

the average classification accuracy using 5-fold cross validation. The main loop returnedŶ, the feature

subset with the highest registered fitness.

Algorithm 11: PSOwrapper approach to solve FSP: main loop

while all stopping conditions are falsedo
for i = 1, . . . ,N do

if fC′(Xi)> fC′(Yi) then
Yi := Xi ;

end
if fC′(Xi)> fC′(Ŷi) then

Ŷi := Xi ;
end

end
for i = 1, . . . ,N do

UpdateVi according to PSO’s velocity update equation;
UpdateXi accordingto PSO’s position update equation;
Calculate fitnessfC′(Xi) for particlei;

end
end
Initialize fC′(Ŷ) :=−∞;
for i = 1, . . . ,N do

if fC′(Ŷi)> fC′(Ŷ) then
Ŷ := Ŷi ;

end
end
ReturnŶ;

6.2.5.3 Final classification accuracy calculation

As described in the previous sections, during the main loop of the PSO wrapper fitness function eval-

uations were made using a classifier that was tuned (in case of the J48 andk-NN classifiers) using all

features. The classification accuracy during the main run was determined using 5-fold cross validation.

Both choices meant that just reporting the classification accuracy recorded during the PSO search is not

the best representative depiction of accuracy resulting from the found feature subset. Therefore, after

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

124 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

the main loop had completed, the classifierC wasagain tuned according to the process described in

section 6.2.3.3, but now usingonly the features selectedin Ŷ. This tuning resulted in the classifierCfinal.

In case of the GNB classifier,Cfinal equaled the originalC classifier. Using this re-tuned classifier, a final

fitness function evaluation was made as the average of 10 repeated accuracy calculations using 10-fold

cross validation.

The final recorded outcome of a single run of the PSO wrapper method consisted of the best position

found,Ŷ, the final fitness function evaluation,ffinal(Ŷ), and the standard deviation across the 10 repeated

accuracy calculations using 10-fold cross validation. Algorithm 12 describes this final calculation pro-

cess in detail.

Algorithm 12: PSOwrapper approach to solve FSP: final classification
Define classifierCfinal asclassifierC with best parameters:
· from parameter gridG;
· “best“ defined as highest classification accuracy:
· using only the features in̂Y;
· by 10-fold cross validation;
· accuracy calculation repeated 10 times;

Set final fitness calculatorffinal to:
· average of 10 independent calculations;
· of average classification accuracy byCfinal;
· using 10-fold cross validation;

Re-calculate fitness of̂Y as ffinal(Ŷ);
Determine standard deviation across 10 independent final classification accuracy calculations;

Return values:
· best position found̂Y;

· ffinal(Ŷ);
· standard deviation of 10 independent final classification accuracy calculations;

6.2.5.4 Use of pseudo-random numbers in cross validation and classification

Specialcare was taken that the pseudo-random numbers used in the cross validation splits of the dataset

for the final classification accuracy always started at the same point. In this setup, the splits in the dataset

still varied between the 10 independent calculations that underlyffinal(Ŷ) and these 10 calculations can

still be considered to be independent. This ensured the most fair comparison and full replicability.

This same care was used for the pseudo-random numbers used by the classifiers themselves (for

example, to break ties when using thek-Nearest Neighbor classifier). The final classification accuracy

calculation always started the random sequence at the same point and this meant that, if the exact same

features were selected and the same classifier was used for two independent runs of the PSO, the exact

same average classification accuracy and standard deviation would result. Again, the 10 calculations that

underly the determination offfinal(Ŷ) were still independent of each other, as they all used a different

part of the same pseudo random-number sequence.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 125

It is important to understand thatonly if the features selected are exactly the same for two independent

runs of a PSO algorithm (or for that matter between two different PSO algorithms) using the same clas-

sifier, the resulting average classification accuracy was the same. If one feature differed, then the series

of pseudo-random numbers was used in a slightly different order, resulting in a different classification

accuracy.

Also it is important to stress that this special way of calculating the final accuracy did not affect

the actual PSO algorithm nor the features selected - it only affected the final accuracy recorded and

used to compare the PSO algorithms. The special calculation affected the comparison in such a way

that, if the exact same features were selected, the same accuracy resulted: hence the only way PSO

algorithms distinguished themselves in accuracy, was by the selected features and as little as possible by

the randomness inherent in the classification accuracy calculation.

Finally, it is noted that the Mersenne Twister algorithm [95] was used to generate the pseudo-random

number sequences in the experiments in this chapter. Only for selecting which PSO parameter combina-

tions to consider in the PSO tuning process, was a different pseudo-random sequence used. In that case,

the parameter combinations spanning the PSO parameter space were generated using a Sobol pseudo-

random number sequence as described in section 6.5.

6.3 Exhaustive search to test the fitness function

This section describes the exhaustive search performed to determine if the setup of a PSO wrapper

approach using the three selected classifiers works sufficiently well to compare PSO algorithms. Particu-

larly, whether the fitness measurement by the cross validated classification accuracy on different feature

subsets allows for statistically significant differences in performance by the PSO algorithms.

The task that the PSO algorithms have in solving the FSP is to find an optimal subset of features that

allows for the most accurate classification by a classifier, as described in section 6.2.5. However, due

to the stochastic element present in the classifiers (for example to break ties), the classification accuracy

using a particular feature subset is “noisy”: repeated measurements will tend to show slight differences

in classification accuracy. If the difference in classification accuracy between different feature subsets is

small compared to the uncertainty in the classification accuracy measurement for a single feature subset,

there is no statistically significant difference in how optimal the different subsets are and the FSP may

not help to differentiate between the performance of different PSO algorithms.

To test whether the setup of fitness function works sufficiently well, an exhaustive search was per-

formed of the fitness values across all feature subsets of a number of dataset-classifier pairs. The next

section describes how this search was set up, followed by the results and conclusions.

6.3.1 Experimental method

The description of the experimental method for the exhaustive search to test the fitness function is divided

into three parts: which datasets were selected, how the exhaustive search was organized, and how the

classifiers were set up and tuned.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

126 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.3.1.1 Dataset selection

In an exhaustive search on a dataset containingn features, 2n different sets of selected features need to

be tested. For large numbers ofn this becomes prohibitively expensive in terms of the number of com-

putations. This is exactly the reason that feature selection is used on large datasets. For the investigation

described in this section, the number of features was limited to 10, meaning at most 210= 1024 different

subsets needed to be tested for a dataset. The 11 datasets thus selected are listed below in table 6.5 in

section 6.3.1.3. Note that in the main FSP experiments all these 11 datasets were used during thetesting

phase and none were used during the PSO parameter tuning.

6.3.1.2 Organization of exhaustive search

For the 11 datasets and the three classifiers used in the FSP experiments, the fitness value (average

classification accuracy measured using 10-fold cross validation) was determined for all possible feature

subsets. The fitness value was calculated independently 10 times and the average accuracy and the

standard deviation of these 10 calculations were recorded.

A fair comparison of the accuracy between different subsets of selected features requires that all

other circumstances are as equal as possible. Two such important circumstances are the splits of the

dataset during the 10-fold cross validation and the parameters used by the classifiers themselves. In the

exhaustive search, a separate pseudo-random numbers sequence was used in the 10-fold cross validation

to determine the random splits of the dataset into the training set and the testing set. This meant that

for each of the 10 independent calculations of the classification accuracy for a given subset, a different

10-fold split of the dataset was used. But the same 10 different 10-fold splits were used for the other

feature subsets in that dataset.

6.3.1.3 Classifier tuning

The J48 andk-NN classifiers require parameters to be chosen for the classifier to work:l andγ for the

J48 classifier andk for the k-NN classifier. For both classifiers these parameters were set beforehand

and the same parameters were used on all subsets of features tested in the exhaustive search. The tuning

method used was the same as described in section 6.2.3.3. For the GNB classifier no parameters had to

be chosen. The resulting classifier parameters per dataset are listed in table 6.5.

The fact that the classifier parameters were chosen from a grid as the best performing parameter

combination using all features in classification, may have introduced a bias that favored large subsets.

This potential problem is investigated in more detail in section 6.4.

6.3.2 Results

This section describes the results of the exhaustive search of the fitness values across all possible feature

subsets. For each pair of dataset and classifier, the classification accuracy was determined exhaustively

for all feature subsets. This resulted in an average accuracy and the standard deviation of the 10 inde-

pendent calculations of that accuracy. A summary of these results is given in table 6.6.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 127

Table 6.5: Classifier parameters and metrics for the J48 andk-NN classifiers used in the exhaustive search
on the fitness function.

J48 k-NN
Dataset # features l γ k metric

iris 4 18 0.275 5 Euclidean
corral 6 2 0.050 1 Euclidean
liver 6 26 0.275 3 Euclidean
monk-1 6 34 0.275 1 Euclidean
monk-2 6 2 0.425 5 Euclidean
pima 8 2 0.425 19 Euclidean
breasttissue 9 2 0.125 1 Euclidean
glass 9 2 0.275 1 Euclidean
tic-tac-toe 9 18 0.125 9 Euclidean
parity5-5 10 2 0.350 9 Euclidean
vowel 10 2 0.350 9 Euclidean

It was then determined how many of the feature subsets yielded an accuracy ofwithin 1.645 standard

deviations (the 95% confidence level assuming a normal distribution) of the best found accuracy. Also

included in the column “% best” is the percentage of all feature subsets in datasets that were in this way

indistinguishable from the one with the highest accuracy found.

Table 6.6: Number of subsets in exhaustive search that are within 95% confidence interval from best
recorded accuracy.

GNB J48 k-NN
Dataset # features # subsets# best % best# best % best# best % best

iris 4 16 1 6.3 % 8 50.0 % 4 25.0 %
corral 6 64 10 15.6 % 2 3.1 % 1 1.6 %
liver 6 64 25 39.1 % 9 14.1 % 4 6.3 %
monk-1 6 64 10 15.6 % 32 50.0 % 5 7.8 %
monk-2 6 64 64 100.0 % 1 1.6 % 1 1.6 %
pima 8 256 2 0.8 % 56 21.9 % 1 0.4 %
breasttissue 9 512 9 1.8 % 22 4.3 % 75 14.6 %
glass 9 512 28 5.5 % 28 5.5 % 3 0.6 %
tic-tac-toe 9 512 1 0.2 % 1 0.2 % 1 0.2 %
parity5-5 10 1024 11 1.1 % 15 1.5 % 6 0.6 %
vowel 10 1024 1 0.1 % 78 7.6 % 9 0.9 %

The ideal situation is where one feature subset yields a classification accuracy that is statistically

superior to that of all other feature subsets. Table 6.6 shows that this was an uncommon situation that

occurred for only nine of the 33 datasets:

• For GNB, only three (iris, tic-tac-toe, and vowel) out of the 11 datasets had a single feature subset

for which the classification accuracy was better in a statistically significant manner than all other

feature subsets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

128 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

• For J48, only two (monk-2 and tic-tac-toe) out of the 11 datasets had a single feature subset for

which the classification accuracy was better in a statistically significant manner than all other

feature subsets.

• For k-NN, only four (corral, monk-2, pima, and tic-tac-toe) out of the 11 datasets had a single

feature subset for which the classification accuracy was better in a statistically significant manner

than all other feature subsets.

Also it is clear that for some combination of classifier and dataset, feature selection itself had no

benefit: using the GNB classifier on the monk-2 dataset failed completely: all 64 feature subsets had the

exact same classification accuracy which was the same as that of randomly selecting an instance form the

training set and applying that class label to any new instance to be classified. Only the fact that the class

distribution for monk-2 is uneven, led to an accuracy above 50%, because the GNB classifier was unable

to capture the concept underlying this artificial dataset. Using a wrapper method with the GNB classifier,

the FSP is not a well-posed problem and it is impossible to differentiate in the quality of different PSO

algorithms trying to solve it.

Other combinations of dataset and problem also led to the FSP being a poorly posed problem, though

not as bad as the monk-2 and GNB classifier case: for the liver and GNB, iris and J48, and monk-1

and J48 each, almost 40% or more of the feature subsets led to statistically the same accuracy as the

optimum. It is difficult, however, to say at what percentage of equivalent feature subsets the FSP should

be considered inadequate for use in the PSO comparison. Other combinations like iris andk-NN or pima

and J48 were also at least borderline in their suitability.

Another thing that stood out, was that there was no clear pattern across dataset or classifier: if a

combination of one classifier and one dataset performed badly in the manner described above, that same

dataset may have combined with another classifier to form a perfect FSP. The monk-2 dataset failed

completely with the GNB classifier, but combined with the J48 classifier, the FSP became a problem

with only one, statistically discernible optimum. Also, the three classifiers were affected by this problem

in roughly equal measure based on this limited investigation of eleven datasets, although one could claim

that thek-NN classifier was least affected.

The next three subsections give the detailed results of the investigation per classifier. In each case

a table lists the 11 datasets investigated, the number of features of the dataset, the number of different

combinations of feature subsets investigated (# combo’s), and the average accuracy and the standard

deviation over 10 independent accuracy calculations for two specific feature subsets: all features and the

feature subset yielding the highest classification accuracy. The number of features selected in this best

feature subset is included, as well as a bit-string indicating which features were selected.

6.3.2.1 GNB classifier

Table 6.7 gives the results of the exhaustive search for the best subset of features using the GNB classifier.

Using the best subset of features for each dataset, the average accuracy for the GNB classifier across the

11 datasets was 66.5%. This meant a roughly 10% relative improvement in accuracy over the 60.2%

average accuracy based on all features.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 129

Table 6.7: Exhaustive search for feature subset yielding highest accuracy using the GNB classifier.

All features Best set of features
Dataset # features # combo’sAccuracy (Stdev)Accuracy (Stdev) # Features Bit-string

iris 4 16 94.1 % (0.4 %) 96.6 % (0.2 %) 2 (0011)
corral 6 64 79.4 % (3.7 %) 85.0 % (2.8 %) 4 (111100)
liver 6 64 58.4 % (0.4 %) 60.2 % (1.2 %) 4 (110011)
monk-1 6 64 62.0 % (1.1 %) 65.1 % (1.0 %) 1 (000010)
monk-2 6 64 67.1 % (0.0 %) 67.1 % (0.0 %) 0 (000000)
pima 8 256 63.7 % (0.8 %) 76.4 % (0.4 %) 2 (01000100)
breasttissue 9 512 57.5 % (1.1 %) 67.5 % (1.7 %) 5 (110100101)
glass 9 512 35.5 % (1.3 %) 47.4 % (1.2 %) 2 (010100000)
tic-tac-toe 9 512 74.5 % (0.3 %) 74.5 % (0.3 %) 9 (111111111)
parity5-5 10 1024 37.7 % (1.6 %) 46.2 % (1.3 %) 0 (0000000000)
vowel 10 1024 31.7 % (0.5 %) 45.1 % (0.5 %) 4 (1101100000)

average 60.2 % 66.5 %

Note that from datasets monk-2 and parity5-5, the highest accuracy for theGNB classifier came from

using no features at all. In this case the GNB classifier randomly assigned a class to every instance based

on the frequency of each class in the training set. For the monk-2 dataset the best accuracy using no

features was equal to that using all features and actually the accuracy using the GNB classifier was the

same for each feature subset. This indicates that the accuracy of the GNB classifier on this dataset was

completely unaffected by feature selection.

The classification accuracy for the vowel dataset was only 45.1% even for the best subset of features

selected. This accuracy clearly outperformed a random classification because this dataset contains 11

classes, meaning a random classification accuracy would be close to 11%.

6.3.2.2 J48 classifier

Table 6.8 lists the results of the exhaustive search for the best subset of features using the J48 classifier.

Using the best subset of features for each dataset, the average accuracy for the J48 classifier across

the 11 datasets was 83.5%. This meant only a 5% relative improvement in accuracy over the 80.0%

average accuracy based on all features. On this sample of smaller datasets, the J48 classifier seemed

little improved by feature selection.

Note that using the best subset of features, the J48 classifier was not able to obtain a 100% classifi-

cation accuracy on any of the datasets. Only for the monk-2 and tic-tac-toe artificial datasets did feature

selection not improve the classification accuracy over that of using all features, as all features are required

to correctly describe the concept embedded in those two datasets.

6.3.2.3 k-NN classifier

Table 6.9 lists the results of the exhaustive search for the best subset of features using thek-NN classifier.

Using the best subset of features for each dataset, the average accuracy for thek-NN classifier across

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

130 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.8: Exhaustive search for feature subset yielding highest accuracy using the J48 classifier.

All features Best set of features
Dataset # features # combo’sAccuracy (Stdev)Accuracy (Stdev) # Features Bit-string

iris 4 16 93.3 % (0.9 %) 94.7 % (0.2 %) 1 (0001)
corral 6 64 85.5 % (5.5 %) 98.7 % (2.2 %) 4 (111100)
liver 6 64 68.1 % (2.0 %) 69.8 % (1.8 %) 3 (001011)
monk-1 6 64 75.0 % (0.0 %) 75.0 % (0.0 %) 1 (000010)
monk-2 6 64 90.1 % (1.0 %) 90.1 % (1.0 %) 6 (111111)
pima 8 256 73.5 % (1.1 %) 74.8 % (0.9 %) 4 (01100101)
breasttissue 9 512 67.0 % (3.0 %) 72.2 % (1.8 %) 5 (100010111)
glass 9 512 68.3 % (2.2 %) 74.1 % (2.0 %) 6 (111000111)
tic-tac-toe 9 512 92.8 % (0.5 %) 92.8 % (0.5 %) 9 (111111111)
parity5-5 10 1024 86.9 % (3.7 %) 97.1 % (0.9 %) 6 (1111100001)
vowel 10 1024 79.1 % (0.9 %) 79.5 % (0.8 %) 8 (1111101101)

average 80.0 % 83.5 %

the 11 datasets was 87.9%. This meant a 13% relative improvement in accuracy over the 77.6% average

accuracy based on all features, the biggest improvement of the three classifiers. This makes sense,

because thek-NN classifier itself (using an Euclidean distance metric with all features scaled to the same

range of [0, 1]) can not apply different importance to various features like the GNB and J48 classifiers

are able to do. The latter two classifiers perform some sort of feature ranking when training the classifier,

thus the benefit of explicit feature selection should intuitively be less on these two classifiers.

Table 6.9: Exhaustive search for feature subset yielding highest accuracy using thek-NN classifier.

All features Best set of features
Dataset # features # combo’sAccuracy (Stdev)Accuracy (Stdev) # Features Bit-string

iris 4 16 95.6 % (0.5 %) 96.7 % (0.6 %) 2 (0011)
corral 6 64 93.4 % (2.1 %) 100.0 % (0.0 %) 4 (111100)
liver 6 64 62.9 % (1.1 %) 68.3 % (1.4 %) 3 (100011)
monk-1 6 64 67.1 % (0.6 %) 100.0 % (0.0 %) 3 (110010)
monk-2 6 64 82.7 % (2.1 %) 82.7 % (2.1 %) 6 (111111)
pima 8 256 74.2 % (0.5 %) 78.4 % (0.6 %) 6 (01101111)
breasttissue 9 512 69.4 % (0.7 %) 72.3 % (1.8 %) 4 (110010010)
glass 9 512 70.7 % (0.6 %) 79.1 % (1.0 %) 6 (111001110)
tic-tac-toe 9 512 90.3 % (0.4 %) 90.3 % (0.4 %) 9 (111111111)
parity5-5 10 1024 48.8 % (1.6 %) 100.0 % (0.0 %) 5 (1111100000)
vowel 10 1024 98.9 % (0.2 %) 99.1 % (0.3 %) 9 (1111111110)

average 77.6 % 87.9 %

Note that using the best subset of features, thek-NN classifier was able to obtain a 100% classification

accuracy on the corral, monk-1 and parity5-5 datasets. Only for the monk-2 and tic-tac-toe artificial

datasets did feature selection not improve the classification accuracy over that of using all features, as all

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 131

features were required to correctly describe the concept embedded in thesetwo datasets.

6.3.3 Conclusions

The question this section investigated was if the design of the fitness function and PSO wrapper method

works well enough. The focus of the investigation was on the question if the classifiers yielded enough

difference in the fitness values of different feature subsets compared to the variability resulting from

the classification accuracy calculation. The result of the investigation were mixed: in some cases the

setup worked well, in other cases it worked very poorly. This difference in the results was driven by the

combination of the dataset underlying the FSP and the classifier used.

Some combinations of classifier and dataset clearly yielded a poorly posed FSP for solving by the

PSO wrapper method. For these ill-posed FSPs, there was no sense of an optimum to be found by the

PSO algorithm. The random fluctuations in the classification accuracy will lead to some feature subset

FS1 having the highest fitness in one run of the PSO. But in another run, some other feature subsetFS2 is

likely to yield the highest fitness and be the set of features selected by the wrapper method. The quality

of the PSO algorithm in guiding the search then becomes immaterial.

Within the limited set of datasets investigated, poor performance seemed to occur more frequently in

artificial datasets with very few features. The datasets used in the main experiments on the FSP in this

chapter, but which did not form part of the investigation in this section, all contained more or even many

more features. The problem of an ill-posed FSP seems less likely to occur in those larger datasets.

In theory, it would be best to exclude all dataset-classifier combinations that work poorly from the

main experiments in this chapter as these combinations do not help to compare PSO algorithms, but

instead only cloud the comparison. However, without performing an exhaustive search like that outlined

in this section, it is not possible to identify these situations a-priori. For small benchmark problems

such a pre-selection can be done, but with real life problems, this will be impossible or at the least

negate the purpose of using a non-brute force method like PSO to perform the feature selection. If

the problem is small enough that a brute force approach is feasible, that brute force approach is to be

preferred as it is guaranteed to always match or outperform a stochastic search. Thus it was decided to

keep all combinations selected in section 6.2.1 in the main experiments, but to be aware of this issue

when analyzing the results.

6.4 Exhaustive search of classifier parameter space

This section describes the setup and results of a second exhaustive search performed on a number of

smaller FSP datasets. This exhaustive investigation is performed to determine if the method chosen to

tune the parameterized classifiers (J48 andk-NN) works sufficiently well. As described in section 6.2.3.3,

the classifiers with parameters need to be tuned on a given dataset in order to allow the classifier to

perform an adequate classification. Such adequate classification in turn is required for the PSO to be able

to successfully select features as described in section 6.2.5.

The classifier tuning method can be summarized as finding the best parameter (combination) from a

limited set of choices, where the best parameter is the one that leads to the highest classification accuracy.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

132 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

The crucial part of the tuning process for this investigation is that the classificationis performed using

all the dataset’s features. Recall that the tuned classifier forms part of the fitness function used during

the PSO search in the space of feature subsets. Therefore, during the PSO search, the classifier will

repeatedly determine the classification accuracy on the dataset, but usually withonly a subsetof the

features selected. The question this section needs to answer is whether tuning the classifier using all

features leads to a classifier that works adequately when only a subset of features is used in classification.

The proposed tuning method choses a single parameter combination from a grid of possible combi-

nations. This investigation tests how well the single classifier parameters chosen by the tuning method

perform acrossall feature subsets in a dataset. This performance is compared to that of the other possi-

ble choices of the classifier parameters from the grid of possible combinations. Parameter combinations

outside of the grid are not considered in this investigation.

This section first outlines the experimental setup for the exhaustive investigation of classifier param-

eters, followed by listing and discussing the results of the experiments and what conclusions are drawn

from the results.

6.4.1 Experimental method

The description of the experimental method for the exhaustive search of the classifier parameter space is

divided into three parts: which datasets were chosen, how the search itself was organized, and how the

results per dataset were combined into a single measure for each parameter: the probability score.

6.4.1.1 Dataset selection

Similarly as discussed in the section 6.3.1.1, computational restrictions mean that only datasets with a

relatively small number of features can be used in this exhaustive investigation. Since multiple classifier

settings are tested for each feature subset, some of the larger datasets that could still be investigated in

section 6.3 are now also considered to be too large. Therefore, the limit was set at datasets of at most

nine features, resulting in a selection of nine datasets shown in table 6.10. All these datasets are part of

the set of FSPs used in testing, none of the nine datasets are used in the tuning of the PSO parameters.

Table 6.10: Datasets used in exhaustive search of classifier parameter space

dataset # instances # classes # attributes# numerical # nominal

iris 150 3 4 4 0
corral 64 2 6 0 6
glass 214 7 9 9 0
liver 345 2 6 6 0
monk-1 432 2 6 6 0
monk-2 432 2 6 6 0
pima 768 2 8 8 0
breasttissue 106 6 9 9 0
tic-tac-toe 958 2 9 9 2

This selection of datasets is a mixture of three artificially constructed datasets (monk-1,monk-2 and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 133

tic-tac-toe) and six real-world datasets. The number of instances range from64 for the iris dataset to

958 for the tic-tac-toe endgame dataset. The glass and breasttissue datasets differ from the other seven

datasets in that they contain seven and six different classes respectively, while the other datasets have

only two or three (for the iris dataset) classes.

6.4.1.2 Organization of exhaustive search

Experiments were conducted for both classifiers that are parameterized: the J48 decision tree with pa-

rametersl andγ and thek-NN with parameterk. The GNB classifier has no parameter and thus was not

included in the experiments to determine the influence of classifier parameters.

The grids of parameters of the J48 andk-NN classifiers tested were the same as those used in the

classifier tuning in the main experiments as described in section 6.2.3.3. The 49 parameter combinations

tested for the J48 classifier were those resulting from the seven choices each for parametersl andγ that

were listed before in table 6.3. The 10 different parameter values fork in thek-NN classifier were listed

before in table 6.4.

For each dataset, an exhaustive search was conducted across all a classifier’s possible parameter

combinations. For each parameter combination, all feature subsets in the dataset were evaluated by

computing the classification accuracy usinga single10-fold cross validation.

A fair comparison of the accuracy between different subsets of selected features requires that all

other circumstances are as equal as possible, which includes the splits of the dataset during the 10-fold

cross validation. To ensure this, a separate process was used for generating pseudo-random numbers to

determine the random splits of the dataset into the training set and the testing set in the 10-fold cross

validation.

The goal of the exhaustive search is to determine the quality of the classification for each of the clas-

sifier’s parameter combinations acrossall feature subsets. Using this measure of quality, the performance

of the parameter combination resulting from the chosen classifier tuning method can be compared to all

other combinations. The quality measure used is described in the next section.

6.4.1.3 Probability score calculation

Many different measures can be constructed to combine the classification accuracies on all feature subsets

to see how well each parameter combination works. This section describes one such measure, labeled

theprobability score. The probability score is built using three main building blocks:

Reverse ranking: Instead of comparing the raw classification accuracy, the accuracies for different pa-

rameter combinations on a single feature subset are reverse ranked with the highest accuracy re-

ceiving the highest and best rank.

Selection: Besides the reverse ranking, the raw classification accuracy plays another role. The accura-

cies for different parameter combinations on a single feature subset are compared to the highest

accuracy found for that feature subset. Only parameter combinations that have an accuracy that is

close enough to the best accuracy for that feature subset are considered “good”.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

134 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Probability score: Theprobability score combines the results of the reverse ranking and the selection.

An intermediate score is calculated for a parameter combination by summing across all different

feature subsets the rank obtained,but only for those situations where the parameter combination

is considered “good”. The intermediate scores are scaled linearly to form the probability scores,

such that the sum of scores across all classifier parameters equals one. The resulting probability

score can be loosely interpreted as the probability that the parameter combination is the best one

to use for classification on the datasetif it is not known which features from the dataset will be

used in the classification. This situation of not knowing which features will be used, is exactly the

situation present at the start of the PSO search in the wrapper method of solving the FSP.

The remainder of this subsection describes in detail the steps and calculations that go into determining

the probability score for each classifier parameter combination:

1. LetD be the dataset underlying the FSP with a total ofN features. ThenD has an exhaustive list

of I feature subsetsFSi , whereI = 2N.

2. LetC be the classifier used, which is parameterized. In totalJ different parameter combinations

are considered forC, leading toJ classifiersC(j).

3. For each combination of feature subsetFSi and classifierC(j) the average classification accu-

racy,acc10−CV(D,FSi ,C(j)), is determined using 10-fold cross validation. At the same time, the

standard deviation of the classification accuracies across those 10 folds is recorded and labeled

SD10−CV(D,FSi ,C(j)).

4. Then for each feature subset,FSi , the best scoring classifier is determined, namely that classifier

C(j̄FSi) with parameter indexed̄jFSi that yields the highest accuracy of allC(j) on D using only

the features inFSi :

j̄FSi = argmax
j

{acc(D,FSi ,C(j)}, (6.1)

with corresponding maximum accuracy

accmax(D,FSi) = acc10−CV(D,FSi ,C(j̄FSi))

= max
j
{acc10−CV(D,FSi ,C(j))}, (6.2)

and standard deviationSD10−CV(D,FSi ,C(j̄FSi)).

5. The reverse ranks,r(D, j,FSi), are determined separately for each feature subsetFSi by ranking

the classification accuracies achieved by each of the parameters using that subset of features. The

parameter that achieves the highest classification accuracy receives the highest rank:

r(D, j,FSi) = rank(acc10−CV(D,FSi ,C(j)) | acc10−CV(D,FSi ,C(m),m= 1, . . . ,J) (6.3)

So for the parameter indexed̄jFSi , which achieved the highest classification accuracy onFSi , the

resulting reverse rank,r(D, j̄FSi ,FSi), equalsJ. For the worst performing parameter indexedj−,

the resulting reverse rank,r(D, j−,FSi), equals 1. In the case of ties, reverse ranks are averaged

over all tying parameter combinations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 135

6. Next, assuming a normal distribution of the measurements of the accuracy andusing a confidence

level of 95%, thecritical level, crit(D,FSi), is determined according to

crit(D,FSi) = accmax(D,FSi)−Φ(95%)SD10−CV(D,FSi ,C(j̄FSi))

= accmax(D,FSi)−1.645SD10−CV(D,FSi ,C(j̄FSi)) (6.4)

7. Any classifierC(j) having achieved a classification accuracy onFSi which is above this critical

level is considered a “good enough” parameter for classifierC on datasetD using only featuresFSi .

In the next step of the calculation, such good enough parameters result in a 1 using the indicator

function in the following way,

1I{acc10−CV(D,FSi ,C(j))≥ crit(D,FSi)}, (6.5)

while parameters whose classification accuracy onFSi is below crit(D,FSi) result in a 0 in for-

mula (6.5).

8. Next, score(D, j) is determined as the sum of the reverse ranksr(D, j,FSi) across all feature

subsets for which parameterj is considered good enough:

score(D, j) =
I

∑
i=1

r(D, j,FSi)∗1I{acc10−CV(D,FSi ,C(j))≥ crit(D,FSi)} (6.6)

9. As a final step, the scores are normalized so they equal one when summed across all parametersj.

This final result is labeled theprobability scoreof parameterj on the datasetD using classifierC:

probability score(D, j) =
score(D, j)

∑J
m=1score(D,m)

(6.7)

6.4.2 Results

This section contains the results of the probability score calculation for the J48 andk-NN classifiers

across the nine selected datasets. Results for each of the two classifiers are listed and discussed in

turn, by comparing the optimal parameter (the one that achieved the highest probability score) from the

exhaustive search with that resulting from the chosen classifier tuning method from section 6.2.3.3. Note

that rankings of the probability scores used in this section follow the normal convention of the best result

receiving rank 1.

6.4.2.1 J48 classifier

For the J48 classifier, seven different choices for parameterl and seven different choices for parameter

γ led to a total of 49 parameter combinations tested on nine datasets of up to nine features. Table 6.11

shows a summary of the results of the probability calculations on those nine datasets. The table shows

the name of the dataset and the number of features in the left-most two columns. The next three columns

grouped under “Best” show the value forl andγ that achieved the highest probability score across all

feature subsets, and the probability score labeled “score” for this best parameter combination. The final

four columns grouped under “Chosen” show thel andγ parameter that resulted from the classifier tuning

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

136 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

process, described in section 6.2.3.3, which used all features. The column labeled“score” indicates the

probability score of this chosen parameter combination and column labeled “rank” is the rank this pair

had out of the 49 combinations tested. To clarify: the “2” listed in this column for dataset glass means

that the parameter combination chosen in the tuning of the J48 classifier rank second best out of the 49

combinations based on probability scores.

Table 6.11: Best and chosen parameter values found in exhaustive search for the J48 classifier.

Best Chosen
Dataset # features l γ Score l γ Score Rank

iris 4 2 0.050 3.05% 18 0.275 2.50% 15
corral 6 2 0.125 4.92% 2 0.050 3.83% 7
liver 6 42 0.125 3.27% 26 0.275 2.25% 17
monk-1 6 2 0.050 2.70% 34 0.275 2.11% 22
monk-2 6 2 0.275 2.40% 2 0.425 1.89% 39
pima 8 34 0.200 2.89% 2 0.425 0.85% 48
breasttissue 9 2 0.050 9.71% 2 0.125 9.51% 2
glass 9 2 0.050 8.42% 2 0.125 7.30% 2
tic-tac-toe 9 2 0.350 4.53% 18 0.125 2.06% 19

In general, i.e. across the nine datasets, the performance of the chosen parametercombinations for

the J48 classifier ofl and γ was reasonable. However, large differences in performance between the

datasets can be seen:

• For six out of the nine datasets investigated, the probability score of the chosen parameter combi-

nation was at least 75% of the highest probability score found. It is acknowledged that this 75%

threshold was chosen somewhat arbitrarily. For the liver, pima, and tic-tac-toe datasets the thresh-

old was not met, with the ratios of chosen probability score to best probability scores of 69%, 29%,

and 45% respectively.

• For the pima dataset the probability score of the chosen combination was only 0.85%, which is

less than half of the average probability score (2.04%) across all 49 combinations. Also for the

monk-2 dataset, the probability score of the chosen combination was less than this average level.

• When looking at the rank of the chosen parameter combinations’ probability scores, large differ-

ences can be seen across the nine datasets. For the pima dataset, the chosen parameters performed

second-to-worst, and for monk-2 the chosen parameter ranked only 39th out of 49. The other

seven datasets all ranked in the top half of the 49 parameter combinations, but only three (corral,

breasttissue, and glass) ranked in the top 25%. For the datasets breasttissue and glass, the chosen

parameters performed very well: second best out of the 49 combinations. Across all nine datasets

the average rank was 19th out of 49, equivalent to the 61% percentile where a higher percentage

indicates a better rank.

A summary of the same results per parameter combination for the J48 classifier can be seen in

table 6.12. For each pair ofl andγ this table contains the average rank across the nine datasets. For each

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 137

dataset, all 49 parameter combinations are ranked on probability score, with thehighest - and thus the

best - score receiving the lowest rank. The bottom row gives another average, this time for a single value

of l across all seven choices forγ in that column. The right-most column shows something similar: the

average rank for a single value ofγ across seven choices forl .

Table 6.12: Detailed results of the exhaustive search for J48 parameter values for each dataset investi-
gated. Numbers indicate average rank of the parameter combination out of 49 possibilities across all nine
datasets. Lower ranks mean better performance and are colored more darkly.

γ / l 2 10 18 26 34 42 50 average

0.050 10.2 15.9 19.9 21.1 23.4 24.3 28.2 20.4
0.125 14.2 17.8 20.6 21.7 23.9 26.3 30.9 22.2
0.200 13.4 17.9 21.6 19.6 23.8 26.5 30.4 21.9
0.275 15.6 22.0 23.2 22.0 24.8 27.8 31.3 23.8
0.350 18.9 25.2 25.5 23.5 28.1 28.7 32.1 26.0
0.425 24.6 29.0 27.2 28.3 31.1 32.4 33.2 29.4
0.500 26.6 30.2 29.2 30.4 32.6 34.6 35.4 31.3

average 17.6 22.6 23.9 23.8 26.8 28.7 31.6

It is clear that small values of bothl andγ performed best, with performance (as measured by the

average rank) becoming less as eitherl or γ grows larger. Looking at the individual datasets, however,

this behavior was not universal: for the liver and pima datasets for example, the optimal values ofl are

34 and 42, respectively, and the top-left corner pair ofl = 2 andγ = 0.050 ranked only 16th and 39th out

of 49 for those two datasets.

The results from table 6.12 can also be compared to that of the chosen classifier tuning method,

which scored an average rank of 19.0 across the nine datasets. Table 6.12 contains only eight entries

that aresmallerand thus better than this rank of 19.0, meaning that the chosen classifier tuning method

ranked just within the 20% best parameter combinations.

More detailed results for the J48 classifier, showing the probability score for each combination ofl

andγ for all nine datasets, are listed in appendix C in section C.1.

6.4.2.2 k-NN classifier

For thek-NN classifier, 10 different choices for parameterk were tested in the classifier tuning pro-

cess, ranging from 1 to 19 in steps of 2. Table 6.13 shows a summary of the results of the probability

calculations on the nine datasets with few features. The table shows the name of the dataset and the

number of features in the left-most two columns. The next two columns grouped under “Best” shows

the value fork that was deemed to work best at classification across all possible feature subsets, and the

probability score labeled “score” for this best parameter combination. The final three columns grouped

under “Chosen” show the value fork chosen by the classifier tuning process described in section 6.2.3.3

using all features. The column labeled “score” indicates the probability score of this chosen parameter

combination, followed by the rank this parameter achieved out of the 10 values ofk tested.

In general, i.e. across the nine datasets, the performance of the chosen value ofk for the k-NN

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

138 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.13: Best and chosen parameter values found in exhaustive searchfor thek-NN classifier.

Best Chosen
Dataset # features k prob. k prob. Rank

iris 4 13 14.4% 5 7.9% 8
corral 6 19 13.1% 1 9.7% 6
liver 6 19 12.9% 3 5.0% 9
monk-1 6 1 13.8% 1 13.8% 1
monk-2 6 19 29.1% 5 2.8% 8
pima 8 19 21.2% 19 21.2% 1
breasttissue 9 1 33.4% 1 33.4% 1
glass 9 1 24.4% 1 24.4% 1
tic-tac-toe 9 17 15.8% 9 11.3% 6

classifier showed a clear split between datasets on which the chosen approachworked well versus one

on which it worked poorly:

• For only four out of the nine datasets investigated, the probability score of the chosen parame-

ter combination was at least 75% of the highest probability score found, but in all those cases

(i.e. monk-1, pima, breasttissue, and glass) the chosen parameter value was also the best possible

choice. Across the other five datasets, the ratio of the score for the chosen value ofk versus highest

probability scores per dataset ranged from 39% to 74% with an average of 50%.

• Of the five datasets that failed the 75% probability score ratio threshold, for only one (i.e. tic-tac-

toe) did the chosen value fork lead to a probability score above 10%, which is the average across

the 10 possible values fork. Across the four “good” datasets, the average probability score was

23%, more than twice the average score.

• When looking at the rank of the chosen parameter’s probability scores, the clearest differences can

be seen across the nine datasets. As stated before, for four datasets the best value ofk was chosen

in the classifier tuning, while for the other five the average rank was 7.4 out of 10 where 1 means

best.

When the actual values ofk that perform well or poorly are investigated, one sees that the bestk-

value was either high (19 was the highest possible value, which occurred four times, with one occurrence

each of 13 and 17) or low (the remaining three datasets all hadk = 1 as the optimal parameter value

for the classifier). The chosen tuning process, however, seemed to tend towards lower values fork (the

average across all nine datasets was 5) with the exception being the pima dataset for which the chosen

(and also best)k-value was 19. Excluding the pima dataset, the average chosenk-value across the other

eight datasets was 3. This dichotomy between datasets on which small values ofk performed better

versus those on which larger values ofk worked best can also be seen in table 6.14. This table shows the

distribution across the 10 values fork of the probability score using thek-NN classifier. The cells in the

table are colored in grey-scale according to the value in the cell, with a darker hue indicating a higher

value in the cell.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 139

Table 6.14: Detailed results of the exhaustive search fork-NN parameter values for each dataset investi-
gated. Higher probability scores are colored more darkly.

dataset chosenk 1 3 5 7 9 11 13 15 17 19

iris 5 0.9% 7.4% 7.9% 12.6% 10.3% 11.8% 14.4% 10.5% 11.7% 12.5%

corral 1 9.7% 8.3% 5.5% 6.6% 9.2% 10.6% 12.8% 13.0% 11.2% 13.1%

liver 3 4.6% 5.0% 10.6% 10.7% 10.7% 10.4% 11.2% 12.0% 12.0% 12.9%

monk-1 1 13.8% 13.0% 12.7% 9.3% 9.3% 7.4% 9.9% 8.8% 7.9% 7.9%

monk-2 5 1.3% 2.5% 2.8% 3.7% 6.0% 7.6% 9.9% 13.6% 23.5% 29.1%

pima 19 0.0% 0.5% 3.0% 3.9% 6.9% 11.0% 14.9% 17.7% 20.8% 21.2%

breasttissue 1 33.4% 17.4% 15.3% 10.4% 6.5% 5.8% 5.2% 3.3% 1.7% 0.9%

glass 1 24.4% 17.6% 15.1% 10.5% 8.3% 6.2% 4.9% 4.7% 4.4% 3.9%

tic-tac-toe 9 0.5% 1.7% 4.1% 9.0% 11.3% 13.1% 13.7% 15.5% 15.8% 15.3%

average rank 4.4 6.6 6.6 6.4 5.6 5.8 6.0 4.2 4.6 4.7 4.2

On the bottom row the average rank of 4.4 for the chosen classifier tuning method is compared to the

average rank for each of the parameter values separately, with a lower rank meaning better performance.

For simple methods, only the choice of usingk = 19 on all nine datasets yielded a better performance

than the chosen classifier tuning method. The choice ofk= 1 which is popular in literature was actually

the worst performing parameter value.

