UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Set-Based Particle Swarm Optimization

by
JoostLangeveld

Submitted in partial fulfillment of the requirements for the degree
Master of Science (Computer Science)
in the Faculty of Engineering, Built Environment and Information Technology
University of Pretoria, Pretoria

September 2015

© University of Pretoria

P
o} UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Publication data:

JoostLangeveld. Set-Based Particle Swarm Optimization. Master's dissertation, University of Pretoria, Department of Com-
puter Science, Pretoria, South Africa, September 2015.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

© University of Pretoria

http://cirg.cs.up.ac.za/

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

Set-Based Particle Swarm Optimization

by
JoostLangeveld
E-mail: jclangev@gmail.com

Abstract

Particle swarm optimization (PSO) algorithms have been successfully applied to discrete-valued op-
timization problems. However, in many cases the algorithms have been tailored specifically for the
problem at hand. This study proposes a generic set-based particle swarm optimization algorithm, called
SBPSO, for use on discrete-valued optimization problems that can be formulated as set-based prob-
lems. The performance of the SBPSO is then evaluated on two different discrete optimization problems:
the multidimensional knapsack problem (MKP) and the feature selection problem (FSP) from machine
learning. In both cases, the SBPSO is compared to three other discrete PSO algorithms from literature.
On the MKP, the SBPSO is shown to outperform, with statistical significance, the other algorithms. On
the FSP and using lanearest neighbor classifier, the SBPSO is shown to outperform, with statistical
significance, the other algorithms. When a Gaussian Naive Bayes or a J48 decision tree classifier is used,
no algorithm can be shown to outperform on the FSP.

Keywords: Particle Swarm Optimization, Swarm Intelligence, Computational Intelligence, Discrete
Optimization, Mathematical Sets, Multidimensional Knapsack Problem, Machine Learning, Feature Se-
lection Problem

Supervisor . Prof. Andries P. Engelbrecht
Department : Department of Computer Science
Degree . Master of Science

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Pre-face

The document before you is the dissertation of Joost Langeveld for the purpose of obtaining a Master
Degree from the University of Pretoria, department of Computer Science. Parts of this work have previ-
ously been presented at the 2011 International Conference on Swarm Intelligence, in Cergy, France as “A
generic set-based particle swarm optimization algorithm” [79] and published in the journal of Swarm In-
telligence as “Set-based particle swarm optimization applied to the multidimensional knapsack problem”
[80].

Problem statement

Swarm intelligence research has yielded positive results in a variety of application areas. Particle swarm
optimization (PSO) was introduced by Kennedy and Eberhart [62] in 1995, and it forms a key area

of swarm intelligence research. Originally used to solve continuous optimization problems, PSO was

adapted for discrete optimization problems as well [62]. Later work has seen PSO algorithms built

around the concept of mathematical sets [24} 102, 143].

This study claims that a functioning, generic, set-based PSO algorithm does not yet exist. Further-
more, this study proposes a new algorithm and claims that this algoistarfunctioning, generic, set-
based PSO algorithm. An abstract formulation of the SBPSO’s update equations in terms of set-theory
will be derived. Then the new algorithm will be applied and evaluated on two set-based optimization
problems, namely the multi-dimensional knapsack problem (MKP), and the feature selection problem
(FSP). The influence of the algorithms’ control parameters on performance will also be investigated.

Set-based optimization problems are discrete or combinatorial optimization problemkoivdor a
natural representation using elements, whereby the problem is to find an optimal subset of these.elements
Many combinatorial problems can be defined using sets of elements, but for most problems this is not
the natural representation: such a set based representation makes the problem harder to solve. Set-based
problems thus form a subset of discrete optimization problems.

The MKP is a discrete optimization problem where the value of a number of items to be included
in a knapsack is to be maximized, subject to 0-1 constraints on the items and multiple further “weight"
constraints. It was first formulated in 1955 in terms of a capital allocation problem by Lorie and Savage
[89].

The FSP arises in machine learning where algorithms are used to classify data [46]. The context for
the FSP is a supervised learning problem in which a classifier is used to determine to which discrete class

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

PREFACE iii

a given instance of data belongs. The FSP itself is defined as the problem teasebgtimal subset of
features and use only those features to train the classifier for the original classification problem.

Objectives

The main objective of this thesis is to develop and investigate a functioning, generic, set-based PSO
algorithm that can solve discrete optimization problems (DOPs). To reach this goal, the following sub-
objectives are identified:

e To give an overview of existing discrete and set-based PSO algorithms from literature to show that
a functioning, generic, set-based PSO algorithm does not yet exist;

e To determine the basic components that make up a PSO algorithm in order to determine what
components should be present to make the new set-based algorithm a PSO algorithm;

e To determine which additional components are required to make the new algorithm a functioning
algorithm;

e To define the new algorithm by formulating the PSO update equations in terms of set-theory;

e To ensure the new algorithm is generic and doatsnclude any problem domain specific features
in the algorithm itself - the only link to the problem domain should lie in the fitness function;

e To test the new algorithm on different DOPs, for which the MKP and the FSP are selected;

e To compare the performance (in terms of quality of the solution found) of the new algorithm
against discrete PSO algorithms known from literature which have been applied to the MKP and
FSP; and

e To investigate the new algorithm’s control parameters to determine which values yield good results.
For clarity, it is important to note which possible objectives aredatsideof this thesis’ scope:

e To find an algorithm that is better at solving the MKP or the FSP than known state-of-the-art
algorithms;

¢ To find the most efficient algorithm in terms of number of iterations or fitness function evaluations,
total number of computations (flops) or total time needed to complete; and

e To compare the performance of the new algorithm against non-PSO methods used to solve DOPs.

Contributions
The main contributions of this thesis to the field of swarm intelligence are:

e Developing a functioning, generic, set-based PSO algorithm called SBPSO;

¢ A first application and investigation of SBPSO on MKP and FSP;

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

iv PRERCE

e Developing a new scoring mechanism for use in the PSO’s parameter tuning that can also be used
for a sensitivity analysis to determine good control parameter values for SBPSO and the relative
importance of each parameter; and

e Performing a thorough comparison between SBPSO and three other discrete PSO algorithms on a
large enough set of problems to determine statistically significant difference in quality of solutions
found.

Outline

The remainder of this thesis consists of five parts. [Part | introduces concepts, algorithms and problems
from literature that form the basis and further context for the original research presented in this the-
sis. Chaptelr]l introduces the field of particle swarm optimization (PSO), with a focus on discrete PSO
algorithms. Chaptdr]2 defines and discussed the MKP as a problem for testing discrete optimization
algorithms. A well-known set of benchmark problems is listed and approaches to solve the MKP from
literature are reviewed. Chapter 3 defines the FSP, another optimization problem. Besides a formal
definition, the concepts of classifiers and cross-validation from the domain of machine learning are dis-
cussed. Both are important in relation to the FSP and solving the FSP using PSO. This is followed by an
overview of the literature on solving the FSP.

In the second part, chapféer 4 introduces the new algorithm called the set-based PSO (SBPSO). The
concepts of position and velocity as sets are defined, forming the basis of the SBPSO. Also defined are
the operators required to manipulate the position and velocity sets as determined by the PSO paradigm.
Additional operations are defined outside of the basic PSO paradigm in order to ensure that the algo-
rithm can work. These are then all combined in a description of SBPSO's velocity and position update
equations, and the flow of the new algorithm.

Part[Ill describes the experiments in which the SBPSO is applied to the MKP and the FSP. For
both problems well-known benchmark problems and three other PSO algorithms to compare against
the SBPSO are chosen. The full experimental procedure is outlined in both cases, describing the cho-
sen swarm sizes, swarm topologies, starting and stopping conditions and number of repetitions of the
experiments. For the FSP, the chosen classifiers are also listed and the approach used to tune them is
described. An extensive tuning process is described and conducted to tune the PSO algorithms using
different topologies and on different problem sets: two such sets for the MKP and one for the FSP. The
results of the experiments on the tuned algorithms are than summarized and discussed.

Chaptef revisits the objectives of this dissertation and determines whether these have been met. An
outline of potential future work is also given.

Finally, partf\ deals mainly with the detailed results of the experiments outlined in_part Ill, split
into appendiXx_A for results on the small MKP, apperidix B for results on the large MKP, and appéndix C
for results on the FSP. Furthermore, a description is given of all the classification datasets used in the
experiments on the FSP in appenfik D. Apperidix E details the statistical methods employed in the
various comparisons made in this thesis.

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

Acknowledgements

“It does not matter how slowly you go, so long as you do not stop.”

Confucius

First of all, | wish to acknowledge the support and encouragement of Professor Andries Engelbrecht.
He gave me the opportunity to enroll for a research Master's degree in Computer Science, even though
my previous education had been in the different field of mathematics, and he has patiently corrected my
work conceptually and aesthetically. Any remaining errors in this work are fully attributable to my own
stubbornness.

| would also like to thank my fellow post-graduate students at the University of Pretoria, who wel-
comed me during my time on campus and tried to teach me things about Computer Science, superhero
movies, computer games, and Afrikaans: Bennie Leonard, Julien Duhain, Nelis Franken, Christoff En-
slin, Leo Langenhoven, Will van Heerden, and Koos de Beer. Additional kudos to Bennie for fixing all
my Ubuntu and server problems.

A very special thanks must go to my loving wife Marjolein, who supported me in my work and also
provided for our whole family during our time in South Africa. She also gave me the best gift while we
were living in Pretoria: my son Jonathan Thabiso.

Joost Langeveld
September 2015
Utrecht, the Netherlands

© University of Pretoria

P
si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

Contents

Pre-face
Acknowledgements

Contents

List of Tables

f
y
i
List of Figures M
il
List of Algorithms IXE‘

| Background

1 Particle swarm optimization B
1.1 Introduction e D 2
1.2 ContinuousPSO e D 3
1.3 Discrete PSO e D 5
1.4 Conclusions e e D 11
2 Multidimensional knapsack problem B
2.1 Introduction D 13
2.2 Definitionofthe MKP D 14
2.3 Benchmarkproblems D 15
2.4 Literature onsolvingthe MKP e D 16
25 Conclusions e D 24
3 Feature selection problem g
3.1 Introduction e D 26
3.2 The classification problem in machinelearning D 27
3.3 Definitionofthe FSP D 41
3.4 Literatureonsolvingthe FSP D 43
3.5 Conclusions e e e D 53

Il Generic set-based particle swarm optimization

4 Set-based particle swarm optimization B

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(e

CONTENTS vii
4.1 Introduction e e e e e D 57
4.2 Set-based ConNCePts D 59
4.3 OPEerators e e D 61
4.4 Updateequations e e D 64
45 Conclusions e D 65
[l Empirical analysis
5 Experiments on the multidimensional knapsack problem @
5.1 Introduction L D 69
5.2 Experimental procedure e e e D 71
5.3 PSOparametertuning e D 76
5.4 Sensitivity analysis of SBPSO’'s parameters D 82
5.5 Experimentalresults e e D 88
5.6 Conclusions e D 104
6 Experiments on the feature selection problem l@
6.1 Introduction Dlog
6.2 Experimental procedure D 111
6.3 Exhaustive search to test the fithess function D . 125
6.4 Exhaustive search of classifier parameterspace D . 131
6.5 PSOparametertuning J__._] 140
6.6 Experimentalresults D 142
6.7 CoNnCluSIONS e |:| 153
IV Conclusions and future work
7 Conclusions and future work @
7.1 Conclusions e e e |:| 161
7.2 Futurework D166
Bibliography [@
V Appendices
A Detailed results for small MKPs @
A.1 Detailed tuning results per algorithm, D 184
A.2 Summarized testing results pertopology D 188
A.3 Detailed testing results pertopology I:] 189
A.4 Summarized testing results per algorithm D 192
A.5 Detailed testing results per algorithm D 193
B Detailed results for large MKPs

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

viii CONTENTS
B.1 Detailed tuning results per algorithm L. @
B.2 Summarized testing results pertopology L. D 203
B.3 Detailedtestresults pertopology oo J:] 204
B.4 Summarized testing results per algorithm D 207
B.5 Detailed testresults per algorithm D 208
C Detailed results for the FSP @
C.1 Detailed FSP results for exhaustive search on J48 parameters D .. 212
C.2 Detailed FSPtuningresults D 218
C.3 Detailed FSPtestingresults l_.__l 222
D Description of datasets used for the FSP
E Statistical methodology IZZé

© University of Pretoria

P

si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI YA PRETORIA

List of Figures

11

4.1
4.2

5.1
5.2
5.3

Swarm topologies used inexperiments o D 5
Particle positions inSBPSO e G 59
Particle attraction and movementin SBPSO D 61
Sensitivity analysis of gbest SBPSO o D 85
Sensitivity analysis of lbest SBPSO L o oL D 86
Sensitivity analysis of Von Neumann SBPSO D 87

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

List of Tables

2.1
2.2
2.3

51
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

6.1
6.2
6.3
6.4
6.5

Summary of results from Wargt al.on 10 smallMKPs DZZ
Average error results from Waegjal.on 10 smallMKPs DZS
Success rate results from Waetgal.on 10 smallMKPs DZS
Split of small MKPs into tuning and testproblems D 72
Split of large MKPs into tuning and testproblems D 73
Parameter ranges used in tuning the four PSO algorithms onthe MKP D .77
Tuned parametersforsmall MKPs D 78
Average rank of best parameter combination in tuning smallMKPs D .79
Tuned parameters forlarge MKPS D 80
Average rank of best parameter combination in tuning large MKPs D . 82
Performance distribution per individual control parameter D 88
Summary of small MKP test results for the startopology D 90
Summary of small MKP test results for theringtopology D 91
Summary of small MKP test results for the Von Neumann topology D .91
Summary of small MKP test results across topologies forBPSO D . 92
Summary of small MKP test results across topologies for MBPSO D . 93
Summary of small MKP test results across topologies for PBPSO D . 94
Summary of small MKP test results across topologies for SBPSO D . 94
Summary of large MKP test results for the star topology D 96
Summary of large MKP test results for theringtopology D 97
Summary of large MKP test results for the von Neumann topology D . 98
Summary of large MKP test results across topologies forBPSO D . 100
Summary of large MKP test results across topologies for MBPSO |:| . 100
Summary of large MKP test results across topologies for PBPSO D . 101
Summary of large MKP test results across topologies for SBPSO D 102
Summary of large MKP test results for the best algorithm-topology pairs per algorldh?l‘ 103
Datasets used in the FSP testing experiments D . 112
Datasets used in the FSP tuning experiments D . 113
Parameter values used to tune the J48 classifier D . 118
Parameter values used to tunekheN classifier 518
Classifier parameters used in exhaustive search on fitness function |:| .. 127

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

LIST OF TABLES Xi
6.6 Number of best subsets in exhaustivesearch @
6.7 Exhaustive search for best features using GNB classifier. D . 129
6.8 Exhaustive search for best features using J48 classifier. D . 130
6.9 Exhaustive search for best features ugiN classifier. L_J_bo
6.10 Datasets used in exhaustive search of classifier parameter space D .. 132
6.11 Best and chosen parameter values in exhaustive search for the J48 classifier . . D .. 136
6.12 Detailed results of the exhaustive search for J48 parametervalues. D .. 137
6.13 Best and chosen parameter values found in exhaustive searchKaxkhelassifier . . .58
6.14 Detailed results of the exhaustive searctkibiN parametervalues D39
6.15 Parameter ranges used in tuning the four PSO algorithms onthe FSP D L1441
6.16 Tuned PSO parametersforFSPs |:| 142
6.17 Datasets with significant differences on the one-way ANGM&st 4
6.18 Overview of statistical results on the FSP using the GNB classifier D . 145
6.19 Overview of statistical results on the FSP using the J48 classifier D . 147
6.20 Overview of statistical results on the FSP usingNN classifier E}lQ
6.21 Detailed rankings of the four PSO algorithms on the FSP combining all three class@s . 151
6.22 Overview of statistical results on the FSP combining all three classifiers J:] . 152
6.23 Overview of average rank and variability across classifiersonthe FSP D . 153
Al GuidetotablesinAppendiXIA D 183
A.2 Details of the small MKP tuning resultsforBPSO D 184
A.3 Details of the small MKP tuning results for MBPSO D 185
A.4 Details of the small MKP tuning results for PBPSO D 186
A.5 Details of the small MKP tuning results for SBPSO D 187
A.6 Summary of the small MKP test results pertopology. l_.__l 188
A.7 Details of the small MKP test results for the star topology. [_.__l 189
A.8 Details of the small MKP test results for the ring topology. D 190
A.9 Details of the small MKP test results for the Von Neumann topology. D 191
A.10 Summary of the small MKP test results per algorithm. D 192
A.11 Details of the small MKP test results for BPSO. D 193
A.12 Details of the small MKP test results for MBPSO. D 194
A.13 Details of the small MKP test results for PBPSO., |:| 195
A.14 Details of the small MKP test results for SBPSO., I:I 196
B.1 Guidetotablesin AppendiXIB D 198
B.2 Details of the large MKP tuning resultsforBPSO D 199
B.3 Details of the large MKP tuning results forMBPSO E] 200
B.4 Details of the large MKP tuning results for PBPSO J__._] 201
B.5 Details of the large MKP tuning results forSBPSO J__._] 202
B.6 Summary of the large MKP test results pertopology. D 203
B.7 Details of the large MKP test results for the star topology D 204

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Xii LISTOF TABLES
B.8 Details of the large MKP test results for the ring topology @
B.9 Details of the large MKP test results for the Von Neumann topology D 206
B.10 Summary of the large MKP test results per algorithm D 207
B.11 Details of the large MKP testresultsforBPSO D 208
B.12 Details of the large MKP testresults for MBPSO D 209
B.13 Details of the large MKP testresultsforPBPSO D 210
B.14 Details of the large MKP testresults forSBPSO D 211
C.1 Detailed results classifier parameter values for J48 classifier on iris dataset . . . D . 213
C.2 Detailed results classifier parameter values for J48 classifier on corral dataset . D .. 214
C.3 Detailed results classifier parameter values for J48 classifier on liver dataset . . . |:| .. 214
C.4 Detailed results classifier parameter values for J48 classifier on monk-1 dataset D .. 215
C.5 Detailed results classifier parameter values for J48 classifier on monk-2 dataset |:| .. 215
C.6 Detailed results classifier parameter values for J48 classifier on pima dataset . . D .. 216
C.7 Detailed results classifier parameter values for J48 classifier on breasttissue datas@ . 216

C.8 Detailed results classifier parameter values for J48 classifier on glass dataset . . J__._] .. 217
C.9 Detailed results classifier parameter values for J48 classifier on tic-tac-toe datasetD .. 218

C.10 Detailed accuracy results for the GNB classifier on the FSP tuning datasets . . . D .. 219
C.11 Detailed feature selection results for the GNB classifier on the FSP tuning datasetE .. 219
C.12 Detailed accuracy results for the J48 classifier on the FSP tuning datasets 220
C.13 Detailed feature selection results for the J48 classifier on the FSP tuning datasets D .. 220
C.14 Detailed accuracy results for tkéN classifier on the FSP tuning datasets 221
C.15 Detailed feature selection results for kKRN classifier on the FSP tuning datasets . D 221
C.16 Final accuracy results on the FSP using the GNB classifier D . 223
C.17 Statistical tests on final accuracy results on the FSP using the GNB classifier . . . D . 224
C.18 Number of features selected using the GNB classifier D . 225
C.19 Final accuracy results on the FSP using the J48 classifier D . 226
C.20 Statistical tests on final accuracy results on the FSP using the J48 classifier . . . D .. 227
C.21 Number of features selected using the J48 classifier J:] . 228
C.22 Final accuracy results on the FSP using#NN classifier D}ZQ

C.23 Statistical tests on final accuracy results on the FSP usirigNiheclassifier EO

C.24 Number of features selected usingkkeN classifier [jzbl

D.1 Overview of statistics for datasetsusedforFSP D . 233

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

List of Algorithms

10
11
12

ContinuoudPSO for maximization problems D 4
Catfish reset algorithm for Catfish Binary PSO |:| 8
Decision Tree Induction Algorithm D 33
Performance measurement for classification task: single calculation D . 40
Performance measurement for classification task: cross validation D .41
k-Tournament Selection(A) D63
SBPSO algorithm for maximization problems D 65
Fitness function for use in experimentson FSP D 121
PSO wrapper approach to solve FSP: overview D . 122
PSO wrapper approach to solve FSP: initialization D 122
PSO wrapper approach to solve FSP: mainloop D . 123
PSO wrapper approach to solve FSP: final classification D . 124

© University of Pretoria

Part |

Background

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 1

Particle swarm optimization

This first chapter introduces the particle swarm optimization (PSO) paradigm. A first objective is to
determine what components define a PSO algorithm, the second objective is to determine whether a
functioning, generic, set-based PSO algorithm already exists. In the first section of this chapter the
continuous PSO is used to present the most relevant parts of the PSO paradigm. Following this, the
literature on discrete PSO methods is reviewed with the main focus on binary approaches and PSO
algorithms using mathematical sets.

1.1 Introduction

This first chapter describes the general PSO paradigm, starting at its origin in the work of Kennedy and
Eberhart|[63], in order to fulfill two objectives. The first objective is to determine what components
define a PSO algorithm. These same components will be used in the construction of a set-based PSO
algorithm in chaptebl4. Besides this conceptual overview, the second objective of this chapter is to
determine whether a functioning, generic, set-based PSO algorithm already exists. For this a review of
the appropriate literature on discrete PSO algorithms is presented.

Sectior 1P outlines the concepts that define PSO, i.e. particles, velocity, and the social and cognitive
components of the velocity update. The elements that were added shortly after and now help form
the canonical PSO are also introduced, i.e. the inertia weight and velocity clamping. The high-level
overview of PSO ends with the introduction of the concept of swarm topologies and three specific swarm
topologies are defined for later use, namely, the star, ring, and Von Neumann topologies.

Sectior 1.B contains a review of PSO algorithms developed for use on DOPs. This review is divided
into three parts: first the binary PSO and its variants are reviewed, followed in by an overview of existing
PSO algorithms that are defined using mathematical sets. Finally, other discrete PSO algorithms are
mentioned that do not fall in the two previous categories to provide a full picture.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 3

1.2 Continuous Particle Swarm Optimization

This section describes the continuous PSO algorithm from its roots to the currently more used form with
velocity clamping and inertia weight. Also, the concept of swarm topology is introduced.

1.2.1 Original Particle Swarm Optimization algorithm

Kennedy and Eberhait [63] proposed an optimization algorithm inspired by bird flocking behavior. The
first PSO algorithm was developed to solve optimization problems with continuous-valued parameters.
Each particle has a positiohin the search space, and a velodgityndicating direction and step-size of
change in the current position. Each particle keeps track of the quality of the solution to the optimization
problem it represents, the best position it has visited in the gastnd the best position visited in the
past by a particle in its neighborhood, denofed

Leti be a particle in am-dimensional search space with velodity= (vi)]_;, positionX = (x)}_;,
personal best positiofjy = (y.)J:l, and neighborhood best positi§n= (YI)le- The original velocity
update equation,

Vij(t+1) =vij(t)+earaj () yij(t) = (O] +carzj(t) [(t) — (V)] (1.1)

computes the magnitude of change in the particle’s position in each dimgnsiberec; is the cognitive
component weightg; is the social component weight, aridandr, aren-dimensional random vectors
with eachry j,r2 j ~U(0,1) drawn independently. The position is updated by adding the updated velocity
to the current position:

X jt+1l) = xi,j(t)+vi,j(t+1) (1.2)

1.2.2 Additions to original Particle Swarm Optimization algorithm

To improve the performance of the algorithm and to better control the balance between exploration of
new areas of the search space and exploitation of promising areas, various additions have been proposed.
A first addition was by Eberhagt al. [32], who proposedelocity clampingvhich restricts the velocity

to a predetermined maximum in each dimension. After the velocity has been updated, but before the
position update, the velocity clamping,

Vij(t+1) = min{max{V;(t+1),Vmin},Vmax;} (1.3)

is applied, wher&/min j andVmaxj With Vinin j < Vmaxj denote the minimum and maximum velocity in a
single dimensiorj.

An addition proposed by Shi and Eberhart [126] was a scalagalled theinertia weight, which
determines the acceleration or deceleration in the current direction. The inertia weight scales the compo-
nent indicating the particle’s current velocity, (t), in equation[(LI1), resulting in an alternative velocity
update equation,

Vij(t+1) = @vij(t)+corejt) [yijt) —xij(t)] 4 carzj(t) [¥ij(t) —xij(t)] (1.4)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

4 CHAPTERL. PARTICLE SWARM OPTIMIZATION

A higher value (usually chosed 1) for w causes patrticles to change direction more slowly and thus
to explore further along the currect direction of movement. A lower valuaedaauses particles to
be more strongly attracted to the personal best and neighbourhood best positions, which leads to better
exploitation.

Algorithm [1 describes the flow of the PSO algorithm for a maximization problem with objective
function f : R" — R. A similar definition is easily obtained for a minimization problem.

Algorithm 1: ContinuousPSO for maximization problems

SetN equal to the number of particles in the swarm;
fori=1,...,Ndo
Initialize X; uniformly random over the search space ;
Initialize v, =0 ;
Calculatef (%) ;
Initialize f(y;)
Initialize f(¥i) = —
end
while stopping condition is falsdo
fori=1,...,Ndo
// set the personal best position ;
if £(X%)> f(¥i)then
| V=%
end
// setthe neighborhood best position ;
for all neighbors | of particle do

if (f(%i) > f(§)then
| Y=

end
end
end
fori=1,...,Ndo
Updatev; according to equatiom (1.4);
UpdateX; accordingto equation[(1]2);
Calculate solution quality (X);
end

end

0,
0,

1.2.3 Swarm topologies

Oneof the strengths of PSO is the flow of information through the swarm due to the interaction of the
particles. Particles with a good objective function value attract other particles, hopefully to good areas
of the search space. Particles that have found a good solution attract particles for which they are the best
neighbor. If two particles and j are not connected (not in each other's neighborhood), then they can
not directly attract each other. If a common neighkds attracted to a good solutiarand becomes a

good solution itself, such that it is the best solution in the neighborhodd thien j can be said to be

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 5

indirectly influenced by. For each particle, the social structure, called the swarm topology, determines
which particles it can be attracted to.

Kennedy and Eberhait [63] proposed two possible social structures for the particle neighborhoods,
and called the two resulting algorithms the global best (gb@SIO and local best (IbgsPSO. The
gbest PSO uses star topology, while the Ibest PSO usesriag topology. The ring topology is a
loosely connected topology, while the star topology is one where each patrticle is directly connected to
all other particles in the swarm. A study of the impact of the swarm topology was done by Kennedy and
Mendes|[64], considering various topologies, including random, star, Von Neumann and ring topologies.
Kennedy and Mendes [64] suggested that\tbe Neumanmopology, which has an intermediate level of
connectivity, can be a good choice for a particle swarm.

Figure1.1 illustrates three of the topologies investigated by Kennedy and Mendes [64]: the star topol-
ogy (figurg 1.1(8)), the ring topology with neighborhood size four (figure 1.1(b)), and the Von Neumann
topology (figuré 1.1(¢)). The ring topology with neighborhood size four means that the particles lie in a
ring, with each particle connected to its two nearest neighbors on each side, so to four other particles in
total.

i

O

TNA

(@) (b) (©

Figurel.1: Swarm topologie$: (a) star topolofy,] (b) ring-4 topology,[arid (c) Von Neumann topology.

1.3 Discrete Particle Swarm Optimization

This section reviews discrete PSO algorithms developed to solve DOPs. First the binary PSO and its
variants are reviewed in sectién 1J3.1, followed in sedfion 1.3.2 by an overview of existing PSO algo-
rithms that are defined using mathematical sets. Section 1.3.3 mentions other discrete PSO algorithms
that do not fall in the two previous categories to provide a full picture.

1.3.1 Binary Particle Swarm Optimization approaches

A number of PSO algorithms that can be applied to DOPs closely follow the binary PSO algorithm first
proposed by Kennedy and Eberhart/[62]. The variants reviewed here are the (original) binary PSO, the
modified binary PSO, the probability binary PSO, and the catfish PSO.

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

6 CHAPTERL. PARTICLE SWARM OPTIMIZATION

1.3.1.1 Binary Particle Swarm Optimization

Kennedyand Eberhart [62] were the first to define a discrete version of the PSO algorithm, referred to
as the binary PSO (BPSO). In this algorithm the particle positions are binary strings, while the velocities
exist in continuous space. Velocities are mapped to a scalar value between 0 and 1 using a sigmoidal
transformation functionS. This scalar value is interpreted as the probability that the corresponding part
of the binary position string is bit 1 or bit 0. The velocity update equation of the BPSO algorithm is the
same as equatiop (1.4). Using the transformation function,

1

the position update becomes

1 ifrgj < S(VLJ'('[+ l))

) (1.6)
0 otherwise

X jt+1) = {

wherers j is an independent random variable, uniformly distributed@md). Eberhartet al. [3C] pro-
posed to use velocity clamping as defined in equalion (1.3) in BPSO to prevent saturation of the sigmoid
function.

Many variants of the BPSO algorithm have been proposed, e.g., Khatedd6€] defined a BPSO
that has separate velocity terms depending on whether a bit in the current positiorkie€ar 1, Gao
et al. [39] removed the randomness from the position update step, andetaaig[153] proposed the
guantum BPSO by introducing the idea of a superposition of states.

1.3.1.2 Modified Binary Particle Swarm Optimization

Shenet al. [125] introduced a new PSO algorithm called Modified PSO, which here will be called the
modified binary PSO (MBPSO). They investigated quantitative structure-activity relationships (QSAR),
the process by which a chemical structure is quantitatively correlated with a well defined process, such as
biological activity or chemical reactivity. The new PSO algorithm was applied to the problem of variable
selection in multiple linear regression (MLR) and partial least squares (PLS), which in turn are used in
many QSAR models.

The velocity update equation of MBPSO is the same as equatidn (1.4) used for continuous PSO with
inertia weight. For the position update in MBPSO, eachxbitt) in the position vectok;(t) is updated
according to:

X j(t) ifO<vijt+1) < pstat
X jt+1) = Yij(t) if Pstat< Vi,j(t+1) < 0.5(1+ Pstar) a.7)
¥ij(t) if0.5(1+4 psta) < Vi,j(t+1)<1
wherepsiais a parameter i0,1) called thestatic probability.
Shenet al. [125] stated that after the velocity and position updates have been applied, a fraction

of particles “are forced to fly randomly not following the two best particles”. This statement has been
interpreted as a random re-initialization of both the velocity and the position of a percentage of the swarm

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 7

at each iteration, similar to Met al. [91]. The fraction of particles that is re-initialized at each iteration
is denoted bypreset

1.3.1.3 Probability Binary Particle Swarm Optimization

Wanget al.[146] proposed a binary variant of PSO called the probability binary PSO (PBPSQO) and ap-
plied this to the multidimensional knapsack problem. Both the velocity and the position update equations
are the same as for PSO in equatidns|(1.4) (1.2). The continuous position klfelkith is also
called the pseudo-probability) is transformed to a binary position v&ateing a linear transformation
L(.):
L(%;(t+1)) = %+ 1)~ Roi (1.8)
’ Rmax— Rmin
{ 1 ifry<L(xX;(t+1))
0 otherwise

X jt+1) = (1.9)
wherer; is a uniform random variable chosen froid,1). The parameterBmin and Rnax define the
linear transformation and are usually chosen suchRhat > 0 andRmin = —Rmax-

The PBPSO algorithm was extended|inl [96] to also include a mutation operator. For each particle,
after the velocity and position of each particle have been updated, the mutation operator is applied. Each
bit then has a probabilitpmy: € [0,1] of mutating:

1-xj(t+1) if rj < Pmut

_ (1.10)
X j(t+1) otherwise

X j (t +1) = {

wherer; again is a uniform random variable chosen fr@nl). This second version of PBPSO is used
in the experiments reported in this thesis.

Note that the mutation operator has a direct effect on the position only for one iteration, as the velocity
v and the pseudo-probability are left unchanged by the mutation. At the next iteratiéris used to
rebuild the binary position vectot according to equatiori_(1.9), and no direct impact of the mutation
made during the previous iteration remainxinAn indirect impact of the mutation is in the update of
the velocityV according to equatiori (1.4), which uses the mutated position, and possibly through the
personal best positiop if the mutated positioR caused the personal best to be updated.

1.3.1.4 Catfish Binary Particle Swarm Optimization

Chuanget al. [20] introduced the catfish effect for PSO, with the new method called the catfish PSO

(CFPSO0). The effect is based on the practice by Norwegian fishermen to introduce catfish predators
into tanks in which captured sardines are held on their fishing vessels. This makes the sardines move
and keeps them alive before they are delivered to shore. The catfish effect for PSO is that, if the best
found fitness in the swarm stays constant for a given number of iterations, catfish particles are introduced
at extreme positions of the search space to replace the worst performing swarm particles. Continuous
CFPSO has two additional parameters to the normal parameters for the PSO algorithm: the number
of iterations the best found fithess needs to stay constant for the catfish effect to be activated, denoted

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

8 CHAPTERL. PARTICLE SWARM OPTIMIZATION

Ncongant @nd the proportion of worst particles in the swarm to be replaced by catfish particles, denoted
preplace

The CFPSO algorithm closely follows the continuous PSO algorithm with velocity update equa-
tion (1.4) and position update equatién {1.2). During each iteration, after the positions of all particles has
been updated, a check is made to see if the global best fitness has stayed conitant:fpiterations.

If this is the case, the catfish effect is activated and the particles in the swarm are ordered based on their
current fitness. TherepiaceN Worst particles are then removed from the swarm, and an equal number of
catfish particles are added to the swarm in their place. Each catfish particle’s position is constructed by
setting the value for each dimension separately to either the minimum value or maximum value for that
dimension randomly. So for a two-dimensional search space labehed a catfish particle’s position

is set to one of the following optiongminy, miny), (miny, max;), (max, miny), (max, max,). Chuang

et al. [20] did not mention how the velocity of each catfish particle is set. The implementation of CF-
PSO that is used in the experiments reported in this thesis set the initial velocity of the catfish particle
according to the method used at the swarm’s initialization.

Chuanget al. [21] adjusted the algorithm and applied it to feature selection. Instead of continuous
PSO, the basic algorithm followed is the Binary PSO outlined in settion 1.3.1.1. This binary algorithm
is called Catfish Binary PSO (CFBPSO). The positions of any catfish particles that are added to the
swarm are chosen randomly as either zero {]@f one ({1V), whered is the number of dimensions of
the search space. Note that this is different from the original CFPSO algorithm such that for CFBPSO
particles are reset to one of only two extremes of the search space.

The full Catfish reset algorithm for the CFBPSO is detailed in algorithm 2. The CFPSO and CFBPSO
algorithms can be used with any swarm topology, but the Catfish reset algorithm requires that track is
kept of the best fithess of the entire swarm.

Algorithm 2: Catfishreset algorithm for Catfish Binary PSO

if f(y)is unchanged for Nngant iterationsthen
Sort theN particlesx; from best to based on their current fitnefgs;) ;
for N x preplace particlesx; with the worst fitness in the swario
if ri < 0.5 (where ¥ is an uniform random number drawn fro(@,1)) then

% ={0)°
end
else % = {1}4
end
end

1.3.2 Discrete Particle Swarm Optimization using sets

This section describes and critiques existing discrete PSO algorithms using sets. These existing al-
gorithms are important in light of the stated objective of this thesis to construct a functional, generic
set-based PSO algorithm. The goal is to determine whether the existing algorithms already fulfill this
objective, and if not, in what manner the existing algorithms are lacking.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 9

The algorithm proposed by Corred al. [24] for attribute selection and the related algorithm by
Bock and Hettenhausen [10] for ontology alignment both have set-like characteristics, but both contain
problem specific elements. Especially, the conceptpgraonal likelihoodhat requires each element in
a particle position to have its own partial objective function value, prevents these algorithms from being
applied to many discrete optimization problems, including the MKP.

Veenhuis|[143] proposed a generic, set-based definition of a PSO algorithm. Velocities and positions
in this algorithm are both defined as sets. However, the chosen update equations lead the velocities and
positions to always increase in size, an effect cafletlbloating. To counter this, a reduction operator
with a relatively complex clustering mechanism was introduced. This clustering mechanism requires a
function that defines the distance between any two set elements, while a general mathematical set does
not support the concept of distance. Veenhuis|[143] has chosen a problem specific distance function,
meaning that the algorithm is no longer truly generic, and in its current form is not applicable to discrete
problems such as the MKP.

Neethling and Engelbrecht [102] proposed the set-based algorithm called SetPSO and applied it to
RNA structure prediction. The problem is defined as finding the correct stems (bindings of base pairs)
in the RNA structure from the set of all possible stems. Particle positions are defined as sets of stems. In
the position update, three probabilities help determine which elements are added and which elements are
removed from the position. Although generically applicable, recent wotk [79] has shown that SetPSO
performs less well on the MKP than other PSO methods: SetPSO was outperformed by a large margin by
the SBPSO (see chapfér 4) and BPSO (see sédction 1.3.1.1) algorithms. Hence, the SetPSO in its current
form can not be considered to be truly functioning on DOPs in general.

Chenet al.[17] proposed a generic set-based PSO method called S-PSO that can be used to adjust a
continuous PSO algorithm to a discrete one. S-PSO was applied to the TSP and the MKP. The candidate
solution represented by a particle position is called a set, but has a fixed size where for each “dimension”
of the set an element is chosen from a set of available elements. Thus the position can not be called a true
set. Velocity is defined asset with possibilitieswhich grows in size as the algorithm runs. Positions are
rebuilt at each iteration using a constructive process that may include heuristic operatetsal\fiA9)]
applied a variant of S-PSO based on (continuous) constriction PSO to the problem of cloud computing
workflow scheduling.

Khan and Engelbrecht [65] proposed an algorithm called fuzzy PSO (FPSO) to optimize the topol-
ogy design of distributed local area networks (DLANSs). The term fuzzy in FPSO refers to the fuzzy
aggregation operator, thumified And-Or operator, that is used to aggregate the multiple objectives in the
DLAN topology design problem into a single objective function. The particle position is defined as a set
of links between nodes in the network. The number of links in the position is eXdetl§, whereN is
the number of nodes in the network. The particle velocity is defined as algdt ekchange operations,
which removes a single link in the position and replaces it by another. Because the size of the position is
fixed, the algorithm is not generally applicable to discrete problems such as the MKP.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

10 CHAPTERL. PARTICLE SWARM OPTIMIZATION

1.3.3 Other discrete Particle Swarm Optimization algorithms

This section reviews a number of discrete PSO algorithms that do not follow the binary PSO paradigm
and which also are not set-based approaches. The discrete approaches reviewed in this section are the
angle modulated PSO, PSOs based on fuzzy logic, rank-based PSO algorithms, and PSO algorithms that
redefine the meaning of particle positions, velocities, and arithmetic operators.

1.3.3.1 Angle Modulation Particle Swarm Optimization

Pamparaet al.[110] developed a different approach to converting the continuous-valued velocity of PSO

to a binary string by applying the concept arigle modulation. Angle modulation PSO starts with a
swarm of particles in a continuous four dimensional space, and uses a continuous PSO algorithm to up-
date the particle velocities and positions. For each patrticle, the four position components are used as pa-
rameters for a trigonometric function, and this function is sampltiches to generate amdimensional
bit-string. If the function produces a positive value, then bit 1 is recorded, otherwise bit O is recorded.

1.3.3.2 Fuzzy Binary Particle Swarm Optimization

Fuzzy logic has also been used to construct discrete PSO algorithms. Where the particle position in
binary PSO is a binary vector with a “crisp” separation of bits into 0 and 1, fuzzy binary PSO instead has
a position vector with fuzzy bits. It uses a membership functic indicate a truth value ifD,1] for

the degree to which each fuzzy bit has value 1. The fuzzy PSO algorithm works in continuous space and
a separate mechanism calleefuzzifications used to convert the fuzzy particle position into a binary
vector. The first published article on using a fuzzy approach to the discrete PSQ is by [127&tRang

[111] and Sheret al. [124] provided refinements to the fuzzy method and applied it to the traveling
salesman problem (TSP). i al. [28] applied their fuzzy PSO to the shape matching problem, while
Abrahamet al. [1], Liu and Abrahaml[87], Liwet al. [8&€] applied fuzzy discrete PSO algorithms to job
scheduling problems and to the quadratic assignment problem.

1.3.3.3 Rank ordering in discrete Particle Swarm Optimization

The concept of rank ordering has been used to construct discrete PSO algorithms. These algorithms
transform a continuous-valued position to a discrete-valued position by determining the relative order
(rank) of the continuous values in a particle’s position. Tasgetteal. [135] introduced such a modifi-
cation to the continuous PSO algorithm and applied it to scheduling problems, exemplified by the single
machine total weighted tardiness problem. Solutions for such scheduling problems are sequences or
permutations of tasks that indicate the order in which the tasks are performed. A candidate solution is
represented as a sequelce: [S 1, . .., S n) Of the numbers 1,.. n, where each is unique and denotes
one of then tasks to be scheduled.

The particle velocities and positions are updated according to equdtiohs (1.4) and (1.2) respectively.
Each position¥;, is then translated to a sequergaising thesmallest position valuéSPV) rule. The
SPV rule takes the position componext;, with the smallest value ik, and sets; ; equal toj. Then

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 1. PARTICLE SWARM OPTIMIZATION 11

it takes the next smallest position componeqt, andsetss » = k. This process continues until the
sequencé& has been filled.

Similar algorithms have been proposed by Panhgl.[112], who used thgreater value priorityto
transform the continuous-valued positignto a sequenc& and applied the resulting PSO algorithm
to the TSP. Liuet al. [8€] used an almost identical approach caltadk order valueand applied this
method to the flow shop scheduling problem (FSSP).

1.3.3.4 Redefined Particle Swarm Optimization operators

Clerc [23] formulated a discrete PSO algorithm by redefining the particles, velocities and operators used
in PSO. A general mathematical specification is given as well as an implementation that is then applied
to the TSP. A particle position is defined as a sequendg 6fl arcs between nodes, wheXeis the
number of nodes in the TSP. A velocity is defined as a ligxathange operationg, j), where nodes

i andj in a position are swapped. Special operations are also defined for subtraction of two positions,
the addition of two velocities, and the multiplication of a scalar and a velocity. These new operators
are then used in a formulation of the velocity update equation in the discrete PSO that is very similar to
equation[(1.4) used in continuous PSO.

Wanget al. [145], Zhanget al. [156], and Zhonget al. [158] proposed similar approaches to mod-
ifying the PSO operators and each applied the resulting PSO to the TSka &aat [40] applied an
adapted PSO algorithm to the response time variability problem, where the particle velocity is defined
as an ordered list of transformations calledvements. Benameet al. [7] proposed a similar discrete
PSO and applied it to the frequency assignment problem. Chandrasekalajig] applied a discrete
PSO with redefined operators to the FSSP, where the velocity is a set of transpositions with ordering
values. The transpositions contained in the velocity are applied to the position in the order of high to low
ordering values.

1.4 Conclusions

A first objective outlined for this chapter was to determine the components that define a PSO algorithm,
so that these components can later be used to construct a set-based PSO algorithm iflchapter 4. To
do this, the canonical version of the continuous PSO algorithm was described and its constituent parts
considered in turn. The components of a PSO algorithm are identified as:

e A swarm of particles which each have a position and a velocity, whereby the position is updated
by adding the velocity to the current position. The algorithm’s power comes form the simple but
effective way the velocity is updated.

e The velocity update equation contains three components that together determine how a particle’'s
velocity changes:

— a cognitive component that describes the attraction of the particle to the best position in the
search space found by that particle previously,

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

12 CHAPTERL. PARTICLE SWARM OPTIMIZATION

— a social component that describes the attraction of the particle to the best position in the
searchspace found by any particle in its neighborhood, and

— an inertia component that causes the velocity to retain part of the direction it currently has.

e The impact of the swarm topology is highlighted and a trio of possible topologies were introduced.

Together with a description of the algorithm’s flow, this provides the framework to construct a set-based
algorithm in chapterl4 that is also a PSO algorithm.

The second objective of this chapter was to determine whether a functioning, generic, set-based PSO
algorithm already exists. For this a review of the appropriate literature was presented. It can be concluded
that such an algorithm is not yet available, as the reviewed algorithms all lack at least one of the attributes
of (i) functioning such that its use leads to good results in solving DOPs, (ii) being generically applicable
to all DOP and thus not contain any problem specific features like heuristics or operators specifically
defined for the problem domain, or (iii) not being truly set based:

e The SetPSO proposed by Neethling and Engelbrecht [102] was shown in [79] to perform badly on
the MKP and hence it does not fulfill the criterion of being an algorithm that is truly functioning
on this DOP.

e The algorithms proposed by Corretal. [24], Bock and Hettenhausen [10] and Veenhlis [143]
are not generic but each contains problem specific elements.

¢ In the algorithms proposed by Chenal. [17], Wu et al. [149], and Khan and Engelbrecht [65]
the candidate solution is represented by a particle position with a fixed size and which thus can not
be called a true set.

A functioning, generic set-based PSO algorithm is thus shown to not yet exist. Hence the generally
applicable, functioning set-based PSO algorithm that will be detailed in cHapter 4 is a real contribution
to the domain of discrete PSO algorithms.

The remaining two chapters in part | formally introduce two well-known DOPs: the multidimensional
knapsack problem in chaptféer 2 and the feature selection problem in chiapter 3. These two problems will
be used in paftlll to prove that the new algorithm proposed in chapter 4 is able to solve such DOPs and
to compare its performance against existing discrete PSO algorithms.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 2

Multidimensional knapsack problem

This chapter describes the multidimensional knapsack problem (MKP), an optimization problem that
has been used to test the performance of discrete optimization algorithms. This is one of the two sets
of problems that will be used in this thesis to test such algorithms, the other being the feature selection
problem that is described in chaptér 3. This chapter has two objectives, the first of which is to formally
define the MKP and list its main characteristics. The second and more important objective is to give
a brief overview of the various methods that have been employed to solve the MKP, with a focus on
approaches using PSO, and thereby convince the reader that the MKP is a valid problem on which to test
discrete PSO algorithms. The sections of this chapter follow these two objectives, while also introducing
a commonly used set of benchmark problems and the variables that help describe these problems.

2.1 Introduction

The previous chapter dealt with the PSO algorithm and laid a strong emphasis on PSO variants that have
been used to solve DOPs. This gave a background against which a new discrete PSO algorithm will
be introduced in chaptét 4. In order to determine the usefulness of this new algorithm and whether it
forms a relevant contribution to the field of swarm intelligence, the algorithm will need to be tested on
actual DOPs. This chapter introduces one such problem, the MKP. First mentioned in 1955 by Lorie and
Savagel[89] in the form of the problem of capital budgeting, the MKP has become the catch-all name for
any zero-one integer problem with non-negative coefficients, as such problems can all be re-formulated
as MKPs.

The first and relatively simple objective of this chapter is to introduce the MKP and list its main
characteristics. By exhibiting the exact definition of the problem, all further analysis is set on a solid and
unambiguous base. Besides the exact equations that define the problem, some further features are sought
that can be useful in categorizing MKPs. These categories not only deal with whether a particular set of
problem is easy or hard to solve, but can also be used to gain insight on what parameter values for a PSO
algorithm can be expected to work well on a specific problem.

The second and more important objective of this chapter is to give a brief overview of the vari-
ous methods that have been employed to solve the MKP, with a focus on approaches using PSO. This

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

14 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

overview is meant to convince the reader of the non-trivial nature of the pranhehshow that a wide

range of approaches including PSO have been employed in solving the MKP. So convinced, the MKP
can be seen as a valid choice test bed of the new PSO algorithm introduced inlchapter 4 and other discrete
PSO algorithms it will be compared to. A well known test-bed ensures that no simple exploits exist, and
proves that the MKP is sufficiently hard to test the quality of the optimization algorithms. The introduc-
tion of work done on MKPs using discrete PSO algorithms will also help to determine later {n_part Il
which PSO algorithms are included in the comparison to the newly developed set-based algorithm.

This chapter begins with a formal definition of the MKP in secfiod 2.2, followed in seCtidn 2.3
with a description of a number of benchmark problems that recent studies into the MKP frequently
use. The introduction of these benchmark problems allows to naturally mention some of the features of
MKP that can help determine whether a particular MKP is simple or hard to solve. Then a review is
made of previous work on solving the MKP in section] 2.4, with a more detailed view on approaches to
solve the MKP using PSO outlined in section 214.2. With the specific view to help determine which PSO
algorithms are to be included in a comparison of PSO algorithms on the MKP in chiapter 5,[sectioh 2.4.2.3
reviews and analyzes in detail the work of Waat@l. [146] who have already made such a comparison.

2.2 Definition of the Multidimensional Knapsack Problem

The MKP, also called the multidimensional zero-one knapsack or rucksack problem, is a discrete op-
timization problem. The aim of the problem is to maximize the total value of all items to be put in a

knapsack, i.e.
n

max) ViX (2.1)
2

subject to the zero-one constraints

x €{0,1},vie{1,...,n} (2.2)
and weight constraints

n
ZWi’in SCj,Vj e{l,...,m} (2.3)

i=

There arenitems in total, each with value. The binary variable; indicates whether the iteims present
in the knapsack or not. These in-or-out constraints make the problisti@teoptimization problem
and increase its complexity above, for example, relaxations of the problem whegeatlkenly limited
to lie within the rang€0,1].

The problem also contaima weight constraints. Items have a separate and distinct weight for each
weight constraint, such that the weight iterhas with regards to weight constraiptan be denoted
w;,j. The weight constraint itself is defined such tgaw; ; X;, the total weight for constraint may not
exceed the capacity;. In the remainder of this thesis, all mention of the MKP’s constraints refer to the
weightconstraints, as the zero-one constraints are considered part of the definition of the MKP as a class
of discrete optimization problems.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 15

A well-formulated multidimensional knapsack problem also adheres to the value constraints,
vi>0, Vie{l,....n} (2.4)
and constraints on the total weight

n
w; j <C; <.ZWi7j, Vie{l,...,n},je{1,...,m} (2.5)
i=

The value constraint means that each item has a positive value and thus ensures that no items can be
simply disregarded as having no contribution to the value to be maximized. The constraints on the total
weight have two implications. The first implication is that each item can indeed be included in the
knapsack. This means that for each weight constraint in equation (2.3) the cafacitxceeds the
j-weight of each item denoted byw; j. The second implication is that each weight constraint indeed
constrains the problem and can not be ignored, by virtue of the fact that the capaisitiess than the

sum of j-weights of all items.

The MKP has been proven to be an NP-complete optimization problem [43]. This means that no
method of solving the problem can exist that is guaranteed to find the solution within polynomial time
Z xN for some finite ordeN wherex is the number of items in the MKP anflis a constant. Note
furthermore that any zero-one integer problem with non-negative coefficients can be formulated as a
MKP. The first mention of such problems was with regards to capital budgeting [89].

2.3 Benchmark problems

Recent studies into the MKP frequently use the same benchmark problems to compare the performance
of algorithms. Two sets of problems are distinguished, which are here denoted as the large MKP and
the small MKP. The large MKPs were constructed and introduced by Chu and Beasley [18]. The small
MKPs form a collection of 55 problems that have been mentioned in literature prior to the paper by
Chu and Beasley [18]. Both sets of problems are available on-line at the Operations Research Library
(ORLib) athttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html.

For these small MKPs, the number of itemsanges from 6 to 90 and the number of constraints
ranges from 2 to 30. The optimal solution is known for all small MKPs. The small MKPs are listed in
table[5.1 in section 5.2.1.1. Note that for each problem, the problem name reflects the filename from the
ORLib source the problem comes from, plus a number indicating which problem from that file it refers
to. For example, “mknap2-3” is the third problem found in the filknap2.txt. Table 5.1 also includes
the number of timea and the number of constraimsfor each of the 55 small MKPs.

Chu and Beasley [18] have generated the large MKPs randomly. Note that for each such problem
generated, the number of items, the number of constraints), and another variable called tightness
ratio, r, which is defined below, were determined by the problem specification before the weights and
capacity were generated randomly. The latter began by randomly choosing the weightsl values
vi. The capacity constraint variabl€s in equation[(2.B) were determined by the random weights and

© University of Pretoria

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

16 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

the chosen tightness ratipaccordingo the formula
m
Ci = ZLWi’j’ Vjie{l,...,m} (2.6)
i=

The large MKP consists of a collection of 270 MKPs with number of iteras100,250, or 500, number

of constraintan= 5,10, or 30, and tightness ratiodh,0.50, or 075. The three choices for each of the
three parameters, m, andr, yield 27 different problem specifications. For each problem specification,
10 problem instances are included in the problem set.

The large MKPs are labeled according to the filename they are found in combined with the number
of the problem in that file. There are nine files named “mknapcbl” to “mknapchb9” which each contains
30 problems with the same parameterandm. The 30 problems are 10 random instances each with
tightness ratia = 0.25 for problems 1 to 1@, = 0.50 for problems 11 to 20 and= 0.75 for problems
21to 30. An example label is thus “mknapcb3-24", which is the 24th problem found in file “mknapcb3”.

In general, these three problem parametensy, andr, have the following effects on the MKP search
space:

e alarger number of items, increases the search space and hence makes the problem of finding the
optimum harder,

e alarger number of constraints, makes the feasible part of the search space smaller, but no simple
relationship exists between the size of the feasible search space and the difficulty in solving the
MKP, and

¢ alarger tightness ratio, means that the weight constraints kegsrestrictive and that the feasible
part of the search space becomes larger.

The optimal solution is known for some but not all large MKPs. In order to be able to compare the
quality of solutions across problems for the large MKPs, Chu and Beasley [18] obtained an upper bound
for the objective function value by solving the linear programming (LP) relaxation of the large MKPs.
The LP relaxation of the problem changes the zero-one constraint in eqliation (;2)am an integer
constraint to a continuous constraints:

X €[0,1], Vie {1,...,n} (2.7)

thereby making the problem easier to solve and no longer NP-hard. The LP relaxed version of the
MKP can be efficiently solved using standard LP solvers [18]. The bounds found by solving the relaxed
problem are available at the ORLib website.

2.4 Literature on solving the Multidimensional Knapsack Problem

This section describes some of the main approaches from literature used to solve the MKP. The descrip-
tions are split between approaches involving PSO and other methods, where the latter are mentioned
first. For methods used to solve the MKP using PSO, a further distinction is made between approaches
that use repair operators and those using penalty functions.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 17

2.4.1 Approaches not involving Particle Swarm Optimization

An overview of exact methods and heuristics used to solve the MKP can be found in_[18, 67] and
a recent update in_[115]. This section mentions work that uses exact approaches, primal heuristics
and approximations, bound based heuristics, and work on worst-case analysis, before moving on to
population based methods.

Early exact approaches to solve the MKP used branch-and-bound methods combined with various
relaxations of the integer constraints of the MKP, including linear programming (LP), Lagrangian, sur-
rogate and composite relaxations![42]. Dynamic programming and iterative schemes for LP were devel-
oped, but only limited success was reported [104, 132].

As exact methods are impractical for larger problems given the NP-hardness of the MKP, heuristic
methods were then employed. Early heuristic approaches used primal heuristics starting with an empty
solution and building this up using greedy methods with different functions to weigh the utility of each
item to be added [90]. Kellerer [61] proposed an approximation scheme based on a generalized greedy
algorithm and proved it could approximate a solution for the MKP in linear time.

Bound based heuristics use an upper bound on the optimal solution to the MKP. Similar relaxation
techniques as used in the exact approaches were utilized: Lagrangian, LP, surrogate, and composite
relaxations. Chu and Beasley [18] and Khetrial. [67] employed a LP relaxation technique. Vasquez
and Haol[141] implemented a tabu search heuristic which they combined with LP to form an efficient
way to solve the MKP.

Another approach used is to investigate the worst-case or probabilistic performance of different mod-
els on a given MKP. Averbakh|[4] used this approach to develop a fast statistically efficient approximate
algorithm with linear running time complexity for problems with random coefficients.

Population based optimization algorithms have also been applied to the MKP including genetic al-
gorithms (GA) [18| 67], ant colony optimization (ACQ) [73], cuckoo search [82], and PSO.

The current state of the art consists of hybrid algorithms that include MKP specific heuristics.
Smaller MKP benchmark problem are consistently and perfectly solved be all of these algorithms. There
is, however, no single algorithm that performs best on all of the larger benchmark problems, like those
introduced by Chu and Beasley [18]. The algorithms that are considered state-of-the-art for the MKP
are:

e The tabu-search algorithms embedding effective preprocessing by Vasquez and Hao [141] and
Vasquez and Vimont [142],

e a heuristic combining two specific constraint propagations by Vireobat. [144],

e an algorithm that solves the MKP by solving a series of smaller sub-problems generated by subse-
guent linear programming relaxations of the original MKP by Hanafi and Wilbaut [51], and

e an exact method based on a multi-level search strategy by Boessikfl13].

The next section deals with PSO based approaches to solving the MKP. A number of issues that are
relevant for any population based approach to solving the MKP are addressed in this next section, dealing
with the use of repair operators and penalty functions.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

18 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

2.4.2 Approaches involving Particle Swarm Optimization

PSOhas proven to be a popular choice of population based approaches to the MKP, primarily due to
its simplicity. When applying PSO or other population based methods to the MKP, it is possible that
particles stray into infeasible parts of the solution space: the candidate solution represented by a particle
does not satisfy all the constraints posed by the MKP. Two different mechanisms have been used to
address this problem: repair operators and penalty functions. The overview of previous work on the
MKP using PSO presented below is grouped according to these two mechanisms.

2.4.2.1 Repair operators

A first method used to deal with a swarm of particles in a PSO algorithm leaving the feasible part of the
MKP’s solution space is to use repair operators. These operators ensure that once a particle leaves the
feasible part of the solution space it is immediately “repaired” and converted to a feasible solution.

Kong and Tianl[72] used the binary PSO from section 1.8.1.1, and constructed two variants: PSO-R
which included a heuristic repair operator to avoid infeasible solutions, and PSO-P which applied a
penalty function. The repair operator process consists of first determining the so-called pseudo-utility of
each item before the PSO algorithm itself is run. The pseudo-utility draws closely on information specific
to the MKP domain. Then, if during the run of the PSO-R algorithm a particle leaves the space of feasible
solutions, it is moved back into feasible space in two phases. In the first phase labeled “DROP”, the items
that are included in the particle’s position are listed in order of increasing pseudo-utility and removed
one-by-one until no constraints are violated. Then in the second “ADD” phase, items are investigated
in order ofdecreasingpseudo-utility and added to the particle’s position as long as no constraints are
violated. The two algorithms PSO-P and PSO-R were compared using the quality of the solution found
on 7 small MKPs and 10 large MKPs. PSO-R outperformed the PSO-P algorithm on all but one simple
problem, on which both algorithms performed equally well. The PSO-P algorithm is described below in
sectior 2.4.2]2. Kong and Tian [72] noted that the repair operator plays a critical role in quickly finding
good solutions.