6.4.3 Conclusions

For the J48 classifier, the investigation on the nine smaller datasets didnot indicate a serious problem

with the procedure used to tune the classifier before its use in a PSO’s fitness function for solving the

FSP. The procedure resulted in reasonable parameters in most cases, although it led to bad classifier

parameters on some datasets, as exemplified by the poor results on the monk-2 and pima datasets. No

discernible pattern could be seen that indicated poorer performance of the chosen classifier tuning method

for datasets with a larger number of features.

Table 6.12 showed that small values for bothl andγ worked well on the nine datasets investigated,

with the pair l = 2 andγ = 0.050 ranking as best. No distinct pattern was discerned to see if this

outperformance by smaller parameter values extended to larger datasets. The chosen classifier tuning

method performed better than 80% of the “simple” choices of using one parameter combination across

all nine datasets, and its performance thus is deemed adequate.

For thek-NN classifier in general, the dichotomy between datasets for which smallk values worked

well and those for which large values ofk worked well is troubling, since the chosen classifier tuning

method seems to favor smaller values fork. The number of datasets investigated is too small for any

statistically significant results, but the chosen classifier tuning method was able to correctly pick a larger

value fork on two (pima, tic-tac-toe) of the five datasets which require a large value ofk to work well.

There is no evidence that the chosen classifier tuning method leads to unacceptable results across all

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

140 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

datasets, although in some cases, e.g. the J48 classifier on the pima dataset, the resultsof the investigation

for the chosen parameters were very poor. The results showed that there was a large variability between

the optimal classifier parameters between datasets, especially for thek-NN classifier. A simple choice

such as the “always usek = 1 for thek-NN classifier” which has been widely used in literature was

actually the worst performing choice out of those investigated: the results in table 6.14 show that this

approach yielded an average rank fork = 1 across the nine datasets of 6.6 out of 10, with 1 being the

best rank. The chosen classifier tuning method had an average rank of 4.4 out of 10, outscoring all but

the parameter valuek= 19.

6.5 PSO parameter tuning

This section describes the method used to tune the various PSO algorithms prior to their use in the main

numerical experiments on the FSP and the resulting tuning results. Most studies from literature that

use a PSO algorithm to solve the FSP didnot tune the PSO algorithm before the experiments; see also

section 3.4.4. Instead, these studies used parameter values from previous studies, parameter values which

have been proven successful on very different problems than the domain of feature selection. Although

having parameters that work “well enough” on most problem domains is preferable, this approach might

not be the best choice for the FSP domain.

In the experiments using PSO algorithms described in this chapter all PSO algorithms are tuned.

Section 6.5.1 describes the process used to tune the BPSO, PBPSO, CFBPSO, and SBPSO algorithms.

Section 6.5.2 lists the resulting parameters for each of these four PSO algorithms.

6.5.1 Parameter tuning process

All four PSO algorithms were tuned in the same manner to ensure a fair comparison of test results.

The parameter tuning process is broadly the same as that used for the MKP, which was described in

section 5.3.1.

For each of the 12 combinations of a PSO algorithm and a classifier, the same process was used to

tune the algorithm’s parameters, although the number of control parameters differed: BPSO has four

parameters, PBPSO and CFBPSO each have six, and SBPSO has five parameters. Each algorithm-

classifier pair was tuned once on each of the eight tuning datasets listed in table 6.2 in section 6.2.1.2.

Table 6.15 lists the ranges of possible parameter values used in this tuning process. The Cartesian

product of the parameter value ranges for one algorithm forms the parameter space for that algorithm. For

each of the four PSO algorithms, 128 parameter combinations were generated that span each algorithm’s

parameter space. Only static control parameters were considered. In order to generate the parameter

combinations in a manner that ensures that the parameter space was covered well, sequences of Sobol

pseudo-random numbers were used according to the method proposed by Franken [36].

For each triplet of (i) PSO algorithm, (ii) classifier, and (iii) dataset the same procedure was followed:

All 128 parameter combinations were used in turn as settings for the PSO algorithm under consideration,

and the full process described in section 6.2.5 was followed, resulting in three outcomes: the best position

found, Ŷ, the final fitness function evaluation,ffinal(Ŷ), and the standard deviation of the 10 repeated

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 141

Table 6.15: Parameter ranges used in tuning the four PSO algorithms on the FSP

algorithm ω c1 c2 Vmax

BPSO [0.50, 0.99] [0.00, 5.00] [0.00, 5.00] [1.00, 10.00]

algorithm ω c1 c2 Vmax R pmut

PBPSO [0.50, 0.99] [0.00, 5.00] [0.00, 5.00] [1.00, 10.00] [1.0, 100.0] [0.00, 0.50]

algorithm ω c1 c2 Vmax Nconstant preplace

CBFPSO [0.50, 0.99] [0.00, 5.00] [0.00, 5.00] [1.00, 10.00] {1, .. . ,5} [0.00, 0.25]

algorithm c1 c2 c3 c4 k

SBPSO [0.00, 1.00] [0.00, 1.00] [0.50, 5.00] [0.50, 5.00] {1, .. . ,5}

accuracy calculations using 10-fold cross validation.

Using the ranking and averaging method introduced in the experiments on the MKP, which was

described in section 5.3.1, these 128 final fitness values for all eight datasets were taken together to yield

the best parameter combination for each algorithm-classifier pair.

6.5.2 Tuning results

The results of the PSO parameter tuning are given in table 6.16. Results are grouped per PSO algorithm

in units of three lines for the three classifiers used.

For the BPSO, the tuning results showed stability across the three classifiers. For the GNB andk-NN

classifiers the resulting PSO parameters were the same, and for the J48 classifier only thec2 parameter,

the social attraction, showed an important deviation with a value just under 2 compared to a value of 4.4

for the other two classifiers.

For the PBPSO, the tuning results were very different for each of the three classifiers. The momen-

tum, ω , ranged from 0.687 for the GNB to 0.9709 for the J48. Interesting is also the balance between

c1, attraction to the personal best, andc2, attraction to the neighborhood best: for the GNB classifier

the personal best had the highest attraction, for J48 it was the neighborhood best, while for thek-NN

classifiers both had a roughly equal strength of attraction. The values of the transformation parameter,R,

and the mutation probability,preplace, did not show any clear pattern.

For the CFBPSO, tuning results showed stability across the three classifiers. This time the GNB and

J48 classifiers had the same tuned parameters. For thek-NN classifier the value ofω matched that of

the other two classifiers, but the personal and social attraction had reverse importance:c2, the attraction

to the neighborhood best, was larger thanc1, the attraction to the personal best. The catfish parameters

Nconstantandpreplacedid not show any clear pattern.

For the SBPSO, the tuning results were very different for each of the three classifiers. All three tuned

values forc2 were high within the possible range of[0,1], while values forc3 andc4 tended towards

the low or middle part of their respective ranges,[0.5,5.0]. Values for parameterc1, the attraction to the

personal best, showed three differing outcomes which varied across the whole range of[0,1].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

142 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.16: Tuned PSO parameters for FSPs

algorithm classifier ω c1 c2 Vmax

BPSO GNB 0.9479 4.0234 4.4141 7.5391
BPSO J48 0.9709 4.4141 1.9922 5.1484
BPSO k-NN 0.9479 4.0234 4.4141 7.5391

algorithm classifier ω c1 c2 Vmax R pmut

PBPSO GNB 0.6187 1.4453 4.3359 3.7422 41.9922 0.0039
PBPSO J48 0.9709 4.4141 1.9922 5.1484 38.8984 0.0508
PBPSO k-NN 0.8828 3.2813 3.5938 2.9688 4.0938 0.0469

algorithm classifier ω c1 c2 Vmax Nconstant preplace

CFBPSO GNB 0.9709 4.4141 1.9922 5.1484 3 0.0254
CFBPSO J48 0.9709 4.4141 1.9922 5.1484 3 0.0254
CFBPSO k-NN 0.9785 2.4609 4.1016 9.2266 1 0.0762

algorithm classifier c1 c2 c3 c4 k

SBPSO GNB 0.3672 0.9141 1.5898 1.3086 2
SBPSO J48 0.9609 0.8828 2.2930 2.5742 2
SBPSO k-NN 0.4766 0.9922 1.9414 2.3633 3

Detailed tuning results with outcomes per dataset for each of the classifiers canbe found in sec-

tion C.2 in appendix C.

6.6 Experimental results

This section gives an overview of the results of the numerical experiments using the FSP to compare

the new and tuned SBPSO algorithm to tuned versions of the BPSO, PBPSO, and CFBPSO algorithms.

The detailed results are not included here for reasons of conciseness, but can be found in appendix E.

The results consist of three pieces of information: the first is the classification accuracy achieved by the

PSO algorithms using each of the three classifiers GNB, J48, andk-NN. The accuracy is given as the

average and standard deviation across 30 independent runs of the PSO wrapper algorithms. The second

piece of information is the ranking of the four PSO algorithms on the 30 testing datasets, which formed

the basis of the statistical comparison to determine which algorithm performed best. The third piece of

information is the number of features selected by the PSO wrappers, given as the average and standard

deviation over the 30 independent runs.

Before the results of the experiments are discussed in separate sections for each of the three classifiers

used, section 6.6.1 describes an additional set of statistical tests performed to seewhich datasetsactually

showed a significant differentiation between the four PSO algorithms for each of the three classifiers. The

PSO algorithms’ performance on all datasets is compared with the performance on only those datasets

that showed a significant difference in performance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 143

After the discussion of the results per classifier, the results are combined acrossthe three classifiers in

section 6.6.5. Lastly, conclusions are drawn on the performance of the SBPSO on the FSP in section 6.7.

6.6.1 F-test to identify differentiating datasets

The main comparison of the results of the PSO runs on the FSP follows the statistical analysis used on

the MKP and described in section 5.5 and appendix E. Section 6.3.3 of the exhaustive investigations

of the fitness function for the FSP indicated, however, that for some datasets the chosen classifiers may

not be able to indicate a significant difference in accuracy. Including these datasets into the overall

comparison may dilute any true differences in performance such that the Iman-Davenport test (ID test)

on the ranks yields no significant result. In order to try and correct for this problem, a second set of

statistical comparisons was made usingonly the datasets that truly yielded a difference in performance

between the PSO algorithms, based on the variability of the recorded fitness function values.

Whether difference in performance of the PSO algorithms on a single dataset was significant is

determined statistically. Per dataset, the average and standard deviations of the classification accuracy

across the 30 independent runs of the four PSO algorithms were compared using a one-way analysis

of variance (ANOVA)F-test. This test was used to determine if the variance seen in the independent

classification accuracies for each PSO algorithm was small enough compared to the variance between the

average classification accuracies of the four PSO algorithms. Using a significance level ofα = 5%, this

test determined if the dataset led to statistically significant differences between the four PSO algorithms.

The results of the variousF-tests are given in table 6.17 below. TheF-statistic andp-value are

listed. A simple label readingTRUE or FALSE indicates if the results on that classifier and dataset show

a statistically significant difference using aα = 5% confidence level. Note that four different PSO

algorithms are compared using 30 runs for each algorithm, so the corresponding critical level for the

F-test atα = 5% isF(4−1,(4−1)∗ (30−1)) = F(3,87)= 2.7094.

To perform theF-test per dataset and per classifier, the average and standard deviation across the 30

classification accuracy results for each dataset and PSO algorithm were needed. These detailed results

are listed in the tables in appendix C, namely in table C.16 for the GNB, table C.19 for the J48 classifier,

and in table C.22 for thek-NN classifier.

The results of the 30×3= 90 F-tests in table 6.17 show that only on a small number of datasets a

statistically significant difference in performance was found at a confidence level ofα = 5%:

• For the GNB classifier, only nine out of 30 datasets showed a significant difference under theF-

test, i.e. arrhythmia, audiology, dermatology, horse-colic, movement-libras, musk-1, parkinsons,

sonar, and soybean.

• For the J48 classifier, only five out of 30 datasets showed a significant difference under theF-test,

i.e. hill-valley, movement-libras, musk-1, parity5-5, and sonar.

• For thek-NN classifier, only nine out of 30 datasets showed a significant difference under the

F-test, i.e. arrhythmia, audiology, german, hill-valley, horse-colic, ionosphere, movement-libras,

musk-1, and spectf.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

144 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.17: Datasets with significant differences on the one-way ANOVAF-test

GNB classifier J48 classifier k-NN classifier
Datasets F-stat. p-value Signif. F-stat. p-value Signif. F-stat. p-value Signif.

arrhythmia 15.22 0.0000TRUE 1.66 0.1812 FALSE 33.65 0.0000TRUE
audiology 18.91 0.0000TRUE 1.03 0.3852 FALSE 4.88 0.0035 TRUE
australian 0.40 0.7533 FALSE 0.12 0.9461 FALSE 1.56 0.2045 FALSE
bands 2.59 0.0580 FALSE 0.40 0.7520 FALSE 0.50 0.6841 FALSE
breasttissue 0.44 0.7264 FALSE 1.79 0.1546 FALSE 0.34 0.7979 FALSE

corral 0.70 0.5547 FALSE 0.08 0.9699 FALSE 0.42 0.7424 FALSE
crx 0.19 0.9005 FALSE 0.69 0.5628 FALSE 0.26 0.8541 FALSE
dermatology 6.78 0.0004 TRUE 1.61 0.1921 FALSE 1.74 0.1657 FALSE
german 1.24 0.3010 FALSE 0.26 0.8530 FALSE 3.32 0.0236 TRUE
glass 0.81 0.4915 FALSE 0.18 0.9103 FALSE 0.15 0.9313 FALSE

hill-valley 1.26 0.2931 FALSE 80.65 0.0000TRUE 7.96 0.0001 TRUE
horse-colic 13.73 0.0000TRUE 0.12 0.9454 FALSE 4.24 0.0076 TRUE
ionosphere 2.07 0.1095 FALSE 0.23 0.8752 FALSE 7.41 0.0002 TRUE
iris 1.18 0.3208 FALSE 1.31 0.2755 FALSE 0.07 0.9736 FALSE
liver 0.29 0.8304 FALSE 0.13 0.9402 FALSE 0.92 0.4361 FALSE

monk-1 0.37 0.7700 FALSE 0.80 0.5000 FALSE FALSE
monk-2 0.06 0.9809 FALSE 0.08 0.9695 FALSE 0.45 0.7193 FALSE
movement-libras 87.88 0.0000TRUE 7.52 0.0002 TRUE 6.34 0.0006 TRUE
musk-1 179.37 0.0000TRUE 2.96 0.0368 TRUE 11.64 0.0000TRUE
parity5-5 0.06 0.9802 FALSE 3.73 0.0143 TRUE 0.52 0.6705 FALSE

parkinsons 9.73 0.0000 TRUE 0.43 0.7294 FALSE 1.46 0.2312 FALSE
pima 0.35 0.7873 FALSE 0.09 0.9628 FALSE 1.03 0.3837 FALSE
sonar 11.24 0.0000TRUE 3.10 0.0308 TRUE 1.23 0.3043 FALSE
soybean 4.21 0.0079 TRUE 2.49 0.0657 FALSE 0.05 0.9829 FALSE
spectf 0.39 0.7585 FALSE 1.17 0.3242 FALSE 3.07 0.0318 TRUE

tic-tac-toe 1.52 0.2141 FALSE 0.87 0.4580 FALSE 0.64 0.5889 FALSE
vehicle 1.04 0.3805 FALSE 0.49 0.6932 FALSE 1.03 0.3822 FALSE
vote 0.69 0.5578 FALSE 0.26 0.8530 FALSE 0.73 0.5381 FALSE
vowel 1.11 0.3505 FALSE 0.47 0.7019 FALSE 0.78 0.5095 FALSE
wdbc 1.81 0.1514 FALSE 0.88 0.4522 FALSE 0.43 0.7350 FALSE

Significant 9 5 9

Note that these results were not sensitive to the chosen confidence level: usinga confidence level ofα =

1%, the number of selected datasets was 7, 2, and 7 for the GNB, J48, andk-NN classifiers respectively.

Using a confidence level ofα = 10%, the number of selected datasets was 10, 6, and 9 for the GNB, J48,

andk-NN classifiers respectively.

In general, the comparison of PSO algorithms in this thesis uses the non-parametric ID test, as it

removes the need to assume a specific distribution in the fitness values that are compared. In this specific

case the use of the simplerF-test is deemed defensible: the standard deviation across the independent

calculations of the classification accuracy using 10-fold cross validation include the variability due to

random noise in the cross validation splits and braking of ties. Although this random noise need not be

normally distributed, its distribution will likely be sufficiently well-behaved for theF-test to be usable.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 145

Note that a one-way ANOVAF-testas performed here doesnot require normally distributed inputs.

In the main result sections below, further ID-tests are conducted to compare the performance of the

four PSO algorithms, both using all 30 testing datasets and using only the datasets selected by theF-test

in table 6.17.

6.6.2 GNB classifier

Table 6.18 contains a summary of the statistical test results from comparing the four PSO algorithms

on the 30 testing datasets using the GNB classifier. Detailed results showing the actual classification

accuracies achieved, as well as the respective ranks of the four PSO algorithms per datasets, can be

found in appendix C in table C.16.

Table 6.18: Overview of statistical results on the FSP using the GNB classifier

GNB All datasets Selected datasets
BPSO CFBPSO PBPSO SBPSOBPSO CFBPSO PBPSO SBPSO

Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.67) (1.97) (3.10) (2.27) (2.56) (1.78) (3.78) (1.89)
rankof rank (3) (1) (4) (2) (3) (1) (4) (2)

Z-score 2.1000 3.4000 0.90000.8520 2.1909 0.1217
p-value 0.0179 0.0003 0.18410.1971 0.0142 0.4516
Holm α 0.0250 0.0500 0.01670.0250 0.0500 0.0167

ranked 1 3 13 4 10 1 4 0 4
ranked 2 9 8 4 9 2 3 1 3
ranked 3 13 6 7 4 6 2 0 1
ranked 4 5 3 15 7 0 0 8 1

datasets 30 30 30 30 9 9 9 9

Based on the ranks for all 30 datasets, the CFBPSO performed best with an average rank of 1.97.

The ID-test indicated that the average ranks led to a statistically significant difference in performance.

Further Nemenyi post-hoc tests showed that the BPSO and PBPSO underperformed with respect to the

other two PSOs. However, no significant difference in performance was detected between the CFBPSO

and the SBPSO.

The outperformance of the CFBPSO and SBPSO was by no means universal because the CFBPSO

achieved either a first or second rank in only 21 out of 30 cases, while for the SBPSO this was true in 19

out of 30 cases. Thus, on one third of the datasets tested, the two best performing algorithms ranked as

worst or second-worst. Note the difference with the results of comparing PSO algorithms on the MKP,

where the SBPSO was the best performing algorithm in almost all cases, and never worse than second

best.

Using the ranks on only the nine datasets that showed a statistically significant difference on the

F-test, the CFBPSO still performed best with an average rank of 1.78. The ID-test indicated that a statis-

tically significant difference in performance existed between the four PSO algorithms. Further Nemenyi

post-hoc tests showed that the PBPSO underperformed, but no significant difference in performance was

detected between the CFBPSO, the BPSO, and the SBPSO. So on the smaller number of datasets that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

146 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

“pass” theF-testusing the GNB classifier, the ID-test and Nemenyi post-hoc tests were less powerful:

even though the difference in average rank between the CFBPSO and BPSO was larger on the nine

selected datasets, this difference was no longer statistically significant.

The GNB classifier failed on the monk-2 dataset, as all four PSO algorithms achieved the same classi-

fication accuracy (67.13%) with a standard deviation of zero. This was because the classifier was unable

to correctly represent the concept behind the dataset’s class labels. The number of features selected can

be seen in table C.18 in appendix C and this ranged around 3 with a standard deviation of 1.3 features.

This is almost exactly what is to be expected from randomly choosing the features in each of the 30

independent runs from the six total number of features in the dataset. Although not on the same level

of failure, the GNB classifier was also not very successful on the monk-1 dataset: only one feature was

selected in all instances, resulting in the concept underlying the dataset’s class label being only partially

represented by the classifier using that one feature.

The GNB classifier also failed on the parity5-5 dataset, as all four PSO algorithms achieved almost

the same classification accuracy (46.3%) while zero features were selected (see table C.18). That classi-

fication accuracy was the result of simply choosing the most common class label. The parity concept is

something the GNB classifier was unable to represent.

The CFBPSO performed well on the ionosphere dataset, while the other three PSO algorithms strug-

gled. What was even more remarkable, is that the standard deviation of the classification accuracy for the

CFBPSO on this dataset was quite high (2.45%), while for the other three PSO algorithms this number

was even above 9%. This result can be explained by looking at the average number of features selected.

For the BPSO, PBPSO, and SBPSO the average number of features selected was five out of 34, with a

standard deviation ranging from 3.5 to 6.2. For CFBPSO, only 2.9 features were selected on average,

with a standard deviation of 1.6. The reset feature embedded in the CFBPSO meant that many times

during the CFBPSO’s run, particles get reset to the empty set of features, making it easier for the algo-

rithm to find small subsets of features from a relatively large (in this case 34) set of features. Because of

the large variation in the classification accuracy across the 30 independent runs for each of the four PSO

algorithms, theF-test did not indicate a significant difference in performance on the ionosphere dataset,

even though the CFPSO outperformed the other algorithms by at least 2.42% in classification accuracy.

Other datasets that showed a large difference in the classification accuracy achieved by the four

PSO algorithms were soybean, musk-1, and movement-libras. On the soybean database the CFBPSO

outperformed the SBPSO by 1.70%. In contrast, the SBPSO outperformed the CFBPSO by a wide

margin on the musk-1 (by 6.04%) and the movement-libras (by 1.24%) datasets. For the other 26 datasets,

the difference in classification accuracy between CFBPSO and SBPSO is less than 0.4%.

For seven different datasets (breasttissue, iris, monk-1, parity5-5, pima, tic-tac-toe, vowel) using the

GNB classifier, all four PSO algorithms were able to select the same number of features in each of the

30 independent runs, leading to a standard deviation of zero in the number of features (see table C.18).

Note that these were all small datasets with at most 10 features. For these simple problems, the FSP

could be solved well by all PSOs resulting in a single best scoring set of features. These datasets did not

help differentiate in the relative performance of the four PSO algorithms, because the ranking of the PSO

algorithms on these datasets was determined by the noise in the classification accuracy instead of a true

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 147

difference in the quality of the features selected.

6.6.3 J48 classifier

Table 6.19 contains a summary of the statistical test results from comparing the four PSO algorithms on

the 30 testing datasets using the J48 classifier. Detailed results can be found in appendix C in table C.19.

Table 6.19: Overview of statistical results on the FSP using the J48 classifier

J48 All datasets Selected datasets
BPSO CFPSO PBPSO SBPSOBPSO CFPSO PBPSO SBPSO

Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.37) (2.23) (3.10) (2.30) (2.40) (1.40) (3.20) (3.00)
rankof rank (3) (1) (4) (2) (2) (1) (4) (3)

Z-score 0.4000 2.6000 0.20001.0954 1.9718 1.7527
p-value 0.3446 0.0047 0.42070.1367 0.0243 0.0398
Holm α 0.0250 0.0500 0.01670.0167 0.0500 0.0250

ranked 1 7 10 2 11 1 4 0 0
ranked 2 10 8 6 6 2 0 1 2
ranked 3 8 7 9 6 1 1 2 1
ranked 4 5 5 13 7 1 0 2 2

datasets 30 30 30 30 5 5 5 5

Using the ranks on all 30 datasets, the CFBPSO performed best with an averagerank of 2.23. The

ID-test indicated that the average ranks meant that a statistically significant difference in performance

existed. Further Nemenyi post-hoc tests showed that the PBPSO underperformed the other three PSOs.

However, no significant difference in performance was detected between the CFBPSO, the BPSO, and

the SBPSO.

While CFBPSO achieved the best average rank, the difference with the BPSO and the SBPSO was

very small (2.23 versus 2.37 and 2.30) and the SBPSO actually performed best on the highest number

of datasets (11) compared to 10 for CFBPSO and seven for BPSO. Even the clearly underperforming

PBPSO algorithm was able to achieve the best classification for two of the datasets, showing that the

relative performance was inconsistent across the 30 testing datasets.

Based on theF-test results per dataset, only five out of the 30 testing datasets showed a statistically

significant difference using the J48 classifier. This small number of selected datasets meant that, even

though the ID-test showed a statistical significant difference among the four PSO algorithms on this

small set, the post-hoc Nemenyi tests only showed significant under-performance by the PBPSO. Even

the relatively poor average rank of 3.00 achieved by the SBPSO, could not be distinguished from the

best average rank of 1.40 achieved by the CFBPSO. By consequence, the BPSO also scored equally, in

statistical sense, as the CFBPSO en SBPSO.

On the monk-1 dataset, very little difference could be seen between the four PSO algorithms, each

with an average accuracy of 75.01% and a very low standard deviation in accuracy. Looking at the

number of features selected in table C.21, however, the average of 3.5 features with a standard deviation

of 1.1 features was again very close to what is to be expected from randomly choosing the features in each

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

148 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

of the 30 independent runs out of the six total features. The J48 classifierwas thus unable to correctly

portray the concept behind the monk-1 dataset, while the partial success reported was not dependent on

the features selected.

Interestingly, the J48 classifierwas able to correctly portray the monk-2 dataset, by selecting all

six features in all cases. The variability in the average classification accuracy between the four PSO

algorithms was thus fully caused by the noise in the final fitness calculation. The different relative

performance which resulted in the CFBPSO achieving the rank of 1 and BPSO the rank of 4 can thus

be attributed to randomness and was not indicative of a true difference in performance by the PSO in

solving the FSP.

For the tic-tac-toe dataset the same applies as was noted for the monk-2 dataset in the previous para-

graph: all runs for each of the PSO algorithms resulted in selecting all nine features, meaning there was

no difference in performance on the FSP. The variability in the average classification accuracy between

the four PSO algorithms was thus fully caused by noise in the final fitness calculation.

The J48 classifier failed on the hill-valley dataset for all PSOs as the classification accuracy was no

more than 50% while the dataset has only two roughly equally occurring classes. CFBPSO scored almost

3% better than the other PSO algorithms because the reset mechanism allowed each of the 30 runs to find

the empty set of features. This resulted in a higher classification accuracy than the other feature subsets,

but the empty subset clearly is not the solution of the FSP. The J48 classifier was not able to capture the

concept behind the hill-valley dataset.

On the movement-libras dataset, the SBPSO performed quite poorly with the lowest classification

accuracy 1.6% lower than the CFBPSO. The SBPSO selected on average 53 features, which was more

than 10 more features than the other three algorithms. Also, the standard deviation in the number of

features was much higher for the SBPSO, indicating that the SBPSO was not able to find a reasonable

solution in some of the 30 runs. Other than this and the hill-valley datasets, the difference in accuracy

between CFBPSO and SBPSO was less than 0.9%.

6.6.4 k-NN classifier

Table 6.20 contains a summary of the statistical test results from comparing the four PSO algorithms

on the 30 testing datasets using thek-NN classifier. Detailed results can be found in appendix C in

table C.22.

Using the ranks on all 30 datasets, the SBPSO performed the best with an average rank of 1.68. The

ID-test indicated that the average ranks meant that a statistically significant difference in performance

existed. Further Nemenyi post-hoc tests showed that the SBPSO outperformed all other three PSO

algorithms. The outperformance by the SBPSO was quite strong: it performed best on 20 out of 30

datasets. while the CFBPSO, which ranked second, performed best on 7 of the remaining datasets. Still,

the SBPSO did perform worst on three datasets (i.e. corral, parkinsons, and vowel).

Based on theF-test results per dataset, only nine out of the 30 testing datasets showed a statistically

significant difference using thek-NN classifier. This small number of selected datasets meant that, even

though the ID-test showed a statistical significant difference among the nine PSO algorithms on this

small set, the post-hoc Nemenyi tests were less powerful than on the full set of 30 datasets: No statistical

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 149

Table 6.20: Overview of statistical results on the FSP using thek-NN classifier

k-NN All datasets Selected datasets
BPSO CFPSO PBPSO SBPSOBPSO CFPSO PBPSO SBPSO

Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.75) (2.48) (3.08) (1.68) (3.33) (2.89) (2.78) (1.00)
rank of rank (3) (2) (4) (1) (4) (3) (2) (1)

Z-score 3.2000 2.4000 4.2000 2.5560 2.0692 1.9475
p-value 0.0007 0.0082 0.0000 0.0053 0.0193 0.0257
Holm α 0.0250 0.0167 0.0500 0.0500 0.0250 0.0167

ranked 1 2 7 0 20 0 0 0 9
ranked 2 12.5 8.5 7.5 2.5 2 4 3 0
ranked 3 6.5 7.5 12.5 4.5 2 2 5 0
ranked 4 9 7 10 3 5 3 1 0

datasets 30 30 30 30 9 9 9 9

difference could be seen between the SBPSO and the CFBPSO on the selecteddatasets, even though

SBPSO performed best on each of the nine datasets - only for a confidence level of 7.5% can statistical

outperformance be seen.

The largest difference in classification accuracy was seen on the arrhythmia dataset, where SBPSO

outperformed the three other PSO algorithms by at least 3.83%. The reason behind this was likely that

the SBPSO was able to find better solutions using fewer features, evidenced by the average number of

features selected of 65.6 out of 279 possible features versus an average of 113 across the other three

PSO algorithms. For the SBPSO, the variance in the number of features selected was much higher

(standard deviation of 43.4), with the actual size of the feature subsets ranging from 16 to 183 features.

The smaller subsets performed best, achieving classification accuracies up to 74%. The large number

of features means that the space of feature subsets contains 9.7 ·1083 points, of which only a very small

portion could be searched during the PSO runs, making this a very hard problem. This result is discussed

further in section 6.7.

The FSP based on the monk-1 dataset was solved perfectly by all PSOs, resulting in an average

classification accuracy of 100%. As evidenced by the fact that the average number of features was

between 3 and 4, thek-NN classifier was able to perfectly solve the classification problem on more

than one feature subset: as long as features 1, 2, and 5 were included, adding one more feature did not

reduce the classification from perfect using the 1-NN classifier. Effectively, this means that, out of the

64 possible feature subsets, four different subsets yield a perfect classification, making the problem too

easy to allow for differentiation in the performance of the four PSO algorithms on the FSP based on this

dataset.

On the parity5-5 dataset the CFBPSO performed better than the other PSO algorithms (by at least

1.67%) and was close to perfect, while achieving a much lower standard deviation in the accuracy. No

difference could be seen in the number of features selected compared to the other PSOs, which at 6.8

was also higher than the five required for correct classification. The good accuracy score was caused

by the fact that CFPBSO found the five right features in all 30 runs, but often still included additional

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

150 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

features as well. Thek-NN classifier evidently was able to deal quite well with the redundant features.

For each of the other three algorithms, exactly one out of the 30 runs failed completely and the PSOs

did not select all five required features, resulting in a classification accuracy of around 50% which is

equivalent to random classification. Again it was the reset mechanism that helped the CFBPSO, as every

time a particle gets reset, it has a 50% chance to get reset to the subset of all features. In that case, all the

five important features are included and thek-NN classifier withk= 1 achieves a classification accuracy

close to 100%, attracting other particles in the swarm.

6.6.5 All three classifiers combined

This section combines the results per classifier into a single comparison of the four PSO algorithms.

Because combining the classification accuracies for different classifiers is not useful for the purpose of

testing performance on the FSP, only ranks are used in this section.

Table 6.21 contains an overview of the rankings achieved on each of the 30 testing datasets by the four

PSO algorithms using all three classifiers. Each cell in the table contains the ranking achieved using the

GNB, J48, andk-NN classifier respectively, separated by a colon (’:’). In those cases where theF-test

indicated significant differences for a dataset-classifier combination, the resulting ranks are indicated

in bold. At the bottom of the table, the average rank across all 90 dataset-classifier combinations is

stated, as well as the average rank across the datasets selected using theF-tests. The ID-test showed

statistical significant differences in both cases, and those PSO algorithms that performed best or were

indistinguishable from the best are indicated in bold.

As expected, the results of the experiments on the FSP differed according to which classifier was

used: a different classifier meant different rankings of the four PSO algorithms on the datasets. Only 23

out of the 120 combinations (11%) of dataset and PSO algorithm showed resultsunaffectedby the choice

of classifier, meaning that the PSO algorithm obtained the same rank out of four for the dataset using

each of the three classifiers. Such consistent outcomes happened three times for the BPSO (on the corral,

ionosphere, and vehicle datasets), two times for the PBPSO (on the bands and dermatology datasets),

and four times each for the CFBPSO (on the dermatology, liver, parity5-5, and tic-tac-toe datasets) and

the SBPSO (on the horse-colic, parity5-5, tic-tac-toe, and vowel datasets). Only in three cases did such a

consistent outcome mean one algorithm performed best using all three classifiers: the SBPSO on horse-

colic and the tic-tac-toe datasets, and the CFBPSO on the parity5-5 dataset. In four cases the consistent

outcome meant a consistently worst outcome: PBPSO on the bands and dermatology datasets, CFBPSO

on the liver dataset, and SBPSO on the vowel dataset.

Although the individual ranks on single datasets varied across classifiers, in contrast the outcomes

of the statistical tests to compare the PSO algorithms combing the classifiers were fairly consistent:

using all 30 datasets, the CFBPSO and the SBPSO were the two best performing algorithms for all three

classifiers, and only for thek-NN classifier was there a statistical significant difference with the SBPSO

outperforming the other three PSOs. Using the J48 classifier, the BPSO algorithm also was statistically

indistinguishable from these two algorithms, but for the other two classifiers the BPSO underperformed

in a statistically significant manner. The PBPSO underperformed using each of the three classifiers.

If only those datasets selected by theF-test were used, then for each of the three classifiers the lone

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 151

Table 6.21: Detailed rankings of the four PSO algorithms on the FSP combining all threeclassifiers

Dataset BPSO CFBPSO PBPSO SBPSO

arrhythmia 3 : 2 : 4 1 : 1 : 2 4 : 3 : 3 2 : 4 : 1
audiology 2 : 1 : 4 1 : 2 : 2 4 : 4 : 3 3 : 3 : 1
australian 4 : 1 : 3 2 : 3 : 2 3 : 2 : 4 1 : 4 : 1
bands 1 : 2 : 2 2 : 1 : 3 4 : 4 : 4 3 : 3 : 1
breasttissue 3 : 3 : 2 4 : 1 : 4 2 : 2 : 3 1 : 4 : 1

corral 3 : 3 : 3 2 : 2 : 1 1 : 4 : 2 4 : 1 : 4
crx 2 : 4 : 3 1 : 3 : 2 3 : 2 : 4 4 : 1 : 1
dermatology 1 : 1 : 2 3 : 3 : 3 4 : 4 : 4 2 : 2 : 1
german 2 : 1 : 4 1 : 4 : 2 3 : 2 : 3 4 : 3 : 1
glass 3 : 2 : 2 1 : 4 : 1 4 : 3 : 4 2 : 1 : 3

hill-valley 2 : 3 : 3 3 : 1 : 4 4 : 4 : 2 1 : 2 : 1
horse-colic 3 : 4 : 2 2 : 2 : 4 4 : 3 : 3 1 : 1 : 1
ionosphere 3 : 3 : 3 1 : 1 : 4 4 : 4 : 2 2 : 2 : 1
iris 4 : 3 : 4 3 : 4 : 1 1 : 1 : 2 2 : 2 : 3
liver 3 : 3 : 2 4 : 4 : 4 1 : 2 : 3 2 : 1 : 1

monk-1 4 : 2 : x 1 : 4 : x 2 : 3 : x 3 : 1 : x
monk-2 1 : 1 : 4 2 : 2 : 1 3 : 4 : 3 4 : 3 : 2
movement-libras 3 : 2 : 4 2 : 1 : 3 4 : 3 : 2 1 : 4 : 1
musk-1 3 : 2 : 2 2 : 1 : 3 4 : 3 : 4 1 : 4 : 1
parity5-5 4 : 4 : 2 1 : 1 : 1 2 : 2 : 4 3 : 3 : 3

parkinsons 3 : 2 : 2 1 : 3 : 1 4 : 4 : 3 2 : 1 : 4
pima 2 : 3 : 4 4 : 1 : 3 3 : 4 : 2 1 : 2 : 1
sonar 2 : 1 : 2 3 : 3 : 4 4 : 4 : 3 1 : 2 : 1
soybean 3 : 2 : 2 1 : 3 : 3 2 : 4 : 4 4 : 1 : 1
spectf 3 : 2 : 4 1 : 3 : 2 4 : 4 : 3 2 : 1 : 1

tic-tac-toe 3 : 4 : 3 2 : 2 : 2 4 : 3 : 4 1 : 1 : 1
vehicle 2 : 2 : 2 1 : 1 : 4 3 : 4 : 3 4 : 3 : 1
vote 4 : 1 : 1 1 : 2 : 3 3 : 3 : 4 2 : 4 : 2
vowel 2 : 3 : 1 3 : 2 : 2 1 : 1 : 3 4 : 4 : 4
wdbc 2 : 4 : 4 3 : 2 : 1 4 : 3 : 2 1 : 1 : 3

average rank (2.60) (2.23) (3.09) (2.08)

average rank selected (2.83) (2.13) (3.26) (1.78)

statistical conclusion that could be drawn was that the PBPSO algorithm underperformed.

Only in two cases did theF-test indicate that a dataset yielded statistically significant differences

for each of the three classifiers used: the movement-libras and musk-1 datasets. These datasets also

showed the same behavior in that the SBPSO performed best using the GNB andk-NN classifiers, while

it performed worst using the J48 classifier. For five datasets (arrhythmia, audiology, hill-valley, horse-

colic, sonar) two out of three classifiers yielded a significant outcome of theF-test, while for a further

seven datasets (dermatology, german, ionosphere, parity5-5, parkinsons, soybean, spectf) one out of three

classifiers was able to do so. This means that for the remaining 16 datasets, none of the three classifiers

yielded a large enough difference in performance to yield a significant result on theF-test.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

152 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

The details underlying the statistical comparison of the four PSO algorithms using allthree classifiers,

and some overview statistics on these rankings, are shown in table 6.22.

Table 6.22: Overview of statistical results on the FSP combining all three classifiers

All classifiers All datasets Selected datasets
BPSO CFBPSO PBPSO SBPSO BPSO CFBPSO PBPSO SBPSO

Measure Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.60) (2.23) (3.09) (2.08) (2.83) (2.13) (3.26) (1.78)
Rank of rank (3) (2) (4) (1) (3) (2) (4) (1)

Z-score 2.7135 0.7794 5.2828 2.7410 0.9137 3.8831
p-value 0.0033 0.2179 0.0000 0.0031 0.1804 0.0001
Holm α 0.0250 0.0167 0.0500 0.0250 0.0167 0.0500

ranked 1 3 : 7 : 2 13 : 10 : 7 4 : 2 : 0 10 : 11 : 201 : 1 : 0 4 : 4 : 0 0 : 0 : 0 4 : 0 : 9
ranked 2 9 : 10 : 12 8 : 8 : 8 4 : 6 : 7 9 : 6 : 2 2 : 2 : 2 3 : 0 : 4 1 : 1 : 3 3 : 2 : 0
ranked 3 13 : 8 : 6 6 : 7 : 7 7 : 9 : 12 4 : 6 : 4 6 : 1 : 2 2 : 1 : 2 0 : 2 : 5 1 : 1 : 0
ranked 4 5 : 5 : 9 3 : 5 : 7 15 : 13 : 10 7 : 7 : 3 0 : 1 : 5 0 : 0 : 3 8 : 2 : 1 1 : 2 : 0

ranked 1 12 30 6 41 2 8 0 13
ranked 2 31 24 17 17 6 7 5 5
ranked 3 27 20 28 14 9 5 7 2
ranked 4 19 15 38 17 6 3 11 3

datasets 90 90 90 90 23 23 23 23

The SBPSO achieved the best average rank, both on all 90 datasets (averagerank of 2.08), as on

the 23 selected datasets (average rank of 1.78). The outcome of the ID-test and Nemenyi post-hoc tests

on the combined results in table 6.21 showed that in both cases the difference in average rank with the

CFBPSO was too small to indicate a significant difference in performance between the two, while the

BPSO and PBPSO were shown to underperform. Table 6.22 also contains two summaries of the number

of times a PSO algorithm achieved a particular rank, shown in two blocks of four lines each labeled “#

ranked”. The top-most block shows a count of the ranks split by classifier in the order of GNB, J48, and

k-NN classifier separated by colons. The bottom-most block sums these counts to a single total for the

PSO algorithm.

These summaries show that the SBPSO was able to achieve the best average rank on all 30 datasets,

mainly because it achieved the best rank on 41 out of 90 dataset-classifier pairs. The CFBPSO achieved

the best rank on 30 dataset-classifier pairs. The BPSO and PBPSO achieved the best rank on 12 and six

dataset-classifier pairs, respectively. The top ranks achieved by the SBPSO came predominately (20 from

41) from pairs using thek-NN classifier, while performance on the GNB and J48 classifier combined was

roughly equal to that of the CFBPSO. These results indicate that the SBPSO showed more variability in

performance across the three classifiers. This observation is investigated further in table 6.23.

The different average ranks across a single classifier are repeated in table 6.23 from the previous

sections. The average rank labeled “All” is the same as that shown at the top in table 6.22. The row

labeled “standard deviation” shows the standard deviation across the three different average ranks for

each of the three classifiers. Now shown together, one can see some patterns emerging:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 153

Table 6.23: Overview of average rank and variability across classifiers onthe FSP

Measure BPSO CFBPSO PBPSO SBPSO

average rank GNB (2.67) (1.97) (3.10) (2.27)
average rank J48 (2.37) (2.23) (3.10) (2.30)
average rankk-NN (2.75) (2.48) (3.08) (1.68)

average rank All (2.60) (2.23) (3.09) (2.08)

standard deviation 0.20 0.26 0.01 0.35

• The under-performance of the PBPSO algorithm was consistent across the three classifiers.

• For the BPSO classifier, the performance was slightly better for the J48 classifier than the other

two, but overall still reasonably equal.

• For CFBPSO the performance was unequal across classifiers where the best performance came

using the GNB classifier and the worst using thek-NN classifier.

• For SBPSO the performance was most unequal across classifiers, evidenced by the highest standard

deviation of the three average ranks per classifier. The best performance came using thek-NN

classifier, while performance for the GNB and J48 classifiers was less.

6.7 Conclusions

This chapter had two objectives. The most important objective was to determine whether it is possible to

successfully apply the SBPSO algorithm to the FSP. Here success meant yielding solutions of sufficient

quality, but not necessarily solutions on par with the best approaches for solving the FSP. The investiga-

tion of SBPSO’s efficiency while solving the FSP (the number of iterations, fitness function evaluations,

or flops) was explicitly set out of scope. The second objective was to compare the performance of the

SBPSO algorithm on the FSP to that of three other PSO algorithms known from literature. These two ob-

jectives are discussed in reverse order, followed by some additional findings relating to the experimental

setup and its possible impact.

6.7.1 Comparing the SBPSO to other PSO algorithms

The SBPSO was compared to three other PSO algorithms from literature: the BPSO, the PBPSO, and the

CFBPSO. The process to compare the algorithms was kept similar to that used successfully in chapter 5

on the MKP. A difference in the process was that, instead of using three different swarm topologies,

in the experiments on the FSP the Von Neumann topology was used for all the PSO algorithms and in

all experiments. Instead, three differentclassifierswere used to prevent the choice of a single classifier

from introducing a bias in the results. These three classifiers used were the GNB, the J48, and thek-NN

classifier.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

154 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.7.1.1 CFBPSO and SBPSO performed best

In short, the results of the numerical experiments conducted on the FSP in this chapter can be described

as follows: the CFBPSO algorithm performed best when combined with either the GNB or J48 classifier,

but this performance was not significantly better than that of the SBPSO. Using thek-NN classifier, the

SBPSO algorithm performed best and in this case the outperformance of the other three algorithmswas

statistically significant.

When anF-test as described in section 6.6.1 was used to determine which datasets showed a signifi-

cant difference in performance between the four PSO algorithms, only 23 out of a possible 90 combina-

tions of dataset and classifier showed such a statistically significant difference. Using only this smaller

set of datasets to compare the PSO algorithms, the statistical ID-tests to compare the PSO algorithms

became less powerful. In this case, the SBPSO and the CFBPSO could not be distinguished in perfor-

mance for any of the three classifiers. Also, using the GNB or the J48 classifier, the BPSO algorithm

could not be shown to have a significantly different performance than the CFBPSO or the SBPSO. The

PBPSO algorithm was shown to have significantly underperformed the other PSO algorithms for each of

three classifiers.

In contrast to how clearly the experiments on the MKP showed outperformance by the SBPSO, the

results on the FSP showed a much less clear result. One could perhaps see this as an indication that the

CFBPSO, which was not used in the experiments on the MKP, was a better algorithm than the MBPSO

it replaced in the line-up of PSO algorithms. Without testing the CFBPSO on the MKP, this cannot be

decided. A more significant finding, however, is the fact that the relative performance seen was much

less consistent on the FSP than on the MKP. While CFBPSO and SBPSO achieved the most first place

ranks on the FSP, both algorithms performed worst out of the four PSO algorithms on some datasets for

each of the three classifiers. On the MKP, the SBPSO never performed worse than second out of four and

performed best in the overwhelming majority of cases. Even if the CFBPSO was a better algorithm to

compare the SBPSO to, this does not explain the contrast of the SBPSO having performed quite poorly

in some cases on the FSP, while it was so consistent on the MKP. This inconsistency is discussed further

below.

6.7.1.2 Impact of choice of classifier on SBPSO

The SBPSO outperformed all other PSO algorithms on thek-NN in a statistically significant manner. On

the GNB and J48 classifiers, the CFBPSO performed best, but not in a statistically significant manner.

A possible explanation for this difference in performance lies in the combination of (i) how the SBPSO

shows stability in the features selected, and (ii) the observation that feature selection by the PSO is more

directly linked with classification accuracy when using thek-NN classifier.

Firstly, the SBPSO allows for stability in the features selected during a run of the algorithm. The

SBPSO behaves with more “crispness” than the other PSO algorithms when the search has not yet con-

verged: in the SBPSO, the randomness in which features are in- or excluded from a particle’s position is

lessthan for the other PSO’s. For those algorithms, which are all equal to or based on the binary PSO,

the process by which a particle’s velocity is converted to a position is the same. This process means that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 155

early in the search a high degree of randomness exists in the particle’s position:although some features

have a velocity close to 0 or 1 and are stable, those with a velocity around 0.5 will tend to flip between in-

and exclusion for consecutive iterations. In contrast, the feature subsets in the SBPSO’s particles are able

to better retain or exclude specific features and thus are more stable: whereas in a BPSO based algorithm

the exact features selected vary strongly until the velocity per dimension (per feature) converges, the

SBPSO is able to reduce this variance earlier in the search. If a feature is added to a particle’s position in

one iteration for the SBPSO, the chance of that feature being excluded again in the next iteration is, on

average, lower than for PSO algorithms using a transformation of the velocity to a position.

An example of how the stability of features selected is likely to have caused good performance using

thek-NN classifier was on the arrhythmia dataset, as previously discussed in section 6.6.4. The fact that

the arrhythmia dataset has a large number of features, as well as that only a relatively small number of

particles and iterations were used, meant that the search was still full in exploration mode and the swarm

had not yet converged when the runs ended. The non-SBPSO algorithms would still have shown a lot

of randomness in the swarm positions. Note that the good performance by SBPSO on the arrhythmia

dataset was only for thek-NN classifier: when the SBPSO combined with the GNB or J48 classifier, it

was not able to select small feature subsets (which in this case was good) in a similar manner. Using the

k-NN classifier, SBPSO selected on average 66 features ranging from 16 to 183, while for the GNB and

J48 classifiers these average number of features were 138 and 160 respectively.

The feature selection by the PSO algorithms in the wrapper was more closely linked to classification

accuracy when using thek-NN classifier than when using one of the other two classifiers. This results

from the fact that the GNB and J48 classifiers didnot use all features equally in the classification task

and the in- or exclusion of a single feature can lead to little to no impact on the classification accuracy

using one of these two classifiers. In contrast, for thek-NN classifier each feature used directly impacts

the distance between instances and thus was much more likely to influence the accuracy classification.

Hence, the crispness that SBPSO exhibited when combined with thek-NN classifier, existed to a much

smaller extent - if at all - when combined with the GNB and J48 classifiers. When the features selected

are less closely linked with the fitness value, steering the search through the parameter subspace using a

PSO algorithm becomes much harder.

6.7.2 Was the SBPSO successfully applied to the FSP?

The most important objective for this chapter was to see if the SBPSO could be successfully applied to

the FSP yielding quality solutions. At a first glance, this appears to be the case: the setup of using a

wrapper method combined with the SBPSO produced classification better than that using all features on

most datasets for all three classifiers. Exceptions were datasets in which all features were required in

classification (for example thek-NN classifier using all nine features in tic-tac-toe), since feature selec-

tion cannot lead to improvement in those cases. Other exceptions were combinations of classifier and

dataset where the classifier was unable to represent the classification concept, for example the GNB clas-

sifier on the monk-2 dataset: here the classification accuracy was solely driven by the class distribution

without regards of which features were used. In those combinations of classifier and dataset, the FSP

was not solvable by the SBPSO or any of the other PSO algorithms.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

156 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

It is unclear, however, how well SBPSO’s solutions were in anabsolutesense:were the selected

features the optimal ones for a given classifier? Might another algorithm have found better feature

subsets? Difference in setup make it difficult to compare average classification accuracies directly to that

of other studies. The fairest measure of the quality was to compare the SBPSO against other algorithms

in the same setup, and here SBPSO proved to work on par or better than the PSO algorithms it was

compared to. If, however, this experimental setup was flawed such that all four PSO algorithms failed

to find optimal solutions, this comparison would not bring such a failure to light. Some of the results

discussed in section 6.6 point to a potential problem that casts doubt on how successful the SBPSO was

in solving the FSP.

6.7.2.1 Noisy fitness values

The potential problem mentioned in the previous paragraph is that the fitness function contains random

fluctuations or noise. The fitness value is set equal to the average classification accuracy using a classifier

andk-fold cross-validation. A first source of noise comes from the cross validation process: different

folds used in training and testing will likely lead to different classifications and hence to a different

classification accuracy. Care was taken to use a separate pseudo-random number sequence to determine

the cross validation folds, ensuring full replicability of the results. Still, fitness function evaluations using

the same set of features yielded slightly different results if they occurred at different times or for different

particles.

A second source of noise comes from the classifier itself, which may use pseudo-random numbers

to break ties in otherwise equal classification outcomes. Again, these pseudo random numbers were

controlled to ensure full reproducibility of the results, but subsequent classifications using the same

cross validation folds and the same features can still produce different tie breaks and hence a different

classification accuracy.

The random fluctuations in the fitness function evaluation may have aversely affected the PSO search,

especially if the random fluctuations exceeded the difference between the average classification accura-

cies achieved on different feature subsets: if a particle, representing one particular set of features selected,

achieved a fitness value that scoredaboveaverage due to a random fluctuation, this may have resulted in

a false optimum. This and other particles in the swarm then became attracted to this false optimum, po-

tentially misdirecting the PSO search. Whether this actually occurred in the experiments requires a more

in depth investigation that was set out of scope for this thesis. For such an investigation, the distribution

of classification accuracies for each feature subset in the dataset would need to be determined and then

all particles in the swarm need to be tracked through all iterations.

The exhaustive investigation in section 6.3 constituted a less detailed analysis of the noisiness prob-

lem. Results of that investigation showed that for some of the smaller datasets, the random fluctuations

in classification accuracy exceeded the difference in average classification accuracy between features

subsets. It was unclear, however, whether this truly caused sufficient problems with the PSO search to

make it fail. Also, since the exhaustive search could only be performed for small datasets, it is not known

if the larger test datasets may have been affected.

All in all, what can be concluded is that the noise in the fitness calculations affects the relative

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 157

rankings of the PSO algorithms and weakens the comparison between the algorithms.To determine

whether the SBPSO (and other PSOs) can truly solve the FSP in the chosen wrapper setup requires

additional investigation.

6.7.3 Problems with the experimental setup

A number of choices made in the experimental setup turned out to be less optimal for solving the FSP

using a PSO wrapper approach, or they turned out to partially impair the comparison of the SBPSO to

other PSO algorithms. These choices are discussed in turn.

6.7.3.1 PSO parameter tuning

The PSO tuning method that was successful for the MKP was assumed to also work sufficiently well for

tuning the PSO on the FSP. In particular, the choice of having separate groups of datasets for the tuning

and testing process meant that the selection of representative datasets for tuning was very important.

Although this approach was recommended by Salzberg [122], two possible problems surfaced. The first

problem was whether a single combination of PSO parameters could perform well enough on all FSPs

being considered. The second problem was whether the tuning method used was able to find such a

suitable parameter combination.

The results of the experiments on the FSP showed a large variability in the performance of the PSO

algorithms, evidenced by the fact that the SBPSO performed best on some datasets, but also ranked last

on a substantial number of datasets. During the PSO tuning the same variability was present, as no

clear outperformance could be seen by one or even by a few similar sets of parameters. Parameters that

worked well on one dataset, performed very badly on other datasets in the group of tuning problems.

One conclusion to be drawn is that different datasets for FSP in general have less in common than the

different benchmark problems for MKP have in common. This raises the question if it is possible to tune

a PSO algorithm such that it performs sufficiently well on all FSP using a single set of parameters. The

results of the experiments did not answer this question.

The second problem was whether the tuning method used worked sufficiently well. The FSP, espe-

cially for the larger datasets, required a lot of computational effort to perform a single fitness function

evaluation. By running a wrapper method to solve the FSP in the tuning process, and by choosing to

evaluate 128 different parameter combinations spanning the parameter space for each of the four PSO

algorithms, many fitness function evaluations were made in tuning. This put a restriction on the number

and size of the tuning datasets. As a result, only eight datasets were included in the tuning dataset and,

even though those datasets with the smallest number of features were excluded from tuning, six out of

the tuning datasets had between 10 and 20 features, with only two (lung-cancer and promoter) having

56 and 57 features respectively. The risk looms large that the group of tuning datasets was too small and

did not reflect the whole range of different FSPs. Perhaps it would have been better to have used a larger

number of tuning datasets, and to have reduced the number of parameter combinations used in tuning.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

158 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.7.3.2 Classifier parameter tuning

The parameterized classifiers J48 andk-NN were tuned at the start of each PSO run, by taking that

parameter combination which yielded the highest classification accuracy from a limited set of possible

combinations. In this classification all features were used. During the PSO run, classification accuracies

were determined across the many subsets of features using these tuned classifiers.

The fact that the parameters were chosen from a limited grid meant that optimal parameters may not

have been considered in the classifier tuning process at all and that therefore optimal tuning was made

impossible. Further computational effort could have been employed to search across a larger grid of

possible values, or to use a search algorithm to iteratively adjust and improve parameters from a range of

values. If the classifier parameter tuning was indeed impactful - it was not possible to tell from the results

in this chapter - such impact would be most prominent for theγ parameter of the J48 classifier: this was

the only truly continuous parameter for which only seven different parameter values were considered.

However, the fact thatall featureswere used to determine the classification accuracy in the classifier

tuning was likely more impactful. The investigations in section 6.4 showed that different feature subsets

achieve optimal classification accuracy using different classifier parameters. The tuning method used

for the classifier is premised on the assumption that parameters which work well using all features, also

work adequately on all other feature subsets. It is possible that this choice introduced a bias that favored

large subsets over small subsets with few features chosen. It is unclear if this bias affected the four PSO

algorithms differently and thus caused a bias in the comparative results.

6.7.3.3 Classifiers cannot represent all classification concepts

The results on the experiments in this chapter showed that for some datasets, some classifiers were not

able to represent the concept that underlies the dataset’s class label. This effect was more pronounced for

artificial datasets like, for example, monk-1, monk-2, parity5-5, and tic-tac-toe. A clear example of this

was how the GNB classifier failed on the monk-2 and tic-tac-toe datasets, as indicated in section 6.3.2.1:

the GNB classifier yielded the same classification accuracy as random classification. In this combination

of classifier and dataset, feature selection did not improve the classification accuracy and thus yielded no

information on which PSO algorithm performed better on the FSP.

Only an exhaustive search like that performed in sections 6.3 and 6.4 is able to conclusively identify

all combinations of classifier and dataset where feature selection adds no value. Ideally, such cases should

be removed from the comparison of the PSO algorithms, because these cases do not help distinguish in

the performance of the PSO algorithms. For datasets with a large number of features, however, it is not

feasible to identify such situations beforehand.

6.7.4 Data pre-processing

Data normalization is important for thek-NN classifier as it ensures that all attributes are assigned the

same a priori importance in the classification process. Because the classification accuracy of thek-NN

classifier is sensitive to scaling of the attributes, the classifier is not scale invariant. The accuracy of the

GNB and J48 classifiers is unaffected by data normalization, as both classifiers are scale invariant.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 159

6.7.5 The next chapter

This chapter concludes the experimental analysis of the SBPSO. The next chapter will summarize all

results from this thesis to draw final conclusions with regards to the objectives set in the preface. Also,

possible future avenues of research regarding the SBPSO will be suggested.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part IV

Conclusionsand future work

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7

Conclusionsand future work

This chapter summarizes the major findings of the examined work, and provides a set of suggested future

work that can be investigated as a result.

7.1 Conclusions

The main objective of the work described in this thesis was to develop and investigate a functioning,

generic, set-based PSO algorithm that can solve discrete optimization problems (DOPs). To reach this

goal, various sub-objectives were identified, which are discussed in turn below together with the main

findings.

7.1.1 Review of existing set-based PSO algorithms

The first sub-objective was to determine whether a functioning, generic, set-based PSO algorithm already

exists. For this a review of the appropriate literature was conducted, focusing on existing discrete and

set-based PSO algorithms. It was concluded that such an algorithm is not yet available, as the reviewed

algorithms all lacked at least one of the attributes of (i) functioning such that its use leads to good results

in solving DOPs, (ii) being generically applicable to all DOP and instead of being problem specific, or

(iii) not being truly set based:

• The SetPSO proposed by Neethling and Engelbrecht [102] was shown in [79] to perform badly on

the MKP and hence it does not fulfill the criterion of being an algorithm that is truly functioning

on this DOP.

• The algorithms proposed by Correaet al. [24], Bock and Hettenhausen [10] and Veenhuis [143]

are not generic but each contains problem specific elements.

• In the algorithms proposed by Chenet al. [17], Wu et al. [149], and Khan and Engelbrecht [65]

the candidate solution is represented by a particle position with a fixed size and which thus can not

be called a true set.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

162 CHAPTER7. CONCLUSIONS AND FUTURE WORK

7.1.2 Constructing the SBPSO

Furthersub-objectives were to determine the basic components that make up a PSO algorithm in order to

determine what components should be present to make the new algorithm a PSO algorithm, and which

additional components are required to make the new set-based algorithm a functioning algorithm. Then,

these were to be combined to give a mathematical formulation of the SBPSO.

The review of the existing PSO literature had identified the components of a PSO algorithm as:

• a swarm of particles which each have a position and a velocity, whereby the position is updated by

adding the velocity to the current position.

• a velocity update equation that describes the evolution of a particle’s velocity. In its canonical form

this contains three components:

– a cognitive component that describes the attraction of the particle to the best position in the

search space found by that particle previously,

– a social component that describes the attraction of the particle to the best position in the

search space found by any particle in its neighborhood, and

– an inertia component that causes the velocity to retain part of the direction it currently has.

• the swarm topology.

To construct a set-based PSO, first a set-based equivalent was defined for the concepts of particle

position and velocity. Operators were designed to allow for the basic operations required in the position

and velocity update equations. The cognitive and social components of the velocity update equation

were successfully translated to a set-based setting. It proved that the concept of inertia did not translate

to a set-based setting. Hence generic mechanisms to add and remove elements were proposed which

allow the SBPSO algorithm to search the entire search space, regardless of the initial particle positions

in the swarm. A specific implementation of these generic mechanisms was proposed usingk-tournament

selection, allowing for “smart” additions and deletions.

The SBPSO was thus shown to be a generic, set-based PSO algorithm. The only part of the main

objective still left to prove was whether it was also a functioning algorithm.

7.1.3 Test the SBPSO and compare it to other PSOs

For SBPSO to be a functioning algorithm, the algorithm needed to be shown to work in practice. This

objective was met by testing the SBPSO on two different DOPs, namely the MKP and the FSP, and to

compare the performance (in terms of quality of the solution found) of the SBPSO against discrete PSO

algorithms from literature. For this comparison, PSO algorithms were chosen which had been applied

to these two DOPs before: the BPSO, MBPSO, and PBPSO in the case of the MKP, and the BPSO,

CFBPSO, and PBPSO in the case of the FSP.

Chapter 2 for the MKP and chapter 3 for the FSP argued that both problems were valid test beds for

a discrete PSO algorithm: a review of literature showed both to be non-trivial, NP-complete problems

which had been the subject of experiments involving discrete PSO algorithms.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 163

For the MKP a simple fitness function was available in either (i) the knapsack’s valueto be maximized

or (ii) the percentage shortfall of the knapsack’s value to the known optimum (or a known bound for this

optimum) to be minimized. The second option was used in all experiments. The only design problem

with regards to the fitness function for the MKP was how to incorporate the MKP’s weight constraints.

For this purpose, a penalty function approach was used, in which all solutions that broke at least one

constraint were deemed ineligible and assigned an infinite penalty.

The experiments in chapter 5 showed that SBPSO could be successfully applied to the MKP yielding

high quality solutions and SBPSO outperformed the three PSO algorithms it was compared to, BPSO,

MBPSO, and PBPSO, by a considerable and statistically significant margin. PBPSO yielded better re-

sults than SBPSO in a small number of cases (for large MKPs withm= 5 constraints when a ring or

Von Neumann topology was used for both PBPSO and SBPSO). The problems on which PBPSO out-

performed, were likely caused by PBPSO having been better attuned to those specific MKPs than the

SBPSO algorithm. In the remaining, more than 95% of all cases, the SBPSO algorithm was superior, re-

gardless of problem set or topology, to the other three algorithms. The SBPSO was therefore successfully

applied to the MKP.

For the FSP, in contrast, constructing the fitness function meant many choices. Three different clas-

sifiers were used, and the classification accuracy was determined using repeated 10-fold cross validation

of the FSP’s underlying dataset. Due to the inherent random fluctuations of the cross validation and

classification, the resulting fitness function was noisy: repeated fitness function evaluations on the same

position were likely to yield slightly different fitness values.

The experiments in chapter 6 showed a different picture than those on the MKP and applying the

SBPSO to the FSP could not be deemed a similar success: Using thek-NN classifier, the SBPSO al-

gorithm performed best and for this classifier the outperformance of the other three algorithms was

statistically significant. Using either the GNB or J48 classifier, the CFBPSO algorithm performed best,

but this performance was not significantly better than that of the SBPSO. A possible explanation for this

difference in performance across classifiers may lie in the combination of (i) how the SBPSO in theory

is more stable in which features are selected, and (ii) the observation that feature selection by the PSO is

more directly linked with classification accuracy when using thek-NN classifier.

7.1.4 Usingk-tournament selection in the SBPSO

The SBPSO algorithm used in the experiments in chapters 5 and 6 contained an operator to add elements

to a particle’s position using ak-tournament selection. A run of the SBPSO algorithm thus required more

objective function evaluations than the other PSO algorithms it was compared to. One could argue that

because of this fact, SBPSO had an advantage over the other three PSO algorithms in the experiments.

The sensitivity analysis on the SBPSO also showed an improvement in performance for increasing values

of k, while the valuek= 1 (i.e. without the tournament selection) clearly underperformed.

Two findings from the tuning process, however, provided arguments that the influence of the tourna-

ment selection may have been small. First, the average value ofk across the six different times SBPSO

was tuned (for three topologies each on two sets of MKPs) was insufficiently large to reject the statistical

hypothesis of an above average value. Second, control parameterk was the least important of SBPSO’s

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

164 CHAPTER7. CONCLUSIONS AND FUTURE WORK

parameters in explaining performance on the MKP, which seems to contradict theidea that larger tour-

naments provided a significant benefit to SBPSO. Further analysis is needed to see if the effect of the

added objective function evaluations on SBPSO’s performance was significant.

7.1.5 Investigate SBPSO’s control parameters

A third objective to be addressed in this thesis was to investigate what parameter values work well for

SBPSO. For this purpose a detailed investigation and sensitivity analysis was conducted using the MKP.

The tuning process compared performance results on a subset of MKPs for many parameter combina-

tions. These parameter combinations were generated using Sobol pseudo-random numbers and spanned

the whole parameter space. This allowed for a detailed sensitivity analysis of SBPSO’s parameters on

the MKP, indicating which values for SBPSO’s control parameters led to good results.

The results from section 5.6.2 are repeated here for clarity:

c1 (attraction to the personal best): For control parameterc1 the sensitivity analysis very clearly showed

that higher values lead to better results with 0.8≤ c1 < 1.0 leading to the best results, regardless

of which topology was used. A small drop-off was seen for parameter combinations with 0.9 ≤
c1 < 1.0 compared to 0.8 ≤ c1 < 0.9, indicating that the optimal value forc1 lies above 0.8 but

still some distance below the theoretical maximum of 1.0.

c2 (attraction to the neighborhood best): For control parameterc2 the area of good results was less clearly

marked than forc1. The best results were achieved by SBPSO using parameter combinations with

0.5≤ c2 < 1.0 for lbest SBPSO and Von Neumann SBPSO, equivalent to half the parameter space

for c2. For gbest SBPSO in contrast, 0.3≤ c2 < 0.6 yielded the best results.

c3 (the maximum number of elements to add to the solution set usingk-tournament selection): For

control parameterc3 lbest SBPSO and Von Neumann SBPSO achieved the best results for values

1.5≤ c3 < 2.5, but all values ofc3 between 1.0 and 3.0 looked adequate. For gbest SBPSO, the

area of the parameter space that yielded good results was more evenly spread at slightly higher

values with 1.5≤ c3 < 3.5 yielding the best results.

c4 (the maximum number of elements to remove from the solution set randomly): For control parameter

c4 all values 1.5 ≤ c4 < 5.0 showed adequate results, regardless of which topology SBPSO was

paired with. The best results were found for parameter combinations wherec4 had values in either

the range 2.0≤ c3 < 2.5 or 3.5≤ c3 < 4.0. It is not clear why two distinct peaks showed and pa-

rameter combinations with 2.5≤ c4 < 3.5 underperformed: this will require further investigation.

k (the size of the tournament used to select elements to add to the solution set): For control parameter

k, in general performance increased for higher values ofk regardless of which topology was used.

For lbest SBPSO and Von Neumann SBPSO parameter combinations withk = 1 (which means

excluding the tournament selection completely) underperformed, while the performance increase

for higher values ofk topped off atk = 6. For gbest SBPSO a different pattern was seen, with

parameter combinations withk= 1 not underperforming, but valuesk≥ 7 outperforming.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 165

Besides identifying which parameter values yielded the best results on the MKP,a further analysis

was performed to determine which of SBPSO’s five control parameters were the most important to tune

well. The relative importance of SBPSO’s five control parameters was approximately the same regardless

of which topology was used: parametersc1 andc3 were most important to the overall performance of

the SBPSO algorithm. These were followed in rank of importance byc4. The parametersc2 andk were

least influential on the overall performance of the SBPSO algorithm.

The sensitivity analysis showed that the SBPSO parametersc3 andc4, linked to the addition and

removal of elements other than by attraction to a personal or neighborhood best, clearly influenced the

algorithm’s performance on the MKP. So besides the theoretical conclusion in chapter 4 that such mech-

anisms would be required for the SBPSO algorithm to function well, this was also validated in practice

for the MKP.

7.1.6 Difference in SBPSO’s performance on MKP and FSP

Two things stood out in the performance of the SBPSO in the experiments on the MKP and the FSP:

firstly, the fact that the SBPSO clearly outperformed the other three PSO algorithms on the MKP, while

the results were much closer on the FSP with SBPSO outperforming the other three algorithms only

when thek-NN classifier was used. A caveat in this regard should be that the CFBPSO algorithm, which

performed on par with the SBPSO on the FSP, was not used in the experiments on the MKP. Potentially,

the CFBPSO may also perform well on the MKP and the outperformance by the SBPSO on the MKP

was due to a poor selection of PSO algorithms to compare it to.

A second fact that stood out, was that the results on the MKP were much more consistent: the SBPSO

performed best on 95% of the problems, with the PBPSO, BPSO, and MBPSO generally following in that

order. On the FSP there is no such consistency in the relative performance of the four PSO algorithms

across classifiers or datasets: each PSO algorithm performed both bestand worst out of the set of four

PSOs on a number of datasets regardless of which classifier was used.

The main determinant for the difference in SBPSO’s performance on the two problems and the con-

sistency of the results lies in the noisiness of the fitness function. On the MKP there is zero noise in the

MKP itself and zero noise in the fitness function used. In this situation the SBPSO was able to show

outperformance over the other algorithms.

On the FSP, however, the fitness function was noisy. A first source of noise comes from the cross

validation process: different folds used in training and testing likely lead to different classifications and

hence a different classification accuracy. A second source of noise came from the classifier itself, which

used pseudo-random numbers to break ties in otherwise equal classification outcomes. The exhaustive

investigation in section 6.3 showed that, for some of the smaller datasets, the noise in the classification

accuracy exceeded the difference in average classification accuracy between subsets of features. In such

cases, the PSO may have “constructed” a false optimum which steered the search away from potentially

better sets of features. It is unclear whether this noise truly caused large enough problems with the PSO

search to make it fail, nor if FSPs based on larger datasets were also thus affected. The inconsistency in

the results of the experiments on the FSP indicate that this problem may indeed have occurred: the noise

in the fitness function would have affected the outcomes for all four different PSO algorithms equally,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

166 CHAPTER7. CONCLUSIONS AND FUTURE WORK

and a high enough level of noise is the best explanation for the large inconsistency in performance on the

FSP.

In the final conclusion, the SBPSO was shown to be a generic, functioning, set-based PSO algorithm.

The SBPSO performed very well on the MKP. In the experiments on the FSP, however, the results

were mixed: the SBPSO performed best out of four PSO algorithms when used together with thek-NN

classifier. The SBPSO performed only second best behind the CFBPSO when used together with either

the GNB or the J48 classifier.

7.1.6.1 Why apply SBPSO to both the MKP and the FSP

SBPSO as constructed is a generic approach, which is capable of solving multiple problems and which

would require minimal change (e.g., only to the objective function) for its application to a new domain.

As such, it is mainly of interest academically. For practitioners, the argument of general applicability

holds less weight: for almost all problems, approaches which incorporate domain specific knowledge

will yield better results. However, two reasons why a generic approach may still be of interest outside of

academia are mentioned here. Firstly, on newer problems for which the deeper structure is not yet known

and no problem specific measures have been developed, a good generic approach may still be able to yield

reasonable results. This same argument holds even if problem specific methods exits, but the exact type

of problem is not recognized by the practitioner. Secondly, implementing a generic approach can be

more cost effective than implementing many problem specific algorithms with limited scope. A generic

approach may thus be used as a easily available first stab at the problem. And if the resulting solution is

good enough in practice, no further resources (development effort or computation time) need to be spent

in finding a better solution.

In this thesis, a generic algorithm was applied to both the MKP and the FSP, optimization problems

from very different domains. For neither domain, the state-of-the-art was improved upon. These prob-

lems were selected for exactly the reason that they are verydissimilar. Applying the SBPSO to very

different domains gives a first indication of how generically applicable the SBPSO is. In practice, when

selecting an algorithm to help solve a new type of problem, a logical option would be to try an algo-

rithm that was successful on a similar problem. It is unlikely that a practitioner would instead select an

algorithm from a very dissimilar domain.

7.2 Future work

This section contains some ideas for future research on the new SBPSO algorithm. The simplest area for

further research on the SBPSO would be to simply apply it to discrete optimization problems other than

the MKP and the FSP. Without a clear idea ofwhyto pick specific problems, however, this would not be

the most efficient way to increase knowledge about the algorithm’s strengths and weaknesses. Therefore

other ideas are proposed in separate sections below.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 167

7.2.1 Test the CFBPSO on the MKP and compare it to the SBPSO

In chapter 5 the SBPSO was tested on the MKP and compared to the BPSO, MBPSO, and PBPSO al-

gorithms. The SBPSO clearly outperformed the other three and the MBPSO clearly underperformed. In

chapter 6, the SBPSO was tested on the FSP and compared to the CFBPSO, BPSO, and PBPSO algo-

rithms. The CFBPSO and SBPSO performed best on the FSP, with the PBPSO underperforming. These

outcomes naturally invite the tuning and testing of the CFBPSO on the MKP to see if the outperformance

of the SBPSO in chapter 5 was true outperformance, or whether it was at least partially caused by the

selection of PSO algorithms for comparison.

7.2.2 Investigate adding and removing elements in the SBPSO

An interesting further study into the working of the SBPSO algorithm would be on the impact of the

mechanisms to add and remove elements to a position other than via attraction to personal or neighbor-

hood bests. In this thesis, addition was done using ak-tournament selection while removal was done

randomly from a specific subset of elements. A logical first step would be to test if the SBPSO still

works if the parts of the update equations that deal with addition and removal of elements are changed

to be less computationally intensive. For example, the tournament selection can be dropped. A second

step could be to make these mechanisms dynamic, such that the number of random additions and re-

movals changes during search, either in a predetermined way based on the number of iterations or by

dynamically adapting the mechanism based on a measure of swarm diversity.

7.2.3 Investigate the impact of noisy environments on the SBPSO

The previous chapter describing the experiments on the FSP identified the problem of a noisy fitness

function potentially impacting the search for all PSO algorithms due to attraction to a false optimum.

Actually, this problem not only affects PSO algorithms but any search algorithm which uses a gradient

to guide the search. In order to test if the SBPSO performed adequately on the FSP in an absolute sense,

one possibility is to compare SBPSO’s results to the least intelligent search algorithm, random search,

using the same number of fitness function evaluations. The SBPSO uses a number of fitness function

evaluations roughly equal to the number of particles in the swarm times the number of iterations. For

random search, the same number of fitness function evaluations can be performed by repeatedly selecting

a feature subset at random by giving each feature a chance of 0.5 to be included. The random search has

no gradient or direction, so the search is not impacted by false optima.

In this way, it can be tested if the attraction to a false optimum was sufficiently detrimental such that

it hurt SBPSO’s search power. A sufficiently large feature subspace would be required to ensure that

each algorithm can only search part of the sub-space. As a second step, this analysis can be repeated on

a number of different datasets of increasing size: any trend seen in outperformance or underperformance

by the SBPSO is expected to increase if the size of the feature subspace grows. If this trend is strong

enough and enough datasets are used, it will show even amongst the large variation across different FSPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

168 CHAPTER7. CONCLUSIONS AND FUTURE WORK

7.2.4 Investigate how well the SBPSO works in dynamic environments

This thesis only studied the SBPSO on problems that had static environments: the search space did not

change over time. In real life, many optimization problems exist that do change over time. Some of these

problems are DOPs. The changes in the search space can be gradual over time, or more pronounced

in discrete shifts. Studying the SBPSO in such dynamic environments could yield further insights into

the SBPSO’s strengths and weaknesses. This further study could investigate if the SBPSO needs to be

adjusted, and if so, whether small adjustments to the velocity update equation suffice or whether explicit

mechanisms need to be added to deal with the environment changing over time.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] Abraham, A., Liu, H., Zhang, W., and Chang, T.-G. (2006). Scheduling Jobs on Computational Grids

Using Fuzzy Particle Swarm Algorithm. In Gabrys, B., Howlett, R., and Jain, L., editors,Knowledge-

Based Intelligent Information and Engineering Systems, volume 4252 ofLecture Notes in Computer

Science, pages 500–507. Springer, Berlin/Heidelberg.

[2] Almuallim, H. and Dietterich, T. G. (1994). Learning boolean concepts in the presence of many

irrelevant features.Artificial Intelligence, 69(1):279–305.

[3] Amaldi, E. and Kann, V. (1998). On the approximability of minimizing nonzero variables or unsat-

isfied relations in linear systems.Theoretical Computer Science, 209(1-2):237–260.

[4] Averbakh, I. (1994). Probabilistic properties of the dual structure of the multidimensional knapsack

problem and fast statistically efficient algorithms.Mathematical Programming, 65(1-3):311–330.

[5] Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository.

[6] Bayes, M. and Price, M. (1763). An Essay towards Solving a Problem in the Doctrine of Chances.

Philosophical Transactions, 53:370–418.

[7] Benameur, L., Alami, J., and El Imrani, A. (2009). A new discrete particle swarm model for the fre-

quency assignment problem. InProceedings of the IEEE/ACS International Conference on Computer

Systems and Applications, pages 139–144, Piscataway, NJ. IEEE Press.

[8] Berkelaar, M., Eikland, K., and Notebaert, P. (2006). lpsolve version 5.5.

[9] Birattari, M., Sẗutzle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring

metaheuristics. InProceedings of the Genetic and Evolutionary Computation Confernece, pages 11–

18, San Francisco. Morgan Kaufmann.

[10] Bock, J. and Hettenhausen, J. (2012). Discrete particle swarm optimisation for ontology alignment.

Information Sciences, 192(0):152–173.

[11] Bolón-Canedo, V., Śanchez-Marõno, N., and Alonso-Betanzos, A. (2013). A review of feature

selection methods on synthetic data.Knowledge and information systems, 34(3):483–519.

[12] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A Training Algorithm for Optimal Margin

Classifiers. InProceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT

’92, pages 144–152, New York, NY, USA. ACM.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

170 BIBLIOGRAPHY

[13] Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S., and Michelon, P. (2010).A multi-level search

strategy for the 0–1 Multidimensional Knapsack Problem.Discrete Applied Mathematics, 158(2):97–

109.

[14] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).Classification and Regression Trees.

Wadsworth and Brooks, Monterey, CA.

[15] Cervante, L., Xue, B., Zhang, M., and Shang, L. (2012). Binary particle swarm optimisation for

feature selection: A filter based approach. InProceedings of the IEEE Congress on Evolutionary

Computation, pages 1–8.

[16] Chandrasekaran, S., Ponnambalam, S., Suresh, R., and Vijayakumar, N. (2006). A Hybrid Discrete

Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems. InProceedings of

the IEEE Conference on Cybernetics and Intelligent Systems, pages 1–6, Piscataway, NJ. IEEE Press.

[17] Chen, W.-N., Zhang, J., Chung, H., Zhong, W.-L., Wu, W.-G., and Shi, Y. (2010). A Novel Set-

Based Particle Swarm Optimization Method for Discrete Optimization Problems.IEEE Transactions

on Evolutionary Computation, 14(2):278–300.

[18] Chu, P. and Beasley, J. (1998). A Genetic Algorithm for the Multidimensional Knapsack Problem.

Journal of Heuristics, 4:63–86.

[19] Chuang, L.-Y., Chang, H.-W., Tu, C.-J., and Yang, C.-H. (2008a). Improved binary PSO for feature

selection using gene expression data.Computational Biology and Chemistry, 32(1):29–38.

[20] Chuang, L.-Y., Tsai, S.-W., and Yang, C.-H. (2008b). Catfish particle swarm optimization. In

Proceedings of the IEEE Swarm Intelligence Symposium, pages 1–5.

[21] Chuang, L.-Y., Tsai, S.-W., and Yang, C.-H. (2011). Improved binary particle swarm optimization

using catfish effect for feature selection.Expert Systems with Applications, 38(10):12699–12707.

[22] Claessens, S., Kose, M. A., and Terrones, M. E. (2012). How do business and financial cycles

interact?Journal of International Economics, 87(1):178–190.

[23] Clerc, M. (2004). Discrete Particle Swarm Optimization Illustrated by the Traveling Salesman

Problem. In Onwubolu, G. and Babu, B., editors,New Optimization Techniques in Engineering,

pages 219–239. Springer, Berlin/Heidelberg.

[24] Correa, E., Freitas, A., and Johnson, C. (2006). A New Discrete Particle Swarm Optimization

Algorithm Applied to Attribute Selection in a Bioinformatics Data Set. InProceedings of the Genetic

and Evolutionary Computation Conference, pages 35–42, New York, NY. ACM Press.

[25] Cover, T. M. and Van Campenhout, J. M. (1977). On the Possible Orderings in the Measurement

Selection Problem.Systems, Man and Cybernetics, IEEE Transactions on, 7(9):657–661.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 171

[26] Deep, K. and Bansal, J. (2008). A Socio-Cognitive Particle Swarm Optimizationfor Multi-

Dimensional Knapsack Problem. InProceedings of the First International Conference on Emerging

Trends in Engineering and Technology, pages 355–360.

[27] Dı́az-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data

using random forest.BMC Bioinformatics, 7(1):3.

[28] Du, J.-X., Huang, D.-S., Zhang, J., and Wang, X.-F. (2005). Shape matching using fuzzy discrete

particle swarm optimization. InProceedings of the IEEE Swarm Intelligence Symposium, pages 405–

408, Piscataway, NJ. IEEE Press.

[29] Duda, R. O., Hart, P. E., and Stork, D. G. (2012).Pattern classification. John Wiley & Sons.

[30] Eberhart, R. C., Kennedy, J., and Shi, Y. (2001).Swarm intelligence. Morgan Kaufmann series in

evolutionary computation. Elsevier, Amsterdam.

[31] Eberhart, R. C. and Shi, Y. (2001). Particle swarm optimization: developments, applications and

resources. InProceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages

81–86, Piscataway, NJ. IEEE Press.

[32] Eberhart, R. C., Simpson, P. K., and Dobbins, R. W. (1996).Computational Intelligence PC tools.

AP Professional, Boston, MA.

[33] Esposito, F., Malerba, D., Semeraro, G., and Kay, J. (1997). A comparative analysis of methods for

pruning decision trees.IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–

491.

[34] Fawcett, T. (2006). An introduction to ROC analysis.Pattern recognition letters, 27(8):861–874.

[35] Fix, E. and Hodges, J. J. L. (2006). Discriminatory Analysis Nonparametric Discrimination: Con-

sistency Properties. Technical report, Defense Technical Information Center.

[36] Franken, N. (2009). Visual exploration of algorithm parameter space. InProceedings of the IEEE

Congress on Evolutionary Computation, pages 389–398, Piscataway, NJ. IEEE Press.

[37] Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the

Analysis of Variance.Journal of the American Statistical Association, 32(200):675–701.

[38] Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000).

Support vector machine classification and validation of cancer tissue samples using microarray ex-

pression data.Bioinformatics, 16(10):906–914.