Labedet al.[78] developed the Modified Hybrid Particle Swarm Optimization (MHPSO) algorithm
which combines PSO with two different particle repair operators and a crossover operator from GAs.
The first repair operator called the Particle Repair Algorithm (PRA) randomly choses items to remove
from an infeasible candidate solution until it no longer violates any constraint. A second operator called
Check and Repair Operator calculates a measure called profit density to determine which item to remove
from an infeasible solution. Which repair operator is used in a specific iteration of the algorithm is not
made clear.

The algorithm was tested on 25 small and 10 large MKPs from the benchmark problems mentioned
in sectiong 213 an@5.2.1. It is not possible to determine how well the algorithm performed, as no details
were given for the experimental set-up, nor was the algorithm compared to any other known algorithm.

Gherboudget al.[44] proposed the New Hybrid Binary PSO algorithm (NHBPSO) which combined
PSO with a crossover operator from GAs and a repair operator equal to the PRA operator used in [78].
This NHBPSO method is compared to a gbest BPSO algorithm with an unspecified penalty function.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 19

Details on chosen parameters, swarm size and number of iterations are mSkertpoudjet al. [44]

ran 30 independent runs of both algorithms on 25 small MKPs and 10 large MKPs, with the NHBPSO
showing the best average result on all 35 problems. Although no such analysis is included in the paper,
this indicates statistically significant outperformance.

The work by Cheret al.[17] was already mentioned in section 1]13.2 as having introduced a set-based
PSO algorithm. They listed two variants that were applied to the MKP, i.e. the PSO algorithms labeled
S-CLPSO-V1 and S-CLPSO-V2, where CLPSO refers to the comprehensive learning PSO algorithm
introduced by Lianget al. [85]. The first variant, S-CLPSO-V1, only selects feasible elements in the
position updating procedure so that the feasibility of the solutions are always guaranteed. The second
variant paired the S-CLPSO algorithm with the MKP repair operator introduced by Chu and Beasley
[18], which is similar to the “DROP” and “ADD” operators described above for the work by Kong and
Tian [72]. S-CLPSO-V2 compared favorably to the PSO-P and PSO-R algorithms from Kong and Tian
[72] mentioned above, and was also shown to achieve similar quality of solutions as two ACOs and
one evolutionary algorithm. The S-CLPSO algorithms use domain specific information to either only
construct feasible solutions or use a repair operator to achieve feasible solutions for the MKP.

The PSO algorithms using repair operators described in this section have been shown to help PSO
achieve a higher efficiency in solving the MKP than algorithms without repair operators. The repair
operator incorporates knowledge from the domain of knapsack problems to avoid searching known sub-
optimal regions of the solution space. Results seem to indicate that the appropriate repair operator is of
bigger influence on the success of the PSO algorithm than the PSO algorithm itself. However, no specific
study was found that focused on the exact contribution of a repair operatarvisthe PSO algorithm.

A benefit of the dominance of the repair operator is that less effort needs to be expended on choosing the
best PSO algorithm or finding the best parameters for that algorithm. These domain-specific operators,
however, make it harder or impossible to apply the algorithms to different problem domains.

2.4.2.2 Penalty functions

A second method to deal with particles that leave the feasible part of the MKP’s solution space is to
allow the particles to remain in the infeasible part of the solution space, but to apply a penalty to the
fitness of the particle. Different kinds of penalty functions have been proposed, ranging from penalties
proportional to the amount with which a constraint is breached to functions that apply an infinite penalty
to infeasible solutions. The work by Olsen [107] is an early overview of the main penalty functions that
are in use.

Hembeckeret al. [52] used the binary PSO combined with a penalty function to steer the search
towards solutions that satisfy the MKP’s constraints. The penalty was set proportional to the total amount
of excess in the knapsacks. The problem set to which the algorithm was applied consisted of 10 small
MKPs with the number of items), ranging from 28 to 105 and the number of constraimtsequal to
2 or 30. Only 300 iterations were performed and the algorithm was run 100 times on each of the 10
problems. For only one problem the optimum was found in at least one of the 100 runs, with the author
suggesting that more iterations would be required to achieve better results. Thus the study by Hembecker
et al. [52] does not give an indication of whether the penalty function approach is effective.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

20 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

As discussed in sectign Z2.4.P2.1, Kong and Tian [72] used the binary PSO BiiKfhand constructed
two variants: PSO-R which included a heuristic repair operator, and PSO-P which applied a penalty
function. The penalty function used in PSO-P applies a penalty that increases linearly with the amount
that constraints are violated. The formula for the objective functiorcluding this penalty is

f= _ivixi - poslin(Mi <'—§1Wi’in —C,-)) (2.8)

where the penalty parametevk are large scalars and the functipaslinis defined as

) s ifs>0,
poslins) = (2.9)
0 ifs<o.

The two algorithms, PSO-P and PSO-R, were compared using the quality of the solutions found for
seven small MKPs and 10 large MKPs. PSO-R outperformed the PSO-P algorithm on all but one simple
problem, on which both algorithms performed equally well. The results showed that a penalty function
approach applying PSO on the MKP can work, but also that in this case problem domain specific repair
operators performed better than a problem domain specific penalty function.

The PBPSO algorithm introduced by Waagal. [146] was discussed in sectién 1.3]1.3. In their
study Wanget al. [146] applied PBPSO to the MKP and the performance of the PBPSO algorithm was
compared to that of the BPSO (see secfion 1.B.1.1) and MBPSO (see Eecfion 1.3.1.2) algorithms. Wang
et al. [146] mentioned that a penalty function was used and in the article they referred to the work by
Olsen [107]. Unfortunately, the exact penalty function used is not mentioned. The authors concluded
that the PBPSO algorithm exhibited better optimization performance in terms of convergence speed and
global search ability than BPSO and MBPSO. Only 10 small MKPs were used and no statistical test was
performed by Wangpt al. [146]. Because the aim of the study reviewed corresponds closely to some
of the objectives of this thesis, it is important to determine the statistical validity of this conclusion. It
proved possible to test for statistical significance of the results reported in the study and the outcome
of this statistical analysis is listed in section 2.4.2.3. The PBPSO algorithm could only be shown to
outperform MBPSO but not the BPSO. The work by Weetgal. [146] shows that it is possible to
compare discrete PSO algorithms, but that it is also clear that a larger number of problems is required in
order to be able to draw statistically significant conclusions about relative performance. It is also noted
that the control parameters of MBPSO and BPSO were not tuned, but values known from earlier studies
were used, while for PBPSO only a minimal investigation was conducted on the valigg,aind
Rmnax- It is unclear whether better tuned versions of the three algorithms would show the same relative
performance.

Deep and Bansal [26] proposed a new method called Socio-Cognitive Particle Swarm Optimization
(SCPSO) and applied it to the MKP, comparing the new algorithm’s performance to that of BPSO. The
objective function including an unspecified penalty function approach was used for handling capacity
constraints. A star topology was used with a fixed swarm size of 40 particles. No tuning was performed
for either algorithm. Both algorithms were applied to the seven small MKPs from thekiteip1.txt.

Thirty independent runs were performed for each problem and the number of function evaluations was

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 21

limited in each run to 1000 times the number of itamd hisresulted in a maximum number of iterations
ranging from 150 for mknap1-1 to 1250 iterations for mknapl-7. For details on the specifications of these
seven problems, see tablel5.1. Deep and Bansal [26] showed that for four out of seven problems SCPSO
outperformed BPSO. For the first three problems, both algorithms were able to solve the problems, but
the paper did not include a statistical analysis. Due to the limited number of problems and the fact that
both algorithms achieved a perfect success in solving the first three problems, no statistically significant
outperformance could be determined using the method outlined in apdendix E. Because only small
MKPs were considered, it is as yet unclear whether the SCPSO algorithm works well on larger MKPs.
Recapping the work done on using PSO with penalty functions on the MKP, one first observes that
the work of Olsen [107] showed that many variants of penalty functions exist. These variants range from
a simple penalty function that applies a value of minus infinity to infeasible solutions, to those that try to
incorporate more information about the problem domain to better steer the search. The latter approach
more closely links the PSO algorithm’s objective function to the domain of the MKP, and does not allow
such linked PSO algorithms to be easily applied in the same form to DOPs from a different domain. This
use of domain specific information is, however, weaker than that used by the repair operators reviewed in
sectio 2.4.2]1. The work by Kong and Tian/[72] and Gherbetid].[44] indicates that PSO algorithms
using repair operators can achieve better solutions than PSO algorithms using penalty functions.

2.4.2.3 PSO comparisons on MKP by Wanegt al.

As mentioned previously in section 2.4.2.2, Wat@l.[146] compared the BPSO, MBPSO, and PBPSO
algorithms on a number of MKPs and concluded that the PBPSO exhibited better optimization perfor-
mance in terms of convergence speed and global search ability than BPSO and MBPSO. This section
contains a statistical analysis of the results reported in the study by Afaalg[146]. The BPSO,
MBPSO, and PBPSO algorithms are described in sedtions 1.8.1.1,11.3.1[2, and 1.3.1.3 respectively.

This section uses two different measures of the quality of results achieved by the different algorithms.
Firstly, the average error denotes the percentage deviation from the known optimum for a given instance.
Secondly, the success rate denotes the percentage of independent runs that found the optimum for a given
instance.

All average error and success rate numbers in this section are copied or computed directly from [146].
Table[2.1 summarizes the average errors and success rates of three PSO algorithms on 10 small MKPs.
The number of problems solved perfectly in all 20 runs of the algorithm is listed as “# perfect”, while “#
failure” indicates the number of problems for which the algorithm was not able to find the optimum in
any of the runs.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

22 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 2.1: Summary of results from Waegial. on 10 small MKPs. Bold face indicates statistically
significant outperformance of one or more algorithms.

BPSO (rank)| MBPSO (rank)| PBPSO (rank)

avg error 1.09% (2.20) 159% (2.40) 0.80% (1.40)
stdev error 1.40 % 2.64 % 1.02 %
average SR 41.0% (2.30)] 36.5% (2.40) 49.0% (1.30)
stdev SR 44.9 % 45.0% 41.6 %

perfect 3 (2) 3 (2) 3 (2)
failure 3 (25) 3 (25) 0 (1)
P-value avg error 3.68 % 1.27%

significant avg errof ~ Best Best

P-value SR 1.27% 0.70 %

significant SR Best

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 23

The detailed results underlying table]2.1 are found in table 2.2 for the averageermwoblem and
in table[2.3B for the success rate per problem.

Table 2.2: Average error results from Waeagal. on 10 small MKPs. Results shown are the average

of 20 independent runs of the algorithms. Bold face indicates statistically significant outperformance of
one or more algorithms. Note that Waegal. used the acronym KBPSO to denote what is called BPSO
here.

Problem Name Group \ n m avg error (rank}avg error (rank}avg error (rank)

mknapl-1 Petl Simple| 6 10 0.00% (2)| 0.00% (2)| 0.00% (2)
mknapl-2 Pet2 Simple |10 10, 0.00% (2) | 0.00% (2)| 0.00% (2)
mknap1-3 Pet3 Simple |15 100 0.00% (2)| 0.00% (2)| 0.00% (2)
mknap2-43Pb4 Simple |29 2| 346% (3)| 289% (2)| 216% (1)
mknap2-44Pb5 Simple {20 10} 0.37% (2)| 1.31% (3)| 021% (1)
mknap2-45Pb6 Simple |40 300 3.74% (2)| 869% (3)| 298% (1)

mknap2-1 Sentl Comples0 30, 1.48% (3)| 1.01% (2)| 098% (1)
mknap2-2 Sent2 Complex60 30, 0.60% (2)| 0.69% (3)| 058% (1)
mknap2-22Weish12 Complex50 5 069% (3)| 035% (2)| 0.11% (1)
mknap2-30Weish20 Complex70 5/ 059% (1) | 097% (3)| 093% (2)

average 1.09% (2.20)] 1.59% (2.40) 0.80% (1.40)
perfect 3 (2) 3 (2) 3 (2)
failure 3 (25) 3 (25) 0 (1)

Table 2.3: Success rate results from Wangl. on 10 small MKPs. Results shown are the combined
success rate over 20 independent runs of the algorithms. Bold face indicates statistically significant
outperformance of one or more algorithms. Note that Weingl. used the acronym KBPSO to denote
what is called BPSO here.

Problem Name Group [n m SR (rank) SR (rank) SR (rank)

mknapl-1 Petl Simple| 6 10{100% (2) |100% (2) |100% (2)
mknapl-2 Pet2 Simple |10 10/100% (2) |100% (2) [100% (2)
mknapl-3 Pet3 Simple |15 10/100% (2) |100% (2) [100% (2)
mknap2-43Pb4 Simple |29 2 20% (2) | 15% (3) | 40% (1)
mknap2-44Pb5 Simple |20 10 65% (2) 5% (3) | 75% (1)
mknap2-45Pb6 Simple |40 30] 10% (2.5)] 10% (25)| 15% (1)

mknap2-1 Sentl Comples0 300 0% (25)] 0% (25)] 5% (1)
mknap2-2 Sent2 Complex60 300 0% (25)] 0% (25)] 5% (1)
mknap2-22Weish12 Complex50 5/ 15% (3) | 35% (2) | 45% (1)
mknap2-30Weish20 Complex70 5| 0% (25)] 0% (25)] 5% (1)

average 41% (2.2)| 37% (24)] 49% (1.4)
perfect 3 (2) 3 (2) 3 (2)
failure 3 (25) 3 (2.5) 0 (1)

The specifications of the three algorithms and the experimental procedureddllny Wanget al.
[146] are repeated here. For the first six problems, together called the “simple group” of problems, the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

24 CHAPTER2. MULTIDIMENSIONAL KNAPSACK PROBLEM

swarm size was set to 30 particles and a maximum of 3000 iterations of the algongmnperformed.

For the final four problems, together called the “complex group” of problems, the swarm size was set
to 60 particles and a maximum of 4000 iterations of the algorithms were performed. In all cases 20
independent runs of the algorithm were performed. For MBPSO the parametes set equal to 0.5

and kept constant. For BPSO and PBPSO the common parameters were kept equal and-s6t8p

c1 = 2.0 andc; = 2.0. No velocity clamping was used in the BPSO. For PBPSO the remaining parameters
Rmin andRmax Were set to -50 and 50 respectively.

The newly introduced PBPSO algorithm performed best measured in average error (0.80% versus
1.09% for BPSO and 1.59% for MBPSO) as well as success rate (49.0% versus 41.0% for BPSO and
36.5% for MBPSO). The BPSO and MBPSO algorithms showed a somewhat similar performance, with
BPSO achieving a slightly better average rank. Due to the limited number of problems in the problem set,
however, statistically significant outperformance is not clear cut. Using a significance levet 626,
only based on the success rate is PBPSO shown to outperform the other two algorithms. Based on
the average rank of the average error numbers, PBPSO is shown to outperform MBPSO, but then no
significant difference in performance is seen compared to BPSO. The statistical procedure used to make
these comparisons is outlined in apperidix E.

Note that, although the appearance of the tables in this section is similar to that used when reporting
on the experiments performed for the purpose of this thesis in ctidpter 5, the results for each algorithm and
problem reported in this section are different and not directly comparable to the results from chapter 5:
Wang et al. [146] used much less extensive tuning for the algorithms; the number of iterations, the
swarm size and the number of independent runs of the algorithm all differ from the choices made for the
experiments reported in this thesis.

To repeat the conclusion from the previous section, the work by Vedral. [146] showed that
it is possible to compare discrete PSO algorithms, but that a larger number of problems is required
in order to be able to draw statistically significant conclusions about relative performance. Also, the
control parameters for MBPSO and BPSO were not tuned, but values known from earlier studies were
used, while for PBPSO only a minimal investigation was conducted on the vallag.EndRmax Itis
unclear whether better tuned versions of the three algorithms would show the same relative performance.

2.5 Conclusions

The first objective of this chapter was to introduce the MKP, list its main characteristics, and identify
further features that can be useful in categorizing MKPs. A formal mathematical definition of the MKP
as a maximization optimization problem was given, with the variablies the number of iteman for

the number of constraints and the weights for itemi relative to constrainj.

By reviewing a well-known set of benchmark problems in se¢fioh 2.3, more insight was gained on the
impact of the variables andm on the hardness of a MKP. Another feature considered to be relevant for
the randomly generated problems in the large benchmark problems was the tightnesS faimsights
pointed to the conclusion that different algorithms, or even different tunings of the same algorithm, can
perform better on a set of problems with a certain combinatiam of, andr, while it will perform less

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 2. MULTIDIMENSIONAL KNAPSACK PROBLEM 25

well on sets of MKPs with different specificationsmfm, andr.

Thesecond and more important objective of this chapter was to give a brief overview of the various
methods that have been employed to solve the MKP, with a focus on approaches using PSO. A brief
overview was given of exact methods and some recent work using population based methods other than
PSO. Then a more detailed review was made of work from literature where the PSO was applied to
the MKP. A defining characteristic in these approaches was how the algorithms reviewed dealt with
the problem of swarm particles straying into infeasible parts of the solution space where the candidate
solution represented by a particle does not satisfy all the constraints posed by the MKP. Two different
mechanisms have been used to address this problem: repair operators and penalty functions.

The best solutions for the MKP have been achieved by algorithms that explicitly use features from
the problem domain. Some of the most successful of these have been population based methods using
repair operators. Some authors, for example Kong and Tian [72], have combined such repair operators
with the PSO, while others used different population based methods, like Chu and Beasley [18] who
used a GA. The conclusion is that the repair operator makes these methods more successful than other
population based approaches, but there is no clear indication that PSO underperforms or outperforms
other population based approaches in this setup.

Approaches to solve the MKP using PSO and penalty functions were shown to be effective, though
these yielded poorer results than PSO algorithms using a repair operator. A benefit of the penalty function
approach is that the amount of problem domain specific knowledge that is used can be proportioned.
Thus, it is possible to chose a penalty function that is generic and can be employed on problem domains
other than the MKP without the need for redesign. Most articles reviewed that use penalty functions,
however, do not specify the exact penalty function used. Therefore it is not known if using a generic
penalty function with the minimum number of domain specific features is an effective way to solve the
MKP.

The review of methods to solve the MKP using PSO should be considered sufficient to prove the
non-trivial nature of the problem: first, new discrete PSO algorithms are introduced and first tested on
the MKP, indicating that it is an important set of problems to use for testing new algorithms. Second,
note that for some of the benchmark problems that have been used in research on the MKP since 1998, it
is still not clear if the optimal solution has been found. Thus, it seems fair to conclude that the MKP is a
valid test bed of the new PSO algorithm to be introduced in chapter 4 and other discrete PSO algorithms
it will be compared to.

The next chapter will introduce a second DOP, namely the feature selection problem. Besides a for-
mal definition and cursory investigation of salient aspects of the problem, the main objective of ichapter 3
will be the same as this chapter’s: review the literature on methods used to solve the DOP to see if it
can form a test bed for the new PSO algorithm to be introduced in cHdpter 4 and other discrete PSO
algorithms it will be compared to. For the MKP itself, the experiments conducted and reported in this
thesis in order to test PSO algorithms are detailed in chapter 5.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 3

Feature selection problem

This chapter describes the feature selection problem (FSP), an optimization problem from the domain of
machine learning. This is the second of two sets of problems that will be used in this thesis to test the
SBPSO algorithm, the other being the MKP that was described in the previous chapter.

This chapter has two objectives, the first of which is to formally define the FSP as well as the underly-
ing classification problem and list the FSP’s main characteristics. The second objective is to give a brief
overview of the various methods that have been employed to solve the FSP, with a focus on approaches
using PSO. This overview is meant to convince the reader that the FSP is a valid problem on which to
test discrete PSO algorithms like the SBPSO.

This chapter formally defines the classification problem and the FSP, followed by a brief overview of
the literature on solving the FSP. The final section also introduces a set of benchmark datasets from the
UCI Machine Learning Repository that help define a set of benchmark FSP’s.

3.1 Introduction

The FSP is a problem in the domain of machine learning where an algorithm is used to label or classify
data. The goal in the FSP is to select the optimum subset of variables that will result in the best accuracy
for the underlying classification problem. This chapter aims to formally introduce the FSP, its relation
with the underlying classification problem, and the place of both within the wider field of machine
learning. In the course of this brief review, important concepts like classifiers, classification accuracy,
and cross validation will be introduced. These concepts will be important in the construction of the
experiments for the FSP in chapkér 6. In those experiments four PSO algorithms will each be used to
select a subset of features which in turn will act as input for the underlying classification problem. Three
different classifiers will use the input features to determine the class labels, i.k-ndaest neighbor
classier, decision trees, and the Gaussian Naive Bayes classier. This chapter will also introduce these
three classifiers in some detail.

The second objective of this chapter is to convince the reader that the FSP is a valid test problem
on which to compare the SBPSO algorithm to other PSO algorithms. In order to achieve this goal a
review is made of the literature on the FSP and ways that have been employed to solve the problem. The

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 27

main approaches will be touched upon, with specific focus on those methodsépbpulation based
methods such as PSO.

Thus it will be made clear that the manner in which PSO algorithms will be used to solve the FSP in
chaptef b has been used successfully in other studies.

The MKP was introduced in chapféer 2, where it was argued that the MKP formed a good problem in
which to test the SBPSO. This chapter will attempt to do the same for the FSP. The idea is that testing the
SBPSO on two different DOPs will lead to better evidence on whether the SBPSO has merit as a generic
algorithm, and not applicable to just one problem. For this argument of wider scope to carry weight, the
MKP and the FSP need to be sufficiently different. It is important to remember from chapter 2 that the
MKP is a completely deterministic problem that has a clear way to determine what candidate solution is
best: the solution that leads to the highest value of items in the knapsack. Although the optimal solution
need not be known, it is always possible to compare two candidate solutions and determine which is
better. By clearly defining the FSP and the underlying classification problem, it will be shown that the
FSP differs fundamentally from the MKP. Hence, the FSP forms a test bed for the SBPSO that is truly
different from the MKP.

This introductory section is followed by three main parts and a conclusion that links back to the
objectives outlined above. The first main section sketches the broader field of machine learning and the
place that classification has in this field. It also includes an explanation of the concept of classifiers,
performance measures and the use of cross validation, as well as some notes on data preprocessing. The
second main part formally defines the FSP within the framework of the first section. The third part is a
review of the literature on various approaches used to solve the FSP. A special focus will be on methods
that use PSO. Contained in this review is an introduction to the UCI Machine Learning Repository, which
houses a collection of problems which serve as a benchmark for testing machine learning algorithms.

3.2 The classification problem in machine learning

This section first defines the field of machine learning and gives a very broad overview of the three
main ways in which algorithms learn from experience, i.e. unsupervised, supervised and reinforcement
learning. Following this, the classification problem that underlies the FSP is formally defined.

3.2.1 Machine learning

Machine learning was defined by Simon [129] as “any change in a system that allows it to perform better
the second time on repetition of the same task or on another task drawn from the same population”.
Mitchell [97] has a more formal approach and defines machine learning to mean that a computer program
or algorithmlearnsfrom experiencé& with respect to some class of task&nd a performance measure
P, if its performance at tasks ih, as measured by, improves with experiendg. For the classification
problem the performance measure,is usually taken to be some measure of the accuracy achieved by
the algorithm in classifying a set of known examples. Performance measures are discussed in more detalil
in sectio 3.2.5.

Some examples of learning problems that are well-defined such that machine learning can be applied

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

28 CHAPTER3. FEATURE SELECTION PROBLEM

include: learn to win at a board game (checkers, chess), learn to recaegeieeh or other patterns, or
learn to drive an autonomous vehicle.

One way to segment the field of machine learning is along the lines of what kind of experience is
used to learn: is the algorithm given no feedback, limited feedback, or explicit feedback on what the
correct outcome is in a given learning situation? This results in three main branches of machine learning:
unsupervised learning, reinforcement learning, and supervised learning.

In unsupervised learning the aim is to find hidden structure in unlabeled data [29]. Since the examples
given to the algorithm are unlabeled, there is no error or reward signal to evaluate a potential solution.
This distinguishes unsupervised learning from supervised learning and reinforcement learning. Unsuper-
vised learning approaches include clustering, hidden Markov models, and feature extraction techniques
such as principal component analysis.

Reinforcement learning was inspired by behaviorist psychology, and is concerned with how software
agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Ac-
cording to Mitchell [97] reinforcement learning addresses the question of how an autonomous agent that
senses and acts in its environment can learn to choose optimal actions to achieve its goal. It differs from
standard supervised learning in that data is not labeled, nor are sub-optimal actions explicitly corrected.
Further, there is a focus on on-line performance. Real world problems on which these techniques are
applied include robot control or real-time anomaly detection. Algorithms in the field of reinforcement
learning are often closely related to those from dynamic programming. An example algorithm is the Q
algorithm [147].

Supervised learning is defined by Moktial. [99] as learning which aims to infer a function from a
set of labeled training examples. Each example is a pair consisting of an input object (typically a vector)
and a desired output value (the class). A supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used to map examples not in the training set. The algorithm
thus tries to generalize from the training data to unseen situations. Two large branches of supervised
learning are classification and regression. Classification is the subject of dection 3.2. Regression or
regression analysis is a statistical process for estimating the relationships between a dependent variable
and one or more independent variables. Regression analysis is widely used for prediction and forecasting,
for example in the world of finance by lat al. [84] and Claessenst al.[22]. An example regression
technique is linear regression or least squares.

3.2.2 Classification problem

The classification problem in machine learning is the problem of automatically labeling data: an algo-
rithm is used to perform the task of determining in whathssfrom a finite set a giveimstanceof input

data is to be classified. An example of such classification tasks is to determine the outcome of a game
of tic-tac-toe from the end-state of Xs and Os on the board. The possible classes are “game won by X”,
“game won by O”, or “draw”. In this case the output class for a given set of inputs is fully determined
and the tasks is for the algorithm to learn this target concept [94]. A different example classification task

is to use a number of measurements for a patient regarding temperature, blood pressure, and the levels of
various blood chemicals, to determine whether or not the patient suffers from a specific disease. In this

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 29

case the relationship between input and output is not known: a human doctdhesesasurements of
the patient to diagnose whether he/she suffers from the disease in question, but this human diagnosis is
not infallible and a direct link between the measurements and the diagnosis in usually not known.

Within the taxonomy of machine learning from the previous section, the classification problem is a
supervised learning problem because the experighoghich the algorithm uses to improve its perfor-
mance consists of known examples: a set of inputs to be classified for which the correct output classes are
known. Formally, these examples form a training set of data instahgeswith input vectorl and the
correct or desired output classThe input vectol = {ix}x = 1" containsn features or attributes, which
each can have different values. In this thesis the terms “feature” is used in most places, but sometimes
convention calls for the use of “attribute” instead; for example in the field of decision trees discussed in
sectior 3.2.313. There is no difference in meaning implied between the two terms. Attribute values are
considered to be finite. Possible value types are numeric (a continuous value), and nominal or discrete (a
fixed and finite number of possibilities). The discrete values can just be a finite number of choices with-
out structure (for example the colors red, yellow, and blue) or contain an internal hierarchy or structure
(for example the outcomes of a hotel review “excellent”, “good”, “average”, “bad”, and “appalling”).
The output class is one from a known and finite set of possible classes. Using the elements involved in
the definition of machine learning by Mitchell [97] from the previous section, classification is thus the
class of tasks to be performet, The other elements are

¢ the algorithm that does the learning and which, after being trained, performs the classification task.
This algorithm is called alassifierand is the subject of sectién 3.P.3;

e the performance measureused in learning, which will be discussed in secfion 3.2.5; and

e the experienc& on which to train the classifier. If the task contains of a fixed set of training
instances, this is included in the problem. But in many cases only a dataset of labeled instances
is given. In this case it is important how the dataset is divided into a training set from which to
learn and a second set on which to measure the performance of the trained classifier. The concept
of cross-validationdeals with this division of a dataset, and is the subject of section 3.2.5.2, and
follows after the discussion on performance measures to which cross-validation is closely linked.

3.2.3 Classifiers

This sections briefly further elaborates on the the concept of a classifier used to solve the classifica-
tion problem, including detail on of three classifiers that are used in the experiments on the FSP in
this thesis, i.e. the Gaussian Naive Bayes classifier in subséction B.2.3.2, the decision tree classifier in
subsection 3.2.3.3, and tkeNearest Neighbor classifier in subsecfion 3.2.3.4.

3.2.3.1 Definition of a classifier

A classification problem involves a learning algorithm trained by experience, producing an induced
model or function. This induced model is used to classify new instances for which the output class is
not known. The induced model is callealassifier. Strictly speaking, a difference thus exists between

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

30 CHAPTER3. FEATURE SELECTION PROBLEM

the (abstract) learning algorithm and the induced model, which is an instancele&thiag algorithm
trained on a specific dataset. This difference is dropped in the remainder of this thesis, however, and the
term classifier is used for both algorithm and induced model.
The first phase in which the classifier learns from the labeled instances is calleditirey phase.
The learning algorithm needs to generalize from the training data to new unseen data as best as possible.
The trained classifier can then be used to classify previously unseen instancedassifecation phase.
Kotsiantis [76] mentioned that classifiers were developed from different types of learning approaches:

Logic based learning has yielded decision trees and rule based learners.

Statistical approaches include Gaussian Naive Bayes (GNB) and Bayesian networks.

The best-known example of instance based learning ik-thiearest Neighbor (RIN).

Perceptron based learning comes in the form of artificial neural networks (ANN) and radial basis
function (RBF) networks.

Support vector machines (SVM) form their own separate class.

The classifier may have no parameters (for example GNB), onek{<yl) or more parameters (e.qg.
decision trees, SVM). For some classifiers further choices need to be made, e.g. a choice of distance
measure (metric) for thie-NN classifier or a choice of kernel function to transform the feature space for
SVM. These parameters and other metrics greatly determine the accuracy of the resulting classifier. For
the classifiers described in the next sections, particular attention is given to these parameters and metrics.

3.2.3.2 Gaussian Naive Bayes classifier

The name Gaussian Naive Bayes classifier [60] indicates that three concepts are combined to form the

classifier. The ternBayesis related to Bayes’ Theorem| [6] which states how the mathematical proba-

bilities of two eventA andB relate to theconditionalprobabilities ofA givenB (what is the probability

of A, given thatB is known) denoted aB(A|B) and the conditional probability d@ given A denoted as

P(BJA). In its simplest form this relationship is given as

P(B|A)P(A)
P(B)
Theterm Gaussianindicates that the classifier assumes the values for each feature to be distributed

according to a Gaussian or normal probability distribution. A Gaussian distribution is fully determined

by two values: the mean valyeand the standard deviatiar?. The probability density function which

describes the probability distribution is

P(AB) = (3.1)

X, U, 0%) = o5t , 3.2
P(x, 4,0°) T (3.2)
such that .

P(X < X) = / o(t)dt. (3.3)

The termNaive involves the mathematical concept of conditional independence. To introduce this

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

CHAPTER 3. FEATURE SELECTION PROBLEM 31

concept, first note that two everisandB areconsideredndependenif the following holds:
P(A,B) =P(A)P(B) (3.4)

whereP(A,B) denotes the joint probability & andB. In words, this can be interpreted as that the value
of A doesnotdepend on the value & and vice-versa. Two evengsandB are consideredonditionally
independent given a third event i€the following holds:

P(AB,C) = P(AC). (3.5)

In words, this can be interpreted as given t@as known, the value oA does not depend on the value
of B. Or less rigorously, the only link betwednandB is via the third eventC. The concept Naive in
the GNB classifier refers to the (strong) assumption that the values of fe&uaedF; are pair-wise
conditionally independent (far#£ j) given the value of the class lal@!

The GNB classifier calculates the probability that an instance belongs to &£¢lgisen the values of
the feature$;. Assuming the data contains only two features, this probability is denot@(Cas;, F,).
The GNB classifier tries to find th&which maximizesP(C|F,).

Since the feature valuég andF, are givenP(F,) is a constant. Hence, maximizifig§C|Fi, F,)
will yield the same result as maximizirig(C|Fi,) / P(F1,F,). Maximizing the latter term has some
mathematical benefits, as is made clear below.

Bayes’ Theorem tells us that
P(C)P(Fy, FelC)

P(F,F2)
Usingthe assumption thd andF, are conditionally independent giv€h it is possible to use the chain
rule of probabilitﬁ to write

P(C|F,R) = (3.6)

P(C|F1,F) / P(F1,F) = P(C)P(Fy,R|C)
= P(C)P(F|C)P(R|F1,C)
= P(C)P(F|C)P(F[C). (3.7)

In order to calculat®(C|F1,)/ P(F1,) itis thus sufficient to calculate the simpler probabilif&€),
P(F|C), andP(FR;|C). The general case offeatures can be written as

P'(C|Fy,....Fn) =P(C)NL,P(RIC) (3.8)

3.2.3.2.1 Training phase: The training phase for the GNB classifier consists of determining the val-
ues for all probabilitie®(C = c) andP(F|C = c) for featuress andc ranging over all possible values of
the class labeC. The probabilitied?(C = c) are called thelass priorand need to be estimated for each
value ofc based on the training data. The Gaussian assumption meat§fH&t= c) is assumed to be
normally distributed for all featureg and class value. To determine this distribution, the parameters
Ui and aiz need to be estimated.

First the class prior probabilitié®C = c) are set equal to thmaximum likelihood estimateased on

1Thechain rule of probability i€°(A,B) = P(B)P(AB)

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

32 CHAPTER3. FEATURE SELECTION PROBLEM

the class count in the training set:

B #instancesvith class labet

P(C=c -
() #instances

(3.9)

Note that this means that only class labels that exist in the training set have a probability greater than
zero and that the GNB classifier will never assign to an instance a class label that does not exist in the
training set. A mechanism to overcome this shortcoming is to apply Laplace smoothing. The class prior
probabilities in that case are calculated as

PC=c) = #instances with class label- o
7 #instances+ o #classes

(3.10)

with a an integer greater than zero. In simple terms, this can be understood as assuming that for each
class an additionak instances are present in the training set. The most commonly used valmeasfor
one. A higher value ofr means that the class priors are more smoothed, or pushed towards the uniform
distribution where each class has the same class prior probability.

The Gaussian parameters are also set equal to their maximum likelihood estimates, which are just
the class mean and standard deviation in the training set. Denote byclrthia set of instances from
the training set that have class labeind letF(t|c) be the value of featurg for instance € Train(c).
Then the maximum likelihood estimates for paramete(s) andg?(c) of F, givenC = c are

Fi(t)

" (C) teTrain(c)m S
_ [Ri(t) —mu(c)P

o?(c) = e (TN (3.12)

(3.13)

3.2.3.2.2 Classification phase: Classification using the GNB classifier requires finding the class label
c that maximizes the conditional probabiliB(C = c|Fy,...,F,) for the unlabeled instand¢ewith feature
values(fy,..., fy). Written as a mathematical equation, this is equivalent to equatian (3.8):

n
GNB-classificationt) = argmaxP(C = c) I_l P(R = fi|C=c¢) (3.14)
c =

Should an instance have two or more classes which have the same conditional probability, the tie is
broken randomly.
In short, the GNB classifier makes the (strong) assumptions that

1. all the features in the data have values that are normally distributed given the clagy kil

2. if the class valu€ is known, all features are pair-wise conditionally independent.

GNB then uses maximum likelihood estimates to determine the classRi®rand the Gaussian pa-
rametersy; and o? of the conditional distributions of the featurEsgivenC. Classification is finding
thatc which maximizes the conditional probabilB(C = c|Fy,.. ., F,) for the feature values given in the
unlabeled instance.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 33

Even though in reality the assumptions of normality and conditional independemcdten broken,
the GNB classifier has proven to be quite robust [120]. One of its strengths is that it handles large
feature spaces quite well, as the conditional independence assumption means that training consists only
in calculating|C| averages and standard deviations without considering any of the many covariances.

3.2.3.3 Decision tree classifier

A decision tree classifier uses a tree as the basis of a model, with the leaves of the tree representing
the class labels, and higher nodes in the tree encode decisions based on the values of the attributes.
Classification of an instance with a decision tree involves starting at the root of the tree and flowing
down the branches of the tree, where the decision node determines which branch is chosen based on
the value of a single attribute. This process continues until a leaf node is reached which contains the
classification for the instance.

A first mention of the decision tree concept is the concept learning system frometiaht{54],
but the field of decision trees is considered to have really started with the work of Quinlan [117] who
developed the ID3 algorithm. This was later expanded upon and improved into the C4.5 algorithm [118]
and its latest version C5.0.

Training a decision tree consists of building the whole tree structure with leaves and decision nodes.
This training is done using a decision tree induction algorithm. Following the work by Kotsiantis [76], a
decision tree induction algorithm (here shown for C4.5 using the information gain) can be summarized
by the recursive algorithfd 3 which returns the root of the final decision tree.

Algorithm 3: DecisionTree Induction Algorithm
DecisionTree(Se9):
begin
begin Check base cases:
if all instances in the data have the same class |dteh
\ return a leaf node with the unique class label ;
end
if theinstances in S contains 0 attributd®en
\ return a leaf node with the most common class labebin
end
end
begin Recursve step:
forall the attributes A in Slo calculate G(SA) ;
Apest:= argmax {IG(S A)} (ties broken randomly) ;
forall the values @of Ayestdo
SetS :={ § € S: Apes = &, attributeApesiremoved frons' } ;
Noded; := DecisionTree(S ;
end
return noded which splits based 0Ayestinto childrend; ;
end
end

The Check base casestepat the start of algorithhl3 deals with those sets of instances where a

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

34 CHAPTER3. FEATURE SELECTION PROBLEM

decision tree with a single leaf node is the best classification. IR#weisive stem node is created that
splits data based on the values ofA,estand haam child-nodes. These child noddsare each made
by calling theDecisionTree algorithm on the subsed which contains all instances i@ that have
Anest= g;, but with the attribute itself removed from all the instances. So if the Sebntains instances
with n attributes, then alf contain instances with— 1 attributes.

The most important step in the induction algorithm is constructing the decision nodes that lead to
splits in the dataset based on a single attribute. At each step an attribute needs to be selected that, for
some metric, leads to the best split in the data. In other words: which attribute gives the “best” split of
the instances in that branch of the tree. The C4.5 algorithming&snation gainas the metric to be
maximized. To define information gain denote the following:

e Sis a set of labeled instances wittdifferent class labelsy, ..., ¢y
e Ais an attribute of the instances & 1with mdiscrete valuesas,...,an;
e Sn—5 IS the subset obwith all instances where attribufehas values;;

e fg(cond) is the fraction of instances @®for which condis true, e.g9.fs(A= &) = [Sa—a| / |5

Theinformation entropyof the setSis defined by its class distribution according to

n

Z C=c¢j)log, fs(C=c;j) (3.15)

The information entropy of the s&on attributeA is defined equivalently based on the distribution of
the valuesy of A:

=3 fsA=a)log; fo(A=a) (3.16)

Combining the two information entropies above, the information ¢@it§ A) indicates the decrease in
information entropy for séb by splitting the set based on the values of attribAite

G(SA):=E(S)—E(SA) (3.17)

At each step in the decision tree induction algorithm the attriBytg; is selected which maximizes
IG(S A) over all attributesA present in the instances

Note that the description of information entrdpyS, A) and algorithni B all assume that the attributes
Ahave a finite set of discrete values, leading to decision npdlesa;). In the induction algorithm C4.5,
Quinlan [119] added the functionality to also deal with continuous attributes. These decision nodes take
the form of (A <t) for some thresholdl. The algorithm checks different values of the thresholdS If
containsN instances, each with a continuous vadyg;, then the thresholds to check are tie- 1 mid-
points,ty = %(acont(k) — 8cont(k+1)), between the (ranked) values and the algorithm selects the threshold
that maximizes the information gain for the attribéte

After the main loop of the algorithm has created a decision tree, a further pruning step can be made.
In the pruning step, the algorithm attempts to remove those branches from the tree that may cause over-
fitting. This is done because a smaller tree requires less memory and leads to quicker classification. For

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

CHAPTER 3. FEATURE SELECTION PROBLEM 35

more details about the pruning of decision trees, see for example the work by Esi@dit[83] and
Oliver and Hand [106].

3.2.3.4 k-Nearest Neighbor classifier

The k-nearest neighbor classifier is one of the oldest classifiers, with roots going back to the work of
Fix and Hodges/ [35]. It is a popular choice of classifier because it is simple and easily implemented.
It classifies a new instance by calculating the distance from the new instance to each of the labeled
instances in the training set using a pre-defined distance metric. Thé&rnrtbances from the training
set that have the shortest distance to the instance to be classified are selektedariést neighbors. Ties
in the shortest distance are broken randomly. The classification of the unlabeled instance is by majority
rule for the classes present in thenearest neighbors, again with ties broken randomly. As such, no
distinct training phase can be identified for this classifier, as calculating the distances to the instance to
be classified can only be done in the classification phase.

Different distance metrics can be used to determine the distance between two instances. For instances
with continuous valued attributes, the Euclidean distance metric is often used. This metric is defined as

N
dEucIidear{iconta jcont) = \/z (icontn - jcontn)2 (3-18)
n=1

whereicontandjeontaretwo instances witlN continuous valued attributes. For instances with nominal or
categorical attributes, the Hamming distance is popular, which counts the number of attributes for which
the instances have different values. This metric is defined as

N
dHamming(inom, jnom) = z W{inomn # jnomn} (3.19)
n=1

whereinom and jnom are two instances withl nominal attributes. The 1 denotes the indicator function
that equals 1 if the condition following is true, and O otherwise. Other metrics that can be used are
Minkowsky, Manhattan, Chebysev, Camberra, or Kendall's rank correlation [76].

The parametek of how many nearest neighbors to include in the class voting needs to be determined
beforehand. The value 1 is popular, taking only the single nearest neighbor into account in determining
the classification. It benefits from a slightly faster implementation in which only the nearest neighbor
needs to be found.

Incorporating feature selection into thkeNearest Neighbor is simple, as only those attributes or
chosen in the feature selection process are taken into account when the distances between instances
are calculated. For example, consider the case of the Euclidean distance metric for two instances with
n attributes, where the attributes with indicas...,an are selected. Then the distance between two
instances andj is calculated as

m
deuclidear®s, - - - »8m|(icont jeont) := \/Z (iconta, — jcontak)za (3.20)
k=1

wherethe two instances are treated as having onlynirszlected attributes.
A downside of using thé&-nearest neighbor classifier is that it is computationally expensive and

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

36 CHAPTER3. FEATURE SELECTION PROBLEM

locating the nearest neighbor is itself a problem that is studied in computer sciEneefore, work

is ongoing to optimize the classifier, for example by methods called prototype selection [41] and by
combining nearest neighbor with clustering/[57]. In this thesis the standard version lof\barest
Neighbor algorithm is used, as computational efficiency is not the main goal but instead the comparison
of different PSO algorithms under the same (in this case sub-efficient) circumstances.

3.2.4 Data preprocessing

The representation and quality of the data is one of the main factors which affect the success of machine
learning in general and classification in particular [77]. Data pre-processing is used to transform the
raw dataset into one that can be handled by the chosen classifier and is likely to yield the most accurate
classifications. Data pre-processing in general includes methods such as data cleaning, transformation,
normalization, and feature selection. The product of data pre-processing is a final dataset that can be
used effectively by machine learning algorithms.

Irrelevant and redundant information also makes knowledge discovery during the training phase dif-
ficult. This is the problem that feature selection tries to address. Feature selection can be seen as part of
the data pre-processing. In this thesis, however, the focus lies specifically on using the FSP as a problem
to solve and therefore feature selectiondttreated as a step in the data pre-processing.

The other three general methods of data pre-processing are discussed in turn below.

3.2.4.1 Data cleaning

Data cleaning deals with incorrect values in the dataset. These come in two types: missing or illegal
values for an attribute or class, or legal but incorrect values. The former two types are easily recognized,
while the latter can be much harder to spot.

Such missing or illegal values can make the task of classification impossible for specific classifiers,
although other classifiers may be able to cope with these errors. For example, it is not possible to
calculate the Euclidean distance between two data instances if one attribute value is missing in one of
the instances, hence making lenearest neighbor classifier fail. lllegal values occur especially in real-
life datasets, e.g. where a letter is stated as value for a numerical attribute, or a negative number for an
attribute that must be positive (like the number of children for an individual). If a dataset contains such
illegal or missing data, these instances need to be discarded or cleaned the ensure all classifiers work
properly.

The methods to deal with illegal values and missing values are the same and can mostly be applied
on an attribute-by-attribute manner, meaning that each case of a missing or illegal value can be resolved
separately. Note that illegal combinations of attribute values can also exist (for example, an instance of
data with the attributes “Gender” = Male, and “Pregnant” = Yes). Such combinations can often only
be caught by understanding the underlying concepts encoded in the data, and thus an expert needs to
construct checks to catch such illegal combinations. If it is not possible to identify which of the multiple
attributes has a correct value, all conflicting attribute values should be treated as illegal individually.

Kotsiantiset al.[77] mentioned the following methods to to fill in missing values or overwrite illegal

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

CHAPTER 3. FEATURE SELECTION PROBLEM 37

values:

¢ Ignoringinstances with unknown feature valuédl instances with at least one missing or illegal
feature value are ignored.

e Most common feature value: The value of the feature that occurs most often is selected to be the
value for all the unknown values of the feature.

e Concept most common feature value: This time the value which occurs the most common within
the same class is selected to be the value for all the unknown values of the feature.

e Mean substitution: Substitute a feature’s mean value computed from available cases to fill in miss-
ing data values on the remaining cases. Usually, the mean for all samples belonging to the same
class is used to fill in the missing value.

e Regression or classification method®evelop a regression or classification model based on com-
plete case data for a given feature, treating that feature as the outcome and using all other relevant
features as predictors.

e Hot deck imputation: Identify the most similar case to the case with a missing value and substitute
the most similar case’s Y value for the missing case’s Y value.

e Treating missing feature values as special values: Treating unknown itself as a new value for the
features that contain missing values.

Each of these methods introduces its own, sometimes subtle, bias into the resulting dataset and they
should therefore be used with care. In general, the larger the dataset is and the smaller the proportion of
instances with errors, the less important the errors become and removing the incorrect instances from the
set or replacing the missing values with the most common or average value is fine. In a smaller dataset or
if the error occurs in an instance that is classified as a relatively rare class, more effort should be expended
to find a replacement value that is expected to introduce the smallest possible bias: a regression, hot deck
imputation might be better, although more work. In real-life applications, using a special value for the
missing or illegal values will make explicit the problem the missing values pose. If this problem leads to
poor performance on the classification task, one can compare the costs and benefits of additional effort
to obtain better data.

The second type of incorrect values is just that: an attribute has a value (it is not missing) and that
value is a legal value, but it is an incorrect value. This can be due to measurement errors, incorrect data
entry, or copying errors. Whereas for illegal and missing values an error is clearly recognizable, for this
second type of errors there is no such clear distinction. If the value of an attribute shows a large deviation
from the other values for that attribute, it can be consideregugirer. The main approach to search for
such outliers is by statistical analysis of the values for that attribute in the dataset. An even more difficult
problem is if an attribute’s value is in error, but still falls within the probable range of values for that
attribute. In this case the single-attribute statistical analysis for outliers will yield no result. These errors
are therefore calleshliers. Only by multi-variate statistical analysis across multiple or all attributes can
such errors be found. For both outliers as well as inliers the expert performing the experiments has a

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

38 CHAPTER3. FEATURE SELECTION PROBLEM

large subjective influence on the choice of what constitutes an outlier or inlier @rme recognized,
this value can be treated the same as illegal or missing values in the data cleaning.

3.2.4.2 Data transformation

Data transformation alters the representation of an attribute’s value. The transformation makes the dataset
better suitable for the classifier that is subsequently applied to the dataset and hence is intended to im-
prove classification. Several methods of transformation are recognized: discretization, smoothing, and
aggregation/[[50]. It is also possible to see normalization, the subject of the next section, as a specific
form of transformation. Note that this description of transformation deals with the transformation of
single attributes or features only, not with combining multiple features into new features.

3.2.4.2.1 Discretization: Discretization can refer to both the conversion of non-numerical data to
numbers, and the conversion of continuous-valued data into categories. When converting non-numerical
data into numbers, one should be careful not to remove concepts embedded in the data, nor to add struc-
ture that does not exist in the original data. For example, if the answers to a question in a questionnaire
are “seldom”, “sometimes”, “often”, “always” these answers are an ordered description of frequency.
The numerical representation of this attribute should retain this order.

When discretization is applied to attributes that already have numerical values, the transformation
is about reducing the number of different values. This is usually done by assigning all values within an
interval to a category. The problem hereby is how to chose the interval borders and also the number of

categorical values for the discretization.

3.2.4.2.2 Smoothing: Smoothing means removing noise from the data. Noise is usually due to mea-
surement error. The main smoothing techniques employed in machine learning include binning, regres-
sion, and clustering. In binning all values within a range of values (the bin) are assigned a single value
form the bin. Regression contains the assumption that the measurement error is distributed randomly
around the “true” value to be measured. The data is fitted to a function which then no longer contains the
error noise. Further classification is then done using the function output for the attribute instead of the
original noise attribute values.

3.2.4.2.3 Aggregation: Aggregation refers to the summarization of data. This can serve to reduce the
amount of data to more manageable proportions, but can also be a form of smoothing. A classic example
is daily sales data, which is quite noisy due to the vagaries of life: most retail shops see large sales jumps
on Saturday, while Sundays and Mondays see no or little sales. Aggregation of the data to a weekly level
removes these vagaries for the most part. Also, data structures that are beneficial for classification are
sometimes more easily spotted by classifiers in aggregated data and hence lead to better classification.

3.2.4.3 Data normalization

Classifiers like neural networks akeNN are known to perform better if all attributes are scaled to the
same range of values [77]. If one or more attributes have values with a much wider range, these attributes

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 39

will dominate in a naive (Euclidean) distance calculation and this will negativédgtahe effectiveness
of the classifier. Two well-known methods to conduct this scaling are min-max normalizatia#+and
score normalization.

Min-max normalizatiortransforms each attribute to lie within the rangeb] using linear scaling:
first the minimum valuemi, and maximum valuemay of the attribute are determined. For each instance
the attribute’s scaled value is set equal t@ plusb times the ratio of (i) its original numerical value
a minus the minimum valuey,,, divided by (ii) the difference between the maximum vadigy and
minimum valueamin:

(3.21)

Z-scoe normalizationtransforms each attribute not to lie in a fixed range, but such that the mean
value of the transformed attributes is 0 with a standard deviation of 1. This is done by first determining
the mean mean(a) and standard deviation stdev(a) of the original attribute &alliben the transformed

value is calculated by:

, & —mean(a)
= W (3.22)

3.2.5 Performance measures for classification

In order for a learning algorithm to improve in its task based on experience, a metric is needed to measure
the performance on that task. In the case of the classification problem, the learning algorithm is the
classifier as defined in section_3]2.3. The performance measure for classification is defined by two
components: the actual metric used and the way the dataset is divided. Both components are discussed
in separate sections below.

3.2.5.1 Performance metrics

The simplest metric for the performance of a classifier isdlagsification accuracy, the fraction of a
given test set of labeled instances that is correctly classified by the classifier, defined as:

instances classified correctly
instances in test set

Accuracy= (3.23)

Theclassification problem contains a dataset of examples that is used to train the classifier. Because
no other data is available, this same dataset must also be used to determine the classification accuracy.
This leads to two problems: what data from the dataset to use to train the classifier, and what data to use
to determine the classification accuracy. If the same or overlapping data is used for both purposes, the
classification accuracy is not a fair estimate of the classifier's performance. Hence the dataset of examples
needs to be split into two disjoint parts: one for training the classifier and one for generalization. The
latter part is the test set mentioned in equation (3.23).

Other measures for the classification performance can be defined for binary classification (problems
with only two output classes with one class called “positive” and one called “negative”). In binary
classification accurately classified instances can be split into true positives and true negatives, while
misclassified instances can be split into false positives (incorrectly labeled positive) and false negatives

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

40 CHAPTER3. FEATURE SELECTION PROBLEM

(incorrectly labeled negative). These other measures are precision, i.e.

true positives

Precision= — — 3.24
true positives + # false positives ()
sensitvity (true positive rate or recall rate), i.e.
I # true positives
Sensitivity= — - 3.25
¥= # true positives + # false negatives ()
andspecificity (true negative rate), i.e.
- # true negatives
Specificy= g (3.26)

true negatives + # false positives

Thesemeasures can also be combined into even more measures like balanced accuracy, informedness,
andF-score [114].

Another way of combining these measures is by a method called Receiver Operating Characteristics
(ROC) analysis/ [34]. ROC analysis consists of constructing a plot of the true positive rate (tp rate) on
they axis and the false positive rate (fp rate) on haxis. The performance metric is the area under
the ROC-curve (AUC): starting at the bottom left, visiting all outcomes (tp rate, fp rate) measured for
the classifier and ending in the top right corner. A random classification would result in an AUC of 0.5,
while perfect classification yields an AUC of 1.0.

The classification accuracy for a classifier on a specific dataset can be determined simply by follow-
ing algorithn4. This process is the same for the other metrics mentioned above.

Algorithm 4: Performanceneasurement for classification task: single calculation

Consider a classification task with dataBedindchosen classifiet ;

Let f be the performance metric chosen to eval@ate

Randomly split the datasdd, into a training set and test seT = D\L ;
Train classifielC on training set_ ;

Determinef (T;C), the performance of classifi€ron T using metricf.

3.2.5.2 Cross validation

Theresult of calculating the classification accuracy following algorithm 4 from the previous section is
that the outcome is dependentioowthe dataseD, is split into a training set and test set. The simplest

way to do this is by defining a single, fixed, training and test set and perform all required classification
accuracy calculations using the same training and test set. The downside of this approach is that the
resulting accuracy depends strongly on the chosen split between training and testing data, and this split
may not be representative of the classifier's behavior on the dataset in general: a different choice of
training set and test set could lead to a different accuracy.

A better method (i.e. one that better represents the classifier's performance on the dataset in general)
is to divide the dataset into training and test sets multiple times, calculate the accuracy on each such split
and determine the average accuracy over all splits. This was already recognized in the work of Mosier
[100]. The problem of determining the classification accuracy of a classifier on a particular dataset can

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 41

then be refined as finding a way to estimate gleeeal classification accuracy of the classifier on the

dataset, which in theory should be independent of the actual split of the dataset into training and test data.
Cross validation is a method to get an estimate of this general classification accuracy by calculating the
accuracy as an average accuracy over multiple splits of the data. This process is outlined in dlgjorithm 5.

Algorithm 5: Performanceneasurement for classification task: cross validation

Consider a classification task with dataBeandchosen classifieC ;
Let f be the performance metric chosen to eval@te
LetCV be the chosen cross validation method to split the dataset ;
fori=1,...,kdo

UsingCV divide D into multiple training set&; and testing set§ = D\L; ;

Train classifielC on training set.; ;

Determinef (T;,C), the performance of classifi€ron testing seT; using metricf ;
end
Setf(T,C), the final performance measure, as the average ové(BlC).

Various ways exist for the cross validation to split the dataset into training ansktisst

e Repeated random sub-sampling validatiepeatedly splits the dataset at random into a training
set and a test set, with the proportion of the dataset assigned to each determined beforehand. The
number of times this random split is repeated can be chosen arbitrarily.

¢ k-fold cross validatiormeans splitting the dataset ik@qually sized (as best as possible) subsets.
Each of thek subsets is used as the test set once, and in each such case the rekraihsgsets
are combined to form the training set. So for a datasetin§tances, a total & splits of the data
are made (wherk < n).

e Leave one out cross validatiqhOOCV) uses each instance in the data as test set once, and in
each such case the remainder of the data is used as the training set. So for a dataset consisting of
instances, a total of splits of the data are made. This can be seen as a special daf@dEtross
validation withk = n.

3.3 Definition of the Feature Selection Problem

The FSP, also known as the variable subset selection problem or feature reduction problem, arises in
machine learning where algorithms are used to classify data. The classification problem underlying the
FSP is a supervised learning problem in which the task is to determine in which dislasta given
instanceof data is to be classified. Classification was discussed in séctibn 3.2. If the underlying classifi-
cation problem has a large number of features, this causes problems for the classification algorithms.
Intuitively it seems that if more information is available in the way of more features, a better classifier
can be build. However, two intertwined problems surface: firstly, classifiers will termedit the
training set if the number of features is large compared to the number of instances available for training:
the classifier picks up idiosyncrasies in the training set that may not be generally applicable. It can be that
many features are redundant, irrelevant or too noisy for practical use for the classification task at hand

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

42 CHAPTER3. FEATURE SELECTION PROBLEM

[4€]. Instances outside of the training set are then often misclassified, |eadingoor performance on

the classification task. A second problem is that the classifier becomesstouarwith an increasing
number of features. These two problems are related in that the problem of overfitting can be addressed
by increasing the number of training instances, which then causes the classifier to become slower.

The two problems of overfitting and slowness can be addressduirit@nsionality reductiom which
the aim is to reduce the number of features used to perform the underlying classification task. Dimen-
sionality reduction comes in two flavors: feature extraction (FE) and feature selection (FS). FE defines
new features that are combinations or transformations of the original features. In FS no new features are
generated, but instead the optimum subset of features is selected from the original set of features such
that, if used, the underlying classification problem can be best solved. In a very strict sense, FS can be
seen as a form of FE without transformations and all combinations of features are binary: each feature is
either in or out.

Somolet al.[[131] mentioned that the benefit of using FS over FE is that if the resulting classification
algorithm is used in real life to classify new inputs, only those features selected need to be measured
and collected in order to classify the data. This is especially useful in application of medical diagnosis
where data collection can be costly and time consuming. A second benefit of FS over FE can be that the
features retain their original interpretation, whereas the transformed features generated by FE may not
have a clear physical meaning. This interpretation can be important to understand the process underlying
the classification problem.

Transformed features generated by FE may provide a better discriminative ability than the best subset
of given features, leading to a better accuracy in solving the underlying classification problem. Generic
feature construction methods include clustering; basic linear transforms of the input variables like prin-
ciple component analysis (PCA) or linear discriminant analysis (LDA); and also spectral transforms (e.g.
Fourier, Hadamard), wavelet transforms, or convolutions of kernels [46]. In the remainder of this thesis
FE will not be studied further, but the focus will be on FS only.