[39] Gao, F., Cui, G., Zhao, Q., and Liu, H. (2006). Application of Improved Discrete Particle Swarm

Algorithm in Partner Selection of Virtual Enterprise.International Journal of Computer Science and

Network Security, 6(3A):208–212.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

172 BIBLIOGRAPHY

[40] Garćıa, A., Pastor, R., and Corominas, A. (2006). Solving the Response Time Variability Problem

by means of metaheuristics.Frontiers in artificial intelligence and applications, 146:187–196.

[41] Garcia, S., Derrac, J., Cano, J. R., and Herrera, F. (2012). Prototype selection for nearest neighbor

classification: Taxonomy and empirical study.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(3):417–435.

[42] Gavish, B. and Pirkul, H. (1986). Computer and Database Location in Distributed Computer Sys-

tems.IEEE Transactions on Computers, 35(7):583–590.

[43] Gens, G. and Levner, E. (1980). Complexity of approximation algorithms for combinatorial prob-

lems: a survey.Special Interest Group on Algorithms and Computation Theory News, 12:52–65.

[44] Gherboudj, A., Labed, S., and Chikhi, S. (2012). A New Hybrid Binary Particle Swarm Optimiza-

tion Algorithm for Multidimensional Knapsack Problem. In Wyld, D. C., Zizka, J., and Nagamalai,

D., editors,Advances in Computer Science, Engineering & Applications, volume 166 ofAdvances in

Intelligent and Soft Computing, pages 489–498. Berlin/Heidelberg: Springer.

[45] Gomez, Y., Bello, R., Puris, A., Garcia, M. M., and Nowe, A. (2008). Two Step Swarm Intelligence

to Solve the Feature Selection Problem.Journal of Universal Computer Science, 14(15):2582–2596.

[46] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.Journal of

Machine Learning Research, 3:1157–1182.

[47] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification

using support vector machines.Machine learning, 46(1-3):389–422.

[48] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The

WEKA data mining software: an update.ACM SIGKDD Explorations Newsletter, 11(1):10–18.

[49] Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The

University of Waikato.

[50] Han, J., Kamber, M., and Pei, J. (2006).Data mining, Southeast Asia edition: Concepts and

techniques. Morgan kaufmann.

[51] Hanafi, S. and Wilbaut, C. (2011). Improved convergent heuristics for the 0-1 multidimensional

knapsack problem.Annals of Operations Research, 183(1):125–142.

[52] Hembecker, F., Lopes, H. S., and Godoy, J. W. (2007). Particle Swarm Optimization for the Mul-

tidimensional Knapsack Problem. InProceedings of the International Conference on Adaptive and

Natural Computing Algorithms, Part I, pages 358–365, Berlin/Heidelberg. Springer.

[53] Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure.Scandinavian Journal

of Statistics, 6(2):pp. 65–70.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 173

[54] Hunt, E. B., Marin, J., and Stone, P. J. (1966).Experimentsin induction. Boston, MA: Academic

Press, New York, NY.

[55] Iman, R. and Davenport, J. (1980). Approximations of the critical region of the Friedman statistic.

Communications in Statistics Part A - Theory and Methods, 9(6):571–595.

[56] Inza, I., Larrãnaga, P., Blanco, R., and Cerrolaza, A. J. (2004). Filter versus wrapper gene selection

approaches in DNA microarray domains.Artificial Intelligence in Medicine, 31(2):91–103.

[57] Jiang, S., Pang, G., Wu, M., and Kuang, L. (2012). An improvedk-nearest neighbor algorithm for

text categorization.Expert Systems with Applications, 39(1):1503–1509.

[58] Jirapech-Umpai, T. and Aitken, S. (2005). Feature selection and classification for microarray data

analysis: Evolutionary methods for identifying predictive genes.BMC Bioinformatics, 6(1):148.

[59] John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant Features and the Subset Selection

Problem. InProceedings of the International Conference on Machine Learning, pages 121–129, New

Brunswick, NJ. Burlington, MA: Morgan Kaufmann.

[60] John, G. H. and Langley, P. (1995).Estimating Continuous Distributions in Bayesian Classifiers,

volume 1, pages 338–345. Burlington, MA: Morgan Kaufmann.

[61] Kellerer, H. (1999). A Polynomial Time Approximation Scheme for the Multiple Knapsack Prob-

lem. In Hochbaum, D., Jansen, K., Rolim, J., and Sinclair, A., editors,Randomization, Approxima-

tion, and Combinatorial Optimization. Algorithms and Techniques, volume 1671 ofLecture Notes in

Computer Science, pages 51–62. Berlin/Heidelberg: Springer.

[62] Kennedy, J. and Eberhart, R. (1997). A Discrete Binary Version of the Particle Swarm Algorithm.

In Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, volume 5,

pages 4101–4109, Piscataway, NJ. IEEE Press.

[63] Kennedy, J. and Eberhart, R. C. (1995). Particle Swarm Optimisation. InProceedings of the IEEE

International Conference on Neural Networks, pages 1942–1948, Piscataway, NJ. IEEE Press.

[64] Kennedy, J. and Mendes, R. (2002). Population structure and particle swarm performance. In

Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1671–1676, Pis-

cataway, NJ. IEEE Press.

[65] Khan, S. and Engelbrecht, A. (2010). A fuzzy particle swarm optimization algorithm for computer

communication network topology design.Applied Intelligence, 36:1–17.

[66] Khanesar, M., Teshnehlab, M., and Shoorehdeli, M. (2007). A Novel Binary Particle Swarm Opti-

mization. InProceedings of the Mediterranean Conference on Control and Automation, Piscataway,

NJ. IEEE Press.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

174 BIBLIOGRAPHY

[67] Khuri, S., B̈ack,T., and Heitk̈otter, J. (1994). The zero/one multiple knapsack problem and genetic

algorithms. InProceedings of the ACM Symposium on Applied Computing, pages 188–193, New

York, NY. ACM Press.

[68] Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection. InProceedings of the

Ninth International Workshop on Machine learning, pages 249–256.

[69] Kittler, J. et al. (1978). Feature set search algorithms.Pattern recognition and signal processing,

pages 41–60.

[70] Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection.Artificial Intelligence,

97(1-2):273–324.

[71] Koller, D. and Sahami, M. (1996). Toward optimal feature selection. InProceedings of the Inter-

national Conference on Machine Learning. Stanford InfoLab.

[72] Kong, M. and Tian, P. (2006). Apply the Particle Swarm Optimization to the Multidimensional

Knapsack Problem. In Rutkowski, L., Tadeusiewicz, R., Zadeh, L., and Zurada, J., editors,Proceed-

ings of the International Conference on Artificial Intelligence and Soft Computing, volume 4029 of

Lecture Notes in Computer Science, pages 1140–1149. Springer, Berlin/Heidelberg.

[73] Kong, M., Tian, P., and Kao, Y. (2008). A new ant colony optimization algorithm for the multidi-

mensional knapsack problem.Computers & Operations Research, 35(8):2672–2683.

[74] Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIEF. InProceedings

of the European Conference on Machine Learning, pages 171–182. Springer.

[75] Kothari, V., Anuradha, J., Shah, S., and Mittal, P. (2012). A Survey on Particle Swarm Optimization

in Feature Selection. In Krishna, P., Babu, M., and Ariwa, E., editors,Global Trends in Information

Systems and Software Applications, volume 270 ofCommunications in Computer and Information

Science, pages 192–201. Springer Berlin Heidelberg.

[76] Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques.

In Proceedings of the Conference on Emerging Artificial Intelligence Applications in Computer Engi-

neering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Perva-

sive Technologies, pages 3–24, Amsterdams. Amsterdam: IOS Press.

[77] Kotsiantis, S. B., Kanellopoulos, D., and Pintelas, P. (2006). Data Preprocessing for Supervised

Learning.International Journal of Computer Science, 1(2):111–117.

[78] Labed, S., Gherboudj, A., and Chikhi, S. (2011). A Modified Hybrid Particle Swarm Optimization

Algorithm for Multidimensional Knapsack Problem.International Journal of Computer Applications,

34(2):11–16.

[79] Langeveld, J. and Engelbrecht, A. P. (2011). A Generic Set-Based Particle Swarm Optimization

Algorithm. In Proceedings of the International Conference on Swarm Intelligence, Cergy, France.

EISTI.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 175

[80] Langeveld, J. and Engelbrecht, A. P. (2012). Set-based particle swarm optimization applied to the

multidimensional knapsack problem.Swarm Intelligence, 6(4):1–46.

[81] Langley, P. and Sage, S. (1994). Induction of Selective Bayesian Classifiers. In de Mántaras, R. L.

and Poole, D., editors,Conference on Uncertainty in Artificial Intelligence, pages 399–406. Morgan

Kaufmann.

[82] Layeb, A. (2011). A novel quantum inspired cuckoo search for knapsack problems.International

Journal of Bio-Inspired Computation, 3(5):297–305.

[83] LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In Touretzky, D. S.,

editor,Advances in Neural Information Processing Systems, pages 598–605. Morgan Kaufmann.

[84] Li, Y., Kim, J.-B., and Zhang, L. (2011). Corporate tax avoidance and stock price crash risk:

Firm-level analysis.Journal of Financial Economics, 100(3):639–662.

[85] Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006). Comprehensive learning particle

swarm optimizer for global optimization of multimodal functions.IEEE Transactions on Evolutionary

Computation, 10(3):281–295.

[86] Liu, B., Wang, L., and Jin, Y.-H. (2007). An Effective PSO-Based Memetic Algorithm for Flow

Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

37(1):18–27.

[87] Liu, H. and Abraham, A. (2007). An Hybrid Fuzzy Variable Neighborhood Particle Swarm Op-

timization Algorithm for Solving Quadratic Assignment Problems.Journal of Universal Computer

Science, 13(9):1309–1331.

[88] Liu, H., Abraham, A., and Hassanien, A. E. (2010). Scheduling jobs on computational grids using

a fuzzy particle swarm optimization algorithm.Future Generation Computer Systems, 26(8):1336–

1343.

[89] Lorie, J. H. and Savage, L. J. (1955). Three Problems in Rationing Capital.The Journal of Business,

28:229.

[90] Loulou, R. and Michaelides, E. (1979). New Greedy-like Heuristics for the Multidimensional 0-1

Knapsack Problem.Operations Research, 27(6).

[91] Ma, C.-X., Qian, L., Wang, L., Menhas, M. I., and Fei, M.-R. (2010). Determination of the PID

controller parameters by Modified Binary Particle Swarm Optimization algorithm. InProceedings of

the Chinese Control and Decision Conference, pages 2689–2694, Piscataway, NJ. IEEE Press.

[92] Ma, S. and Huang, J. (2005). Regularized ROC method for disease classification and biomarker

selection with microarray data.Bioinformatics, 21(24):4356–4362.

[93] Marill, T. and Green, D. M. (1963). On the effectiveness of receptors in recognition systems.IEEE

Transactions on Information Theory, 9(1):11–17.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

176 BIBLIOGRAPHY

[94] Matheus, C. J. and Rendell, L. A. (1989). Constructive Induction OnDecision Trees. InProceed-

ings of the 11th International Joint Conference on Artificial Intelligence, volume 89, pages 645–650.

[95] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator.ACM Transactions on Modeling and Computer Simula-

tion, 8(1):3–30.

[96] Menhas, M. I., Wang, L., Fei, M.-R., and Ma, C.-X. (2011). Coordinated controller tuning of a

boiler turbine unit with new binary particle swarm optimization algorithm.International Journal of

Automation and Computing, 8:185–192.

[97] Mitchell, T. M. (1997).Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition.

[98] Miyahara, K. and Pazzani, M. J. (2000). Collaborative Filtering with the Simple Bayesian Classifier.

In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, pages 679–689.

Springer.

[99] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012).Foundations of Machine Learning. MIT

press.

[100] Mosier, C. I. (1951). The need and means of cross validation. I. Problems and designs of cross-

validation.Educational and Psychological Measurement.

[101] Narendra, P. and Fukunaga, K. (1977). A Branch and Bound Algorithm for Feature Subset Selec-

tion. IEEE Transactions on Computers, C-26(9):917–922.

[102] Neethling, C. and Engelbrecht, A. (2006). Determining RNA secondary structure using set-based

particle swarm optimization. In Yen, G., Lucas, S., Fogel, G., Kendall, G., Salomon, R., Zhang,

B.-T., Coello, C., and Runarsson, T., editors,Proceedings of the IEEE Congress on Evolutionary

Computation, pages 1670–1677, Piscataway. NJ. IEEE Press.

[103] Nemenyi, P. (1963).Distribution-free multiple comparisons. PhD thesis, Princeton University,

Princeton, NJ, USA.

[104] Nemhauser, G. L. and Ullmann, Z. (1969). Discrete dynamic programming and capital allocation.

Management Science, 15(9):494–505.

[105] Oh, I.-S., Lee, J.-S., and Moon, B. R. (2004). Hybrid Genetic Algorithms for Feature Selection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1424–1437.

[106] Oliver, J. J. and Hand, D. J. (2014). On pruning and averaging decision trees. InProceedings of

the 12th International Conference on Machine Learning, pages 430–437.

[107] Olsen, A. L. (1994). Penalty functions and the knapsack problem. InProceedings of the First

IEEE Conference on Computational Intelligence, pages 554–558. IEEE.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 177

[108] Omar, N., Jusoh, F., Ibrahim, R., and Othman, M. (2013). Review of featureselection for solving

classification problems.Journal of Information System Research and Innovation, 3:64–70.

[109] Pacheco, J. A., Casado, S., Núñez, L., and Ǵomez, O. (2006). Analysis of new variable selection

methods for discriminant analysis.Computational Statistics & Data Analysis, 51(3):1463–1478.

[110] Pampara, G., Franken, N., and Engelbrecht, A. (2005). Combining particle swarm optimisation

with angle modulation to solve binary problems. InProceedings of the IEEE Congress on Evolution-

ary Computation, volume 1, pages 89–96, Piscataway, NJ. IEEE Press.

[111] Pang, W., Wang, K.-P., Zhou, C.-G., and Dong, L.-J. (2004a). Fuzzy discrete particle swarm

optimization for solving traveling salesman problem. InProceedings of the IEEE International Con-

ference on Computer and Information Technology, pages 796–800, Piscataway, NJ. IEEE Press.

[112] Pang, W., Wang, K.-P., Zhou, C.-G., Dong, L.-J., Liu, M., Zhang, H.-Y., and Wang, J.-Y. (2004b).

Modified particle swarm optimization based on space transformation for solving traveling salesman

problem. InProceedings of the International Conference on Machine Learning and Cybernetics,

volume 4, pages 2342–2346, Piscataway, NJ. IEEE Press.

[113] Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: Fast, incremental feature selection by

gradient descent in function space.The Journal of Machine Learning Research, 3:1333–1356.

[114] Powers, D. M. (2007). Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation.Journal of Machine Learning Technologies, 2(1):37–63.

[115] Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The Multidimensional Knapsack Problem:

Structure and Algorithms.INFORMS Journal on Computing, 22:250–265.

[116] Purohit, A., Chaudhari, N. S., and Tiwari, A. (2010). Construction of classifier with feature

selection based on genetic programming. InProceedings of the IEEE Congress on Evolutionary

Computation, pages 1–5. IEEE.

[117] Quinlan, R. J. (1986). Induction of decision trees.Machine Learning, 1:81–106.

[118] Quinlan, R. J. (1993).C4.5: Programs for Machine Learning. Burlington, MA: Morgan Kauf-

mann, 1 edition.

[119] Quinlan, R. J. (1996). Improved use of continuous attributes in C4. 5.Arxiv preprint cs/9603103.

[120] Rish, I. (2001). An empirical study of the naive Bayes classifier. InProceedings of the Inter-

national Joint Conference on Artificial Intelligence: Workshop on Empirical Methods in Artificial

Intelligence, pages 41–46.

[121] Saeys, Y., Inza, I., and Larrañaga, P. (2007). A review of feature selection techniques in bioinfor-

matics.Bioinformatics, 23(19):2507–2517.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

178 BIBLIOGRAPHY

[122] Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid anda recommended approach.

Data Mining and Knowledge Discovery, 1(3):317–328.

[123] Sandin, I., Andrade, G., Viegas, F., Madeira, D., da Rocha, L. C., Salles, T., and Gonçalves, M. A.

(2012). Aggressive and effective feature selection using genetic programming. InProceedings of the

IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

[124] Shen, B., Yao, M., and Yi, W. (2006). Heuristic Information Based Improved Fuzzy Discrete PSO

Method for Solving TSP. InProceedings of the Pacific Rim International Conference on Artificial

intelligence, pages 859–863, Berlin/Heidelberg. Springer.

[125] Shen, Q., Jiang, J.-H., Jiao, C.-X., Shen, G.-l., and Yu, R.-Q. (2004). Modified particle swarm op-

timization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism

of angiotensin II antagonists.European Journal of Pharmaceutical Sciences, 22(2-3):145–152.

[126] Shi, Y. and Eberhart, R. C. (1998). A modified particle swarm optimizer. InProceedings of the

IEEE International Conference on Evolutionary Computation, pages 69–73, Piscataway, NJ. IEEE

Press.

[127] Shi, Y. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. InProceedings of

the IEEE Congress on Evolutionary Computation, volume 1, pages 101–106, Piscataway, NJ. IEEE

Press.

[128] Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989). Classification of radar returns

from the ionosphere using neural networks.Johns Hopkins APL Technical Digest, 10(3):262–266.

[129] Simon, H. A. (1983). Why Should Machines Learn?, pages 25–37. Symbolic Computation.

Springer Berlin Heidelberg.

[130] Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a

family of discriminant measures for performance evaluation. InProceedings of Advances in Artificial

Intelligence, pages 1015–1021. Springer.

[131] Somol, P., Novovicova, J., and Pudil, P. (2010). Efficient Feature Subset Selection and Subset Size

Optimization. InPattern Recognition, Recent Advances, chapter 4, pages 75–97. InTech.

[132] Soyster, A., Lev, B., and Slivka, W. (1978). Zero-one programming with many variables and few

constraints.European Journal of Operational Research, 2(3):195–201.

[133] Stoppiglia, H., Dreyfus, G., Dubois, R., and Oussar, Y. (2003). Ranking a Random Feature for

Variable and Feature Selection.Journal of Machine Learning Research, 3:1399–1414.

[134] Tabakhi, S., Moradi, P., and Akhlaghian, F. (2014). An unsupervised feature selection algorithm

based on ant colony optimization.Engineering Applications of AI, 32:112–123.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 179

[135] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G. (2004).Particle Swarm Opti-

mization Algorithm for Permutation Flowshop Sequencing Problem. In Dorigo, M., Birattari, M.,

Blum, C., M.Gambardella, L., Mondada, F., and Stützle, T., editors,Ant Colony, Optimization and

Swarm Intelligence, volume 3172 ofLecture Notes in Computer Science, pages 366–385. Springer,

Berlin/Heidelberg.

[136] Thomas, J. G., Olson, J. M., Tapscott, S. J., and Zhao, L. P. (2001). An efficient and robust

statistical modeling approach to discover differentially expressed genes using genomic expression

profiles.Genome Research, 11(7):1227–1236.

[137] Tu, C.-J., Chuang, L.-Y., Chang, J.-Y., Yang, C.-H.,et al. (2008). Feature selection using PSO-

SVM. IAENG International Journal of Computer Science, 33(1):111–116.

[138] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to

the ionizing radiation response.Proceedings of the National Academy of Sciences, 98(9):5116–5121.

[139] Unler, A. and Murat, A. (2010). A discrete particle swarm optimization method for feature selec-

tion in binary classification problems.European Journal of Operational Research, 206(3):528–539.

[140] Vafaie, H. and De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine

learning. InProceedings on the 4th International Conference on Tools with Artificial Intelligence,

1992, pages 200–203.

[141] Vasquez, M. and Hao, J.-K. (2001). A hybrid approach for the 0–1 multidimensional knapsack

problem. InProceedings of the International Joint Conference on Artificial Intelligence, pages 328–

333.

[142] Vasquez, M. and Vimont, Y. (2005). Improved results on the 0–1 multidimensional knapsack

problem.European Journal of Operational Research, 165(1):70–81.

[143] Veenhuis, C. (2008). A Set-Based Particle Swarm Optimization Method. In Rudolph, G., Jansen,

T., Lucas, S., Poloni, C., and Beume, N., editors,Proceedings of the Parallel Problem Solving from

Nature Conference, volume 5199 ofLecture Notes in Computer Science, pages 971–980. Springer,

berlin/Heidelberg.

[144] Vimont, Y., Boussier, S., and Vasquez, M. (2008). Reduced costs propagation in an efficient

implicit enumeration for the 01 multidimensional knapsack problem.Journal of Combinatorial Opti-

mization, 15(2):165–178.

[145] Wang, K.-P., Huang, L., Zhou, C.-G., and Pang, W. (2003). Particle swarm optimization for

traveling salesman problem. InProceedings of the International Conference on Machine Learning

and Cybernetics, volume 3, pages 1583–1585, Piscataway, NJ. IEEE Computer Society.

[146] Wang, L., Wang, X., Fu, J., and Zhen, L. (2008). A Novel Probability Binary Particle Swarm

Optimization Algorithm and Its Application.Journal of Software, 3(9):28–35.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

180 BIBLIOGRAPHY

[147] Watkins, C. (1989).Learning from delayed rewards. PhD thesis, King’s College, Cambridge,

England.

[148] Weston, J., Elisseeff, A., Schölkopf, B., and Tipping, M. E. (2003). Use of the Zero-Norm with

Linear Models and Kernel Methods.Journal of Machine Learning Research, 3:1439–1461.

[149] Wu, Z., Ni, Z., Gu, L., and Liu, X. (2010). A Revised Discrete Particle Swarm Optimization

for Cloud Workflow Scheduling. InProceedings of the International Conference on Computational

Intelligence and Security, pages 184–188, Piscataway, NJ. IEEE Press.

[150] Xue, B., Zhang, M., and Browne, W. N. (2012). New fitness functions in binary particle swarm op-

timisation for feature selection. InProceedings of the IEEE Congress on Evolutionary Computation,

pages 1–8.

[151] Yan, Z. and Yuan, C. (2004). Ant Colony Optimization for Feature Selection in Face Recognition.

In Zhang, D. and Jain, A. K., editors,Proceedings of the International Conference on Biometric

Authentication, volume 3072 ofLecture Notes in Computer Science, pages 221–226. Springer.

[152] Yang, C.-S., Chuang, L.-Y., Li, J.-C., and Yang, C.-H. (2008). Chaotic maps in binary particle

swarm optimization for feature selection. InProceedings of the IEEE Conference on Soft Computing

in Industrial Applications, pages 107–112.

[153] Yang, S., Wang, M., and Jiao, L. (2004). A quantum particle swarm optimization. InProceedings

of the IEEE Congress on Evolutionary Computation, volume 1, pages 320–324, Piscataway, NJ. IEEE

Press.

[154] Yu, L. and Liu, H. (2003). Feature selection for high-dimensional data: a fast correlation-based

filter solution. InProceedings of the 20th International Conference on Machine Learning, volume 3,

pages 856–863.

[155] Yun, C., Oh, B., Yang, J., and Nang, J. (2011). Feature Subset Selection Based on Bio-Inspired

Algorithms. Journal of Information Science and Engineering, 27(5):1667–1686.

[156] Zhang, C., Sun, J., Wang, Y., and Yang, Q. (2007). An Improved Discrete Particle Swarm Op-

timization Algorithm for TSP. InProceedings of the IEEE/WIC/ACM International Conferences on

Web Intelligence and Intelligent Agent Technology, pages 35–38, Piscataway, NJ. IEEE Computer

Society.

[157] Zhen, L., Wang, L., Wang, X., and Huang, Z. (2008). A Novel PSO-Inspired Probability-based Bi-

nary Optimization Algorithm. InProceedings of the International Symposium on Information Science

and Engineering, volume 2, pages 248–251, Oulu. Academy Publisher.

[158] Zhong, W.-L., Zhang, J., and Chen, W.-N. (2007). A novel discrete particle swarm optimization

to solve traveling salesman problem. InProceedings of the IEEE Congress on Evolutionary Compu-

tation, pages 3283–3287, Piscataway, NJ. IEEE Press.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Part V

Appendices

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A

Detailed results for small MKPs

This appendix contains the detailed results of the experiments run on the small MKPs. In total 55 such

problems were considered, all of are known from the literature and are described by Chu and Beasley

[18]. All problems used are available on-line at the Operations Research library1. The 55 problems used

can be found in the files “mknap1.txt” and “mknap2.txt” and are labeled with that filename and the order

in which they can be found the files: the problem labeled “mknap2-3” is thus the third problem found in

the file “mknap2.txt”.

Four different algorithms (BPSO, MBPSO, PBPSO, SBPSO) were compared and each algorithm

was run using three different topologies for the particle swarm: star (GB), ring (LB), and Von Neumann

(VN). Each combination of algorithm and topology was first tuned on the tuning set of 15 problems. The

tuned combinations of algorithm and topology were then applied on the test set of 40 problems, where

100 independent runs were simulated for each of these 12 combinations. The exact experimental set-up

for both the tuning and the testing process is described in detail in sections 5.2 and 5.3.

This appendix contains detailed results of both the tuning experiments as well as the testing results

based on the tuned algorithm topology pairs. An overview of all result tables for the small MKPs in this

appendix can be found in table A.1.

The detailed results for the tuning experiments are shown organized by algorithm in four tables (A.2,

A.3, A.4, A.5). Shown in all result tables for tuning problems is the average error across the independent

runs versus the known optimum of problem followed by a rank and counter shown between brackets

separated by a colon (“:”). In case of the results tables for the tuning group the rank shown is the rank

of the chosen best parameter combination in the set of 128 parameter combinations for the problem

named on that line. This ranking indicates how well the chosen parameter combination is suited to the

problem listed compared to the other parameter combinations investigated. The counter that follows the

colon is the number of 128 parameter combinations for which are tied for the lowest average error on that

problem. In case the known optimum is found and the average error is zero, the counter number indicates

how many parameter combination in total were able to find the known optimum in all 30 independent

runs.

For the problem “mknap1-4” in table A.2 for example, a 0% average error indicates that the GB

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 183

Table A.1: Guide to tables in Appendix A

Group Type of comparison Description Table Statistically best

Tuning intra algorithm BPSO A.11 LB BPSO & VN BPSO
Tuning intra algorithm MBPSO A.12 LB MBPSO & VN MBPSO
Tuning intra algorithm PBPSO A.13 LB PBPSO & VN PBSPO
Tuning intra algorithm SBPSO A.14 (none)

Testing inter algorithm Summary A.6 SBPSO
Testing intra algorithm Summary A.10 Ring & Von Neumann

Testing inter algorithm Star topology A.7 GB SBPSO
Testing inter algorithm Ring topology A.8 LB SBPSO
Testing inter algorithm Von Neumann topology A.9 VN SBPSO & VN PBPSO

Testing intra algorithm BPSO A.11 LB BPSO & VN BPSO
Testing intra algorithm MBPSO A.12 LB MBPSO & VN MBPSO
Testing intra algorithm PBPSO A.13 LB PBPSO & VN PBSPO
Testing intra algorithm SBPSO A.14 (none)

BPSO algorithm using the chosen parameter combination was able to find the optimum solutionin all

30 independent runs. The rank of 59.5 indicates a total 2∗59.5−1 = 118 parameter combinations all

achieved the same best average error on problem “mknap1-4”, a fact confirmed by the counter number

after the colon. For the problem “mknap1-5” in table A.2 for example, the average error for the GB

BPSO algorithm is 0.059%, and the rank of 70.5 stems from the fact that it shares the 69th rank with 3

other parameter combinations. The counter number 1 after the colon indicates that a single parameter

combination had the best average error (this best average error being 0.005%, a fact not shown in the

table).

The result tables for the experiments on the tuned algorithm topology combinations fall into two

categories: inter algorithm comparisons and intra algorithm comparisons. The inter algorithm compar-

isons show the results of the four algorithms for one topology, resulting in three tables (A.7, A.8, A.9).

The testing results by topology are summarized in table A.6. The intra algorithm comparisons show the

results of all three topologies for one algorithm, resulting in four tables (A.11, A.12, A.13, A.14). The

testing results by algorithm are summarized in table A.10. An overview of these result tables as well as

the best topology or algorithm for each table with testing results can be found in table A.1. The best in

this case is meant as statistically significant outperformance (α = 0.05) according to a Iman-Davenport

test on the average error and further Nemenyi-tests with Holm-adjustedα . For a detailed description of

this statistical test see appendix E.

Shown in the result tables for the experiments are the average error over 100 independent runs versus

the known optimum, as well as the success rate (SR) of finding this optimum. Also shown are the number

of problems out of 40 for which all 100 runs of the algorithm successfully found the known optimum (“#

perfect“), and for which it could not find the optimum in any of the runs (”# failure“).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

184 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.1 Detailed tuning results per algorithm

A.1.1 BPSO

Table A.2: Details of the small MKP tuning results for BPSO.

GB BPSO LB BPSO VN BPSO
Problem n m error (rank : # best) error (rank : # best) error (rank : # best)

mknap1-4 20 10 0.000 % (59.5 : 118) 0.000 % (57 : 113) 0.000 % (57.5 : 114)
mknap1-5 28 10 0.059 % (70.5 : 1) 0.000 % (14 : 27) 0.008 % (47.5 : 27)
mknap2-10 71 2 5.999 % (10 : 1) 6.315 % (6 : 1) 5.761 % (3 : 1)
mknap2-15 30 5 0.000 % (36 : 71) 0.000 % (30 : 59) 0.000 % (29 : 57)
mknap2-17 40 5 0.011 % (1 : 1) 0.000 % (7 : 13) 0.000 % (6.5 : 12)
mknap2-2 60 30 0.315 % (11 : 1) 0.199 % (6 : 1) 0.094 % (1 : 1)
mknap2-20 50 5 0.144 % (14 : 1) 0.000 % (2 : 3) 0.000 % (3 : 5)
mknap2-26 60 5 0.048 % (4 : 1) 0.057 % (5 : 1) 0.008 % (1 : 1)
mknap2-28 70 5 1.075 % (22 : 1) 0.478 % (7 : 1) 0.119 % (3 : 1)
mknap2-33 80 5 1.992 % (13 : 1) 1.520 % (7 : 1) 0.440 % (2 : 1)
mknap2-39 90 5 3.934 % (15 : 1) 2.701 % (7 : 1) 1.051 % (2 : 1)
mknap2-4 24 2 0.000 % (48.5 : 96) 0.000 % (39.5 : 78) 0.000 % (40 : 79)
mknap2-41 27 4 0.213 % (4 : 1) 0.257 % (17.5 : 1) 0.195 % (8 : 1)
mknap2-45 40 30 0.662 % (3 : 1) 0.000 % (1 : 1) 0.155 % (8 : 3)
mknap2-48 35 4 2.017 % (86 : 1) 0.415 % (22 : 1) 0.453 % (25 : 1)

average 1.098 % (26.5 :n.a.) 0.796 % (15.2 :n.a.) 0.552 % (15.8 :n.a.)

perfect 3 7 5
average non-perfect 1.372 % (21.1 :n.a.) 1.493 % (9.7 :n.a.) 0.828 % (10.1 :n.a.)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 185

A.1.2 MBPSO

TableA.3: Details of the small MKP tuning results for MBPSO.

GB MBPSO LB MBPSO VN MBPSO
Problem n m error (rank : # best) error (rank : # best) error (rank : # best)

mknap1-4 20 10 0.000 % (9 : 17) 0.000 % (13 : 25) 0.000 % (10.5 : 20)
mknap1-5 28 10 0.073 % (10 : 2) 0.016 % (16.5 : 3) 0.013 % (15 : 2)
mknap2-10 71 2 6.693 % (1 : 1) 5.690 % (1 : 1) 5.631 % (1 : 1)
mknap2-15 30 5 0.000 % (30.5 : 60) 0.000 % (26 : 51) 0.000 % (29 : 57)
mknap2-17 40 5 0.302 % (14 : 1) 0.011 % (1 : 1) 0.063 % (12 : 2)
mknap2-2 60 30 0.642 % (7 : 1) 0.255 % (9 : 1) 0.153 % (1 : 1)
mknap2-20 50 5 0.462 % (5 : 1) 0.056 % (4 : 1) 0.007 % (1 : 1)
mknap2-26 60 5 0.673 % (29 : 1) 0.083 % (1 : 1) 0.119 % (1 : 1)
mknap2-28 70 5 0.576 % (6 : 1) 0.163 % (6 : 1) 0.170 % (11 : 1)
mknap2-33 80 5 1.434 % (7 : 1) 0.541 % (12 : 1) 0.306 % (5 : 1)
mknap2-39 90 5 1.903 % (14 : 1) 0.684 % (5 : 1) 0.515 % (2 : 1)
mknap2-4 24 2 0.022 % (15 : 1) 0.000 % (2.5 : 4) 0.008 % (9.5 : 7)
mknap2-41 27 4 1.022 % (42.5 : 1) 0.350 % (3 : 1) 0.403 % (3.5 : 1)
mknap2-45 40 30 3.767 % (25 : 1) 0.988 % (11 : 1) 0.662 % (6 : 1)
mknap2-48 35 4 1.556 % (26 : 1) 0.593 % (12 : 1) 0.343 % (1 : 1)

average 1.275 % (16.1 :n.a.) 0.629 % (8.2 :n.a.) 0.560 % (7.2 :n.a.)

perfect 2 3 2
average non-perfect 1.471 % (15.5 :n.a.) 0.786 % (6.8 :n.a.) 0.646 % (5.3 :n.a.)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

186 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.1.3 PBPSO

TableA.4: Details of the small MKP tuning results for PBPSO.

GB PBPSO LB PBPSO VN PBPSO
Problem n m error (rank : # best) error (rank : # best) error (rank : # best)

mknap1-4 20 10 0.000 % (35 : 69) 0.000 % (36 : 71) 0.000 % (36 : 71)
mknap1-5 28 10 0.043 % (28 : 1) 0.003 % (24.5 : 20) 0.005 % (28.5 : 19)
mknap2-10 71 2 5.588 % (2 : 1) 5.484 % (6 : 1) 5.428 % (5 : 1)
mknap2-15 30 5 0.000 % (28 : 55) 0.000 % (26 : 51) 0.000 % (25.5 : 50)
mknap2-17 40 5 0.101 % (17 : 1) 0.000 % (8.5 : 16) 0.000 % (8 : 15)
mknap2-2 60 30 0.196 % (3.5 : 1) 0.092 % (4 : 1) 0.066 % (4 : 1)
mknap2-20 50 5 0.041 % (2 : 1) 0.000 % (3 : 5) 0.000 % (4 : 7)
mknap2-26 60 5 0.035 % (8 : 1) 0.013 % (8 : 1) 0.005 % (7 : 1)
mknap2-28 70 5 0.197 % (7 : 1) 0.043 % (5 : 1) 0.021 % (5 : 1)
mknap2-33 80 5 0.500 % (10 : 1) 0.205 % (9 : 1) 0.176 % (8 : 1)
mknap2-39 90 5 0.524 % (7 : 1) 0.558 % (9 : 2) 0.498 % (9 : 1)
mknap2-4 24 2 0.000 % (29 : 57) 0.000 % (27 : 53) 0.000 % (24 : 47)
mknap2-41 27 4 0.428 % (23 : 1) 0.289 % (24 : 1) 0.303 % (22 : 1)
mknap2-45 40 30 1.027 % (11 : 1) 0.000 % (2 : 3) 0.168 % (12 : 2)
mknap2-48 35 4 0.983 % (18 : 1) 0.120 % (1 : 1) 0.087 % (1 : 1)

average 0.644 % (15.2 :n.a.) 0.454 % (12.9 :n.a.) 0.450 % (13.3 :n.a.)

perfect 3 6 5
average non-perfect 0.805 % (11.4 :n.a.) 0.756 % (10.1 :n.a.) 0.676 % (10.2 :n.a.)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 187

A.1.4 SBPSO

TableA.5: Details of the small MKP tuning results for SBPSO.