The FSP is thus the problem of identifying those features that lead to the best possible classification.
Kohavi and John[[70] formalize this as selecting an optimal subset of featufesm the set of all
features), and use only those features to train the classifier. The trained classifier then yields maximal
accuracy on the original classification problem.

The FSP is mathematically defined as follows: Given a set of featyregth n features, ther”(l)
denotes the set of all possible subsets$.ofet J(X) be a fithess function that evaluates feature subset
X e Z(l), assuming that a higher value dindicates a better feature subset. Then the feature selection
problem can be formulated to find the subXdbr which

I(X) = max{J(9)|Se 2(1)}. (3.27)

Note that the definition by Kohavi and John [70] makes this mathematical definition somewhat less
general by stating thak(X) is the classification accuracy using the feature su§set

Ironically, the problem that FS is supposed to solve (reducing the high number of dimensions) also
affects the FSP itself. the search space grows exponentially because the number of possible subsets on
a domain withn features equals"2 Thus, a brute force approach to solving the FSP is impractical.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 43

Furthermore, the FSP is known to be an NP-hard optimization problem [3], metaingny algorithm
guaranteed to find the optimal solution to an FSP will not scale to large number of features.

The fact that the FSP is NP-hard also makes it an interesting problem to address using stochastic
optimization methods like PSO. Since the FSP can also be formulated using mathematical sets, it is a
potential test-bed for the SBPSO algorithm described in chlpter 4. The next section performs a review
of earlier attempts to solve the FSP from literature.

3.4 Literature on solving the Feature Selection Problem

This section gives a brief overview of different approaches from literature to solve the FSP. The search
space for FSP withl| = N has 2' points, making exhaustive search infeasible for large feature sets.
Actually, Amaldi and Kann [3] have proved the FSP to be NP-hard. Although accelerated methods exist
that guarantee that an optimal solution is found, like methods based on the branch and bound principle
proposed by Narendra and Fukunaga [101], these are still too slow for large feature sets. The focus of
research has thus been on sub-optimal methods that are not guaranteed to find the optimal solution, but
that are able to find a “good” solution in a reasonable amount of time.

Heuristic methods using search for finding feature subsets were one of the first approaches to solve
the FSP. Sequential backward elimination, sometimes called sequential backward selection, was intro-
duced by Marill and Green [93]. Kittlezt al. [69] generalized the different heuristic variants including
forward methods, stepwise methods, and “mjtake away”. Cover and Van Campenhout [25] showed,
however, that even for multivariate normally distributed features, no greedy search algorithm that uses a
monotonic measure and that selects one feature at a time can find the optimal feature subset of a desired
size. Conversely, the focus of feature selection no longer lies with these heuristic methods.

Guyon and Elisseeff [46] stated that approaches to solving the FSP can also be split into three main
groups: filter methods, wrapper methods, and embedded methods. Filters select subsets of variables as
a pre-processing step, independently of the chosen classifier. Wrappers consider the classifier and the
underlying classification problem as a black box and scores subsets of variables directly by their perfor-
mance on the underlying classification problem. Wrapper methods are thus also defined independently
of the chosen classifier. Embedded methods perform variable seldatimg the training of the classi-
fier and are usually specific to a given classifier. Each of these three main approaches is detailed below
in a separate section with references given to published work on specific implementations of the general
approach. After this review of the main methods, sedtion B.4.4 focuses on research that uses PSO in
solving the FSP.

3.4.1 Filter methods

Filter methods are based on performance evaluation functions calculated directly from the training data
such as distance, information, dependency, and consistency, and select features subsets without involv-
ing any specific classifier. Filters can thus be seen as part of the data pre-processing, with the goal of
removing those features that are considered redundant. The crux lies in the fact that “redundant” here has
no direct link with the classification process. The premise is that the performance evaluation function is

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

44 CHAPTER3. FEATURE SELECTION PROBLEM

able to identify those features that are relevant in classifying the data.

Theflow of a filter algorithm for feature selection is to start with the full set of features. The filter
method is then used to select the feature subset. This selected feature subset is fed into a classifier to
perform the classification task underlying the FSP. The performance on the underlying classification task
is then used to evaluate the performance of the filter method for FS.

Two major approaches exist in feature selection using filters: univariate or multivariate filters [11],
each discussed in more detail below.

3.4.1.1 Univariate filter methods

Univariate filtering use individual evaluation of features. This approach is also knofgatase ranking

and assesses individual features by assigning them weights according to their degrees of relevance to
solving the underlying classification problem. Once the features are ranked, a method is needed to
decide a cut off point: all features ranked above the cut-off are included in the feature subset, all those
ranked below are excluded. The method to determine this cut-off is callddtédne The heart of the

method lies in the metric used to determine each feature’s relevance. Relevance metrics that have been
used are for example?, t-test, information gain [121], or Wilcoxon rank sum [136].

Strong points of univariate filtering are its speed and scalability and the fact that filter methods are
independent of the classifier used in the subsequent classification. This independence is also its main
weakness - the filtering does not take the peculiarities of the classifier into account and the resulting
subset of features may well not be optimal for the classifier used. Also, the relation between features is
completely disregarded, and there is a risk that features that are individually considered less important
may jointly be of paramount importance. A problem related to the fact that feature selection is discon-
nected from the classification, is that the threshold levels for the ranking or outright choice of the number
of features to select are chosen without reference to the classifier.

Two well-known univariate filter algorithms are:

e The FOCUS algorithm originally designed by Almuallim and Dietterich [2] for boolean domains.
FOCUS exhaustively searches the space of feature subsets until it finds the minimum combination
of features that divides the training data into single classes. This is referred toramtfeatures
bias. Following feature selection, the final feature subset is passed to a decision tree classifier.

e The RELIEF algorithm designed by Kira and Rendgell [68], which assigredewance weighto
each feature, which is meant to denote the relevance of the feature to the target concept. The algo-
rithm is randomized: it samples instances randomly from the training set and updates the relevance
values based on the difference between the selected instance and the two nearest instances of the
same and opposite class. RELIEF is therefore an instance based filter method for feature selection.
Kononenkol[74] later extended the method to ReliefF, which can handle multi-class problems and
is robust and can handle incomplete and noisy data.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 45

3.4.1.2 Multivariate filter methods

A commondisadvantage of univariate filter methods is that they ignore the interaction with the classifier
as the search in the feature subset space is separated from the classification task. This means that each
feature is considered separately, thereby ignoring feature dependencies, which may lead to worse clas-
sification performance when compared to other types of feature selection technigues [121]. In order to
overcome the problem of ignoring feature dependencies, a number of multivariate filter techniques were
introduced, aiming at the incorporation of feature dependencies to some degree. Multivariate filtering
thus considers subsets of features together, but still as a form of pre-processing and without reference to
any classifier.

The crux of multivariate filter methods lies in how subsets of features are scored on relevance for the
underlying classification task and redundancy (i.e. roughly containing the same information) with other
features. A popular choice was to look at pair-wise comparisons to identify redundancy using measures
like Pearson correlation [98], Fishers criterionl[38], or the t-test criterion [138]. These methods all look
at pairs of features and can therefore become computationally impractical with large numbers of features,
reducing one of the core strengths of filter techniques. Therefore other approaches tried to directly select
the feature subset based on data information, but without resorting to exhaustive pairwise comparisons.
Market blanket theory is one such approach [71] which is referred to in more detail in the examples
below.

Strong points of multivariate filtering are the fact that filter methods are independent of the classifier
used in the subsequent classification and that feature interactions can be taken into account - a benefit
over univariate filtering. Multivariate filtering is slower and less scalable than univariate methods, but still
has better computational complexity than wrapper methods. The main weakness of univariate filtering is
that for all filtering approaches, the relation between features is completely disregarded and the choice
of the number of features to select contains some subjective choices uncoupled from the classifier [121].

Some examples of multivariate filter algorithms are:

e Correlation-based Feature Selecti¢g@FS) was introduced by Hall [49]. CFS is a filter method
that uses correlation measures to rank the features. It assumes that useful feature subsets contain
features that are predictive of the class but uncorrelated with one another. CFS computes a heuristic
measure of the merit of a feature subset from pair-wise feature correlations and a formula adapted
from test theory. Heuristic search is used to traverse the space of feature subsets in reasonable
time; the subset with the highest merit found during the search is reported.

e Markov blanket filte(MBF) is a filter method for feature selection proposed by Koller and Sahami
[71] based on information theory. The method uses cross-entropy to minimize the amount of
predictive information lost during feature selection. The Markov blanket criterion removes features
if and only if it is unnecessary. MBF can be used in both a forward selection and backward
elimination setup. The algorithm was tested on six datasets from the UCI Machine Learning
repository, i.e. Corral, LED24, Vote, DNA, Reutersl, and Reuters2. These experiments showed
limited gains in classification accuracy compared to classification on the full datasets (i.e. without
feature selection) using either a naive Bayes classifier or a C4.5 decision tree classifier.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

46 CHAPTER3. FEATURE SELECTION PROBLEM

e Fast Correlation-Based FiltefFCBF)is a filter method proposed by Yu and Liu [154]. Underlying

this method is the concept of predominant correlation, which can identify relevant features as well
as redundancy among relevant features without pairwise correlation analysis. The authors per-
formed experiments using FCBF on 10 datasets with the number features ranging from 57 to 650
and compared the average classification accuracy to three other filter methods (ReliefF, CorrSF,
ConsSF) using either a naive Bayes classifier or a C4.5 decision tree classifier. No statistical anal-
ysis was performed, but accuracy was comparable to the other filter methods, while computation
time was 8 to 100 times shorter.

3.4.2 Wrapper methods

Wrappers use the classifier to score subsets of variables according to their classification power. Wrapper
methods were first proposed hy [59]. These methods require one predetermined classifier and use its
estimated performance as a scoring function to determine the quality of the selected subset of features.
They attempt to find features better suited to the classifier aiming to improve its performance. Note
that wrapper methods select feature subsets optimized for the given classifier and the same subset may
perform worse for a different classifier.

According to Guyon and Elisseeff [46] a wrapper method for FS is defined by three choices:

1. how the space of all possible feature subsets is searched,
2. how the performance of a classifier which guides and halts the search is assessed, and

3. which classifier is used.

Often-used strategies to search the space of all possible feature subsets include best-first, branch-and-
bound, simulated annealing [121], but population based algorithms have also been popular, for exam-
ple genetic algorithms (GA) [58, 140], genetic programming (GP)/[116, 123], ant colony optimization
(ACO) [134,[151], and PSO. Studies that used the PSO to solve the FSP are reviewed in more depth in
sectior 3.4.4 below.

The performance of the classifier (fitness function) is usually measured as the classification accuracy
over a single validation set or using cross-validation. But other performance measures like those men-
tioned in sectio_3.2.5.1 have also been used in practice. Additionally, the number of features (to be
minimized) is sometimes added to the fitness funclion [59], especially for problems where it is assumed
that a small number of features is preferred, or this reduction in the number of features is a goal in and
of itself.

Wrapper methods can be used in combination with any classifier. Secfioh 3.2.3 lists possible choices
for classifiers. Popular classifiers include decision trees, naive Bayes, least-square linear predictors, and
SVM [4€].

The flow of a wrapper algorithm for feature selection is to start with the full set of features. This is
fed into a recurring loop whereby the wrapper method selects candidate feature subsets. These subsets
are then passed onto a classifier and the performance of this classifier on the dataset drives the choice for
the subsequent subsets to be evaluated in the wrapper. At some point the loop is exited, resulting in the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 47

final subset of features as solution for the FSP. This subset of feasuttesn used by the classifier to
perform the final classification.

In general, wrapper methods achieve better performance than filter methods as they can take the
idiosyncrasies of the underlying classifier into account when selecting the optimal subset of features.
However, wrapper methods tends to be more computationally expensive than the filter approach, espe-
cially if the number of features and number of instances in the dataset grows. Also, wrapper methods
run the risk of overfitting, in that the feature subset they select is only optimal for the classifier used and
this subset may be a poor choice when using a different classifier [121].

Besides the studies already mentioned in this section, a few other approaches to wrapper methods for
FSP should be mentioned:

¢ Johnet al.[59] introduced the concept of a wrapper. First three concepts were defined: irrelevance
and two different degrees of relevance. Then the three parts of the wrapper were chosen and
applied in experiments on three artificial and three real world datasets:

— To search the space of feature subsets, various search algorithms were used, i.e. backward
elimination, forward selection, and a deterministic version of the Relief method;

— To assess the classification accuracy of subsets of features, 25-fold cross validation was used;
and

— To classify the data instances, both ID3 and C4.5 classifiers were used.

e Langley and Sage [31] combined the concept of wrapper methods with a naive Bayes classifier to
form the selective Bayesian classifier (SBC). To search the space of feature subsets sequential for-
ward selection was used. Subsets of features were assessed on the average classification accuracy
over 20 random splits of the dataset. The SBC was compared to the a naive Bayesian classifier
and C4.5 both using all features. The experiments were performed on six datasets from the UCI
machine learning repository, with three datasets selected where naive Bayes generally outperforms
C4.5, and three with the reverse bias. The feature selection in SBC was successful in that the SBC
significantly outperformed naive Bayes on those datasets were Bayesian classifier usually perform
less well.

e Sequential search was used by Irgaal. [S€] in their wrapper method for feature selection on
two well-known DNA microarray datasets. They compared their method with a group of different
filter metrics. The wrapper method was tested using different supervised classifiers, namely a C4.5
decision tree, simple naive Bayes, and a SVM. The wrapper approach showed a more accurate
behavior than filter metrics, but it required significantly more computation time.

3.4.3 Embedded methods

Embedded methods try to combine the advantages of the speed of filter methods and the way that wrapper
methods optimize their performance linked to the underlying classifier. They do this by integrating the
feature selection process into the classifier training. Training the classifier and selecting features is thus

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

48 CHAPTER3. FEATURE SELECTION PROBLEM

one inseparable learning process, that may be looked upon as a speciaf ferappers. Embedded
methods are thus usually specific to given classifiers.

The CART algorithm introduced by Breimaat al. [14] is a decision tree classifier that has feature
selection built into it, and can thus be seen as an early version of embedded methods. According to
Guyon and Elisseeff [46], embedded methods can be divided into two sub-classes: nested feature subsets
and direct objective optimization.

Nested feature subset methods search the space of feature subsets by estimating changes in the per-
formance measure (this can be classification accuracy or other metrics) value incurred by making moves
in that space. These estimates are combined with greedy search strategies such as backward elimination
or forward selection to yield nested subsets of features. The search strategy which estimates changes
in the performance measure are a crucial part of this method. Strategies employed are finite difference
calculation|[133], quadratic approximation of the cost function [83], and sensitivity of the performance
measure calculation [113].

In direct objective optimization the objective function to be optimized directly combines the classi-
fication and the feature selection. Generally, the objective function consists of two terms that compete
with each other: the goodness-of-fit (to be maximized), and the number of variables (to be minimized).
The number of variables can be minimized using so-called shrinking regularizers, which enforce a pre-
determined maximum number of features. An important point to note is thus that these methods require
a choice for the maximum number of features to be selected. These shrinking regularizers can be effec-
tively combined into training some classifier. This was done for linear predictors by Wetsahifl148]
and for SVM classifiers by Boset al.[12].

The flow of an embedded method starts with the full set of features. This is fed into a single loop
whereby the embedded method performs a joint estimation of the classifier model (training) while reduc-
ing the number of selected features used in training. Note that embedded methods thus work well with
classifiers such as linear predictors and SVMs that are built up in discrete steps for each of the feature
dimensions. At each such step the chosen feature can be eliminated by the embedded feature selection
method. The resulting classifier is already trained on the selected features. Only at this point is the final
performance measure for the classification determined.

Embedded methods offer computational performance competitive to wrappers, enable faster learning,
but produce results tightly coupled with a particular classifier. In order to use a different classifier,
the learning process needs to be rebuilt to a certain extent. Also, the need to chose either the number
of features to select or a threshold that indirectly defines this number as an input is a weakness that
embedded methods share with filter methods. Embedded methods are able to take the relations between
multiple features into account in the feature selection process [121].

Other examples of embedded methods for FSP can be found in the worlapfibDarte and De
Andres [27] who embedded FS into a random forest classifier, Geyah[47] who embedded FS into
the weight vector of an SVM classifier, and Ma and Huang [92] who did so for the weights in a logistic
regression.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 49

3.4.4 PSO applied to FSP

This section focuses on the literature on the use of PSO in the domain of feature selection. A number of
recent surveys have focused on the use of PSO on solving the FSP: Kathlaj75] surveyed a number
of different PSO algorithms used in FS in general, while Ogtaal. [108] reviewed nine recent studies
applying PSO in feature selection for classification. Of these nine studies, six compared a PSO algorithm
to other methods including rough set theory, fuzzy-rough feature selection, and GA.eDalg108]
claimed that PSO offered better feature selection leading to a higher classification accuracy, but offered
no statistical proof for this statement. Xeéeal.[150] looked at different fitness functions that can be
used for PSO in FS, and included a review of applications of the binary PSO on the FSP.

A number of studies from these aforementioned surveys and other PSO methods used on the FSP
are reviewed below. The studies are split into separate sections based on which FS method is used in
conjunction with PSO: filters, wrappers or embedded methods.

3.4.4.1 PSO and filter methods

Cervanteet al.[15] proposed a somewhat rare approach to using PSO to solve the FSP that uses the filter
approach. Two different methods were proposed, the first of which combines the binary PSO with a filter
that uses the the mutual information of each pair of features to determine relevance and redundancy of
the selected feature subset. The second algorithm combines the binary PSO with a filter that uses the
entropy of a subset of features to evaluate that subset's relevance and redundancy. Different weights
for the relevance and redundancy in the fitness functions of the two proposed algorithms were tuned to
further improve their performance in terms of the number of features and the classification accuracy.
The binary PSO’s parameters wer@298 for the inertia weighttl = c2 = 1.49618 and a maximum
velocity per dimension of 6. The swarm consisted of 30 particles with a star topology, and the algorithms
ran for 500 iterations. While the PSO algorithms run, the filter methods are used to determine the
fitness of the particles and thus drive the PSQO'’s search. At the end of the PSO algorithms’ runs, the
subsets with the highest fithess determine the features selected. These were then fed into a decision tree
classifier to evaluate the classification accuracy. For each dataset, 30 independent runs were performed
of the PSO algorithms. Four different datasets from the UCI machine learning repository were used
in experiments to compare the algorithms, with the number of features ranging from 18 to 61 and the
number of instances from 148 to 3196. The results of this well-structured study show that, after tuning,
the two proposed algorithms can significantly reduce the number of features and achieve similar or even
higher classification accuracy.

3.4.4.2 PSO and wrapper methods

Chuanget al. [19] designed the improved binary PSO (IBPSO) for use in feature selection for gene
expression data. The PSO is used in a wrapper method setup for a total of 100 iterationk. The
nearest neighbor classifier with= 1 is used as the classifier and LOOCYV is used as cross validation
method. The PSO algorithm itself is mainly a standard binary PSO with velocity clamping using a star
topology, but thegbestfitness is reset to zero if it has been stagnant for 3 iterations. No tuning of the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

50 CHAPTER3. FEATURE SELECTION PROBLEM

PSO parameters is performed. Experimental results show that this methodefesitinplifies feature
selection and reduces the total number of features needed. The classification accuracy obtained by the
IBPSO method has the highest classification accuracy in nine of the 11 datasets tested when compared
to a range of classifiers that did not include feature selection. This result thus does not give any insight
into the strength of the IBPSO in FS compared to other FS approaches.

Xueet al.[150] looked at different fitness functions for use in feature selection with PSO in a wrapper
method. The PSO algorithm used was the binary PSO which was not tuned but parameters were set to
standard values from literature. The swarm contained 30 particles with a star topology. A maximum
of 100 iterations were performed and for each dataset 40 independent runs were performed. Three
different fitness functions were compared. The first was normal classification accuracy. The second
fitness function was a weighted sum of (i) the classification accuracy and (ii) the portion of features left
out. For this second fitness function, the weight of the second part increased from 0.0 at the start to 0.2
at the end of the 100 iterations. The third fitness function looked only at the classification accuracy for
the first 50 iterations, and used the same weighted sum approach as the second fithess function for the
last 50 iterations. During these last 50 iterations the weight of the proportion of features left out was
set at a constant 0.2. Experiments were performed on 10 different datasets with 13 to 617 features, 2
to 4 classes and 32 to 4400 instances. For each dataset, the instances were randomly divided with 70%
serving as the training set and 30% as the test set. The classifier used Wwasetirest neighbor with
k equal to 5. Although no statistical test was included, results show that the BPSO with the second and
third fitness functions could not be distinguished from each other, but they both outperformed the first
fitness function that only looked at accuracy. Care should be taken to interpret the results of this study
that a fithess function that “rewards” feature subsets with fewer features are to be preferred. For datasets
with a large number of features of which many are redundant, this approach can improve the results, but
in a real life setting the optimal number of features is not known.

Tuetal.[137] combined the binary PSO with an SVM classifier in a wrapper method to solve the FSP.
No information is given about the PSO’s parameters used, nor about the swarm size. The star topology
was employed for the swarm and the algorithm was run for 100 iterations on each dataset, but only a
single run of the algorithm was performed in each case. The classifier used was the SVM with a radial
basis function kernel. This classifier was tuned for each dataset to find optimal values for its parameters
r andC. Performance was measured by classification accuracy using 10-fold cross validation. Five
datasets from the UCI machine learning repository were used to test and compare the algorithms. The
number of features ranged from 10 to 60 and the number of instances from 104 to 990. The PSO-SVM
algorithm was compared to eight filter methods using a 1-nearest neighbor classifier from the study of
Ohet al.[105]. For the filter methods, the number of features to select is fixed beforehand. Four different
choices of the number of features to select are tested for each filter method. The PSO-SVM algorithm
performed best on four of the five datasets. However, the comparison is flawed on different levels: no
reason is given for why these five datasets were chosen from the 11 datasets evaluated in the study by
Ohet al.[105]. Also, because different classifiers are used and the comparison is made on classification
accuracy, little information is gained as to the contribution of the feature selection, nor of the contribution
of the PSO to this process. Since only one classifier is used, this can subtly bias the resulting accuracies

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 51

and impact of the feature selection. Finally, simply comparing a wrapped method torféthods is
wrought with danger as the computational costs vary greatly.

Yun et al. [155] studied the application of the PSO feature selection and compared it against a GA in
the same setup. Besides a basic wrapper approach, a second variant combining the wrapper with a filter
method was also used. The filter called minimal-redundancy and maximal-relevance (mMRMR) is used in
the PSO to override the selection of a single feature if the filter considers it minimal-redundant, and to
override a feature’s exclusion if it is considered maximal-relevant. The standard binary PSO was used
with parameters; = ¢, = 2.0 and a swarm of 20 particles with a star topology. The PSO was run for 40
iterations on each dataset. Three different classifiers were used, namely naive Bayes, the C4.5 decision
tree, and a SVM with a linear kernel. The performance measure used in the study was classification
accuracy using 10-fold cross validation. In the experiments, 20 real-world datasets were used from
the UCI machine learning repository. The number of features ranged from 19 to 649. The number
of instances ranged from 32 to 6236. The basic wrapper methods, both using the GA and the PSO,
outperformed the filter methods to which they were compared. The PSO wrapper outperformed the GA
wrapper using each of the three classifiers in a statistically significant manner. The variants combining
the wrapper with the mRMR filter performed even better. Here the PSO-mRMR outperformed the GA-
MRMR using the Naive Bayes and C4.5 classifiers. Using the SVM classifier, no difference could be
discerned between the PSO-mRMR and GA-mRMR. This well-built study shows how population based
methods can be used in a wrapper setup and compared. It is shown that the choice of classifier is
important for the outcome and that multiple classifiers should ideally be used in the comparison. A point
of critique is that in each case the PSO and GA algorithms are run only once, disregarding the fact that
multiple independent runs are necessary to compare algorithms with a stochastic component.

Yanget al.[152] adapted the binary PSO by using two different chaotic maps to form two versions of
the chaotic binary PSO (CBPSO). The purpose of the chaotic maps was to determine the inertia weight
of the BPSO. The CBPSO was used in a wrapper method approach to solve the FSP. The PSO algorithm
used a star topology with parameteys= ¢, = 2 and velocity clamping with maximum velocity of 6. No
further details were given on the specification. Kaeearest neighbor classifier wikh= 1 was used to
determine the classification accuracy, which was measured using LOOCYV. Five different datasets from
the UCI machine learning repository were studied with the number of features ranging from 13 to 60
and the number of instances from 178 to 846. The CBPSO was compared to filter methods for solving
the FSP, including sequential forward search with and without plus and take away, sequential forward
floating search, sequential GA, and different hybrid GAs. CBPSO performed the best on four of the five
datasets. The same critique as on the work bflal. [137] applies to this study: no reason was given
for why these five datasets were chosen from the 11 datasets evaluated in the studgtial.(1905].

Also, because different classifiers were used and the comparison was made on classification accuracy,
little information was gained as to the contribution of the feature selection, nor of the contribution of
the PSO to this process. Since only one classifier was used, this can subtly bias the resulting accuracies
and impact of the feature selection. Finally, simply comparing a wrapped method to filter methods is
wrought with danger as the computational costs vary greatly.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

52 CHAPTER3. FEATURE SELECTION PROBLEM

3.4.4.3 PSO and embedded methods

Gomezet al. [45] introduced a two-phased wrapper based approach to solving the FSP. The heuristic
search for the optimal feature subset is split into two stages, in an algorithm called the two step PSO. The
PSO algorithm used is the binary PSO with paramatges ¢, = 2, with the inertia weight decreasing

over time from 14 to 10. The swarm size was set to 21 and 120 total iterations were performed, split
over the two steps. Candidate solutions from the first stage are used to help initialize the swarm for the
second stage: features that are present in many of the candidate solutions are seeded into the swarm for
the second phase, while features that occur in few candidate solutions are filtered out of the swarm at this
mid point. The thresholds of these in- and exclusions, as well as the length of stage 1 versus stage 2 are
parameters of the two step PSO algorithm. Instead of a classifier, the reduct concept of rough set theory
is used. A reduct is a minimal set of features that preserves the partitioning of the dataset in classes
and hence the ability to perform classifications. The FSP is thus transformed from finding the optimal
subset for classification, to finding the minimal reduct. Performance was measured as the weighted sum
of classification accuracy of the reduct and the proportion of features excluded from the selected feature
subset: less features meaning a better performance. The accuracy was weighfetvey<us 16 for

the number of features. Experiments were performed on six datasets with 9 to 56 features and 32 to 1000
instances. The two step PSO was compared to the same PSO wrapper setup but without the two step
approach and to a two step approach involving ACO. The two step PSO was able to find the smallest
minimal reducts. The two step PSO algorithm, however, also introduces three parameters, in addition to
the regular PSO parameters, to the process of solving the FSP with PSO.

Unler and Murat|[139] proposed an embedded feature selection method using an adjusted version
of the binary PSO. The algorithm contains a procedure called “adaptive feature subset selection” which
constructs a feature subset by selecting features in turn until the pre-determined number of features is
reached. The PSO particle’s position is a probability weighted input for the adaptive feature subset
selection procedure. The binary PSO algorithm was adjusted in two ways: first, a time-decreasing inertia
weight was used which decreased from 0.995 to 0.5 in a linear fashion during the PSO's run. Secondly, an
extra term was introduced to the velocity update equation with paramdiarattraction to the swarm'’s
best performing particle in that iteration. The PSO parameters were tuned in an unspecified manner to
c1=2,¢c=15,c3=0.5. A star topology was used on a swarm of 20 particles, with a maximum
number of 300 iterations. The embedded PSO feature selection algorithm was run only once on each
dataset. The algorithm was tested on 11 large datasets. The number of features ranges from 8 to 93, but
the number of instances ranged from 351 to 581012, with most datasets having more than 4500 instances.
The classifier used for the final classification was the logistic regression model. Due to the large number
of instances in the datasets, the validation method for each dataset consisted of a single training set of up
to 1300 instances and 10 test datasets of 200 instances chosen randomly. The performance measure was
the average accuracy over these 10 independently chosen test sets. The resulting classification accuracy
was compared to and exceeded the accuracy reported in an earlier study [109]. This earlier study used
two filter methods as well as a tabu search combined with a logistic regression model. The embedded
PSO algorithm showed slightly better results, but not statistically significant. This well-constructed study
showed the potential benefit of an embedded approach using PSO for large datasets, where a wrapper

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 53

approach may become computationally burdensome. The need to determine befdhehaadect
number of features to select, however, becomes a problem in datasets with a large number of features
where the optimal feature subset size is unknown.

3.5 Conclusions

The first and foremost objective of this chapter consisted in formally introducing the FSP. This was done
by starting with an overview of the field of machine learning and then shifting focus to the problem

of classification. This problem was defined as a supervised learning problem in which the goal is to
determine the correct class label of a data instance based on its input features. An investigation of
the classification problem led to a review of the concept of a classifier and a detailed discussion of
three specific classifiers: tHenearest neighbor classifier, the decision tree, and the Gaussian naive
Bayes classifier. Also, ancillary technical issues were discussed that will play a role in later numerical
experiments on the FSP: data preprocessing and how to measure performance of an algorithm on a
classification task. The latter led to the introduction of various variants of classification accuracy and the
use of cross validation in training and testing.

A large number of features in classification leads to the curse of dimensionality which shows itself
in two intertwined ways: if the number of features grows larger, classifiers increasingly suffer from
overfitting and they require an increasing number of computational resources. Feature selection was
introduced as a technique that can help overcome this curse. Hence, the FSP was defined as selecting
those input features in a classification problem that allow for better classification: a higher classification
accuracy due to less overfitting and also faster classification.

A second objective for this chapter was to show that, similarly to what was done for the MKP in
the previous chapter, the FSP can serve as a valid test problem on which to compare the performance
of various PSO algorithms used to solve it. This objective naturally led to a review of the different
approaches from literature used in solving the FSP. The wide range of these approaches and ongoing
research into them showed that the FSP is a complex, even NP hard, optimization problem with many
real world applications especially in the realm of bio-informatics.

A review of the use of PSO on the FSP showed that this is also an active area of research. The
approaches using PSO on the FSP were divided along the lines of the three main approaches in solving
the FSP, namely filters, wrappers, and embedded methods. The wrapper method has been the most
popular way in which the PSO is used to solve the FSP. Studies that use filter or embedded methods
also exist, but are less numerous. At first glance, though, each method can be used as a framework in
which various PSO methods can be compared fairly. Two reasons can be given to prefer using a wrapper
method with PSO to solve the FSP over filter and embedded methods, if the goal is to compare different
PSOs. A first reason why a wrapper works better for this particular comparison is because a wrapper
puts the biggest onus on the PSO algorithm to search the space of feature subsets. In contrast, filter
and embedded methods use information measures on single or multiple features as the main driver of
the search for successful feature subsets. Hence, if a difference in performance on discrete optimization
problems exists between PSO algorithms, the wrapper approach should be better able to illuminate this

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

54 CHAPTER3. FEATURE SELECTION PROBLEM

difference. Conversely, using a filter or embedded approach might nat ahy difference between
PSO algorithms at all, as success in the search for good feature subsets is mainly driven by the filter.
A second reason to prefer a wrapper is because filter and embedded methods require an a-priori choice
for the number of features to be selected. This is either done explicitly, or implicitly by setting a cut-off
level for the filter. This choice adds a layer of complexity to comparisons of algorithms, as the relative
performance of different PSO algorithms may differ based on the number of features to be selected. It
follows that a wrapper method setup is preferable when comparing the performance of different PSO
algorithms using the FSP.

A separate finding is that the quality of the studies reviewed in s€ctiod 3.4.4 varies: some studies are
well structured and take care to perform a valid comparison of the proposed algorithm to others from
literature. Other studies fall short in a number of ways, as listed below:

¢ A new method for feature selection using a wrapper and/or combining new concepts is compared
to older methods, mainly filter methods. The comparison then only looks at classification accu-
racy. This approach ignores two important differences between filters and wrappers: for filters
the number of features to select needs to be set manually and this is usually confined to a small
number of a-priori guesses. The wrapper method is able to select any number of features during
the search of feature subspace. The drawback of wrapper methods is that they require much more
computation time. By only looking at the classification accuracy, the wrapper method is given an
unfair advantage.

e Assume that classification accuracy is compared between algoiitlused to solve the FSP with
classifierC, specifically, and algorithm, used to solve the FSP with classiftér. Also, assume
that the combination of algorithiy; and classifie€C; achieved the higher classification accuracy.
Then it is impossible to determine whether it was the difference in algorithm or the difference
in classifier which (primarily) caused the difference in classification accuracy. In order to fairly
compare algorithmg\; and A, all settings need to be kept equal for the experiments on both
algorithms. The work by Yuet al.[155] also showed that different classifiers can lead to different
relative performance on the algorithms used to solve the FSP: using cla€sifidgorithm A
may outperformA,, while using classifie€, algorithmA, performs better than algorithay. It
is therefore advisable to use a number of different classifiers and perform multiple comparisons of
the PSO algorithms on the FSP, one for each classifier.

e The performance of two or more stochastic algorithms was compared incorrectly. Sometimes
only a single run of the stochastic algorithm (which PSO is) is performed instead of multiple
independent runs. In other cases algorithms are compared on a single or very few datasets only. In
order to achieve statistically significant results, instead, a large enough number of datasets should
be used. Even if enough different datasets are included in the comparison, it is important that
proper statistical tests are performed to ensure that any difference in performance recorded is more
than a random fluctuation.

Avoiding these shortcoming will help to properly structure the numerical experiments on the FSP to be
conducted in chaptét 6.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 3. FEATURE SELECTION PROBLEM 55

This chapter concludes the first part of this thesis which laid the theoretical grodader the
remainder of the text. This theoretical introduction consisted of the PSO algorithm in dhapter 1 and the
two optimization problems on which a new and various existing PSO algorithms are to be tested and
compared: the MKP in chaptel 2 and the FSP in this chapter. The next two parts describe new research.
The first of those two parts introduces a new PSO algorithm called the set-based PSO in_¢hapter 4. The
second part of new research applies the set-based PSO and other PSO problems to the MKP and the FSP.

© University of Pretoria

Part Il

Generic set-based particle swarm
optimization

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 4

Set-basedparticle swarm optimization

A number of known discrete PSO adaptions using sets were discussed in €hapter 1, leading to the con-
clusion that a functioning, generic, set-based PSO algorithm does not yet exist. The current chapter
introduces a PSO algorithm called Set-Based PSO that is intended to be such an algorithm. The ob-
jective of this chapter is therefore to define SBPSO as a generic, set-based PSO algorithm that can be
applied to discrete optimization problems. The algorithm is intended to contain the features identified in
chaptef]l to determine a PSO algorithm, but formulated using mathematical sets. This chapter is struc-
tured by first defining the PSO concepts of position and velocity in a universe of mathematical sets. Then
set-based operators are defined that are used to combine and transform these sets. Finally, these defini-
tions are combined in update equations for velocity and position, and the general flow of the algorithm

is made explicit.

4.1 Introduction

Part[] forms the theoretical background for this thesis. Chdgter 1 provided an overview of the PSO
field, specifically of discrete PSO algorithms, in chapfer 1. Chapiers Zland 3 respectively discussed
the MKP and the FSP. Those two problems were introduced to form a testbed for the set-based PSO
algorithm presented in this chapter. Rart Il of this thesis consists of only a single chapter and contains
the specification of the Set-Based PSO algorithm, which is intended as a functioning, generic, set-based
PSO algorithm. A question that arises naturally is whether such an algorithm already exists. In order to
answer this question, a review of the literature was presented in chapter 1. §ectibn 1.3.2 listed a number
of PSO algorithms that use mathematical sets. However, each of the existing methods reviewed fell short
in one of three areas:

1. it was not truly set-based,

2. itwas not a truly functioning algorithm in that it did not yield sufficiently good results on discrete
optimization problems, or

3. itwas not generically applicable to all discrete optimization problems, but instead contained prob-
lem specific features that severely restricted its application.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

58 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

Hence there is room for a functioning, truly set-based, generically appliP&ealgorithm and such an
algorithm would be a contribution to the field of swarm intelligence. The abbreviation SBPSO is used in
the remainder of this thesis for the new algorithm intended to fill this void.

Note that two papers outlining the SBPSO algorithm have already appeared in print, namely “A
Generic Set-Based Particle Swarm Optimization Algorithm’ [79] and a later revised version and with
a much expanded analysis in “Set-based particle swarm optimization applied to the multidimensional
knapsack problem? [80].

The current chapter addresses a number of the sub-objectives of this thesis identified in the preface,
most directly the objective to formally define the SBPSO algorithm by formulating the PSO update
equations in terms of set-theory. This is done using the basic components that make up a PSO algorithm
as identified in chaptéd 1. On top of these basic features, a further objective is to identify if, and if so
which, additional components are required to make the new algorithm a functioning algorithm. Finally,
the new algorithm needs to be formulated generically to not include any problem domain specific features
in the algorithm itself: the only link to the problem domain should lie in the fitness function.

This chapter is divided into three main parts, excluding this introduction and a final section of con-
clusions. The PSO concepts of position and velocity are defined in a universe of mathematical sets in
section 4.R2. The universe of discourse is defined, and elements within this universe are elements that
define the position of a particle in the swarm. The discrete make up of the velocity is defined mathe-
matically and illustrated graphically. The second part of this chapter deals with the operators that are
needed to formulate position and velocity update equations in keeping with the general PSO paradigm.
Six different operators are defined in secfion 4.3, the first four of which directly correspond to parts of
the position update equatidn_(I1.2) and velocity update equation (1.4) from chiapter 1:

1. the addition of two velocities,
2. the difference between two positions,
3. the multiplication of a velocity by a scalar, and

4. the addition of a velocity and a position.

Two further operators are introduced to ensure to functioning of the algorithm regardless of the initial
positions and velocities by preventing that parts of the search space become inaccessible to the particles
in the swarm:

1. the removal of elements from the cross section of the current position, and the personal and neigh-
borhood best positions,

2. the addition of elements from outside the current position, and the personal and neighborhood best
positions.

Sectior 4.4 combines the set-based position and velocity with the newly defined operators to formulate
SBPSO’s position and velocity update equations. This section also contains a schematic overview of the
flow of the SBPSO algorithm in solving a discrete optimization problem.

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 59

4.2 Set-based Concepts

SBPSOdefines a particle’s position and velocity as mathematical sets. The position is a set of elements
from the universe of discourdé, that is, the universe of elements defined by the problem. The velocity
is a set ofoperation pairsdefined below. The solution that SBPSO finds for the optimization problem is
thus the best position found by the swarm, represented as a set of elemerits from

The definitions below assume that SBPSO is applied to a maximization task, but a similar definition
for a minimization task is easily derived from this. Let

e U = {en}nen, be the universe of discourse containing all elemestsof which there are a finite
numberNy,

Xi(t) be the position of particleat iterationt, a subset o),

Vi(t) be the velocity of particlé at iteratiort,

f be the objective function to be optimized,

Yi(t) be the personal best position of parti¢lehat is, Yi(t) = Xi(1), T € {1,...,t}, such that
f(Yi(t)) = f(X(1)) =max{f(X(s)|s=1,....t},

Y:(t) be the neighborhood best position for particlat iterationt, that is, ¥;(t) = Y;(t) for the
particle in i's neighborhood that maximize(Y;j(t)).

Figure[4.1(d) shows a particle positidiit) as a set in the univerdé. This universe and mathematical
sets in general do not have a spatial structure, so the placements of the elements denoted with small
squares is arbitrary and no elements can be said to be close to or far away from each other.

|] m L] |] m L]
n " = n " =
[[
[m [m
- X(t) [X(t)
L [L [
Lo o
|] n u n |]
] u n [
[[
[[
(1)
| | u ™ | |

(@) (b)

Figure4.1: Particle positions in SBPSQ: |(a) shows a particle posi¢rn in SBPSO is a set in the
universel. The small squares represent elements in the unikérg®) shows a particle positiod(t)
and a particle’s personal best positié(t). The open diamonds (¢) represent element¥ (i) that are
notin Y(t), and the asterisks (*) represent elementg (i) that arenotin X(t).

The PSO paradigm is built on the idea of movement through the search space, using the concept
of velocity. For SBPSO this idea of movement needs to be defined. In continuous PSO, attraction of
a particle to its personal best position partly determines the particle’s velocity. In SBPSO the same

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

60 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

attraction to the personal best applies. Fidure 4.1(b) shows a particle positipand personal best
positionY (t). HereX(t) andY (t) are shown to partially overlap, though this is not necessarily true. The
movemenbf X(t) towards Y(t) in SBPSO means that the two sets are made more similar by removing
elements fronX(t) that are not ir¥ (t) (pictured as»), and by adding t&(t) missing elements that are
inY(t) (pictured as *). Elements that are in bot{t) andY (t) are not affected by this attraction, nor are
elements that lie outside boXit) andY (t).

The velocity is defined as a set@peration pairs, where an operation pair is the additodeletion
of a single element. An operation pair is denoted-ase), with (+, e) for the addition of elemergc U
and(—, e)for the deletion of elemem. The velocity of particlg Vi(t), is then written agv; 1,...,Vix} =
{(£,en1),---, (£, en,)}, wherek is the number of operation pairs¥(t), and eacle, ; is an elementin
U identified by the index ;.

As an example, consider positioh= {a,c} and velocityV = {(+,b),(—,c)} consisting of two
operation pairs. Adding velocity to positionX means that elemertt is added while elemert is
removed, resulting in a new positiod;, = {a,b}.

Attraction towards the personal bést) does not have to mean that the positift) moves to the
personal best position in one step such ¥@t+ 1) =Y(t). Velocity update equation_(1.4) contains the
attraction toy; (t) ascir(t) [¥i(t) — Xi(t)], meaning that the difference betwegn(t) andx j(t) is scaled
by a factory;(t) = cir1j(t), forall j =1,...,n. If yj(t) = 1, thenx, ;(t+1) =V j(t), if the other terms
of equation[(1.4) are disregarded.yjft) < 1 thenX;(t) is pulled only partly toward§;(t) in dimension
j, while if y;(t) > 1 thenX;(t) will overshooty(t) in dimensionj. In a set-based representation, this
overshooting can not be defined because there is no direction in ¥kii¢ltan overshooY (t) sinceU
has no spatial structure. In contrast, ¥t + 1) = y(t)[Y (t) — X(t)], the casg/(t) < 1 can be defined in
a set-based representation, by making some but not all of the changes required toXuthiséa Y (t).
Figure[4.2(@) illustrates this in action, assumiifg) = 0.5. The seiX(t) requires six changes to “move
to” Y (t): the three elements indicated@seed to be deleted froiX(t), and the three elements indicated
as * need to be added X(t). The scaling of the “move” by a factor of ®is set to mean that only three
of these changes, selected randomly, are mad&ttp This results in the new positioX(t +1). The
attraction ofX(t) to the particle’s neighborhood best positiéft) works in a similar manner.

Figure[4.2(B) shows position$(t),Y(t), andY(t) to partially overlap, with one common element
indicated by a triangle (J\ although this does not necessarily happen in practice. However, should an
element be present in all three s&),Y(t), andY(t), then the above described attractionvi®) and
Y(t) cannot lead to the removal of this element froX(t). Also the attraction t/(t) and ¥ (t) can
notlead to the addition of any elementXqt) that is outside of botlv(t) andY(t). Such elements are
indicated with symbol ‘+’ in figuré 4.2(b). For both cases a mechanism needs to be included in SBPSO
to ensure that the whole univergeis in theory reachable from every possible starting po@tid‘ﬂnese
two mechanisms are defined in secfiod 4.3.

1 Considera particlei in SBPSO. Because the swarm usually consists of multiple particles, movement of particles other
thani can chang¥; (t) by finding a new best candidate solution. This can then c§(eto contain an elemethat was first
outside ofX;(t),Y(t), andY;(t). So strictly speaking only elements that are outsidi;¢f) andY;(t) for all particlesj in the
swarm (and hence also outsﬁijeﬁt) for all j) can not be added () by the attraction mechanism. Similarly, only an element
ethat is contained iiX; (t) andY;(t) for all particlesj in the swarm is one that can not be removed by the attraction mechanism.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 61

removed

(a) (b)

Figure4.2: Particle attraction and movement in SBPEQ: (a) shows how a particle moves from its current
position X(t) in direction of its personal best positiof(t) to its new positionX(t + 1), [(B) shows a
particle positionX(t), its personal best position(t), and the neighborhood best positié(t).

For a strict mathematical definition of position, velocity, and objective function, denotesdjtt)
the power set (that is, the set of all subsetd) oA positionX;(t) is an element of?(U). The objective
function f maps a position to a quality score Ry written as f : Z(U) — R . The velocityVi(t) is
generally defined as a function that maps a position to a new position, théaftis; 22(U) — 2 (U).

Note that the definition of velocity using operation pairs is narrower than the general mapping,
V:2U)— 2(U). Consider for example = {0,1}, and mappiny such that

1. V(0) =0 (V can not contain any additions),

2. V(U) =U (V can not contain any deletions),

3. V({0}) = {1} (requires one addition and one deletion), and
4. V({1}) ={0} (requires one addition and one deletion).

Then,V is a valid mapping from?(U) to #2(U) that can not be denoted as a set of additions and
deletions.

4.3 Operators

To describe SBPSO mathematically, new operators need to be defined. These operators act on velocities
(sets of operation pairs) and positions (sets of elements @pnm ways equivalent to the additions,
subtractions and scalings of positions and velocities in the canonical continuous PSO algorithm. Two
special operators that ensure SBPSO can reach the entire search space are defined to allow (i) adding
elements to a particle’s position that are not in the personaMigsnor in the neighborhood be¥ft),

and (ii) removing elements from a particle’s position that are preseXi(in as well as bothy;(t) and

Yi(t).

The addition of two velocities, Vi @ Vs, is a mappingd : Z({+,—} xU)? = Z2({+,—} xU), that
takes two velocities as input and yields a new velocity. Denot&d @3/, the mapping is defined as the

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

62 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

simple union of the two sets of operation pairs:

Vi®Vo =V1UVs. 4.1)

The difference between two positionsX; © Xy, is a mapping : 2(U)2 — 2({+,—} xU), that takes

two positions as input and yields a velocity. If a particle moves by the resulting velocity, the difference
between the two positions; andX; is the “distance” that is traversed in one step. This mapping is
defined as a set of velocity pairs that indicate the steps required to céaetd X; using additions and
removals of single elements:

X10X = ({+} x (X\X2)) U ({~} x (X2\X1)). (4.2)

Therefore,X; © X is the union of (i) the product of+} and all elements iX; not in X, (all such
elements are added) and (ii) the product ef} and all elements iXz not in X; (all such elements are
removed). This operator thus yields the velogityo get fromX; to X;.

The multiplication of a velocity by a scalar, n ®V, is a mapping : [0,1] x Z({+,—} xU) —
Z({+,—} xU) that takes a scalar and a velocity and yields a velocity. The mapping is defined to mean
picking a subset of x |V|| elements at random from velocity to yield a new velocity. Heréx| for

x € RT denotes the largest € N for which x > v. The operand is restricted to values ifD,1] since

sets can not have a negative number of elements and sets do not allow multiple instances of the same
element. Note that@V =0 and IV =V.

The addition of a velocity and a position,X BV, is a mappindd: Z(U) x Z2({+,—} xU) = £(U)
that takes a position and a velocity and yields a position. Recall that a velocity is itself a function that
maps a position to a new position. The operdtbis defined as the action of applying the velocity
functionV to the positionX:

XHBV =V(X) (4.3)

This is further specified as applying the full set of operation pdirs {vi,...vn} to the positionX
one-by-one and, for each operation pair, one element is addedtoemoved fromX.

Sectiori 4.P referred to two special mechanisms to remove elementXftothat are inX(t) NY (t) N
Y(t) and to add elements #6(t) from outside ofX(t) UY(t) UY(t). These mechanisms are explained
below.

The removal of elementsin X(t) N Y(t)NY(t) from a positionX(t) uses the operatap~. Denoted

B~ S, whereSis shorthand for the set of elemeit&t) NY (t) VY (t), this is a mapping~ : [0,|S] x

2U) — Z({+,—}xU), which takes a scalar and a set of elements, and yields a velocity. The operator
®~ is implemented aandomly selecting number of elements determined®yrom Sto remove from

X(t) and constructs operation pairs that are deletions:

Bo S={-}x a9 (4.4)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 63

The number of elements that are selected fRisidenotedy Ng s, and defined as

Ng.s=min{|S}, [B] + Vrp— (g3} (4.5)

for a random number~ U (0,1). Here Ly, is the indicator function with 3,4, = 1 if bool = true
and Lpoo = 0 if bool = false. Thus the number of elements selected is at [@4stand the fractional
remainder3 — | B] is the probability of the number of elements selected being one larger. The number
of elements is also capped at the number of elemersvrhich in turn means thak is also capped at
the number of elements B

The choice is made tcandomlyselect elements frorg instead of spending more computational
effort to select good candidate elements for removal fXft). Note that the aim of this operation is
to allow exploration of the entire search space. It will likely lead to a worse objective function value at
present, as the element removed frift) is likely of “good quality” given that it is included in both
the personal best and the neighborhood best. The assumption is that any extra effort to select a better
element to remove from (t) will yield only a limited return above that from random selection.

The addition of elementsoutside ofX(t) UY (t) UY(t) to X(t) uses the operatad™. Denoted3 ®* A,
whereA is shorthand for the set of elemerts (X (t) UY (t) U\?(t)), this is a mapping>™ : [0,|A[] x

2U) — Z({+,—}xU), which takes a scalar and a set of elements, and yields a velocity. The operator
©* is implemented to usemarginal objective functiomformation for the positiorX(t) to choose which
elements fronA to add toX(t), and constructs operation pairs that are additions. The marginal objective
function value of elemere for a particle with positiorK(t) is defined as the objective function value of

a new particle with position equal ¥(t) plus e, that isX(t) U{e}. A k-tournament selection algorithm
incorporating this marginal objective function information is used to select elements to Xdt) t@s
outlined in algorithni 6. The implementation of the operatdrthus depends on the parametersed in

the tournament selection, and is denotedgs The operator,” thus is defined as

By A= {+} x k-Tournament Selectidi,Ng ») (4.6)

whereNg 4, the number of elements to be addei@), is defined as in equation_(4.5). The number of
elements to be added is capped at the number of elemeftsivhich in turn means th# is also capped
at the number of elements A&

Algorithm 6: k-Tournament Selection(A)
SetVienp =0 ;
forn=1,...,Ndo
for j=1,...,kdo
Randomly selecgj from A,
Setscorg = f (X(t)U{ej});
end
Selectme {1,... Kk} such thascorg, = max;{scorg };
SetViemp= Vtemp® ({+} X €m);
end
ReturnViemp

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

64 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

In summary,8 ®," A means selectindlg 5, possibly overlapping, elemen{saj}'j\lﬁf, where each
elementeg; in turn is the best performing in a tournamentaglements selected randomly frofn The
best performing elememt here means maximizing the objective function valuaf {€}. Note that a
higher value of3 leads to more elements froAbeing added to the positiof(t), while a higher value
of k means the algorithm is more greedy in selecting which elements to add.

Extra computational effort is exerted in SBPSO by usingdt@urnament selection to find a “good”
element to add tX(t): an additionak objective function evaluations are required. This is done because
the setA will, in general, contain many elements that lead to a worse objective function value when
added toX(t). Good elements to add ¥(t) will thus tend to be rare. The assumption made in this paper
is that the extra effort to locate these good elements is worth the extra objective function evaluations.

4.4 Update equations

Using the redefined operators from secfion 4.3, the velocity update equation for SBPSO becomes

Vit+1) = ane (M) eXt) & cree (Yit)eX(t))
D (Carz®f A(t)) @ (cara®™ S(t)) 4.7)

whereA;(t) = U\ (X(t) UYi(t) UYi(t)) andS(t) = X(t) NYi(t) NYi(t). Parameters are;,c, € [0,1],

C3,C4 € [0,|U]], and the random numberisare all independently drawn from the uniform distribution on
(0,1). Besides the additional velocity components involving and®;;, one more difference between
equation[(4.7) for SBPSO and equatibn {1.4) is the absence of an inertia term. This can be explained by
first looking at the position update equation for SBPSO:

X(t+1)=X(t)BVi(t+1) (4.8)

The velocityV;(t + 1) is a set of operation paifg+,e;),...,(+,em)} that is fully applied to the position
Xi(t), where each operation pair is an addition or a deletion. Once an elerhastbeen added to the
positionX;(t), adding the element again has no impact as a set can only contain a single instance of each
element. Therefore, once the velocity has been appligdtp each operation pair M (t + 1) will have
no impact if applied toX;(t + 1). Hence, there is no need to include part) in Vi(t + 1), which is
what the inertia term would do. The SBPSO algorithm combining the update equéaiidns (4[7)hnd (4.8) is
given in algorithni V.

Note that the order in which the operation pairs fruftt + 1) are applied toX(t) is not relevant,
because the individual additions and deletiansn V;(t + 1) from equation[(4]7) can overlap, but caot
cancel each other out. In other words, there can notjhe#aj, such that; j, = (+,e)andy, j, = (—,e)
are two operation pairs i (t + 1) for the same elemert To illustrate, assume thet(t + 1) contains
both (+,e) and(—, e) for some elemeng:

e Since attraction towardg(t) or ¥;(t) can only create deletions for elements(t)\ (Yi(t) U\?i(t)),
while the ®~ operation can only create deletions for elements§ (), the presence of deletion
(—,e)inVi(t+ 1) implies thate € X;(t).

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 65

Algorithm 7: Set-BasedPSO algorithm (SBPSO) for maximization problems

SetN equal to the number of particles in the swarm;
fori=1,...,Ndo

Initialize X; asrandom subset df ;

Initialize V; = 0;

Calculatef (X);

Initialize f(Y;) = —oo;

Initialize f(Y;) = —oo;

end
hile stopping condition is falsdo
fori=1,....Ndo
// set the personal best position;
if £(X)> f(Y)then
| Yi=X;
end
// setthe neighborhood best position;
for all neighbors | of particle do
if (f(Y,) > f(¥) then
| Y=Y
end
end
end
fori=1,...,Ndo
UpdateV; according to equatio (4.7);
UpdateX; accordingto equation[(4.8);
Calculatef (X);
end

end

=

e Since attraction towardé(t) orY;(t) canonly create additions for elementsX(t)\ (Yi(t) U\?i(t)),
while the®,” operation can only create additions for elementsyift), the presence of addition
(+.,e)inVi(t+ 1) implies thate ¢ X;(t) ore € (U\Xi(t)).

e For e it must then hold thae € X;(t) N (U\X(t)) = 0. Therefore, such aa can not exist in
Vi(t+1).

4.5 Conclusions

This chapter formally introduced SBPSO as an algorithm to solve discrete optimization problems that
allow for a set-based representation. By doing so, this chapter has addressed three of this thesis’ sub-
objectives identified in the preface, namely:

¢ the objective to formally define the SBPSO algorithm by formulating the PSO update equations in
terms of set-theory;

¢ the objective to identify which additional components, on top of the basic features that define a

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

66 CHAPTER4. SET-BASED PARTICLE SWARM OPTIMIZATION

PSO algorithm, are required to make the SBPSO algorithm a functioning algorithm; and

¢ theobjective to ensure that the algorithm is formulated generically and does not include any prob-
lem domain specific features in the algorithm itself - the only link to the problem domain should
lie in the objective function.

The main concepts that form a PSO algorithm were identified in chiapter 1 as a swarm of particles
which each have a position and a velocity, whereby a velocity update equation forms the elegant but
effective mechanism that provides PSQO'’s effectiveness. Before being able to define a position or ve-
locity update equation for SBPSO, first the position and velocity were defined as mathematical sets in
sectiorf 4.2. The definition of position used as the universe of disctues€inite) set of elements de-
termined by the DOP to be solved. A particle’s position is a subset of elementdJramithout any
further structure or order, other than that elements can only be included at most once as is prescribed
for true mathematical sets. A particle’s velocity was defined as a mathematical set containing so-called
operation-pairs. Each operation pair defines an operation of adding a single element to, or removing a
single element from the particle’s position.

Using these definitions, the goal was to define SBPSO’s update equations in line with the basic
components identified for the PSO in chapter 1. These core components of PSO are (i) the position of
a particle is updated in consecutive iterations by adding the particle’s velocity to its current position and
(i) the velocity itself evolves iteratively according to the velocity update equation which contains three
components:

1. a cognitive component that describes the attraction of the particle to the best position in the search
space found by that particle previously,

2. a social component that describes the attraction of the particle to the best position in the search
space found by any patrticle in its neighborhood, and

3. aninertia component that causes the velocity to retain part of the direction it currently has.

Four operators were defined that form the set-based equivalent of basic multiplication, addition and
subtraction used in the update equations for continuous PSO. Using the above definitions of position and
velocity and these four operators, position and velocity update equations could be defined corresponding
to that for continuous PSO.

Two findings became apparent when trying to translate the three components of the continuous PSO
algorithm into their set-based equivalents for SBPSO: firstly, the concept of an inertia component was
inapplicable to the SBPSO as the velocity consists of discrete additions and deletions. Once these ad-
ditions and deletions are applied to the particle’s position, there is no longer a “direction” in which to
continue the “movement” implied by the velocity: an element that has been removed from the position
can not be removed again. Hence the inertia component of the PSO paradigm was not incorporated into
SBPSO.

Secondly, depending on the positions of all particles in the swarm at any point during the search,
certain parts of the search space could become inaccessible. Denétieyposition of a particley
the personal best position of a particle, ahthe neighborhood best position for a particle. If &rthe

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

CHAPTER 4. SET-BASED PARTICLE SWARM OPTIMIZATION 67

particles in the swarm the cross sectdmY NY containecthe same eleme, this element could not

be removed from any particle’s position and such points in the search space can no longer be reached. A
similar problem arises for elements that lie outside the uKiory UY for all particles in the swarm: such
elements can not be added to the position of any particle in the swarm. In order to solve these problems,
two further operators were introduced that for each particle in isolation can (i) remove elements from the
cross sectioX NY NY, or (ii) add elements from outside the uniguyY UY. In this way the SBPSO
algorithm is guaranteed to be able to access the whole search space. The two mechanisms were defined
generally, but for both a specific implementation was chosen for use in the remainder of this thesis.

It was shown that the manner in which the velocity update equation is constructed explicitly prevents
offsetting operation pairs to be present in the velocity. Hence, the order in which the additions and
deletion defined by the velocity’s operation pairs are applied to the position is irrelevant. It may therefore
be concluded that SBPSO is a well-defined set-based algorithm to solve DOPs which follows the PSO
paradigm as closely as possible.

The way the SBPSO algorithm was set up also ensures that it is indeed a generic algorithm and
no heuristics or components specific to the problem domain are used other than the objective function.
SBPSO can thus be applied to any DOP as long as the DOP has recognizable elements that can be used
to form the universe of discourd¢and an objective functior can be constructed which needs to be
minimized or maximized.

This chapter in itself completes patrt 11 of this thesis, in which the SBPSO algorithm was described.
The SBPSO algorithm is tested and compared to alternative discrete PSO algorithms on two different
DOPs in partdll: the MKP in chaptéld 5 and the FSP in chalpter 6. The next part therefore forms the test
of whether the SBPSO algorithm is indeed a fully functioning PSO algorithm for use on discrete opti-
mization problems that allow for a set-based representation and of how well its performance compares
to that of alternative discrete PSO algorithms.

© University of Pretoria

Part Il

Empirical analysis

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 5

Experiments on the multidimensional
knapsack problem

The previous chapter defined and described the SBPSO algorithm. Before that[In part | the MKP was
introduced in chaptdrl 2 as a discrete optimization problem that can be used as a test-bed for the new
algorithm. This chapter applies SBPSO to the MKP and will compare its performance to that of three
other PSO algorithms from literature. The objectives of this chapter are three-fold, where the first objec-
tive is to determine if it is possible to successfully apply the SBPSO algorithm to the MKP, which in this
case means yielding quality solutions. A second objective is to compare the performance of the SBPSO
algorithm on the MKP to three other PSO algorithms known from literature and the third objective is to
investigate what parameter values work well for the SBPSO. This chapter is organized into four sections:
experimental setup, parameter tuning, sensitivity analysis for SBPSO, and the results of the experiments
on the four tuned PSO algorithms.

5.1 Introduction

The current chapter can be seen as the culmination of the path outlined in the previous chapterd.IChapter 1
provided the background to show that a generic, functioning, set-based PSO algorithm did not yet exist
and what components such an algorithm should contain. Chapter 4 introduced the SBPSO algorithm with
the claim that it is a generic, functioning, set-based PSO algorithm. In order to validate this claim, the
SBPSO algorithm needs to be tested on discrete optimization problems (DOP). The MKP was introduced
in chaptef 2 and it was argued that the MKP is a non-trivial DOP that forms a valid test-bed for the SBPSO
and other discrete PSO algorithms. This chapter brings together the two parts and applies SBPSO to the
MKP. The review of the literature in chaptdr 2 also suggested a number of other discrete PSO algorithms
the SBPSO can be compared to.

As mentioned above, the following objectives from the preface are addressed in this chapter:

e To test the new algorithm on DOPs;

e To compare the performance (in terms of quality of the solution found) of the new algorithm
against known discrete PSO algorithms from literature which have been applied on the MKP;

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

70 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

¢ To investigate the new algorithm'’s control parameter values that yield good results.

Thefirst two of these objectives are self-explanatory: any new algorithm that is introduced needs to go
through vigorous tests and comparisons in order to assess what its value is and in what situations it can
be a good choice to use in practice. Such tests can also help identify possible limitations and areas of
improvement.

The third objective is linked to the fact that SBPSO is a new algorithm and little is yet known about
which choices of parameters yield adequate or good results. The variant of SBPSO outlined i _¢hapter 4
contains five control parameters to be tuned;c,,c3,cs andk, the size of the tournament used to
select elements to add to particle positions. An extensive method of tuning is used to find SBPSO’s best
parameter combination for use on the small and large MKP separately. Besides finding the best parameter
combination to use in the experiments, a sensitivity analysis is conducted on the tuning results to better
understand what areas of the parameter space yield the best results. Also, the impact of SBPSO's five
parameters is compared to see which parameters have the most influence on the quality of the solutions
and which parameters are thus most important to be tuned well.

At this point it is also important to repeat the objectives from the preface involving the MKP that are
defined to beutsidethe scope of this thesis, and by extension, outside the scope of this chapter:

¢ find an algorithm that is better at solving the MKP than known state-of-the-art algorithms;

¢ find the most efficient algorithm in terms of number of iterations or fithess function evaluations,
total number of computations (flops) or total time needed to complete;

e to compare the performance of the new algorithm against non-PSO methods used to solve DOPs.

The main goal of this research is to define the SBPSO as a generic, set-based PSO algorithm and show
that it is able to find good solutions to different DOPs with a performance that is on par or even better
than other generic discrete PSO algorithms. The review of previous work on the MKP in dhapter 2
showed that the state-of-the-art algorithms rely heavily on heuristics like repair operators to find the best
solutions. Because the goal is to define SBPSO without problem domain specific features, it is expected
that SBPSO will not be able to compete with more specialized algorithms.

Although performance can be defined in many different ways, this first detailed investigation of
SBPSO focused purely on the quality of the solutions found. Any comparison based on the efficiency
of the algorithm would require at the minimum a rebuild of the code used to perform all experiments
to ensure an optimal implementation of the algorithm. The question of efficiency and (relative) speed is
left for later investigation, as such work is only of interest if the algorithm can first be shown to yield
sufficiently good solutions.

Lastly, this thesis compares SBPSO only to other PSO algorithms. This is done because the main
novelty of SBPSO lies in the way it uses a set-based approach to PSO; thus it is interesting to see how
that approach compares to other existing PSO algorithms. In that way the contribution of the set-based
aspect in SBPSO can be determined more clearly than if SBPSO was compared to, say, ACOs or GAs.

The structure of the chapter is as follows: first the experimental setup is described, including pa-
rameter tuning of the PSO algorithms. The tuning results for the SBPSO algorithm are then used to

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM1

perform a sensitivity analysis on SBPSO’s parameters to find good valueadbrand which parameters

are most influential on SBPSO'’s performance. This is then followed by a summary of the results on the
experiments performed on the PSO algorithms, split into results for the small MKP and large MKP. The
chapter ends with conclusions drawn from the tuning and testing.

The experimental setup used to produce the results in this chapter is described in detail i séction 5.2.
This setup begins with the selection of the MKP benchmark problems to be used in the experiments. This
is followed by listing the three PSO algorithms which are chosen to be compared with the SBPSO. In
order to allow for full replication of the results in this thesis, all aspects of the configuration of the four
PSO algorithms are given next and explained in a sequence of subsections dealing with swarm size,
swarm topologies, objective function, initialization mechanisms, stopping conditions, and number of
independent runs performed.

Sectiori 5.8 then details how the parameters of each of the four PSO algorithms were tuned: parameter
combinations are generated that span the parameter space of the PSO algorithms and performance on the
tuning problems is weighed to find the best parameter combinations. Note that all four PSO algorithms
are tuned separately on the small and the large MKPs. This is done to gain insight in the tuning procedure:
since the large MKPs form a well-described and homogeneous set for which a perfect tuning set can be
constructed, the tuning is expected to work quite well. The small MKP set is more heterogeneous, so
the tuning might work less well or provide quite different results. Sedtioh 5.4 uses the results of this
parameter tuning to analyze the sensitivity of SBPSO to different values of its control parameters. Each
of SBPSO's five parameters is investigated separately and the order of their importance to the quality of
the tuned solution is determined.

The final results obtained for the four PSO algorithms are then given in séction 5.5, split into those
for the small MKP and large MKP separately. Since experiments are performed on four PSO algorithms,
each combined with three different swarm topologies, results are first compared per topology (all four
algorithms use the same topology) and then per algorithm (a single PSO algorithm with the three differ-
ent swarm topologies). All results are subjected to statical analysis in order to determine if any algorithm
or topology has performed better than the competing ones, and if any pattern can be detected in the per-
formance. Although a number of tables are included in this results section that summarize the outcomes
of the experiments performed, the volume of such results does not allow all details to be included in
this chapter. Therefore, two appendices are included at the end of this thesis with more detailed results:
appendix_A for those on the small MKPs and appeindix B for those on the large MKPs.

5.2 Experimental procedure

This section describes the procedure that is used in the experiments for tuning the PSO algorithms and
evaluating their performance. The following design choices are touched upon in separate sub-sections:
the selection of benchmark problems, the selection of PSO algorithms to compare with the SBPSO, the
swarm size, the swarm topologies, the objective function used in the optimization process, the initializa-
tion process for each PSO algorithm, stopping conditions, and the number of independent runs performed
in each experiment.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

72 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.2.1 Benchmark problems used

TheMKPs used in the experiments consist of both problem sets used by Chu and Beasley [18]: 55 small
MKPs and 270 large MKPs as described in sediioh 2.3. The two sets of problems were each further split
into a tuning set used to find the best parameters for the algorithms, and a test set that is used to compare
the performance of the tuned algorithms. This section describes how these splits were made and the
exact resulting tuning and test sets.

5.2.1.1 Small MKP

For the small MKPs, a tuning set of 15 problems was manually chosen. The remaining 40 problems
formed the test set. Which small MKPs were selected for the tuning set and which for the test set is
summarized in table 5.1. The tuning set was chosen to reflect the range of problem sizes in the entire set
of 55 problems, with the number of variablesanging from 20 to 90, and the number of constraints
ranging from 2 to 30.

Table 5.1: Split of small MKPs into tuning and test problems

Tuning Set Test Set
problem n m || problem n m\ problem n m\ problem n m
mknapl-4 20 10| mknapl-1 6 10 mknap2-23 50 mknap2-42 34 4
mknapl-5 28 10|| mknapl-2 10 10 mknap2-24 60 mknap2-43 18 2
mknap2-10 71 2 || mknapl-3 15 10 mknap2-25 60 mknap2-44 20 10
mknap2-15 30 5 || mknapl-6 39 5| mknap2-27 60 mknap2-46 37 30
mknap2-17 40 5 || mknapl-7 50 5| mknap2-29 70 mknap2-47 28 4
mknap2-2 60 30| mknap2-1 60 30 mknap2-3 24 2 mknap2-5 24 2
mknap2-20 50 5 || mknap2-11 30 5| mknap2-30 70 mknap2-6 24 2
mknap2-26 60 5 || mknap2-12 30 5| mknap2-31 70 mknap2-7 24 2
mknap2-28 70 5 || mknap2-13 30 5| mknap2-32 80 mknap2-8 24 2
mknap2-33 80 5 || mknap2-14 30 5| mknap2-34 80 mknap2-9 71 2
mknap2-39 90 5 || mknap2-16 40 5| mknap2-35 80
mknap2-4 24 2|l mknap2-18 40 5| mknap2-36 90
mknap2-41 27 4| mknap2-19 40 5| mknap2-37 90
mknap2-45 40 30| mknap2-21 50 5| mknap2-38 90
mknap2-48 35 4| mknap2-22 50 5| mknap2-40 90

The three smallest problems (mknapl-1, mknapl-2, mknapl-3) were leff e tuning set on
purpose, as the search spaces for these problems are small. Since each item in the MKP is either in or out
of the knapsack (two options), the number of points in the search space is equal to 2 to the power of the
number of items in the problem. For the three smallest problems this amourfts=t6£ 21° = 1024,
and 2° = 32768 points in the search space respectively. For such simple problems, little difference is
to be expected in the performance of the algorithm using different control parameters, so the problems
yield little information on which parameters are best.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM3

5.2.1.2 Large MKP

For the large MKP, the total set of 270 problems consists of 27 subsets of problems, each of which
contains 10 random instances for a given combination of problem parametersind tightness ratio

r as described in sectign 2.3. For the tuning set, one problem was selected at random from each of the
27 subsets, and the remaining 243 problems formed the test set. The 27 tuning problems, each with the
number of variables, the number of constraints, and tightness ratios are summarizediniable 5.2.

Table 5.2: Split of large MKPs into tuning and test problems. Only the 27 tuning problems are shown,
the remaining 243 problems form the test set.

problem n m r |problem n m r |problem n m r

mknapcbl-6 100 5 0.2(mknapcb4-3 250 5 0.2Emknapcb7-1 500 5 0.25

mknapcb1-17 100 5 0.50] mknapch4-12 250 5 0.50mknapcb7-19 500 5 0.50
mknapcb1-27 100 5 0.75] mknapcb4-27 250 5 0.7pmknapcb7-30 500 5 0.75

mknapcb2-7 100 10 O.kanapch—? 250 10 O.ZEmknapch—lo 500 10 0.25

mknapcbh2-11 100 10 0.50 mknapcb5-20 250 10 0.50mknapcb8-16 500 10 0.50
mknapch2-22 100 10 0.75 mknapcb5-21 250 10 0.7bmknapcb8-26 500 10 0.75

mknapcbh3-3 100 30 O.kanapch—? 250 30 0.2Emknapcb9—8 500 30 0.25

mknapch3-20 100 30 0.50 mknapcb6-16 250 30 0.50mknapcb9-18 500 30 0.50
mknapcbh3-24 100 30 0.75 mknapcb6-23 250 30 O0.7bmknapcb9-26 500 30 0.75

5.2.2 PSO algorithms

The SBPSO algorithm is compared to three other PSO algorithms: BPSO by Kennedy and Eberhart
[62], MBPSO by Sheret al.[125], and PBPSO by Zhest al.[157]. Refer to sectiors 1.3.1 [T, 1.3]1.2,

and 1.3.1.B for detailed descriptions of these algorithms. The reason these three algorithms were chosen
for comparison was that they do no incorporate any domain specific methods such as a repair operator.
Also, these algorithms have been used on the MKP before and this resulted in reasonable results, see for
example Wangt al. [146].

BPSO, MBPSO, and PBPSO are all so-called binary PSO algorithms: the candidate solution in the
algorithms is represented by binary-valued particle positions. In terms of the MKP this means that the
bit values in the position are directly interpreted asthealues in equatioi (2.1). That is, a particle
indicates the assignment of items to the knapsack. For SBPSO, in order to evaluate a solution, the
from equation[(ZJ1) are set to 1 for all items that are included in the particle position set, and set to 0 for
all items that are not.

5.2.3 Swarm size

An important parameter in PSO algorithms is the number of particles in the swarm. While the optimal
number of particles for a specific algorithm-problem pair can be problem dependent, this study used the
same number of particles for all algorithms and for all problems in each problem set: for small MKPs
the number of particles was set to 25, while for large MKPs the number of particles was set to 50. Using

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

74 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

the optimum number of swarm particles is not too important because the objeatigefiad the best
possible solution to the MKP, but to compare the relative performance of the different algorithms and
swarm topologies. Hence using the same number of particles in each case that is comparable is important.

5.2.4 Swarm topologies

Each of the four PSO algorithms is used with each of the following three topologies: star, ring, and Von

Neumann. This results in 12 algorithm-topology pairs. The pairs with a star topology are referred to as
global best PSO shortened to GB in the tables in the remainder of this document. Similarly, the pairs
with a ring topology are referred to as local best PSO shortened to LB, and the pairs with a Von Neumann
topology are referred to as VN in the tables.

Particles organized in a swarm topology are considered connected if they are in each other’s neigh-
borhood. Particles that are not in each other’'s neighborhood are connected indirectly due to overlap
between neighborhoods. If, for example, particle not connected to particlg but the two particles
share a common neighbkythen the path—k— j connects particleisand | in the topology. The distance
between two particles in a topology is determined bydhertestpath that connects the two particles.

For particles and j from the example, the— k — j path is the shortest path, and the distance between
i andj thus is 2. The average distance across all possible pairs in a swarm, caliadthge shortest
path length, is a measure of how connected the swarm is.

A swarm with the star topology always has an average shortest path length of 1, as each particle is
in each other particle’s neighborhood. For the Von Neumann topology, the average shortest path length
depends on the number of particles in the swarm. For swarms of 25 and 50 particles, the Von Neumann
topology leads to average shortest path lengths of 2.5 and 3.5 respectively. For the ring topology, the
average shortest path length depends not only on the swarm size, but also on the neighborhood size. A
neighborhood size of 4 was chosen for the experiments of this study, such that the swarms with a ring
topology are less connected than those using either of the other two topologies. This resulted in average
shortest path lengths for swarms with the ring topology of 3.5 for a swarm of 25 patrticles, and 6.6 for a
swarm of 50 patrticles.

Therefore, in the experiments conducted, swarms with the star topology were the most connected,
swarms with the ring topology were the least connected, and swarms with the Von Neumann topology
had an intermediate level of connectedness.

5.2.5 Objective function

The MKP is defined as a maximization problem. The objective function used is the same for all the
PSO algorithms. For particles that represent a feasible solution to the MKP, that is, which satisfy all
constraints in equation _(2.3), the objective function value was set equal to the sum of the values of the
items in the particle. Particles that do not represent a feasible solution because they violate at least one
of the constraints in equation (2.3), were assigned an objective function value of minus infinity. Since a
particle uses its position to represent a solution, the objective function value of a particle is computed as

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEMS

f(X(t)), defined as

n
Vi Xi if Vjie{l,....m}:HYwx <C;

n (5.1)
—00 if Hje{l,...,m}:zlwi7jxi>cj
i=

Using the terminology from chaptkt 2, this objective function means that a penalty function approach
is used. By setting the value of the objective function to minus infinity for all infeasible positions, no
detailed domain specific information is used. In other words, there is no difference in the objective value
of a position that is only just breaching one of the MKP’s constraints and of a position that is breaching
many constraints and therefore also no gradient in the infeasible part of the solution space that can be
exploited by the PSO algorithms. Although an approach that uses a penalty proportional to the breach
of the constraints would probably work better, such an approach also makes the algorithms less generic
and generality of the algorithms plays a large role in the objectives in this thesis. By making the problem
harder, any differences in performance between the four algorithms should also stand out more.

In order to facilitate a comparison of results across different problems, the results in this thesis for
experiments on the MKP do not show the raw objective function values. For the small MKPs, the error
between the best objective function value found and the known optimum is shown. Since the optimal
solutions are not known for all the large MKPs, for these problems the error between the best found
objective function value and the LP relaxation bound is shown instead. The LP relaxation bounds were
obtained using the Java wrapperpfsolve 5.5, which is based on the revised simplex method [8]. The
boundsfound corresponded perfectly with those made available by Chu and Beasley [18].

5.2.6 Initialization procedure

Particles were initialized randomly for each algorithm-topology pair. For the BPSO, MBPSO, and
PBPSO algorithms, the positions were initialized randomlyf0n1}", while the velocities for BPSO

and PBPSO were initialized randomly jr1,1]", following [31]. For PBPSO the continuous-valued
positions,i’i(O), were initialized af), to ensure that no initial bias was included in the discrete-valued
positions X (0). For the SBPSO algorithm, the positions were randomly initialized, such that each ele-
ment had a & chance of being included, and all velocities were initialized as an empty set.

5.2.7 Stopping conditions

For each independent run of an algorithm, the same three stopping conditions were applied. These
stopping conditions were:

1. the best objective function value in the swarm equaled the known optimum (in case of small MKPs)
or equaled the LP relaxed bound (in case of large MKPSs),

2. the best objective function value in the swarm had not improved for 2500 iterations, or

3. more than 5000 iterations had passed.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

76 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.2.8 Number of independent runs

PSOQis a stochastic optimization algorithm, and individual runs of the algorithm can have different results
even if all circumstances other than the random number generator are kept the same. Hence, multiple
independent runs of the algorithms have to be executed and the average performance reported. For the
small MKPs, 30 independent runs were used for tuning the algorithms and 100 independent runs were
used to ascertain the average performance on the test problems. For the large MKPs, 30 independent
runs were used both for tuning the algorithms and to determine the performance on the test problems.

The difference in the number of independent runs used for determining the average performance on
the test set for the small MKPs and the large MKPs is solely due to the computational load: for the
large MKPs the test set contains more problems (243 versus 40 for the small MKPs) and the number of
variables per problem range from 100 to 500 for the large MKPs while only from 6 to 90 for the small
MKPs.

5.3 PSO parameter tuning

This section describes how the twelve PSO algorithm-topology pairs were tuned on the small MKP
and the large MKP problem sets separately. Sedtion]5.3.1 describes how the parameter tuning was
performed. Sections 5.3.2 ahd 5]3.3 list and discuss the resulting best control parameter values per
algorithm-topology pair for the small MKP and the large MKP respectively.

5.3.1 Tuning process

While efficient parameter tuning approaches like F-Race [9] exist, a different process was chosen to tune
the parameters of the four PSO algorithms in these experiments. This was done because the chosen
process was deemed more appropriate for the sensitivity analysis conducted in[Sektion 5.4, while speed
of the tuning process was not a priority in the experiments. All four algorithms were tuned in the same
manner to preserveeteris paribusin the final comparison of test results. Besides the main tuning
process, a sensitivity analysis was conducted for the SBPSO algorithm only.

For each of the 12 algorithm-topology pairs, the same process was used to tune the algorithm’s
parameters, although the number of control parameters differed: MBPSO has only two parameters, while
BPSO has four, PBPSO has six, and SBPSO has five parameters. Each algorithm-topology was tuned
twice: once on the tuning set of small MKPs and once on the large MKPs. The end result of the parameter
tuning was a total of 24 tuned parameter combinations.

Table[5.3 lists the ranges of possible parameter values used in the tuning process. The Cartesian
product of the parameter value ranges for one algorithm forms the parameter space for that algorithm. For
each of the four PSO algorithms, 128 parameter combinations were generated that span each algorithm’s
parameter space. Only static control parameters were considered. In order to generate the parameter
combinations in a manner that ensures that the parameter space was covered well, sequences of Sobol
pseudo-random numbers were used according to the method proposed by Franken [36].

Even though the number of parameters differs across the algorithms, the same number (128) of

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM7

Table 5.3: Parameter ranges used in tuning the four PSO algorithms on the MKP

algorithm BPSO PBPSO | algorithm ~ MBPSO SBPSO
© [0.50,0.99] [0.50,0.99]| pswr [0.00,1.00]
c [0.00,5.00] [0.00,5.00]| preet [0.00, 1.00]
c [0.00,5.00] [0.00,5.00]| ¢ [0.00, 1.00]
Vmax [1.00,10.00] [1.00,10.00] ¢ [0.00,1.00]
R [1.00,100.00] c3 [0.50,5.00]
Prout [0.00, 0.50] Ca [0.50,5.00]
K (1,...,9

parameter combinations were used in tuning each of the algorithm-topology pdhie tmo problem

sets. Hence, for the MBPSO algorithm, which has only two parameters, the parameter combinations
provided a denser covering of the two-dimensional parameter space than for the other PSO algorithms
which each have at least four parameters. Thus the amount of effort expended in tuning was the same,
but the MBPSO was rewarded for having fewer parameters by having those parameters tuned in more
detail.

Note that the tuning process for each algorithm used the same 128 parameter combinations for each
of the three topologies, and on both problem sets. Thus, for example, in tuning BPSO using a star
topology on the small MKPs, the same 128 parameter combinations were considered as in tuning BPSO
using a Von Neumann topology on the large MKPs.

The next step in the tuning process was to determine the best parameter combination for each of the
algorithm-topology pairs on each of the problem sets. To do this, 30 independent runs were conducted
for each of the parameter combinations, on all the tuning problems in the problem set. For each problem,
the average of the best objective function value achieved by each of the 128 parameter combinations over
the 30 runs was determined. The parameter combinationsrasekedin order of the average objective
function value for each problem separately: the parameter combination with the highest objective func-
tion value (or equivalently the lowest error) thus was assigned rank 1, while the worst combination was
assigned rank 128. In case two or more combinations achieved the exact same average objective function
value, the ranks for each were combined and averaged: three combinations ranked 36th, 37th and 38th,
for example, would all have been assigned the average rank of 37.

Finally, theaverage rankwas determined for each parameter combination by averaging over all the
problems in the set. The parameter combination with the lowest average rank was deemed best and
chosen as the tuning result. This method weighed the contribution of each tuning problem equally, and
by using the rank of the objective function value instead of the objective function itself, a fair comparison
was made using problems that have different optima and different search landscapes.

An overview of the results of tuning the 12 algorithm-topology pairs on the small MKPs and the
large MKPs, in the form of the best parameter combination found for each topology-algorithm pair, are
shown and discussed in sectidns 5.3.2[and 5.3.3 respectively. Detailed results for the small MKPs and
the large MKPs can be found in appendicés A and B respectively.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

78 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.3.2 Tuning results for small MKPs

This section describes and discusses the results for the small MKPs of the tuning procedure for the PSO
algorithms described in the previous section. Tablé 5.4 summarizes the best parameters found, for each
of the algorithm-topology pairs on the small MKPs.

Table 5.4: Tuned parameters for small MKPs

algorithm BPSO PBPSO
topology | GB LB VN GB LB VN

W 0.9211 0.9594 0.97090.6876 0.6455 0.6455
C1 4.6094 28125 4.41410.7422 4.2969 4.2969
C2 1.3281 15625 1.99220.5078 4.7656 4.7656
Vinax 59219 7.1875 5.14843.3203 4.2344 4.2344

R 37.352 64.422 64.422
Pmut 0.0742 0.0391 0.0391
algorithm MBPSO SBPSO
topology | GB LB VN GB LB VN
Pstat 0.4844 0.4766 0.4766
Preset 0.3906 0.3203 0.3203
C1 0.9297 0.5156 0.5156
C2 0.2266 0.4531 0.4531
C3 1.3086 1.8359 1.8359
Ca 2.1523 2.2578 2.2578
k 7 7 7

For BPSO, the attraction to the neighborhood best partig)éncreaseds the swarm topology was
less connected: highest for gbest BPSO, lowest for Ibest BPSO. The attraction to the persongl best,
ranged from 1.3 for the star topology to 2.0 for the Von Neumann topology, and was clearly smaller than
the values for;. The inertia weighto was high for each of the three topologies, as wasthg, which
was above 5 in all cases.

For PBPSO, the best parameter value combinations for Ibest PBPSO and the Von Neumann topology
were the same, but the best parameter values found for gbest PBPSO were quite different, mainly with
much lowerc; andc, values. Note that, compared to BPSO, the inertia weight for the best parameter
value combinations for PBPSO was much smaller.

For MBPSO, the three values found for the static probabifbty;, were similar and comparable to
the value of 6 used by the original authors, Shenal. [125]. The value ofpresetOf 32% to 39% was,
however, more than triple the 10% used by Saeal.[125], indicating that a high proportion of random
resets was beneficial.

For SBPSO, the parameter value combinations for the ring and Von Neumann topologies were the
same, while for the star topology a different parameter value combination was optimal with a much
higherc; and lowerc,. Sectiof 5.4 gives a detailed analysis of the sensitivity of SBPSO’s parameters
using the tuning results.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM9

SectiorCA.1 in appendiXJA contains the detailed results for the chosen best paraoretenation
for each of the 12 algorithm-topology pairs on the small MKPs. For these 15 tuning problems, the best
parameter combination for each algorithm-topology pair could often find the known optimum in all of the
30 independent runs of the algorithm. The average over all 12 pairs is 5.2 problems solved perfectly out
of 15 tuning problems each. The problem with solving the problems perfectly during tuning is that the
discriminatory power of the tuning problems diminishes due to a ceiling effect. A quick example using
the GB BPSO algorithm-topology pair is indicative: for this pair the chosen parameter combination was
able to perfectly solve three tuning problems: mknapl-4, mknap2-15, and mknap2-4. For these three
problems respectively, 118, 71 and 96 parameter combinations were able to perfectly solve the MKP. On
these three problems the tuning process was not able to distinguish the quality of more than half of the
128 parameter combinations, making the effective tuning set closer to 12 problems than 15.

Another result that can be derived from the detailed tuning results for small MKPs on BPSO, MBPSO
and PBPSO is that the best parameter combination found by the tuning process is one that is the best com-
promise to work effectively on the whole set of problems, and not a single best parameter combination
that works best on all problems. The SBPSO algorithm instead does not seem so affected on the set of
15 tuning problems. This can be seen from the average rank of the chosen parameter combination out of
128 combinations. A single combination that works better than all other combinations on all 15 tuning
problems would score an average of 1. Tablé 5.5 lists the average ranks for the 12 algorithm-topology
pairs tuned on the 15 small MKP tuning problems. The left-hand side of the table shows the average
rank across all 15 tuning problems, while the right-hand side shows the average rank on all problems not
solved perfectly. The number of such problems is indicated between brackets.

Table 5.5: Average rank out of 128 of best parameter combination in tuning small MKPs across the
15 tuning problems. The columns labeled “#” indicate the number of problems that were not solved
perfectly by the algorithm-topology pair.

All 15 tuning problems Not perfectly solved problems
GB LB VN GB LB VN
algorithm|avg. rank avg. rank avg. rank| avg. rank (#)|avg. rank (#)|avg. rank (#)

BPSO 265 | 152 | 158 211 (12) 97 (8)| 101 (10)

MBPSO | 16.1 8.2 7.2 155 (13) 6.8 (12) 5.3 (13)
PBPSO | 152 | 129 | 13.3 114 (12) 101 (9)| 102 (10)
SBPSO | 8.3 115 | 11.2 24 (7)] 22 (&) 18 (86)

Using the average rank on the non-perfectly solved problems the BPSO, MBR8®BPSO algo-
rithms show a higher average rank than SBPSO. The average rank for the three non-SBPSO algorithms
ranges between 5.3 (for VN MBPSO) to 21.1 (for GB BPSO). This indicates that, for these three al-
gorithms, performance of the best parameter combination is not uniform across the tuning set: other
parameter combinations work better on some problems, but worse on others such that the average per-
formance is worse. This is not optimal, as it is preferable that a single combination of parameters works
best across a range of problems leading to what could be called a robust tuning result.

For the SBPSO algorithm, the tuning result on the small MKPs was much more robust. Disregarding

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

80 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

the problems solved perfectly (which discriminate less in quality between paracoet@ination), the
average ranks became 2.4, 2.2, and 1.8 for GB SBPSO, LB SBPSO, and VN SBPSO respectively. In
other words, for SBPSO the chosen parameter combination was on average in the top 3 out of 128
possible combinations, and the worst ranks on the non-perfectly solved problems were 8th, 4th and 3rd
for the chosen parameter combinations for GB SBPSO, LB SBPSO, and VN SBPSO respectively. Note
that the average errors and the average errors on the non-perfectly solved problems[in table A.5 were
skewed by the fact that the local optimum found for problem “mknap2-10” had an error of more than
5% to the known optimum. Excluding this problem, the average errors over the remaining 14 problems
were 0049%,0.023%,and 0024% for GB SBPSO, LB SBPSO and VN SBPSO respectively. The non-
perfectly solved tuning problems in table A.5 posed similar problems for the BPSO, MBPSO and PBPSO
algorithms.

5.3.3 Tuning results for large MKPs

Table[5.6 summarizes the best parameter values found using the parameter tuning procedure described
in sectior 5,311 for each of the algorithm-topology pairs on the large MKPs.

Table 5.6: Tuned parameters for large MKPs

algorithm BPSO PBPSO
topology | GB LB VN GB LB VN

w 0.9785 0.9785 0.97850.6263 0.7373 0.7373
C1 24609 2.4609 2.46093.8672 2.7344 2.7344
C2 4.1016 4.1016 4.10163.6328 1.9531 1.9531
Vinax 9.2266 9.2266 9.22668.9453 7.0469 7.0469

R 74.477 82.984 82.984
Pmut 0.0117 0.0078 0.0078
algorithm MBPSO SBPSO
topology | GB LB VN GB LB VN

Pstat 0.4531 0.2266 0.382
Prest 0.1094 0.0703 0.1016

O

C1 0.9297 0.3672 0.3672
C2 0.2266 0.9141 0.9141
C3 1.3086 1.5898 1.5898
Cy 2.1523 1.3086 1.3086
k 7 3 3

For BPSO, the best parameter value combinations found on the large MKPgxeeté/ the same
for each of the three topologies, characterized by a high inertia weightgh Vinax andc, > ¢;. The
latter inequality indicates a stronger attraction to the neighborhood best position than to the personal best
position, which is the reverse of the results found for BPSO on the small MKPs, where,.

For PBPSO, the ring and the Von Neumann topologies yielded the same best parameter value com-
bination. For all three topologies, the values found for the inertia weightyere similar. These values

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM1

are also very similar to the corresponding values found during tuning on the BIiK&$: a relative
difference of only 10%-14% was seen. For all three topologies, the parameter values foupgf&,

and pmyt showed some differences between those for gbest PBPSO and the other two topologies. But
these differences are much smaller than the large difference for these parameter values compared to the
tuning results on the small MKPs. On the large MKPs, the best valuéfeandR were much higher.

Also, the values fopmy; Were lower, indicating that having many random mutations was less helpful

on the large MKPs. For the gbest PBPSO, the best valuas fandc, resulted in much higher values

than those found for the small MKPs, while Ibest PBPSO and the Von Neumann topology yielded lower
values than on the small MKPs.

For MBPSO there was some variation in the best valugggfcompared to the values found on the
small MKPs: a lower value was found on the large MKPs for both the gbest and Ibest MBPSO, while
for the Von Neumann topologysia: was higher on the large MKP. F@¥ese; the best values found were
close to the 10% used by Shehal.[125].

For SBPSO, the best parameter values found for gbest SBPSO were exactly the same as those found
on the small MKPs. The best parameter values for Ibest SBPSO and the Von Neumann topology matched,
but were quite different than those found on the small MKP: the attraction to the personahbests
much higher for the larger MKPs, while the attraction to the neighborhooddestas lower.

SectionB.1 in appendixIB contains the detailed results for the chosen best parameter combination
for each of the 12 algorithm-topology pairs on the large MKPs. Results for the chosen parameter com-
binations for each algorithm-topology pair are shown separately for each of the 27 tuning problems. In
general the issue of a ceiling effect identified in tuning the small MKPs is not present for the large MKPs:
there is no case of the average error leveling of at the same result for multiple parameter combinations
because the optimal solution has been found in all 30 independent runs. Instead a different average error
is seen for almost all 128 parameter combinations in each of the 12 algorithm-parameter combinations
tested. Hence it can be concluded that, across the 27 tuning problems, the various parameter combina-
tions can be discriminated from each other with regards to the quality of results generated.

Also in general a good overall performance is seen of the chosen parameter combination across the
set of 27 tuning problems. This can be noted from the average rank of the chosen parameter combination
out of the 128 combinations averaged over the tuning set summarized if tdble 5.7. The “worst” average
rank is 6.5 out of 128 for GB MBPSO which is the best performing parameter combination on only 3
out of 27 tuning problems. All pairs involving the BPSO algorithm, LB PBPSO, VN PBPSO and GB
SBPSO show the most robust performance of the chosen parameter combination: almost two thirds of
the tuning problems are solved best by the chosen parameters. This contrasts with the results on the small
MKP tuning problems in table 5.5 and indicates that the tuning set for large MKPs is more homogeneous
with regard which parameter combinations perform best.

The detailed tuning results for the BPSO algorithm in téblé B.2 indicate that the chosen parameter
combinations are the best (rank = 1) of the 128 combinations tested for all problems with tightness ratio
a = 0.75 or 050. This is not the case, however, for combinations with- 0.25; here the chosen
combination performs well (always in top 10%) but other parameter combinations are better suited to
these problems.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

82 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.7: Average rank out of 128 of best parameter combination in tunigg MKPs across the 27
tuning problems. The columns labeled “# 1's” indicate the number of problems for which the chosen
parameter combination performed best out of 128 combinations.

GB LB VN
algorithm|avg. rank (# 1's)avg. rank (#1's)avg. rank (#1's)

BPSO 23 (20)| 25 (19)] 26 (18)
MBPSO | 6.5 (3) | 41 (5) | 31 (3)
PBPSO | 25 (11)| 14 (17)| 12 (22)
SBPSO | 1.7 (20)| 28 (5) | 21 (6)

The tuning results in table B.3 indicate that for MBPSO the chosen parameter combithetion
performed best in tuning has a much higher average rank than that of the other three algorithms in
tables[B.2[BM¥ anf Bl5. This indicates that for MBPSO no single one parameter combination was
superior to the other 127 combinations used in tuning. For the Von Neumann topology this effect is less
pronounced, but even here the chosen parameter combination scored best (rank = 1) on only two out of
27 tuning problems.

Table[B.4 lists the detailed tuning results for the PBPSO algorithm. For VN PBPSO the chosen pa-
rameter combination scores best for 22 out of 27 problems and scores second best on the other five. VN
PBPSO thus has a clear best performing parameter combination in the universe of 128 tuning combina-
tions and it seems the algorithm can be tuned to the whole set of problems. For LB PBPSO a similar, if
slightly less pronounced pattern, can be seen. The GB PBPSO performs slightly worse on the problems
with a low (n= 5) number of constraints: the average rank on the nine problemswith is 4.7 versus
1.4 on the other 18 tuning problems. On problems with fewer constraints other parameter combinations
thus seem to offer a better performance, but no clear link with the tightnessiragiseen.

Table[B.5 lists the detailed tuning results for the SBPSO algorithm. For GB SBPSO the best param-
eter combination stands out more than for LB SBPSO and VN SBPSO with a rank of 1 for 22 out of
tuning 27 problems. A slightly worse relative performance is seen for problemsnwith anda = 0.25
in other words problems with few constraints, but where the constraints are themselves very restrictive.
Such problems are likely to have a solution space with more widely spaced local optima, which seems
to cause the star topology to be more sensitive to its chosen parameters. This is somewhat similar to the
behavior seen for PBPSO in table B.4.

5.4 Sensitivity analysis of SBPSQO'’s parameters

This section analyzes the sensitivity of SBPSO to different values of its control parameters. Such sensi-
tivity analysis is important, as little is yet known about what are good values for its control parameters.

The sensitivity analysis procedure is summarized in se€tion|5.4.1, followed by the results for each
of the three topologies: the star topology in section 5.4.3, the ring topology with neighborhood size 4 in
sectio 5.4.4, and the Von Neumann topology in sedtion]5.4.5. A discussion of the relative importance
of each of SBPSO’s parameters in respect of the algorithm’s performance is given in lsectibn 5.4.6.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM3

5.4.1 Procedure

The sensitivity of the performance of SBPSO to each individual control parameter was investigated
and visualized using cumulative histograms. For each individual parameter, the horizontal axis of the
histogram consists of bins which divide the parameter range into equally sized sub-ranges. The vertical
axis displays the number of parameter value combinations that fall in each bin, split into four groups
based on the performance of the parameter value combination in the tuning process. If a particular
bin for an individual parameter contains a large number of parameter combinations that are considered
“good”, this implies that the sub-range for the individual parameter associated with the bin is good. This
section describes how the histograms were constructed, resulting in a histogram for each of the three
SBPSO-topology combinations, for each of the five control parameters. In total, 15 histograms were
generated.

Note that a good parameter value combination for SBPSO requires that all five parameters individu-
ally have a good or at least reasonable value: if even one parameter has a bad value, the parameter value
combination as a whole performs badly. The consequence of this is that, if a specific parameter value
combination performs badly, this gives little information on whetheritidévidual parameter values in
that combination are good or bad: any single individual parameter value could be bad, or all values could
be bad. Therefore, it is the parameter value combinations that perforrasweellvholevhich contain in-
formation on the individual parameters. Hence, the sensitivity analysis focused on the 25% of parameter
value combinations that performed best in the tuning process.

The performance of a parameter value combination was set equal to its average rank on the small
MKPs and the large MKPs tuning sets combined, with each of the two tuning sets weighed equally. The
full procedure to construct the histograms used in the following sections consisted of the following steps:

1. For each parameter value combination, the performance was set equal to 0.5 times the average
rank on the small MKPs tuning set plus 0.5 times the average rank on the large MKPs tuning set.

2. The parameter value combinations were then themselves ranked based on the performance calcu-
lated in step 1.

3. The ranked parameter value combinations were split into quartiles, labeled A for the best 25%,
B and C for the next two quartiles respectively, and D for the worst 25% of parameter value
combinatior@.

4. Then, for each individual parameter, the parameter range was split into bins:

(a) parameter values fay andc; took values in the rangf®.0,1.0], with the values grouped
into the 10 bins|0.0,0.1),[0.1,0.2),...,[0.9,1.0];

(b) parameter values far; andc4 took values in the rangf.5,5.0], with the values grouped
into the nine bins|0.5,1.0),{1.0,1.5),...,[4.5,5.0]; and

(c) parameter values fdetook values in the range 1,..9, with the values grouped into nine
bins containing one value each.

1Theparameter value combinations with label A are considered to be good combinations, those with label B are considered
reasonable combinations.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

84 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

These bins form the horizontal axis of the histogram.

5. For each individual parameter, the parameter value combinations were allocated one by one to a
bin, based on the value of the individual parameter in the combination. In each bin, a count was
kept of the number of parameter value combinations labeled A, B, C, and D separately. Consider,
for example, the parameter value combination labeled A with val0€5,0.52,2.03,3.17,3).
Allocating this parameter value combination to a bin for the individual parancgtentailed in-
creasing by one the count of label A combinations in the sub-rang® 8ir1.0].

6. For each individual parameter, a cumulative histogram was then constructed with, for each bin,
the number of label A combinations at the bottom in black, on top of which the number of label
B combinations is given in dark gray, and on top of that the number of label C combinations in
light gray. The remaining parameter value combinations with label D were stacked at the top and
“shown” in white.

7. As a final step, each of the bins was scale{Dtd| for ease of comparison, as not all parameter
value bins contained the same number of parameter value combiHations

Each histogram can be interpreted in the same manner: the black graph at the bottom shows the
distribution of good parameter value combinations (labeled A for the best 25% combinations) for the
individual parameter across the bins. The dark grey graph stacked on top of the black graph similarly
shows the distribution of reasonable-but-not-good parameter value combinations (labeled B). Because
the histogram is stacked, the top of the dark grey graph is the sum of the fractions of label A and label B
combinations in each bin, indicating the fraction of parameter value combinations that are reasonable or
better.

Note that, for the acceleration parametergo c4, the bin labels on the horizontal axis of the his-
tograms identify thdower boundaryof the sub-range linked to that bin. For example, the bincfor
labeled 03 identifies the sub-rangi®.3,0.4), and the bin forcs labeled 15 identifies the sub-range
[15,2.0).

5.4.2 Results

The results of the sensitivity analysis of SBPSO’s parameters based on the tuning results on the small
and large MKP are presented in this section. Results are split according to the three SBPSO-topology
pairs: ghest SBPSO, Ibest SBPSO, and Von Neumann SBPSO.

5.4.3 Global best SBPSO

Figurd5.1 shows the histograms for the parameter sensitivity analysis on the gbest SBPSO resulting from
the procedure described in section 5.4.1.

°Notethat, by construction, the parameter value bins for an individual parameter contain almost the same number of pa-
rameter value combinations. For parametgrandc,, the 128 combinations were divided over 10 equally sized bins, resulting
in 12 or 13 combinations in each bin. For parametgrs,, andk, the 128 combinations were divided over nine equally sized
bins, resulting in 14 or 15 combinations in each bin. By dividing the results in each bin by the total number of combinations in
the bin, the number of combinations with each label was changed instead into the fraction of all combinations with that label,

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEMS

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

cumulative scores
cumulative scores

0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9
parameter value bins - ¢; parameter value bins - C,

(@) (b)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 0.2
0.1 0.1
0

0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 1 23456 738 910
parameter value bins - C3 parameter value bins - C4 parameter value bins - K

(c) (d) (e)
Figure5.1: Sensitivity analysis of gbest SBPSO paramefergei(@b) co, [(C) 3, [(d) c4, and (e)k.

0.9
0.8
0.7
0.6
0.5
0.4
0.3

cumulative scores
cumulative scores
cumulative scores

For gbest SBPSO, higty values led to better results: parameters in the rasge 0.8 covered
20% of the parameter space but accounted for more than 45% of label A (the best quantile) parameter
combinations. For the; bins withc; < 0.4, only a few combinations were labeled A. For parameter
the best results were found in the sub-raf@®,0.6), which accounted for half the combinations labeled
A. Values forc, up to 03 resulted in bad performance. F@rmost of the best parameter values were
in the rangg[1.5,3.5), while the performance of those four bins was approximately the samec,For
parameter values between 1.5 an@ gcored best, with higher bins performing slightly better, except for
the[3.0,3.5) bin. Larger values dk (indicating that a larger tournament was used to select each element
to add based on marginal objective function values) led to better results, but the difference across the bins
was quite small.

5.4.4 Local best SBPSO

Figure[5.1 shows the histograms for the parameter sensitivity analysis on the Ibest SBPSO with neigh-
borhood size 4 resulting from the procedure described in sdction 5.4.1.

For Ibest SBPSO, higty values led to better performance: parameters in the renge).8 covered
20% of the parameter space but accounted for more than 47% of label A parameter value combinations.
Low c; values had few results labeled A, especially thoseciox 0.3. For parametec,, the best
values were found in the rand@.5,0.6), but all bins withc, > 0.4 scored comparably well, while
valuesc; < 0.4 clearly performed worse. The bestparameter values were in the rar{§®,2.5), and
performance worsened proportionally for parameter values further away f@nf@rc,, the two bins
[2.0,2.5) and [3.5,4.0) clearly had the most good results, while the parameter values betwean@.

so that results are better comparable across bins.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

86 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

cumulative scores
cumulative scores

0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9
parameter value bins - ¢; parameter value bins - C,

(@) (b)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 0 0
0.00.5 1.0 1.520253.0354045 0.00.5 1.0 1.520253.0354045 1 2 3 4 5 6 7 8 910

parameter value bins - C; parameter value bins - C4 parameter value bins - K
(© (d) (e)
Figure5.2: Sensitivity analysis of Ibest SBPSO parameferscy(@Jp) co, [(C) 3, [(d) c4, and ().

cumulative scores
cumulative scores
cumulative scores

3.5 scored worse. Larger valueslofed to more good results, but onky= 1 clearly performed worse
based on the fraction of label A combinations. Combining label A and label B contributions resulted in
no significant difference between the performance of each of the nine valdeswf value ok led to

the same number of reasonable parameter value combinations.

5.4.5 Von Neumann SBPSO

Figure[5.3 shows the histograms for the parameter sensitivity analysis on the Von Neumann SBPSO
resulting from the procedure described in sedfion 5.4.1.

For SBPSO with the Von Neumann topology, highvalues led to better performance: parameters
in the rangec; > 0.8 covered 20% of the parameter space but accounted for more than 46% of good
parameter value combinations. Law values had few good parameter value combinations, especially
those forc; < 0.3. For parametet,, the best results were found in the rar@®,0.6), but all bins with
c; > 0.4 scored comparably well. Fag, the best parameter values were in the rajige,2.5), and
performance worsened proportionally for parameter values further away f@narc4 the two bins
[2.0,2.5) and[3.5,4.0) clearly had the best results, while the values between 2.5 and 3.5 scored worse.
Combining label A and label B, the values < 1.5 scored worse, but all valueg > 1.5 performed
at least reasonably. For parameitehigh values led to a higher proportion of label A results, but all
valuesk > 6 scored comparably. Combining label A and label B contributions, there was no significant
difference between the performance of each of the nine valdesaofy value ok led to the same number
of reasonable parameter value combinations.

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM7

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

cumulative scores
cumulative scores

0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6.0.7 0.8 0.9
parameter value bins - ¢; parameter value bins - C,

(@) (b)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

cumulative scores
cumulative scores
cumulative scores

0.1 0.1
0

0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 1 23456 738 910
parameter value bins - C3 parameter value bins - C4 parameter value bins - K

(© (d) (e)
Figure5.3: Sensitivity analysis Von Neumann SBPSO paraméteis; (@) co, [(C) ¢z, [(d) ca, and ().

5.4.6 Relative importance of SBPSQO'’s control parameters

There is no reason to assume that all SBPSQO'’s control parameters have an equal impact on performance.
The tuning experiments described above instead indicate that the five control parameters each effect per-
formance differently. For example, the conclusion in secfions]5.4.3td 5.4.5 for par&metethat very

little difference was seen between values 1 through 9 with respect to reasonable-to-good performance.
In contrast, for parametey;, values of 0.8 or higher clearly were an indication of better performance,
while values of 0.3 or lower were detrimental. Therefore, the performance of the SBPSO algorithm
on the MKP is more sensitive to parametey than to parametét. This section contains a systematic
investigation of the relative sensitivity of the five SBPSO parameters.

A measure of the distribution of performance of an individual parameter can serve as an indication
of the sensitivity of SBPSO to that parameter. As argued in section 5.4.1, most information about the
performance of an individual parameter can be gained from looking at “good” parameter value combina-
tions only, where good was defined as the best 25% (label A) parameter value combinations. Therefore,
for each individual parameter, the distribution of the label A combinations was used as a proxy for the
distribution of the performance.

For each parameter, and each of the three topologies, the distribution of label A combinations across
bins was converted to a single measurement using the following steps:

1. For each bin, the fraction of label A parameter value combinations was obtained, and the fractions
themselves were ordered from high to low.

2. The sum of thénighestfive fractions was labelefractionnign.

3. The sum of thdowestfive fractions was labeleffractiong.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

88 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

4. The sensitivity score was then defined as the differefreefionign — fractioniow.

Note that for parameterss, ¢4, andk, only nine bins were used, such that the bin ranked fifth was
included in bothfractionygn and fractionio, and drops out of the sensitivity score.

The sensitivity score ranges between 0% and 100%. A score of 0% means that all bins contained ex-
actly the same fraction of label A combinations, indicating that good parameter value combinations show
little to no sensitivity to the individual parameter. A score of 100% means that at least five bins contained
zerolabel A combinations, but that these combinations are instead concentrated in the remaining bins.
For this case, good parameter value combinations show a high sensitivity to the individual parameter.

Table[5.8 summarizes the resulting sensitivity score for each individual parameter, split by the topol-
ogy used, and ranks the sensitivity scores of the five parameters for each topology.

Table 5.8: Performance distribution per individual control parameter

parametef GB SBPSO rank GB LB SBPSO rank LB| VN SBPSO rank VN

o 58% 1) 52%) 48%)
C 31% () 25%) 16% (5)
Cs 53%) 62% 1) 65% (1)
Ca 41% 3) 39% A3) 33% 3)
k 20% (5) 22% (5) 25% (4)

The sensitivity scores indicated that the performance of SBPSO had the hghstivity to control
parameterg; (attraction to the personal best) acgl(the maximum number of elements to add to the
solution set randomly). Hence, it can be concluded that, when applying SBPSO to the MKP, these two
parameters are the most important to be tuned well. This result held for all three topologies investigated.
All three topologies were the least sensitive to parametefattraction to the neighborhood best) dnd
(the size of the tournament used).

Note that an equal amount of tuning effort was expended on all five SBPSO parameters: the process
described in sectidn 5.3.1 meant finding the best out of 128 randomly chosen parameter value combina-
tions spread evenly across the five dimensional parameter space.

5.5 Experimental results

This section describes the results of the experiments conducted on the MKP. The benchmark problems
that are used in testing the tuned PSO algorithms were listed in sectioh 5.2.1. The process used to tune
each of the twelve PSO algorithm-topology pairs on the small and large MKPs separately was outlined
in section 5.B. The experiments were split into those involving the small MKPs, with results given in
section§ 5,511, and those involving the large MKPs with results given in sécfioh 5.5.2.

For both the small MKPs and the large MKPs, the respective results sections each contain five tables
comparing the performance of the algorithm-topology pairs: the first three tables each summarize and
compare the performance of the four PSO algorithms using a single topology. The fourth table compares
the results of each of the four PSO algorithms, across all of the topologies. The final table has more de-

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM9

tailed results per problem and compares the four PSO algorithms using each algobéstperforming
topology.

The performance of the algorithm-topology pairs was compared for statistical significance using the
Iman-Davenport (ID) test and post-hoc analysis was conducted using the Nemenyi-test. Details on the
statistical procedure used can be found in appendix E.

The Z-score from the ID-test, the associateeialue, and the Holm-adjustexd are provided in the
bottom rows of each of the results tables. Ipavalue is smaller than the corresponding Haimthe
algorithm-topology paiunderperformedhe best pair in the comparison by a statistically significant
margin. For the best performing algorithm-topology pair, the average error or classification accuracy
is shown inbold. If the ID-test indicated a statistically significant difference in performance, but the
Nemenyi post-hoc tests did not indicate a single best pair, all algorithm-topology pairs that were indis-
tinguishable from the best are shown in bold.

5.5.1 Testing results for small MKP

This section list the results of the test experiments on the tuned algorithm-topology pairs on the small
MKPs, each using the parameters listed in tblé 5.4. First a comparison is made across algorithms for
each of the three topologies in section 5.5.1.1, to determine which algorithm performs best when using
the same topology. Following this, in section 5.5.1.2 a comparison is made across topologies for each of
the four PSO algorithms, to determine which topology is best for use with each PSO algorithm on the
small MKPs.

Both section§ 5.5.71.1 ahd 5.5.11.2 are split into subsections per topology and algorithm respectively.
Each such subsection contains a table with a summary of the results. Appéndix A provides the same
comparisons on the level of single problems used in testing.

5.5.1.1 Results per topology

This section compares the performance of the four PSO algorithms on the small MKPs by topology: the
star topology in section 5.5.1.1.1, the ring topology in sedtion 5.5]1.1.2, and the Von Neumann topology
in sectior 5.5.1.713.

Each section contains a table listing the average and standard deviation of the error (the best fitness
found compared to the known optimum), and the average rank of the errors. This is followed by the
average and standard deviation of the success rate (shortened SR in the tables), and the average rank of
the success rate. The success rate of an algorithm-topology pair on a single MKP was defined as the
percentage of independent runs that were successful in finding the optimum. The next two rows in each
table shed light on the consistency of the algorithm: the row labeled “# perfect” reports the number of
problems for which all independent runs found the optimum, and the row labeled “# failure” reports the
number of problems for which all independent runs failed to find the optimum.

For the algorithm-topology comparisons that are reported in each of the tables in this section, the
ID-test indicated that the median performance showed statistically significant differences. Hence, in all
three cases, post-hoc tests were conducted and the results are reported at the bottom of the respective

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

90 CHAPTERS. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

tables.

5.5.1.1.1 Star topology Table[5.9 shows that the gbest SBPSO outperformed the other three algo-
rithms with a star topology by a statistically significant margin. If success rate was used as the perfor-
mance measure instead of average error, gbest SBPSO also performed best in a statistically significant
manner p-values andr’s are not shown). The average success rate of gbest SBPSO was 82.5%, while
the second best performer was gbest PBPSO with an average success rate of 51.4%.

Table 5.9: Summary of small MKP test results for the star topology. Bold face indicates statistically
significant outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error (rank) error (rank) error (rank) error (rank)
average errof 1.117% (2.80) 1.089% (3.56) 0.628% (2.45) 0.444% (1.19)
stdev error | 1.913 % 1.592 % 1.625 % 1.640 %
average SR | 428% (2.81) 299% (3.38) 51.4% (250) 825% (1.31)
stdes SR 41.3% 34.7% 35.1% 31.8%

perfect 5 (25) 3 (4) 5 (25) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.58 8.21 4.36

p-value 0.0000 0.0000 0.0000

Holm o 0.0250 0.0500 0.0167

For all 40 problems, the success rate for the ghest SBPSO exceeded or nizdtloéthe other three
gbest PSO algorithms. Gbest SBPSO was also more consistent than the other gbest PSO algorithms, as
the optimum was found in all independent runs for 21 out of 40 problems. For the other three algorithms,
the optimum was found in all independent runs for at most five problems.

5.5.1.1.2 Ring topology Table[5.10 shows that the Ibest SBPSO outperformed the other three algo-
rithms with a ring topology by a statistically significant margin. If success rate was used as the perfor-
mance measure instead of average error, Ibest SBPSO also performed best in a statistically significant
manner. The average success rate of lbest SBPSO was 81.9%, while the second best performer was lbest
PBPSO, scoring an average success rate of 63.4%.

For 38 out of 40 problems, the success rate for the lbest SBPSO exceeded or matched that for the
other three Ibest PSO algorithms. Lbest SBPSO was also more consistent than the other local best PSO
algorithms, as the optimum was found in all independent runs for 23 out of the 40 problems. For the
other three algorithms, the optimum was found in all independent runs for at most 12 problems. Note
that the number of problems solved perfectly by Ibest PBPSO (that is, 12) is significantly higher than
was the case for the gbest PBPSO (that is, five).

5.5.1.1.3 Von Neumann topology Table[5.11 shows that SBPSO with a Von Neumann topology out-
performed the other three PSO algorithms by a statistically significant margin. If success rate was used

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM1

Table 5.10: Summary of small MKP test results for the ring topology. Bold face indistagstically
significant outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem error (rank) error (rank) error (rank) error (rank)
average errof 0.841% (2.95) 0.639% (3.35) 0.521% (2.31) 0.440% (1.39)
stdev error | 1.716 % 1.620 % 1.634 % 1.641 %
average SR | 50.3% (2.93) 457% (3.24) 63.4% (2.28) 819% (1.56)
stdes SR 43.3% 37.4% 36.8 % 332%

perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.40 6.79 3.19

p-value 0.0000 0.0000 0.0007

Holm o 0.0250 0.0500 0.0167

as the performance measure instead of average error, SBPSO with a Von Ndopw@aogy also per-

formed best in a statistically significant manner. The average success rate of the Von Neumann SBPSO
was 82.7%, while the second best performer was the Von Neumann PBPSO with an average success rate
of 64.8%.

Table 5.11: Summary of small MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO

BPSO VN | MBPSO VN PBPSO VN | SBPSO VN
problem error (rank) error (rank) error (rank) error (rank)
average errof 0.609% (2.81) 0.613% (3.45)0.510% (2.28) 0.439% (1.46)
stdev error | 1.635 % 1.623 % 1.633 % 1.641 %
average SR | 56.6% (2.76) 486% (3.31) 648% (2.36) 82.7% (1.56)
stdes SR 41.1% 35.3% 36.8 % 32.6 %
perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)
Z-score 4.68 6.89 2.84
p-value 0.0000 0.0000 0.0023
Holm a 0.0250 0.0500 0.0167

For 37 out of the 40 problems the success rate for SBPSO with the Von Neudoperiogy exceeded
or matched that for the other three PSO algorithms. SBPSO was also more consistent than the other PSO
algorithms using the Von Neumann topology, as the optimum was found in all independent runs for 23
out of 40 problems. For the other three algorithms, the optimum was found in all independent runs for at
most 12 problems. The number of problems solved perfectly by PSO algorithms using the Von Neumann
topology closely matched the results for the corresponding Ibest PSO algorithms, with only Ibest BPSO

© University of Pretoria

92

(@

<cc

VERS|
ERSITY OF PRETORIA
E

N
NIV
UNIBESITHI YA PRETORIA

TEIT VAN PRETORIA

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

(seven out of 40) scoring differently than BPSO with the Von Neumann topdglugeg out of 40).

A problem by problem comparison of the four algorithms each using the Von Neumann topology
can be found in table_Al9 in appendiX A. The four problems for which SBPSO with the Von Neumann
topology failed to find the optimum in all independent runs are mknap2-6, mknap2-11, mknap2-13, and
mknap2-18. The other 11 algorithm-topology pairs all similarly failed for these four problems. For
the algorithm-topology pairs combining the Von Neumann topology with SBPSO, PBPSO, and MBPSO
respectively, these four problems were also the only failures. For the Von Neumann-BPSO pair, addi-

tionally problems mknap2-43 and mknap2-47 caused failures.
Combining the results shown in tables|$.9,5.10,[and 5.11 one can seen that for each of the four PSO
algorithms the Von Neumann topology performed best.