GB SBPSO LB SBPSO VN SBPSO
Problem n m error (rank : # best) error (rank : # best) error (rank : # best)

mknap1-4 20 10 0.000 % (29 : 57) 0.000 % (30 : 59) 0.000 % (28.5 : 56)
mknap1-5 28 10 0.000 % (6.5 : 12) 0.000 % (17 : 33) 0.000 % (17 : 33)
mknap2-10 71 2 5.199 % (1 : 1) 5.211 % (2 : 1) 5.210 % (1.5 : 2)
mknap2-15 30 5 0.000 % (35 : 69) 0.000 % (36 : 71) 0.000 % (36.5 : 72)
mknap2-17 40 5 0.000 % (4.5 : 8) 0.000 % (23.5 : 46) 0.000 % (23 : 45)
mknap2-2 60 30 0.076 % (2 : 1) 0.028 % (2 : 1) 0.021 % (1 : 1)
mknap2-20 50 5 0.000 % (4 : 7) 0.000 % (9 : 17) 0.000 % (8.5 : 16)
mknap2-26 60 5 0.001 % (1.5 : 2) 0.000 % (3.5 : 6) 0.000 % (3 : 5)
mknap2-28 70 5 0.000 % (1 : 1) 0.002 % (4 : 1) 0.002 % (2.5 : 4)
mknap2-33 80 5 0.002 % (1 : 1) 0.002 % (1 : 1) 0.004 % (1 : 1)
mknap2-39 90 5 0.017 % (2 : 1) 0.000 % (1.5 : 2) 0.000 % (2 : 3)
mknap2-4 24 2 0.000 % (26.5 : 52) 0.000 % (26 : 51) 0.000 % (26 : 51)
mknap2-41 27 4 0.196 % (1 : 1) 0.213 % (3 : 1) 0.225 % (3 : 1)
mknap2-45 40 30 0.000 % (1 : 1) 0.000 % (12.5 : 24) 0.000 % (13 : 25)
mknap2-48 35 4 0.394 % (8 : 1) 0.081 % (1 : 1) 0.077 % (2 : 1)

average 0.392 % (8.3 :n.a.) 0.369 % (11.5 :n.a.) 0.369 % (11.2 :n.a.)

perfect 8 9 9
average non-perfect 0.841 % (2.4 :n.a.) 0.923 % (2.2 :n.a.) 0.923 % (1.8 :n.a.)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

188 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.2 Summarized testing results per topology

TableA.6: Summary of the small MKP test results per topology. Bold face indicates statistically signifi-
cant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error1.117 % (2.80)1.089 % (3.56)0.628 % (2.45)0.444 % (1.19)
stdev error 1.913 % 1.592 % 1.625 % 1.640 %

average SR 42.8 % (2.81) 29.9 % (3.38) 51.4 % (2.50) 82.5 % (1.31)
stdev SR 41.3 % 34.7 % 35.1 % 31.8 %

perfect 5 (2.5) 3 (4) 5 (2.5) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.58 8.21 4.36
p-value 0.0000 0.0000 0.0000
Holm α 0.0250 0.0500 0.0167

LB BPSO LB MBPSO LB PBPSO LB SBPSO

average error0.841 % (2.95)0.639 % (3.35)0.521 % (2.31)0.440 % (1.39)
stdev error 1.716 % 1.620 % 1.634 % 1.641 %

average SR 50.3 % (2.93) 45.7 % (3.24) 63.4 % (2.28) 81.9 % (1.56)
stdev SR 43.3 % 37.4 % 36.8 % 33.2 %

perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.40 6.79 3.19
p-value 0.0000 0.0000 0.0007
Holm α 0.0250 0.0500 0.0167

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error0.609 % (2.81)0.613 % (3.45)0.510 % (2.28)0.439 % (1.46)
stdev error 1.635 % 1.623 % 1.633 % 1.641 %

average SR 56.6 % (2.76) 48.6 % (3.31) 64.8 % (2.36) 82.7 % (1.56)
stdev SR 41.1 % 35.3 % 36.8 % 32.6 %

perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

Z-score 4.68 6.89 2.84
p-value 0.0000 0.0000 0.0023
Holm α 0.0250 0.0500 0.0167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 189

A.3 Detailed testing results per topology

A.3.1 Star topology

Table A.7: Details of the small MKP test results for the star topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem n m error (rank) error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-2 10 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-3 15 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-6 39 5 0.262 % (3) 0.600 % (4) 0.261 % (2) 0.070 % (1)
mknap1-7 50 5 0.572 % (3) 0.725 % (4) 0.312 % (2) 0.074 % (1)
mknap2-1 60 30 0.228 % (2) 1.164 % (4) 0.242 % (3) 0.021 % (1)
mknap2-3 28 2 0.046 % (2) 0.730 % (4) 0.050 % (3) 0 % (1)
mknap2-5 28 2 1.811 % (4) 1.463 % (3) 1.000 % (2) 0.114 % (1)
mknap2-6 28 2 3.919 % (3) 3.871 % (2) 3.937 % (4) 3.698 % (1)
mknap2-7 28 2 0.768 % (2) 1.374 % (4) 0.853 % (3) 0.347 % (1)
mknap2-8 28 2 0.801 % (2) 2.088 % (4) 0.851 % (3) 0.231 % (1)
mknap2-9 105 2 0.349 % (2) 0.950 % (4) 0.367 % (3) 0.189 % (1)
mknap2-11 30 5 0.416 % (3) 0.490 % (4) 0.411 % (2) 0.348 % (1)
mknap2-12 30 5 0.083 % (2) 0.201 % (4) 0.168 % (3) 0.004 % (1)
mknap2-13 30 5 3.209 % (2) 3.237 % (4) 3.209 % (2) 3.209 % (2)
mknap2-14 30 5 0.030 % (2) 0.133 % (4) 0.082 % (3) 0 % (1)
mknap2-16 40 5 0.018 % (2) 0.134 % (4) 0.045 % (3) 0 % (1)
mknap2-18 40 5 10.44 % (4) 9.471 % (3) 9.420 % (2) 9.407 % (1)
mknap2-19 40 5 0 % (1.5) 0.317 % (4) 0.017 % (3) 0 % (1.5)
mknap2-21 50 5 0.042 % (2) 0.135 % (4) 0.046 % (3) 0 % (1)
mknap2-22 50 5 0.046 % (2) 0.452 % (4) 0.048 % (3) 0 % (1)
mknap2-23 50 5 0 % (2) 0.012 % (4) 0 % (2) 0 % (2)
mknap2-24 60 5 0.123 % (2) 0.509 % (4) 0.131 % (3) 0.002 % (1)
mknap2-25 60 5 0.016 % (2) 0.351 % (4) 0.032 % (3) 0.001 % (1)
mknap2-27 60 5 0.006 % (3) 0.285 % (4) 0 % (1.5) 0 % (1.5)
mknap2-29 70 5 0.255 % (2) 1.243 % (4) 0.464 % (3) 0 % (1)
mknap2-30 70 5 0.031 % (2) 0.878 % (4) 0.068 % (3) 0 % (1)
mknap2-31 70 5 0.363 % (3) 0.623 % (4) 0.350 % (2) 0.004 % (1)
mknap2-32 80 5 0.197 % (3) 0.628 % (4) 0.030 % (2) 0 % (1)
mknap2-34 80 5 0.254 % (4) 0.198 % (3) 0.064 % (2) 0 % (1)
mknap2-35 80 5 0.946 % (3) 1.385 % (4) 0.235 % (2) 0 % (1)
mknap2-36 90 5 0.867 % (4) 0.621 % (3) 0.116 % (2) 0 % (1)
mknap2-37 90 5 0.627 % (3) 0.803 % (4) 0.055 % (2) 0 % (1)
mknap2-38 90 5 1.864 % (4) 1.255 % (3) 0.326 % (2) 0.014 % (1)
mknap2-40 90 5 1.854 % (4) 0.828 % (3) 0.233 % (2) 0.001 % (1)
mknap2-42 34 4 1.668 % (4) 0.751 % (3) 0.235 % (2) 0.005 % (1)
mknap2-43 29 2 3.330 % (4) 1.442 % (3) 0.406 % (2) 0 % (1)
mknap2-44 20 10 3.331 % (4) 1.880 % (3) 0.269 % (2) 0 % (1)
mknap2-46 37 30 3.665 % (4) 1.778 % (3) 0.476 % (2) 0 % (1)
mknap2-47 28 4 2.259 % (4) 0.571 % (3) 0.295 % (2) 0.007 % (1)

average 1.117 % (2.80)1.089 % (3.56)0.628 % (2.45)0.444 % (1.19)
perfect 5 (2.5) 3 (4) 5 (2.5) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

190 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.3.2 Ring topology

TableA.8: Details of the small MKP test results for the ring topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem n m error (rank) error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-2 10 10 0.127 % (4) 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-6 39 5 0.121 % (3) 0.296 % (4) 0.119 % (2) 0.116 % (1)
mknap1-7 50 5 0.314 % (3) 0.385 % (4) 0.114 % (2) 0.090 % (1)
mknap2-1 60 30 0.358 % (4) 0.249 % (3) 0.029 % (2) 0.001 % (1)
mknap2-3 28 2 0 % (2) 0.047 % (4) 0 % (2) 0 % (2)
mknap2-5 28 2 0.336 % (3) 0.443 % (4) 0.145 % (2) 0.043 % (1)
mknap2-6 28 2 3.863 % (4) 3.840 % (2) 3.846 % (3) 3.698 % (1)
mknap2-7 28 2 0.503 % (2) 0.849 % (4) 0.644 % (3) 0.286 % (1)
mknap2-8 28 2 0.235 % (2) 0.782 % (4) 0.265 % (3) 0.121 % (1)
mknap2-9 105 2 0.191 % (1) 0.494 % (4) 0.207 % (2) 0.225 % (3)
mknap2-11 30 5 0.368 % (2) 0.471 % (4) 0.405 % (3) 0.348 % (1)
mknap2-12 30 5 0.162 % (3) 0.126 % (2) 0.236 % (4) 0 % (1)
mknap2-13 30 5 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5)
mknap2-14 30 5 0.038 % (2) 0.110 % (3) 0.228 % (4) 0 % (1)
mknap2-16 40 5 0.012 % (2) 0.093 % (4) 0.063 % (3) 0 % (1)
mknap2-18 40 5 9.449 % (3) 9.466 % (4) 9.408 % (2) 9.407 % (1)
mknap2-19 40 5 0 % (2) 0.088 % (4) 0 % (2) 0 % (2)
mknap2-21 50 5 0 % (2) 0.018 % (4) 0 % (2) 0 % (2)
mknap2-22 50 5 0 % (2) 0.102 % (4) 0 % (2) 0 % (2)
mknap2-23 50 5 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap2-24 60 5 0.007 % (2) 0.118 % (4) 0.015 % (3) 0 % (1)
mknap2-25 60 5 0.001 % (2) 0.045 % (4) 0.007 % (3) 0 % (1)
mknap2-27 60 5 0 % (2) 0.027 % (4) 0 % (2) 0 % (2)
mknap2-29 70 5 0.012 % (2) 0.223 % (4) 0.040 % (3) 0 % (1)
mknap2-30 70 5 0.007 % (3) 0.139 % (4) 0 % (1.5) 0 % (1.5)
mknap2-31 70 5 0.091 % (4) 0.051 % (3) 0 % (1.5) 0 % (1.5)
mknap2-32 80 5 0.179 % (3) 0.208 % (4) 0.004 % (2) 0 % (1)
mknap2-34 80 5 0.034 % (4) 0.032 % (3) 0 % (1.5) 0 % (1.5)
mknap2-35 80 5 0.666 % (4) 0.395 % (3) 0.079 % (2) 0 % (1)
mknap2-36 90 5 0.359 % (4) 0.142 % (3) 0.016 % (2) 0 % (1)
mknap2-37 90 5 0.467 % (4) 0.357 % (3) 0.038 % (2) 0 % (1)
mknap2-38 90 5 1.418 % (4) 0.509 % (3) 0.184 % (2) 0.010 % (1)
mknap2-40 90 5 0.998 % (4) 0.292 % (3) 0.181 % (2) 0.001 % (1)
mknap2-42 34 4 0.836 % (4) 0.231 % (3) 0.116 % (2) 0.008 % (1)
mknap2-43 29 2 2.542 % (4) 0.392 % (3) 0.323 % (2) 0.013 % (1)
mknap2-44 20 10 2.852 % (4) 0.614 % (3) 0.372 % (2) 0 % (1)
mknap2-46 37 30 2.666 % (4) 0.435 % (3) 0.328 % (2) 0.002 % (1)
mknap2-47 28 4 1.217 % (4) 0.271 % (3) 0.225 % (2) 0.007 % (1)

average 0.841 % (2.95)0.639 % (3.35)0.521 % (2.31)0.440 % (1.39)
perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 191

A.3.3 Von Neumann topology

TableA.9: Details of the small MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance of one algorithm for that topology.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem n m error (rank) error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-2 10 10 0.212 % (4) 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-6 39 5 0.093 % (1.5) 0.278 % (4) 0.093 % (1.5) 0.104 % (3)
mknap1-7 50 5 0.235 % (3) 0.280 % (4) 0.097 % (2) 0.054 % (1)
mknap2-1 60 30 0.087 % (3) 0.285 % (4) 0.030 % (2) 0 % (1)
mknap2-3 28 2 0 % (2) 0.143 % (4) 0 % (2) 0 % (2)
mknap2-5 28 2 0.308 % (3) 0.335 % (4) 0.095 % (2) 0.054 % (1)
mknap2-6 28 2 3.943 % (4) 3.820 % (3) 3.792 % (2) 3.698 % (1)
mknap2-7 28 2 0.647 % (2) 0.799 % (4) 0.689 % (3) 0.278 % (1)
mknap2-8 28 2 0.359 % (3) 0.883 % (4) 0.268 % (2) 0.110 % (1)
mknap2-9 105 2 0.206 % (1) 0.453 % (4) 0.225 % (2) 0.247 % (3)
mknap2-11 30 5 0.399 % (2) 0.451 % (4) 0.402 % (3) 0.348 % (1)
mknap2-12 30 5 0.157 % (3) 0.141 % (2) 0.198 % (4) 0 % (1)
mknap2-13 30 5 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5)
mknap2-14 30 5 0.038 % (3) 0.031 % (2) 0.116 % (4) 0 % (1)
mknap2-16 40 5 0.066 % (2) 0.118 % (4) 0.072 % (3) 0 % (1)
mknap2-18 40 5 9.409 % (3) 9.465 % (4) 9.408 % (2) 9.407 % (1)
mknap2-19 40 5 0 % (2) 0.017 % (4) 0 % (2) 0 % (2)
mknap2-21 50 5 0.002 % (3) 0.025 % (4) 0 % (1.5) 0 % (1.5)
mknap2-22 50 5 0 % (2) 0.095 % (4) 0 % (2) 0 % (2)
mknap2-23 50 5 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap2-24 60 5 0.009 % (3) 0.157 % (4) 0.006 % (2) 0 % (1)
mknap2-25 60 5 0.005 % (2) 0.055 % (4) 0.006 % (3) 0 % (1)
mknap2-27 60 5 0 % (2) 0.035 % (4) 0 % (2) 0 % (2)
mknap2-29 70 5 0.007 % (2) 0.333 % (4) 0.012 % (3) 0 % (1)
mknap2-30 70 5 0 % (2) 0.140 % (4) 0 % (2) 0 % (2)
mknap2-31 70 5 0 % (2) 0.125 % (4) 0 % (2) 0 % (2)
mknap2-32 80 5 0.030 % (3) 0.133 % (4) 0 % (1.5) 0 % (1.5)
mknap2-34 80 5 0.002 % (3) 0.043 % (4) 0 % (1.5) 0 % (1.5)
mknap2-35 80 5 0.144 % (3) 0.263 % (4) 0.029 % (2) 0 % (1)
mknap2-36 90 5 0.069 % (3) 0.125 % (4) 0.022 % (2) 0 % (1)
mknap2-37 90 5 0.165 % (3) 0.279 % (4) 0.048 % (2) 0 % (1)
mknap2-38 90 5 0.452 % (4) 0.420 % (3) 0.149 % (2) 0.008 % (1)
mknap2-40 90 5 0.351 % (4) 0.208 % (3) 0.180 % (2) 0.001 % (1)
mknap2-42 34 4 0.280 % (4) 0.201 % (3) 0.126 % (2) 0.010 % (1)
mknap2-43 29 2 0.883 % (4) 0.340 % (3) 0.311 % (2) 0.017 % (1)
mknap2-44 20 10 1.183 % (4) 0.359 % (3) 0.248 % (2) 0 % (1)
mknap2-46 37 30 0.985 % (4) 0.290 % (2) 0.351 % (3) 0 % (1)
mknap2-47 28 4 0.437 % (4) 0.181 % (2) 0.205 % (3) 0.002 % (1)

average 0.609 % (2.81)0.613 % (3.45)0.510 % (2.28)0.439 % (1.46)
perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

192 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.4 Summarized testing results per algorithm

Table A.10: Summary of the small MKP test results per algorithm. Bold face indicates statistically
significant outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)

avg error 1.117 % (2.65)0.841 % (1.80) 0.609 % (1.55)
stdev error 1.913 % 1.716 % 1.635 %

average SR 42.8 % (2.45) 50.3 % (2.03) 56.6 % (1.53)
stdev SR 41.3 % 43.3 % 41.1 %
perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)

Z-score 4.92 1.12
p-value 0.0000 0.1314
Holm α 0.0500 0.0250

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)

avg error 1.089 % (2.93)0.639 % (1.65) 0.613 % (1.43)
stdev error 1.592 % 1.620 % 1.623 %

average SR 29.9 % (2.78) 45.7 % (1.68) 48.6 % (1.55)
stdev SR 34.7 % 37.4 % 35.3 %

perfect 3 (3) 4 (1.5) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)

p-value 0.0000 0.1635
Holm α 0.0500 0.0250

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.628 % (2.68)0.521 % (1.78) 0.510 % (1.55)
stdev error 1.625 % 1.634 % 1.633 %

average SR 51.4 % (2.4) 63.4 % (1.9) 64.8 % (1.7)
stdev SR 35.1 % 36.8 % 36.8 %

perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)

rank of rank 3 2 1
p-value 0.0000 0.1515
Holm α 0.0500 0.0250

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.444 % (2.13) 0.440 % (2.01) 0.439 % (1.86)
stdev error 1.640 % 1.641 % 1.641 %

average SR 82.5 % (2.09) 81.9 % (2.04) 82.7 % (1.88)
stdev SR 31.8 % 33.2 % 32.6 %

perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)

p-value 0.1131 0.2514
Holm α 0.0500 0.0250

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 193

A.5 Detailed testing results per algorithm

A.5.1 BPSO

Table A.11: Details of the small MKP test results for BPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
oblem n m error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2) 0 % (2) 0 % (2)
mknap1-2 10 10 0 % (1) 0.127 % (2) 0.212 % (3)
mknap1-3 15 10 0 % (2) 0 % (2) 0 % (2)
mknap1-6 39 5 0.262 % (3) 0.121 % (2) 0.093 % (1)
mknap1-7 50 5 0.572 % (3) 0.314 % (2) 0.235 % (1)
mknap2-1 60 30 0.228 % (2) 0.358 % (3) 0.087 % (1)
mknap2-3 28 2 0.046 % (3) 0 % (1.5) 0 % (1.5)
mknap2-5 28 2 1.811 % (3) 0.336 % (2) 0.308 % (1)
mknap2-6 28 2 3.919 % (2) 3.863 % (1) 3.943 % (3)
mknap2-7 28 2 0.768 % (3) 0.503 % (1) 0.647 % (2)
mknap2-8 28 2 0.801 % (3) 0.235 % (1) 0.359 % (2)
mknap2-9 105 2 0.349 % (3) 0.191 % (1) 0.206 % (2)
mknap2-11 30 5 0.416 % (3) 0.368 % (1) 0.399 % (2)
mknap2-12 30 5 0.083 % (1) 0.162 % (3) 0.157 % (2)
mknap2-13 30 5 3.209 % (2) 3.209 % (2) 3.209 % (2)
mknap2-14 30 5 0.030 % (1) 0.038 % (2.5) 0.038 % (2.5)
mknap2-16 40 5 0.018 % (2) 0.012 % (1) 0.066 % (3)
mknap2-18 40 5 10.440 % (3) 9.449 % (2) 9.409 % (1)
mknap2-19 40 5 0 % (2) 0 % (2) 0 % (2)
mknap2-21 50 5 0.042 % (3) 0 % (1) 0.002 % (2)
mknap2-22 50 5 0.046 % (3) 0 % (1.5) 0 % (1.5)
mknap2-23 50 5 0 % (2) 0 % (2) 0 % (2)
mknap2-24 60 5 0.123 % (3) 0.007 % (1) 0.009 % (2)
mknap2-25 60 5 0.016 % (3) 0.001 % (1) 0.005 % (2)
mknap2-27 60 5 0.006 % (3) 0 % (1.5) 0 % (1.5)
mknap2-29 70 5 0.255 % (3) 0.012 % (2) 0.007 % (1)
mknap2-30 70 5 0.031 % (3) 0.007 % (2) 0 % (1)
mknap2-31 70 5 0.363 % (3) 0.091 % (2) 0 % (1)
mknap2-32 80 5 0.197 % (3) 0.179 % (2) 0.030 % (1)
mknap2-34 80 5 0.254 % (3) 0.034 % (2) 0.002 % (1)
mknap2-35 80 5 0.946 % (3) 0.666 % (2) 0.144 % (1)
mknap2-36 90 5 0.867 % (3) 0.359 % (2) 0.069 % (1)
mknap2-37 90 5 0.627 % (3) 0.467 % (2) 0.165 % (1)
mknap2-38 90 5 1.864 % (3) 1.418 % (2) 0.452 % (1)
mknap2-40 90 5 1.854 % (3) 0.998 % (2) 0.351 % (1)
mknap2-42 34 4 1.668 % (3) 0.836 % (2) 0.280 % (1)
mknap2-43 29 2 3.330 % (3) 2.542 % (2) 0.883 % (1)
mknap2-44 20 10 3.331 % (3) 2.852 % (2) 1.183 % (1)
mknap2-46 37 30 3.665 % (3) 2.666 % (2) 0.985 % (1)
mknap2-47 28 4 2.259 % (3) 1.217 % (2) 0.437 % (1)

average 1.117 % (2.65)0.841 % (1.80) 0.609 % (1.55)
perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

194 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.5.2 MBPSO

TableA.12: Details of the small MKP test results for MBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB MBPSO LB MBPSO VN MBPSO
problem n m error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2) 0 % (2) 0 % (2)
mknap1-2 10 10 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2) 0 % (2) 0 % (2)
mknap1-6 39 5 0.600 % (3) 0.296 % (2) 0.278 % (1)
mknap1-7 50 5 0.725 % (3) 0.385 % (2) 0.280 % (1)
mknap2-1 60 30 1.164 % (3) 0.249 % (1) 0.285 % (2)
mknap2-3 28 2 0.730 % (3) 0.047 % (1) 0.143 % (2)
mknap2-5 28 2 1.463 % (3) 0.443 % (2) 0.335 % (1)
mknap2-6 28 2 3.871 % (3) 3.840 % (2) 3.820 % (1)
mknap2-7 28 2 1.374 % (3) 0.849 % (2) 0.799 % (1)
mknap2-8 28 2 2.088 % (3) 0.782 % (1) 0.883 % (2)
mknap2-9 105 2 0.950 % (3) 0.494 % (2) 0.453 % (1)
mknap2-11 30 5 0.490 % (3) 0.471 % (2) 0.451 % (1)
mknap2-12 30 5 0.201 % (3) 0.126 % (1) 0.141 % (2)
mknap2-13 30 5 3.237 % (3) 3.209 % (1.5) 3.209 % (1.5)
mknap2-14 30 5 0.133 % (3) 0.110 % (2) 0.031 % (1)
mknap2-16 40 5 0.134 % (3) 0.093 % (1) 0.118 % (2)
mknap2-18 40 5 9.471 % (3) 9.466 % (2) 9.465 % (1)
mknap2-19 40 5 0.317 % (3) 0.088 % (2) 0.017 % (1)
mknap2-21 50 5 0.135 % (3) 0.018 % (1) 0.025 % (2)
mknap2-22 50 5 0.452 % (3) 0.102 % (2) 0.095 % (1)
mknap2-23 50 5 0.012 % (3) 0 % (1.5) 0 % (1.5)
mknap2-24 60 5 0.509 % (3) 0.118 % (1) 0.157 % (2)
mknap2-25 60 5 0.351 % (3) 0.045 % (1) 0.055 % (2)
mknap2-27 60 5 0.285 % (3) 0.027 % (1) 0.035 % (2)
mknap2-29 70 5 1.243 % (3) 0.223 % (1) 0.333 % (2)
mknap2-30 70 5 0.878 % (3) 0.139 % (1) 0.140 % (2)
mknap2-31 70 5 0.623 % (3) 0.051 % (1) 0.125 % (2)
mknap2-32 80 5 0.628 % (3) 0.208 % (2) 0.133 % (1)
mknap2-34 80 5 0.198 % (3) 0.032 % (1) 0.043 % (2)
mknap2-35 80 5 1.385 % (3) 0.395 % (2) 0.263 % (1)
mknap2-36 90 5 0.621 % (3) 0.142 % (2) 0.125 % (1)
mknap2-37 90 5 0.803 % (3) 0.357 % (2) 0.279 % (1)
mknap2-38 90 5 1.255 % (3) 0.509 % (2) 0.420 % (1)
mknap2-40 90 5 0.828 % (3) 0.292 % (2) 0.208 % (1)
mknap2-42 34 4 0.751 % (3) 0.231 % (2) 0.201 % (1)
mknap2-43 29 2 1.442 % (3) 0.392 % (2) 0.340 % (1)
mknap2-44 20 10 1.880 % (3) 0.614 % (2) 0.359 % (1)
mknap2-46 37 30 1.778 % (3) 0.435 % (2) 0.290 % (1)
mknap2-47 28 4 0.571 % (3) 0.271 % (2) 0.181 % (1)

average 1.089 % (2.93)0.639 % (1.65) 0.613 % (1.43)
perfect 3 (3) 4 (1.5) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 195

A.5.3 PBPSO

TableA.13: Details of the small MKP test results for PBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB PBPSO LB PBPSO VN PBPSO
problem n m error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2) 0 % (2) 0 % (2)
mknap1-2 10 10 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2) 0 % (2) 0 % (2)
mknap1-6 39 5 0.261 % (3) 0.119 % (2) 0.093 % (1)
mknap1-7 50 5 0.312 % (3) 0.114 % (2) 0.097 % (1)
mknap2-1 60 30 0.242 % (3) 0.029 % (1) 0.030 % (2)
mknap2-3 28 2 0.050 % (3) 0 % (1.5) 0 % (1.5)
mknap2-5 28 2 1.000 % (3) 0.145 % (2) 0.095 % (1)
mknap2-6 28 2 3.937 % (3) 3.846 % (2) 3.792 % (1)
mknap2-7 28 2 0.853 % (3) 0.644 % (1) 0.689 % (2)
mknap2-8 28 2 0.851 % (3) 0.265 % (1) 0.268 % (2)
mknap2-9 105 2 0.367 % (3) 0.207 % (1) 0.225 % (2)
mknap2-11 30 5 0.411 % (3) 0.405 % (2) 0.402 % (1)
mknap2-12 30 5 0.168 % (1) 0.236 % (3) 0.198 % (2)
mknap2-13 30 5 3.209 % (2) 3.209 % (2) 3.209 % (2)
mknap2-14 30 5 0.082 % (1) 0.228 % (3) 0.116 % (2)
mknap2-16 40 5 0.045 % (1) 0.063 % (2) 0.072 % (3)
mknap2-18 40 5 9.420 % (3) 9.408 % (1.5) 9.408 % (1.5)
mknap2-19 40 5 0.017 % (3) 0 % (1.5) 0 % (1.5)
mknap2-21 50 5 0.046 % (3) 0 % (1.5) 0 % (1.5)
mknap2-22 50 5 0.048 % (3) 0 % (1.5) 0 % (1.5)
mknap2-23 50 5 0 % (2) 0 % (2) 0 % (2)
mknap2-24 60 5 0.131 % (3) 0.015 % (2) 0.006 % (1)
mknap2-25 60 5 0.032 % (3) 0.007 % (2) 0.006 % (1)
mknap2-27 60 5 0 % (2) 0 % (2) 0 % (2)
mknap2-29 70 5 0.464 % (3) 0.040 % (2) 0.012 % (1)
mknap2-30 70 5 0.068 % (3) 0 % (1.5) 0 % (1.5)
mknap2-31 70 5 0.350 % (3) 0 % (1.5) 0 % (1.5)
mknap2-32 80 5 0.030 % (3) 0.004 % (2) 0 % (1)
mknap2-34 80 5 0.064 % (3) 0 % (1.5) 0 % (1.5)
mknap2-35 80 5 0.235 % (3) 0.079 % (2) 0.029 % (1)
mknap2-36 90 5 0.116 % (3) 0.016 % (1) 0.022 % (2)
mknap2-37 90 5 0.055 % (3) 0.038 % (1) 0.048 % (2)
mknap2-38 90 5 0.326 % (3) 0.184 % (2) 0.149 % (1)
mknap2-40 90 5 0.233 % (3) 0.181 % (2) 0.180 % (1)
mknap2-42 34 4 0.235 % (3) 0.116 % (1) 0.126 % (2)
mknap2-43 29 2 0.406 % (3) 0.323 % (2) 0.311 % (1)
mknap2-44 20 10 0.269 % (2) 0.372 % (3) 0.248 % (1)
mknap2-46 37 30 0.476 % (3) 0.328 % (1) 0.351 % (2)
mknap2-47 28 4 0.295 % (3) 0.225 % (2) 0.205 % (1)

average 0.628 % (2.68)0.521 % (1.78) 0.510 % (1.55)
perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

196 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.5.4 SBPSO

TableA.14: Details of the small MKP test results for SBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB SBPSO LB SBPSO VN SBPSO
problem n m error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2) 0 % (2) 0 % (2)
mknap1-2 10 10 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2) 0 % (2) 0 % (2)
mknap1-6 39 5 0.070 % (1) 0.116 % (3) 0.104 % (2)
mknap1-7 50 5 0.074 % (2) 0.090 % (3) 0.054 % (1)
mknap2-1 60 30 0.021 % (3) 0.001 % (2) 0 % (1)
mknap2-3 28 2 0 % (2) 0 % (2) 0 % (2)
mknap2-5 28 2 0.114 % (3) 0.043 % (1) 0.054 % (2)
mknap2-6 28 2 3.698 % (2) 3.698 % (2) 3.698 % (2)
mknap2-7 28 2 0.347 % (3) 0.286 % (2) 0.278 % (1)
mknap2-8 28 2 0.231 % (3) 0.121 % (2) 0.110 % (1)
mknap2-9 105 2 0.189 % (1) 0.225 % (2) 0.247 % (3)
mknap2-11 30 5 0.348 % (2) 0.348 % (2) 0.348 % (2)
mknap2-12 30 5 0.004 % (3) 0 % (1.5) 0 % (1.5)
mknap2-13 30 5 3.209 % (2) 3.209 % (2) 3.209 % (2)
mknap2-14 30 5 0 % (2) 0 % (2) 0 % (2)
mknap2-16 40 5 0 % (2) 0 % (2) 0 % (2)
mknap2-18 40 5 9.407 % (2) 9.407 % (2) 9.407 % (2)
mknap2-19 40 5 0 % (2) 0 % (2) 0 % (2)
mknap2-21 50 5 0 % (2) 0 % (2) 0 % (2)
mknap2-22 50 5 0 % (2) 0 % (2) 0 % (2)
mknap2-23 50 5 0 % (2) 0 % (2) 0 % (2)
mknap2-24 60 5 0.002 % (3) 0 % (1.5) 0 % (1.5)
mknap2-25 60 5 0.001 % (3) 0 % (1.5) 0 % (1.5)
mknap2-27 60 5 0 % (2) 0 % (2) 0 % (2)
mknap2-29 70 5 0 % (2) 0 % (2) 0 % (2)
mknap2-30 70 5 0 % (2) 0 % (2) 0 % (2)
mknap2-31 70 5 0.004 % (3) 0 % (1.5) 0 % (1.5)
mknap2-32 80 5 0 % (2) 0 % (2) 0 % (2)
mknap2-34 80 5 0 % (2) 0 % (2) 0 % (2)
mknap2-35 80 5 0 % (2) 0 % (2) 0 % (2)
mknap2-36 90 5 0 % (2) 0 % (2) 0 % (2)
mknap2-37 90 5 0 % (2) 0 % (2) 0 % (2)
mknap2-38 90 5 0.014 % (3) 0.010 % (2) 0.008 % (1)
mknap2-40 90 5 0.001 % (2) 0.001 % (2) 0.001 % (2)
mknap2-42 34 4 0.005 % (1) 0.008 % (2) 0.010 % (3)
mknap2-43 29 2 0 % (1) 0.013 % (2) 0.017 % (3)
mknap2-44 20 10 0 % (2) 0 % (2) 0 % (2)
mknap2-46 37 30 0 % (1.5) 0.002 % (3) 0 % (1.5)
mknap2-47 28 4 0.007 % (2.5) 0.007 % (2.5) 0.002 % (1)

average 0.444 % (2.13)0.440 % (2.01)0.439 % (1.86)
perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B

Detailed results for large MKPs

This appendix contains the detailed results of the experiments run on the large MKPs. In total 270 such

problems were considered, all of which are known from the literature and are described by Chu and

Beasley [18]. All problems used are available on-line at the Operations Research library1. The 270

problems used can be found in the files “mknapcb1.txt” until “mknapcb9.txt.txt” and are labeled with

that filename and the order in which they can be found the files: the problem labeled “mknapcb2-3” is

thus the third problem found in the file “mknapcb2.txt”.

Four different algorithms as previously (BPSO, MBPSO, PBPSO, SBPSO) were compared and each

algorithm was run using three different topologies for the particle swarm: star (GB), ring (LB), and

Von Neumann (VN). Each combination of algorithm and topology was first tuned on the tuning set of

27 problems. The tuned combinations of algorithm and topology were then applied on the test set of

243 problems, where 30 independent runs were simulated for each of these 12 combinations. The exact

experimental set-up for both the tuning and the testing process is described in detail in sections 5.2

and 5.3.

This appendix contains detailed results of both the tuning experiments as well as the testing results

based on the tuned algorithm topology pairs. An overview of all result tables for the large MKP in this

appendix can be found in table B.1.

The detailed results for the tuning experiments are shown organized by algorithm in four tables (B.2,

B.3, B.4, B.5). Shown in all result tables for tuning problems is the average error across the independent

runs versus the optimum of the LP relaxation problem followed by a rank shown between brackets. In

case of the results tables for the tuning group the rank shown is the rank of the chosen best parameter

combination in the set of 128 parameter combinations for the problem named on that line. This ranking

indicates how well the chosen parameter combination is suited to the problem listed compared to the

other parameter combinations investigated.

The result tables for the experiments on the tuned algorithm topology combinations fall into two cat-

egories: inter algorithm comparisons and intra algorithm comparisons. The inter algorithm comparisons

show the results of the four algorithms for one of the three topologies used, resulting in three tables (B.7,

B.8, B.9). These results are summarized in table B.6. The intra algorithm comparisons each show the

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

198 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

Table B.1: Guide to tables in Appendix B

Group Type of comparison Description Table Statistically best

tuning intra algorithm BPSO B.2 notapplicable
tuning intra algorithm MBPSO B.3 not applicable
tuning intra algorithm PBPSO B.4 not applicable
tuning intra algorithm SBPSO B.5 not applicable

testing inter algorithm Summary B.6 SBPSO
testing intra algorithm Summary B.10 Star & Von Neumann

testing inter algorithm Star topology B.7 GB SBPSO
testing inter algorithm Ring topology B.8 LB SBPSO
testing inter algorithm Von Neumann topology B.9 VN SBPSO

testing intra algorithm BPSO B.11 GB BPSO
testing intra algorithm MBPSO B.12 VN MBPSO
testing intra algorithm PBPSO B.13 VN PBPSO
testing intra algorithm SBPSO B.14 GB SBPSO

results of all three topologies for one of the four algorithms used, resulting in fourtables (B.11, B.12,

B.13, B.14). These results are summarized in table B.10.

Shown in all result tables for tuning problems is the average error across the independent runs versus

the optimum of the LP relaxation problem followed by a rank shown between brackets. In case of the

results tables for the testing group the rank shown is the relative performance (based on average error)

of that algorithm topology combination versus the other combinations in the same table. This rank is

determined for each problem separately and the number on a given line is the average rank over all

problems summarized on that line. These ranks thus indicate the relative performance of the algorithm

topology combination compared to the other pairs in the same table and are used to determine possible

statistically significant outperformance.

The overview table B.1 also lists the best topology or algorithm that resulted from the comparisons

made using testing results. The best in this case is meant as statistically significant outperformance

(α = 0.05) according to a Iman-Davenport test and further Nemenyi-tests with Holm-adjustedα . For a

detailed description of this statistical test see appendix E.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 199

B.1 Detailed tuning results per algorithm

B.1.1 BPSO

Table B.2: Details of the large MKP tuning results for BPSO.

GB BPSO LB BPSO VN BPSO
problem n m α error (rank) error (rank) error (rank)

mknapcb1-6 100 5 0.25 3.38 % (1) 7.05 % (1) 7.92 % (3)
mknapcb1-17 100 5 0.50 1.84 % (1) 3.26 % (1) 3.03 % (1)
mknapcb1-27 100 5 0.75 0.83 % (1) 1.36 % (1) 1.30 % (1)
mknapcb2-7 100 10 0.25 10.77 % (2) 15.63 % (5) 15.90 % (5)
mknapcb2-11 100 10 0.50 4.20 % (1) 6.54 % (1) 6.70 % (1)
mknapcb2-22 100 10 0.75 2.30 % (1) 3.66 % (1) 3.64 % (1)
mknapcb3-3 100 30 0.25 18.49 % (9) 20.09 % (9) 20.12 % (10)
mknapcb3-20 100 30 0.50 7.34 % (1) 9.21 % (1) 9.24 % (1)
mknapcb3-24 100 30 0.75 3.41 % (1) 4.93 % (1) 4.91 % (1)

mknapcb4-3 250 5 0.25 5.74 % (2) 9.12 % (3) 8.98 % (3)
mknapcb4-12 250 5 0.50 2.30 % (1) 3.54 % (1) 3.72 % (1)
mknapcb4-27 250 5 0.75 1.47 % (1) 1.86 % (1) 1.69 % (1)
mknapcb5-7 250 10 0.25 13.01 % (4) 16.21 % (5) 16.07 % (5)
mknapcb5-20 250 10 0.50 5.54 % (1) 8.23 % (1) 8.04 % (1)
mknapcb5-21 250 10 0.75 2.43 % (1) 3.78 % (1) 3.86 % (1)
mknapcb6-7 250 30 0.25 20.26 % (11) 21.33 % (10) 21.28 % (8)
mknapcb6-16 250 30 0.50 8.71 % (1) 10.34 % (1) 10.58 % (1)
mknapcb6-23 250 30 0.75 3.63 % (1) 5.04 % (1) 5.01 % (1)

mknapcb7-1 500 5 0.25 6.37 % (1) 10.24 % (3) 10.64 % (3)
mknapcb7-19 500 5 0.50 2.79 % (1) 4.44 % (1) 4.50 % (1)
mknapcb7-30 500 5 0.75 1.75 % (1) 2.34 % (1) 2.29 % (1)
mknapcb8-10 500 10 0.25 15.32 % (4) 17.54 % (5) 18.02 % (5)
mknapcb8-16 500 10 0.50 5.98 % (1) 8.37 % (1) 8.20 % (1)
mknapcb8-26 500 10 0.75 2.89 % (1) 4.23 % (1) 4.12 % (1)
mknapcb9-8 500 30 0.25 20.59 % (9) 21.60 % (8) 21.87 % (10)
mknapcb9-18 500 30 0.50 9.41 % (1) 10.90 % (1) 10.94 % (1)
mknapcb9-26 500 30 0.75 4.15 % (1) 5.66 % (1) 5.61 % (1)

average 6.85 % (2.3) 8.76 % (2.5) 8.82 % (2.6)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

200 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.1.2 MBPSO

TableB.3: Details of the large MKP tuning results for MBPSO.

GB MBPSO LB MBPSO VN MBPSO
problem n m α error (rank) error (rank) error (rank)

mknapcb1-6 100 5 0.25 5.80 % (11) 4.23 % (13) 3.27 % (4)
mknapcb1-17 100 5 0.50 2.83 % (4) 1.70 % (8) 1.55 % (4)
mknapcb1-27 100 5 0.75 1.48 % (9) 0.92 % (6) 0.79 % (4)
mknapcb2-7 100 10 0.25 7.95 % (4) 4.20 % (2) 3.95 % (2)
mknapcb2-11 100 10 0.50 4.75 % (8) 2.27 % (4) 2.10 % (5)
mknapcb2-22 100 10 0.75 2.23 % (2) 1.12 % (1) 0.94 % (1)
mknapcb3-3 100 30 0.25 9.98 % (6) 6.12 % (5) 6.03 % (4)
mknapcb3-20 100 30 0.50 6.25 % (3) 3.20 % (1) 3.29 % (2)
mknapcb3-24 100 30 0.75 3.04 % (2) 1.64 % (3) 1.55 % (1)

mknapcb4-3 250 5 0.25 6.37 % (4) 4.80 % (7) 4.43 % (3)
mknapcb4-12 250 5 0.50 3.40 % (8) 2.14 % (2) 1.94 % (3)
mknapcb4-27 250 5 0.75 2.30 % (23) 1.44 % (4) 1.28 % (2)
mknapcb5-7 250 10 0.25 9.03 % (12) 6.17 % (7) 5.10 % (2)
mknapcb5-20 250 10 0.50 5.19 % (2) 2.87 % (3) 2.38 % (1)
mknapcb5-21 250 10 0.75 2.54 % (1) 1.50 % (2) 1.37 % (6)
mknapcb6-7 250 30 0.25 11.08 % (6) 7.75 % (5) 6.67 % (3)
mknapcb6-16 250 30 0.50 7.64 % (3) 4.78 % (2) 4.34 % (2)
mknapcb6-23 250 30 0.75 3.72 % (7) 2.09 % (1) 2.16 % (4)

mknapcb7-1 500 5 0.25 7.62 % (14) 6.28 % (12) 5.59 % (4)
mknapcb7-19 500 5 0.50 3.67 % (2) 2.86 % (4) 2.75 % (5)
mknapcb7-30 500 5 0.75 2.20 % (1) 1.95 % (5) 1.73 % (4)
mknapcb8-10 500 10 0.25 8.82 % (3) 6.56 % (4) 6.18 % (3)
mknapcb8-16 500 10 0.50 5.98 % (11) 3.57 % (3) 3.48 % (5)
mknapcb8-26 500 10 0.75 3.00 % (8) 1.88 % (1) 1.81 % (3)
mknapcb9-8 500 30 0.25 11.70 % (13) 7.98 % (2) 7.53 % (3)
mknapcb9-18 500 30 0.50 7.70 % (1) 5.55 % (1) 4.83 % (2)
mknapcb9-26 500 30 0.75 4.09 % (8) 2.87 % (4) 2.40 % (3)

average 5.57 % (6.5) 3.65 % (4.1) 3.31 % (3.1)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 201

B.1.3 PBPSO

TableB.4: Details of the large MKP tuning results for PBPSO.

GB PBPSO LB PBPSO VN PBPSO
problem n m α error (rank) error (rank) error (rank)

mknapcb1-6 100 5 0.25 2.68 % (1) 2.28 % (2) 1.57 % (1)
mknapcb1-17 100 5 0.50 1.76 % (6) 0.95 % (2) 0.72 % (1)
mknapcb1-27 100 5 0.75 0.88 % (3) 0.63 % (3) 0.52 % (2)
mknapcb2-7 100 10 0.25 3.33 % (1) 4.28 % (1) 4.00 % (1)
mknapcb2-11 100 10 0.50 1.40 % (1) 2.26 % (1) 1.86 % (1)
mknapcb2-22 100 10 0.75 0.92 % (1) 1.21 % (2) 1.06 % (2)
mknapcb3-3 100 30 0.25 5.23 % (2) 7.86 % (1) 6.99 % (1)
mknapcb3-20 100 30 0.50 2.65 % (1) 4.55 % (1) 4.02 % (1)
mknapcb3-24 100 30 0.75 1.59 % (1) 2.83 % (2) 2.63 % (1)

mknapcb4-3 250 5 0.25 4.71 % (7) 3.17 % (2) 2.82 % (2)
mknapcb4-12 250 5 0.50 2.37 % (8) 1.44 % (1) 1.25 % (1)
mknapcb4-27 250 5 0.75 1.36 % (3) 1.10 % (2) 0.88 % (1)
mknapcb5-7 250 10 0.25 4.38 % (2) 4.86 % (1) 4.82 % (1)
mknapcb5-20 250 10 0.50 2.03 % (2) 2.37 % (1) 2.08 % (1)
mknapcb5-21 250 10 0.75 1.24 % (1) 1.44 % (1) 1.18 % (1)
mknapcb6-7 250 30 0.25 5.84 % (2) 8.37 % (1) 7.67 % (1)
mknapcb6-16 250 30 0.50 3.47 % (2) 5.06 % (1) 4.29 % (1)
mknapcb6-23 250 30 0.75 1.89 % (1) 3.02 % (2) 2.65 % (1)

mknapcb7-1 500 5 0.25 5.76 % (7) 4.42 % (2) 4.27 % (2)
mknapcb7-19 500 5 0.50 2.65 % (2) 1.86 % (1) 1.78 % (2)
mknapcb7-30 500 5 0.75 1.92 % (5.5) 1.36 % (2) 1.24 % (1)
mknapcb8-10 500 10 0.25 4.93 % (2) 5.59 % (1) 5.17 % (1)
mknapcb8-16 500 10 0.50 2.51 % (1) 3.17 % (1) 2.80 % (1)
mknapcb8-26 500 10 0.75 1.62 % (1) 1.69 % (1) 1.47 % (1)
mknapcb9-8 500 30 0.25 6.41 % (2) 8.73 % (1) 8.44 % (1)
mknapcb9-18 500 30 0.50 4.08 % (2) 5.54 % (1) 4.95 % (1)
mknapcb9-26 500 30 0.75 2.30 % (1) 3.21 % (1) 3.07 % (1)

average 2.96 % (2.5) 3.45 % (1.4) 3.12 % (1.2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

202 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.1.4 SBPSO

TableB.5: Details of the large MKP tuning results for SBPSO.