5.5.1.2 Results per algorithm

This section compares the performance of the four PSO algorithms on the small MKPs by algorithm:
BPSO in section 5.5.1.2.1, MBPSO in section 5.5.1.2.2, PBPSO in séction 5J5.1.2.3, and SBPSO in
sectior 5.5.1.2]4. Each section contains a table listing the results of the experiment by algorithm. These
tables are constructed as described in se¢fion 515.1.1, but here each table compares results across all
algorithm-topology pairs that involve the same algorithm.
For three out of the four algorithm-topology comparisons (BPSO, MBPSO, PBSPO) that are reported
in this section, the ID-test indicated that the median performance showed statistically significant differ-
ences. In these cases, post-hoc tests were conducted and the results are reported at the bottom of the
respective tables. For SBPSO no statistically significant difference was found between the performance
of using either of the three topologies with SBPSO.

5.5.1.2.1 BPSO Table[5.12 compares the results of the BPSO algorithm on the small MKP for the
three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.12: Summary of small MKP test results across topologies for BPSO. Bold face indicates statis-
tically significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)
avgerror | 1.117% (2.65) 0.841% (1.80) | 0.609 % (1.55)
stdev error | 1.913 % 1.716 % 1.635 %
average SR 428% (2.45)| 50.3% (2.03)] 56.6% (1.53)
stder SR 41.3 % 43.3% 41.1 %
perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)
Z-score 492 1.12
p-value 0.0000 0.1314
Holm a 0.0500 0.0250

For BPSO the ID-test yielded p-value less than 0.0001, indicating that a statistically significant

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM3

difference in performance existed. It was the star topology that underperfowhge the difference in
performance between the ring topology and the Von Neumann topology yiefsigdlae of 0.1314 using

the Nemenyi post-hoc test at a Hobmof 0.0250. Therefore, although Von Neumann BPSO performed

best, the difference in error with Ibest BPSO was not statistically significant. The Von Neumann BPSO
also scored best on the average success rate, the number of problems solved perfectly, and the number of
problems on which the algorithm failed.

5.5.1.2.2 MBPSO Table[5.1B compares the results of the MBPSO algorithm on the small MKP for
the three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.13: Summary of small MKP test results across topologies for MBPSO. Bold face indicates
statistically significant outperformance.

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)
avgerror | 1.089% (2.93) 0.639% (1.65) | 0.613% (1.43)
stdev error | 1.592 % 1.620 % 1.623 %
average SR 299% (2.78)| 457% (1.68) 486% (1.55)
stdes SR 34.7 % 37.4% 35.3%
perfect 3 (3) 4 (15) 4 (15)
failure 4 (2) 4 (2) 4 (2)
Z-score 6.71 0.98
p-value 0.0000 0.1635
Holm a 0.0500 0.0250

For MBPSO the ID-test yielded p-value less than 0.0001, indicating that a statistically significant
difference in performance existed. It was the star topology that underperformed, while the difference
in performance between the ring topology and the Von Neumann topology yielpgadlae of 0.1635
using the Nemenyi post-hoc test at a Hoémof 0.0250. Therefore, although Von Neumann MBPSO
performed best, the difference in error with Ibest MBPSO was not statistically significant. There was
little difference in the number of problems which the MBPSO algorithm-topology pairs solved perfectly,
and no difference at all in the number of problems on which they failed. With reference to success rate,
gbest MBPSO clearly underperformed Ibest MBPSO and Von Neumann MBPSO.

5.5.1.2.3 PBPSO Table5.14 compares the results of the PBPSO algorithm on the small MKP for the
three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

For PBPSO the ID-test yielded@value less than 0.0001, indicating that a statistically significant
difference in performance existed. It was the star topology that underperformed, while the difference
in performance between the ring topology and the Von Neumann topology yielpediue of 0.1515
using the Nemenyi post-hoc test at a Hoémof 0.0250. Therefore, although Von Neumann PBPSO
performed best, the difference in error with Ibest PBPSO was not statistically significant. In all listed
measures, gbest PBPSO clearly underperformed, while there was very little difference between Ibest

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

94 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.14: Summary of small MKP test results across topologies for PBPSO f&@dndicates
statistically significant outperformance.

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)
avg error 0.628% (2.68)] 0.521% (1.78) | 0.510% (1.55)
stdev error | 1.625 % 1.634 % 1.633%
average SR 51.4% (24)| 634% (19)| 648% (1.7)
stdes SR 35.1% 36.8% 36.8%
perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)
Z-score 5.05 1.03
p-value 0.0000 0.1515
Holm a 0.0500 0.0250

PBPSO and the Von Neumann PBPSO, with tied scores in the number of perfectiy pobblems as
well as the number of problems on which they both failed.

5.5.1.2.4 SBPSO Table5.15 compares the results of the SBPSO algorithm on the small MKP for the
three different topologies tested: star (GB), ring (LB) and Von Neumann (VN).

Table 5.15: Summary of small MKP test results across topologies for SBPSO. Bold face indicates
statistically significant outperformance.

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)
avgerror | 0.444% (2.13) 0.440% (2.01) 0.439% (1.86)
stdev error | 1.640 % 1.641 % 1.641 %
average SR 825% (2.09)] 81.9% (2.04)] 82.7% (1.88)
stdev SR 31.8% 33.2% 32.6 %
perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)
Z-score 1.21 0.67
p-value 0.1131 0.2514
Holm a 0.0500 0.0250

For SBPSO, the ID-test yieldedmvalue of 0.5134, which indicated that the null hypothesis of equal
performance of gbest SBPSO, Ibest SBPSO, and Von Neumann SBPSbivagected. Therefore,
no statistically significant difference in performance could be found between the three topologies for
SBPSO.

The listed measures for SBPSO all indicated that there was little difference in performance between
the three SBPSO algorithm-topology pairs: the relative difference in the average errors of the three pairs
was 1.1%, while the relative difference in the average success rate of the three pairs was 1.0%. Only the
number of problems solved perfectly showed some differentiation, as gbest SBPSO solved 21 out of the

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEMS

40 problems perfectly, while Ibest SBPSO completely solved 23 problems, anNé@mann SBPSO
25 problems.

Excluding the four problems on which SBPSO completely failed to find the optimum (a success
rate of 0%), thelowest success rateecorded for SBPSO on any of the remaining 36 problems was
reasonable: 50% for ghest SBPSO (average success rate on the 36 problems of 89.2%), 20% for Ibest
SBPSO (average success rate of 88.5%), and 30% for SBPSO using the Von Neumann topology (average
success rate of 89.4%). Thus SBPSO can be said to be successful not only in achieving a low average
error, but it is able to find the actual optimum in a good portion of the independent runs. Gbest SBPSO
score best of all twelve algorithm-topology pairs in this measure of minimum success rate, although not
by a significant margin.

5.5.2 Testing results for large MKP

This section list the results of the test experiments on the tuned algorithm-topology pairs on the large
MKP, each using the parameters listed in tdblé 5.6. First a comparison is made across algorithms for
each of the three topologies in section 5.5.2.1, to determine which algorithm performs best when using
the same topology. Following this, in section 5.5.2.2 a comparison is made across topologies for each of
the four PSO algorithms, to determine which topology is best for use with each PSO algorithm on the
large MKP. Finally, a comparison is made between four algorithm-topology pairs, one for each of the
four PSO algorithms combined with the topology that performed best for that algorithm. The results of
this comparison are given in section 5.512.3.

Both section§ 5.5.2.1 ahd 5.5.2.2 are split further into subsections per topology and algorithm respec-
tively. Each such subsection contains a table with a summary of the results. Appéndix B provides the
same comparisons on the level of single problems used in testing.

5.5.2.1 Results per topology

This section shows the results of the test experiments performed on the large MKP, comparing perfor-
mance of the four PSO algorithms (BPSO, MBPSO, PBPSO, and SBPSO) across one topology at a time.
Results are summarized in three tables 9.16,]5.17_and 5.18 for the star, ring, and Von Neumann topol-
ogy respectively. Each table lists the average and standard deviation of the error (the best fithess found
compared to the LP relaxation bound), and the average rank of the errors. The average error is shown on
three different cross-sections of the problem set:

1. The number of itemsy, with values 100, 250, and 500.
2. The number of constraints), with values 5, 10, and 30.

3. The tightness ratia, with values 0.25, 0.50, and 0.75.

Please refer to sectign 2.3 for details on these parameters and the problem set.

The ID-test indicated that, for the algorithm-topology comparisons that are reported in each of the
tables, the median performance showed statistically significant differences. Hence, where required post-
hoc tests were conducted and the results are reported at the bottom of the respective tables.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

96 CHAPTERS. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.5.2.1.1 Star topology Table5.16 summarizes the large MKP results for the four PSO algorithms,
each using the star topology. The table shows that the gbest SBPSO was the best performing algorithm:
it scored the smallest average error of 1.74%, and the average rank of the error shown on the same
line was exactly 1, meaning that gbest SBPSO was the best performing algorithm on each of the 243
test problems. The post-hoc tests showed that the outperformance of gbest SBPSO was also statistically
significant: pair-wise comparisons with the three other PSO algorithms yigldedres above 10, which
resulted inp-values smaller than 18%. Gbest PBPSO was the second best performer on 193 problems,
gbest BPSO performed second best for the remaining 50 problems, and gbest MBPSO usually ranked
last out of the four algorithm-topology pairs.

Table 5.16: Summary of large MKP test results for the star topology. Bold face indicates statistically
significant outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 4.679 % (2.909)5.619% (3.885)3.250% (2.206)1.740% (1.000)
stdes error 3.468 % 2723 % 1.718 % 1.170 %
n 100{3.831% (2.877)5.160% (3.889)2.568 % (2.235)1.260% (1.000)

=

250 (4.679 % (2.877)5.663 % (3.889)3.286 % (2.235)1.758 % (1.000)
500|5.526 % (2.975)6.034 % (3.877)3.896 % (2.148)2.201 % (1.000)

5 [3.037% (2.383)4.354% (4.000)3.134% (2.617)1.875% (1.000)
10 |3.942 % (3.012)5.521 % (3.988)2.763 % (2.000)1.553 % (1.000)
30 |7.057 % (3.333)6.983% (3.667)3.853% (2.000)1.791% (1.000)

0.25/8.253 % (3.122)8.664 % (3.659)5.264 % (2.220)3.141 % (1.000)
0.50/3.751% (2.831)5.344% (4.000)2.799 % (2.169)1.355% (1.000)
0.75/1.909 % (2.769)2.712% (4.000)1.613% (2.231)0.676 % (1.000)

Z-score 16.30 24.63 10.30
p-value 0.0000 0.0000 0.0000
Holm a 0.0250 0.0500 0.0167

=)

333

-~ = =

The relative performance of the four PSO algorithms using the star topologgtalale across each
of the three splits of the problem set, with gbest SBRS@best PBPSG- gbest BPSQ> gbest MBPSO
in each individual split except one: for the 24331 problems wittm = 5, gbest BPSO (average rank
2.383) scored better than gbest PBPSO (average rank 2.617). Here the syfribaised to mean “has
a lower (better) average rank than”.

A difference in performance was seen with regards to the split of the problems based on the number
of items,n: a larger number of items led to a higher average error for each of the gbest PSO algorithms.
However, this effect was not equally strong for each of the algorithms: for problemsnwitb00
compared to those with = 100, the average error of gbest SBPSO was 75% higher, while for gbest
MBPSO the increase in average error was only 16%.

Problems with tightness ratio= 0.25 were most challenging for all gbest PSO algorithms, with the
average error substantially higher than for problems with0.50 or 075. A smaller means that each
of themweight constraints is more restrictive (lower capacity), whiolgeneral, has two effects on the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM7

optimal solution compared to that for problems with a higher tightness ratio:
1. the optimal solution using a smailkcontains fewer items, and

2. the fitness value at the optimum using a smadllower, as fewer items are included in the knap-
sack.

Detailed results for the star topology on the large MKPs can be found infable B.7 in appéndix B.

5.5.2.1.2 Ring topology Table[5.1¥ summarizes the large MKP results for the four PSO algorithms,
each using the ring topology. The table shows that the Ibest SBPSO was the best performing algorithm
with an average rank of 1.333. The ID-test and post-hoc tests confirmed that Ibest SBPSO outperformed
each of the other three pairs, but the difference in performance between lbest SBPSO and lbest PBPSO
was smaller than that seen between gbest SBPSO and gbest PBPSO[in table 5.16.

Table 5.17: Summary of large MKP test results for the ring topology. Bold face indicates statistically
significant outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 7.006 % (3.737)3.922% (2.959) 3.650% (1.971)2.292% (1.333)
stdev error 5.037 % 2.059 % 2.591 % 1.331%
n 100| 6.348% (3.778)3.044% (2.852)3.101% (2.037)1.767 % (1.333)

=]

250| 6.951% (3.753)3.917 % (2.938)3.626 % (1.975)2.366 % (1.333)
500| 7.719% (3.679)4.805% (3.086)4.221% (1.901)2.743% (1.333)

5

m 5 3.091% (3.210)3.289% (3.790)1.994 % (1.000)| 2.334% (2.000)
m 10 | 7.520% (4.000)3.654% (2.963) 3.112% (2.037)2.075% (1.000)
m 30 |10.407 % (4.000)4.824% (2.123)5.842% (2.877)2.468% (1.000)
r 0.25/11.961 % (3.829)6.185% (2.817)6.059 % (2.024)3.893% (1.329)
r 0.50| 5.817 % (3.723)3.608 % (3.060) 3.066% (1.892)1.957 % (1.325)
r 0.75| 3.063% (3.654)1.878% (3.000) 1.738% (2.000)0.966 % (1.346)
Z-score 20.53 13.88 5.45
p-value 0.0000 0.0000 0.0000
Holm a 0.0500 0.0250 0.0167

The relative performance of the four PSO algorithms using the ring topologgtabke across each
of the three splits of the problem set into three subsets, with Ibest SBABEst PBPSG- Ibest MBPSO
> |best BPSO, except for two cases:

1. for the problems withm =5, Ibest PBPSO (average rank 1.000) scored better than Ibest SBPSO
(average rank 2.000) on all 81 problems in the subset, while Ibest BPSO (average rank 3.210)
scored better than Ibest MBPSO (average rank 3.790), and

2. for the problems wittm = 30, Ibest MBPSO (average rank 2.123) scored better than Ibest PBPSO
(average rank 2.877).

The relative performance of the Ibest MBPSO and Ibest PBPSO algorithm-pairs was correlated with
the number of constraintsn: Ibest MBPSO performed relatively better for an increasing number of

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

98 CHAPTERS5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

constraints, while Ibest PBPSO performed relatively worse with increasingor both Ibest PBPSO
and Ibest MBPSO the average error increased whercreased, but for Ibest PBPSO this deterioration
was worse. For all the Ibest PSO algorithms, the average error was most sensitive to changes in

A possible explanation for Ibest PBPSO having outperformed Ibest SBPSO on problems=a4h
is that the Ibest SBPSO algorithm was better tuned to the problems with a larger number of constraints
(m= 10 or 30), while the Ibest PBPSO algorithm was better tuned for problems with fewer constraints.
An alternative explanation is that tiketournament selection used in LB SBPSO helped the particles to
stay in the feasible part of the solution space. This feature has extra value in the case of a larger number
of constraints, where particles will encounter the edge of the feasible part of the solution space more
often.

Detailed results for the ring topology on the large MKPs can be found in[fable B.8 in appéndix B.

5.5.2.1.3 Von Neumann topology Table[5.18 shows that the Von Neumann SBPSO was the best
performing algorithm with an average rank of 1.342. The ID-test and post-hoc tests confirmed that the
Von Neumann SBPSO outperformed each of the other three pairs, with the Von Neumann PBPSO scoring
second best. The difference in performance between the Von Neumann SBPSO and the Von Neumann
PBPSO was approximately the same as seen between Ibest SBPSO and Ibest PBPSD inltable 5.17.

Table 5.18: Summary of large MKP test results for the von Neumann topology. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 6.973% (3.823)3.403% (2.811) 3.348% (2.025)2.249% (1.342)
stdes error 5.039 % 1.742 % 2.533 % 1.275 %
n 100| 6.291 % (3.815)2.647 % (2.790) 2.762 % (2.049)1.772% (1.346)

5

250| 6.920% (3.864)3.418% (2.765) 3.330% (2.037)2.294% (1.333)
500| 7.707 % (3.790)4.145% (2.877) 3.954% (1.988)2.680% (1.346)

5

m 5 3.076 % (3.469)2.980 % (3.506)1.783 % (1.000)| 2.433% (2.025)
m 10 | 7.465% (4.000)3.191% (2.914)2.847 % (2.086)2.046 % (1.000)
m 30 |10.377 % (4.000)4.039% (2.012)5.416 % (2.988)2.266 % (1.000)
r 0.25/11.943% (3.976)5.382% (2.610)5.739% (2.085)3.789% (1.329)
r 0.50| 5.775% (3.855)3.089 % (2.819) 2.693% (2.000)1.917% (1.325)
r 0.75| 3.023% (3.628)1.658 % (3.013) 1.533% (1.987)0.981% (1.372)
Z-score 21.18 12.54 5.83
P-value 0.0000 0.0000 0.0000
Holm a 0.0500 0.0250 0.0167

The relative behavior of the four PSO algorithms using the Von Neumann topalagiyhe same as
that seen for the Ibest PSO algorithms in tablel5.17: across each of the three splits of the problem set, the
result was Von Neumann SBPS©Von Neumann PBPSG Von Neumann MBPSG- Von Neumann
BPSO in each individual split, except for two cases:

1. for the problems withm= 5, the Von Neumann PBPSO (average rank 1.000) performed best on

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM9

all 81 problems in the subset, with the Von Neumann SBPSO (average rank 2002 second
best. Also the Von Neumann BPSO (average rank 3.469) narrowly outperformed the Von Neumann
MBPSO (average rank 3.506), and

2. for the problems witim = 30, the Von Neumann MBPSO (average rank 2.012) scored better than
the Von Neumann PBPSO (average rank 2.988).

Detailed results for the Von Neumann topology on the large MKPs can be found intable B.9 in
appendixB.

5.5.2.2 Results per algorithm

This section shows the results of the test experiments performed on the large MKP, comparing perfor-
mance of the three topologies (star, ring, and Von Neumann) across one PSO algorithm at a time. Results
are summarized in four tables 5119, 5/20, 5.21[and 5.22 for BPSO, MBPSO, PBPSO, and SBPSO respec-
tively. Each table lists the average and standard deviation of the error (the best fitness found compared
to the LP relaxation bound), and the average rank of the errors. The average error is shown on three
different cross-sections of the problem set:

1. The number of itemsy, with values 100, 250, and 500.
2. The number of constraints), with values 5, 10, and 30.

3. The tightness ratia, with values 0.25, 0.50, and 0.75.

Please refer to sectign 2.3 for details on these parameters and the problem set.

The ID-test indicated that, for all the algorithm-topology comparisons reported in this section, the
median performance showed statistically significant differences. Hence, post-hoc tests were conducted
and the results are reported at the bottom of the respective tables resulting in each case in one topology
outperforming the other two.

5.5.2.2.1 BPSO Results comparing the BPSO algorithm across three different topologies on the large
MKPs are given in table’5.19. The gbest BPSO performed much better than BPSO using either of the
other two topologies. The average error was 4.68% for gbest BPSO, with Ibest BPSO and the Von
Neumann BPSO scoring 7.01% and 6.97% respectively. The gbest BPSO scored best on 198 out of
243 problems, but was outperformed on problems with few constrainis $incombined with a high
tightness ratio of = 0.75. Here gbest BPSO performed worst out of the three BPSO pairs on the entire
subset of 27 problems. For problems witia= 5 andr = 0.5, gbest BPSO'’s performance was comparable

to the other two pairs and yielded an average rank of 1.944. Detailed results for the BPSO algorithm on
the large MKPs can be found in talble B.11 in appefdix B.

5.5.2.2.2 MBPSO Results comparing the MBPSO algorithm across three different topologies on the

large MKPs are given in table 5.20. For MBPSO, the relative performance of the three topologies was
very stable across the entire problem set with the Von Neumann MBPSO scoring the best (with an average

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

100 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.19: Summary of large MKP test results across topologies for BPSOfdealdndicates statis-
tically significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)
average error 4679% (1.340)| 7.006% (2.510) 6.973% (2.150)
stdev error 3.468 % 5.000 % 5.000 %
n 100|3.831% (1.296)| 6.348% (2.537) 6.291% (2.167)

>

250 | 4.679% (1.327)| 6.951% (2.531) 6.920% (2.142)
500 | 5.526 % (1.395)| 7.719% (2.451) 7.707% (2.154)

5 [3.037% (2.019)| 3.091% (2.179) 3.076 % (1.802)
10 |3.942% (1.000)| 7.520% (2.704) 7.465% (2.296)
30 | 7.057 % (1.000)| 10.407 % (2.636) 10.377 % (2.364)

0.25]8.253% (1.037)|11.961% (2.555)11.943% (2.409)
0.50| 3.751% (1.307)| 5.817% (2.530) 5.775% (2.163)
0.75| 1.909 % (1.692)| 3.063% (2.429) 3.023% (1.878)

p-value 0.0000 0.0000
Holm a 0.0250 0.0167

>

333

= = =

rank of 1.010), Ibest MBPSO achieved an average rank of 1.990, and\MB&S$0O scored worst on all
problems. The Von Neumann MBPSO failed to outperform Ibest MBPSO on only three of the 243
problems. Detailed results for the MBPSO algorithm on the large MKPs can be found if fable B.12 in
appendiXB.

Table 5.20: Summary of large MKP test results across topologies for MBPSO. Bold face indicates
statistically significant outperformance.

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)
average error 5.619% (3.000)3.922% (1.990) 3.403% (1.010)
stdev error 2.723% 2.100 % 1.700 %
n 100 | 5.160% (3.000) 3.044% (1.988) 2.647% (1.012)

>

250 | 5.663% (3.000) 3.917% (2.000) 3.418% (1.000)
500 | 6.034 % (3.000)4.805% (1.975)4.145% (1.025)

5 |4.354% (3.000)3.289% (1.963)2.980% (1.037)
10 | 5521 % (3.000) 3.654% (2.000) 3.191% (1.000)
30 | 6.983% (3.000)4.824% (2.000) 4.039% (1.000)

0.25| 8.664 % (3.000) 6.185% (2.000) 5.382% (1.000)
0.50| 5.344% (3.000) 3.6089% (1.988) 3.089% (1.012)
0.75|2.712% (3.000) 1.878% (1.974)1.658% (1.026)

p-value 0.0000 0.0000
Holm a 0.0250 0.0167

>

333

[—

5.5.2.2.3 PBPSO Resultscomparing the PBPSO algorithm across three different topologies on the
large MKPs are given in table 5]21. The Von Neumann PBPSO performed best with reference to the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEN1

average rank of errors, with an average rank of 1.5. However, RS0 achieved a lower average
error, scoring 3.25% while the Von Neumann PBPSO had an average error of 3.35%. This can be
explained by the more consistent behavior of gbest PBPSO: its standard deviation of the error was 1.72%,
while for the Von Neumann PBPSO this was 2.5%. The Von Neumann PBPSO scored well for problems
with m=5, but scored badly for problems with= 30: the difference in average error on the two subsets
was 542%— 1.78% = 3.63%. For gbest PBPSO the sensitivity to the problem parameteas much
smaller, and the difference between the subset on which it performed best @nand worst (n= 30)

was only 385%— 2.76% = 1.09%. Detailed results for the PBPSO algorithm on the large MKPs can be

found in tablé B.1B in appendix B.

Table 5.21: Summary of large MKP test results across topologies for PBPSO. Bold face indicates
statistically significant outperformance.

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)
average error 3.250% (1.860) 3.650% (2.650) 3.348% (1.500)
stdey error 1.718 % 2.600 % 2.500 %
n 100 | 2.568% (1.790)| 3.101% (2.667) 2.762% (1.543)

250 | 3.286% (1.864) 3.626% (2.654) 3.330% (1.481)
500 | 3.896 % (1.914)4.221% (2.617) 3.954% (1.469)

5 O

m 5]3134% (3.000) 1.994% (2.000)1.783% (1.000)
m 10 |2.763% (1.568)|3.112% (2.951)2.847% (1.481)
m 30 |3.853% (1.000)|5.842% (2.988) 5.416% (2.012)
r 0.25|5.264% (1.695)| 6.059% (2.646)5.739% (1.659)
r 0.50| 2.799% (1.904) 3.066 % (2.663) 2.693% (1.434)
r 0.75| 1.613% (1.974)1.738% (2.628) 1.533% (1.397)
p-value 0.0011 0.0000

Holm a 0.0167 0.0250

5.5.2.2.4 SBPSO Resultscomparing the SBPSO algorithm across three different topologies on the
large MKPs are given in table 5]22. The star topology was most successful, with gbest SBPSO perform-
ing best on all 243 problems. Little difference in performance was observed between Ibest SBPSO and
the Von Neumann SBPSO, which is probably related to the fact that the same control parameter values
were used for both pairs (refer to tablel5.6 for the parameter values). Hence, the only difference between
the pairs was that the Von Neumann SBPSO has a more closely connected swarm compared to Ibest
SBPSO. Only for the split of the problem set based on the number of constrajraeme difference in
performance was seen between lbest SBPSO and the Von Neumann SBPSO, where Ibest SBPSO per-
formed better on problems witim= 5, and the Von Neumann PBPSO performed better on problems
with m= 30. Considering the number of constraints, both Ibest SBPSO and the Von Neumann SBPSO
performed best on the subset of problems witk: 10. Having a more closely connected swarm helped

the Von Neumann SBPSO on problems with more constraints. Detailed results for the SBPSO algorithm
on the large MKPs can be found in table B.14 in appehdlix B.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

102 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 5.22: Summary of large MKP test results across topologies for SBPSO f&edndicates
statistically significant outperformance.

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)
average error 1.740% (1.000)| 2.292% (2.570) 2.249% (2.430)
stdev error 1.170 % 1.300 % 1.300 %
n 100 1.260% (1.000)| 1.767 % (2.519) 1.772% (2.481)

>

250 | 1.758 % (1.000)| 2.366 % (2.636) 2.294% (2.364)
500|2.201% (1.000)| 2.743% (2.543) 2.680% (2.457)

>

m 5 |1.875% (1.000)|2.334% (2.173)2.433% (2.827)
m 10 | 1.553% (1.000)| 2.075% (2.549) 2.046% (2.451)
m 30 [1.791% (1.000)|2.468% (2.975)2.266% (2.025)
r 0.25|3.141% (1.000)| 3.893% (2.659)3.789% (2.341)
r 0.50| 1.355% (1.000)| 1.957 % (2.566) 1.917 % (2.434)
r 0.75| 0.676 % (1.000)| 0.966 % (2.468) 0.981% (2.532)
p-value 0.0000 0.0000
Holm a 0.0250 0.0167

5.5.2.3 Compare best topology per algorithm

Theresults in the previous sections showed that, for each PSO algorithm, a single topology performed
best by a statistically significant margin: for MBPSO and PBPSO the Von Neumann topology scored
best, while for BPSO and SBPSO it was the star topology that scored best. In order to see which
algorithm has performed best on solving the large MKP, regardless of which topology was chosen, these
four best algorithm-topology pairs are compared in this section. Note that a similar comparison was not
performed for the small MKPs in sectibn 5.5.1, as the Von Neumann topology was the best performing
topology for each of the four PSO algorithms on the small MKPs.

A detailed comparison of the four PSO algorithms, each using its best performing topology, is
given in table[5.23. The four best performing algorithm-topology pairs are gbest BPSO, Von Neu-
mann MBPSO, Von Neumann PBPSO, and gbest SBPSO. With an average error of 1.72%, gbest SBPSO
scored better than the other three pairs, with the second best pair, Von Neumann PBPSO, scoring an av-
erage error of 3.32 %. The ID-test followed by post-hoc tests indicated that gbest SBPSO outperformed
the other three pairs by a statistically significant margin.

For gbest SBPSO, the average rank was 1.26, followed by Von Neumann PBPSO, Von Neumann
MBPSO, and gbest BPSO with average ranks of 2.13, 2.81, and 3.80 respectively. The gbest SBPSO had
the lowest error on 179 of the 243 problems, and was second best on the remaining 64, for which the
Von Neumann PBPSO scored best each time. Gbest BPSO performed worst on 194 problems, and the
second worst on the remaining 47.

Each of the first 27 rows of table 5]23 represents results for the subset of nine problems that cor-
respond to the given MKP parametersn, andr. For all 27 problem subsets, the ID-test indicated a
difference in performance across the four algorithm-topology pairs. However, in only two cases was a

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEN3

single algorithm-topology pair shown to outperform the other Hw@ebestSBPSO statistically outper-
formed forn=100,m= 10,r = 0.25 andn = 250,m= 10, a = 0.25.

Table 5.23: Summary of large MKP test results for the best algorithm-topology pairs per algorithm.
Bold face indicates statistically significant outperformance.

GB BPSO VN MBPSO VN PBPSO GB SBPSO
n m r error (rank) error (rank) error (rank) error (rank)
100 5 025 3.772% (3.67) 3.625% (3.33) 1.757% (1) |1951% (2)
100 5 050 1.835% (3.56)1.774% (3.44) 0.796% (1) [0.873% (2)
100 5 075 1.155% (3.89) 1.077% (3.11) 0.504% (1.56)[0.505% (1.44)
100 10 0.25 5334% (4) |4.064% (256) 4.052% (2.44)2.181% (1)
100 10 050 2.384% (4)|2160% (3) | 1.868% (2) |0.853% (1)
100 10 0.75 1.217% (3.56) 1.206% (3.44) 1.031% (2) |0.399% (1)
100 30 0.2911.396% (4) |5132% (2) 8.411% (3) |2.773% (1)
100 30 0.50 4.786% (4) |3.057% (2) 3.902% (3) |1.195% (1)
100 30 0.7 2.327% (3.13)1566% (2) 2.364% (3.88)0.540% (1)
250 5 0.25 5.182% (3.67)4.995% (3.33) 3.066% (1) [3.294% (2)
250 5 050 2.680% (3.67)2.617% (3.33) 1437% (1) [1541% (2)
250 5 075 1.390% (3.67) 1.362% (3.33) 0.740% (1.56)[0.735% (1.44)
250 10 0.25 6.917% (4) | 4.895% (2.67) 4.801% (2.33)2.845% (1)
250 10 0.50 3.161% (3.95)2.904% (3.05) 2312% (2) |1.186% (1)
250 10 0.75 1546% (3.75) 1.522% (3.25) 1.237% (2) |0561% (1)
250 30 0.2512.765% (4) [6.333% (2) 9.356% (3) |3451% (1)
250 30 0.50 5556% (4) [3.921% (2) 4308% (3) [1471% (1)
250 30 0.75 2.738% (4) [2.055% (2) 2595% (3) |0.670% (1)
500 5 0.25 6.349% (3.67)6.299% (3.33) 4565% (1) [4.749% (2)
500 5 050 3.134% (3.33) 3.219% (3.67) 2.026% (1.44)(2.066% (1.56)
500 5 0.75] 1.837% (35)/1849% (35| 1.157% (1.33)[1.160% (1.67)
500 10 0.25 8357% (4) |5943% (3) | 5652% (2) |3.404% (1)
500 10 050 3.776% (4) | 3522% (3) | 2677% (2) |1.455% (1)
500 10 0.75 1889% (3.5)]1.905% (35| 1.399% (2) |0.726% (1)
500 30 0.2514.189% (4) |7.089% (2) |10.003% (3) [3.592% (1)
500 30 0.50 6.398% (4) |4.655% (2.11)| 4.822% (2.89)1.593% (1)
500 30 0.75 3.083% (4) [2378% (2) 2811% (3) |0.764% (1)
average | 4635% (3.80)3.375% (2.81) 3.320% (2.13)1.723% (1.26)
Z-score 21.68 13.22 7.34
p-value 0.0000 0.0000 0.0000
Holm a 0.0500 0.0250 0.0167

For each of the remaining 25 problems, the post-hoc tests did not indicate als@stji@lgorithm-
topology pair, but instead resulted in two best pairs with indistinguishable performance: no significant
difference could be seen between the two best performing pairs, while the two worst pairs underper-

3 Even if all problems yield the same ranks, resulting in average rankings of 1, 2, 3, and 4 for the four algorithm-topology
pairs, the post-hoc Nemenyi test didt show a statistically significant difference between ranks 1 and 2, at a confidence level
of a = 0.05, which led to a Holma of 0.0167 for the comparison of the two best performing pairs.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

104 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

formed the best two in a statistically significant manner. For nine out of 25 profypetifications, all

with m= 30, gbest SBPSO and the Von Neumann MBPSO performed best, while gbest BPSO and the

Von Neumann PBPSO underperformed. For the remaining 16 out of 25 cases, gbest SBPSO and the Von

Neumann PBPSO performed best, while gbest BPSO and the Von Neumann MBPSO underperformed.
The performance of the Von Neumann PBPSO deteriorated for larger valogscoinpared to the

other algorithm-topology pairs in takle 5123. The Von Neumann PBPSO outperformed the other three

pairs on problems witlm = 5, but the difference with gbest SBPSO became smaller for larger values

of a. For problems withm = 10, the Von Neumann PBPSO performed second best on 74 out of 81

problems. However, for problems with= 30, the Von Neumann PBPSO ranked better than third only

once out of 81 problems, and performed worse than both gbest SBPSO and the Von Neumann MBPSO.

As mentioned in the discussion of the results in tablel5.17, the parameters chosen for the Von Neumann

PBPSO (which were the same as for Ibest PBPSO) were probably better suited to problems with a lower

number of constraints.

5.6 Conclusions

This chapter had three objectives. The most important objective was to determine if it is possible to
successfully apply the SBPSO algorithm to the MKP, where success meant yielding solutions of suffi-
cient quality, but not necessarily solutions on par with algorithms that directly incorporate MKP specific
heuristics. The investigation of SBPSO'’s efficiency in the number of iterations, fitness function evalu-
ations or flops was explicitly set out of scope. The second objective was to compare the performance
of the SBPSO algorithm on the MKP to that of three other PSO algorithms known from literature. The
third objective was to investigate what parameter values work well for the SBPSO.

5.6.1 Comparing the algorithms

Comparing results on the test problems, SBPSO has outperformed the other three PSO algorithms by a
considerable margin. PBPSO yielded better results than SBPSO in a small number of cases (for large
MKPs with m = 5 constraints when a ring or Von Neumann topology was used for both PBPSO and
SBPSO). The problems on which PBPSO outperformed, were likely caused by PBPSO having been
better attuned to those specific MKPs than the SBPSO algorithm. In all other cases the SBPSO algorithm
was superior, regardless of problem set or topology, to the other three algorithms. Therefore it can be
concluded that the first two objectives of this chapter were achieved: SBPSO was successfully applied
to the MKP yielding high quality solutions, and SBPSO outperformed the three PSO algorithms it was
compared to in a statically significant manner.

A separate finding was that for SBPSO the relative performance of the three swarm topologies dif-
fered between the small and the large MKP. On the large MKP, gbest SBPSO performed significantly
better than Ibest SBPSO and Von Neumann SBPSO: gbest SBPSO achieved the smallesaéirodr on
the 243 large test problems. On the small MKPs the difference between gbest SBPSO, Ibest SBPSO
and Von Neumann SBPSO was marginal and no algorithm-topology pair statistically outperformed or
underperformed the other two. Also all three algorithm-topology pairs involving the SBPSO were able

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEINS

to perfectly solve at least 21 out of 40 small test MKPs while they all failed tothircbptimum in any

of the 100 runs on the same four small test MKPs. Two factors can be identified that possibly caused this
difference in relative performance: the first factor is that the problems in the small MKPs were probably
not hard enough to allow for meaningful differentiation between gbest SBPSO, Ibest SBPSO and Von
Neumann SBPSO, while the problems in the large MKP were hard enough to do so. This argument
is somewhat undermined, however, by the fact that SBPSO was able to outperform the other PSO al-
gorithms on the small MKP in a statistically significant manner using each of the three topologies. A
second possible factor is that, for the large MKP, the tuning set arguably formed a better approximation
of the problems in the test set than was the case for the small MKP. For the large MKP, the tuning set
consists of the exact same 27 problem definitions as the test set: the tuning set for the large MKPs con-
tained one random implementation for each of the 27 definitions (the same values for MKP parameters
n, m, andr) and the test set contained nine random implementations of each of these same 27 definitions.
This could mean that the SBPSO algorithm was better attuned in the case of the large MKPs (for each of
the three topologies), and in that situation the superiority of the star topology was able to come to light.
Weighing these two factors it should be concluded, however, that the results in this chapter did not lead to
a definitive explanation for the difference in relative performance between gbest SBPSO, |Ibest SBPSO,
and Von Neumann SBPSO on the small MKPs on the one hand and the large MKPs on the other.

The results from the experiments in this chapter were consistent with the results reported by Wang
et al.[146] that were described in section 2.412.3: in the study by Védiag) [146] the PBPSO algorithm
was shown to perform better than both BPSO and MBPSO on 10 small MKPs. The same pattern was
seen in the experiments in this chapter, with PBPSO outperforming MBPSO and BPSO on the small
MKPs on all three topologies, in all possible measures: best rank, lowest average error, highest success
rate, most problems solved perfectly, and least problems where it failed to find a solution at all. Note
that the characteristics of the experiments performed by Waab[146] were different from those used
in this chapter: Wangt al. [146] did not perform any tuning of the algorithms, considered on a single
swarm topology, used a slightly larger swarm size (30 versus 25 here) and used fewer iterations (3000 or
4000 versus 5000 here).

The solutions for the MKP found by the SBPSO algorithm falls short of the results achieved by
state-of-the-art algorithms, which incorporate domain specific information, mentioned in $ection 2.4.1.
The state-of-the-art algorithms for the MKP were all able to find the optimal solution in each run of
the algorithm for all 55 small MKP. In contrast, SBPSO combined with the Von Neumann topology
was able to find the solution in all independent runs on only 25 out of 40 test problems. On a further
11 test problems, Von Neumann SBPSO found the optimal solution in at least some independent runs.
On the remaining four test problems, Von Neumann SBPSO failed to find the optimal solution in all
independent runs. For many, but not all, of the large MKP, optimal solutions have been found by state-
of-the-art methods and proven to be optimal. Based on the results ligiedmt//www.cs.nott . ac.
uk/~jqd/mkp/results.html in July 2015, the optimal solution is known for 196 problems out of the
243 large MKP in the test set. SBPSO combined with the Von Neumann topology was able to find 16
of these optima. For the 47 large MKP in the test set for which the optimum is not yet known, Von
Neumann SBPSO was not able to find a better solution than those already known.

© University of Pretoria

http://www.cs.nott.ac.uk/~jqd/mkp/results.html
http://www.cs.nott.ac.uk/~jqd/mkp/results.html

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

106 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

5.6.2 Tuning and control parameter values

Thethird objective to be addressed in this chapter was to investigate what parameter values work well
for SBPSO. The tuning process compared performance results on a subset of MKPs for many parameter
combinations. These parameter combinations were generated using Sobol pseudo-random numbers and
spanned the whole parameter space. This allowed for a detailed sensitivity analysis of SBPSQO'’s param-
eters on the MKP, indicating which values for SBPSQO's control parameters led to good results. For the
five control parametersy, Cy, C3, C4, andk the results of the analysis are summarized in a short list here:

c; (attraction to the personal best): For control paramgténe sensitivity analysis very clearly showed
that higher values lead to better results with €.8; < 1.0 leading to the best results, regardless
of which topology was used. A small drop-off was seen for parameter combinations @ith O.
c1 < 1.0 compared to @ < ¢; < 0.9, indicating that the optimal value fay lies above (B but
still some distance below the theoretical maximum 6f 1.

c; (attraction to the neighborhood best): For control paranwetire area of good results was less clearly
marked than foc;. The best results were achieved by SBPSO using parameter combinations with
0.5< ¢y < 1.0 for Ibest SBPSO and Von Neumann SBPSO, equivalent to half the parameter space
for c,. For gbest SBPSO in contrast3G< ¢, < 0.6 yielded the best results.

c3 (the maximum number of elements to add to the solution set Ustiogrnament selection): For
control parametets Ibest SBPSO and Von Neumann SBPSO achieved the best results for values
15 < c3 < 2.5, but all values otz between 1.0 and 8.looked adequate. For gbest SBPSO, the
area of the parameter space that yielded good results was more evenly spread at slightly higher
values with 15 < c3 < 3.5 yielding the best results.

¢4 (the maximum number of elements to remove from the solution set randomly): For control parameter
c4 all values 15 < ¢4 < 5.0 showed adequate results, regardless of which topology SBPSO was
paired with. The best results were found for parameter combinations whieg values in either
the range D < c3 < 25 0r 35<c3 < 4.0. Itis not clear why two distinct peaks showed and pa-
rameter combinations with 25 ¢4 < 3.5 underperformed: this will require further investigation.

k (the size of the tournament used to select elements to add to the solution set): For control parameter
k, in general performance increased for higher valudsrefjardless of which topology was used.
For Ibest SBPSO and Von Neumann SBPSO parameter combinationk with (which means
excluding the tournament selection completely) underperformed, while the performance increase
for higher values ok topped off atk = 6. For gbest SBPSO a different pattern was seen, with
parameter combinations with= 1 not underperforming, but valu&s> 7 outperforming.

Besides identifying which parameter values yielded the best results on the MKP, a further analysis
was performed to determine which of SBPSO's five control parameters were the most important to tune
well. The relative importance of SBPSO's five control parameters was approximately the same for gbest
SBPSO, Ibest SBPSO and Von Neumann SBPSO: paranmtensd c; were most important to the
overall performance of the SBPSO algorithm. For each of the three topologies used with SBPSO, the

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEN7

parametec, ranked third out of five in importance. The parametersindk were least influential on the
overall performance of the SBPSO algorithm.

The fact that parametey has a relatively small influence in the performance of the SBPSO algorithm
may seem surprising given that the choice of topology was itself important for SBPSO’ performance
with gbest SBPSO outperforming the Ibest SBPSO and Von Neumann SBPSO on all 243 large test
problems: the network structure in the swarm was clearly important. However, the SBPSO algorithm
was insensitive to the exact amount of attraction to the best neighboring particle in the network. It must
be added that looking solely at the ranking of the importance of SBPSO'’s five control parameters hides
the fact that the sensitivity score foy using gbest SBPSO shown in table]5.8 was 31%, higher than that
for Ibest SBPSO (25%) and almost double that for Von Neumann SBPSO (16%). So, although even for
gbest SBPSO the andcz parameters are most important, the attraction to the best particle in the whole
swarm indicated bg, has some importance when a star topology is used.

The tuning process was successful in finding parameter combinations for each algorithm-topology
pair that worked well on the test set, thereby validating the approach of using part of each problem set as
a separate tuning set. When tuning SBPSO on the small MKP, however, the SBPSO algorithm performed
so well that it actually made the tuning process harder: as evidenced i tdble 5.5, more than half of the
15 tuning problems were solved in all independent runs of the algorithm. Since this also happened for a
number of other parameter combinations, all these combinations achieved the same average rank. Only
on the problems that were not solved perfectly could the best parameter combination stand out. This
poses a difficulty for using this tuning method if it is hard to identify beforehand problems that will be
hard enough to provide discernibility. A similar problem arises in other cases where many runs of the
algorithm yield the exact same objective function value, for example a MKP with a local optimum that
traps the PSO'’s particles, such that the global optimum is not found: in such cases the tuning method
used also is not able to distinguish between different parameter combinations.

5.6.3 Tournament selection in SBPSO

One could argue that SBPSO had an advantage over the other three PSO algorithms because it contained
a special operator to add elements to a particle’s position usiagparnament selection that required
additional objective function evaluations. By using a more intelligent way to select elements to add to the
position, the search was improved. As the swarm size and the number of iterations were kept the same
for all algorithms, the additional objective function evaluations meant that more computational effort was
expended on SBPSO compared to the other three algorithms.

The tuning process results and subsequent sensitivity analysis of SBPSO’s parameters provided con-
flicting evidence for the claim that the tournament selection used in SBPSO led to better performance and
that larger tournaments were helpful. The sensitivity analysis showed an improvement in performance
for SBPSO with increasing values &f while for Ibest SBPSO and Von Neumann SBPSO parameter
combinations withk = 1 (i.e. without the tournament selection) clearly underperformed. However, two
findings from the tuning process provided counterarguments that the influence of the tournament selec-
tion may have been small: firstly, the tuning process for SBPSO combined with three topologies on the
small MKPs and large MKPs yielded six parameter combinations and thus six values for the control

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

108 CHAPTER 5. EXPERIMENTS ON THE MULTIDIMENSIONAL KNAPSACK PROBLEM

parametek, thesize of the tournament. If the tournament selection provided a large enough advantage
to SBPSO, it is to be expected that the chosen parameter combinations had higher than average values
for k. If there was no benefit to having tournament selection, the parameter combinations would be
chosen solely on the merit of the values @rto c;. Because of the way the parameter combinations
were constructed using Sobol sequences, this would have led to “random” vallkda foe parameter
combinations that resulted from the tuning process. The six valudstfat resulted from the tuning
processwere 7,7,7,7, 3, and 3. Hence the average of the six valkesde57, larger than but close to

the average B.of the possible values of 1 to 9 fkiin the tuning process. The value of75s insufficient

to reject a statistical hypothesis that the six valuekfarere drawrrandomlyfrom the range of 1 to 9
(p-value of 0.25), and it therefore does not indicate a significantly above average valu&tarondly,

in the analysis of relative importance, control paramétscored lowest for gbest and Ibest SBPSO,
while it scored second-lowest for Von Neumann SBPSO. The fact that the valueas a less impor-

tant in explaining performance, seems to contradict the idea that larger tournaments provided a benefit
to SBPSO. Further analysis is needed to see if the effect of the added objective function evaluations on
SBPSO’s performance was significant.

5.6.4 Next steps

The next chapter applies the SBPSO algorithm to a different discrete optimization problem, namely the
feature selection problem (FSP) from the domain of machine learning. Again the performance of the
SBPSO will be compared to three other PSO algorithms in order to determine its relative merit within
the universe of PSO algorithms for DOPs. The FSP not only lies in a completely different domain than
the MKP, it also poses challenges to the successful method employed in solving the MKP on tuning
the PSO algorithms: a noisy objective function and classifiers that themselves require tuning. The next
chapter thus can help determine if the success achieved by SBPSO over the other three PSO algorithms
on the MKP is specific to the MKP domain, or whether it can be shown to be more widely applicable.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 6

Experiments on the feature selection
problem

The previous chapter described the numerical experiments in which the SBPSO was compared to other
PSO algorithms on the MKP. This chapter describes another such set of experiments in which the SBPSO
is applied to solve the FSP. The FSP was introduced in chdpter 3 as a second test-bed for the new SBPSO
algorithm. The current chapter compares the performance of the SBPSO on the FSP to that of three other
PSO algorithms from literature.

The objectives of this chapter are two-fold, where the first objective is to determine if it is possible to
successfully apply the SBPSO algorithm to the FSP, which in this case means yielding quality solutions.
The second objective is to compare the performance of the SBPSO algorithm on the FSP to other PSO
algorithms known from literature.

This chapter is organized into an introduction, five main sections, and conclusions. The first three
main sections consist of a description of the procedure used in conducting the experiments on the FSP,
followed by two exhaustive searches on a number of smaller datasets to investigate if this procedure is
viable. The first exhaustive search in secfion 6.3 tests if the chosen fithess function and classifiers lead to
sufficient differentiation across the feature subsets for the PSO algorithm to work. A second exhaustive
search described in sectibn6.4 investigates if the method chosen to tune the parameterized classifiers
(J48 andk-NN) works well enough. The penultimate main section describes the PSO parameter tuning
and resulting PSO parameters, which is followed by the results of the comparisons between the tuned
SBPSO and the tuned PSO algorithms from literature.

6.1 Introduction

Similar to the previous chapter, the current chapter can be seen as the culmination of the path outlined
in parts | and Il. Chaptérl 1 provided the background to show that a generic, functioning, set-based PSO
algorithm did not yet exist and what components such an algorithm should contain. Chapter 4 introduced
the SBPSO algorithm with the claim that it is a generic, functioning, set-based PSO algorithm. In order

to validate this claim, the SBPSO algorithm needs to be tested on discrete optimization problems (DOPS).

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

110 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

This was done for the MKP in chapfdr 5. Chapier 3 then argued that the FSPaswalsérivial DOP that

forms a valid test-bed for the SBPSO and other discrete PSO algorithms. This chapter brings together
the two parts and applies the SBPSO to the FSP. The review of the literature in ¢hapter 3 also suggested
a number of other discrete PSO algorithms the SBPSO can be compared to.

As mentioned above, two objectives from the preface are addressed in this chapter: firstly, to test
the new algorithm on DOPs, in this case the FSP, and secondly, to compare the performance (in terms
of quality of the solution found) of the new algorithm against known discrete PSO algorithms from
literature. Recall from the experiments on the MKP that, in chapter 5, a third objective was addressed as
well, namely to investigate SBPSO’s control parameter values that see which values yield good results.
Although a similar parameter tuning as on the MKP will be conducted on the FSP, the sensitivity analysis
on SBPSQO'’s parameters from chapter 5 will not be repeated in this chapter.

The objectives from the preface involving the FSP are recalled that are definedutshiEthe scope
of this thesis, and by extension, outside the scope of this chapter:

¢ find an algorithm that is better at solving the FSP than known state-of-the-art algorithms;

¢ find the most efficient algorithm in terms of number of iterations or fitness function evaluations,
total number of computations (flops) or total time needed to complete; and

e to compare the performance of the new algorithm against non-PSO methods used to solve the FSP.

This chapter is organized into an introduction, five main sections, and conclusions. The purpose and
contents of each of the main sections are described in turn below.

Section 6.2 describes the choices made in the setup of the main experiments, in which the tuned
SBPSO is compared to three other tuned PSO algorithms on the FSP. First the design choices with re-
gards to the classification problem that underlies the FSP are set out, namely the selection of benchmark
datasets for tuning and testing, the way the data in these datasets is pre-processed, which classifiers are
used in the experiments, and what their respective setup is. Further details on the background of the
datasets used is listed in apperdix D. Next, the design choices with regards to the PSO algorithms them-
selves are discussed. This concerns all the most important considerations that go into the PSO algorithm,
and which details allow for reproduction of the experimental results. Therefore, the choices discussed
are: the selection of PSO algorithms to compare with the SBPSO, the swarm size, the swarm topology
used, the fitness function used in the optimization process, the initialization process for each PSO al-
gorithm, the stopping conditions, and the number of independent runs performed in each experiment.
These elements are combined into a wrapper method using a PSO algorithm to solve the FSP.

The fitness function chosen for the PSO algorithms on the FSP is the classification accuracy achieved
by the classifier on the dataset. Section 6.3 tests if the classification accuracy for the three chosen
classifiers lead to sufficiently different fitness values for different feature subsets. As determining the
classification accuracy contains some random elements, repeated calculations of the fitness value for the
same feature subset will contain some variation in outcomes. If this variation exceeds the difference
between the fitness values of the various subsets, it will be hard to determine whether one PSO has found
a better solution than another PSO. The experiments conducted in section 6.3 are thus to investigate if
the FSP testbed can differentiate in performance between the PSO algorithms.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 111

Besides the fitness function, a second design choice is investigated in mordatetailpotential
influence on the numerical experiments conducted in this chapter: Sectlon 6.4 looks at the way the
parameterized classifiers (J48 aadliN) are tuned, and what impact this particular method of tuning
may have on the classification accuracy. If this leads to poorly tuned classifiers, the fitness function used
may not perform well enough for the PSO algorithms to effectively search the feature subspace.

Section 6.6 describes the PSO parameter tuning process used for the experiments on the FSP and
the resulting PSO parameters. This process mainly follows the one used in ¢hapter 5 to tune the PSO
algorithms on the MKP, but with some small differences. Both the process and the resulting parameters
are discussed. Detailed results for the PSO tuning experiments can be found in appendix d, séction C.2.

Finally, sectiorl 6.6 summarizes the results of the main experiments where the SBPSO was applied
on the FSP. Detailed results are listed separately in appemdix C, sectlon C.3. The results are discussed
for each of the three classifiers separately, as well as for all three classifiers combined.

6.2 Experimental procedure

This section describes the procedure that is used in the experiments that compare the SBPSO to other PSO
algorithms on the FSP. The overall setup of the experiments in this chapter was strongly influenced by the
recommendations by Salzberg [122] on comparing classifiers. The experiments performed and described
in this chapter do not directly compare classifiers but instead compare PSO algorithms wrapped around
a single classifier, but the same caveats hold. Salzberg [122] recommended the following approach:

1. use a separate data set for parameter tuning than for evaluating classification performance.

2. choose other algorithms to include in the comparison, making sure to include algorithms that are
similar to the new algorithm.

3. divide the data set inlosubsets for cross validation (a typical experiment lsed0).

4. calculate overall accuracy averaged acrosk giirtitions, which also gives an estimate of the
variance of the algorithms’ performance.

5. use correct statistical analysis to compare algorithms, adjusting the confidence level appropriately.

The first three subsections, 6.2.1 throligh 6.2.3, describe the design choices made regarding the un-
derlying classification problem, namely the selection of benchmark datasets for tuning and testing, the
way the datasets are pre-processed, and which classifiers are used in the experiments and what their
respective setup is. Subsectlon 6.2.4 deals with the design choices made with regards to the PSO algo-
rithms used and compared in the experiments. Finally, subséctioh 6.2.5 combines both these parts and
describe the flow of the wrapper method using a PSO algorithm to solve the FSP, given an underlying
classification problem.

6.2.1 Benchmark datasets used

This section describes the datasets that are used in the experiments in solving the FSP. First the chosen
datasets themselves are listed in two separate sections, one for those used in tuning and one for those

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

112 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

used in testing the tuned algorithms. Then the considerations that went into sefleetid@iasets for the
experiments are listed.

6.2.1.1 Datasets selected for PSO testing

Table[6.1 lists the 30 datasets that were selected for use in testing the tuned PSO algorithms on the FSP.
Besides the abbreviated name, the number of instances, classes and features are listed, with the latter
split between features with numerical and nominal values. For a detailed description of these datasets,
see appendixD.

Table 6.1: Datasets used in the FSP testing experiments

dataset \ #instances #classes # featuvTe# numerical # nominal
arrhythmia 452 13 279 267 12
audiology 226 24 69 0 69
australian 690 2 14 8 6
bands 540 2 39 20 19
breasttissue 106 6 9 9 0
corral 64 2 6 0 6
crx 690 2 15 6 9
dermatology 366 6 34 1 33
german 1000 2 24 7 13
glass 214 7 9 9 0
hill-valley 1212 2 100 100 0
horse-colic 368 2 36 7 29
ionosphere 351 2 34 34 0
iris 150 3 4 4 0
liver 345 2 6 6 0
monk-1 432 2 6 6 0
monk-2 432 2 6 6 0
movement-libras 360 15 90 a0 0
musk-1 476 2 166 166 0
parity5-5 1024 2 10 0 10
parkinsons 195 2 22 22 0
pima 768 2 8 8 0
sonar 208 2 60 60 0
soybean 683 19 35 0 35
spectf 267 2 44 44 0
tic-tac-toe 958 2 9 9 2
vehicle 847 5 18 18 0
vote 435 2 16 0 16
vowel 990 11 10 10 0
wdbc 569 2 30 30 0

6.2.1.2 Datasets selected for PSO tuning

Tablel6.2 lists the eight datasets that were selected for use in tuning the various PSO algorithms on the
FSP. Besides the abbreviated name, the number of instances, classes and features are listed, with the latter

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 113

split between features with numerical and nominal values. For a detailed descaptleese datasets,
see appendixD.

Table 6.2: Datasets used in the FSP tuning experiments

dataset | #instances # classes # featufe# numerical # nominal
echocardiogram 132 2 12 12 0
hepatitis 155 2 19 19 0
labor 57 2 16 8 8
lung-cancer 32 3 56 0 56
lymphograply 148 4 18 3 15
promoter 106 2 57 0 57
wine 178 3 13 13 0
Z00 101 7 16 0 16

6.2.1.3 Considerations in choosing datasets

Datasetdor classification and feature selection come in different types: some are real-world datasets,
while others are constructed artificially. In shape and size, there is also an enormous variety of spec-
ifications for these datasets. The main consideration was to use only datasets that can be considered
benchmarks, and which have been used in classification and feature selection studies before. The UCI
machine learning repository/[5] is meant to provide exactly this and therefore all datasets used in this
thesis come from this repository.

The next step was to determine which of the 320 datasets from the repository should be used. A first
selection was to only consider the 231 datasets that can be used to study classification. Other than this
simple step, selection was mainly driven by practical considerations, namely the time it would take to run
the experiments. Since the goal of this chapter is to compare PSO algorithms on the FSP, and not to study
classification and feature selection algorithms for very large datasets, limiting the size of the datasets
makes sense from the viewpoint of keeping the computational effort manageable. This led to choosing
datasets with a limited number of features and instances. The number of features was limited to roughly
100, although two datasets (arrhythmia with 279 and musk-1 with 166 features) were added with a higher
number of features. Note that most datasets in the repository have less than 100 features, although large
datasets with up to 3 million features are also present. The number of instances was limited to roughly
1000, which can be considered up to medium size. Note that half the datasets available in the repository
havemorethan 1000 instances, and datasets can contain up to 11 million instances. From the set of
datasets that were small enough, a number were selected using a mix of real-world and artificial datasets.
Also, the goal was to include as many datasets as possible within the practical bounds of computation
time, so smaller datasets (fewer features and instances) were included more often.

Considerations also went into selecting which datasets to use for tuning the PSO algorithms and
which to use for testing and comparing the tuned algorithms. For the testing phase, the aim is to use
a larger number of problems such that the comparison of the PSO algorithms can yield statistically
significant results. For tuning, a smaller number of problems can be used, although some care should be
taken to prevent overfitting to a set of problems that are not representative of the testing problems. In

© University of Pretoria

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI

YA PRETORIA

114 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

tuning, however, it is important to make the problems challenging enough that diféerabinations of
PSO parameters lead to a difference in performance: if the tuning problems are too easy, many different
parameter combinations will yield equivalent results. Too easy in this case means too few features.
Hence the tuning were chosen to contain at least 12 features. This meant that the space of features
subsets contained at leasf2- 4096 points, making the optimization non-trivial given the number of
particles and iterations to be used as described in séction 6.2.4.

Using all these considerations, eight datasets were selected for use in tuning the PSO algorithms,
listed in tabld 6.2. For testing the tuned PSO algorithms, a further 30 datasets were selected, listed in
tablel6.1.

6.2.2 Preprocessing of datasets

The reason for pre-processing datasets in machine learning and the methods available to do so were
outlined in sectioni_3.214. This section describes the actual pre-processing performed on the datasets
described in the previous sectibeforethese datasets were used in the classification experiments dis-
cussed in this chapter. Data cleaning, transformation and normalization are all applied to make the
datasets amenable to classification using the selected classifiers.

6.2.2.1 Data cleaning

Data cleaning was performed in this thesis only to fill in missing values. Any values that were present in
the datasets were assumed to be correct, and no outlier detection or instance selection was performed to
discard or transform suspect data. Missing values were filled in using two different methods, depending
on the type of data that is missing:

e For attributes that contain numeric values, any instance for which this attribute’s value was un-
known, the attribute’s value was set to the mean of all known values for this attribute. This method
is known agnean substitution. Note that no distinction was made based on the class of the instance
with the missing value.

e For attributes that contain nominal values, any instance for which this attribute’s value was un-
known, the attribute’s value was set to the most frequently occurring value for this attribute in the
dataset. This method is known as thest common feature value method. Note that no distinction
was made based on the class of the instance with the missing value.

No statistical analysis was performed to look for outliers or inliers among the known and legal values
in the datasets: all legal values were taken at face value. This was done because the datasets in question
are well-studied benchmark datasets and as such other studies will have used the same outliers and inliers
without correction.

6.2.2.2 Data transformation

Data transformation was used to convert data into a single format that can be handled by all classifiers
used in these experiments. Note that this is not a prerequisite for comparing different PSO algorithms

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 115

using the same classifier, because a different format of the dataset caedwith different classifiers
without jeopardizing this goal. In order to allow some global comparison across classifiers, the data
transformation step was still undertaken. During the data transformation, all data was converted into
numerical values. The main reason for this choice is that this thesis combinks\#aeest neighbor
classifier with an Euclidean metric, which only works with numerical values.

Attributes with nominal values were converted using the following method: first, a list is determined
of all different attribute values in the order found in the dataset, starting at the first instance and working
down until the last instance. Then, the nominal value is converted to a number equal to the order in which
the nominal value appeared in the aforementioned list. If, for example, the attribute values in the dataset
in order of appearance were A, C, C, A, B, C, then the nominal values A, B, and C were converted to the
numerical values 1, 3, and 2 respectively.

6.2.2.3 Data normalization

Data normalization was applied as a last step. Due to the application of the previous two steps of data
cleaning and data transformation, at this point no attribute values were missing and all attribute values
were numerical. Normalization was then performed to scale each attribute separately to lie within the
range[0,1] usingmin-max normalization.

The end result of the three data preprocessing steps was 38 datasets without missing or unknown
values, in which each instance was represented as a vector of attributes scaled to lie in the[ftatg§e of
and a class label indicated by an integer number. These same representations were used for all three
classifiers and all PSO algorithms.

6.2.3 Classifiers

An important role in solving the FSP using a wrapper method is reserved for the classifier. The classifier
is used to measure the quality of the classification using a selected subset of features, and the PSO
uses this measurement in steering the search towards, hopefully, better feature subsets. This section
describes the classifiers used in the experiments on the FSP. It consists of three parts: firstly, which
classifiers were chosen to be used in the experiments in this chapter, secondly, which implementations
of these classifiers, what parameters, metrics and settings were used, and thirdly, how the parameterized
classifiers were tuned.

6.2.3.1 Choice of classifiers

The goal in choosing a classifier to help solve the FSP was not to achieve a higher accuracy than previ-
ously reported in literature. Instead, only tiedative ranking of various subset of features is important
in the PSO algorithms to steer the search. As such, any classifier that benefits from feature selection can
be used in this task. As a separate consideration, classifiers that have no or few parameters are to be
preferred. This is because these classifier parameters will need to be tuned in order to achieve a good
classification performance.

A total of three classifiers were used in the experiments so that the PSO algorithms could be compared

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

116 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

to each other in multiple settings. This was done because classifiers can poteritiadlyice a bias into
the comparison of the PSO algorithms. When considering which classifiers to use in the experiments, the
choice was made to use those classifiers that have a track-record in literature of use in feature selection
with wrapper methods, which are easy to use, and which are relatively quick to train and evaluate on the
datasets used.

The three classifiers chosen to be used in the experiments on the FSP in this thesis were the Gaussian
naive Bayes (GNB), a specific implementation the C4.5 decision tree classifier called J48, kiiNNthe
classifier. The implementation details of these three classifiers are given in the following section.

6.2.3.2 Implementation of classifiers

This section lists the choices made in implementing and using the chosen classifiers in the numerical
experiments. Such changes are not always listed in literature, but are required in order to allow for
replication of the experimental results.

6.2.3.2.1 GNB classifier: The implementation of the GNB used was that from Weka 3: Data Mining
Software in Java [48]. Some small alterations were made to the Weka code to allow control of the pseudo-
random number sequence used. This was done to ensure replicability of the numerical experiments.

Laplace smoothing wasot applied in calculating the class prior probabilities (see setion 312.3.2).
The GNB classifier does not have any further settings or parameters that had to be tuned.

6.2.3.2.2 J48 classifier: The experiments in this thesis that involved a decision tree classifier all used
the implementation of the C4.5 algorithm called J48 which is part of Weka 3: Data Mining Software in
Javal[438]. The J48 implementation of the C4.5 decision tree has a number of options and variables that
can be customized. Two of these variables are kept as parameters for the classifier:

e The minimum number of instances required for a leaf node in theltr@dyis parameter must be
at least 1, with a default value of 2. This parameter can be used to obtain smaller trees and thus
simpler models by explicitly setting the minimal number of instances in a single leaf. A higher
number for thus restricts the size of the decision tree.

e The confidence threshold used in the pruning progesghis parameter ranges between 0 and 1,
with a default value of 0.25. The parameter determines a threshold of the allowed inherent error in
the data when pruning the decision tree. By lowering the threshold, more pruning is applied and
consequently a smaller tree and a more general model is generated.

Other options available in the J48 implementation were kept constant at the default values in Weka 3:

e The option for binary splits was set to the default vataése;
e The optionsetUnpruned was set tafalse such that pruning of the trée performed,;
e The number of folds for reduced error pruning was set to the default value 3;

e The option for reduced error pruning was set to the default védaee;

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 117

e The option for Laplace smoothing for predicted probabilities was set to the defaultfedlue;

e The option for subtree raising (a technique where a node may be moved upwards towards the root
of the tree, replacing other nodes along the way during a process of pruning) was set to the default
valuetrue.

6.2.3.2.3 k-NN classifier: The implementation of thienearest neighbor classifier was written in Java
specifically for these experiments. The Euclidean distance function was used as the metric to determine
which instances are nearest. Ties were broken randomly using a controlled pseudo-random number
sequence to ensure replicability.

6.2.3.3 Tuning of classifiers

The implementations of the J48 akeNN classifiers used in this thesis are both parameterized and
thus values needed to be chosen for these parameters before the classifier can be used. In order for
the classifiers to work well, a tuning process was performed to select parameters that allow for good
classification accuracy. The GNB classifier has no parameters and thus had no need of tuning. In the
experiments described in this chapter, the J48kaNi\ classifiers were tuned at various moments in the
process of solving the FSP, but always in the same manner. This section describes the tuning process
used.

Tuning was done by choosing the parameter value (fokiR&l classifier) or values for the param-
eter combination (for the J48 classifier) that maximize the classification accuracy on the dataset under
consideration. This classification was performed usihdeatures in the dataset. The most impactful
moment where classifier tuning was used, was at the start of the PSO wrapper algorithm. At that time
the classifier was tuned and this tuned classifier was subsequently usdidctassifications during the
PSO run, regardless of how many features were selected at that point of the search. Iri_séction 6.4 an
investigation is made of the impact of the choice to tune the classifiers on a dataset using all features and
then using the tuned classifier also on smaller features subset in the PSO run.

The classification accuracy in the classifier tuning process was determined as the average over 10
independent runs of a 10-fold cross validation accuracy calculation. By repeating the cross validation 10
times, extra computational effort was expended to ensure an as good as possible tuning, meaning that the
classification accuracies for each of the parameters contained little numerical noise.

The sets of parameter values that were used in tuning the J4B ldhdclassifiers respectively are
given below.

6.2.3.3.1 J48 classifier: To tune the J48 classifier, both its parameters needed to be optimized to-
gether:1, the minimum number of instances required for a leaf node in the treey,ahd confidence

level. This simultaneous tuning was done by choosing the combinations of the two parameters that
maximized the classification accuracy measured on a given dataset. For each parameter seven different
equally spaced choices were considered in the tuning, for a total of 49 different combinations. The val-
ues forl ranged from 2 to 50, the values fpranged from M50 to 0500. The exact values used in the

tuning are given in table 6.3.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

118 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.3: Parameter values used to tune the J48 classifier
[\ 2 10 18 26 34 42 50
y \ 0.050 0.125 0.200 0.275 0.350 0.425 0.500

6.2.3.3.2 k-NN classifier: To tune thek-NN classifier, only the value fdk, the number of nearest
neighbors to include in the vote to determine an to-be-classified instance’s class label, needed to be
optimized. In the tuning process, 10 different valueskaofere investigated, ranging from 1 to 19.
Because ties in the nearest neighbors are broken randomly Wy N classifier, it is preferable to
prevent a large number of such ties. Therefore, only odd values were considered in the tlnimpeof

exact values used are given in tablg 6.4.

Table 6.4;: Parameter values used to tunekthEN classifier

k‘135791113151719

6.2.4 Setup of PSO in solving the FSP

This section describes the experimental setup of the PSO algorithms that were used to solve the FSP.
The following design choices for the PSO algorithms are touched upon in separate sub-sections: the
selection of PSO algorithms to compare with the SBPSO, the swarm size, the swarm topology, the
fithess function used in the optimization process, the initialization procedure for each PSO algorithm,
the stopping conditions, and the number of independent runs performed in each experiment.

6.2.4.1 Choice of PSO algorithms

The proposed SBPSO algorithm is compared to three other PSO algorithms: BPSO by Kennedy and
Eberhart|[62], CFBPSO by Chuaegal.[21], and PBPSO by Zhest al.[157]. Refer to sectioris 1.3.1.1,
[1.3.1.4, an@1.3.7].3 for detailed descriptions of these algorithms.

To decide which PSO algorithms to compare the SBPSO to on the FSP, a logical first thought would
be to select the same three PSO algorithms that were used in the comparison on the MKP, as described
in section 5.2.P2: the BPSO, MBPSO, and PBPSO. Two of these were indeed used in the comparison
again, but the MBPSO algorithm was replaced in the experiments on the FSP by the CFBPSO algorithm.
The MBPSO algorithm was left out because the results from the experiments on the MKP in chapter 5
showed it performed quite poorly. The CFBPSO was used as a replacement, as the work byeChluang
[21] showed it can be used in a wrapper approach in solving the FSP and performed well when compared
to the BPSO in that study.

For BPSO, CFBPSO, and PBPSO the candidate solution was represented by binary-valued particle
positions: the bit valuels; were interpreted as whether thth feature in an FSP was used in the classi-
fication or not. The SBPSO algorithm treated the features in the FSP as elements to be in- or excluded
from a position.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 119

6.2.4.2 Swarm size

Section5.2.3 in the chapter on experiments on the MKP already indicated the impact that the number

of particles in a swarm can have on the search performance. It should be noted, however, that using
the optimal number of swarm particles is not too important because the objective is not to find the best

possible solution to the FSP, but to compare the relative performance of the different algorithms. Hence
using the same number of particles in each case that is important, but this swarm size need only to be
adequate for the problems studied.

Because the search space for the FSP in this chapter is smaller than that for the MKP studied in the
previous chapter, it seems logical to use a smaller number of particles in the swarm than the 25 that were
used on the MKP. Therefore in the experiments on the FSP the swarm size was set to 20 particles in all
cases. This s also in line with the majority of studies that used PSO on the FSP reviewed i seclion 3.4.4.

6.2.4.3 Swarm topology

In the experiments on the MKP in chapiér 5, three different topologies were used to investigate the
SBPSO and the relative performance of SBPSO versus other PSO algorithms, namely the star, ring and
Von Neumann topologies. This was done to prevent a bias that the choice of topology might introduce
in the relative performance of the PSO algorithms. The results on the MKP showed that the choice of
topology indeed has an impact on the performance of the PSO algorithms.

In the experiments on the FSP a similar approach to prevent bias was taken, but in this case the
swarm topology was not the only choice to be made. The choice of wihédsifierto use can also
bias the relative performance of different algorithms on the FSP, see for example the work étyafun
[155] discussed in sectidn 3.4.4.2. The choice was made in this thesis to prevent a bias by using three
different classifiers for the experiments in this chapter. In order to prevent the number of experiments to
be conducted from becoming very large, the choice was made to use only one of the swarm topologies
for all experiments on the FSP. The question then becavh@htopology should be chosen.

Almost all papers reviewed in section 314.4 that apply a form of PSO on the FSP used a star topology.
The review of literature does not, however, indicate that this is the result of a conscious choice in which
other topologies were also considered. This is worrying, because the work by Kennedy and Mendes [64]
shows that the choice of topology can significantly impact the performance of a PSO algorithm. No study
could be found that investigated the specific issue of which topology works well for PSO in the domain
of feature selection and classification. Instead of following the previous studies which applied PSO to
the FSP in using a star topology, a Von Neumann topology was used for all different PSO algorithms
and in all experiments on the FSP. This is in line with the suggestion by Kennedy and Mendes [64]. The
Von Neumann topology offers a medium level of connectedness for the swarm: the ring topology is less
connected and the star topology has direct connections between all different particles.

6.2.4.4 Fitness function

Swarm intelligence methods like PSO use a fitness function to steer the stochastic search. PSO steers
each particle through attraction to the particle’s best position from history and the best known position in

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

120 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

the particle’s neighborhood, where best means the best fitness valuin€ke function must be linked

to the goal of the problem to be optimized. The goal in the FSP is to find the best subset of features for

classification by a classifier, so the PSO’s fitness function needs to contain a performance measure for
that classification. The task was to determine which performance metric to use and what cross validation
method.

Xue et al. [150] argued that the inclusion of the proportion of features left out of the feature subset
can be included in the fitness function to improve performance. The results of that study are, however,
limited and not proven to be statistically significant. In order to avoid extra design choices to determine
the relative importance of classification performance and the number of features, the fitness function
used contained only a performance measure for classification.

6.2.4.4.1 Performance metric: Sokolovaet al.[130] discuss different performance measures used

in classification and indicate that the empirical evaluation of algorithms and classifiers is a matter of
on-going debate. Classification accuracy using cross validation is considered an acceptable performance
metric in general. Specific situations such as the medical domain could call for other measures, i.e.
sensitivity or ROC analysis, that put more emphasis on failure avoidance or class discrimination.

In this thesis classification accuracy was used as the performance metric. One reason for this was
that some of the benchmark datasets used (see sdctions]|6.2.L.1 antl 6.2.1.2) contained problems that have
more than two classes. This implies that other frequently used performance measures such as precision,
sensitivity, and specificity are not universally applicable, since these can only be calculated for datasets

with two classes.

6.2.4.4.2 Cross validation method: The cross validation method used in the experiments presented

in this chapter ik-fold cross validation, wittk set to 10 in most cases. This is in line with the recom-
mendations by Salzberg [122]. A side benefit of the repeated calculations is that the standard deviation
across multiple calculations can also be determined. This gives insight into the stability of the classi-
fication accuracy across thefolds. The preference is for a low standard deviation, which indicates
stability.

Usingk-fold cross validation is computationally intensive, however, and needs to be performed for
each candidate solution during each iteration of the PSO algorithm. Therefore, the choice is made to keep
the number of repetitions of thefold cross validation small during the main loop of the algorithm. This
is a trade-off between stability of the fitness value calculated for a particle position, and the computational
effort required. Hence the number of repetitions ofkHeld cross validation is set to:

e 10 in determining the best parameters for the classifier (in case of the 848Mclassifier);
¢ 5in the fitness function used during the main loop of the PSO algorithm; and

e 10 in determining the final classification accuracy of the found feature subset.

The various phases of the wrapper method mentioned here will be explained more fully in[section 6.2.5.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 121

6.2.4.4.3 Fitness function algorithm: Thefitness functionf (.) combines simple classification accu-
racy as the performance metric wkkold cross validation and is described in algorithim 8.

Algorithm 8: Fitnessfunction for use in experiments on FSP

Consider an FSP with underlying dataBeaindclassifierC;
Let X = {xa,...,Xm} be a candidate solution of selected attributes determined by the PSO;
Randomly divideD into k disjunct foldsD;;
fori=1,...,kdo
Set training seL; = D; andtest setd; = D\L;;
Train classifielC on training set; usingonly the attributes irX;
Determine accuracy(;IC, X), the accuracy of on test sef; usingonly attributes inX;
end
The fitnessf (X) of X is equal to the average over &lineasures of accuracy(T, X).

6.2.4.5 Initialization

Particleswere initialized randomly for each PSO algorithm. For the BPSO, CFBPSO, and PBPSO algo-
rithms, the positions were initialized randomly {0,1}", while the velocities for each were initialized
randomly in[—1,1]", following [31]. For PBPSO the continuous-valued positio?\$0), were initialized

as0, to ensure that no initial bias was included in the discrete-valued posikgAs, For the SBPSO
algorithm, the positions were randomly initialized, such that each element had a 0.5 chance of being
included, and all velocities were initialized as the empty set.

6.2.4.6 Stopping conditions

Due to computational considerations, much fewer fithess function evaluations could be used in the exper-
iments on the FSP than used for MKP in chapter 5. This is because, while the fitness function evaluation
of a single candidate solution for the MKP takes very little time (checking the constraints and, if all
are met, summing the value of the included weights), for the FSP this involves five cycles of training a
classifier and determining the classification accuracy. Both a large number of features or a large number
of instances in the training and testing sets can make this a slow process.

For each independent run of an algorithm, the same three stopping conditions were applied:

1. the best fitness function value found in the swarm equaled a classification accuracy of 100%,
2. the best fitness function value found in the swarm had not improved for 50 iterations, or

3. more than 100 iterations had passed.

6.2.4.7 Number of independent runs

PSO is a stochastic optimization algorithm, and thus individual runs of the algorithm can have different
results. Hence, multiple independent runs of the algorithms have to be executed and the average perfor-
mance reported. For all experiments on the FSP, both in tuning and in testing, 30 independent runs were
used.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

122 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.2.5 PSO wrapper algorithm for FSP

All the components from the previous parts of this section combined do not yet fully describe the exper-
iments run in order to test and compare the PSO algorithms on the FSP. The final part is the flow of the
PSO wrapper method, which is described in this section.

The main construction of the PSO wrapper is very basic and is described in algarithm 9. It returns
the feature subset found by the PSO search and the average classification accuracy using that feature
subset. The experiments started with the initialization of the classifier and particle swarm, followed by
the main PSO wrapper loop, and a final accuracy calculation. These three steps are described in separate
algorithms below. After these descriptions, some observations are made about the use of pseudo-random
number sequences in the numerical experiments on the FSP.

Algorithm 9: PSOwrapper approach to solve FSP: overview

Initialize classifier and swarm according to algorithm 10;
Runmain loop of PSO algorithm according to algorithm 11;
Determine final accuracy and according to algorithin 12;
Return values:
- best position found’;
- fina(Y);
- standard deviation of 10 independent final classification accuracy calculations;

6.2.5.1 Initialization of PSO wrapper

Algorithm[IQ describes in detail the initialization at the start of the PSO wrapper method.

Algorithm 10: PSOwrapper approach to solve FSP: initialization

Define classifie€’ asclassifierC with best parameters:
- from parameter gri¢s;
- “best” defined as highest classification accuracy;
- using alln features;
- by 10-fold cross validation;
- accuracy calculation repeated 10 times;

Set fitness calculatdi to:
- average of 5 independent calculations;
- of average classification accuracy by classifier
- using 10-fold cross validation;

SetN equal to the number of particles in the swarm;
fori=1,....Ndo
Initialize V; accordingo algorithm’s velocity initialisation strategy;
Initialize X; := random subset df ;
calculatefc (X);
Initialize fo/ (YY) := —oo;
end

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 123

This description assumes that a parametrized classifier (JENBY) is used and the PSO search
is performed by the SBPSO. If the GNB classifier is used instead, the steps to tune the classifier
resulting inC’ are skipped, and the classifiéris just equal to the original GNB classifi€r If another
PSO algorithm is used, the initialization of the particle swarm is not a random suligebat instead
(though equivalently) a random vector{),1}", wheren is the number of features in the dataset.

6.2.5.2 Main loop of PSO wrapper

After initialization, the main loop of the PSO wrapper is executed. This loop is described in algarithm 11.
The only link to the FSP was via the fitness functibinfor which each evaluation meant determining
the average classification accuracy using 5-fold cross validation. The main loop refurhedfeature
subset with the highest registered fitness.

Algorithm 11: PSOwrapper approach to solve FSP: main loop

while all stopping conditions are falsgo
for i=1,...,Ndo

if fo(X) > fo(Yi) then
| Y=

end

if fC’(Xl) > fC/(?I) then
| V=X

end

end
for i=1,...,Ndo
UpdateV; according to PSO'’s velocity update equation;
UpdateX; accordingo PSO'’s position update equation;
Calculate fitnesdc (X;) for particlei;
end
end
Initialize fo (V) := —oo;
fori=1,...,.Ndo

if fo(Y)> fo(Y) then

V=Y

end
end
ReturnY’;

6.2.5.3 Final classification accuracy calculation

As described in the previous sections, during the main loop of the PSO wrapper fithess function eval-
uations were made using a classifier that was tuned (in case of the J&SNdlassifiers) using all
features. The classification accuracy during the main run was determined using 5-fold cross validation.
Both choices meant that just reporting the classification accuracy recorded during the PSO search is not
the best representative depiction of accuracy resulting from the found feature subset. Therefore, after

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

124 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

the main loop had completed, the classifiewas again tuned according to the process described in
sectior{ 6.2.3]3, but now usiraply the features selecteal Y. This tuning resulted in the classifi€fna.

In case of the GNB classifietsna equaled the original classifier. Using this re-tuned classifier, a final
fitness function evaluation was made as the average of 10 repeated accuracy calculations using 10-fold
cross validation.

The final recorded outcome of a single run of the PSO wrapper method consisted of the best position
found,Y, the final fitness function evaluatiomna|(\7), and the standard deviation across the 10 repeated
accuracy calculations using 10-fold cross validation. Algorithin 12 describes this final calculation pro-
cess in detail.

Algorithm 12: PSOwrapper approach to solve FSP: final classification
Define classifieCing asclassifierC with best parameters:
- from parameter gri¢s;
- “best” defined as highest classification accuracy:
- using only the features ¥;
- by 10-fold cross validation;
- accuracy calculation repeated 10 times;

Set final fitness calculatdyiyg to:
- average of 10 independent calculations;
- of average classification accuracy ®ya;
- using 10-fold cross validation;

Re-calculate fitness &f as frinai(Y);
Determine standard deviation across 10 independent final classification accuracy calculations;

Return values:
- best position found’;

- Frinal(Y);
- standard deviation of 10 independent final classification accuracy calculations;

6.2.5.4 Use of pseudo-random numbers in cross validation and classification

Specialcare was taken that the pseudo-random numbers used in the cross validation splits of the dataset
for the final classification accuracy always started at the same point. In this setup, the splits in the dataset
still varied between the 10 independent calculations that undgiY) and these 10 calculations can

still be considered to be independent. This ensured the most fair comparison and full replicability.

This same care was used for the pseudo-random numbers used by the classifiers themselves (for
example, to break ties when using tkidearest Neighbor classifier). The final classification accuracy
calculation always started the random sequence at the same point and this meant that, if the exact same
features were selected and the same classifier was used for two independent runs of the PSO, the exact
same average classification accuracy and standard deviation would result. Again, the 10 calculations that
underly the determination %inm(\?) were still independent of each other, as they all used a different
part of the same pseudo random-number sequence.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 125

Itis important to understand thanlyif the features selected are exactly the same for two independent
runs of a PSO algorithm (or for that matter between two different PSO algorithms) using the same clas-
sifier, the resulting average classification accuracy was the same. If one feature differed, then the series
of pseudo-random numbers was used in a slightly different order, resulting in a different classification
accuracy.

Also it is important to stress that this special way of calculating the final accuracy did not affect
the actual PSO algorithm nor the features selected - it only affected the final accuracy recorded and
used to compare the PSO algorithms. The special calculation affected the comparison in such a way
that, if the exact same features were selected, the same accuracy resulted: hence the only way PSO
algorithms distinguished themselves in accuracy, was by the selected features and as little as possible by
the randomness inherent in the classification accuracy calculation.

Finally, it is noted that the Mersenne Twister algorithm [95] was used to generate the pseudo-random
number sequences in the experiments in this chapter. Only for selecting which PSO parameter combina-
tions to consider in the PSO tuning process, was a different pseudo-random sequence used. In that case,
the parameter combinations spanning the PSO parameter space were generated using a Sobol pseudo-
random number sequence as described in s€ctibn 6.5.

6.3 Exhaustive search to test the fithess function

This section describes the exhaustive search performed to determine if the setup of a PSO wrapper
approach using the three selected classifiers works sufficiently well to compare PSO algorithms. Particu-
larly, whether the fithess measurement by the cross validated classification accuracy on different feature
subsets allows for statistically significant differences in performance by the PSO algorithms.

The task that the PSO algorithms have in solving the FSP is to find an optimal subset of features that
allows for the most accurate classification by a classifier, as described in sectidn 6.2.5. However, due
to the stochastic element present in the classifiers (for example to break ties), the classification accuracy
using a particular feature subset is “noisy”: repeated measurements will tend to show slight differences
in classification accuracy. If the difference in classification accuracy between different feature subsets is
small compared to the uncertainty in the classification accuracy measurement for a single feature subset,
there is no statistically significant difference in how optimal the different subsets are and the FSP may
not help to differentiate between the performance of different PSO algorithms.

To test whether the setup of fithess function works sufficiently well, an exhaustive search was per-
formed of the fitness values across all feature subsets of a number of dataset-classifier pairs. The next
section describes how this search was set up, followed by the results and conclusions.

6.3.1 Experimental method

The description of the experimental method for the exhaustive search to test the fithess function is divided
into three parts: which datasets were selected, how the exhaustive search was organized, and how the
classifiers were set up and tuned.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

126 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.3.1.1 Dataset selection

In an exhaustive search on a dataset containifeptures, 2 different sets of selected features need to

be tested. For large numbersrothis becomes prohibitively expensive in terms of the number of com-
putations. This is exactly the reason that feature selection is used on large datasets. For the investigation
described in this section, the number of features was limited to 10, meaning atfhest @24 different

subsets needed to be tested for a dataset. The 11 datasets thus selected are listed beldw In table 6.5 in
sectior 6.3.1]3. Note that in the main FSP experiments all these 11 datasets were used digstigghe

phase and none were used during the PSO parameter tuning.

6.3.1.2 Organization of exhaustive search

For the 11 datasets and the three classifiers used in the FSP experiments, the fithess value (average
classification accuracy measured using 10-fold cross validation) was determined for all possible feature
subsets. The fitness value was calculated independently 10 times and the average accuracy and the
standard deviation of these 10 calculations were recorded.

A fair comparison of the accuracy between different subsets of selected features requires that all
other circumstances are as equal as possible. Two such important circumstances are the splits of the
dataset during the 10-fold cross validation and the parameters used by the classifiers themselves. In the
exhaustive search, a separate pseudo-random numbers sequence was used in the 10-fold cross validation
to determine the random splits of the dataset into the training set and the testing set. This meant that
for each of the 10 independent calculations of the classification accuracy for a given subset, a different
10-fold split of the dataset was used. But the same 10 different 10-fold splits were used for the other
feature subsets in that dataset.

6.3.1.3 Classifier tuning

The J48 ank-NN classifiers require parameters to be chosen for the classifier to Wardy for the
J48 classifier and for the k-NN classifier. For both classifiers these parameters were set beforehand
and the same parameters were used on all subsets of features tested in the exhaustive search. The tuning
method used was the same as described in sdction 6.2.3.3. For the GNB classifier no parameters had to
be chosen. The resulting classifier parameters per dataset are listed [n fable 6.5.

The fact that the classifier parameters were chosen from a grid as the best performing parameter
combination using all features in classification, may have introduced a bias that favored large subsets.
This potential problem is investigated in more detail in sedtioh 6.4.

6.3.2 Results

This section describes the results of the exhaustive search of the fithess values across all possible feature
subsets. For each pair of dataset and classifier, the classification accuracy was determined exhaustively
for all feature subsets. This resulted in an average accuracy and the standard deviation of the 10 inde-
pendent calculations of that accuracy. A summary of these results is given ib fdble 6.6.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 127

Table 6.5: Classifier parameters and metrics for the J4& i classifiers used in the exhaustive search
on the fitness function.

J48 k-NN

Dataset # features| | y k metric

iris 4 18 0.275| 5 Euclidean
corral 6 2 0.050| 1 Euclidean
liver 6 26 0.275| 3 Euclidean
monk-1 6 34 0.275| 1 Euclidean
monk-2 6 2 0.425| 5 Euclidean
pima 8 2 0.425| 19 Euclidean
breasttissue 9 2 0.125| 1 Euclidean
glass 9 2 0.275| 1 Euclidean
tic-tac-toe 9 18 0.125| 9 Euclidean
parity5-5 10 2 0.350| 9 Euclidean
vowel 10 2 0.350| 9 Euclidean

It was then determined how many of the feature subsets yielded an accureitlyinfl.645 standard
deviations (the 95% confidence level assuming a normal distribution) of the best found accuracy. Also
included in the column “% best” is the percentage of all feature subsets in datasets that were in this way
indistinguishable from the one with the highest accuracy found.

Table 6.6: Number of subsets in exhaustive search that are within 95% confidence interval from best
recorded accuracy.

GNB J48 k-NN
Dataset # features # subseté best % best# best % beJl# best % best
iris 4 16 1 63% 8 50.0 % 4 25.0%
corral 6 64 10 15.6% 2 3.1% 1 16%
liver 6 64| 25 39.1% 9 14.1% 4 6.3%
monk-1 6 64 10 15.6% 32 50.0 % 5 78%
monk-2 6 64 64 100.0 % 1 16% 1 16%
pima 8 256 2 08% 56 21.9% 1 04%
breasttissue 9 512 9 18% 22 4.3% 75 146 %
glass 9 512 28 55% 28 55% 3 06%
tic-tac-toe 9 512 1 02% 1 02% 1 02%
parity5-5 10 1024 11 119% 15 15% 6 0.6%
vowel 10 1024 1 01% 78 7.6% 9 09%

The ideal situation is where one feature subset yields a classification actheaads statistically
superior to that of all other feature subsets. Tablé 6.6 shows that this was an uncommon situation that
occurred for only nine of the 33 datasets:

e For GNB, only three (iris, tic-tac-toe, and vowel) out of the 11 datasets had a single feature subset
for which the classification accuracy was better in a statistically significant manner than all other
feature subsets.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

128 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

e For J48, only two (monk-2 and tic-tac-toe) out of the 11 datasets had a single feature subset for
which the classification accuracy was better in a statistically significant manner than all other
feature subsets.

e For k-NN, only four (corral, monk-2, pima, and tic-tac-toe) out of the 11 datasets had a single
feature subset for which the classification accuracy was better in a statistically significant manner
than all other feature subsets.

Also it is clear that for some combination of classifier and dataset, feature selection itself had no
benefit: using the GNB classifier on the monk-2 dataset failed completely: all 64 feature subsets had the
exact same classification accuracy which was the same as that of randomly selecting an instance form the
training set and applying that class label to any new instance to be classified. Only the fact that the class
distribution for monk-2 is uneven, led to an accuracy above 50%, because the GNB classifier was unable
to capture the concept underlying this artificial dataset. Using a wrapper method with the GNB classifier,
the FSP is not a well-posed problem and it is impossible to differentiate in the quality of different PSO
algorithms trying to solve it.

Other combinations of dataset and problem also led to the FSP being a poorly posed problem, though
not as bad as the monk-2 and GNB classifier case: for the liver and GNB, iris and J48, and monk-1
and J48 each, almost 40% or more of the feature subsets led to statistically the same accuracy as the
optimum. It is difficult, however, to say at what percentage of equivalent feature subsets the FSP should
be considered inadequate for use in the PSO comparison. Other combinations like krisidrat pima
and J48 were also at least borderline in their suitability.

Another thing that stood out, was that there was no clear pattern across dataset or classifier: if a
combination of one classifier and one dataset performed badly in the manner described above, that same
dataset may have combined with another classifier to form a perfect FSP. The monk-2 dataset failed
completely with the GNB classifier, but combined with the J48 classifier, the FSP became a problem
with only one, statistically discernible optimum. Also, the three classifiers were affected by this problem
in roughly equal measure based on this limited investigation of eleven datasets, although one could claim
that thek-NN classifier was least affected.

The next three subsections give the detailed results of the investigation per classifier. In each case
a table lists the 11 datasets investigated, the number of features of the dataset, the number of different
combinations of feature subsets investigated (# combo’s), and the average accuracy and the standard
deviation over 10 independent accuracy calculations for two specific feature subsets: all features and the
feature subset yielding the highest classification accuracy. The number of features selected in this best
feature subset is included, as well as a bit-string indicating which features were selected.

6.3.2.1 GNB classifier

Table[6.7 gives the results of the exhaustive search for the best subset of features using the GNB classifier.
Using the best subset of features for each dataset, the average accuracy for the GNB classifier across the
11 datasets was 66.5%. This meant a roughly 10% relative improvement in accuracy over the 60.2%
average accuracy based on all features.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 129

Table 6.7: Exhaustive search for feature subset yielding highest agaisiag the GNB classifier.

All features Best set of features
Dataset # features # combo[#\ccuracy (Stdev)Accuracy (Stdev) # Features Bit-string
iris 4 16| 94.1% (0.4%) 96.6% (0.2%) 2 (0011)
corral 6 64| 794% (3.7%) 85.0% (2.8%) 4 (111100)
liver 6 64/ 58.4% (0.4%) 60.2% (1.2%) 4 (110011)
monk-1 6 64| 62.0% (1.1%) 65.1% (1.0%) 1 (000010)
monk-2 6 64/ 67.1% (0.0%) 67.1% (0.0%) 0 (000000)
pima 8 256| 63.7% (0.8%) 76.4% (0.4%) 2 (01000100)
breasttissue 9 512 57.5% (1.1%) 67.5% (1.7%) 5 (110100101)
glass 9 512 355% (1.3%) 47.4% (1.2%) 2 (010100000)
tic-tac-toe 9 512 745% (0.3%) 745% (0.3%) 9 (111111111)
parity5-5 10 1024 37.7% (1.6%) 46.2% (1.3%) 0 (0000000000)
vowel 10 1024 31.7% (05%) 45.1% (0.5%) 4 (1101100000)

average | 60.2% | 66.5%

Note that from datasets monk-2 and parity5-5, the highest accuracy fGiNBeclassifier came from
using no features at all. In this case the GNB classifier randomly assigned a class to every instance based
on the frequency of each class in the training set. For the monk-2 dataset the best accuracy using no
features was equal to that using all features and actually the accuracy using the GNB classifier was the
same for each feature subset. This indicates that the accuracy of the GNB classifier on this dataset was
completely unaffected by feature selection.

The classification accuracy for the vowel dataset was only 45.1% even for the best subset of features
selected. This accuracy clearly outperformed a random classification because this dataset contains 11
classes, meaning a random classification accuracy would be close to 11%.

6.3.2.2 J48 classifier

Table[6.8 lists the results of the exhaustive search for the best subset of features using the J48 classifier.
Using the best subset of features for each dataset, the average accuracy for the J48 classifier across
the 11 datasets was 83.5%. This meant only a 5% relative improvement in accuracy over the 80.0%
average accuracy based on all features. On this sample of smaller datasets, the J48 classifier seemed
little improved by feature selection.

Note that using the best subset of features, the J48 classifier was not able to obtain a 100% classifi-
cation accuracy on any of the datasets. Only for the monk-2 and tic-tac-toe artificial datasets did feature
selection not improve the classification accuracy over that of using all features, as all features are required
to correctly describe the concept embedded in those two datasets.

6.3.2.3 k-NN classifier

Table[6.9 lists the results of the exhaustive search for the best subset of features usiNgltblassifier.
Using the best subset of features for each dataset, the average accuracykfdiNheassifier across

© University of Pretoria

130

ITY OF

(@

UN
UNIVERS
Yu

NIBESITHI YA

IVERSITEIT VAN PRETORIA

PRETORIA
PRETORIA

CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.8: Exhaustive search for feature subset yielding highest agasiag the J48 classifier.

All features Best set of features
Dataset # features # combo[#\ccuracy (Stdev)Accuracy (Stdev) # Features Bit-string
iris 4 16| 93.3% (0.9%) 94.7% (0.2%) 1 (0001)
corral 6 64| 855% (55%) 98.7% (2.2%) 4 (111100)
liver 6 64/ 68.1% (2.0%) 69.8% (1.8%) 3 (001011)
monk-1 6 64| 75.0% (0.0%) 75.0% (0.0%) 1 (000010)
monk-2 6 64/ 90.1% (1.0%) 90.1% (1.0%) 6 (111111)
pima 8 256 73.5% (1.1%) 748% (0.9%) 4 (01100101)
breasttissue 9 512 67.0% (3.0%) 722% (1.8%) 5 (100010111)
glass 9 512/ 68.3% (22%) 74.1% (2.0%) 6 (111000111)
tic-tac-toe 9 512 928% (0.5%) 92.8% (0.5%) 9 (111111111)
parity5-5 10 1024 86.9% (3.7%) 97.1% (0.9%) 6 (1111100001)
vowel 10 1024 79.1% (0.9%) 795% (0.8%) 8 (1111101101)
average 80.0 % | 83.5%

the 11 datasets was 87.9%. This meant a 13% relative improvement in accueatiyen77.6% average
accuracy based on all features, the biggest improvement of the three classifiers. This makes sense,
because thie-NN classifier itself (using an Euclidean distance metric with all features scaled to the same
range of [0, 1]) can not apply different importance to various features like the GNB and J48 classifiers
are able to do. The latter two classifiers perform some sort of feature ranking when training the classifier,
thus the benefit of explicit feature selection should intuitively be less on these two classifiers.

Table 6.9: Exhaustive search for feature subset yielding highest accuracy uskalythelassifier.

All features Best set of features
Dataset # features # combo[g\ccuracy (Stdev)Accuracy (Stdev) # Features Bit-string
iris 4 16| 956% (0.5%) 96.7% (0.6%) 2 (0011)
corral 6 64 93.4% (2.1%)100.0% (0.0%) 4 (111100)
liver 6 64 629% (1.1%) 683% (1.4%) 3 (100011)
monk-1 6 64/ 67.1% (0.6%)100.0% (0.0%) 3 (110010)
monk-2 6 64 82.7% (2.1%) 82.7% (2.1%) 6 (111111)
pima 8 256| 74.2% (05%) 784% (0.6%) 6 (01101111)
breasttissue 9 512 69.4% (0.7%) 72.3% (1.8%) 4 (110010010)
glass 9 512 70.7% (0.6%) 79.1% (1.0%) 6 (111001110)
tic-tac-toe 9 512 90.3% (0.4%) 90.3% (0.4%) 9 (111111111)
parity5-5 10 1024 48.8% (1.6%)100.0% (0.0%) 5 (1112100000)
vowel 10 1024 98.9% (0.2%) 99.1% (0.3%) 9 (1111111110)
average | 77.6% | 87.9%

Note that using the best subset of featuresktNi classifier was able to obtain a 100% classification
accuracy on the corral, monk-1 and parity5-5 datasets. Only for the monk-2 and tic-tac-toe artificial
datasets did feature selection not improve the classification accuracy over that of using all features, as all

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 131

features were required to correctly describe the concept embedded itvtloedatasets.

6.3.3 Conclusions

The question this section investigated was if the design of the fitness function and PSO wrapper method
works well enough. The focus of the investigation was on the question if the classifiers yielded enough
difference in the fitness values of different feature subsets compared to the variability resulting from
the classification accuracy calculation. The result of the investigation were mixed: in some cases the
setup worked well, in other cases it worked very poorly. This difference in the results was driven by the
combination of the dataset underlying the FSP and the classifier used.

Some combinations of classifier and dataset clearly yielded a poorly posed FSP for solving by the
PSO wrapper method. For these ill-posed FSPs, there was no sense of an optimum to be found by the
PSO algorithm. The random fluctuations in the classification accuracy will lead to some feature subset
F S having the highest fithess in one run of the PSO. But in another run, some other featuré Syliset
likely to yield the highest fithess and be the set of features selected by the wrapper method. The quality
of the PSO algorithm in guiding the search then becomes immaterial.

Within the limited set of datasets investigated, poor performance seemed to occur more frequently in
artificial datasets with very few features. The datasets used in the main experiments on the FSP in this
chapter, but which did not form part of the investigation in this section, all contained more or even many
more features. The problem of an ill-posed FSP seems less likely to occur in those larger datasets.

In theory, it would be best to exclude all dataset-classifier combinations that work poorly from the
main experiments in this chapter as these combinations do not help to compare PSO algorithms, but
instead only cloud the comparison. However, without performing an exhaustive search like that outlined
in this section, it is not possible to identify these situations a-priori. For small benchmark problems
such a pre-selection can be done, but with real life problems, this will be impossible or at the least
negate the purpose of using a non-brute force method like PSO to perform the feature selection. If
the problem is small enough that a brute force approach is feasible, that brute force approach is to be
preferred as it is guaranteed to always match or outperform a stochastic search. Thus it was decided to
keep all combinations selected in section 6.2.1 in the main experiments, but to be aware of this issue
when analyzing the results.

6.4 Exhaustive search of classifier parameter space

This section describes the setup and results of a second exhaustive search performed on a number of
smaller FSP datasets. This exhaustive investigation is performed to determine if the method chosen to
tune the parameterized classifiers (J48lahN) works sufficiently well. As described in section 6.2]3.3,
the classifiers with parameters need to be tuned on a given dataset in order to allow the classifier to
perform an adequate classification. Such adequate classification in turn is required for the PSO to be able
to successfully select features as described in s€ctiod 6.2.5.

The classifier tuning method can be summarized as finding the best parameter (combination) from a
limited set of choices, where the best parameter is the one that leads to the highest classification accuracy.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

132 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

The crucial part of the tuning process for this investigation is that the classifidatierformed using
all the dataset’s features. Recall that the tuned classifier forms part of the fitness function used during
the PSO search in the space of feature subsets. Therefore, during the PSO search, the classifier will
repeatedly determine the classification accuracy on the dataset, but usuallynlyita subsebf the
features selected. The question this section needs to answer is whether tuning the classifier using all
features leads to a classifier that works adequately when only a subset of features is used in classification.
The proposed tuning method choses a single parameter combination from a grid of possible combi-
nations. This investigation tests how well the single classifier parameters chosen by the tuning method
perform acrossll feature subsets in a dataset. This performance is compared to that of the other possi-
ble choices of the classifier parameters from the grid of possible combinations. Parameter combinations
outside of the grid are not considered in this investigation.
This section first outlines the experimental setup for the exhaustive investigation of classifier param-
eters, followed by listing and discussing the results of the experiments and what conclusions are drawn
from the results.

6.4.1 Experimental method

The description of the experimental method for the exhaustive search of the classifier parameter space is
divided into three parts: which datasets were chosen, how the search itself was organized, and how the
results per dataset were combined into a single measure for each parameter: the probability score.

6.4.1.1 Dataset selection

Similarly as discussed in the section 6.3.1.1, computational restrictions mean that only datasets with a
relatively small number of features can be used in this exhaustive investigation. Since multiple classifier
settings are tested for each feature subset, some of the larger datasets that could still be investigated in
sectior 6.B are now also considered to be too large. Therefore, the limit was set at datasets of at most
nine features, resulting in a selection of nine datasets shown infable 6.10. All these datasets are part of
the set of FSPs used in testing, none of the nine datasets are used in the tuning of the PSO parameters.

Table 6.10: Datasets used in exhaustive search of classifier parameter space

dataset \ #instances #classes # attribuﬁe# numerical # nominal
iris 150 3 4 4 0
corral 64 2 6 0 6
glass 214 7 9 9 0
liver 345 2 6 6 0
monk-1 432 2 6 6 0
monk-2 432 2 6 6 0
pima 768 2 8 8 0
breasttissue 106 6 9 9 0
tic-tac-toe 958 2 9 9 2

This selection of datasets is a mixture of three artificially constructed datasetk-(inmonk-2 and

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 133

tic-tac-toe) and six real-world datasets. The number of instances rangeés#dan the iris dataset to

958 for the tic-tac-toe endgame dataset. The glass and breasttissue datasets differ from the other seven
datasets in that they contain seven and six different classes respectively, while the other datasets have
only two or three (for the iris dataset) classes.

6.4.1.2 Organization of exhaustive search

Experiments were conducted for both classifiers that are parameterized: the J48 decision tree with pa-
rameterd andy and thek-NN with parametek. The GNB classifier has no parameter and thus was not
included in the experiments to determine the influence of classifier parameters.

The grids of parameters of the J48 antlN classifiers tested were the same as those used in the
classifier tuning in the main experiments as described in sdction 6.2.3.3. The 49 parameter combinations
tested for the J48 classifier were those resulting from the seven choices each for paraametgithat
were listed before in table 8.3. The 10 different parameter valudsifothe k-NN classifier were listed
before in tabl¢ 6]4.

For each dataset, an exhaustive search was conducted across all a classifier'’s possible parameter
combinations. For each parameter combination, all feature subsets in the dataset were evaluated by
computing the classification accuracy usigingle10-fold cross validation.

A fair comparison of the accuracy between different subsets of selected features requires that all
other circumstances are as equal as possible, which includes the splits of the dataset during the 10-fold
cross validation. To ensure this, a separate process was used for generating pseudo-random numbers to
determine the random splits of the dataset into the training set and the testing set in the 10-fold cross
validation.

The goal of the exhaustive search is to determine the quality of the classification for each of the clas-
sifier’'s parameter combinations acradisfeature subsets. Using this measure of quality, the performance
of the parameter combination resulting from the chosen classifier tuning method can be compared to all
other combinations. The quality measure used is described in the next section.

6.4.1.3 Probability score calculation

Many different measures can be constructed to combine the classification accuracies on all feature subsets
to see how well each parameter combination works. This section describes one such measure, labeled
the probability score. The probability score is built using three main building blocks:

Reverse ranking: Instead of comparing the raw classification accuracy, the accuracies for different pa-
rameter combinations on a single feature subset are reverse ranked with the highest accuracy re-
ceiving the highest and best rank.

Selection: Besides the reverse ranking, the raw classification accuracy plays another role. The accura-
cies for different parameter combinations on a single feature subset are compared to the highest
accuracy found for that feature subset. Only parameter combinations that have an accuracy that is
close enough to the best accuracy for that feature subset are considered “good”.

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

134 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Probability score: The probability score combines the results of the reverse ranking and the selection.
An intermediate score is calculated for a parameter combination by summing across all different
feature subsets the rank obtainedf only for those situations where the parameter combination
is considered “good”. The intermediate scores are scaled linearly to form the probability scores,
such that the sum of scores across all classifier parameters equals one. The resulting probability
score can be loosely interpreted as the probability that the parameter combination is the best one
to use for classification on the data#eit is not known which features from the dataset will be
used in the classification. This situation of not knowing which features will be used, is exactly the
situation present at the start of the PSO search in the wrapper method of solving the FSP.

The remainder of this subsection describes in detail the steps and calculations that go into determining
the probability score for each classifier parameter combination:

1. LetD be the dataset underlying the FSP with a totaNdBatures. ThelD has an exhaustive list
of | feature subsetsS, wherel = 2N,

2. LetC be the classifier used, which is parameterized. In tbdifferent parameter combinations
are considered fdZ, leading toJ classifier<(j).

3. For each combination of feature subB& and classifielC(]) the average classification accu-
racy,acco-cv(D,FS,C(j)), is determined using 10-fold cross validation. At the same time, the
standard deviation of the classification accuracies across those 10 folds is recorded and labeled

SDio-cv(D,FS,C(j))).

4. Then for each feature subsgf§, the best scoring classifier is determined, namely that classifier
C(j_Fg,) with parameter indexeq’is that yields the highest accuracy of @l{j) on D using only
the features ifF S§:
jEs = argjma>{acc(D7FS.,C(j)}, (6.1)

with corresponding maximum accuracy

aCGnax(D,FS) = acco_cv(D,FS,C(jrs))
= mjax{acclo_CV(D,FS,C(j))}, (6.2)

and standard deviatic®Dio_cv(D,FS,C(jrs))-

5. The reverse ranks(D, j,FS), are determined separately for each feature subSeby ranking
the classification accuracies achieved by each of the parameters using that subset of features. The
parameter that achieves the highest classification accuracy receives the highest rank:

r(D,],FS) =rank(@cco-cv(D,FS,C(j)) | acto-cv(D,FS,C(m),m=1,...,J) (6.3)

So for the parameter indexejas, which achieved the highest classification accuracy 8n the
resulting reverse rank D, j_FS,FS), equals]. For the worst performing parameter indexed

the resulting reverse rank(D, j_,FS), equals 1. In the case of ties, reverse ranks are averaged
over all tying parameter combinations.

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 135

6. Next, assuming a normal distribution of the measurements of the accuraugiagd confidence
level of 95%, thecritical level, crit(D,FS), is determined according to

crit(D,FS) = acGnax(D, FS) — ®(95%) SDio_cv(D,FS,C(jrs))
— acGnax(D,FS) —1.645SDy_cv(D,FS,C(jrs)) (6.4)

7. Any classifierC(j) having achieved a classification accuracyFf& which is above this critical
level is considered a “good enough” parameter for clas€ifian dataseD using only featureE .
In the next step of the calculation, such good enough parameters result in a 1 using the indicator
function in the following way,

]l{acclo_c\/(D,FS,C(j)) > crit(D,FS)}, (6.5)

while parameters whose classification accuracy-6nis below critD,FS) result in a 0 in for-

mula (6.5).

8. Next, scorel, j) is determined as the sum of the reverse ranks j,FS) across all feature
subsets for which parametgeis considered good enough:

|
SCOI’eD, J) = er(Dv J?FS) * :”{aCClO—CV(D7F87C(j)) > Crlt(D7FS)} (66)

i=
9. As afinal step, the scores are normalized so they equal one when summed across all pgrameters
This final result is labeled therobability scoreof parametelj on the datasdd using classifieC:
scoreD, j)
3 3_q ScoréD, m)

probability scoreD, j) = (6.7)

6.4.2 Results

This section contains the results of the probability score calculation for the J4B-ldhdclassifiers

across the nine selected datasets. Results for each of the two classifiers are listed and discussed in
turn, by comparing the optimal parameter (the one that achieved the highest probability score) from the
exhaustive search with that resulting from the chosen classifier tuning method from 6.2.3.3. Note
that rankings of the probability scores used in this section follow the normal convention of the best result
receiving rank 1.

6.4.2.1 J48 classifier

For the J48 classifier, seven different choices for paranhetad seven different choices for parameter
y led to a total of 49 parameter combinations tested on nine datasets of up to nine featurels. Thble 6.11
shows a summary of the results of the probability calculations on those nine datasets. The table shows
the name of the dataset and the number of features in the left-most two columns. The next three columns
grouped under “Best” show the value foandy that achieved the highest probability score across all
feature subsets, and the probability score labeled “score” for this best parameter combination. The final
four columns grouped under “Chosen” show tlaady parameter that resulted from the classifier tuning

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

136 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

process, described in section 6.2.3.3, which used all features. The column [&welex! indicates the
probability score of this chosen parameter combination and column labeled “rank” is the rank this pair
had out of the 49 combinations tested. To clarify: the “2” listed in this column for dataset glass means
that the parameter combination chosen in the tuning of the J48 classifier rank second best out of the 49
combinations based on probability scores.

Table 6.11: Best and chosen parameter values found in exhaustive search for the J48 classifier.

Best Chosen
Dataset # features| | y Score| | y Score Rank
iris 4 2 0.050 3.05% 18 0.275 2.50% 15
corral 6 2 0125 492% 2 0.050 383% 7
liver 6 42 0.125 3.27% 26 0.275 2.25% 17
monk-1 6 2 0.050 2.70% 34 0.275 2.11% 22
monk-2 6 2 0.275 240% 2 0425 189% 39
pima 8 34 0.200 2.89% 2 0.425 0.85% 48
breasttissue 9 2 0.050 9.71% 2 0.125 9.51% 2
glass 9 2 0.050 842% 2 0125 7.30% 2
tic-tac-toe 9 2 0350 4.53% 18 0.125 2.06% 19

In general, i.e. across the nine datasets, the performance of the chosen pacambteations for
the J48 classifier of and y was reasonable. However, large differences in performance between the
datasets can be seen:

e For six out of the nine datasets investigated, the probability score of the chosen parameter combi-
nation was at least 75% of the highest probability score found. It is acknowledged that this 75%
threshold was chosen somewhat arbitrarily. For the liver, pima, and tic-tac-toe datasets the thresh-
old was not met, with the ratios of chosen probability score to best probability scores of 69%, 29%,
and 45% respectively.

e For the pima dataset the probability score of the chosen combination was only 0.85%, which is
less than half of the average probability score (2.04%) across all 49 combinations. Also for the
monk-2 dataset, the probability score of the chosen combination was less than this average level.

e When looking at the rank of the chosen parameter combinations’ probability scores, large differ-
ences can be seen across the nine datasets. For the pima dataset, the chosen parameters performed
second-to-worst, and for monk-2 the chosen parameter ranked only 39th out of 49. The other
seven datasets all ranked in the top half of the 49 parameter combinations, but only three (corral,
breasttissue, and glass) ranked in the top 25%. For the datasets breasttissue and glass, the chosen
parameters performed very well: second best out of the 49 combinations. Across all nine datasets
the average rank was 19th out of 49, equivalent to the 61% percentile where a higher percentage
indicates a better rank.

A summary of the same results per parameter combination for the J48 classifier can be seen in
table[6.12. For each pair bindy this table contains the average rank across the nine datasets. For each

© University of Pretoria

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 137

dataset, all 49 parameter combinations are ranked on probability score, whigttest - and thus the

best - score receiving the lowest rank. The bottom row gives another average, this time for a single value
of | across all seven choices fgiin that column. The right-most column shows something similar: the
average rank for a single value phacross seven choices for

Table 6.12: Detailed results of the exhaustive search for J48 parameter values for each dataset investi-
gated. Numbers indicate average rank of the parameter combination out of 49 possibilities across all nine
datasets. Lower ranks mean better performance and are colored more darkly.

y/l | 2 10 18 26 34 42 50| average

0.050 [JI0%2) 1519' 19.9 211 234 243 282

0.125 | 142 17.8 206 21.7 239 263 309 222
0200 | 184 179 216 196 238 265 30.4| 219
0275 | 1666 22.0 232 22.0 248 278 313 238
0350 | 189 252 255 235 281 287 321| 260
0425 | 246 29.0 272 283 311 324 332 29.4
0500 | 26.6 30.2 29.2 304 326 346 354| 313

average[Jifi6]22/6) 239238 268 28.7 31.6|

It is clear that small values of bothandy performed best, with performance (as measured by the
average rank) becoming less as either y grows larger. Looking at the individual datasets, however,
this behavior was not universal: for the liver and pima datasets for example, the optimal valeee of
34 and 42, respectively, and the top-left corner palr-ef2 andy = 0.050 ranked only 16th and 39th out
of 49 for those two datasets.

The results from table_6.12 can also be compared to that of the chosen classifier tuning method,
which scored an average rank of @%cross the nine datasets. Tdble 6.12 contains only eight entries
that aresmallerand thus better than this rank of 19.0, meaning that the chosen classifier tuning method
ranked just within the 20% best parameter combinations.

More detailed results for the J48 classifier, showing the probability score for each combindtion of
andy for all nine datasets, are listed in apperidix C in sedtion C.1.

6.4.2.2 k-NN classifier

For thek-NN classifier, 10 different choices for paramekewere tested in the classifier tuning pro-
cess, ranging from 1 to 19 in steps of 2. Tdble .13 shows a summary of the results of the probability
calculations on the nine datasets with few features. The table shows the name of the dataset and the
number of features in the left-most two columns. The next two columns grouped under “Best” shows
the value fork that was deemed to work best at classification across all possible feature subsets, and the
probability score labeled “score” for this best parameter combination. The final three columns grouped
under “Chosen” show the value farchosen by the classifier tuning process described in section 6.2.3.3
using all features. The column labeled “score” indicates the probability score of this chosen parameter
combination, followed by the rank this parameter achieved out of the 10 valkdassted.

In general, i.e. across the nine datasets, the performance of the chosen vilfgr tdie k-NN

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

138 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.13: Best and chosen parameter values found in exhaustive rdhek-NN classifier.

Best Chosen
Dataset # features| k prob. | k prob. Rank
iris 4 13 14.4%| 5 7.9% 8
corral 6 19 13.1%| 1 9.7% 6
liver 6 19 12.9%| 3 5.0% 9
monk-1 6 1 138%| 1 13.8% 1
monk-2 6 19 29.1%| 5 2.8% 8
pima 8 19 21.2%| 19 21.2% 1
breasttissue 9 1 334%| 1 33.4% 1
glass 9 1 244%| 1 24.4% 1
tic-tac-toe 9 17 15.8%| 9 11.3% 6

classifier showed a clear split between datasets on which the chosen appooketl well versus one
on which it worked poorly:

e For only four out of the nine datasets investigated, the probability score of the chosen parame-
ter combination was at least 75% of the highest probability score found, but in all those cases
(i.e. monk-1, pima, breasttissue, and glass) the chosen parameter value was also the best possible
choice. Across the other five datasets, the ratio of the score for the chosen Valtggsis highest
probability scores per dataset ranged from 39% to 74% with an average of 50%.

e Of the five datasets that failed the 75% probability score ratio threshold, for only one (i.e. tic-tac-
toe) did the chosen value flrlead to a probability score above 10%, which is the average across
the 10 possible values fée Across the four “good” datasets, the average probability score was
23%, more than twice the average score.

e When looking at the rank of the chosen parameter’s probability scores, the clearest differences can
be seen across the nine datasets. As stated before, for four datasets the bestkvahmgafosen
in the classifier tuning, while for the other five the average rank was 7.4 out of 10 where 1 means
best.