GB SBPSO LB SBPSO VN SBPSO
problem n m α error (rank) error (rank) error (rank)

mknapcb1-6 100 5 0.25 2.63 % (6) 2.80 % (2) 2.75 % (3)
mknapcb1-17 100 5 0.50 0.89 % (1) 1.34 % (2) 1.04 % (1)
mknapcb1-27 100 5 0.75 0.54 % (4) 0.71 % (3) 0.59 % (1)
mknapcb2-7 100 10 0.25 2.51 % (4) 3.63 % (3) 3.44 % (2)
mknapcb2-11 100 10 0.50 1.04 % (1) 1.60 % (2) 1.59 % (2)
mknapcb2-22 100 10 0.75 0.42 % (1) 0.82 % (2) 0.82 % (2)
mknapcb3-3 100 30 0.25 2.98 % (3) 4.12 % (2) 3.61 % (2)
mknapcb3-20 100 30 0.50 1.37 % (1) 2.13 % (2) 1.80 % (2)
mknapcb3-24 100 30 0.75 0.58 % (1) 1.03 % (1) 0.84 % (1)

mknapcb4-3 250 5 0.25 3.30 % (4) 3.82 % (3) 3.53 % (2)
mknapcb4-12 250 5 0.50 1.34 % (1) 1.77 % (3) 1.47 % (1)
mknapcb4-27 250 5 0.75 0.86 % (1) 1.09 % (1) 1.08 % (2)
mknapcb5-7 250 10 0.25 3.19 % (2) 4.12 % (1) 3.86 % (2)
mknapcb5-20 250 10 0.50 1.15 % (1) 2.06 % (2) 1.83 % (2)
mknapcb5-21 250 10 0.75 0.60 % (1) 1.04 % (6) 0.92 % (3)
mknapcb6-7 250 30 0.25 3.36 % (1) 4.69 % (3) 4.00 % (2)
mknapcb6-16 250 30 0.50 1.41 % (1) 2.44 % (2) 2.26 % (2)
mknapcb6-23 250 30 0.75 0.73 % (1) 1.36 % (5) 1.14 % (3)

mknapcb7-1 500 5 0.25 4.67 % (4) 4.62 % (1) 4.27 % (1)
mknapcb7-19 500 5 0.50 1.80 % (1) 2.27 % (4) 2.16 % (4)
mknapcb7-30 500 5 0.75 1.21 % (1) 1.44 % (4) 1.29 % (1)
mknapcb8-10 500 10 0.25 3.49 % (1) 4.33 % (1) 4.35 % (2)
mknapcb8-16 500 10 0.50 1.66 % (1) 2.37 % (3) 2.21 % (3)
mknapcb8-26 500 10 0.75 0.79 % (1) 1.23 % (6) 1.04 % (3)
mknapcb9-8 500 30 0.25 3.27 % (1) 4.73 % (2) 4.37 % (2)
mknapcb9-18 500 30 0.50 1.62 % (1) 2.79 % (4) 2.54 % (4)
mknapcb9-26 500 30 0.75 0.87 % (1) 1.37 % (5) 1.25 % (3)

average 1.79 % (1.7) 2.44 % (2.8) 2.22 % (2.1)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 203

B.2 Summarized testing results per topology

TableB.6: Summary of the large MKP test results per topology. Bold face indicates statistically signifi-
cant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 4.679 % (2.909)5.619 % (3.885) 3.250 % (2.206)1.740 % (1.000)
stdev error 3.468 % 2.723 % 1.718 % 1.170 %

n 100 3.831 % (2.877)5.160 % (3.889) 2.568 % (2.235)1.260 % (1.000)
n 250 4.679 % (2.877)5.663 % (3.889) 3.286 % (2.235)1.758 % (1.000)
n 500 5.526 % (2.975)6.034 % (3.877) 3.896 % (2.148)2.201 % (1.000)

m 5 3.037 % (2.383)4.354 % (4.000) 3.134 % (2.617)1.875 % (1.000)
m 10 3.942 % (3.012)5.521 % (3.988) 2.763 % (2.000)1.553 % (1.000)
m 30 7.057 % (3.333)6.983 % (3.667) 3.853 % (2.000)1.791 % (1.000)

α 0.25 8.253 % (3.122)8.664 % (3.659) 5.264 % (2.220)3.141 % (1.000)
α 0.50 3.751 % (2.831)5.344 % (4.000) 2.799 % (2.169)1.355 % (1.000)
α 0.75 1.909 % (2.769)2.712 % (4.000) 1.613 % (2.231)0.676 % (1.000)

LB BPSO LB MBPSO LB PBPSO LB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 7.006 % (3.737)3.922 % (2.959) 3.650 % (1.971)2.292 % (1.333)
stdev error 5.037 % 2.059 % 2.591 % 1.331 %

n 100 6.348 % (3.778)3.044 % (2.852) 3.101 % (2.037)1.767 % (1.333)
n 250 6.951 % (3.753)3.917 % (2.938) 3.626 % (1.975)2.366 % (1.333)
n 500 7.719 % (3.679)4.805 % (3.086) 4.221 % (1.901)2.743 % (1.333)

m 5 3.091 % (3.210)3.289 % (3.790)1.994 % (1.000) 2.334 % (2.000)
m 10 7.520 % (4.000)3.654 % (2.963) 3.112 % (2.037)2.075 % (1.000)
m 30 10.407 % (4.000)4.824 % (2.123) 5.842 % (2.877)2.468 % (1.000)

α 0.25 11.961 % (3.829)6.185 % (2.817) 6.059 % (2.024)3.893 % (1.329)
α 0.50 5.817 % (3.723)3.608 % (3.060) 3.066 % (1.892)1.957 % (1.325)
α 0.75 3.063 % (3.654)1.878 % (3.000) 1.738 % (2.000)0.966 % (1.346)

VN BPSO VN MBPSO VN PBPSO VN SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 6.973 % (3.823)3.403 % (2.811) 3.348 % (2.025)2.249 % (1.342)
stdev error 5.039 % 1.742 % 2.533 % 1.275 %

n 100 6.291 % (3.815)2.647 % (2.790) 2.762 % (2.049)1.772 % (1.346)
n 250 6.920 % (3.864)3.418 % (2.765) 3.330 % (2.037)2.294 % (1.333)
n 500 7.707 % (3.790)4.145 % (2.877) 3.954 % (1.988)2.680 % (1.346)

m 5 3.076 % (3.469)2.980 % (3.506)1.783 % (1.000) 2.433 % (2.025)
m 10 7.465 % (4.000)3.191 % (2.914) 2.847 % (2.086)2.046 % (1.000)
m 30 10.377 % (4.000)4.039 % (2.012) 5.416 % (2.988)2.266 % (1.000)

α 0.25 11.943 % (3.976)5.382 % (2.610) 5.739 % (2.085)3.789 % (1.329)
α 0.50 5.775 % (3.855)3.089 % (2.819) 2.693 % (2.000)1.917 % (1.325)
α 0.75 3.023 % (3.628)1.658 % (3.013) 1.533 % (1.987)0.981 % (1.372)

Note that the results shown in table B.6 are repeated results previously shown intables 5.16, 5.17,

and 5.18, but theZ-scores,p-values, and Holmα ’s have been left out due to lack of space.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

204 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.3 Detailed test results per topology

B.3.1 Star topology

Table B.7: Details of the large MKP test results for the star topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem n m α error (rank) error (rank) error (rank) error (rank)

average 100 5 0.25 3.772 % (2.222) 6.071 % (4) 3.986 % (2.778) 1.951 % (1)
average 100 5 0.50 1.835 % (2.333) 3.392 % (4) 1.959 % (2.667) 0.873 % (1)
average 100 5 0.75 1.155 % (2.333) 1.785 % (4) 1.212 % (2.667) 0.505 % (1)
average 100 10 0.25 5.334 % (3) 8.291 % (4) 3.631 % (2) 2.181 % (1)
average 100 10 0.50 2.384 % (3) 4.605 % (4) 1.851 % (2) 0.853 % (1)
average 100 10 0.75 1.217 % (3) 2.371 % (4) 1.053 % (2) 0.399 % (1)
average 100 30 0.2511.396 % (4) 10.276 % (3) 4.928 % (2) 2.773 % (1)
average 100 30 0.50 4.786 % (3) 6.232 % (4) 2.748 % (2) 1.195 % (1)
average 100 30 0.75 2.327 % (3) 3.069 % (4) 1.621 % (2) 0.540 % (1)

average 250 5 0.25 5.182 % (2.333) 7.140 % (4) 5.219 % (2.667) 3.294 % (1)
average 250 5 0.50 2.680 % (2.444) 4.158 % (4) 2.782 % (2.556) 1.541 % (1)
average 250 5 0.75 1.390 % (2.111) 2.076 % (4) 1.496 % (2.889) 0.735 % (1)
average 250 10 0.25 6.917 % (3) 8.399 % (4) 4.502 % (2) 2.845 % (1)
average 250 10 0.50 3.161 % (3) 5.288 % (4) 2.397 % (2) 1.186 % (1)
average 250 10 0.75 1.546 % (3) 2.603 % (4) 1.340 % (2) 0.561 % (1)
average 250 30 0.2512.765 % (4) 10.492 % (3) 6.282 % (2) 3.451 % (1)
average 250 30 0.50 5.556 % (3) 7.004 % (4) 3.422 % (2) 1.471 % (1)
average 250 30 0.75 2.738 % (3) 3.513 % (4) 2.013 % (2) 0.670 % (1)

average 500 5 0.25 6.349 % (2.444) 7.798 % (4) 6.507 % (2.556) 4.749 % (1)
average 500 5 0.50 3.134 % (2.667) 4.374 % (4) 3.184 % (2.333) 2.066 % (1)
average 500 5 0.75 1.837 % (2.556) 2.392 % (4) 1.857 % (2.444) 1.160 % (1)
average 500 10 0.25 8.357 % (3.1) 8.684 % (3.9) 5.194 % (2) 3.404 % (1)
average 500 10 0.50 3.776 % (3) 5.588 % (4) 2.819 % (2) 1.455 % (1)
average 500 10 0.75 1.889 % (3) 2.919 % (4) 1.562 % (2) 0.726 % (1)
average 500 30 0.2514.189 % (4) 10.823 % (3) 7.133 % (2) 3.592 % (1)
average 500 30 0.50 6.398 % (3) 7.360 % (4) 4.075 % (2) 1.593 % (1)
average 500 30 0.75 3.083 % (3) 3.727 % (4) 2.329 % (2) 0.764 % (1)

average 4.635 % (2.909) 5.571 % (3.885)3.226 % (2.206)1.723 % (1)

Each line in table B.7 represents the average performance over a set of ninetest problems. These sets

are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 205

B.3.2 Ring topology

TableB.8: Details of the large MKP test results for the ring topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem n m α error (rank) error (rank) error (rank) error (rank)

average 100 5 0.25 4.209 % (3.667)4.173 % (3.333) 2.107 % (1) 2.750 % (2)
average 100 5 0.50 1.928 % (3.333)1.982 % (3.667) 0.976 % (1) 1.261 %, (2)
average 100 5 0.75 0.995 % (3) 1.242 % (4) 0.625 % (1) 0.757 % (2)
average 100 10 0.2511.659 % (4) 4.678 % (2.778) 4.463 % (2.222) 2.932 % (1)
average 100 10 0.50 5.413 % (4) 2.471 % (3) 2.213 % (2) 1.358 % (1)
average 100 10 0.75 2.847 % (4) 1.362 % (2.889) 1.220 % (2.111) 0.630 % (1)
average 100 30 0.2517.139 % (4) 5.908 % (2) 8.945 % (3) 3.439 % (1)
average 100 30 0.50 8.023 % (4) 3.592 % (2) 4.487 % (3) 1.836 % (1)
average 100 30 0.75 4.533 % (4) 1.789 % (2) 2.672 % (3) 0.826 % (1)

average 250 5 0.25 5.527 % (3.667)5.431 % (3.333) 3.422 % (1) 4.074 % (2)
average 250 5 0.50 2.693 % (3.111)2.859 % (3.889) 1.658 % (1) 2.069 % (2)
average 250 5 0.75 1.216 % (3) 1.535 % (4) 0.840 % (1) 0.967 % (2)
average 250 10 0.2512.790 % (4) 5.671 % (3) 5.095 % (2) 3.592 % (1)
average 250 10 0.50 6.138 % (4) 3.288 % (3) 2.620 % (2) 1.794 % (1)
average 250 10 0.75 3.079 % (4) 1.724 % (3) 1.428 % (2) 0.870 % (1)
average 250 30 0.2517.349 % (4) 7.451 % (2) 9.625 % (3) 4.374 % (1)
average 250 30 0.50 8.586 % (4) 4.819 % (2.222) 4.909 % (2.778) 2.345 % (1)
average 250 30 0.75 4.840 % (4) 2.304 % (2) 2.907 % (3) 1.107 % (1)

average 500 5 0.25 6.637 % (3.111)6.878 % (3.889) 4.861 % (1) 5.282 % (2)
average 500 5 0.50 3.050 % (3) 3.514 % (4) 2.212 % (1) 2.482 % (2)
average 500 5 0.75 1.565 % (3) 1.991 % (4) 1.246 % (1) 1.361 % (2)
average 500 10 0.2513.926 % (4) 6.737 % (3) 5.803 % (2) 4.071 % (1)
average 500 10 0.50 6.802 % (4) 4.143 % (3) 2.958 % (2) 1.997 % (1)
average 500 10 0.75 3.529 % (4) 2.123 % (3) 1.612 % (2) 0.981 % (1)
average 500 30 0.2518.192 % (4) 8.677 % (2) 10.235 % (3) 4.507 % (1)
average 500 30 0.50 9.439 % (4) 5.846 % (2.889) 5.453 % (2.111) 2.498 % (1)
average 500 30 0.75 5.178 % (4) 2.828 % (2) 3.146 % (3) 1.168 % (1)

average 6.936 % (3.737)3.889 % (2.959) 3.620 % (1.971)2.271 % (1.333)

Each line in table B.8 represents the average performance over a set of ninetest problems. These sets

are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

206 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.3.3 Von Neumann topology

TableB.9: Details of the large MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance of one algorithm for that topology.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem n m α error (rank) error (rank) error (rank) error (rank)

average 100 5 0.25 4.125 % (3.778)3.625 % (3.222) 1.757 % (1) 2.975 % (2)
average 100 5 0.50 1.883 % (3.667)1.774 % (3.333) 0.796 % (1) 1.386 % (2)
average 100 5 0.75 0.947 % (2.889)1.077 % (4) 0.504 % (1) 0.832 % (2.111)
average 100 10 0.2511.595 % (4) 4.064 % (2.556) 4.052 % (2.444) 2.862 % (1)
average 100 10 0.50 5.354 % (4) 2.160 % (3) 1.868 % (2) 1.382 % (1)
average 100 10 0.75 2.783 % (4) 1.206 % (3) 1.031 % (2) 0.664 % (1)
average 100 30 0.2517.095 % (4) 5.132 % (2) 8.411 % (3) 3.235 % (1)
average 100 30 0.50 7.947 % (4) 3.057 % (2) 3.902 % (3) 1.717 % (1)
average 100 30 0.75 4.510 % (4) 1.566 % (2) 2.364 % (3) 0.795 % (1)

average 250 5 0.25 5.610 % (4) 4.995 % (3) 3.066 % (1) 4.078 % (2)
average 250 5 0.50 2.668 % (3.778)2.617 % (3.222) 1.437 % (1) 2.149 % (2)
average 250 5 0.75 1.203 % (3) 1.362 % (4) 0.740 % (1) 1.082 % (2)
average 250 10 0.2512.675 % (4) 4.895 % (2.667) 4.801 % (2.333) 3.471 % (1)
average 250 10 0.50 6.051 % (4) 2.904 % (3) 2.312 % (2) 1.753 % (1)
average 250 10 0.75 3.070 % (4) 1.522 % (3) 1.237 % (2) 0.860 % (1)
average 250 30 0.2517.332 % (4) 6.333 % (2) 9.356 % (3) 3.991 % (1)
average 250 30 0.50 8.555 % (4) 3.921 % (2) 4.308 % (3) 2.125 % (1)
average 250 30 0.75 4.787 % (4) 2.055 % (2) 2.595 % (3) 1.036 % (1)

average 500 5 0.25 6.738 % (4) 6.299 % (3) 4.565 % (1) 5.412 % (2)
average 500 5 0.50 3.006 % (3.222)3.219 % (3.778) 2.026 % (1) 2.565 % (2)
average 500 5 0.75 1.504 % (2.889)1.849 % (4) 1.157 % (1) 1.422 % (2.111)
average 500 10 0.2513.917 % (4) 5.943 % (3) 5.652 % (2) 4.017 % (1)
average 500 10 0.50 6.788 % (4) 3.522 % (3) 2.677 % (2) 1.973 % (1)
average 500 10 0.75 3.461 % (4) 1.905 % (3) 1.399 % (2) 0.997 % (1)
average 500 30 0.2518.178 % (4) 7.089 % (2) 10.003 % (3) 4.037 % (1)
average 500 30 0.50 9.449 % (4) 4.655 % (2.111) 4.822 % (2.889) 2.246 % (1)
average 500 30 0.75 5.160 % (4) 2.378 % (2) 2.811 % (3) 1.112 % (1)

average 6.903 % (3.823)3.375 % (2.811) 3.32 % (2.025)2.229 % (1.342)

Each line in table B.9 represents the average performance over a set of ninetest problems. These sets

are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 207

B.4 Summarized testing results per algorithm

Table B.10: Summary of the large MKP test results per algorithm. Bold face indicates statistically
significant outperformance of one or more topologies for that algorithm.

problem error (rank) error (rank) error (rank)
GB BPSO LB BPSO VN BPSO

average error 4.679 % (1.340) 7.006 % (2.510) 6.973 % (2.150)
stdev error 3.468 % 5.000 % 5.000 %
n 100 3.831 % (1.296) 6.348 % (2.537) 6.291 % (2.167)
n 250 4.679 % (1.327) 6.951 % (2.531) 6.920 % (2.142)
n 500 5.526 % (1.395) 7.719 % (2.451) 7.707 % (2.154)
m 5 3.037 % (2.019) 3.091 % (2.179) 3.076 % (1.802)
m 10 3.942 % (1.000) 7.520 % (2.704) 7.465 % (2.296)
m 30 7.057 % (1.000) 10.407 % (2.636) 10.377 % (2.364)
α 0.25 8.253 % (1.037) 11.961 % (2.555) 11.943 % (2.409)
α 0.50 3.751 % (1.307) 5.817 % (2.530) 5.775 % (2.163)
α 0.75 1.909 % (1.692) 3.063 % (2.429) 3.023 % (1.878)

GB MBPSO LB MBPSO VN MBPSO
average error 5.619 % (3) 3.922 % (1.99) 3.403 % (1.01)
stdev error 2.723 % 2.100 % 1.700 %
n 100 5.160 % (3.000) 3.044 % (1.988) 2.647 % (1.012)
n 250 5.663 % (3.000) 3.917 % (2.000) 3.418 % (1.000)
n 500 6.034 % (3.000) 4.805 % (1.975) 4.145 % (1.025)
m 5 4.354 % (3.000) 3.289 % (1.963) 2.980 % (1.037)
m 10 5.521 % (3.000) 3.654 % (2.000) 3.191 % (1.000)
m 30 6.983 % (3.000) 4.824 % (2.000) 4.039 % (1.000)
α 0.25 8.664 % (3.000) 6.185 % (2.000) 5.382 % (1.000)
α 0.50 5.344 % (3.000) 3.608 % (1.988) 3.089 % (1.012)
α 0.75 2.712 % (3.000) 1.878 % (1.974) 1.658 % (1.026)

GB PBPSO LB PBPSO VN PBPSO
average error 3.250 % (1.860) 3.650 % (2.650) 3.348 % (1.500)
stdev error 1.718 % 2.600 % 2.500 %
n 100 2.568 % (1.790) 3.101 % (2.667) 2.762 % (1.543)
n 250 3.286 % (1.864) 3.626 % (2.654) 3.330 % (1.481)
n 500 3.896 % (1.914) 4.221 % (2.617) 3.954 % (1.469)
m 5 3.134 % (3.000) 1.994 % (2.000) 1.783 % (1.000)
m 10 2.763 % (1.568) 3.112 % (2.951) 2.847 % (1.481)
m 30 3.853 % (1.000) 5.842 % (2.988) 5.416 % (2.012)
α 0.25 5.264 % (1.695) 6.059 % (2.646) 5.739 % (1.659)
α 0.50 2.799 % (1.904) 3.066 % (2.663) 2.693 % (1.434)
α 0.75 1.613 % (1.974) 1.738 % (2.628) 1.533 % (1.397)

GB SBPSO LB SBPSO VN SBPSO
average error 1.740 % (1.000) 2.292 % (2.570) 2.249 % (2.430)
stdev error 1.170 % 1.300 % 1.300 %
n 100 1.260 % (1.000) 1.767 % (2.519) 1.772 % (2.481)
n 250 1.758 % (1.000) 2.366 % (2.636) 2.294 % (2.364)
n 500 2.201 % (1.000) 2.743 % (2.543) 2.680 % (2.457)
m 5 1.875 % (1.000) 2.334 % (2.173) 2.433 % (2.827)
m 10 1.553 % (1.000) 2.075 % (2.549) 2.046 % (2.451)
m 30 1.791 % (1.000) 2.468 % (2.975) 2.266 % (2.025)
α 0.25 3.141 % (1.000) 3.893 % (2.659) 3.789 % (2.341)
α 0.50 1.355 % (1.000) 1.957 % (2.566) 1.917 % (2.434)
α 0.75 0.676 % (1.000) 0.966 % (2.468) 0.981 % (2.532)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

208 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.5 Detailed test results per algorithm

B.5.1 BPSO

Table B.11: Details of the large MKP test results for BPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
problem n m α error (rank) error (rank) error (rank)

average 100 5 0.25 3.772 % (1.111) 4.209 % (2.667) 4.125 % (2.222)
average 100 5 0.50 1.835 % (1.556) 1.928 % (2.556) 1.883 % (1.889)
average 100 5 0.75 1.155 % (3.000) 0.995 % (1.889) 0.947 % (1.111)
average 100 10 0.25 5.334 % (1.000) 11.659 % (2.778) 11.595 % (2.222)
average 100 10 0.50 2.384 % (1.000) 5.413 % (2.556) 5.354 % (2.444)
average 100 10 0.75 1.217 % (1.000) 2.847 % (2.667) 2.783 % (2.333)
average 100 30 0.25 11.396 % (1.000) 17.139 % (2.389) 17.095 % (2.611)
average 100 30 0.50 4.786 % (1.000) 8.023 % (2.700) 7.947 % (2.300)
average 100 30 0.75 2.327 % (1.000) 4.533 % (2.625) 4.510 % (2.375)

average 250 5 0.25 5.182 % (1.111) 5.527 % (2.333) 5.610 % (2.556)
average 250 5 0.50 2.680 % (1.833) 2.693 % (2.222) 2.668 % (1.944)
average 250 5 0.75 1.390 % (3.000) 1.216 % (1.667) 1.203 % (1.333)
average 250 10 0.25 6.917 % (1.000) 12.790 % (2.778) 12.675 % (2.222)
average 250 10 0.50 3.161 % (1.000) 6.138 % (2.800) 6.051 % (2.200)
average 250 10 0.75 1.546 % (1.000) 3.079 % (2.625) 3.070 % (2.375)
average 250 30 0.25 12.765 % (1.000) 17.349 % (2.556) 17.332 % (2.444)
average 250 30 0.50 5.556 % (1.000) 8.586 % (2.778) 8.555 % (2.222)
average 250 30 0.75 2.738 % (1.000) 4.840 % (3.000) 4.787 % (2.000)

average 500 5 0.25 6.349 % (1.111) 6.637 % (2.333) 6.738 % (2.556)
average 500 5 0.50 3.134 % (2.444) 3.050 % (2.000) 3.006 % (1.556)
average 500 5 0.75 1.837 % (3.000) 1.565 % (1.944) 1.504 % (1.056)
average 500 10 0.25 8.357 % (1.000) 13.926 % (2.700) 13.917 % (2.300)
average 500 10 0.50 3.776 % (1.000) 6.802 % (2.556) 6.788 % (2.444)
average 500 10 0.75 1.889 % (1.000) 3.529 % (2.875) 3.461 % (2.125)
average 500 30 0.25 14.189 % (1.000) 18.192 % (2.444) 18.178 % (2.556)
average 500 30 0.50 6.398 % (1.000) 9.439 % (2.556) 9.449 % (2.444)
average 500 30 0.75 3.083 % (1.000) 5.178 % (2.667) 5.160 % (2.333)

average 4.635 % (1.339) 6.936 % (2.506) 6.903 % (2.155)

Each line in table B.11 represents the average performance over a set of ninetest problems. These

sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 209

B.5.2 MBPSO

TableB.12: Details of the large MKP test results for MBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB MBPSO LB MBPSO VN MBPSO
problem n m α error (rank) error (rank) error (rank)

average 100 5 0.25 6.071 % (3.000) 4.173 % (2.000) 3.625 % (1.000)
average 100 5 0.50 3.392 % (3.000) 1.982 % (2.000) 1.774 % (1.000)
average 100 5 0.75 1.785 % (3.000) 1.242 % (1.889) 1.077 % (1.111)
average 100 10 0.25 8.291 % (3.000) 4.678 % (2.000) 4.064 % (1.000)
average 100 10 0.50 4.605 % (3.000) 2.471 % (2.000) 2.160 % (1.000)
average 100 10 0.75 2.371 % (3.000) 1.362 % (2.000) 1.206 % (1.000)
average 100 30 0.25 10.276 % (3.000) 5.908 % (2.000) 5.132 % (1.000)
average 100 30 0.50 6.232 % (3.000) 3.592 % (2.000) 3.057 % (1.000)
average 100 30 0.75 3.069 % (3.000) 1.789 % (2.000) 1.566 % (1.000)

average 250 5 0.25 7.140 % (3.000) 5.431 % (2.000) 4.995 % (1.000)
average 250 5 0.50 4.158 % (3.000) 2.859 % (2.000) 2.617 % (1.000)
average 250 5 0.75 2.076 % (3.000) 1.535 % (2.000) 1.362 % (1.000)
average 250 10 0.25 8.399 % (3.000) 5.671 % (2.000) 4.895 % (1.000)
average 250 10 0.50 5.288 % (3.000) 3.288 % (2.000) 2.904 % (1.000)
average 250 10 0.75 2.603 % (3.000) 1.724 % (2.000) 1.522 % (1.000)
average 250 30 0.25 10.492 % (3.000) 7.451 % (2.000) 6.333 % (1.000)
average 250 30 0.50 7.004 % (3.000) 4.819 % (2.000) 3.921 % (1.000)
average 250 30 0.75 3.513 % (3.000) 2.304 % (2.000) 2.055 % (1.000)

average 500 5 0.25 7.798 % (3.000) 6.878 % (2.000) 6.299 % (1.000)
average 500 5 0.50 4.374 % (3.000) 3.514 % (1.889) 3.219 % (1.111)
average 500 5 0.75 2.392 % (3.000) 1.991 % (1.889) 1.849 % (1.111)
average 500 10 0.25 8.684 % (3.000) 6.737 % (2.000) 5.943 % (1.000)
average 500 10 0.50 5.588 % (3.000) 4.143 % (2.000) 3.522 % (1.000)
average 500 10 0.75 2.919 % (3.000) 2.123 % (2.000) 1.905 % (1.000)
average 500 30 0.25 10.823 % (3.000) 8.677 % (2.000) 7.089 % (1.000)
average 500 30 0.50 7.360 % (3.000) 5.846 % (2.000) 4.655 % (1.000)
average 500 30 0.75 3.727 % (3.000) 2.828 % (2.000) 2.378 % (1.000)

average 5.571 % (3.000) 3.889 % (1.988) 3.375 % (1.012)

Each line in table B.12 represents the average performance over a set of ninetest problems. These

sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

210 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.5.3 PBPSO

TableB.13: Details of the large MKP test results for PBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB PBPSO LB PBPSO VN PBPSO
problem n m α error (rank) error (rank) error (rank)

average 100 5 0.25 3.986 % (3.000) 2.107 % (2.000) 1.757 % (1.000)
average 100 5 0.50 1.959 % (3.000) 0.976 % (2.000) 0.796 % (1.000)
average 100 5 0.75 1.212 % (3.000) 0.625 % (2.000) 0.504 % (1.000)
average 100 10 0.25 3.631 % (1.000) 4.463 % (3.000) 4.052 % (2.000)
average 100 10 0.50 1.851 % (1.556) 2.213 % (3.000) 1.868 % (1.444)
average 100 10 0.75 1.053 % (1.556) 1.220 % (3.000) 1.031 % (1.444)
average 100 30 0.25 4.928 % (1.000) 8.945 % (3.000) 8.411 % (2.000)
average 100 30 0.50 2.748 % (1.000) 4.487 % (3.000) 3.902 % (2.000)
average 100 30 0.75 1.621 % (1.000) 2.672 % (3.000) 2.364 % (2.000)

average 250 5 0.25 5.219 % (3.000) 3.422 % (2.000) 3.066 % (1.000)
average 250 5 0.50 2.782 % (3.000) 1.658 % (2.000) 1.437 % (1.000)
average 250 5 0.75 1.496 % (3.000) 0.840 % (2.000) 0.740 % (1.000)
average 250 10 0.25 4.502 % (1.222) 5.095 % (3.000) 4.801 % (1.778)
average 250 10 0.50 2.397 % (1.700) 2.620 % (3.000) 2.312 % (1.300)
average 250 10 0.75 1.340 % (1.875) 1.428 % (3.000) 1.237 % (1.125)
average 250 30 0.25 6.282 % (1.000) 9.625 % (2.889) 9.356 % (2.111)
average 250 30 0.50 3.422 % (1.000) 4.909 % (3.000) 4.308 % (2.000)
average 250 30 0.75 2.013 % (1.000) 2.907 % (3.000) 2.595 % (2.000)

average 500 5 0.25 6.507 % (3.000) 4.861 % (2.000) 4.565 % (1.000)
average 500 5 0.50 3.184 % (3.000) 2.212 % (2.000) 2.026 % (1.000)
average 500 5 0.75 1.857 % (3.000) 1.246 % (2.000) 1.157 % (1.000)
average 500 10 0.25 5.194 % (1.100) 5.803 % (2.900) 5.652 % (2.000)
average 500 10 0.50 2.819 % (2.000) 2.958 % (2.889) 2.677 % (1.111)
average 500 10 0.75 1.562 % (2.250) 1.612 % (2.750) 1.399 % (1.000)
average 500 30 0.25 7.133 % (1.000) 10.235 % (3.000) 10.003 % (2.000)
average 500 30 0.50 4.075 % (1.000) 5.453 % (3.000) 4.822 % (2.000)
average 500 30 0.75 2.329 % (1.000) 3.146 % (3.000) 2.811 % (2.000)

average 3.226 % (1.861) 3.620 % (2.645) 3.320 % (1.493)

Each line in table B.13 represents the average performance over a set of ninetest problems. These

sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 211

B.5.4 SBPSO

TableB.14: Details of the large MKP test results for SBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB SBPSO LB SBPSO VN SBPSO
problem n m α error (rank) error (rank) error (rank)

average 100 5 0.25 1.951 % (1.000) 2.750 % (2.111) 2.975 % (2.889)
average 100 5 0.50 0.873 % (1.000) 1.261 % (2.000) 1.386 % (3.000)
average 100 5 0.75 0.505 % (1.000) 0.757 % (2.111) 0.832 % (2.889)
average 100 10 0.25 2.181 % (1.000) 2.932 % (2.778) 2.862 % (2.222)
average 100 10 0.50 0.853 % (1.000) 1.358 % (2.444) 1.382 % (2.556)
average 100 10 0.75 0.399 % (1.000) 0.630 % (2.222) 0.664 % (2.778)
average 100 30 0.25 2.773 % (1.000) 3.439 % (3.000) 3.235 % (2.000)
average 100 30 0.50 1.195 % (1.000) 1.836 % (3.000) 1.717 % (2.000)
average 100 30 0.75 0.540 % (1.000) 0.826 % (3.000) 0.795 % (2.000)

average 250 5 0.25 3.294 % (1.000) 4.074 % (2.444) 4.078 % (2.556)
average 250 5 0.50 1.541 % (1.000) 2.069 % (2.333) 2.149 % (2.667)
average 250 5 0.75 0.735 % (1.000) 0.967 % (2.000) 1.082 % (3.000)
average 250 10 0.25 2.845 % (1.000) 3.592 % (2.778) 3.471 % (2.222)
average 250 10 0.50 1.186 % (1.000) 1.794 % (2.600) 1.753 % (2.400)
average 250 10 0.75 0.561 % (1.000) 0.870 % (2.563) 0.860 % (2.438)
average 250 30 0.25 3.451 % (1.000) 4.374 % (3.000) 3.991 % (2.000)
average 250 30 0.50 1.471 % (1.000) 2.345 % (3.000) 2.125 % (2.000)
average 250 30 0.75 0.670 % (1.000) 1.107 % (3.000) 1.036 % (2.000)

average 500 5 0.25 4.749 % (1.000) 5.282 % (2.222) 5.412 % (2.778)
average 500 5 0.50 2.066 % (1.000) 2.482 % (2.222) 2.565 % (2.778)
average 500 5 0.75 1.160 % (1.000) 1.361 % (2.111) 1.422 % (2.889)
average 500 10 0.25 3.404 % (1.000) 4.071 % (2.600) 4.017 % (2.400)
average 500 10 0.50 1.455 % (1.000) 1.997 % (2.444) 1.973 % (2.556)
average 500 10 0.75 0.726 % (1.000) 0.981 % (2.500) 0.997 % (2.500)
average 500 30 0.25 3.592 % (1.000) 4.507 % (3.000) 4.037 % (2.000)
average 500 30 0.50 1.593 % (1.000) 2.498 % (3.000) 2.246 % (2.000)
average 500 30 0.75 0.764 % (1.000) 1.168 % (2.778) 1.112 % (2.222)

average 1.723 % (1.000) 2.271 % (2.565) 2.229 % (2.435)

Each line in table B.14 represents the average performance over a set of ninetest problems. These

sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C

Detailed results for the FSP

This appendix contains the detailed results of the experiments run on the FSP. In total, 38 such problems

were considered, all of which are known from the literature and are described in appendix D. To solve

the underlying classification problem, three different classifiers were used: the GNB, J48, andk-NN

classifiers.

The J48 andk-NN classifiers have parameters that need to be set and these values influence the

behavior of the classifier. Therefore, a classifier tuning process was used and this was described in

section 6.2.3.3. A separate investigation using an exhaustive search of the classifiers parameters and

the feature subset was conducted to test whether this setup of the classifier tuning was adequate. This

investigation and an overview of its results was described in section 6.4. In section C.1 of this appendix,

detailed results of the investigation on the J48 classifier are given.

Four different algorithms, BPSO, CFBPSO, PBPSO, and SBPSO, were compared in the experiments

on the FSP and each algorithm was run in a wrapper setup for each of the three classifiers, resulting in

12 algorithm-classifier pairs. Each such combination of an algorithm and a classifier was tuned on eight

tuning problems. This tuning process was described in section 6.5, where an overview of the results

was also given. Section C.2 of this appendix contains the detailed results of the PSO parameter tuning

experiments.

The tuned algorithm-classifier pair were then applied on the test set of 30 problems, where 30 in-

dependent runs were simulated for each of these 12 combinations. The exact experimental set-up for

the testing process was described in detail in section 6.2 and an overview of the results was given in

section 6.6. Section C.3 of this appendix contains the detailed results of these experiments on the tuned

PSO algorithms.

C.1 Detailed FSP results for exhaustive search on J48 parameters

This section contains the detailed results of the experiments in which the parameters for the J48 classifiers

were investigated using an exhaustive search. The main results were discussed in section 6.4.2.1 with the

summary of the results listed in tables 6.11 and 6.12. The detailed results of the experiments are listed

below using a separate table and discussed in a separate subsection for each of the nine datasets studied,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 213

namely iris, corral, liver, monk-1, monk-2, pima, breasttissue, glass, and tic-tac-toe.

Eachtable in this section shows the probability scores for the 49 parameter combinations. The cells

in the table are colored in grey-scale according to the value in the cell, with a darker hue indicating a

higher probability score. The parametersl andγ which combine to form the combination with the highest

probability are indicated in bold and the corresponding cell has the darkest hue. This color scheme makes

it possible to quickly identify areas of good combinations ofl andγ for use in the J48 classifier on the

dataset.

C.1.1 Iris dataset

Table C.1 shows the probability scores for the iris dataset. The best parameter values found arel = 2

andγ = 0.050. A combination of low values for bothl andγ performs best. Higher values forl lead

to deterioration in the performance of the J48 classifier. A higher value forγ has only leads to a small

decrease in performance during exhaustive search.

The parameters actually used in the exhaustive search and found using the method described in sec-

tion 6.2.3.3 werel = 18 andγ = 0.275. This parameter combination for the J48 classifier is suboptimal,

ranking 15th out of 49, but can hardly be distinguished from any combination ofl andγ werel ranges

between 2 and 34. The chosen parameters values forl andγ thus seem acceptable, as this parameter

combination’s probability, 2.5%, is 82% of the highest found probability, 3.1%.

Table C.1: Detailed results classifier parameter values for J48 classifier on iris dataset.

γ \ l 2 10 18 26 34 42 50

0.050 3.1 % 2.6 % 2.4 % 2.4 % 2.5 % 1.5 % 0.2 %

0.125 2.5 % 2.6 % 2.5 % 2.4 % 2.6 % 1.5 % 0.2 %

0.200 2.7 % 2.6 % 2.5 % 2.5 % 2.6 % 1.5 % 0.2 %

0.275 2.5 % 2.5 % 2.5 % 2.5 % 2.6 % 1.5 % 0.2 %

0.350 2.3 % 2.5 % 2.5 % 2.5 % 2.6 % 1.5 % 0.2 %

0.425 2.3 % 2.4 % 2.5 % 2.4 % 2.6 % 1.5 % 0.2 %

0.500 2.3 % 2.4 % 2.5 % 2.4 % 2.6 % 1.5 % 0.2 %

C.1.2 Corral dataset

TableC.2 shows the probability scores for the corral dataset. The best parameter values found arel =

2 andγ = 0.125. Low values forl perform best whilel ≥ 26 quickly leads to deterioration in the

performance of the J48 classifier. Performance is less sensitive to the value ofγ. For higher values ofγ
combinations withl = 10 perform less well than those with eitherl = 2 or l = 18, leading to a slightly

more complicated performance landscape.

The parameters actually used in the exhaustive search and found using the method described in

section 6.2.3.3 werel = 2 andγ = 0.050. This parameter combination for the J48 classifier is suboptimal,

ranking 7th from 49, as a higher value forγ yields better performance in all cases except wherel =

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

214 APPENDIXC. DETAILED RESULTS FOR THE FSP

10. Still, the relative performance seems adequate for use in the exhaustive searchexperiments as the

probability score for the chosen parameter combination, 4.1%, is more than 75% of the probability score

for the best parameter combination, 4.9%.

Table C.2: Detailed results classifier parameter values for J48 classifier on corral dataset.

γ \ l 2 10 18 26 34 42 50

0.050 3.8 % 3.3 % 3.4 % 1.5 % 0.5 % 0.5 % 0.5 %

0.125 4.9 % 3.4 % 3.6 % 1.9 % 0.5 % 0.5 % 0.5 %

0.200 4.9 % 3.0 % 3.6 % 1.9 % 0.5 % 0.5 % 0.5 %

0.275 4.9 % 2.8 % 3.6 % 1.9 % 0.5 % 0.5 % 0.5 %

0.350 4.4 % 2.5 % 3.6 % 1.9 % 0.5 % 0.5 % 0.5 %

0.425 4.2 % 2.3 % 3.6 % 1.8 % 0.5 % 0.5 % 0.5 %

0.500 4.1 % 2.3 % 3.6 % 1.8 % 0.5 % 0.5 % 0.5 %

C.1.3 Liver dataset

TableC.3 shows the probability scores for the liver dataset. The best parameter values found arel = 42

and γ = 0.125. Higher values forl perform better in general on this dataset, withl = 42 being the

optimum for any of the seven possible values ofγ. For lowerγ values lead to better performance, and

the combination withl = 42 is the only one for which the lowest valueγ = 0.050 is not the best. Theγ
parameter has a slightly larger impact on performance than thel parameter.

The parameters actually used in the exhaustive search and found using the method described in sec-

tion 6.2.3.3 werel = 26 andγ = 0.275. This parameter combination for the J48 classifier is suboptimal,

ranking 17th from 49. Also its probability is only 69% of that for the best found probability, the worst

result for the chosen parameter combination for the J48 classifier across the five datasets investigated.

This seems not an unacceptable result, but clearly not desirable.

Table C.3: Detailed results classifier parameter values for J48 classifier on liver dataset.

γ \ l 2 10 18 26 34 42 50

0.050 2.3 % 1.9 % 2.2 % 2.7 % 2.5 % 3.0 % 2.5 %

0.125 2.0 % 1.5 % 1.9 % 2.6 % 2.4 % 3.3 % 2.3 %

0.200 1.8 % 1.3 % 1.8 % 2.5 % 2.4 % 3.2 % 2.2 %

0.275 1.8 % 1.3 % 1.8 % 2.3 % 2.2 % 2.8 % 2.0 %

0.350 1.6 % 1.2 % 1.7 % 2.1 % 2.1 % 2.7 % 1.9 %

0.425 1.6 % 1.1 % 1.8 % 2.0 % 2.1 % 2.6 % 1.9 %

0.500 1.3 % 0.9 % 1.6 % 1.8 % 1.8 % 2.3 % 1.6 %

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 215

C.1.4 Monk-1 dataset

TableC.4 shows the probability scores for the monk-1 dataset. The best parameter values found are

l = 2 andγ = 0.050. Low valuesγ clearly perform best on this dataset, while performance is completely

insensitive to the value ofl . For γ, lower values lead to better performance, and the combination with

l = 42 is the only one for which the lowest valueγ = 0.050 is not the best. Theγ parameter has a slightly

larger impact on performance than thel parameter.