When the actual values &fthat perform well or poorly are investigated, one sees that thekbest
value was either high (19 was the highest possible value, which occurred four times, with one occurrence
each of 13 and 17) or low (the remaining three datasets alkhkad as the optimal parameter value
for the classifier). The chosen tuning process, however, seemed to tend towards lower vatudsefor
average across all nine datasets was 5) with the exception being the pima dataset for which the chosen
(and also besti-value was 19. Excluding the pima dataset, the average clkoggine across the other
eight datasets was 3. This dichotomy between datasets on which small vakigeiddbrmed better
versus those on which larger valueskafiorked best can also be seen in table 6.14. This table shows the
distribution across the 10 values foof the probability score using tHeNN classifier. The cells in the
table are colored in grey-scale according to the value in the cell, with a darker hue indicating a higher
value in the cell.

© University of Pretoria

P
si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 139

Table 6.14: Detailed results of the exhaustive searck-féN parameter values for each dataset investi-
gated. Higher probability scores are colored more darkly.

dataset choserk| 1 3 5 7 9 11 13 15 17 19
iris 5 | 0.9% 7.4% 7.9% 12.6% 10.3% 11.8%[14:4% 10.5% 11.7% 12.5%

corral 1 | 97% 83% 55% 6.6% 9.2% 10.6% 12.:8% 13.0% 11.2%[18%%
liver 3 | 46% 5.0% 10.6% 10.7%| 10.7% 10.4% 11.2%|12.0%)|12.0%H219%
monk-1 1 |A818% 13.0% 12.7% 9.3% 9.3% 7.4% 9.9% 8.8% 7.9% 7.9%
monk-2 5 |13% 25% 28% 3.7% 6.0% 7.6% 9.9% 13.6%|23!5%|20K%
pima 19 | 00% 05% 3.0% 3.9% 6.9% 11.0%14.9%17:7%|2018% 212%
breasttissue 1 |[B8M% 17.4% 15.3% 10.4% 6.5% 5.8% 52% 3.3% 1.7% 0.9%
glass 1 |[24% 17.6% 15.1% 10.5% 8.3% 6.2% 4.9% 4.7% 4.4% 3.9%
tic-tac-toe 9 |05% 17% 4.1% 9.0% 11.3%|13:1%|13:7%15/5% JI518%15!3%

averagerank 4.4 \6.6 6.6 6.4 5.6 5.8 6.0 4.2 4.6 4.7 4.2

On the bottom row the average rank ofi4or the chosen classifier tuning method is compared to the
average rank for each of the parameter values separately, with a lower rank meaning better performance.
For simple methods, only the choice of usikg- 19 on all nine datasets yielded a better performance
than the chosen classifier tuning method. The choide-ofl. which is popular in literature was actually
the worst performing parameter value.

6.4.3 Conclusions

For the J48 classifier, the investigation on the nine smaller dataset®tliddicate a serious problem
with the procedure used to tune the classifier before its use in a PSO’s fitness function for solving the
FSP. The procedure resulted in reasonable parameters in most cases, although it led to bad classifier
parameters on some datasets, as exemplified by the poor results on the monk-2 and pima datasets. No
discernible pattern could be seen that indicated poorer performance of the chosen classifier tuning method
for datasets with a larger number of features.

Table[6.12 showed that small values for bbtmdy worked well on the nine datasets investigated,
with the pairl = 2 andy = 0.050 ranking as best. No distinct pattern was discerned to see if this
outperformance by smaller parameter values extended to larger datasets. The chosen classifier tuning
method performed better than 80% of the “simple” choices of using one parameter combination across
all nine datasets, and its performance thus is deemed adequate.

For thek-NN classifier in general, the dichotomy between datasets for which &mallies worked
well and those for which large values kfworked well is troubling, since the chosen classifier tuning
method seems to favor smaller values korThe number of datasets investigated is too small for any
statistically significant results, but the chosen classifier tuning method was able to correctly pick a larger
value fork on two (pima, tic-tac-toe) of the five datasets which require a large valkiéoofvork well.

There is no evidence that the chosen classifier tuning method leads to unacceptable results across all

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

140 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

datasets, although in some cases, e.g. the J48 classifier on the pima dataset, tié tlesidtgestigation

for the chosen parameters were very poor. The results showed that there was a large variability between
the optimal classifier parameters between datasets, especially foiNNeclassifier. A simple choice

such as the “always ude= 1 for the k-NN classifier” which has been widely used in literature was
actually the worst performing choice out of those investigated: the results in(fable 6.14 show that this
approach yielded an average rank ko 1 across the nine datasets of 6.6 out of 10, with 1 being the
best rank. The chosen classifier tuning method had an average rank of 4.4 out of 10, outscoring all but
the parameter value= 19.

6.5 PSO parameter tuning

This section describes the method used to tune the various PSO algorithms prior to their use in the main
numerical experiments on the FSP and the resulting tuning results. Most studies from literature that
use a PSO algorithm to solve the FSP dat tune the PSO algorithm before the experiments; see also
sectiori 3.4.4. Instead, these studies used parameter values from previous studies, parameter values which
have been proven successful on very different problems than the domain of feature selection. Although
having parameters that work “well enough” on most problem domains is preferable, this approach might
not be the best choice for the FSP domain.

In the experiments using PSO algorithms described in this chapter all PSO algorithms are tuned.
Sectior 6.5.1 describes the process used to tune the BPSO, PBPSO, CFBPSO, and SBPSO algorithms.
Sectior 6.5.2 lists the resulting parameters for each of these four PSO algorithms.

6.5.1 Parameter tuning process

All four PSO algorithms were tuned in the same manner to ensure a fair comparison of test results.
The parameter tuning process is broadly the same as that used for the MKP, which was described in
sectiof 5.311.

For each of the 12 combinations of a PSO algorithm and a classifier, the same process was used to
tune the algorithm’s parameters, although the number of control parameters differed: BPSO has four
parameters, PBPSO and CFBPSO each have six, and SBPSO has five parameters. Each algorithm-
classifier pair was tuned once on each of the eight tuning datasets listed inf&ble 6.2 in(secfidn 6.2.1.2.

Table[6.15 lists the ranges of possible parameter values used in this tuning process. The Cartesian
product of the parameter value ranges for one algorithm forms the parameter space for that algorithm. For
each of the four PSO algorithms, 128 parameter combinations were generated that span each algorithm’s
parameter space. Only static control parameters were considered. In order to generate the parameter
combinations in a manner that ensures that the parameter space was covered well, sequences of Sobol
pseudo-random numbers were used according to the method proposed by Franken [36].

For each triplet of (i) PSO algorithm, (ii) classifier, and (iii) dataset the same procedure was followed:

All 128 parameter combinations were used in turn as settings for the PSO algorithm under consideration,
and the full process described in secfion 6.2.5 was followed, resulting in three outcomes: the best position
found, Y, the final fitness function evaluatioffza(Y), and the standard deviation of the 10 repeated

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 141

Table 6.15: Parameter ranges used in tuning the four PSO algorithms on the FSP

algorithm | w c1 C2 Vimax
BPSO | [0.50,0.99] [0.00,5.00] [0.00,5.00] [1.00, 10.00]

algorithm | W 1 Co Vinax R Pt
PBPSO | [0.50,0.99] [0.00,5.00] [0.00,5.00] [1.00,10.00] [1.0,100.0] [0.00, 0.50]

algorithm ‘ W C1 C2 Vimax Nconstant Preplace
CBFPSO ‘ [0.50,0.99] [0.00,5.00] [0.00,5.00] [1.00,10.00]1{1,...,5} [0.00, 0.25]

algorithm | c C, Cs Ca k
SBPSO | [0.00,1.00] [0.00,1.00] [0.50,5.00] [0.50,5.00] {1,...,5}

accuracy calculations using 10-fold cross validation.

Using the ranking and averaging method introduced in the experiments on the MKP, which was
described in sectidn 5.3.1, these 128 final fitness values for all eight datasets were taken together to yield
the best parameter combination for each algorithm-classifier pair.

6.5.2 Tuning results

The results of the PSO parameter tuning are given in 6.16. Results are grouped per PSO algorithm
in units of three lines for the three classifiers used.

For the BPSO, the tuning results showed stability across the three classifiers. For the GNBMNiNnd
classifiers the resulting PSO parameters were the same, and for the J48 classifier gnpatiagneter,
the social attraction, showed an important deviation with a value just under 2 compared to a value of 4.4
for the other two classifiers.

For the PBPSO, the tuning results were very different for each of the three classifiers. The momen-
tum, w, ranged from 87 for the GNB to ®709 for the J48. Interesting is also the balance between
c1, attraction to the personal best, anyl attraction to the neighborhood best: for the GNB classifier
the personal best had the highest attraction, for J48 it was the neighborhood best, whilekittNhe
classifiers both had a roughly equal strength of attraction. The values of the transformation paRmeter,
and the mutation probabilityyepiace did Nnot show any clear pattern.

For the CFBPSO, tuning results showed stability across the three classifiers. This time the GNB and
J48 classifiers had the same tuned parameters. Fadelié classifier the value ofo matched that of
the other two classifiers, but the personal and social attraction had reverse impocatioe attraction
to the neighborhood best, was larger tltanthe attraction to the personal best. The catfish parameters
Nconstant2Nd Prepiacedid not show any clear pattern.

For the SBPSO, the tuning results were very different for each of the three classifiers. All three tuned
values forc; were high within the possible range fif,1], while values forcz andc, tended towards
the low or middle part of their respective rangfs5,5.0]. Values for parameter;, the attraction to the
personal best, showed three differing outcomes which varied across the whole réiygé. of

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

142 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.16: Tuned PSO parameters for FSPs

algorithm | classifier] 1 C, Vinax

BPSO GNB 0.9479 4.0234 4.4141 7.5391

BPSO J48 0.9709 4.4141 1.9922 5.1484

BPSO k-NN 0.9479 4.0234 4.4141 7.5391

algorithm | classifier| a C Vinax R Pnut
PBPSO GNB 0.6187 1.4453 4.3359 3.7422 41.9922 0.0039
PBPSO J48 0.9709 4.4141 1.9922 5.1484 38.8984 0.0508
PBPSO k-NN 0.8828 3.2813 3.5938 2.9688 4.0938 0.0469
algorithm | classifier| c1 C2 Vmax Neconstant Preplace
CFBPSO | GNB 0.9709 4.4141 1.9922 5.1484 3 0.0254
CFBPSO | J48 0.9709 4.4141 1.9922 5.1484 3 0.0254
CFBPSO | k-NN 0.9785 2.4609 4.1016 9.2266 1 0.0762
algorithm | classifier| ¢ C Cs Ca k

SBPSO | GNB 0.3672 0.9141 1.5898 1.3086 2

SBPSO | J48 0.9609 0.8828 2.2930 2.5742 2

SBPSO | k-NN 0.4766 0.9922 1.9414 2.3633 3

Detailed tuning results with outcomes per dataset for each of the classifieledannd in sec-
tion[C.2 in appendik C.

6.6 Experimental results

This section gives an overview of the results of the numerical experiments using the FSP to compare
the new and tuned SBPSO algorithm to tuned versions of the BPSO, PBPSO, and CFBPSO algorithms.
The detailed results are not included here for reasons of conciseness, but can be found in appendix E.
The results consist of three pieces of information: the first is the classification accuracy achieved by the
PSO algorithms using each of the three classifiers GNB, J48k-dd. The accuracy is given as the
average and standard deviation across 30 independent runs of the PSO wrapper algorithms. The second
piece of information is the ranking of the four PSO algorithms on the 30 testing datasets, which formed
the basis of the statistical comparison to determine which algorithm performed best. The third piece of
information is the number of features selected by the PSO wrappers, given as the average and standard
deviation over the 30 independent runs.

Before the results of the experiments are discussed in separate sections for each of the three classifiers
used, section 6.6.1 describes an additional set of statistical tests performeatogtedatasetactually
showed a significant differentiation between the four PSO algorithms for each of the three classifiers. The
PSO algorithms’ performance on all datasets is compared with the performance on only those datasets
that showed a significant difference in performance.

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 143

After the discussion of the results per classifier, the results are combined therts®e classifiers in
sectior{ 6.6 5. Lastly, conclusions are drawn on the performance of the SBPSO on the FSP i séction 6.7.

6.6.1 F-test to identify differentiating datasets

The main comparison of the results of the PSO runs on the FSP follows the statistical analysis used on
the MKP and described in section 5.5 and appehdix E. Selction 6.3.3 of the exhaustive investigations
of the fitness function for the FSP indicated, however, that for some datasets the chosen classifiers may
not be able to indicate a significant difference in accuracy. Including these datasets into the overall
comparison may dilute any true differences in performance such that the Iman-Davenport test (ID test)
on the ranks yields no significant result. In order to try and correct for this problem, a second set of
statistical comparisons was made usaomdy the datasets that truly yielded a difference in performance
between the PSO algorithms, based on the variability of the recorded fithess function values.

Whether difference in performance of the PSO algorithms on a single dataset was significant is
determined statistically. Per dataset, the average and standard deviations of the classification accuracy
across the 30 independent runs of the four PSO algorithms were compared using a one-way analysis
of variance (ANOVA)F-test. This test was used to determine if the variance seen in the independent
classification accuracies for each PSO algorithm was small enough compared to the variance between the
average classification accuracies of the four PSO algorithms. Using a significance level5fo, this
test determined if the dataset led to statistically significant differences between the four PSO algorithms.

The results of the variouB-tests are given in table 6117 below. TRestatistic andp-value are
listed. A simple label readin@RUE or FALSE indicates if the results on that classifier and dataset show
a statistically significant difference usingca= 5% confidence level. Note that four different PSO
algorithms are compared using 30 runs for each algorithm, so the corresponding critical level for the
F-testata =5% isF(4—1,(4—1)%(30—1))=F(3,87)=2.7094.

To perform theF-test per dataset and per classifier, the average and standard deviation across the 30
classification accuracy results for each dataset and PSO algorithm were needed. These detailed results
are listed in the tables in appendik C, namely in table IC.16 for the GNB,[tablé C.19 for the J48 classifier,
and in tablé_C.22 for thk-NN classifier.

The results of the 3@ 3 = 90 F-tests in tabl€ 6.17 show that only on a small number of datasets a
statistically significant difference in performance was found at a confidence leae:-d§%:

e For the GNB classifier, only nine out of 30 datasets showed a significant difference unéfer the
test, i.e. arrhythmia, audiology, dermatology, horse-colic, movement-libras, musk-1, parkinsons,
sonar, and soybean.

e For the J48 classifier, only five out of 30 datasets showed a significant difference unBetette
i.e. hill-valley, movement-libras, musk-1, parity5-5, and sonar.

e For thek-NN classifier, only nine out of 30 datasets showed a significant difference under the
F-test, i.e. arrhythmia, audiology, german, hill-valley, horse-colic, ionosphere, movement-libras,
musk-1, and spectf.

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

144 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

Table 6.17: Datasets with significant differences on the one-way ANPNAst

GNB classifier J48 classifier k-NN classifier

Datasets F-stat. p-value Signif.| F-stat. p-value Signif.| F-stat. p-value Signif.
arrhythmia 15.22 0.0000TRUE | 1.66 0.1812 FALSE 33.65 0.0000TRUE
audiology 18.91 0.0000TRUE | 1.03 0.3852 FALSE 4.88 0.0035TRUE
australian 0.40 0.7533 FALS 0.12 0.9461 FALS 1.56 0.2045 FALSE
bands 2.59 0.0580 FALSE 0.40 0.7520 FALSE 0.50 0.6841 FALSE
breasttissue 0.44 0.7264 FALSE 1.79 0.1546 FALSE 0.34 0.7979 FALSE
corral 0.70 0.5547 FALSE 0.08 0.9699 FALSE 0.42 0.7424 FALSE
crx 0.19 0.9005 FALSE 0.69 0.5628 FALSE 0.26 0.8541 FALSE
dermatology 6.78 0.0004TRUE| 1.61 0.1921 FALSE 1.74 0.1657 FALSE
german 1.24 0.3010 FALSE 0.26 0.8530 FALSE 3.32 0.0236 TRUE
glass 0.81 0.4915 FALSE 0.18 0.9103 FALSE 0.15 0.9313 FALSE
hill-valley 1.26 0.2931 FALSE 80.65 0.0000TRUE| 7.96 0.0001 TRUE
horse-colic 13.73 0.0000TRUE | 0.12 0.9454 FALSE 4.24 0.0076 TRUE
ionosphere 2.07 0.1095 FALSE 0.23 0.8752 FALSE 7.41 0.0002 TRUE
iris 1.18 0.3208 FALSE 1.31 0.2755 FALSE 0.07 0.9736 FALSE
liver 0.29 0.8304 FALSE 0.13 0.9402 FALSE 0.92 0.4361 FALSE
monk-1 0.37 0.7700 FALSE 0.80 0.5000 FALS FALSE
monk-2 0.06 0.9809 FALSE 0.08 0.9695 FALSE 0.45 0.7193 FALSE
movement-libras 87.88 0.0000TRUE | 7.52 0.0002TRUE| 6.34 0.0006 TRUE
musk-1 179.37 0.0000TRUE | 2.96 0.0368 TRUE | 11.64 0.0000TRUE
parity5-5 0.06 0.9802 FALSE 3.73 0.0143TRUE| 0.52 0.6705 FALSE
parkinsons 9.73 0.0000TRUE | 0.43 0.7294 FALSE 1.46 0.2312 FALSE
pima 0.35 0.7873 FALSE 0.09 0.9628 FALSE 1.03 0.3837 FALSE
sonar 11.24 0.0000TRUE | 3.10 0.0308 TRUE | 1.23 0.3043 FALSE
soybean 4.21 0.0079TRUE | 2.49 0.0657 FALSE 0.05 0.9829 FALSE
spectf 0.39 0.7585 FALSE 1.17 0.3242 FALSE 3.07 0.0318 TRUE
tic-tac-toe 1.52 0.2141 FALSE 0.87 0.4580 FALSE 0.64 0.5889 FALSE
vehicle 1.04 0.3805 FALSE 0.49 0.6932 FALSE 1.03 0.3822 FALSE
vote 0.69 0.5578 FALSE 0.26 0.8530 FALSE 0.73 0.5381 FALSE
vowel 1.11 0.3505 FALS 0.47 0.7019 FALSE 0.78 0.5095 FALSE
wdbc 1.81 0.1514 FALS 0.88 0.4522 FALSE 0.43 0.7350 FALSE
Significant | 9 | 5 | 9

Note that these results were not sensitive to the chosen confidence levela gsinidence level aff =

1%, the number of selected datasets was 7, 2, and 7 for the GNB, JA8Nixidlassifiers respectively.
Using a confidence level af = 10%, the number of selected datasets was 10, 6, and 9 for the GNB, J48,
andk-NN classifiers respectively.

In general, the comparison of PSO algorithms in this thesis uses the non-parametric ID test, as it
removes the need to assume a specific distribution in the fitness values that are compared. In this specific
case the use of the simplErtest is deemed defensible: the standard deviation across the independent
calculations of the classification accuracy using 10-fold cross validation include the variability due to
random noise in the cross validation splits and braking of ties. Although this random noise need not be
normally distributed, its distribution will likely be sufficiently well-behaved for fheest to be usable.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 145

Note that a one-way ANOVA -testas performed here doest require normally distributed inputs.

In the main result sections below, further ID-tests are conducted to compare the performance of the
four PSO algorithms, both using all 30 testing datasets and using only the datasets selectédtegthe
in tablel6.17.

6.6.2 GNB classifier

Table[6.18 contains a summary of the statistical test results from comparing the four PSO algorithms
on the 30 testing datasets using the GNB classifier. Detailed results showing the actual classification
accuracies achieved, as well as the respective ranks of the four PSO algorithms per datasets, can be
found in appendik C in table C.116.

Table 6.18: Overview of statistical results on the FSP using the GNB classifier

GNB All datasets Selected datasets
BPSO CFBPSO PBPSO SBP$BPSO CFBPSO PBPSO SBPSO
Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.67) (1.97) (3.10) (2.27)| (2.56) (12.78) (3.78) (1.89)
rankofrankT< (3) (1) (4) (2) (3) (1) (4) (2)

Z-score 2.1000 3.4000 0.90000.8520 2.1909 0.1217
p-value 0.0179 0.0003 0.18410.1971 0.0142 0.4516
Holm a 0.0250 0.0500 0.01670.0250 0.0500 0.0167
ranked 1 3 13 4 1 1 4 0 4
ranked 2 9 8 4 9 2 3 1 3
ranked 3 13 6 7 4 6 2 0 1
ranked 4 5 3 15 7 0 0 8 1
datasets | 30 30 30 3(9 9 9 9

Based on the ranks for all 30 datasets, the CFBPSO performed best witkerage rank of B7.

The ID-test indicated that the average ranks led to a statistically significant difference in performance.
Further Nemenyi post-hoc tests showed that the BPSO and PBPSO underperformed with respect to the
other two PSOs. However, no significant difference in performance was detected between the CFBPSO
and the SBPSO.

The outperformance of the CFBPSO and SBPSO was by no means universal because the CFBPSO
achieved either a first or second rank in only 21 out of 30 cases, while for the SBPSO this was true in 19
out of 30 cases. Thus, on one third of the datasets tested, the two best performing algorithms ranked as
worst or second-worst. Note the difference with the results of comparing PSO algorithms on the MKP,
where the SBPSO was the best performing algorithm in almost all cases, and never worse than second
best.

Using the ranks on only the nine datasets that showed a statistically significant difference on the
F-test, the CFBPSO still performed best with an average rank7@ I'he ID-test indicated that a statis-
tically significant difference in performance existed between the four PSO algorithms. Further Nemenyi
post-hoc tests showed that the PBPSO underperformed, but no significant difference in performance was
detected between the CFBPSO, the BPSO, and the SBPSO. So on the smaller number of datasets that

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

146 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

“pass” theF-testusing the GNB classifier, the ID-test and Nemenyi post-hoc tests were less powerful:
even though the difference in average rank between the CFBPSO and BPSO was larger on the nine
selected datasets, this difference was no longer statistically significant.

The GNB classifier failed on the monk-2 dataset, as all four PSO algorithms achieved the same classi-
fication accuracy (671.3%) with a standard deviation of zero. This was because the classifier was unable
to correctly represent the concept behind the dataset’s class labels. The number of features selected can
be seen in table_C.18 in appendik C and this ranged around 3 with a standard deviation of 1.3 features.
This is almost exactly what is to be expected from randomly choosing the features in each of the 30
independent runs from the six total number of features in the dataset. Although not on the same level
of failure, the GNB classifier was also not very successful on the monk-1 dataset: only one feature was
selected in all instances, resulting in the concept underlying the dataset’s class label being only partially
represented by the classifier using that one feature.

The GNB classifier also failed on the parity5-5 dataset, as all four PSO algorithms achieved almost
the same classification accuracy @%) while zero features were selected (see fablelC.18). That classi-
fication accuracy was the result of simply choosing the most common class label. The parity concept is
something the GNB classifier was unable to represent.

The CFBPSO performed well on the ionosphere dataset, while the other three PSO algorithms strug-
gled. What was even more remarkable, is that the standard deviation of the classification accuracy for the
CFBPSO on this dataset was quite high (2.45%), while for the other three PSO algorithms this number
was even above 9%. This result can be explained by looking at the average number of features selected.
For the BPSO, PBPSO, and SBPSO the average number of features selected was five out of 34, with a
standard deviation ranging from 3.5 to 6.2. For CFBPSO, only 2.9 features were selected on average,
with a standard deviation of 1.6. The reset feature embedded in the CFBPSO meant that many times
during the CFBPSO's run, particles get reset to the empty set of features, making it easier for the algo-
rithm to find small subsets of features from a relatively large (in this case 34) set of features. Because of
the large variation in the classification accuracy across the 30 independent runs for each of the four PSO
algorithms, the--test did not indicate a significant difference in performance on the ionosphere dataset,
even though the CFPSO outperformed the other algorithms by at least 2.42% in classification accuracy.

Other datasets that showed a large difference in the classification accuracy achieved by the four
PSO algorithms were soybean, musk-1, and movement-libras. On the soybean database the CFBPSO
outperformed the SBPSO by 1.70%. In contrast, the SBPSO outperformed the CFBPSO by a wide
margin on the musk-1 (by 6.04%) and the movement-libras (by 1.24%) datasets. For the other 26 datasets,
the difference in classification accuracy between CFBPSO and SBPSO is less than 0.4%.

For seven different datasets (breasttissue, iris, monk-1, parity5-5, pima, tic-tac-toe, vowel) using the
GNB classifier, all four PSO algorithms were able to select the same number of features in each of the
30 independent runs, leading to a standard deviation of zero in the number of features (dee table C.18).
Note that these were all small datasets with at most 10 features. For these simple problems, the FSP
could be solved well by all PSOs resulting in a single best scoring set of features. These datasets did not
help differentiate in the relative performance of the four PSO algorithms, because the ranking of the PSO
algorithms on these datasets was determined by the noise in the classification accuracy instead of a true

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 147

difference in the quality of the features selected.

6.6.3 J48 classifier

Table[6.19 contains a summary of the statistical test results from comparing the four PSO algorithms on
the 30 testing datasets using the J48 classifier. Detailed results can be found in dppendix Cin thble C.19.

Table 6.19: Overview of statistical results on the FSP using the J48 classifier

J48 All datasets Selected datasets
BPSO CFPSO PBPSO SBP$BPSO CFPSO PBPSO SBPSO
Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.37) (2.23) (3.10) (2.30)| (2.40) (1.40) (3.20) (3.00)
rankofrank | (3) (1) (4) (2) (2) (1) (4) (3)

Z-score 0.4000 2.6000 0.200a.0954 1.9718 1.7527
p-value 0.3446 0.0047 0.4200.1367 0.0243 0.0398
Holm a 0.0250 0.0500 0.016D.0167 0.0500 0.0250
ranked 1 7 10 2 1 1 4 0 0
ranked 2 10 8 6 6 2 0 1 2
ranked 3 8 7 9 6 1 1 2 1
ranked 4 5 5 13 7 1 0 2 2
datasets | 30 30 30 30 5 5 5 5

Using the ranks on all 30 datasets, the CFBPSO performed best with an axeamkgd 223. The
ID-test indicated that the average ranks meant that a statistically significant difference in performance
existed. Further Nemenyi post-hoc tests showed that the PBPSO underperformed the other three PSOs.
However, no significant difference in performance was detected between the CFBPSO, the BPSO, and
the SBPSO.

While CFBPSO achieved the best average rank, the difference with the BPSO and the SBPSO was
very small (2.23 versus 2.37 and 2.30) and the SBPSO actually performed best on the highest number
of datasets (11) compared to 10 for CFBPSO and seven for BPSO. Even the clearly underperforming
PBPSO algorithm was able to achieve the best classification for two of the datasets, showing that the
relative performance was inconsistent across the 30 testing datasets.

Based on thé -test results per dataset, only five out of the 30 testing datasets showed a statistically
significant difference using the J48 classifier. This small number of selected datasets meant that, even
though the ID-test showed a statistical significant difference among the four PSO algorithms on this
small set, the post-hoc Nemenyi tests only showed significant under-performance by the PBPSO. Even
the relatively poor average rank of 3.00 achieved by the SBPSO, could not be distinguished from the
best average rank of 1.40 achieved by the CFBPSO. By consequence, the BPSO also scored equally, in
statistical sense, as the CFBPSO en SBPSO.

On the monk-1 dataset, very little difference could be seen between the four PSO algorithms, each
with an average accuracy of 75.01% and a very low standard deviation in accuracy. Looking at the
number of features selected in table €.21, however, the average of 3.5 features with a standard deviation
of 1.1 features was again very close to what is to be expected from randomly choosing the features in each

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

148 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

of the 30 independent runs out of the six total features. The J48 classidgethus unable to correctly
portray the concept behind the monk-1 dataset, while the partial success reported was not dependent on
the features selected.

Interestingly, the J48 classifievas able to correctly portray the monk-2 dataset, by selecting all
six features in all cases. The variability in the average classification accuracy between the four PSO
algorithms was thus fully caused by the noise in the final fithess calculation. The different relative
performance which resulted in the CFBPSO achieving the rank of 1 and BPSO the rank of 4 can thus
be attributed to randomness and was not indicative of a true difference in performance by the PSO in
solving the FSP.

For the tic-tac-toe dataset the same applies as was noted for the monk-2 dataset in the previous para-
graph: all runs for each of the PSO algorithms resulted in selecting all nine features, meaning there was
no difference in performance on the FSP. The variability in the average classification accuracy between
the four PSO algorithms was thus fully caused by noise in the final fitness calculation.

The J48 classifier failed on the hill-valley dataset for all PSOs as the classification accuracy was no
more than 50% while the dataset has only two roughly equally occurring classes. CFBPSO scored almost
3% better than the other PSO algorithms because the reset mechanism allowed each of the 30 runs to find
the empty set of features. This resulted in a higher classification accuracy than the other feature subsets,
but the empty subset clearly is not the solution of the FSP. The J48 classifier was not able to capture the
concept behind the hill-valley dataset.

On the movement-libras dataset, the SBPSO performed quite poorly with the lowest classification
accuracy 1.6% lower than the CFBPSO. The SBPSO selected on average 53 features, which was more
than 10 more features than the other three algorithms. Also, the standard deviation in the number of
features was much higher for the SBPSO, indicating that the SBPSO was not able to find a reasonable
solution in some of the 30 runs. Other than this and the hill-valley datasets, the difference in accuracy
between CFBPSO and SBPSO was less than 0.9%.

6.6.4 k-NN classifier

Table[6.20 contains a summary of the statistical test results from comparing the four PSO algorithms
on the 30 testing datasets using #h&IN classifier. Detailed results can be found in appefdix C in
table[C.2P.

Using the ranks on all 30 datasets, the SBPSO performed the best with an average r&8k thé.

ID-test indicated that the average ranks meant that a statistically significant difference in performance

existed. Further Nemenyi post-hoc tests showed that the SBPSO outperformed all other three PSO
algorithms. The outperformance by the SBPSO was quite strong: it performed best on 20 out of 30

datasets. while the CFBPSO, which ranked second, performed best on 7 of the remaining datasets. Still,
the SBPSO did perform worst on three datasets (i.e. corral, parkinsons, and vowel).

Based on thé&-test results per dataset, only nine out of the 30 testing datasets showed a statistically
significant difference using tHeNN classifier. This small number of selected datasets meant that, even
though the ID-test showed a statistical significant difference among the nine PSO algorithms on this
small set, the post-hoc Nemenyi tests were less powerful than on the full set of 30 datasets: No statistical

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 149

Table 6.20: Overview of statistical results on the FSP usindtN&l classifier

k-NN All datasets Selected datasets
BPSO CFPSO PBPSO SBP$BPSO CFPSO PBPSO SBPSO
Dataset Rank Rank Rank Rank Rank Rank Rank Rank

average rank (2.75) (2.48) (3.08) (1.68)| (3.33) (2.89) (2.78) (1.00)
rank of rank| (3) (2) (4) (1) (4) (3) (2) (1)

2.5560 2.0692 1.9475
0.0053 0.0193 0.0257
0.0500 0.0250 0.0167

Z-score 3.2000 2.4000 4.2000
p-value 0.0007 0.0082 0.0000
Holm a 0.0250 0.0167 0.0500

ranked 1 2 7 0 20 0 0 0 9
ranked 2 12.5 8.5 7.5 2. 2 4 3 0
#ranked 3 6.5 7.5 12.5 4, 2 2 5 0
ranked 4 9 7 10 3 5 3 1 0
datasets | 30 30 30 3(9 9 9 9

difference could be seen between the SBPSO and the CFBPSO on the sdttatsts, even though
SBPSO performed best on each of the nine datasets - only for a confidence level of 7.5% can statistical
outperformance be seen.

The largest difference in classification accuracy was seen on the arrhythmia dataset, where SBPSO
outperformed the three other PSO algorithms by at least 3.83%. The reason behind this was likely that
the SBPSO was able to find better solutions using fewer features, evidenced by the average number of
features selected of 65.6 out of 279 possible features versus an average of 113 across the other three
PSO algorithms. For the SBPSO, the variance in the number of features selected was much higher
(standard deviation of 43.4), with the actual size of the feature subsets ranging from 16 to 183 features.
The smaller subsets performed best, achieving classification accuracies up to 74%. The large number
of features means that the space of feature subsets contail¥® points, of which only a very small
portion could be searched during the PSO runs, making this a very hard problem. This result is discussed
further in section 617.

The FSP based on the monk-1 dataset was solved perfectly by all PSOs, resulting in an average
classification accuracy of 100%. As evidenced by the fact that the average number of features was
between 3 and 4, thie-NN classifier was able to perfectly solve the classification problem on more
than one feature subset: as long as features 1, 2, and 5 were included, adding one more feature did not
reduce the classification from perfect using the 1-NN classifier. Effectively, this means that, out of the
64 possible feature subsets, four different subsets yield a perfect classification, making the problem too
easy to allow for differentiation in the performance of the four PSO algorithms on the FSP based on this
dataset.

On the parity5-5 dataset the CFBPSO performed better than the other PSO algorithms (by at least
1.67%) and was close to perfect, while achieving a much lower standard deviation in the accuracy. No
difference could be seen in the number of features selected compared to the other PSOs, which at 6.8
was also higher than the five required for correct classification. The good accuracy score was caused
by the fact that CFPBSO found the five right features in all 30 runs, but often still included additional

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

150 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

features as well. Thie-NN classifier evidently was able to deal quite well with the redundant features.

For each of the other three algorithms, exactly one out of the 30 runs failed completely and the PSOs
did not select all five required features, resulting in a classification accuracy of around 50% which is
equivalent to random classification. Again it was the reset mechanism that helped the CFBPSO, as every
time a particle gets reset, it has a 50% chance to get reset to the subset of all features. In that case, all the
five important features are included and kAN classifier withk = 1 achieves a classification accuracy

close to 100%, attracting other particles in the swarm.

6.6.5 All three classifiers combined

This section combines the results per classifier into a single comparison of the four PSO algorithms.
Because combining the classification accuracies for different classifiers is not useful for the purpose of
testing performance on the FSP, only ranks are used in this section.

Tabld6.21 contains an overview of the rankings achieved on each of the 30 testing datasets by the four
PSO algorithms using all three classifiers. Each cell in the table contains the ranking achieved using the
GNB, J48, ank-NN classifier respectively, separated by a colon (’:). In those cases wheFe tit
indicated significant differences for a dataset-classifier combination, the resulting ranks are indicated
in bold. At the bottom of the table, the average rank across all 90 dataset-classifier combinations is
stated, as well as the average rank across the datasets selected usirigdt®e The ID-test showed
statistical significant differences in both cases, and those PSO algorithms that performed best or were
indistinguishable from the best are indicated in bold.

As expected, the results of the experiments on the FSP differed according to which classifier was
used: a different classifier meant different rankings of the four PSO algorithms on the datasets. Only 23
out of the 120 combinations (11%) of dataset and PSO algorithm showed rezaffisctecdy the choice
of classifier, meaning that the PSO algorithm obtained the same rank out of four for the dataset using
each of the three classifiers. Such consistent outcomes happened three times for the BPSO (on the corral,
ionosphere, and vehicle datasets), two times for the PBPSO (on the bands and dermatology datasets),
and four times each for the CFBPSO (on the dermatology, liver, parity5-5, and tic-tac-toe datasets) and
the SBPSO (on the horse-colic, parity5-5, tic-tac-toe, and vowel datasets). Only in three cases did such a
consistent outcome mean one algorithm performed best using all three classifiers: the SBPSO on horse-
colic and the tic-tac-toe datasets, and the CFBPSO on the parity5-5 dataset. In four cases the consistent
outcome meant a consistently worst outcome: PBPSO on the bands and dermatology datasets, CFBPSO
on the liver dataset, and SBPSO on the vowel dataset.

Although the individual ranks on single datasets varied across classifiers, in contrast the outcomes
of the statistical tests to compare the PSO algorithms combing the classifiers were fairly consistent:
using all 30 datasets, the CFBPSO and the SBPSO were the two best performing algorithms for all three
classifiers, and only for thieNN classifier was there a statistical significant difference with the SBPSO
outperforming the other three PSOs. Using the J48 classifier, the BPSO algorithm also was statistically
indistinguishable from these two algorithms, but for the other two classifiers the BPSO underperformed
in a statistically significant manner. The PBPSO underperformed using each of the three classifiers.
If only those datasets selected by thdest were used, then for each of the three classifiers the lone

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 151

Table 6.21: Detailed rankings of the four PSO algorithms on the FSP combining alttassédiers

Dataset | BPSO CFBPSO PBPSO SBPSO

41
13

arrhythmia
audiology
australian
bands
breasttissue

wWiN

corral

Ccrx
dermatology
german
glass

Y YR

PN N NN AN N
TR

wNhNPor|vAR®

o

hill-valley
horse-colic
ionosphere
iris

liver

monk-1

monk-2
movement-libras
musk-1
parity5-5

w N e e IS
NIRRT S NeEr PR

R

parkinsons
pima
sonar
soybean
spectf

NWB R POOpax | fr D AN RN
ARAIBNNOOLw oedwd

WRWLW[PR moNwN

NN

tic-tac-toe
vehicle
vote
vowel
wdbc

average rank | (2.60) (2.23) (3.09) (2.08)
average rank selected (2.83) (2.13) (3.26) (1.78)

ARWRPNA NNRPONANONNRPN| WOOWPRWNRRPRAO|WONREN
ARPRPNW PONANIMNNNBRAAX | MNAWNW| DREANWW| MDD WAD
WWRRNIPPOAPIEPONNDR| APNO pRPWRap AR R
MNNVNNRPRN| PROWWpW PRPPEOUMARAPENP I APV RPRPONE

NNANW WONNW| AOWRA WAWWN|WNRPN®W| WR AN ®
BRPWWA|[BPNRGRINERMGN ppRRrR AW VPP
=" =s mw = mow H - . w - . -H H H - =ow -

WANR PR L PRPoOXlkprw F w PralrrrP

= s = s == == =u H - . w «as """ --N N
RPAapR| LN RERGR| P S

PNWRADN
WkFRPrWhw
NWhWHS
PANAPRE

statistical conclusion that could be drawn was that the PBPSO algorithm underperformed.

Only in two cases did thé&-test indicate that a dataset yielded statistically significant differences
for each of the three classifiers used: the movement-libras and musk-1 datasets. These datasets also
showed the same behavior in that the SBPSO performed best using the GIKBl&hdassifiers, while
it performed worst using the J48 classifier. For five datasets (arrhythmia, audiology, hill-valley, horse-
colic, sonar) two out of three classifiers yielded a significant outcome df {tesst, while for a further
seven datasets (dermatology, german, ionosphere, parity5-5, parkinsons, soybean, spectf) one out of three
classifiers was able to do so. This means that for the remaining 16 datasets, none of the three classifiers
yielded a large enough difference in performance to yield a significant result ¢,

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

152 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

The details underlying the statistical comparison of the four PSO algorithms usihgealkclassifiers,
and some overview statistics on these rankings, are shown ir_ table 6.22.

Table 6.22: Overview of statistical results on the FSP combining all three classifiers

All classifiers All datasets Selected datasets

BPSO CFBPSO PBPSO SBPS(Q BPSO CFBPSO PBPSO SBPSO
Measure Rank Rank Rank Rank | Rank Rank Rank Rank
average rankl (2.60) (2.23) (3.09) (2.08) |(2.83) (2.13) (3.26) (1.78)
Rank of rank (3) (2) (4) (1) (3) (2) (4) (1)
Z-score 2.7135 0.7794 5.2828 2.7410 0.9137 3.8831
p-value 0.0033 0.2179 0.0000 0.0031 0.1804 0.0001
Holm a 0.0250 0.0167 0.0500 0.0250 0.0167 0.0500
ranked 1 3:7:2 13:10:7 4:2:0 10:11:20:1:0 4:4:0 0:0:04:0:9
#rankkd2 |9:10:12 8:8:8 4:6:7 9:6:2(2:2:2 3:0:4 1:1:33:2:0
ranked 3 13:8:6 6:7:7 7:9:12 4:6:4|6:1:2 2:1:2 0:2:51:1:0
ranked 4 5:5:9 3:5:7 15:13:10 7:7:3|0:1:5 0:0:3 8:2:11:2:0
ranked 1 12 30 6 41 2 8 0 13
ranked 2 31 24 17 17 6 7 5 5
ranked 3 27 20 28 14 9 5 7 2
ranked 4 19 15 38 17 6 3 11 3
datasets \ 90 90 90 90 \ 23 23 23 23

The SBPSO achieved the best average rank, both on all 90 datasets (aastagé 2.08), as on
the 23 selected datasets (average rank of 1.78). The outcome of the ID-test and Nemenyi post-hoc tests
on the combined results in talile 6.21 showed that in both cases the difference in average rank with the
CFBPSO was too small to indicate a significant difference in performance between the two, while the
BPSO and PBPSO were shown to underperform. Tablé 6.22 also contains two summaries of the number
of times a PSO algorithm achieved a particular rank, shown in two blocks of four lines each labeled “#
ranked”. The top-most block shows a count of the ranks split by classifier in the order of GNB, J48, and
k-NN classifier separated by colons. The bottom-most block sums these counts to a single total for the
PSO algorithm.

These summaries show that the SBPSO was able to achieve the best average rank on all 30 datasets,
mainly because it achieved the best rank on 41 out of 90 dataset-classifier pairs. The CFBPSO achieved
the best rank on 30 dataset-classifier pairs. The BPSO and PBPSO achieved the best rank on 12 and six
dataset-classifier pairs, respectively. The top ranks achieved by the SBPSO came predominately (20 from
41) from pairs using thk-NN classifier, while performance on the GNB and J48 classifier combined was
roughly equal to that of the CFBPSO. These results indicate that the SBPSO showed more variability in
performance across the three classifiers. This observation is investigated further[in tdble 6.23.

The different average ranks across a single classifier are repeated if_table 6.23 from the previous
sections. The average rank labeled “All” is the same as that shown at the top if_fable 6.22. The row
labeled “standard deviation” shows the standard deviation across the three different average ranks for
each of the three classifiers. Now shown together, one can see some patterns emerging:

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 153

Table 6.23: Overview of average rank and variability across classifiettsedASP

Measure | BPSO CFBPSO PBPSO SBPSO

average rank GNB (2.67) (1.97) (3.10) (2.27)
averagerank J48 | (2.37) (2.23) (3.10) (2.30)
average rank-NN | (2.75) (2.48) (3.08) (1.68)

average rank All \(2.60) (2.23) (3.09) (2.08)
standard deviation 0.20 0.26 0.01 0.35

e The under-performance of the PBPSO algorithm was consistent across the three classifiers.

e For the BPSO classifier, the performance was slightly better for the J48 classifier than the other
two, but overall still reasonably equal.

e For CFBPSO the performance was unequal across classifiers where the best performance came
using the GNB classifier and the worst using kN classifier.

e For SBPSO the performance was most unequal across classifiers, evidenced by the highest standard
deviation of the three average ranks per classifier. The best performance came ugiij\the
classifier, while performance for the GNB and J48 classifiers was less.

6.7 Conclusions

This chapter had two objectives. The most important objective was to determine whether it is possible to
successfully apply the SBPSO algorithm to the FSP. Here success meant yielding solutions of sufficient
guality, but not necessarily solutions on par with the best approaches for solving the FSP. The investiga-
tion of SBPSO's efficiency while solving the FSP (the number of iterations, fithess function evaluations,
or flops) was explicitly set out of scope. The second objective was to compare the performance of the
SBPSO algorithm on the FSP to that of three other PSO algorithms known from literature. These two ob-
jectives are discussed in reverse order, followed by some additional findings relating to the experimental
setup and its possible impact.

6.7.1 Comparing the SBPSO to other PSO algorithms

The SBPSO was compared to three other PSO algorithms from literature: the BPSO, the PBPSO, and the
CFBPSO. The process to compare the algorithms was kept similar to that used successfully im thapter 5
on the MKP. A difference in the process was that, instead of using three different swarm topologies,
in the experiments on the FSP the Von Neumann topology was used for all the PSO algorithms and in
all experiments. Instead, three differefassifierswere used to prevent the choice of a single classifier
from introducing a bias in the results. These three classifiers used were the GNB, the J48 kaNtlithe
classifier.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

154 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.7.1.1 CFBPSO and SBPSO performed best

In short, the results of the numerical experiments conducted on the FSP in this chapter can be described
as follows: the CFBPSO algorithm performed best when combined with either the GNB or J48 classifier,
but this performance was not significantly better than that of the SBPSO. UsikegNNeclassifier, the
SBPSO algorithm performed best and in this case the outperformance of the other three algoaghms
statistically significant.

When anF-test as described in sectibn 616.1 was used to determine which datasets showed a signifi-
cant difference in performance between the four PSO algorithms, only 23 out of a possible 90 combina-
tions of dataset and classifier showed such a statistically significant difference. Using only this smaller
set of datasets to compare the PSO algorithms, the statistical ID-tests to compare the PSO algorithms
became less powerful. In this case, the SBPSO and the CFBPSO could not be distinguished in perfor-
mance for any of the three classifiers. Also, using the GNB or the J48 classifier, the BPSO algorithm
could not be shown to have a significantly different performance than the CFBPSO or the SBPSO. The
PBPSO algorithm was shown to have significantly underperformed the other PSO algorithms for each of
three classifiers.

In contrast to how clearly the experiments on the MKP showed outperformance by the SBPSO, the
results on the FSP showed a much less clear result. One could perhaps see this as an indication that the
CFBPSO, which was not used in the experiments on the MKP, was a better algorithm than the MBPSO
it replaced in the line-up of PSO algorithms. Without testing the CFBPSO on the MKP, this cannot be
decided. A more significant finding, however, is the fact that the relative performance seen was much
less consistent on the FSP than on the MKP. While CFBPSO and SBPSO achieved the most first place
ranks on the FSP, both algorithms performed worst out of the four PSO algorithms on some datasets for
each of the three classifiers. On the MKP, the SBPSO never performed worse than second out of four and
performed best in the overwhelming majority of cases. Even if the CFBPSO was a better algorithm to
compare the SBPSO to, this does not explain the contrast of the SBPSO having performed quite poorly
in some cases on the FSP, while it was so consistent on the MKP. This inconsistency is discussed further
below.

6.7.1.2 Impact of choice of classifier on SBPSO

The SBPSO outperformed all other PSO algorithms orktN&l in a statistically significant manner. On

the GNB and J48 classifiers, the CFBPSO performed best, but not in a statistically significant manner.
A possible explanation for this difference in performance lies in the combination of (i) how the SBPSO
shows stability in the features selected, and (ii) the observation that feature selection by the PSO is more
directly linked with classification accuracy when using kkldN classifier.

Firstly, the SBPSO allows for stability in the features selected during a run of the algorithm. The
SBPSO behaves with more “crispness” than the other PSO algorithms when the search has not yet con-
verged: in the SBPSO, the randomness in which features are in- or excluded from a patrticle’s position is
lessthan for the other PSO’s. For those algorithms, which are all equal to or based on the binary PSO,
the process by which a particle’s velocity is converted to a position is the same. This process means that

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 155

early in the search a high degree of randomness exists in the particle’s poaitimugh some features

have a velocity close to 0 or 1 and are stable, those with a velocity around 0.5 will tend to flip between in-
and exclusion for consecutive iterations. In contrast, the feature subsets in the SBPSO’s particles are able
to better retain or exclude specific features and thus are more stable: whereas in a BPSO based algorithm
the exact features selected vary strongly until the velocity per dimension (per feature) converges, the
SBPSO is able to reduce this variance earlier in the search. If a feature is added to a particle’s position in
one iteration for the SBPSO, the chance of that feature being excluded again in the next iteration is, on
average, lower than for PSO algorithms using a transformation of the velocity to a position.

An example of how the stability of features selected is likely to have caused good performance using
thek-NN classifier was on the arrhythmia dataset, as previously discussed in §ectibn 6.6.4. The fact that
the arrhythmia dataset has a large number of features, as well as that only a relatively small number of
particles and iterations were used, meant that the search was still full in exploration mode and the swarm
had not yet converged when the runs ended. The non-SBPSO algorithms would still have shown a lot
of randomness in the swarm positions. Note that the good performance by SBPSO on the arrhythmia
dataset was only for theNN classifier: when the SBPSO combined with the GNB or J48 classifier, it
was not able to select small feature subsets (which in this case was good) in a similar manner. Using the
k-NN classifier, SBPSO selected on average 66 features ranging from 16 to 183, while for the GNB and
J48 classifiers these average number of features were 138 and 160 respectively.

The feature selection by the PSO algorithms in the wrapper was more closely linked to classification
accuracy when using tHeNN classifier than when using one of the other two classifiers. This results
from the fact that the GNB and J48 classifiers dat use all features equally in the classification task
and the in- or exclusion of a single feature can lead to little to no impact on the classification accuracy
using one of these two classifiers. In contrast, forkidN classifier each feature used directly impacts
the distance between instances and thus was much more likely to influence the accuracy classification.
Hence, the crispness that SBPSO exhibited when combined withiki classifier, existed to a much
smaller extent - if at all - when combined with the GNB and J48 classifiers. When the features selected
are less closely linked with the fitness value, steering the search through the parameter subspace using a
PSO algorithm becomes much harder.

6.7.2 Was the SBPSO successfully applied to the FSP?

The most important objective for this chapter was to see if the SBPSO could be successfully applied to
the FSP yielding quality solutions. At a first glance, this appears to be the case: the setup of using a
wrapper method combined with the SBPSO produced classification better than that using all features on
most datasets for all three classifiers. Exceptions were datasets in which all features were required in
classification (for example tHeNN classifier using all nine features in tic-tac-toe), since feature selec-
tion cannot lead to improvement in those cases. Other exceptions were combinations of classifier and
dataset where the classifier was unable to represent the classification concept, for example the GNB clas-
sifier on the monk-2 dataset: here the classification accuracy was solely driven by the class distribution
without regards of which features were used. In those combinations of classifier and dataset, the FSP
was not solvable by the SBPSO or any of the other PSO algorithms.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

156 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

It is unclear, however, how well SBPSO’s solutions were inasolutesense:were the selected
features the optimal ones for a given classifier? Might another algorithm have found better feature
subsets? Difference in setup make it difficult to compare average classification accuracies directly to that
of other studies. The fairest measure of the quality was to compare the SBPSO against other algorithms
in the same setup, and here SBPSO proved to work on par or better than the PSO algorithms it was
compared to. If, however, this experimental setup was flawed such that all four PSO algorithms failed
to find optimal solutions, this comparison would not bring such a failure to light. Some of the results
discussed in sectidn 6.6 point to a potential problem that casts doubt on how successful the SBPSO was
in solving the FSP.

6.7.2.1 Noisy fitness values

The potential problem mentioned in the previous paragraph is that the fitness function contains random
fluctuations or noise. The fitness value is set equal to the average classification accuracy using a classifier
andk-fold cross-validation. A first source of noise comes from the cross validation process: different
folds used in training and testing will likely lead to different classifications and hence to a different
classification accuracy. Care was taken to use a separate pseudo-random number sequence to determine
the cross validation folds, ensuring full replicability of the results. Still, fithess function evaluations using
the same set of features yielded slightly different results if they occurred at different times or for different
particles.

A second source of noise comes from the classifier itself, which may use pseudo-random numbers
to break ties in otherwise equal classification outcomes. Again, these pseudo random numbers were
controlled to ensure full reproducibility of the results, but subsequent classifications using the same
cross validation folds and the same features can still produce different tie breaks and hence a different
classification accuracy.

The random fluctuations in the fitness function evaluation may have aversely affected the PSO search,
especially if the random fluctuations exceeded the difference between the average classification accura-
cies achieved on different feature subsets: if a particle, representing one particular set of features selected,
achieved a fitness value that scoedmveaverage due to a random fluctuation, this may have resulted in
a false optimum. This and other patrticles in the swarm then became attracted to this false optimum, po-
tentially misdirecting the PSO search. Whether this actually occurred in the experiments requires a more
in depth investigation that was set out of scope for this thesis. For such an investigation, the distribution
of classification accuracies for each feature subset in the dataset would need to be determined and then
all particles in the swarm need to be tracked through all iterations.

The exhaustive investigation in sectionl6.3 constituted a less detailed analysis of the noisiness prob-
lem. Results of that investigation showed that for some of the smaller datasets, the random fluctuations
in classification accuracy exceeded the difference in average classification accuracy between features
subsets. It was unclear, however, whether this truly caused sufficient problems with the PSO search to
make it fail. Also, since the exhaustive search could only be performed for small datasets, it is not known
if the larger test datasets may have been affected.

All in all, what can be concluded is that the noise in the fitness calculations affects the relative

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 157

rankings of the PSO algorithms and weakens the comparison between the algorfibrdstermine
whether the SBPSO (and other PSOs) can truly solve the FSP in the chosen wrapper setup requires
additional investigation.

6.7.3 Problems with the experimental setup

A number of choices made in the experimental setup turned out to be less optimal for solving the FSP
using a PSO wrapper approach, or they turned out to partially impair the comparison of the SBPSO to
other PSO algorithms. These choices are discussed in turn.

6.7.3.1 PSO parameter tuning

The PSO tuning method that was successful for the MKP was assumed to also work sufficiently well for
tuning the PSO on the FSP. In particular, the choice of having separate groups of datasets for the tuning
and testing process meant that the selection of representative datasets for tuning was very important.
Although this approach was recommended by Salzberg [122], two possible problems surfaced. The first
problem was whether a single combination of PSO parameters could perform well enough on all FSPs
being considered. The second problem was whether the tuning method used was able to find such a
suitable parameter combination.

The results of the experiments on the FSP showed a large variability in the performance of the PSO
algorithms, evidenced by the fact that the SBPSO performed best on some datasets, but also ranked last
on a substantial number of datasets. During the PSO tuning the same variability was present, as no
clear outperformance could be seen by one or even by a few similar sets of parameters. Parameters that
worked well on one dataset, performed very badly on other datasets in the group of tuning problems.
One conclusion to be drawn is that different datasets for FSP in general have less in common than the
different benchmark problems for MKP have in common. This raises the question if it is possible to tune
a PSO algorithm such that it performs sufficiently well on all FSP using a single set of parameters. The
results of the experiments did not answer this question.

The second problem was whether the tuning method used worked sufficiently well. The FSP, espe-
cially for the larger datasets, required a lot of computational effort to perform a single fithess function
evaluation. By running a wrapper method to solve the FSP in the tuning process, and by choosing to
evaluate 128 different parameter combinations spanning the parameter space for each of the four PSO
algorithms, many fitness function evaluations were made in tuning. This put a restriction on the number
and size of the tuning datasets. As a result, only eight datasets were included in the tuning dataset and,
even though those datasets with the smallest number of features were excluded from tuning, six out of
the tuning datasets had between 10 and 20 features, with only two (lung-cancer and promoter) having
56 and 57 features respectively. The risk looms large that the group of tuning datasets was too small and
did not reflect the whole range of different FSPs. Perhaps it would have been better to have used a larger
number of tuning datasets, and to have reduced the number of parameter combinations used in tuning.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

158 CHAPTER6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM

6.7.3.2 Classifier parameter tuning

The parameterized classifiers J48 alkdN were tuned at the start of each PSO run, by taking that
parameter combination which yielded the highest classification accuracy from a limited set of possible
combinations. In this classification all features were used. During the PSO run, classification accuracies
were determined across the many subsets of features using these tuned classifiers.

The fact that the parameters were chosen from a limited grid meant that optimal parameters may not
have been considered in the classifier tuning process at all and that therefore optimal tuning was made
impossible. Further computational effort could have been employed to search across a larger grid of
possible values, or to use a search algorithm to iteratively adjust and improve parameters from a range of
values. If the classifier parameter tuning was indeed impactful - it was not possible to tell from the results
in this chapter - such impact would be most prominent fontiparameter of the J48 classifier: this was
the only truly continuous parameter for which only seven different parameter values were considered.

However, the fact thadll featureswere used to determine the classification accuracy in the classifier
tuning was likely more impactful. The investigations in section 6.4 showed that different feature subsets
achieve optimal classification accuracy using different classifier parameters. The tuning method used
for the classifier is premised on the assumption that parameters which work well using all features, also
work adequately on all other feature subsets. It is possible that this choice introduced a bias that favored
large subsets over small subsets with few features chosen. It is unclear if this bias affected the four PSO
algorithms differently and thus caused a bias in the comparative results.

6.7.3.3 Classifiers cannot represent all classification concepts

The results on the experiments in this chapter showed that for some datasets, some classifiers were not
able to represent the concept that underlies the dataset’s class label. This effect was more pronounced for
artificial datasets like, for example, monk-1, monk-2, parity5-5, and tic-tac-toe. A clear example of this
was how the GNB classifier failed on the monk-2 and tic-tac-toe datasets, as indicated in[secfign 6.3.2.1:
the GNB classifier yielded the same classification accuracy as random classification. In this combination
of classifier and dataset, feature selection did not improve the classification accuracy and thus yielded no
information on which PSO algorithm performed better on the FSP.

Only an exhaustive search like that performed in secfiords 6.8 ahd 6.4 is able to conclusively identify
all combinations of classifier and dataset where feature selection adds no value. Ideally, such cases should
be removed from the comparison of the PSO algorithms, because these cases do not help distinguish in
the performance of the PSO algorithms. For datasets with a large number of features, however, it is not
feasible to identify such situations beforehand.

6.7.4 Data pre-processing

Data normalization is important for tHeNN classifier as it ensures that all attributes are assigned the
same a priori importance in the classification process. Because the classification accurad¢yMRfthe
classifier is sensitive to scaling of the attributes, the classifier is not scale invariant. The accuracy of the
GNB and J48 classifiers is unaffected by data normalization, as both classifiers are scale invariant.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

CHAPTER 6. EXPERIMENTS ON THE FEATURE SELECTION PROBLEM 159

6.7.5 The next chapter

This chapter concludes the experimental analysis of the SBPSO. The next chapter will summarize all
results from this thesis to draw final conclusions with regards to the objectives set in the preface. Also,
possible future avenues of research regarding the SBPSO will be suggested.

© University of Pretoria

Part IV

Conclusionsand future work

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Chapter 7

Conclusionsand future work

This chapter summarizes the major findings of the examined work, and provides a set of suggested future
work that can be investigated as a result.

7.1 Conclusions

The main objective of the work described in this thesis was to develop and investigate a functioning,
generic, set-based PSO algorithm that can solve discrete optimization problems (DOPs). To reach this
goal, various sub-objectives were identified, which are discussed in turn below together with the main
findings.