The parameters actually used in the exhaustive search and found using the method described in

section 6.2.3.3 werel = 34 andγ = 0.275. Although the different value forl is inconsequential, the

value chosen forγ is clearly not ideal. The chosen parameter combination ranks 22nd out of 49. Its

probability is still 78% of that for the best found probability, which seems acceptable.

Table C.4: Detailed results classifier parameter values for J48 classifier on monk-1 dataset.

γ \ l 2 10 18 26 34 42 50

0.050 2.7 % 2.7 % 2.7 % 2.7 % 2.7 % 2.7 % 2.7 %

0.125 2.5 % 2.5 % 2.5 % 2.5 % 2.5 % 2.5 % 2.5 %

0.200 2.5 % 2.5 % 2.5 % 2.5 % 2.5 % 2.5 % 2.5 %

0.275 2.1 % 2.1 % 2.1 % 2.1 % 2.1 % 2.1 % 2.1 %

0.350 1.7 % 1.7 % 1.7 % 1.7 % 1.7 % 1.7 % 1.7 %

0.425 1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.4 %

0.500 1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.4 %

C.1.5 Monk-2 dataset

TableC.5 shows the probability scores for the monk-2 dataset. The best parameter values found are

l = 2 andγ = 0.275. It can be easily seen that performance is very equal across most combinations

investigated, with 40 out of 49 attaining a probability within 75% of that for the best combination and 29

scoring a probability of 2.2%. Only combinations of highγ values andl ≤ 42 lead to poor results.

Table C.5: Detailed results classifier parameter values for J48 classifier on monk-2 dataset.

γ \ l 2 10 18 26 34 42 50

0.050 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 %

0.125 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 %

0.200 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 % 2.2 %

0.275 2.4 % 2.1 % 2.1 % 2.1 % 2.2 % 2.2 % 2.2 %

0.350 2.3 % 1.9 % 2.0 % 2.1 % 2.1 % 2.2 % 2.2 %

0.425 1.9 % 1.6 % 1.6 % 1.8 % 2.0 % 2.1 % 2.2 %

0.500 1.3 % 0.9 % 0.9 % 1.0 % 1.4 % 1.5 % 2.2 %

The J48 parameters actually used during the exhaustive search and found using the method described

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

216 APPENDIXC. DETAILED RESULTS FOR THE FSP

in section 6.2.3.3 werel = 2 andγ = 0.425. Given that performance is so equal across most of the

parameter combinations, it is remarkable that the chosen combination actually is quite poorly ranked:

39th out of 49. Its probability score is still 78% of that for the best found score, however, which seems

acceptable.

C.1.6 Pima dataset

Table C.6 shows the probability scores for the pima dataset. The best parameter values found arel = 34

andγ = 0.200. Small values ofl combine with larger values forγ are seen to perform worst. This differs

from the patterns generally seen on the other datasets, which favor smaller values for bothl andγ.

The parameters actually used in the exhaustive search and found using the method described in

section 6.2.3.3 werel = 2 andγ = 0.425. This parameter combination for the J48 classifier is very poor,

ranking 48th out of 49. Tuning the J48 classifier using all features thus yields a poorly tuned classifier if

used on only a subset of features and can be said to fail on this dataset.

Table C.6: Detailed results classifier parameter values for J48 classifier on pima dataset.

γ \ l 2 10 18 26 34 42 50

0.050 1.6 % 2.0 % 1.8 % 2.3 % 2.7 % 2.7 % 2.7 %

0.125 1.4 % 1.8 % 1.7 % 2.2 % 2.8 % 2.7 % 2.7 %

0.200 1.4 % 1.9 % 1.7 % 2.3 % 2.9 % 2.7 % 2.7 %

0.275 1.2 % 1.8 % 1.7 % 2.2 % 2.9 % 2.6 % 2.7 %

0.350 1.0 % 1.6 % 1.6 % 2.1 % 2.7 % 2.5 % 2.6 %

0.425 0.8 % 1.3 % 1.5 % 1.9 % 2.4 % 2.3 % 2.4 %

0.500 0.8 % 1.2 % 1.3 % 1.8 % 2.3 % 2.0 % 2.2 %

C.1.7 Breasttissue dataset

TableC.7 shows the probability scores for the breasttissue dataset.

Table C.7: Detailed results classifier parameter values for J48 classifier on breasttissue dataset.

γ \ l 2 10 18 26 34 42 50

0.050 9.7 % 5.4 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.125 9.5 % 5.1 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.200 9.1 % 5.1 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.275 8.9 % 5.3 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.350 8.9 % 4.8 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.425 8.9 % 4.5 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

0.500 8.7 % 4.5 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 %

The best parameter values found arel = 2 andγ = 0.050, which is in line with the behavior seen

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 217

across most of the nine datasets investigated. Any parameter combination involvingl = 2 works well,

those withl = 10 work adequately, but ifl is set higher than 10, performance suffers a great deal, resulting

in a combined probability of less than 2% that such a parameter combination works well on any given

features subset.

The parameters actually used in the exhaustive search and found using the method described in

section 6.2.3.3 werel = 2 andγ = 0.125. This parameter combination ranks second best out of 49 and

the chosen classifier tuning method thus is shown to work very well on the breasttissue dataset.

C.1.8 Glass dataset

Table C.8 shows the probability scores for the glass dataset. The best parameter values found arel = 2

and γ = 0.050, which is in line with the behavior seen across most of the nine datasets investigated.

Any parameter combination involvingl = 2 works well, those withl = 10 work adequately, but ifl is

set higher than 10, performance suffers a great deal: the sum of probability scores for all parameter

combinations withl > 10 was less than 15%. This means that parameter combinations usingl = 2 or

l = 10 have a combined probability score of more than 85% and should work well on any given features

subset.

Table C.8: Detailed results classifier parameter values for J48 classifier on glass dataset.

γ \ l 2 10 18 26 34 42 50

0.050 8.4 % 4.4 % 0.8 % 0.7 % 0.2 % 0.1 % 0.1 %

0.125 8.2 % 4.9 % 0.8 % 0.7 % 0.2 % 0.1 % 0.1 %

0.200 7.9 % 4.7 % 0.7 % 0.8 % 0.2 % 0.1 % 0.1 %

0.275 7.3 % 4.8 % 0.9 % 0.8 % 0.3 % 0.1 % 0.1 %

0.350 7.2 % 4.6 % 0.9 % 0.8 % 0.3 % 0.1 % 0.1 %

0.425 7.2 % 4.7 % 0.9 % 0.8 % 0.3 % 0.1 % 0.1 %

0.500 7.0 % 4.7 % 0.9 % 0.8 % 0.3 % 0.1 % 0.1 %

The parameters actually used in the exhaustive search and found using the methoddescribed in

section 6.2.3.3 werel = 2 andγ = 0.125. This parameter combination ranks second best out of 49 and

the chosen classifier tuning method thus is shown to work very well on the glass dataset.

C.1.9 Tic-tac-toe dataset

Table C.9 shows the probability scores for the tic-tac-toe dataset. The best parameter values found are

l = 18 andγ = 0.125 and in general the probability score reduces for higher values forl and lower values

for γ, but the shape of the surface is not completely straightforward: the upper and lower edges of the

grid show better scores than the minimum atl = 50 andγ = 0.200.

The J48 parameters actually used during the exhaustive search and found using the method described

in section 6.2.3.3 werel = 18 andγ = 0.125. This chosen parameter combination ranks 19th out of 49,

and its probability score is only 45% of the maximum recorded probability score. Thus, the chosen clas-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

218 APPENDIXC. DETAILED RESULTS FOR THE FSP

sifier tuning method has not yielded a good result for the tic-tac-toe dataset. Thisis somewhat surprising,

as the concept underlying the artificial dataset requires all features for successful classification.

Table C.9: Detailed results classifier parameter values for J48 classifier on tic-tac-toe dataset.

γ \ l 2 10 18 26 34 42 50

0.050 3.6 % 2.0 % 1.9 % 1.4 % 1.1 % 1.2 % 1.2 %

0.125 3.9 % 2.4 % 2.1 % 1.5 % 1.0 % 1.0 % 0.9 %

0.200 4.1 % 2.8 % 2.0 % 1.8 % 1.0 % 1.0 % 0.9 %

0.275 4.0 % 2.9 % 2.2 % 2.2 % 1.1 % 1.2 % 1.0 %

0.350 4.5 % 3.3 % 2.0 % 2.4 % 1.3 % 1.4 % 1.3 %

0.425 4.4 % 3.1 % 1.7 % 2.3 % 1.2 % 1.5 % 1.4 %

0.500 4.3 % 2.7 % 1.4 % 2.2 % 1.2 % 1.6 % 1.4 %

C.2 Detailed FSP tuning results

This section lists the detailed results of the experiments performed to tune the four PSO algorithms

(BPSO, CFBPSO, PBPSO and SBPSO) on the FSP. In this tuning process 128 different parameter com-

binations were investigated for each PSO algorithm and each classifier. The parameters resulting from

the tuning process were discussed in section 6.5. The accuracy achieved and number of features selected

using the chosen combination of parameters for each of the four PSO algorithms and each of the three

classifiers is shown below.

Note that the process used for tuning was set out in section 6.5.1 and a brief statistical summary

(the number of instances, classes and features) of the eight datasets used in the PSO tuning process for

FSP can be found in table 6.2. A detailed description of the datasets and any specific actions taken in

preprocessing the data is set out in appendix D.

The results in this section are shown separately for each of the three classifiers investigated: the GNB

classifier in section C.2.1, the J48 classifier in section C.2.2, and thek-NN classifier in section C.2.3.

Each of the three sections contains two tables. The first table lists the average accuracy and standard

deviation of that accuracy for the best solution found by the PSO, for each of the eight tuning datasets

and each of the four PSO algorithms. The average and standard deviation of the accuracy were calculated

across 10 independent runs of the PSO algorithm and the accuracy reported for each such run was itself

calculated by 10 repeated calculations using 10-fold cross validation with different splits of the dataset.

The second table in each section lists the average number of features found and the standard deviation

for the same datasets and PSO algorithms.

It is important to keep in mind that the results shown in this section arenot representative of the

performance of the four PSO algorithms on the eight tuning datasets, but instead will probablyoverstate

that performance: the accuracies shown are those for that parameter combination out of 128 possible

combinations that performed best on average across the same datasets. Hence the results are designed to

be the best possible ones to be achieved by the PSO algorithms, rather than what would be expected if

the PSO algorithms were tuned in another manner.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 219

C.2.1 GNB classifier

TableC.10: Detailed accuracy results for the GNB classifier on the FSP tuning datasets achieved by the
chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev

echocardiogram94.06% ± 0.23% (1.5) 94.04% ± 0.19% (3) 94.01% ± 0.14% (4) 94.06% ± 0.24% (1.5) 84.52% ± 0.53%
hepatitis 88.13% ± 0.64% (4) 88.45% ± 0.62% (1) 88.21% ± 0.50% (2) 88.19% ± 0.69% (3) 83.06% ± 0.81%
labor 95.07% ± 0.50% (2) 94.85% ± 0.24% (4) 95.01% ± 0.30% (3) 95.11% ± 0.29% (1) 42.73% ± 1.59%
lung-cancer 76.10% ± 1.60% (3) 76.65% ± 1.77% (2) 73.18% ± 2.80% (4) 79.45% ± 2.31% (1) 30.58% ± 3.31%
lymphography 85.42% ± 0.17% (1.5) 85.22% ± 0.21% (4) 85.40% ± 0.13% (3) 85.42% ± 0.17% (1.5) 71.81% ± 3.16%
promoter 88.92% ± 0.56% (3) 89.35% ± 0.43% (2) 88.41% ± 0.37% (4) 89.88% ± 1.34% (1) 70.79% ± 0.99%
wine 97.20% ± 0.01% (1.5) 97.20% ± 0.01% (3.5) 97.20% ± 0.05% (1.5) 97.20% ± 0.01% (3.5) 92.92% ± 0.47%
zoo 96.71% ± 0.17% (1) 96.54% ± 0.13% (4) 96.64% ± 0.12% (3) 96.69% ± 0.18% (2) 90.08% ± 0.75%

average 90.20% 2.19 90.29% 2.94 89.76% 3.06 90.75% 1.81 70.81%

Table C.11: Detailed feature selection results for the GNB classifier on the FSP tuningdatasets achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Average

echocardiogram 5.8 ± 0.9 5.6 ± 1.0 5.8 ± 0.4 5.5 ± 0.5 12
hepatitis 10.7 ± 2.5 8.4 ± 2.0 10.6 ± 2.3 11.7 ± 2.9 19
labor 7.2 ± 0.8 6.7 ± 0.7 7.3 ± 0.7 7.3 ± 1.2 16
lung-cancer 23.4 ± 3.6 17.1 ± 3.3 24.1 ± 4.5 16.7 ± 5.6 56
lymphography 10.1 ± 1.0 9.4 ± 1.1 10.2 ± 0.6 9.5 ± 1.8 18
promoter 30.4 ± 3.4 25.9 ± 1.4 30.8 ± 2.5 29.1 ± 6.1 57
wine 6.3 ± 0.9 6.1 ± 0.9 6.5 ± 0.8 6.6 ± 0.5 13
zoo 10.1 ± 0.3 10.0 ± 0.5 10.0 ± 0.0 10.1 ± 0.3 16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

220 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.2.2 J48 classifier

TableC.12: Detailed accuracy results for the J48 classifier on the FSP tuning datasets achieved by the
chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev

echocardiogram92.75%± 0.98% (2) 92.80% ± 0.70% (1) 92.64%± 0.27% (4) 92.65% ± 0.44% (3) 87.43%± 1.53%
hepatitis 86.99%± 1.15% (4) 87.49% ± 0.93% (2) 87.29%± 1.14% (3) 87.68% ± 0.68% (1) 83.26%± 1.25%
labor 95.50%± 0.81% (2) 95.33% ± 0.70% (3.5) 95.83%± 0.88% (1) 95.33% ± 0.70% (3.5) 83.20%± 2.01%
lung-cancer 71.75%± 9.67% (3) 73.25%± 11.14% (2) 71.50%± 9.12% (4) 74.50%± 12.35% (1) 41.42%± 7.05%
lymphography 88.68%± 1.63% (2) 88.70% ± 1.61% (1) 87.86%± 1.40% (4) 88.25% ± 1.31% (3) 77.21%± 2.34%
promoter 91.54%± 0.76% (3) 91.56% ± 0.72% (2) 91.39%± 1.17% (4) 92.54% ± 1.66% (1) 78.52%± 2.88%
wine 98.10%± 0.39% (4) 98.31% ± 0.26% (2) 98.32%± 0.25% (1) 98.16% ± 0.27% (3) 93.30%± 1.20%
zoo 98.09%± 0.00% (1.5) 98.09% ± 0.00% (1.5) 97.82%± 0.44% (4) 97.89% ± 0.38% (3) 92.38%± 1.24%

average 90.20% 2.69 90.69% 1.88 90.33% 3.13 90.88% 2.31 79.59%

Table C.13: Detailed feature selection results for the J48 classifier on the FSP tuningdatasets achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Average

echocardiogram 6.9 ± 1.6 6.3 ± 1.6 6.3 ± 1.6 5.6 ± 2.8 12
hepatitis 6.3 ± 3.0 6.6 ± 2.6 7.6 ± 2.0 7.1 ± 3.5 19
labor 6.4 ± 1.6 5.8 ± 1.3 8 ± 0.7 8 ± 1.6 16
lung-cancer 23 ± 5.0 18.2 ± 6.2 20.7 ± 6.5 17.1 ± 9.8 56
lymphography 8.5 ± 1.4 7.8 ± 1.2 8.6 ± 1.7 7.7 ± 1.8 18
promoter 23.8 ± 4.7 24.2 ± 4.0 28 ± 4.4 18.3 ± 6.2 57
wine 6.6 ± 1.3 7.4 ± 1.5 6.7 ± 1.5 6.6 ± 1.5 13
zoo 8.2 ± 0.9 8.1 ± 1.6 8.4 ± 1.6 8.4 ± 1.2 16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 221

C.2.3 k-NN classifier

Table C.14: Detailed accuracy results for thek-NN classifier on the FSP tuning datasets achieved by the
chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev Rank Avg. ± Stdev

echocardiogram95.26% ± 0.37% (2) 95.07% ± 0.63% (4) 95.35% ± 0.45% (1) 95.23% ± 0.38% (3) 90.95% ± 1.24%
hepatitis 90.51% ± 0.23% (1) 90.28% ± 0.36% (3) 90.30% ± 0.34% (2) 90.20% ± 0.29% (4) 83.97% ± 0.55%
labor 98.67% ± 0.70% (3) 98.67% ± 0.70% (3) 98.83% ± 0.81% (1) 98.67% ± 0.70% (3) 90.33% ± 1.13%
lung-cancer 84.25% ± 1.44% (2) 82.50% ± 2.83% (4) 83.92% ± 2.64% (3) 85.92% ± 2.76% (1) 53.83% ± 3.00%
lymphography 87.50% ± 0.95% (1) 87.40% ± 0.88% (2) 87.31% ± 0.66% (4) 87.35% ± 0.92% (3) 80.21% ± 1.62%
promoter 89.29% ± 0.63% (3) 90.37% ± 0.97% (2) 89.28% ± 1.78% (4) 91.51% ± 1.92% (1) 76.35% ± 2.56%
wine 99.33% ± 0.35% (1) 99.06% ± 0.27% (2.5) 99.06% ± 0.27% (2.5) 99.00% ± 0.23% (4) 96.31% ± 0.59%
zoo 99.07% ± 0.47% (4) 99.53% ± 0.50% (1) 99.15% ± 0.30% (3) 99.26% ± 0.39% (2) 95.55% ± 1.28%

average 90.20% 2.13 92.86% 2.69 92.90% 2.56 93.39% 2.63 83.44%

Table C.15: Detailed feature selection results for thek-NN classifier on the FSP tuning datasets achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Avg. ± Stdev Average

echocardiogram 5.1 ± 1.1 5.4 ± 1.3 4.7 ± 1.2 3.7 ± 0.8 12
hepatitis 11 ± 2.6 12.3 ± 1.7 11.9 ± 1.5 10.9 ± 2.0 19
labor 9.3 ± 1.1 10.5 ± 2.3 8.7 ± 1.6 9 ± 2.1 16
lung-cancer 25.4 ± 5.4 29.2 ± 4.8 26.4 ± 4.2 17.6 ± 5.5 56
lymphography 12.6 ± 1.8 13 ± 1.6 11.6 ± 1.0 12.7 ± 1.8 18
promoter 36.7 ± 5.1 38.6 ± 3.9 39.5 ± 5.7 38.1 ± 5.3 57
wine 7.4 ± 1.3 8.7 ± 1.5 8.5 ± 1.4 8.5 ± 0.8 13
zoo 12.2 ± 1.6 12.5 ± 1.1 11.4 ± 1.6 12.4 ± 1.7 16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

222 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3 Detailed FSP testing results

The main numerical experiments performed using a PSO wrapper method to solve the FSP were de-

scribed in chapter 6 and an overview of the results using the tuned PSO algorithms was presented in

section 6.6. This section of the appendix contains the detailed results of the experiments on the FSP test-

ing datasets using the four tuned PSO algorithms: BPSO, CFBPSO, PBPSO, and SBPSO. For each of the

three classifiers used in these experiments, a separate subsection is included below: the GNB classifier

in subsection C.3.1, the J48 classifier in subsection C.3.2, and thek-NN classifier in subsection C.3.3.

Each such subsection in turn contains three tables with detailed results on

1. the classification accuracy,

2. the statistical tests performed, and

3. the number of features selected by the PSO algorithms.

The table with the classification accuracy contains the average classification accuracy for all the 30

testing datasets for each of the four PSO algorithms. The classification accuracy is calculated using

10 repetitions of the 10-fold cross validation using only the features selected by each of the four PSO

algorithms for that dataset respectively. The standard deviation of the accuracy across those 10 repetitions

is listed in the column labeled “stdev”. The columns labeled “rank” denote the rank of the achieved

accuracy compared to that of the other three PSO algorithms. The bottom line of the table shows the

average classification accuracy, which is less informative, and the more important average rank achieved

by each of the four PSO algorithms on the 30 testing datasets.

The section labeled “statistical test” contains a table with the results of two different sets of statistical

tests. The first of these is theF-test that was discussed in section 6.6.1. The three right most columns of

the table contain theF-statistic andp-value of theF-test, and whether the outcome showed a significant

difference at a confidence level ofα = 5% labeled “Signif.”. The second set of tests uses the ranks of the

average classification accuracy for the four PSO algorithms. The leftmost four columns show the ranks

for all datasets, while columns five to eight show the same ranks, but only for those datasets for which

the F-test showed a significant difference. The bottom lines of the table contain theZ-score,p-value,

and Holm-α of the Iman-Davenport test. This is performed once using all 30 datasets, and once using

only those datasets that are selected by theF-test.

The table with the number of features selected contains just that: the average number of features

selected and the standard deviation across the 30 independent runs of each PSO algorithm.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 223

C.3.1 GNB classifier

C.3.1.1 Classification accuracy

Table C.16: Final accuracy results on the FSP using the GNB classifier

GNB BPSO CFBPSO PBPSO SBPSO
Dataset Average Stdev RankAverage Stdev RankAverage Stdev RankAverage Stdev Rank

arrhythmia 65.60% 0.81% (3) 65.97% 0.65% (1) 64.11% 0.64% (4) 65.71% 1.63% (2)
audiology 76.55% 0.27% (2) 76.57% 0.51% (1) 75.66% 0.56% (4) 76.23% 0.47% (3)
australian 87.03% 0.12% (4) 87.04% 0.15% (2) 87.03% 0.19% (3) 87.07% 0.12% (1)
bands 74.36% 0.68% (1) 74.35% 0.53% (2) 73.85% 0.66% (4) 74.08% 0.97% (3)
breasttissue 67.47% 0.53% (3) 67.40% 0.58% (4) 67.50% 0.38% (2) 67.57% 0.54% (1)

corral 85.67% 0.68% (3) 85.71% 0.82% (2) 85.76% 0.85% (1) 85.43% 0.91% (4)
crx 73.54% 0.05% (2) 73.56% 0.07% (1) 73.54% 0.06% (3) 73.54% 0.12% (4)
dermatology 95.50% 0.43% (1) 95.42% 0.43% (3) 94.91% 0.59% (4) 95.49% 0.60% (2)
german 76.59% 0.15% (2) 76.64% 0.13% (1) 76.55% 0.17% (3) 76.55% 0.25% (4)
glass 47.60% 0.25% (3) 47.66% 0.29% (1) 47.54% 0.27% (4) 47.63% 0.26% (2)

hill-valley 50.51% 0.37% (2) 50.47% 0.40% (3) 50.46% 0.37% (4) 50.66% 0.37% (1)
horse-colic 89.48% 0.14% (3) 89.52% 0.15% (2) 89.23% 0.25% (4) 89.54% 0.17% (1)
ionosphere 68.98% 11.24% (3) 72.67% 0.51% (1) 65.43% 13.47% (4) 70.25% 9.35% (2)
iris 96.41% 0.11% (4) 96.44% 0.11% (3) 96.47% 0.14% (1) 96.45% 0.11% (2)
liver 59.94% 0.36% (3) 59.93% 0.43% (4) 60.03% 0.48% (1) 59.98% 0.33% (2)

monk-1 64.80% 0.32% (4) 64.89% 0.34% (1) 64.88% 0.35% (2) 64.88% 0.31% (3)
monk-2 67.13% 0.01% (1) 67.13% 0.01% (2) 67.13% 0.01% (3) 67.13% 0.01% (4)
movement-libras39.49% 0.76% (3) 40.43% 0.73% (2) 37.50% 0.87% (4) 41.67% 1.15% (1)
musk-1 72.48% 0.81% (3) 74.37% 0.72% (2) 69.86% 2.74% (4) 80.41% 1.20% (1)
parity5-5 46.31% 0.35% (4) 46.35% 0.28% (1) 46.33% 0.35% (2) 46.31% 0.37% (3)

parkinsons 86.80% 0.37% (3) 87.35% 0.39% (1) 86.74% 0.27% (4) 87.00% 0.58% (2)
pima 76.50% 0.09% (2) 76.49% 0.10% (4) 76.50% 0.10% (3) 76.52% 0.09% (1)
sonar 82.62% 0.70% (2) 82.24% 0.84% (3) 81.70% 0.74% (4) 82.98% 0.80% (1)
soybean 78.00% 1.25% (3) 79.55% 2.72% (1) 78.16% 1.49% (2) 77.85% 1.38% (4)
spectf 79.42% 0.00% (3) 79.42% 0.00% (1) 79.42% 0.00% (4) 79.42% 0.01% (2)

tic-tac-toe 74.48% 0.07% (3) 74.52% 0.11% (2) 74.47% 0.10% (4) 74.52% 0.11% (1)
vehicle 59.54% 0.35% (2) 59.55% 0.44% (1) 59.43% 0.31% (3) 59.33% 0.71% (4)
vote 95.75% 0.09% (4) 95.78% 0.07% (1) 95.77% 0.08% (3) 95.77% 0.09% (2)
vowel 45.13% 0.18% (2) 45.07% 0.15% (3) 45.14% 0.18% (1) 45.07% 0.17% (4)
wdbc 96.45% 0.10% (2) 96.44% 0.14% (3) 96.39% 0.18% (4) 96.49% 0.15% (1)

average 72.67% (2.67)72.96% (1.97)72.25% (3.10)73.05% (2.27)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

224 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.1.2 Statistical test

TableC.17: Statistical tests on final accuracy results on the FSP using the GNB classifier

GNB All datasets Selected datasets F-test
BPSO CFBPSO PBPSO SBPSOBPSO CFBPSO PBPSO SBPSO α = 0.05

Dataset (Rank) (Rank) (Rank) (Rank)(Rank) (Rank) (Rank) (Rank)F-stat.p-value Signif.

arrhythmia (3) (1) (4) (2) (3) (1) (4) (2) 15.22 0.0000 TRUE
audiology (2) (1) (4) (3) (2) (1) (4) (3) 18.91 0.0000 TRUE
australian (4) (2) (3) (1) 0.40 0.7533 FALSE
bands (1) (2) (4) (3) 2.59 0.0580 FALSE
breasttissue (3) (4) (2) (1) 0.44 0.7264 FALSE

corral (3) (2) (1) (4) 0.70 0.5547 FALSE
crx (2) (1) (3) (4) 0.19 0.9005 FALSE
dermatology (1) (3) (4) (2) (1) (3) (4) (2) 6.78 0.0004 TRUE
german (2) (1) (3) (4) 1.24 0.3010 FALSE
glass (3) (1) (4) (2) 0.81 0.4915 FALSE

hill-valley (2) (3) (4) (1) 1.26 0.2931 FALSE
horse-colic (3) (2) (4) (1) (3) (2) (4) (1) 13.73 0.0000 TRUE
ionosphere (3) (1) (4) (2) 2.07 0.1095 FALSE
iris (4) (3) (1) (2) 1.18 0.3208 FALSE
liver (3) (4) (1) (2) 0.29 0.8304 FALSE

monk-1 (4) (1) (2) (3) 0.37 0.7700 FALSE
monk-2 (1) (2) (3) (4) 0.06 0.9809 FALSE
movement-libras (3) (2) (4) (1) (3) (2) (4) (1) 87.88 0.0000 TRUE
musk-1 (3) (2) (4) (1) (3) (2) (4) (1) 179.37 0.0000 TRUE
parity5-5 (4) (1) (2) (3) 0.06 0.9802 FALSE

parkinsons (3) (1) (4) (2) (3) (1) (4) (2) 9.73 0.0000 TRUE
pima (2) (4) (3) (1) 0.35 0.7873 FALSE
sonar (2) (3) (4) (1) (2) (3) (4) (1) 11.24 0.0000 TRUE
soybean (3) (1) (2) (4) (3) (1) (2) (4) 4.21 0.0079 TRUE
spectf (3) (1) (4) (2) 0.39 0.7585 FALSE

tic-tac-toe (3) (2) (4) (1) 1.52 0.2141 FALSE
vehicle (2) (1) (3) (4) 1.04 0.3805 FALSE
vote (4) (1) (3) (2) 0.69 0.5578 FALSE
vowel (2) (3) (1) (4) 1.11 0.3505 FALSE
wdbc (2) (3) (4) (1) 1.81 0.1514 FALSE

average rank (2.67) (1.97) (3.10) (2.27) (2.56) (1.78) (3.78) (1.89) # datasets 9
rankof rank (3) (1) (4) (2) (3) (1) (4) (2)

Z-score 2.1000 3.4000 0.90000.8520 2.1909 0.1217
p-value 0.0179 0.0003 0.18410.1971 0.0142 0.4516
Holm α 0.0250 0.0500 0.01670.0250 0.0500 0.0167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 225

C.3.1.3 Number of features selected

TableC.18: Number of features selected using the GNB classifier

GNB BPSO CFBPSO PBPSO SBPSO
Dataset # Ftrs Average Stdev Average Stdev Average Stdev Average Stdev

arrhythmia 279 137.1 12.4 98.2 9.5 159.4 9.9 137.7 36.0
audiology 69 34.3 2.7 29.5 3.1 39.8 3.8 41.6 3.7
australian 14 9.0 1.1 8.5 1.2 9.0 1.0 9.4 0.7
bands 39 19.8 2.1 16.5 2.4 22.0 2.0 21.0 3.6
breasttissue 9 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0

corral 6 4.0 0.0 4.0 0.2 4.1 0.3 4.2 0.4
crx 15 4.5 0.5 4.2 0.4 4.9 0.6 4.6 0.8
dermatology 34 16.7 1.6 14.7 1.5 17.8 1.7 18.0 1.5
german 24 10.4 1.2 10.0 1.2 10.8 1.2 11.3 1.6
glass 9 3.5 0.9 3.1 1.0 3.3 1.0 3.1 1.0

hill-valley 100 53.8 10.1 47.9 14.0 53.5 7.2 56.0 16.8
horse-colic 36 11.2 1.2 9.6 1.2 13.2 1.9 11.0 1.5
ionosphere 34 4.9 3.5 2.9 1.6 5.6 6.2 4.7 4.9
iris 4 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0
liver 6 2.1 0.4 2.0 0.0 2.2 0.5 2.1 0.4

monk-1 6 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
monk-2 6 2.9 1.3 2.4 1.4 3.0 1.2 3.4 1.4
movement-libras 90 31.3 3.6 23.2 3.5 37.6 6.0 23.5 6.4
musk-1 166 52.3 5.8 35.9 5.5 49.3 21.7 24.2 7.8
parity5-5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

parkinsons 22 9.6 2.4 5.9 1.5 10.3 2.3 9.5 3.2
pima 8 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0
sonar 60 24.5 2.7 20.6 3.3 28.6 2.6 21.7 5.3
soybean 35 21.0 2.2 19.0 2.6 21.9 2.4 21.9 2.1
spectf 44 22.2 7.5 19.9 7.5 23.2 5.0 21.0 7.8

tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 9.2 0.5 9.1 0.4 9.3 0.5 9.3 0.8
vote 16 4.6 0.6 4.4 0.7 4.7 0.8 4.5 1.0
vowel 10 4.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0
wdbc 30 9.0 1.3 8.3 1.4 9.6 1.2 8.3 1.6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

226 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.2 J48 classifier

C.3.2.1 Classification accuracy

Table C.19: Final accuracy results on the FSP using the J48 classifier

J48 BPSO CFBPSO PBPSO SBPSO
Dataset Average Stdev RankAverage Stdev RankAverage Stdev RankAverage Stdev Rank

arrhythmia 73.49%0.82% (2)73.66%0.62% (1)73.32%0.79% (3)73.17%0.90% (4)
audiology 79.82%0.80% (1)79.81%0.72% (2)79.48%0.90% (4)79.60%0.68% (3)
australian 87.19%0.52% (1)87.12%0.68% (3)87.15%0.45% (2)87.09%0.52% (4)
bands 79.33%1.12% (2)79.43%1.23% (1)79.07%1.11% (4)79.15%1.46% (3)
breasttissue 69.79%1.50% (3)70.27%1.31% (1)70.24%1.30% (2)69.38%1.78% (4)

corral 98.90%0.73% (3)98.91%0.66% (2)98.88%0.70% (4)98.97%0.62% (1)
crx 74.10%0.54% (4)74.14%0.53% (3)74.15%0.51% (2)74.32%0.65% (1)
dermatology 97.38%0.13% (1)97.30%0.20% (3)97.25%0.21% (4)97.30%0.22% (2)
german 74.20%0.76% (1)74.04%0.66% (4)74.19%0.66% (2)74.09%0.72% (3)
glass 73.51%1.82% (2)73.21%2.13% (4)73.39%1.82% (3)73.57%1.35% (1)

hill-valley 46.62%0.78% (3)50.13%0.42% (1)46.60%0.74% (4)47.13%1.36% (2)
horse-colic 88.59%0.76% (4)88.63%0.66% (2)88.62%0.56% (3)88.69%0.41% (1)
ionosphere 92.45%0.98% (3)92.63%0.65% (1)92.43%0.74% (4)92.53%1.10% (2)
iris 94.64%0.41% (3)94.58%0.36% (4)94.76%0.25% (1)94.71%0.31% (2)
liver 68.84%1.63% (3)68.70%1.43% (4)68.90%1.40% (2)68.95%1.29% (1)

monk-1 75.01%0.00% (2)75.01%0.00% (4)75.01%0.00% (3)75.01%0.03% (1)
monk-2 89.81%0.54% (1)89.79%0.88% (2)89.72%0.69% (4)89.74%0.79% (3)
movement-libras73.27%1.02% (2)73.68%1.09% (1)72.84%1.27% (3)72.10%1.28% (4)
musk-1 86.15%1.21% (2)86.28%0.83% (1)85.63%0.94% (3)85.55%1.00% (4)
parity5-5 96.64%0.52% (4)97.10%0.45% (1)97.05%0.61% (2)96.86%0.45% (3)

parkinsons 90.21%1.68% (2)89.96%1.71% (3)89.73%1.64% (4)90.21%1.56% (1)
pima 75.11%0.41% (3)75.16%0.41% (1)75.09%0.50% (4)75.12%0.40% (2)
sonar 82.36%1.67% (1)81.91%1.33% (3)80.81%1.66% (4)81.95%2.33% (2)
soybean 95.25%0.29% (2)95.20%0.32% (3)95.11%0.27% (4)95.33%0.27% (1)
spectf 80.60%1.93% (2)80.42%1.85% (3)80.24%1.71% (4)81.21%1.92% (1)

tic-tac-toe 93.25%0.56% (4)93.45%0.50% (2)93.44%0.58% (3)93.48%0.46% (1)
vehicle 72.89%0.51% (2)72.94%0.49% (1)72.76%0.65% (4)72.87%0.43% (3)
vote 96.36%0.15% (1)96.34%0.22% (2)96.33%0.23% (3)96.31%0.21% (4)
vowel 79.13%0.52% (3)79.20%0.42% (2)79.21%0.53% (1)79.06%0.41% (4)
wdbc 95.65%0.55% (4)95.81%0.62% (2)95.66%0.59% (3)95.90%0.63% (1)

average 82.68% (2.37)82.83% (2.23)82.57% (3.10)82.65% (2.30)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 227

C.3.2.2 Statistical test

TableC.20: Statistical tests on final accuracy results on the FSP using the J48 classifier

J48 All datasets Selected datasets F-test
BPSO CFBPSO PBPSO SBPSOBPSO CFBPSO PBPSO SBPSO α = 0.05

Dataset (Rank) (Rank) (Rank) (Rank)(Rank) (Rank) (Rank) (Rank)F-stat. p-value Signif.

arrhythmia (2) (1) (3) (4) 1.66 0.1812 FALSE
audiology (1) (2) (4) (3) 1.03 0.3852 FALSE
australian (1) (3) (2) (4) 0.12 0.9461 FALSE
bands (2) (1) (4) (3) 0.40 0.7520 FALSE
breasttissue (3) (1) (2) (4) 1.79 0.1546 FALSE

corral (3) (2) (4) (1) 0.08 0.9699 FALSE
crx (4) (3) (2) (1) 0.69 0.5628 FALSE
dermatology (1) (3) (4) (2) 1.61 0.1921 FALSE
german (1) (4) (2) (3) 0.26 0.8530 FALSE
glass (2) (4) (3) (1) 0.18 0.9103 FALSE

hill-valley (3) (1) (4) (2) (3) (1) (4) (2) 80.65 0.0000TRUE
horse-colic (4) (2) (3) (1) 0.12 0.9454 FALSE
ionosphere (3) (1) (4) (2) 0.23 0.8752 FALSE
iris (3) (4) (1) (2) 1.31 0.2755 FALSE
liver (3) (4) (2) (1) 0.13 0.9402 FALSE

monk-1 (2) (4) (3) (1) 0.80 0.5000 FALSE
monk-2 (1) (2) (4) (3) 0.08 0.9695 FALSE
movement-libras (2) (1) (3) (4) (2) (1) (3) (4) 7.52 0.0002 TRUE
musk-1 (2) (1) (3) (4) (2) (1) (3) (4) 2.96 0.0368 TRUE
parity5-5 (4) (1) (2) (3) (4) (1) (2) (3) 3.73 0.0143 TRUE

parkinsons (2) (3) (4) (1) 0.43 0.7294 FALSE
pima (3) (1) (4) (2) 0.09 0.9628 FALSE
sonar (1) (3) (4) (2) (1) (3) (4) (2) 3.10 0.0308 TRUE
soybean (2) (3) (4) (1) 2.49 0.0657 FALSE
spectf (2) (3) (4) (1) 1.17 0.3242 FALSE

tic-tac-toe (4) (2) (3) (1) 0.87 0.4580 FALSE
vehicle (2) (1) (4) (3) 0.49 0.6932 FALSE
vote (1) (2) (3) (4) 0.26 0.8530 FALSE
vowel (3) (2) (1) (4) 0.47 0.7019 FALSE
wdbc (4) (2) (3) (1) 0.88 0.4522 FALSE

average rank (2.37) (2.23) (3.10) (2.30) (2.40) (1.40) (3.20) (3.00) # datasets selected 5
rankof rank (3) (1) (4) (2) (2) (1) (4) (3)

Z-score 0.4000 2.6000 0.20001.0954 1.9718 1.7527
p-value 0.3446 0.0047 0.42070.1367 0.0243 0.0398
Holm α 0.0250 0.0500 0.01670.0167 0.0500 0.0250

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

228 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.2.3 Number of features selected

TableC.21: Number of features selected using the J48 classifier

J48 BPSO CFBPSO PBPSO SBPSO
Dataset # Ftrs Average Stdev Average Stdev Average Stdev Average Stdev

arrhythmia 279 125.2 15.9 123.2 14.2 126.8 14.6 160.5 27.0
audiology 69 34.2 4.1 37.3 5.7 35.3 6.6 43.6 6.3
australian 14 7.0 1.4 7.2 1.6 7.6 2.1 8.0 1.8
bands 39 18.3 3.1 17.9 3.5 17.4 3.0 20.0 5.2
breasttissue 9 4.5 1.1 4.4 0.8 4.4 0.8 4.6 1.1

corral 6 4.6 0.5 4.5 0.5 4.6 0.5 4.8 0.4
crx 15 7.8 2.3 8.3 2.2 8.1 1.7 8.4 1.8
dermatology 34 17.3 2.4 17.8 2.0 17.3 2.4 19.5 2.9
german 24 11.8 3.1 12.4 3.1 11.5 2.8 13.8 4.0
glass 9 5.2 0.8 5.2 0.8 5.1 0.8 5.4 0.9

hill-valley 100 46.2 12.1 0.0 0.0 46.6 11.0 47.7 28.5
horse-colic 36 18.1 3.1 19.5 3.1 18.6 3.2 24.8 3.2
ionosphere 34 14.8 3.5 14.3 3.4 14.1 3.3 14.6 4.1
iris 4 2.9 0.6 3.0 0.6 2.9 0.6 2.8 0.7
liver 6 4.2 1.1 3.9 1.3 4.2 1.0 4.1 1.0

monk-1 6 3.9 1.1 3.5 1.1 3.5 1.1 3.3 1.2
monk-2 6 6.0 0.0 6.0 0.0 6.0 0.0 6.0 0.0
movement-libras 90 40.1 7.9 38.5 4.9 41.6 6.4 52.7 12.5
musk-1 166 82.6 14.7 83.7 11.5 79.7 12.9 104.0 19.1
parity5-5 10 5.4 1.3 5.6 0.6 5.6 0.7 5.8 0.7

parkinsons 22 7.4 2.6 7.3 2.6 8.1 2.1 6.6 2.7
pima 8 5.7 1.1 5.7 1.1 5.5 1.3 6.3 1.1
sonar 60 22.0 3.5 22.5 4.8 24.7 4.1 24.4 6.9
soybean 35 21.3 2.2 22.5 1.3 21.7 2.4 23.1 2.8
spectf 44 15.4 3.5 14.3 4.1 17.2 4.2 10.9 4.6

tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 13.2 1.5 13.6 1.6 12.7 1.8 14.4 2.2
vote 16 8.5 1.6 9.6 1.9 9.2 1.7 10.8 2.0
vowel 10 8.2 1.1 8.7 1.1 8.4 1.2 8.6 1.0
wdbc 30 11.8 3.2 11.2 2.3 12.7 2.4 11.6 3.6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 229

C.3.3 k-NN classifier

C.3.3.1 Classification accuracy

Table C.22: Final accuracy results on the FSP using thek-NN classifier

k-NN BPSO CFBPSO PBPSO SBPSO
Dataset Average Stdev RankAverage Stdev RankAverage Stdev RankAverage Stdev Rank

arrhythmia 65.24% 1.09% (4) 66.24% 1.13% (2) 65.49% 1.14% (3) 70.06% 3.12% (1)
audiology 83.00% 0.70% (4) 83.33% 0.58% (2) 83.15% 0.64% (3) 83.68% 0.56% (1)
australian 87.41% 0.39% (3) 87.44% 0.34% (2) 87.23% 0.38% (4) 87.47% 0.50% (1)
bands 81.54% 3.07% (2) 81.05% 3.50% (3) 80.77% 4.02% (4) 82.03% 4.24% (1)
breasttissue 70.86% 1.09% (2) 70.67% 1.51% (4) 70.75% 1.18% (3) 71.02% 1.03% (1)

corral 99.24% 1.87% (3) 99.63% 0.87% (1) 99.43% 1.35% (2) 99.23% 1.34% (4)
crx 71.01% 1.16% (3) 71.10% 1.10% (2) 70.96% 1.11% (4) 71.24% 1.16% (1)
dermatology 98.13% 0.34% (2) 98.02% 0.38% (3) 97.97% 0.41% (4) 98.18% 0.25% (1)
german 76.38% 0.74% (4) 76.55% 0.80% (2) 76.44% 0.64% (3) 77.00% 0.73% (1)
glass 77.40% 2.18% (2) 77.59% 1.94% (1) 77.19% 2.38% (4) 77.27% 2.18% (3)

hill-valley 62.55% 0.65% (3) 62.46% 0.68% (4) 62.63% 0.67% (2) 63.51% 1.16% (1)
horse-colic 88.12% 0.51% (2) 87.65% 0.56% (4) 87.79% 0.56% (3) 88.16% 0.66% (1)
ionosphere 93.75% 0.56% (3) 93.71% 0.62% (4) 93.76% 0.74% (2) 94.43% 0.46% (1)
iris 96.16% 0.42% (4) 96.21% 0.44% (1) 96.17% 0.37% (2) 96.17% 0.39% (3)
liver 67.87% 1.02% (2) 67.42% 1.27% (4) 67.73% 1.22% (3) 67.96% 1.16% (1)

monk-1 100.00% 0.00% (2.5)100.00% 0.00% (2.5)100.00% 0.00% (2.5)100.00% 0.00% (2.5)
monk-2 82.70% 0.53% (4) 82.86% 0.46% (1) 82.79% 0.45% (3) 82.83% 0.50% (2)
movement-libras 88.91% 0.50% (4) 88.98% 0.39% (3) 88.98% 0.55% (2) 89.51% 0.65% (1)
musk-1 93.99% 0.86% (2) 93.68% 1.20% (3) 93.28% 1.32% (4) 95.16% 1.09% (1)
parity5-5 98.33% 9.09% (2) 99.99% 0.03% (1) 96.59% 12.93% (4) 98.32% 9.13% (3)

parkinsons 99.29% 0.18% (2) 99.30% 0.16% (1) 99.28% 0.20% (3) 99.19% 0.27% (4)
pima 74.93% 0.65% (4) 74.99% 0.50% (3) 75.07% 0.50% (2) 75.19% 0.38% (1)
sonar 92.25% 1.81% (2) 91.70% 2.03% (4) 91.74% 1.71% (3) 92.62% 1.97% (1)
soybean 94.48% 0.26% (2) 94.47% 0.30% (3) 94.46% 0.43% (4) 94.50% 0.33% (1)
spectf 83.00% 1.40% (4) 83.17% 0.84% (2) 83.08% 1.53% (3) 84.00% 1.16% (1)

tic-tac-toe 90.47% 0.26% (3) 90.51% 0.24% (2) 90.46% 0.27% (4) 90.56% 0.22% (1)
vehicle 73.72% 0.61% (2) 73.49% 0.67% (4) 73.59% 0.50% (3) 73.77% 0.58% (1)
vote 96.25% 0.31% (1) 96.13% 0.38% (3) 96.08% 0.40% (4) 96.17% 0.48% (2)
vowel 99.11% 0.07% (1) 99.09% 0.08% (2) 99.08% 0.09% (3) 99.08% 0.09% (4)
wdbc 97.60% 0.19% (4) 97.67% 0.18% (1) 97.65% 0.24% (2) 97.63% 0.20% (3)

average 86.12% (2.75) 86.17% (2.48) 85.99% (3.08) 86.53% (1.68)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

230 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.3.2 Statistical test

TableC.23: Statistical tests on final accuracy results on the FSP using thek-NN classifier

k-NN All datasets Selected datasets F-test
BPSO CFBPSO PBPSO SBPSOBPSO CFBPSO PBPSO SBPSO α = 0.05

Dataset (Rank) (Rank) (Rank) (Rank)(Rank) (Rank) (Rank) (Rank)F-stat. p-value Signif.

arrhythmia (4) (2) (3) (1) (4) (2) (3) (1) 33.65 0.0000TRUE
audiology (4) (2) (3) (1) (4) (2) (3) (1) 4.88 0.0035 TRUE
australian (3) (2) (4) (1) 1.56 0.2045 FALSE
bands (2) (3) (4) (1) 0.50 0.6841 FALSE
breasttissue (2) (4) (3) (1) 0.34 0.7979 FALSE

corral (3) (1) (2) (4) 0.42 0.7424 FALSE
crx (3) (2) (4) (1) 0.26 0.8541 FALSE
dermatology (2) (3) (4) (1) 1.74 0.1657 FALSE
german (4) (2) (3) (1) (4) (2) (3) (1) 3.32 0.0236 TRUE
glass (2) (1) (4) (3) 0.15 0.9313 FALSE

hill-valley (3) (4) (2) (1) (3) (4) (2) (1) 7.96 0.0001 TRUE
horse-colic (2) (4) (3) (1) (2) (4) (3) (1) 4.24 0.0076 TRUE
ionosphere (3) (4) (2) (1) (3) (4) (2) (1) 7.41 0.0002 TRUE
iris (4) (1) (2) (3) 0.07 0.9736 FALSE
liver (2) (4) (3) (1) 0.92 0.4361 FALSE

monk-1 (2.5) (2.5) (2.5) (2.5) FALSE
monk-2 (4) (1) (3) (2) 0.45 0.7193 FALSE
movement-libras (4) (3) (2) (1) (4) (3) (2) (1) 6.34 0.0006 TRUE
musk-1 (2) (3) (4) (1) (2) (3) (4) (1) 11.64 0.0000TRUE
parity5-5 (2) (1) (4) (3) 0.52 0.6705 FALSE

parkinsons (2) (1) (3) (4) 1.46 0.2312 FALSE
pima (4) (3) (2) (1) 1.03 0.3837 FALSE
sonar (2) (4) (3) (1) 1.23 0.3043 FALSE
soybean (2) (3) (4) (1) 0.05 0.9829 FALSE
spectf (4) (2) (3) (1) (4) (2) (3) (1) 3.07 0.0318 TRUE

tic-tac-toe (3) (2) (4) (1) 0.64 0.5889 FALSE
vehicle (2) (4) (3) (1) 1.03 0.3822 FALSE
vote (1) (3) (4) (2) 0.73 0.5381 FALSE
vowel (1) (2) (3) (4) 0.78 0.5095 FALSE
wdbc (4) (1) (2) (3) 0.43 0.7350 FALSE

average rank (2.75) (2.48) (3.08)(1.68) (3.33) (2.89) (2.78) (1.00)# datasets selected 9
rankof rank (3) (2) (4) (1) (4) (3) (2) (1)

Z-score 3.2000 2.4000 4.2000 2.5560 2.0692 1.9475
p-value 0.0007 0.0082 0.0000 0.0053 0.0193 0.0257
Holm α 0.0250 0.0167 0.0500 0.0500 0.0250 0.0167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C. DETAILED RESULTS FOR THE FSP 231

C.3.3.3 Number of features selected

TableC.24: Number of features selected using thek-NN classifier

k-NN BPSO CFBPSO PBPSO SBPSO
Dataset # Ftrs Average Stdev Average Stdev Average Stdev Average Stdev

arrhythmia 279 119.7 17.5 100.9 36.7 119.3 19.4 65.6 43.4
audiology 69 41.7 3.2 45.6 3.3 45.3 3.3 45.4 4.7
australian 14 6.5 1.0 6.8 1.1 7.2 1.1 6.3 1.3
bands 39 20.0 3.0 23.5 5.2 21.7 4.9 17.4 7.7
breasttissue 9 6.6 1.3 6.7 1.4 5.9 1.3 5.8 1.5

corral 6 4.2 0.4 4.1 0.3 4.2 0.4 4.3 0.4
crx 15 8.8 2.2 8.9 1.8 9.4 2.1 7.7 1.9
dermatology 34 23.1 2.9 25.7 3.2 24.5 2.4 24.6 2.9
german 24 11.4 2.0 12.1 1.9 11.8 1.9 9.0 2.0
glass 9 6.1 0.7 6.4 0.6 6.4 0.7 6.0 0.8

hill-valley 100 47.9 5.6 51.1 7.1 47.0 5.2 40.4 11.6
horse-colic 36 22.0 3.9 24.4 3.4 22.7 4.1 22.2 5.2
ionosphere 34 11.0 2.0 11.0 2.2 10.4 2.4 7.6 1.6
iris 4 3.3 0.9 3.3 0.9 3.2 1.0 3.3 0.9
liver 6 3.5 0.9 3.5 0.9 3.6 0.9 3.5 0.8

monk-1 6 3.8 0.4 3.8 0.4 3.8 0.4 3.9 0.3
monk-2 6 6.0 0.0 6.0 0.0 6.0 0.0 6.0 0.0
movement-libras 90 44.5 6.3 46.2 6.4 44.6 5.4 38.6 8.9
musk-1 166 84.1 7.3 94.2 5.9 85.4 9.9 69.9 14.3
parity5-5 10 6.6 1.3 6.8 0.8 6.2 1.6 6.6 1.3

parkinsons 22 12.9 1.4 13.4 1.7 13.4 1.3 12.9 1.2
pima 8 5.6 1.2 5.6 1.2 5.7 1.2 5.1 1.4
sonar 60 29.4 3.2 33.2 3.5 29.4 4.1 25.9 4.6
soybean 35 22.3 1.9 24.0 1.7 22.4 2.0 22.1 2.0
spectf 44 18.2 4.2 19.3 3.6 18.2 4.0 12.8 3.0

tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 12.2 1.5 12.6 1.2 12.1 1.6 11.8 1.4
vote 16 5.9 1.1 6.7 1.6 6.5 1.6 5.8 1.7
vowel 10 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
wdbc 30 20.2 2.1 21.2 2.6 20.6 2.1 20.7 2.3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D

Description of datasets used for the FSP

This appendix contains a description of all datasets used in the experiments in this thesis. Table D.1 lists

the datasets alphabetically, noting the number of instances classes, and features. The number of features

is further split into nominal and numerical features. Also listed is whether the dataset was used during

the tuning of the PSO algorithms, or during testing instead.

The separate sections below contain a description of the various datasets used. Each section is labeled

with the full dataset name followed by the shorthand name used in the rest of the text between parenthe-

ses. More detailed information on the features and classes present in each dataset can be found at the

UCI machine learning repository [5] on-line. For this purpose a link to the page dedicated to the dataset

is listed at the end of each section. Where possible these descriptions were copied directly from the

description provided at the UCI machine learning repository. Note that two of the datasets used can no

longer be found on the UCI machine learning repository. For these datasets, a different URL is provided.

The datasets no longer available in the UCI machine learning repository are corral and parity5-5.

Also listed are any actions taken or alterations made to the dataset for the experiments in this thesis

that are not covered by the standard data preprocessing described in section 6.2.2. Most often this means

that a separate training and testing set provided at the UCI Machine Learning repository was combined to

form a single set of instances. This was done because thek-fold cross validation process used repeatedly

splits the dataset into training and testing sets, removing the need to have these sets separated beforehand.

Cardiac Arrhythmia Database (arrhythmia)

Concerning the original study:

The aim is to distinguish between the presence and absence of cardiac arrhythmia and to

classify it in one of the 16 groups. Class 01 refers to “normal” ECG classes, 02 to 15 refers

to different classes of arrhythmia, and class 16 refers to the rest of unclassified ones. For

the time being, there exists a computer program that makes such a classification. However,

there are differences between the cardiologist’s and the programs classification. Taking the

cardiologist’s as a gold standard we aim to minimize this difference by means of machine

learning tools.

http://archive.ics.uci.edu/ml/datasets/arrhythmia

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/arrhythmia

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 233

Table D.1: Note that the information in this table is an amalgamation of that in tables 6.1 and6.2.

dataset # instances # classes # features# numerical # nominal Use

arrhythmia 452 13 279 267 12 testing
audiology 226 24 69 0 69 testing
australian 690 2 14 8 6 testing
bands 540 2 39 20 19 testing
breasttissue 106 6 9 9 0 testing
corral 64 2 6 0 6 testing
crx 690 2 15 6 9 testing
dermatology 366 6 34 1 33 testing
echocardiogram 132 2 12 12 0 tuning
german 1000 2 24 7 13 testing

glass 214 7 9 9 0 testing
hepatitis 155 2 19 19 0 tuning
hill-valley 1212 2 100 100 0 testing
horse-colic 368 2 36 7 29 testing
ionosphere 351 2 34 34 0 testing
iris 150 3 4 4 0 testing
labor 57 2 16 8 8 tuning
liver 345 2 6 6 0 testing
lung-cancer 32 3 56 0 56 tuning
lymphography 148 4 18 3 15 tuning

monk-1 432 2 6 6 0 testing
monk-2 432 2 6 6 0 testing
movement-libras 360 15 90 90 0 testing
musk-1 476 2 166 166 0 testing
parity5-5 1024 2 10 0 10 testing
parkinsons 195 2 22 22 0 testing
pima 768 2 8 8 0 testing
promoter 106 2 57 0 57 tuning
sonar 208 2 60 60 0 testing
soybean 683 19 35 0 35 testing

spectf 267 2 44 44 0 testing
tic-tac-toe 958 2 9 9 2 testing
vehicle 847 5 18 18 0 testing
vote 435 2 16 0 16 testing
vowel 990 11 10 10 0 testing
wdbc 569 2 30 30 0 testing
wine 178 3 13 13 0 tuning
zoo 101 7 16 0 16 tuning

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

234 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Audiology Database - Standardized (audiology)

The dataset stems from the domain of clinical audiology which involves the evaluation and diagnosis

of hearing disorders. The dataset contains sequential cases from Baylor College of Medicine. Each

instance contains a hearing disorder diagnosis, plus information on patient-reported symptoms, patient

history information, and the results of routine tests. The latter is the data that a clinician considers when

diagnosing a patient.

The database used is audiology.standardized, a standardized version of the original dataset. Note that

in the experiments in this thesis the original training set of 200 instances and test set of 26 instances were

combined into a single dataset of 226 instances.

http://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29

Australian Credit Approval (australian)

This dataset concerns credit card applications. All feature names and values have been changed to

meaningless symbols to protect confidentiality of the data. This dataset is interesting because there is

a good mix of features – continuous, nominal with small numbers of values, and nominal with larger

numbers of values. There are also a few missing values.

http://archive.ics.uci.edu/ml/datasets/australian

Cylinder Bands (bands)

The abstract from the original study reads as:

Machine learning tools show significant promise for knowledge acquisition, particularly

when human expertise is inadequate. Recently, process delays known as cylinder banding

in rotogravure printing were substantially mitigated using control rules discovered by deci-

sion tree induction. Our work exemplifies a more general methodology which transforms

the knowledge acquisition task from one in which rules are directly elicited from an expert,

to one in which a learning system is responsible for rule generation. The primary respon-

sibilities of the human expert are to evaluate the merits of generated rules, and to guide

the acquisition and classification of data necessary for machine induction. These responsi-

bilities require the expert to do what an expert does best: to exercise his or her expertise.

This seems a more natural fit to an expert’s capabilities than the requirements of traditional

methodologies that experts explicitly enumerate the rules that they employ.

http://archive.ics.uci.edu/ml/datasets/bands

Breast Tissue Data Set (breasttissue)

This dataset contains transformed data from clinical images made from breast tissue in the form of an

impedance spectrum combined with a classification by experts. Impedance measurements of freshly ex-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29
http://archive.ics.uci.edu/ml/datasets/australian
http://archive.ics.uci.edu/ml/datasets/bands

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 235

cised breast tissue were made at the following frequencies: 15.625, 31.25,62.5, 125, 250, 500, 1000

KHz. These measurements plotted in the (real, -imaginary) plane constitute the impedance spectrum

from where the breast tissue features are computed. The dataset can be used for predicting the clas-

sification of either the original six classes or of four classes by merging together the fibro-adenoma,

mastopathy and glandular classes whose discrimination is not important (they cannot be accurately dis-

criminated anyway).

http://archive.ics.uci.edu/ml/datasets/breast+tissue

Corral Data Set (corral)

The basic idea behind this dataset is an artificial domain where the target concept is(A0∧A1)∨(B0∧B1).

Additionally, one irrelevant and one correlated feature are added. The correlated feature is a feature

highly correlated with the label, but with a 25% error rate.

Note that in the experiments in this thesis the original training set of 32 instances and test set of 32

instances were combined into a single dataset of 64 instances.

This dataset is no longer available on the UCI Machine Learning repository.

http://www.sgi.com/tech/mlc/db/corral.names

Credit Approval Data Set (crx)

This file concerns credit card applications. All feature names and values have been changed to mean-

ingless symbols to protect confidentiality of the data. This dataset is interesting because there is a good

mix of features – continuous, nominal with small numbers of values, and nominal with larger numbers

of values. There are also a few missing values.

http://archive.ics.uci.edu/ml/datasets/credit+approval

Dermatology Data Set (dermatology)

The differential diagnosis of erythemato-squamous diseases is a real problem in dermatology. They all

share the clinical features of erythema and scaling, with very little differences. The diseases in this

group are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis

rubra pilaris. Usually a biopsy is necessary for the diagnosis but unfortunately these diseases share many

histopathological features as well. Another difficulty for the differential diagnosis is that a disease may

show the features of another disease at the beginning stage and may have the characteristic features at the

following stages. Patients were first evaluated clinically with 12 features. Afterwards, skin samples were

taken for the evaluation of 22 histopathological features. The values of the histopathological features are

determined by an analysis of the samples under a microscope.

In the dataset constructed for this domain, the family history feature has the value 1 if any of these

diseases has been observed in the family, and 0 otherwise. The age feature simply represents the age of

the patient. Every other feature (clinical and histopathological) was given a degree in the range of 0 to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/breast+tissue
http://www.sgi.com/tech/mlc/db/corral.names
http://archive.ics.uci.edu/ml/datasets/credit+approval

236 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

3. Here, 0 indicates that the feature was not present, 3 indicates the largestamount possible, and 1, 2

indicate the relative intermediate values.

http://archive.ics.uci.edu/ml/datasets/Dermatology

Echocardiogram Data Set (echocardiogram)

All the patients suffered heart attacks at some point in the past. Some are still alive and some are not.

The survival and still-alive variables, when taken together, indicate whether a patient survived for at least

one year following the heart attack.

The problem addressed by past researchers was to predict from the other variables whether or not the

patient will survive at least one year. The most difficult part of this problem is correctly predicting that

the patient will NOT survive. (Part of the difficulty seems to be the size of the data set.)

http://archive.ics.uci.edu/ml/datasets/echocardiogram

Statlog (German Credit Data) Data Set (german)

This dataset concerns credit card applications in Germany. The original dataset, in the form provided by

Prof. Hofmann, was used which contains categorical/symbolic features.

http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

Glass Identification Data Set (glass)

The study of classification of types of glass was motivated by criminological investigation. At the scene

of the crime, the glass left can be used as evidence if it is correctly identified. The data set contains

measurements of the refractive index and different mineral and metal contents.

Note that the original data file “ glass.data” contains an ID number for each instance. Since the

instances are also ordered by class, this ID number can be used to classify the dataset with 100% accuracy.

In the experiments in this thesis the ID number was excluded from the dataset.

http://archive.ics.uci.edu/ml/datasets/Glass+Identification

Hepatitis Data Set (hepatitis)

The dataset contains information on chronic hepatitis patients and the classes indicate if the patient lives

or dies. For each patient, the 19 features are potentially useful predictors like age, sex and standard

chemical measurements.

http://archive.ics.uci.edu/ml/datasets/Hepatitis

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Dermatology
http://archive.ics.uci.edu/ml/datasets/echocardiogram
http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://archive.ics.uci.edu/ml/datasets/Hepatitis

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 237

Hill-Valley Data Set (hill-valley)

This is an artificially generated dataset which contains examples of stylized hills and valley’s. Each

record represents 100 points on a two-dimensional graph. When plotted in order (from 1 through 100)

as the Y co-ordinate, the points will create either a Hill (a bump in the terrain) or a Valley (a dip in the

terrain).

The dataset consists of different parts:

• two datasets (without noise) are a training/testing set pair where the hills or valleys have a smooth

transition.

• two datasets (with noise) are a training/testing set pair where the terrain is uneven, and the hill or

valley is not as obvious when viewed closely.

Note that in the experiments in this thesis all four original training and tests sets were combined into a

single dataset of 1212 instances.

http://archive.ics.uci.edu/ml/datasets/hill-valley

Horse Colic Data Set (horse-colic)

Note that features 25, 26, and 27 in the original dataset each are codes that combine four indicators with

regards to lesions. These three features were each split into four separate features. Attribute 24, which

indicates whether the problem (lesion) was surgical. was chosen as the class feature.

http://archive.ics.uci.edu/ml/datasets/Horse+Colic

Ionosphere (ionosphere)

This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased

array of 16 high-frequency antennas with a total transmitted power in the order of 6.4 kilowatts. See the

work by Sigillito et al. [128] for more details. The targets were free electrons in the ionosphere. “Good”

radar returns are those showing evidence of some type of structure in the ionosphere. “Bad” returns are

those that do not; their signals pass through the ionosphere.

Received signals were processed using an autocorrelation function whose arguments are the time of

a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this

database are described by 2 features per pulse number, corresponding to the complex values returned by

the function resulting from the complex electromagnetic signal.

http://archive.ics.uci.edu/ml/datasets/ionosphere

Iris Data Set (iris)

The data set contains three classes of 50 instances each, where each class refers to a type of iris plant.

One class is linearly separable from the other two; the latter are not linearly separable from each other.

The predicted feature is the class of iris plant.

http://archive.ics.uci.edu/ml/datasets/Iris

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/hill-valley
http://archive.ics.uci.edu/ml/datasets/Horse+Colic
http://archive.ics.uci.edu/ml/datasets/ionosphere
http://archive.ics.uci.edu/ml/datasets/Iris

238 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Labor Relations Data Set (labor)

Thedata includes all collective agreements reached in the business and personal services sector for locals

with at least 500 members (teachers, nurses, university staff, police, etc) in Canada in 1987 and the first

quarter of 1988.

http://archive.ics.uci.edu/ml/datasets/Labor+Relations

BUPA Liver Disorders Data Set (liver)

The dataset consists of simplified medical records of individual male individuals who were treated for

a liver disorder, classified into two different classes of disorders. Included are five variables from blood

tests which are thought to be sensitive to liver disorders that might arise from excessive alcohol con-

sumption. The other variable notes the number of half-pint equivalents of alcoholic beverages drunk per

day by the individual.

It is known that in the original dataset four duplicates are present (row 84 and 86, row 141 and 318,

row 143 and 150, row 170 and 176). These duplicated rows were not removed, but the full set of 345

instances was used.

http://archive.ics.uci.edu/ml/datasets/Liver+Disorders

Lung Cancer Data Set (lung-cancer)

The data describes three types of pathological lung cancers. No information is known on what the 56

individual variables represent nor on where the data was originally used. All variables are nominal,

taking on integer values 0-3. In the original data four values for the fifth feature were -1. These values

have been changed to unknown. In the original data one value for the 39th feature was 4. This value has

been changed to unknown.

http://archive.ics.uci.edu/ml/datasets/Lung+Cancer

Lymphography Data Set (lymphography)

This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the

machine learning literature. The other two are the Breast Cancer Data Set and the Primary Tumor Data

Set. The data consists of a classification of the diagnosis of a lymph in one of four classes, plus 18

features each described by nominal values in the original dataset.

http://archive.ics.uci.edu/ml/datasets/lymphography

MONK-1 Data Set (monk-1)

The MONK’s problems were the basis of a first international comparison of learning algorithms. One

significant characteristic of this comparison is that it was performed by a collection of researchers, each

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Labor+Relations
http://archive.ics.uci.edu/ml/datasets/Liver+Disorders
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
http://archive.ics.uci.edu/ml/datasets/lymphography

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 239

of whom was an advocate of the technique they tested (often they were the creatorsof the various meth-

ods). In this sense, the results are less biased than in comparisons performed by a single person advo-

cating a specific learning method, and more accurately reflect the generalization behavior of the learning

techniques as applied by knowledgeable users.

There are three MONK’s problems. Each problem relies on the same artificial robot domain, in

which robots are described by six different features:

1. head shape∈ round, square, octagon

2. body shape∈ round, square, octagon

3. is smiling∈ yes, no

4. holding∈ sword, balloon, flag

5. jacket color∈ red, yellow, green, blue

6. has tie∈ yes, no

For MONK-1, the class is a binary concept described by

(head shape= body shape)∨ (jacket color= red)

and there is no noise in the dataset. Hence, features 1, 2, and 5 should be selected.

http://archive.ics.uci.edu/ml/datasets/monks-problems

MONK-2 Data Set (monk-2)

The domain for the MONK-2 problem is exactly the same as that described above under the MONK-1

Data Set. For MONK-2, the class concept described by the data set is that exactly two of the six features

have their first value. There is no noise in the dataset. All features should be selected to be able to

correctly determine the class concept.

http://archive.ics.uci.edu/ml/datasets/monks-problems

Libras Movement Data Set (movement-libras)

The dataset contains 15 classes of 24 instances each, where each class references a hand movement type

in LIBRAS. Videos of the movements have been converted into 90 numeric features.

In the video pre-processing, a time normalization is carried out selecting 45 frames from each video,

according to an uniform distribution. In each frame, the centroid pixels of the segmented objects (the

hand) are found, which compose the discrete version of the curve F with 45 points. All curves are

normalized in the unitary space.

In order to prepare these movements to be analyzed by algorithms, a mapping operation was con-

ducted, that is, each curve F was mapped in a representation with 90 features, representing the coordinates

of movement.

http://archive.ics.uci.edu/ml/datasets/Libras+Movement

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/monks-problems
http://archive.ics.uci.edu/ml/datasets/monks-problems
http://archive.ics.uci.edu/ml/datasets/Libras+Movement

240 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Musk (Version 1) Data Set (musk-1)

Thedataset describes a set of 92 molecules of which 47 are judged by human experts to be musks and

the remaining 45 molecules are judged to be non-musks. The goal is to learn to predict whether new

molecules will be musks or non-musks. However, the 166 features that describe these molecules depend

upon the exact shape, or conformation, of the molecule. Because bonds can rotate, a single molecule can

adopt many different shapes. To generate this data set, the low-energy conformations of the molecules

were generated and then filtered to remove highly similar conformations. This left 476 conformations.

Then, a feature vector was extracted that describes each conformation.

This many-to-one relationship between feature vectors and molecules is called the multiple instance

problem. When learning a classifier for this data, the classifier should classify a molecule as “musk” if

anyof its conformations is classified as a musk. A molecule should be classified as “non-musk” ifnone

of its conformations is classified as a musk.

As prescribed by the data set’s creators, the features “moleculename” and “conformationname”

wereexcluded from the dataset used in the experiments.

http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+1%29

Parity 5+5 Data Set (parity5-5)

The dataset consists of instances of 10 features that are bits, with the class being the parity of the bits 2,

3, 4, 6, and 8. The other five features are irrelevant for the classification.

Note that in the experiments in this thesis the full set of all 1024 possible combinations of bits was

used.

This dataset is no longer available on the UCI machine learning repository.

http://www.sgi.com/tech/mlc/db/parity5+5.all

Parkinsons Data Set (parkinsons)

This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkin-

son’s disease (PD). Each column in the table is a particular voice measure, and each row corresponds

to one of 195 voice recordings from these individuals (“name” column). The main aim of the data is

to discriminate healthy people from those with PD, according to “status” column which is set to 0 for

healthy and 1 for PD. There are around six recordings per patient, the name of the patient is identified in

the first column.

Note that the names of the patients were discarded for the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/parkinsons

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+1%29
http://www.sgi.com/tech/mlc/db/parity5+5.all
http://archive.ics.uci.edu/ml/datasets/parkinsons

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 241

Pima Indians Diabetes Data Set (pima)

Thedataset comes from the National Institute of Diabetes and Digestive and Kidney Diseases. The aim is

to forecast the onset of diabetes mellitus. The diagnostic, binary-valued variable investigated is whether

the patient shows signs of diabetes according to World Health Organization criteria (i.e., if the two hour

post-load plasma glucose was at least 200 mg/dl at any survey examination or if found during routine

medical care). The population lives near Phoenix, Arizona, USA. Several constraints were placed on the

selection of these instances from a larger database. In particular, all patients here are females at least 21

years old of Pima Indian heritage.

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

Molecular Biology (Promoter Gene Sequences) Data Set (promoter)

The dataset contains E. Coli gene sequences (DNA) which represent either promoter sequences or non-

promoter sequences. The domain theory for recognizing promoters is that promoters have a region

where a protein (RNA polymerase) must make contact and the helical DNA sequence must have a valid

conformation so that the two pieces of the contact region spatially align.

The original dataset consists of instances with the features coded as text strings of length 57 listing

the DNA nucleotides, each a letter from “agtc”. These were converted to 57 integers 1-4 based on the

rank from the list “agtc”. The name feature was discarded for the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/promoter

Connectionist Bench (Sonar, Mines vs. Rocks) Data Set (sonar)

The dataset consists of patterns obtained by bouncing sonar signals off rocks and a metal cylinder at

various angles and under various conditions. The transmitted sonar signal is a frequency-modulated

chirp, rising in frequency. The data set contains signals obtained from a variety of different aspect

angles, spanning 90 degrees for the cylinder and 180 degrees for the rock.

Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents the energy within

a particular frequency band, integrated over a certain period of time. The integration aperture for higher

frequencies occur later in time, since these frequencies are transmitted later during the chirp.

The label associated with each record contains the letter “R” if the object is a rock and “M” if it is a

mine (metal cylinder). The numbers in the labels are in increasing order of aspect angle, but they do not

encode the angle directly.

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar

%2C+Mines+vs.+Rocks%29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/promoter
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29

242 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Soybean (Large) Data Set (soybean)

Thisdataset consists of instances of soybean diseases, classified by experts into 19 classes. There are 35

categorical features, some nominal and some ordered. The values for features are encoded numerically,

with the first value encoded as 0, the second as 1, and so forth. This mean the data was already partially

preprocessed as the textual values were converted into numbers.

Note that in the experiments in this thesis the original training set of 307 instances and test set of 376

instances were combined into a single dataset of 683 instances.

http://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29

SPECTF Heart Data Set (spectf)

The dataset describes diagnoses of cardiac Single Proton Emission Computed Tomography (SPECT)

images. Each of the patients is classified based on the cardiologists’ diagnoses into two categories:

normal or abnormal. The database of 267 SPECT image sets (patients) was processed to extract features

that summarize the original SPECT images. As a result, 44 continuous feature patterns were created for

each patient.

Note that in the experiments in this thesis the original training set of 80 instances and test set of 187

instances were combined into a single dataset of 267 instances.

http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart

Tic-Tac-Toe Endgame Data Set (tic-tac-toe)

This database encodes the complete set of possible board configurations at the end of tic-tac-toe games,

where “x” is assumed to have played first. This means all 958 board configurations were either “x” or

“o” has won, or the board has been completely filled resulting in a tie. The target concept encoded by

the class feature is “win for x” (i.e., true when “x” has one of eight possible ways to create a “three-in-a-

row”).

http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

Statlog (Vehicle Silhouettes) Data Set (vehicle)

The purpose is to classify a given silhouette as one of four types of vehicle, using a set of features

extracted from the silhouette. The vehicle may be viewed from one of many different angles. Four

“Corgie” model vehicles were used for the experiment: a double decker bus, Chevrolet van, Saab 9000

and an Opel Manta 400. This particular combination of vehicles was chosen with the expectation that

the bus, van and either one of the cars would be readily distinguishable, but it would be more difficult to

distinguish between the cars.

The features were extracted from the silhouettes by the HIPS (Hierarchical Image Processing System)

extension BINATTS, which extracts a combination of scale independent features utilizing both classical

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29
http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 243

moments based measures such as scaled variance, skewness and kurtosis aboutthe major/minor axes and

heuristic measures such as hollows, circularity, rectangularity and compactness.

The images were acquired by a camera looking downwards at the model vehicle from a fixed angle

of elevation (34.2 degrees to the horizontal). The vehicles were placed on a diffuse back-lit surface (light

box). The vehicles were painted matte black to minimize highlights. The images were captured using

a CRS4000 framestore connected to a vax 750. All images were captured with a spatial resolution of

128x128 pixels quantized to 64 greylevels. These images were thresholded to produce binary vehicle

silhouettes, negated (to comply with the processing requirements of BINATTS) and thereafter subjected

to shrink-expand-expand-shrink HIPS modules to remove “salt and pepper” image noise.

The vehicles were rotated and their angle of orientation was measured using a radial graticule beneath

the vehicle. 0 and 180 degrees corresponded to “head on” and “rear” views respectively while 90 and

270 corresponded to profiles in opposite directions. Two sets of 60 images, each set covering a full

360 degree rotation, were captured for each vehicle. The vehicle was rotated by a fixed angle between

images. These datasets are known as e2 and e3 respectively.

A further two sets of images, e4 and e5, were captured with the camera at elevations of 37.5 degrees

and 30.8 degrees respectively. These sets also contain 60 images per vehicle apart from the vans in

image set e4, which contains only 46 owing to the difficulty of containing the van in the image at some

orientations.

The dataset on the UCI Machine Learning repository consists of nine separate files which form a

roughly equal split of the instances. In the experiments in this thesis these files are combined into a

single dataset.

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29

Congressional Voting Records Data Set (vote)

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key

votes identified by the Congressional Quarterly Almanac (CQA), 98th Congress, 2nd session 1984. The

CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to

yea), voted against, paired against, and announced against (these three simplified to nay), voted present,

voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these

three simplified to an unknown disposition). Hence, the dataset contains instances (one for each rep-

resentative) which each consists of a class label identifying party affiliation and 16 features stating the

simplified vote made on key issues.

Note that for this dataset it was ensured that the label “unknown” was converted to a numerical value

of 0.5, with yea valued as 1 and nay as 0.

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

244 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Connectionist Bench (Vowel Recognition) Data Set (vowel)

Thedataset consists of a numerical representation of vowel sounds from multiple speakers. The vowel

data was recorded for examples of the eleven steady state vowels of English spoken by fifteen speakers

for a speaker normalization study. The steady state vowel were spoken using the following 11 words:

heed, hid, head, had,hard, hud, hod, hoard, hood, who’d, heard. The word was uttered once by each of

the fifteen speakers.

The speech signals were low pass filtered at 4.7kHz and then digitized to 12 bits with a 10kHz

sampling rate. Twelfth order linear predictive analysis was carried out on six 512 sample Hamming

windowed segments from the steady part of the vowel. The reflection coefficients were used to calculate

10 log area parameters, yielding 10 numerical features.

Each speaker thus yielded six frames of speech from eleven vowels. This combines to 15 (speakers)

times 6 (frames) times 11 (vowels) equals 990 instances. The classification problem is to determine the

vowel spoken from the 10 features.

Note that in the experiments in this thesis the original training set from “speakers“ 0-47 and test set

of speakers 48-99 were combined into a single dataset.

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+

%28Vowel+Recognition+-+Deterding+Data%29

Breast Cancer Wisconsin (Diagnostic) Data Set (wdbc)

This database consists or diagnoses of breast cancer from images. The data comes from the University

of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. Samples arrive periodically as Dr.

Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the

data.

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They

describe characteristics of the cell nuclei present in the image. Thirty real-valued features are computed

for each cell nucleus. The class is set by the diagnosis whether the cell is benign or malignant.

Data was taken from the file labeled ”wdbc.data”, containing 569 instances. The case number present

in the dataset was not used in the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic

%29

Wine Data Set (wine)

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived

from three different cultivars. The analysis determined the quantities of 13 constituents found in each of

the three types of wines.

http://archive.ics.uci.edu/ml/datasets/wine

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deterding+Data%29
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deterding+Data%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/wine

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 245

Zoo Data Set (zoo)

This dataset consists of classifications of animals into seven different types using 16 features. Of these

features, 15 are boolean and the other - denoting the number of legs - is integer valued. A breakdown of

which animals are in which type is enumerated below.

1. aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant, fruit bat, gi-

raffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink, mole, mongoose, opossum, oryx,

platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sea lion, squirrel, vam-

pire, vole, wallaby,wolf

2. chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet, penguin, pheasant,

rhea, skimmer, skua, sparrow, swan, vulture, wren

3. pit viper, sea snake, slow worm, tortoise, tuatara

4. bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole, stingray, tuna

5. frog, frog, newt, toad

6. flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

7. clam, crab, crayfish, lobster, octopus, scorpion, sea wasp, slug, starfish, worm

The dataset contains one instance for each animal, except for “frog”. The two instances for frog a

different, as one has the feature for venomous set to true, the other has it set to false.

Note that the full dataset of 101 instances (with two instances for frog) and 16 features was used the

experiments in this thesis, while the name feature was discarded.

http://archive.ics.uci.edu/ml/datasets/zoo

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://archive.ics.uci.edu/ml/datasets/zoo

Appendix E

Statistical methodology

The algorithm-topology pairs were compared for significant differences in performance using the Iman-

Davenport test (ID-test) [55], which is a refinement of the better known Friedman test [37]. The ID-

test was used to analyze the performance, measured for the MKP as the average error1 on each of the

problems and for FSP as the average classification error on each of the datasets. The null hypothesis of

the ID-test was that all algorithm-topology pairs had the same median performance. The significance

level was chosen as 0.05.

In case the ID-test rejected the null-hypotheses and showed a significant difference in the perfor-

mance of the algorithm-topology pairs, further post-hoc tests were performed in order to determine

which of the algorithm-topology pairs outperformed the other pairs. The post-hoc test used was that pro-

posed by Nemenyi [103], which considers the differences in the average rank of the performance over

all problems.

For the Nemenyi test, theZ-score (the normalized distance in average rank of the average error) was

used as input:

Z =
|R1−R2|√

k (k+1)
6 N

(E.1)

whereRi is the average rank of the average error for algorithm-topology pairi, k is the total number of

algorithm-topology pairs being compared, andN is the number of problems or datasets on which the

pairs were compared. This standard normally distributedZ-score was then translated into ap-value.

Because the post-hoc tests involved multiple pair-wise comparisons, the significance levelα needed

to be adjusted in order to maintain equal family-wise error rates. For this purpose the Holm-Bonferroni

method [53] was used: the largest difference in average rank found in the Nemenyi test was compared at

significance levelα , the second largest difference was compared at significance levelα/2, and thek-th

largest difference was compared at significance levelα/k.

1The error is defined as the deviation from the known optimum for the small MKPs, and as the deviation from the LP
relaxation bound for the large MKPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Pre-face
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	I Background
	Particle swarm optimization
	Introduction
	Continuous PSO
	Discrete PSO
	Conclusions

	Multidimensional knapsack problem
	Introduction
	Definition of the MKP
	Benchmark problems
	Literature on solving the MKP
	Conclusions

	Feature selection problem
	Introduction
	The classification problem in machine learning
	Definition of the FSP
	Literature on solving the FSP
	Conclusions

	II Generic set-based particle swarm optimization
	Set-based particle swarm optimization
	Introduction
	Set-based Concepts
	Operators
	Update equations
	Conclusions

	III Empirical analysis
	Experiments on the multidimensional knapsack problem
	Introduction
	Experimental procedure
	PSO parameter tuning
	Sensitivity analysis of SBPSO's parameters
	Experimental results
	Conclusions

	Experiments on the feature selection problem
	Introduction
	Experimental procedure
	Exhaustive search to test the fitness function
	Exhaustive search of classifier parameter space
	PSO parameter tuning
	Experimental results
	Conclusions

	IV Conclusions and future work
	Conclusions and future work
	Conclusions
	Future work

	Bibliography

	V Appendices
	Detailed results for small MKPs
	Detailed tuning results per algorithm
	Summarized testing results per topology
	Detailed testing results per topology
	Summarized testing results per algorithm
	Detailed testing results per algorithm

	Detailed results for large MKPs
	Detailed tuning results per algorithm
	Summarized testing results per topology
	Detailed test results per topology
	Summarized testing results per algorithm
	Detailed test results per algorithm

	Detailed results for the FSP
	Detailed FSP results for exhaustive search on J48 parameters
	Detailed FSP tuning results
	Detailed FSP testing results

	Description of datasets used for the FSP
	Statistical methodology