7.1.1 Review of existing set-based PSO algorithms

The first sub-objective was to determine whether a functioning, generic, set-based PSO algorithm already
exists. For this a review of the appropriate literature was conducted, focusing on existing discrete and
set-based PSO algorithms. It was concluded that such an algorithm is not yet available, as the reviewed
algorithms all lacked at least one of the attributes of (i) functioning such that its use leads to good results
in solving DOPs, (ii) being generically applicable to all DOP and instead of being problem specific, or
(i) not being truly set based:

e The SetPSO proposed by Neethling and Engelbrecht [102] was shown in [79] to perform badly on
the MKP and hence it does not fulfill the criterion of being an algorithm that is truly functioning
on this DOP.

e The algorithms proposed by Corretal. [24], Bock and Hettenhausen [10] and Veenhlis [143]
are not generic but each contains problem specific elements.

¢ In the algorithms proposed by Chenal. [17], Wu et al. [149], and Khan and Engelbrecht [65]
the candidate solution is represented by a particle position with a fixed size and which thus can not
be called a true set.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

162 CHAPTER7. CONCLUSIONS AND FUTURE WORK

7.1.2 Constructing the SBPSO

Furthersub-objectives were to determine the basic components that make up a PSO algorithm in order to
determine what components should be present to make the new algorithm a PSO algorithm, and which
additional components are required to make the new set-based algorithm a functioning algorithm. Then,
these were to be combined to give a mathematical formulation of the SBPSO.

The review of the existing PSO literature had identified the components of a PSO algorithm as:

e a swarm of particles which each have a position and a velocity, whereby the position is updated by
adding the velocity to the current position.

e avelocity update equation that describes the evolution of a particle’s velocity. In its canonical form
this contains three components:

— a cognitive component that describes the attraction of the particle to the best position in the
search space found by that particle previously,

— a social component that describes the attraction of the particle to the best position in the
search space found by any particle in its neighborhood, and

— an inertia component that causes the velocity to retain part of the direction it currently has.

¢ the swarm topology.

To construct a set-based PSO, first a set-based equivalent was defined for the concepts of particle
position and velocity. Operators were designed to allow for the basic operations required in the position
and velocity update equations. The cognitive and social components of the velocity update equation
were successfully translated to a set-based setting. It proved that the concept of inertia did not translate
to a set-based setting. Hence generic mechanisms to add and remove elements were proposed which
allow the SBPSO algorithm to search the entire search space, regardless of the initial particle positions
in the swarm. A specific implementation of these generic mechanisms was proposekhasingament
selection, allowing for “smart” additions and deletions.

The SBPSO was thus shown to be a generic, set-based PSO algorithm. The only part of the main
objective still left to prove was whether it was also a functioning algorithm.

7.1.3 Testthe SBPSO and compare it to other PSOs

For SBPSO to be a functioning algorithm, the algorithm needed to be shown to work in practice. This
objective was met by testing the SBPSO on two different DOPs, namely the MKP and the FSP, and to
compare the performance (in terms of quality of the solution found) of the SBPSO against discrete PSO
algorithms from literature. For this comparison, PSO algorithms were chosen which had been applied
to these two DOPs before: the BPSO, MBPSO, and PBPSO in the case of the MKP, and the BPSO,
CFBPSO, and PBPSO in the case of the FSP.

Chaptef® for the MKP and chapfér 3 for the FSP argued that both problems were valid test beds for
a discrete PSO algorithm: a review of literature showed both to be non-trivial, NP-complete problems
which had been the subject of experiments involving discrete PSO algorithms.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 163

For the MKP a simple fitness function was available in either (i) the knapsack’stedbeemaximized
or (ii) the percentage shortfall of the knapsack’s value to the known optimum (or a known bound for this
optimum) to be minimized. The second option was used in all experiments. The only design problem
with regards to the fitness function for the MKP was how to incorporate the MKP’s weight constraints.
For this purpose, a penalty function approach was used, in which all solutions that broke at least one
constraint were deemed ineligible and assigned an infinite penalty.

The experiments in chapter 5 showed that SBPSO could be successfully applied to the MKP yielding
high quality solutions and SBPSO outperformed the three PSO algorithms it was compared to, BPSO,
MBPSO, and PBPSO, by a considerable and statistically significant margin. PBPSO vyielded better re-
sults than SBPSO in a small number of cases (for large MKPs with5 constraints when a ring or
Von Neumann topology was used for both PBPSO and SBPSO). The problems on which PBPSO out-
performed, were likely caused by PBPSO having been better attuned to those specific MKPs than the
SBPSO algorithm. In the remaining, more than 95% of all cases, the SBPSO algorithm was superior, re-
gardless of problem set or topology, to the other three algorithms. The SBPSO was therefore successfully
applied to the MKP.

For the FSP, in contrast, constructing the fitness function meant many choices. Three different clas-
sifiers were used, and the classification accuracy was determined using repeated 10-fold cross validation
of the FSP’s underlying dataset. Due to the inherent random fluctuations of the cross validation and
classification, the resulting fitness function was noisy: repeated fitness function evaluations on the same
position were likely to yield slightly different fithess values.

The experiments in chaptelr 6 showed a different picture than those on the MKP and applying the
SBPSO to the FSP could not be deemed a similar success: Usitkg\Neclassifier, the SBPSO al-
gorithm performed best and for this classifier the outperformance of the other three algorithms was
statistically significant. Using either the GNB or J48 classifier, the CFBPSO algorithm performed best,
but this performance was not significantly better than that of the SBPSO. A possible explanation for this
difference in performance across classifiers may lie in the combination of (i) how the SBPSO in theory
is more stable in which features are selected, and (ii) the observation that feature selection by the PSO is
more directly linked with classification accuracy when usingkiN classifier.

7.1.4 Usingk-tournament selection in the SBPSO

The SBPSO algorithm used in the experiments in chapters Bland 6 contained an operator to add elements
to a particle’s position usingkatournament selection. A run of the SBPSO algorithm thus required more
objective function evaluations than the other PSO algorithms it was compared to. One could argue that
because of this fact, SBPSO had an advantage over the other three PSO algorithms in the experiments.
The sensitivity analysis on the SBPSO also showed an improvement in performance for increasing values
of k, while the value&k = 1 (i.e. without the tournament selection) clearly underperformed.

Two findings from the tuning process, however, provided arguments that the influence of the tourna-
ment selection may have been small. First, the average vakia@bss the six different times SBPSO
was tuned (for three topologies each on two sets of MKPs) was insufficiently large to reject the statistical
hypothesis of an above average value. Second, control parakneserthe least important of SBPSO’s

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

164 CHAPTER7. CONCLUSIONS AND FUTURE WORK

parameters in explaining performance on the MKP, which seems to contradidethéhat larger tour-
naments provided a significant benefit to SBPSO. Further analysis is needed to see if the effect of the
added objective function evaluations on SBPSO’s performance was significant.

7.1.5 Investigate SBPSO'’s control parameters

A third objective to be addressed in this thesis was to investigate what parameter values work well for
SBPSO. For this purpose a detailed investigation and sensitivity analysis was conducted using the MKP.
The tuning process compared performance results on a subset of MKPs for many parameter combina-
tions. These parameter combinations were generated using Sobol pseudo-random numbers and spanned
the whole parameter space. This allowed for a detailed sensitivity analysis of SBPSO’s parameters on
the MKP, indicating which values for SBPSO'’s control parameters led to good results.

The results from sectidn 5.6.2 are repeated here for clarity:

c; (attraction to the personal best): For control paramgténe sensitivity analysis very clearly showed
that higher values lead to better results with €.8; < 1.0 leading to the best results, regardless
of which topology was used. A small drop-off was seen for parameter combinations @ith O.
c1 < 1.0 compared to @ < ¢; < 0.9, indicating that the optimal value faj lies above (B but
still some distance below the theoretical maximum 6f 1.

C2 (attraction to the neighborhood best): For control paranmatire area of good results was less clearly
marked than foc;. The best results were achieved by SBPSO using parameter combinations with
0.5< ¢z < 1.0 for Ibest SBPSO and Von Neumann SBPSO, equivalent to half the parameter space
for co. For gbest SBPSO in contrast36s ¢, < 0.6 yielded the best results.

c3 (the maximum number of elements to add to the solution set Ustogrnament selection): For
control parametets Ibest SBPSO and Von Neumann SBPSO achieved the best results for values
15 < ¢c3 < 2.5, but all values otz between 1.0 and 8.looked adequate. For gbest SBPSO, the
area of the parameter space that yielded good results was more evenly spread at slightly higher
values with 15 < c3 < 3.5 yielding the best results.

¢4 (the maximum number of elements to remove from the solution set randomly): For control parameter
¢4 all values 15 < ¢4 < 5.0 showed adequate results, regardless of which topology SBPSO was
paired with. The best results were found for parameter combinations whiag values in either
the range D < c3 < 25 0r 35<c3 < 4.0. Itis not clear why two distinct peaks showed and pa-
rameter combinations with 28 ¢, < 3.5 underperformed: this will require further investigation.

k (the size of the tournament used to select elements to add to the solution set): For control parameter
k, in general performance increased for higher valudsrefjardless of which topology was used.
For lbest SBPSO and Von Neumann SBPSO parameter combination& with (which means
excluding the tournament selection completely) underperformed, while the performance increase
for higher values ok topped off atk = 6. For gbest SBPSO a different pattern was seen, with
parameter combinations with= 1 not underperforming, but valu&s> 7 outperforming.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 165

Besides identifying which parameter values yielded the best results on theaviiRher analysis
was performed to determine which of SBPSO's five control parameters were the most important to tune
well. The relative importance of SBPSO's five control parameters was approximately the same regardless
of which topology was used: parameteisandcs were most important to the overall performance of
the SBPSO algorithm. These were followed in rank of importanceybyhe parameters, andk were
least influential on the overall performance of the SBPSO algorithm.

The sensitivity analysis showed that the SBPSO parametessdc,, linked to the addition and
removal of elements other than by attraction to a personal or neighborhood best, clearly influenced the
algorithm’s performance on the MKP. So besides the theoretical conclusion in diapter 4 that such mech-
anisms would be required for the SBPSO algorithm to function well, this was also validated in practice
for the MKP.

7.1.6 Difference in SBPSO'’s performance on MKP and FSP

Two things stood out in the performance of the SBPSO in the experiments on the MKP and the FSP:
firstly, the fact that the SBPSO clearly outperformed the other three PSO algorithms on the MKP, while
the results were much closer on the FSP with SBPSO outperforming the other three algorithms only
when thek-NN classifier was used. A caveat in this regard should be that the CFBPSO algorithm, which
performed on par with the SBPSO on the FSP, was not used in the experiments on the MKP. Potentially,
the CFBPSO may also perform well on the MKP and the outperformance by the SBPSO on the MKP
was due to a poor selection of PSO algorithms to compare it to.

A second fact that stood out, was that the results on the MKP were much more consistent: the SBPSO
performed best on 95% of the problems, with the PBPSO, BPSO, and MBPSO generally following in that
order. On the FSP there is no such consistency in the relative performance of the four PSO algorithms
across classifiers or datasets: each PSO algorithm performed bot#mdesbrst out of the set of four
PSOs on a number of datasets regardless of which classifier was used.

The main determinant for the difference in SBPSO'’s performance on the two problems and the con-
sistency of the results lies in the noisiness of the fitness function. On the MKP there is zero noise in the
MKP itself and zero noise in the fitness function used. In this situation the SBPSO was able to show
outperformance over the other algorithms.

On the FSP, however, the fitness function was noisy. A first source of noise comes from the cross
validation process: different folds used in training and testing likely lead to different classifications and
hence a different classification accuracy. A second source of noise came from the classifier itself, which
used pseudo-random numbers to break ties in otherwise equal classification outcomes. The exhaustive
investigation in section 6.3 showed that, for some of the smaller datasets, the noise in the classification
accuracy exceeded the difference in average classification accuracy between subsets of features. In such
cases, the PSO may have “constructed” a false optimum which steered the search away from potentially
better sets of features. It is unclear whether this noise truly caused large enough problems with the PSO
search to make it fail, nor if FSPs based on larger datasets were also thus affected. The inconsistency in
the results of the experiments on the FSP indicate that this problem may indeed have occurred: the noise
in the fitness function would have affected the outcomes for all four different PSO algorithms equally,

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

166 CHAPTER7. CONCLUSIONS AND FUTURE WORK

and a high enough level of noise is the best explanation for the large incongistgrezformance on the
FSP.

In the final conclusion, the SBPSO was shown to be a generic, functioning, set-based PSO algorithm.
The SBPSO performed very well on the MKP. In the experiments on the FSP, however, the results
were mixed: the SBPSO performed best out of four PSO algorithms when used together \itiiNhe
classifier. The SBPSO performed only second best behind the CFBPSO when used together with either
the GNB or the J48 classifier.

7.1.6.1 Why apply SBPSO to both the MKP and the FSP

SBPSO as constructed is a generic approach, which is capable of solving multiple problems and which
would require minimal change (e.g., only to the objective function) for its application to a new domain.
As such, it is mainly of interest academically. For practitioners, the argument of general applicability
holds less weight: for almost all problems, approaches which incorporate domain specific knowledge
will yield better results. However, two reasons why a generic approach may still be of interest outside of
academia are mentioned here. Firstly, on newer problems for which the deeper structure is not yet known
and no problem specific measures have been developed, a good generic approach may still be able to yield
reasonable results. This same argument holds even if problem specific methods exits, but the exact type
of problem is not recognized by the practitioner. Secondly, implementing a generic approach can be
more cost effective than implementing many problem specific algorithms with limited scope. A generic
approach may thus be used as a easily available first stab at the problem. And if the resulting solution is
good enough in practice, no further resources (development effort or computation time) need to be spent
in finding a better solution.

In this thesis, a generic algorithm was applied to both the MKP and the FSP, optimization problems
from very different domains. For neither domain, the state-of-the-art was improved upon. These prob-
lems were selected for exactly the reason that they aredissymilar. Applying the SBPSO to very
different domains gives a first indication of how generically applicable the SBPSO is. In practice, when
selecting an algorithm to help solve a new type of problem, a logical option would be to try an algo-
rithm that was successful on a similar problem. It is unlikely that a practitioner would instead select an
algorithm from a very dissimilar domain.

7.2 Future work

This section contains some ideas for future research on the new SBPSO algorithm. The simplest area for
further research on the SBPSO would be to simply apply it to discrete optimization problems other than
the MKP and the FSP. Without a clear ideandfyto pick specific problems, however, this would not be

the most efficient way to increase knowledge about the algorithm'’s strengths and weaknesses. Therefore
other ideas are proposed in separate sections below.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 167

7.2.1 Testthe CFBPSO on the MKP and compare it to the SBPSO

In chaptef b the SBPSO was tested on the MKP and compared to the BPSO, MBPSO, and PBPSO al-
gorithms. The SBPSO clearly outperformed the other three and the MBPSO clearly underperformed. In
chaptei b, the SBPSO was tested on the FSP and compared to the CFBPSO, BPSO, and PBPSO algo-
rithms. The CFBPSO and SBPSO performed best on the FSP, with the PBPSO underperforming. These
outcomes naturally invite the tuning and testing of the CFBPSO on the MKP to see if the outperformance
of the SBPSO in chaptét 5 was true outperformance, or whether it was at least partially caused by the
selection of PSO algorithms for comparison.

7.2.2 Investigate adding and removing elements in the SBPSO

An interesting further study into the working of the SBPSO algorithm would be on the impact of the
mechanisms to add and remove elements to a position other than via attraction to personal or neighbor-
hood bests. In this thesis, addition was done usitkgt@urnament selection while removal was done
randomly from a specific subset of elements. A logical first step would be to test if the SBPSO still
works if the parts of the update equations that deal with addition and removal of elements are changed
to be less computationally intensive. For example, the tournament selection can be dropped. A second
step could be to make these mechanisms dynamic, such that the number of random additions and re-
movals changes during search, either in a predetermined way based on the number of iterations or by
dynamically adapting the mechanism based on a measure of swarm diversity.

7.2.3 Investigate the impact of noisy environments on the SBPSO

The previous chapter describing the experiments on the FSP identified the problem of a noisy fithess
function potentially impacting the search for all PSO algorithms due to attraction to a false optimum.
Actually, this problem not only affects PSO algorithms but any search algorithm which uses a gradient
to guide the search. In order to test if the SBPSO performed adequately on the FSP in an absolute sense,
one possibility is to compare SBPSOQO’s results to the least intelligent search algorithm, random search,
using the same number of fitness function evaluations. The SBPSO uses a number of fithess function
evaluations roughly equal to the number of particles in the swarm times the number of iterations. For
random search, the same number of fithess function evaluations can be performed by repeatedly selecting
a feature subset at random by giving each feature a chance of 0.5 to be included. The random search has
no gradient or direction, so the search is not impacted by false optima.

In this way, it can be tested if the attraction to a false optimum was sufficiently detrimental such that
it hurt SBPSO's search power. A sufficiently large feature subspace would be required to ensure that
each algorithm can only search part of the sub-space. As a second step, this analysis can be repeated on
a number of different datasets of increasing size: any trend seen in outperformance or underperformance
by the SBPSO is expected to increase if the size of the feature subspace grows. If this trend is strong
enough and enough datasets are used, it will show even amongst the large variation across different FSPs.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

168 CHAPTER7. CONCLUSIONS AND FUTURE WORK

7.2.4 Investigate how well the SBPSO works in dynamic environments

This thesis only studied the SBPSO on problems that had static environments: the search space did not
change over time. In real life, many optimization problems exist that do change over time. Some of these
problems are DOPs. The changes in the search space can be gradual over time, or more pronounced
in discrete shifts. Studying the SBPSO in such dynamic environments could yield further insights into
the SBPSO’s strengths and weaknesses. This further study could investigate if the SBPSO needs to be
adjusted, and if so, whether small adjustments to the velocity update equation suffice or whether explicit
mechanisms need to be added to deal with the environment changing over time.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Bibliography

[1] Abraham, A., Liu, H., Zhang, W., and Chang, T.-G. (2006). Scheduling Jobs on Computational Grids
Using Fuzzy Particle Swarm Algorithm. In Gabrys, B., Howlett, R., and Jain, L., ed€o®yledge-
Based Intelligent Information and Engineering Systevotume 4252 ot ecture Notes in Computer
Science, pages 500-507. Springer, Berlin/Heidelberg.

[2] Almuallim, H. and Dietterich, T. G. (1994). Learning boolean concepts in the presence of many
irrelevant featuresAtrtificial Intelligence, 69(1):279-305.

[3] Amaldi, E. and Kann, V. (1998). On the approximability of minimizing nonzero variables or unsat-
isfied relations in linear system$heoretical Computer Science, 209(1-2):237-260.

[4] Averbakh, I. (1994). Probabilistic properties of the dual structure of the multidimensional knapsack
problem and fast statistically efficient algorithmdathematical Programming, 65(1-3):311-330.

[5] Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository.

[6] Bayes, M. and Price, M. (1763). An Essay towards Solving a Problem in the Doctrine of Chances.
Philosophical Transaction$3:370—418.

[7] Benameur, L., Alami, J., and El Imrani, A. (2009). A new discrete particle swarm model for the fre-
guency assignment problem. Bmoceedings of the IEEE/ACS International Conference on Computer
Systems and Applications, pages 139-144, Piscataway, NJ. IEEE Press.

[8] Berkelaar, M., Eikland, K., and Notebaert, P. (2006). Ipsolve version 5.5.

[9] Birattari, M., Stitzle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring
metaheuristics. IProceedings of the Genetic and Evolutionary Computation Confernece, pages 11—
18, San Francisco. Morgan Kaufmann.

[10] Bock, J. and Hettenhausen, J. (2012). Discrete particle swarm optimisation for ontology alignment.
Information Sciences, 192(0):152-173.

[11] Bolén-Canedo, V., &chez-Maro, N., and Alonso-Betanzos, A. (2013). A review of feature
selection methods on synthetic dakmowledge and information systems, 34(3):483-519.

[12] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A Training Algorithm for Optimal Margin
Classifiers. IrProceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT
'92, pages 144-152, New York, NY, USA. ACM.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

170 BIBLIOGRAPHY

[13] Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S., and Michelon, P. (20AGjulti-level search
strategy for the 0—1 Multidimensional Knapsack Probl&iscrete Applied Mathematics, 158(2):97—
109.

[14] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (198#gssification and Regression Trees
Wadsworth and Brooks, Monterey, CA.

[15] Cervante, L., Xue, B., Zhang, M., and Shang, L. (2012). Binary particle swarm optimisation for
feature selection: A filter based approach. Froceedings of the IEEE Congress on Evolutionary
Computation, pages 1-8.

[16] Chandrasekaran, S., Ponnambalam, S., Suresh, R., and Vijayakumar, N. (2006). A Hybrid Discrete
Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problenroceedings of
the IEEE Conference on Cybernetics and Intelligent Systems, pages 1-6, Piscataway, NJ. IEEE Press.

[17] Chen, W.-N., Zhang, J., Chung, H., Zhong, W.-L., Wu, W.-G., and Shi, Y. (2010). A Novel Set-
Based Particle Swarm Optimization Method for Discrete Optimization ProblHeE Transactions
on Evolutionary Computation, 14(2):278-300.

[18] Chu, P. and Beasley, J. (1998). A Genetic Algorithm for the Multidimensional Knapsack Problem.
Journal of Heuristics, 4:63—86.

[19] Chuang, L.-Y., Chang, H.-W., Tu, C.-J., and Yang, C.-H. (2008a). Improved binary PSO for feature
selection using gene expression d&famputational Biology and Chemistry, 32(1):29-38.

[20] Chuang, L.-Y., Tsai, S.-W., and Yang, C.-H. (2008b). Catfish particle swarm optimization. In
Proceedings of the IEEE Swarm Intelligence Symposium, pages 1-5.

[21] Chuang, L.-Y., Tsai, S.-W., and Yang, C.-H. (2011). Improved binary particle swarm optimization
using catfish effect for feature selectidaxpert Systems with Applicatiqr8(10):12699-12707.

[22] Claessens, S., Kose, M. A., and Terrones, M. E. (2012). How do business and financial cycles
interact?Journal of International Economi¢87(1):178-190.

[23] Clerc, M. (2004). Discrete Particle Swarm Optimization lllustrated by the Traveling Salesman
Problem. In Onwubolu, G. and Babu, B., editokgw Optimization Techniques in Engineering,
pages 219-239. Springer, Berlin/Heidelberg.

[24] Correa, E., Freitas, A., and Johnson, C. (2006). A New Discrete Particle Swarm Optimization
Algorithm Applied to Attribute Selection in a Bioinformatics Data SetPimceedings of the Genetic
and Evolutionary Computation Conference, pages 35-42, New York, NY. ACM Press.

[25] Cover, T. M. and Van Campenhout, J. M. (1977). On the Possible Orderings in the Measurement
Selection ProblemSystems, Man and Cybernetics, IEEE Transactions on, 7(9):657—661.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

BIBLIOGRAPHY 171

[26] Deep, K. and Bansal, J. (2008). A Socio-Cognitive Particle Swarm Optimizédiomulti-
Dimensional Knapsack Problem. Rroceedings of the First International Conference on Emerging
Trends in Engineering and Technology, pages 355-360.

[27] Diaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data
using random foresBMC Bioinformatics 7(1):3.

[28] Du, J.-X., Huang, D.-S., Zhang, J., and Wang, X.-F. (2005). Shape matching using fuzzy discrete
particle swarm optimization. IRroceedings of the IEEE Swarm Intelligence Symposium, pages 405—
408, Piscataway, NJ. IEEE Press.

[29] Duda, R. O., Hart, P. E., and Stork, D. G. (201Rattern classification. John Wiley & Sons.

[30] Eberhart, R. C., Kennedy, J., and Shi, Y. (200%jvarm intelligence. Morgan Kaufmann series in
evolutionary computation. Elsevier, Amsterdam.

[31] Eberhart, R. C. and Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources. IrProceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages
81-86, Piscataway, NJ. IEEE Press.

[32] Eberhart, R. C., Simpson, P. K., and Dobbins, R. W. (19@&)mputational Intelligence PC tools.
AP Professional, Boston, MA.

[33] Esposito, F., Malerba, D., Semeraro, G., and Kay, J. (1997). A comparative analysis of methods for
pruning decision treesEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476—
491.

[34] Fawcett, T. (2006). An introduction to ROC analydfattern recognition letters, 27(8):861-874.

[35] Fix, E. and Hodges, J. J. L. (2006). Discriminatory Analysis Nonparametric Discrimination: Con-
sistency Properties. Technical report, Defense Technical Information Center.

[36] Franken, N. (2009). Visual exploration of algorithm parameter spacBrdoeedings of the IEEE
Congress on Evolutionary Computation, pages 389—-398, Piscataway, NJ. IEEE Press.

[37] Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the
Analysis of VarianceJournal of the American Statistical Association, 32(200):675—-701.

[38] Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000).
Support vector machine classification and validation of cancer tissue samples using microarray ex-
pression dataBioinformatics 16(10):906—-914.

[39] Gao, F., Cui, G., Zhao, Q., and Liu, H. (2006). Application of Improved Discrete Particle Swarm
Algorithm in Partner Selection of Virtual Enterpriskternational Journal of Computer Science and
Network Security, 6(3A):208-212.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

172 BIBLIOGRAPHY

[40] Garda, A., Pastor, R., and Corominas, A. (2006). Solving the Response Time Variability Problem
by means of metaheuristicbrontiers in artificial intelligence and applications, 146:187—-196.

[41] Garcia, S., Derrac, J., Cano, J. R., and Herrera, F. (2012). Prototype selection for nearest neighbor
classification: Taxonomy and empirical studi£EE Transactions on Pattern Analysis and Machine
Intelligence, 34(3):417-435.

[42] Gavish, B. and Pirkul, H. (1986). Computer and Database Location in Distributed Computer Sys-
tems.|EEE Transactions on Computers, 35(7):583-590.

[43] Gens, G. and Levner, E. (1980). Complexity of approximation algorithms for combinatorial prob-
lems: a surveySpecial Interest Group on Algorithms and Computation Theory Ne5§2—-65.

[44] Gherboudj, A., Labed, S., and Chikhi, S. (2012). A New Hybrid Binary Particle Swarm Optimiza-
tion Algorithm for Multidimensional Knapsack Problem. In Wyld, D. C., Zizka, J., and Nagamalai,
D., editors,Advances in Computer Science, Engineering & Applicativokime 166 ofAdvances in
Intelligent and Soft Computing, pages 489—-498. Berlin/Heidelberg: Springer.

[45] Gomez, Y., Bello, R., Puris, A., Garcia, M. M., and Nowe, A. (2008). Two Step Swarm Intelligence
to Solve the Feature Selection Problelournal of Universal Computer Science, 14(15):2582-2596.

[46] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature seleclimmrnal of
Machine Learning Research, 3:1157-1182.

[47] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification
using support vector machindglachine learning, 46(1-3):389-422.

[48] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, |. H. (2009). The
WEKA data mining software: an updatdaCM SIGKDD Explorations Newslettet1(1):10-18.

[49] Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The
University of Waikato.

[50] Han, J., Kamber, M., and Pei, J. (2006pata mining, Southeast Asia edition: Concepts and
techniques. Morgan kaufmann.

[51] Hanafi, S. and Wilbaut, C. (2011). Improved convergent heuristics for the 0-1 multidimensional
knapsack problemAnnals of Operations Research, 183(1):125-142.

[52] Hembecker, F., Lopes, H. S., and Godoy, J. W. (2007). Particle Swarm Optimization for the Mul-
tidimensional Knapsack Problem. Rroceedings of the International Conference on Adaptive and
Natural Computing Algorithms, Part |, pages 358-365, Berlin/Heidelberg. Springer.

[53] Holm, S. (1979). A Simple Sequentially Rejective Multiple Test ProcedBcandinavian Journal
of Statistics6(2):pp. 65-70.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

BIBLIOGRAPHY 173

[54] Hunt, E. B., Marin, J., and Stone, P. J. (196Bxperimentsn induction. Boston, MA: Academic
Press, New York, NY.

[55] Iman, R. and Davenport, J. (1980). Approximations of the critical region of the Friedman statistic.
Communications in Statistics Part A - Theory and Methods, 9(6):571-595.

[56] Inza, ., Larrdiaga, P., Blanco, R., and Cerrolaza, A. J. (2004). Filter versus wrapper gene selection
approaches in DNA microarray domairAstificial Intelligence in Medicine, 31(2):91-103.

[57] Jiang, S., Pang, G., Wu, M., and Kuang, L. (2012). An imprdveetarest neighbor algorithm for
text categorizationExpert Systems with Applicatiqr9(1):1503-1509.

[58] Jirapech-Umpai, T. and Aitken, S. (2005). Feature selection and classification for microarray data
analysis: Evolutionary methods for identifying predictive geri&¥lC Bioinformatics6(1):148.

[59] John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant Features and the Subset Selection
Problem. InProceedings of the International Conference on Machine Learning, pages 121-129, New
Brunswick, NJ. Burlington, MA: Morgan Kaufmann.

[60] John, G. H. and Langley, P. (1995 stimating Continuous Distributions in Bayesian Classifiers
volume 1, pages 338-345. Burlington, MA: Morgan Kaufmann.

[61] Kellerer, H. (1999). A Polynomial Time Approximation Scheme for the Multiple Knapsack Prob-
lem. In Hochbaum, D., Jansen, K., Rolim, J., and Sinclair, A., ediRasdomization, Approxima-
tion, and Combinatorial Optimization. Algorithms and Techniques, volume 16Z&cifire Notes in
Computer Science, pages 51-62. Berlin/Heidelberg: Springer.

[62] Kennedy, J. and Eberhart, R. (1997). A Discrete Binary Version of the Particle Swarm Algorithm.
In Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, volume 5,
pages 4101-4109, Piscataway, NJ. IEEE Press.

[63] Kennedy, J. and Eberhart, R. C. (1995). Particle Swarm OptimisatidProlceedings of the IEEE
International Conference on Neural Networksges 1942-1948, Piscataway, NJ. IEEE Press.

[64] Kennedy, J. and Mendes, R. (2002). Population structure and particle swarm performance. In
Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1671-1676, Pis-
cataway, NJ. IEEE Press.

[65] Khan, S. and Engelbrecht, A. (2010). A fuzzy particle swarm optimization algorithm for computer
communication network topology desigApplied Intelligence, 36:1-17.

[66] Khanesar, M., Teshnehlab, M., and Shoorehdeli, M. (2007). A Novel Binary Particle Swarm Opti-
mization. InProceedings of the Mediterranean Conference on Control and Automation, Piscataway,
NJ. IEEE Press.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

174 BIBLIOGRAPHY

[67] Khuri, S., Back,T., and Heitlktter, J. (1994). The zero/one multiple knapsack problem and genetic
algorithms. InProceedings of the ACM Symposium on Applied Computing, pages 188-193, New
York, NY. ACM Press.

[68] Kira, K. and Rendell, L. A. (1992). A practical approach to feature selectioRrdneedings of the
Ninth International Workshop on Machine learning, pages 249-256.

[69] Kittler, J. et al. (1978). Feature set search algorithrRPattern recognition and signal processing,
pages 41-60.

[70] Kohavi, R. and John, G. H. (1997). Wrappers for feature subset sele&itificial Intelligence,
97(1-2):273-324.

[71] Koller, D. and Sahami, M. (1996). Toward optimal feature selectiorPrbteedings of the Inter-
national Conference on Machine Learning. Stanford InfoLab.

[72] Kong, M. and Tian, P. (2006). Apply the Particle Swarm Optimization to the Multidimensional
Knapsack Problem. In Rutkowski, L., Tadeusiewicz, R., Zadeh, L., and Zurada, J., eeitmsed-
ings of the International Conference on Artificial Intelligence and Soft Computing, volume 4029 of
Lecture Notes in Computer Science, pages 1140-1149. Springer, Berlin/Heidelberg.

[73] Kong, M., Tian, P., and Kao, Y. (2008). A new ant colony optimization algorithm for the multidi-
mensional knapsack problef@omputers & Operations Research, 35(8):2672—-2683.

[74] Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIBFoteedings
of the European Conference on Machine Learning, pages 171-182. Springer.

[75] Kothari, V., Anuradha, J., Shah, S., and Mittal, P. (2012). A Survey on Particle Swarm Optimization
in Feature Selection. In Krishna, P., Babu, M., and Ariwa, E., editélsbal Trends in Information
Systems and Software Applications, volume 27Cofmmunications in Computer and Information
Science, pages 192-201. Springer Berlin Heidelberg.

[76] Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques.
In Proceedings of the Conference on Emerging Artificial Intelligence Applications in Computer Engi-
neering: Real Word Al Systems with Applications in eHealth, HCI, Information Retrieval and Perva-
sive Technologies, pages 3-24, Amsterdams. Amsterdam: IOS Press.

[77] Kotsiantis, S. B., Kanellopoulos, D., and Pintelas, P. (2006). Data Preprocessing for Supervised
Learning.International Journal of Computer Science, 1(2):111-117.

[78] Labed, S., Gherboudj, A., and Chikhi, S. (2011). A Modified Hybrid Particle Swarm Optimization
Algorithm for Multidimensional Knapsack Problermternational Journal of Computer Applications,
34(2):11-16.

[79] Langeveld, J. and Engelbrecht, A. P. (2011). A Generic Set-Based Particle Swarm Optimization
Algorithm. In Proceedings of the International Conference on Swarm Intelligence, Cergy, France.
EISTI.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

BIBLIOGRAPHY 175

[80] Langeveld, J. and Engelbrecht, A. P. (2012). Set-based partialersoptimization applied to the
multidimensional knapsack probler8warm Intelligence, 6(4):1-46.

[81] Langley, P. and Sage, S. (1994). Induction of Selective Bayesian Classifiers. lardarkt, R. L.
and Poole, D., editor§&onference on Uncertainty in Artificial Intelligence, pages 399—-406. Morgan
Kaufmann.

[82] Layeb, A. (2011). A novel quantum inspired cuckoo search for knapsack probletemational
Journal of Bio-Inspired Computation, 3(5):297-305.

[83] LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In Touretzky, D. S.,
editor,Advances in Neural Information Processing Systgages 598-605. Morgan Kaufmann.

[84] Li, VY., Kim, J.-B., and Zhang, L. (2011). Corporate tax avoidance and stock price crash risk:
Firm-level analysisJournal of Financial Economics, 100(3):639-662.

[85] Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functiohSEE Transactions on Evolutionary
Computation, 10(3):281-295.

[86] Liu, B., Wang, L., and Jin, Y.-H. (2007). An Effective PSO-Based Memetic Algorithm for Flow
Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
37(1):18-27.

[87] Liu, H. and Abraham, A. (2007). An Hybrid Fuzzy Variable Neighborhood Particle Swarm Op-
timization Algorithm for Solving Quadratic Assignment Problendsurnal of Universal Computer
Science, 13(9):1309-1331.

[88] Liu, H., Abraham, A., and Hassanien, A. E. (2010). Scheduling jobs on computational grids using
a fuzzy particle swarm optimization algorithnfruture Generation Computer Systems, 26(8):1336—
1343.

[89] Lorie, J. H. and Savage, L. J. (1955). Three Problems in Rationing Cagdialournal of Business
28:229.

[90] Loulou, R. and Michaelides, E. (1979). New Greedy-like Heuristics for the Multidimensional 0-1
Knapsack ProblemOperations Research, 27(6).

[91] Ma, C.-X., Qian, L., Wang, L., Menhas, M. I., and Fei, M.-R. (2010). Determination of the PID
controller parameters by Modified Binary Particle Swarm Optimization algorithrRrdneedings of
the Chinese Control and Decision Conference, pages 2689-2694, Piscataway, NJ. IEEE Press.

[92] Ma, S. and Huang, J. (2005). Regularized ROC method for disease classification and biomarker
selection with microarray dat&ioinformatics 21(24):4356—-4362.

[93] Marill, T. and Green, D. M. (1963). On the effectiveness of receptors in recognition systeais.
Transactions on Information Theory, 9(1):11-17.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

176 BIBLIOGRAPHY

[94] Matheus, C. J. and Rendell, L. A. (1989). Constructive InductiorD@acision Trees. IfProceed-
ings of the 11th International Joint Conference on Artificial Intelligence, volume 89, pages 645—650.

[95] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generatdCM Transactions on Modeling and Computer Simula-
tion, 8(1):3-30.

[96] Menhas, M. I., Wang, L., Fei, M.-R., and Ma, C.-X. (2011). Coordinated controller tuning of a
boiler turbine unit with new binary particle swarm optimization algorithimernational Journal of
Automation and Computing, 8:185-192.

[97] Mitchell, T. M. (1997).Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition.

[98] Miyahara, K. and Pazzani, M. J. (2000). Collaborative Filtering with the Simple Bayesian Classifier.
In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, pages 679—-689.
Springer.

[99] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (201Fpundations of Machine Learning. MIT
press.

[100] Mosier, C. I. (1951). The need and means of cross validation. I. Problems and designs of cross-
validation. Educational and Psychological Measurement.

[101] Narendra, P. and Fukunaga, K. (1977). A Branch and Bound Algorithm for Feature Subset Selec-
tion. IEEE Transactions on Computers, C-26(9):917-922.

[102] Neethling, C. and Engelbrecht, A. (2006). Determining RNA secondary structure using set-based
particle swarm optimization. In Yen, G., Lucas, S., Fogel, G., Kendall, G., Salomon, R., Zhang,
B.-T., Coello, C., and Runarsson, T., edito”Rspceedings of the IEEE Congress on Evolutionary
Computation, pages 1670-1677, Piscataway. NJ. IEEE Press.

[103] Nemenyi, P. (1963)Distribution-free multiple comparisonsPhD thesis, Princeton University,
Princeton, NJ, USA.

[104] Nemhauser, G. L. and Ullmann, Z. (1969). Discrete dynamic programming and capital allocation.
Management Science, 15(9):494-505.

[105] Oh, I.-S., Lee, J.-S., and Moon, B. R. (2004). Hybrid Genetic Algorithms for Feature Selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1424-1437.

[106] Oliver, J. J. and Hand, D. J. (2014). On pruning and averaging decision trelesckedings of
the 12th International Conference on Machine Learning, pages 430-437.

[107] Olsen, A. L. (1994). Penalty functions and the knapsack problenPrdneedings of the First
IEEE Conference on Computational Intelligence, pages 554-558. IEEE.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

BIBLIOGRAPHY 177

[108] Omar, N., Jusoh, F., Ibrahim, R., and Othman, M. (2013). Review of feaéleetion for solving
classification problemslournal of Information System Research and Innovation, 3:64-70.

[109] Pacheco, J. A., Casado, Siiéz, L., and @mez, O. (2006). Analysis of new variable selection
methods for discriminant analysi€omputational Statistics & Data Analysis, 51(3):1463—-1478.

[110] Pampara, G., Franken, N., and Engelbrecht, A. (2005). Combining particle swarm optimisation
with angle modulation to solve binary problems.Rroceedings of the IEEE Congress on Evolution-
ary Computation, volume 1, pages 89-96, Piscataway, NJ. IEEE Press.

[111] Pang, W., Wang, K.-P., Zhou, C.-G., and Dong, L.-J. (2004a). Fuzzy discrete particle swarm
optimization for solving traveling salesman problem Pimceedings of the IEEE International Con-
ference on Computer and Information Technology, pages 796—800, Piscataway, NJ. IEEE Press.

[112] Pang, W., Wang, K.-P., Zhou, C.-G., Dong, L.-J., Liu, M., Zhang, H.-Y., and Wang, J.-Y. (2004b).
Modified particle swarm optimization based on space transformation for solving traveling salesman
problem. InProceedings of the International Conference on Machine Learning and Cybernetics,
volume 4, pages 2342-2346, Piscataway, NJ. IEEE Press.

[113] Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: Fast, incremental feature selection by
gradient descent in function spackhe Journal of Machine Learning Research, 3:1333-1356.

[114] Powers, D. M. (2007). Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlatiodournal of Machine Learning Technologies, 2(1):37—63.

[115] Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The Multidimensional Knapsack Problem:
Structure and AlgorithmdNFORMS Journal on Computing, 22:250-265.

[116] Purohit, A., Chaudhari, N. S., and Tiwari, A. (2010). Construction of classifier with feature
selection based on genetic programming. Piiloceedings of the IEEE Congress on Evolutionary
Computation, pages 1-5. IEEE.

[117] Quinlan, R. J. (1986). Induction of decision trebfachine Learning, 1:81-106.

[118] Quinlan, R. J. (1993)C4.5: Programs for Machine Learning. Burlington, MA: Morgan Kauf-
mann, 1 edition.

[119] Quinlan, R. J. (1996). Improved use of continuous attributes in CAnGyv preprint cs/9603103.

[120] Rish, I. (2001). An empirical study of the naive Bayes classifierPrioceedings of the Inter-
national Joint Conference on Artificial Intelligence: Workshop on Empirical Methods in Atrtificial
Intelligence, pages 41-46.

[121] Saeys, Y., Inza, |., and Laftaga, P. (2007). A review of feature selection techniques in bioinfor-
matics. Bioinformatics 23(19):2507-2517.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

178 BIBLIOGRAPHY

[122] Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoichkaredommended approach.
Data Mining and Knowledge Discovery, 1(3):317-328.

[123] Sandin, I., Andrade, G., Viegas, F., Madeira, D., da Rocha, L. C., Salles, T., and Gongalves, M. A.
(2012). Aggressive and effective feature selection using genetic programmiRgpdeedings of the
IEEE Congress on Evolutionary Computation, pages 1-8. IEEE.

[124] Shen, B., Yao, M., and Yi, W. (2006). Heuristic Information Based Improved Fuzzy Discrete PSO
Method for Solving TSP. IrProceedings of the Pacific Rim International Conference on Atrtificial
intelligence, pages 859-863, Berlin/Heidelberg. Springer.

[125] Shen, Q., Jiang, J.-H., Jiao, C.-X., Shen, G.-I., and Yu, R.-Q. (2004). Modified particle swarm op-
timization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism
of angiotensin Il antagonist&uropean Journal of Pharmaceutical Sciences, 22(2-3):145-152.

[126] Shi, Y. and Eberhart, R. C. (1998). A modified particle swarm optimizePrérteedings of the
IEEE International Conference on Evolutionary Computation, pages 69-73, Piscataway, NJ. IEEE
Press.

[127] Shi, Y. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimizati®moteedings of
the IEEE Congress on Evolutionary Computation, volume 1, pages 101-106, Piscataway, NJ. IEEE
Press.

[128] Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989). Classification of radar returns
from the ionosphere using neural networlieshns Hopkins APL Technical Digest, 10(3):262—266.

[129] Simon, H. A. (1983). Why Should Machines Learn?, pages 25-37. Symbolic Computation.
Springer Berlin Heidelberg.

[130] Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a
family of discriminant measures for performance evaluatiorProbteedings of Advances in Artificial
Intelligence, pages 1015-1021. Springer.

[131] Somol, P., Novovicova, J., and Pudil, P. (2010). Efficient Feature Subset Selection and Subset Size
Optimization. InPattern Recognition, Recent Advances, chapter 4, pages 75-97. InTech.

[132] Soyster, A., Lev, B., and Slivka, W. (1978). Zero-one programming with many variables and few
constraints European Journal of Operational Research, 2(3):195-201.

[133] Stoppiglia, H., Dreyfus, G., Dubois, R., and Oussar, Y. (2003). Ranking a Random Feature for
Variable and Feature Selectiodournal of Machine Learning Research, 3:1399-1414.

[134] Tabakhi, S., Moradi, P., and Akhlaghian, F. (2014). An unsupervised feature selection algorithm
based on ant colony optimizatioRngineering Applications of Al, 32:112-123.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

BIBLIOGRAPHY 179

[135] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G. (200@rticle Swarm Opti-
mization Algorithm for Permutation Flowshop Sequencing Problem. In Dorigo, M., Birattari, M.,
Blum, C., M.Gambardella, L., Mondada, F., andit@te, T., editorsAnt Colony, Optimization and
Swarm Intelligence, volume 3172 bécture Notes in Computer Science, pages 366—385. Springer,
Berlin/Heidelberg.

[136] Thomas, J. G., Olson, J. M., Tapscott, S. J., and Zhao, L. P. (2001). An efficient and robust
statistical modeling approach to discover differentially expressed genes using genomic expression
profiles. Genome Research, 11(7):1227-1236.

[137] Tu, C.-J., Chuang, L.-Y., Chang, J.-Y., Yang, C.-et.al. (2008). Feature selection using PSO-
SVM. IAENG International Journal of Computer Science, 33(1):111-116.

[138] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to
the ionizing radiation responsBroceedings of the National Academy of Scien88£9):5116-5121.

[139] Unler, A. and Murat, A. (2010). A discrete particle swarm optimization method for feature selec-
tion in binary classification problem&uropean Journal of Operational Research, 206(3):528-539.

[140] Vafaie, H. and De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine
learning. InProceedings on the 4th International Conference on Tools with Artificial Intelligence,
1992, pages 200-203.

[141] Vasquez, M. and Hao, J.-K. (2001). A hybrid approach for the 0—1 multidimensional knapsack
problem. InProceedings of the International Joint Conference on Atrtificial Intelligence, pages 328—
333.

[142] Vasquez, M. and Vimont, Y. (2005). Improved results on the 0—1 multidimensional knapsack
problem.European Journal of Operational Research, 165(1):70-81.

[143] Veenhuis, C. (2008). A Set-Based Particle Swarm Optimization Method. In Rudolph, G., Jansen,
T., Lucas, S., Poloni, C., and Beume, N., edit®¥syceedings of the Parallel Problem Solving from
Nature Conference, volume 5199 bécture Notes in Computer Science, pages 971-980. Springer,
berlin/Heidelberg.

[144] Vimont, Y., Boussier, S., and Vasquez, M. (2008). Reduced costs propagation in an efficient
implicit enumeration for the 01 multidimensional knapsack probléournal of Combinatorial Opti-
mization, 15(2):165-178.

[145] Wang, K.-P., Huang, L., Zhou, C.-G., and Pang, W. (2003). Particle swarm optimization for
traveling salesman problem. Proceedings of the International Conference on Machine Learning
and Cybernetics, volume 3, pages 1583-1585, Piscataway, NJ. IEEE Computer Society.

[146] Wang, L., Wang, X., Fu, J., and Zhen, L. (2008). A Novel Probability Binary Particle Swarm
Optimization Algorithm and Its ApplicationJournal of Software, 3(9):28-35.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

180 BIBLIOGRAPHY

[147] Watkins, C. (1989).Learningfrom delayed rewards. PhD thesis, King’s College, Cambridge,
England.

[148] Weston, J., Elisseeff, A., Satkopf, B., and Tipping, M. E. (2003). Use of the Zero-Norm with
Linear Models and Kernel Method3dournal of Machine Learning Research, 3:1439-1461.

[149] Wu, Z., Ni, Z., Gu, L., and Liu, X. (2010). A Revised Discrete Particle Swarm Optimization
for Cloud Workflow Scheduling. IfProceedings of the International Conference on Computational
Intelligence and Security, pages 184-188, Piscataway, NJ. IEEE Press.

[150] Xue, B., Zhang, M., and Browne, W. N. (2012). New fitness functions in binary particle swarm op-
timisation for feature selection. IRroceedings of the IEEE Congress on Evolutionary Computation,
pages 1-8.

[151] Yan, Z. and Yuan, C. (2004). Ant Colony Optimization for Feature Selection in Face Recognition.
In Zhang, D. and Jain, A. K., editor®roceedings of the International Conference on Biometric
Authentication, volume 3072 afecture Notes in Computer Science, pages 221-226. Springer.

[152] Yang, C.-S., Chuang, L.-Y., Li, J.-C., and Yang, C.-H. (2008). Chaotic maps in binary particle
swarm optimization for feature selection. Pmoceedings of the IEEE Conference on Soft Computing
in Industrial Applicationspages 107-112.

[153] Yang, S., Wang, M., and Jiao, L. (2004). A quantum particle swarm optimizatidProbeedings
of the IEEE Congress on Evolutionary Computation, volume 1, pages 320-324, Piscataway, NJ. IEEE
Press.

[154] Yu, L. and Liu, H. (2003). Feature selection for high-dimensional data: a fast correlation-based
filter solution. InProceedings of the 20th International Conference on Machine Learning, volume 3,
pages 856—-863.

[155] Yun, C., Oh, B., Yang, J., and Nang, J. (2011). Feature Subset Selection Based on Bio-Inspired
Algorithms. Journal of Information Science and Engineering, 27(5):1667-1686.

[156] Zhang, C., Sun, J., Wang, Y., and Yang, Q. (2007). An Improved Discrete Particle Swarm Op-
timization Algorithm for TSP. InProceedings of the IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology, pages 35-38, Piscataway, NJ. IEEE Computer
Society.

[157] Zhen, L., Wang, L., Wang, X., and Huang, Z. (2008). A Novel PSO-Inspired Probability-based Bi-
nary Optimization Algorithm. IfProceedings of the International Symposium on Information Science
and Engineering, volume 2, pages 248-251, Oulu. Academy Publisher.

[158] Zhong, W.-L., Zhang, J., and Chen, W.-N. (2007). A novel discrete particle swarm optimization
to solve traveling salesman problem. Rroceedings of the IEEE Congress on Evolutionary Compu-
tation, pages 3283-3287, Piscataway, NJ. IEEE Press.

© University of Pretoria

Part V

Appendices

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Appendix A

Detailed results for small MKPs

This appendix contains the detailed results of the experiments run on the small MKPs. In total 55 such
problems were considered, all of are known from the literature and are described by Chu and Beasley
[18]. All problems used are available on-line at the Operations Researchmbﬁhﬂg 55 problems used

can be found in the files “mknapl.txt” and “mknap2.txt” and are labeled with that filename and the order
in which they can be found the files: the problem labeled “mknap2-3” is thus the third problem found in
the file “mknap?2.txt”.

Four different algorithms (BPSO, MBPSO, PBPSO, SBPSO) were compared and each algorithm
was run using three different topologies for the particle swarm: star (GB), ring (LB), and Von Neumann
(VN). Each combination of algorithm and topology was first tuned on the tuning set of 15 problems. The
tuned combinations of algorithm and topology were then applied on the test set of 40 problems, where
100 independent runs were simulated for each of these 12 combinations. The exact experimental set-up
for both the tuning and the testing process is described in detail in selctidns $.2land 5.3.

This appendix contains detailed results of both the tuning experiments as well as the testing results
based on the tuned algorithm topology pairs. An overview of all result tables for the small MKPs in this
appendix can be found in talile A.1.

The detailed results for the tuning experiments are shown organized by algorithm in four(tables (A.2,
[A.3,[A.4,[A.B). Shown in all result tables for tuning problems is the average error across the independent
runs versus the known optimum of problem followed by a rank and counter shown between brackets
separated by a colon (*;"). In case of the results tables for the tuning group the rank shown is the rank
of the chosen best parameter combination in the set of 128 parameter combinations for the problem
named on that line. This ranking indicates how well the chosen parameter combination is suited to the
problem listed compared to the other parameter combinations investigated. The counter that follows the
colon is the number of 128 parameter combinations for which are tied for the lowest average error on that
problem. In case the known optimum is found and the average error is zero, the counter number indicates
how many parameter combination in total were able to find the known optimum in all 30 independent
runs.

For the problem “mknap1-4” in table_A.2 for example, a 0% average error indicates that the GB

Ihttp://people.brunel.ac. uk/~mastjjb/jeb/orlib/mknapinfo.html

© University of Pretoria

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 183

Table A.1: Guide to tables in AppendiX A

Group Type of comparison Description Table Statistically best

Tuning intra algorithm BPSO A1l LBBPSO&VNBPSO
Tuning intra algorithm MBPSO [AI2 LB MBPSO & VN MBPSO
Tuning intra algorithm PBPSO [A13 LBPBPSO &VNPBSPO
Tuning intra algorithm SBPSO AI4 (none)

Testing inter algorithm Summary A6l SBPSO

Testing intra algorithm Summary [AI0 Ring & Von Neumann
Testing inter algorithm Star topology A7 GBSBPSO

Testing inter algorithm Ring topology A8 LB SBPSO

Testing inter algorithm Von Neumann topology[_A.9 VN SBPSO & VN PBPSO
Testing intra algorithm BPSO AII1 LBBPSO&VNBPSO
Testing intra algorithm MBPSO [AI2 LB MBPSO & VN MBPSO
Testing intra algorithm PBPSO [AI3 LBPBPSO &VNPBSPO
Testing intra algorithm SBPSO AI4 (none)

BPSO algorithm using the chosen parameter combination was able to find the optimum saolation

30 independent runs. The rank of 59.5 indicates a totdd®5 — 1 = 118 parameter combinations all
achieved the same best average error on problem “mknapl-4”, a fact confirmed by the counter number
after the colon. For the problem “mknap1-5” in table JA.2 for example, the average error for the GB
BPSO algorithm is 0.059%, and the rank of 70.5 stems from the fact that it shares the 69th rank with 3
other parameter combinations. The counter number 1 after the colon indicates that a single parameter
combination had the best average error (this best average error b@0%&A). a fact not shown in the

table).

The result tables for the experiments on the tuned algorithm topology combinations fall into two
categories: inter algorithm comparisons and intra algorithm comparisons. The inter algorithm compar-
isons show the results of the four algorithms for one topology, resulting in three tablés (A.F. A.8, A.9).
The testing results by topology are summarized in tablé A.6. The intra algorithm comparisons show the
results of all three topologies for one algorithm, resulting in four talles {A.11)A.12] B.13] A.14). The
testing results by algorithm are summarized in table A.10. An overview of these result tables as well as
the best topology or algorithm for each table with testing results can be found if_table A.1. The best in
this case is meant as statistically significant outperformaace .05) according to a Iman-Davenport
test on the average error and further Nemenyi-tests with Holm-adjastédr a detailed description of
this statistical test see appen(ix E.

Shown in the result tables for the experiments are the average error over 100 independent runs versus
the known optimum, as well as the success rate (SR) of finding this optimum. Also shown are the number
of problems out of 40 for which all 100 runs of the algorithm successfully found the known optimum (“#
perfect®), and for which it could not find the optimum in any of the runs ("# failure®).

© University of Pretoria

184

ﬂ UN
< 0

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.1 Detailed tuning results per algorithm

A.1.1 BPSO
Table A.2: Details of the small MKP tuning results for BPSO.
GB BPSO LB BPSO VN BPSO
Problem n m error (rank: #best) error (rank: #best) error (rank: # best)
mknap1-4 20 10/0.000% (59.5: 118)|0.000% (57: 113) |0.000% (57.5: 114)
mknap1-5 28 10/0.059% (70.5: 1) 0.000% (14: 27) [0.008% (47.5: 27)
mknap2-10 71 2|5999% (10: 1) 6.315% (6: 1) 5761% (3:1)
mknap2-15 30 5/0.000% (36: 71) |0.000% (30:59) |[0.000% (29: 57)
mknap2-17 40 5(0.011% (1: 1) 0.000 % (7:13) |0.000% (6.5: 12)
mknap2-2 60 30/0.315% (11: 1) 0.199% (6: 1) 0.094% (1:1)
mknap2-20 50 5/0.144% (14: 1) 0.000 % (2: 3) 0.000 % (3:5)
mknap2-26 60 5(0.048% (4: 1) 0.057% (5:1) 0.008% (1:1)
mknap2-28 70 5/1.075% (22: 1) 0478% (7:1) 0.119% (3:1)
mknap2-33 80 5(1.992% (13: 1) 1520% (7:1) 0440% (2:1)
mknap2-39 90 5(3.934% (15: 1) (2701% (7:1) |1.051% (2:1)
mknap2-4 24 2|0.000% (48.5: 96) |0.000% (39.5: 78) |0.000% (40: 79)
mknap2-41 27 4]10.213% (4: 1) 0.257% (17.5: 1) 0.195% (8:1)
mknap2-45 40 30/0.662% (3: 1) 0.000% (1:1) 0.155% (8: 3)
mknap2-48 35 4|2.017% (86: 1) 0415% (22: 1) 0.453% (25: 1)
average \ |1.098% (26.5:n.a.) [0.796% (15.2:n.a.) |0.552% (15.8:n.a.)
perfect 3 7 5
awerage non-perfeth 1.372% (21.1:na.) [1.493% (9.7:n.a.) |0.828% (10.1:n.a.)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 185

A.1.2 MBPSO

TableA.3: Details of the small MKP tuning results for MBPSO.

GB MBPSO LB MBPSO VN MBPSO

Problem n m error (rank: #best) error (rank: #best) error (rank: # best)
mknap1-4 20 10/0.000% (9: 17) |0.000% (13: 25) |0.000% (10.5: 20)
mknapl-5 28 10/0.073% (10: 2) 0.016% (16.5: 3) 0.013% (15: 2)
mknap2-10 71 2(6.693% (1: 1) 5690% (1:1) 5631% (1:1)
mknap2-15 30 5|/0.000% (30.5: 60) |0.000% (26:51) |[0.000% (29: 57)
mknap2-17 40 5|0.302% (14: 1) 0.011% (1:1) 0.063% (12: 2)
mknap2-2 60 30/0.642 % (7: 1) 0.255 % (9: 1) 0.153 % (1: 1)
mknap2-20 50 5/0462% (5: 1) 0.056% (4:1) 0.007% (1:1)
mknap2-26 60 5[0.673% (29: 1) 0.083% (1:1) 0119% (1:1)
mknap2-28 70 5/0576% (6: 1) 0.163% (6: 1) 0.170% (11: 1)
mknap2-33 80 5(1434% (7:1) 0541% (12: 1) 0.306% (5:1)
mknap2-39 90 5(1.903% (14: 1) 0684% (5:1) 0515% (2:1)
mknap2-4 24 210.022% (15: 1) 0.000% (2.5: 4) 0.008% (9.5:7)
mknap2-41 27 411.022% (425: 1) 0350% (3:1) 0.403% (3.5: 1)
mknap2-45 40 30|3.767% (25: 1) 0.988% (11: 1) 0.662% (6: 1)
mknap2-48 35 4|1.556% (26: 1) 0593% (12: 1) 0343% (1:1)
average | |1.275% (16.1:n.a.) |0.629% (8.2:n.a.) |0560% (7.2:n.a.)
perfect 2 3 2

awverage non-perfect 1.471% (155:n.a.) |0.786% (6.8:n.a.) |0.646% (5.3:n.a.)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

186 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.1.3 PBPSO

TableA.4: Details of the small MKP tuning results for PBPSO.

GB PBPSO LB PBPSO VN PBPSO

Problem n m error (rank: #best) error (rank: #best) error (rank: # best)
mknap1-4 20 10/{0.000% (35:69) |0.000% (36: 71) |0.000% (36: 71)
mknapl-5 28 10{0.043% (28: 1) 0.003% (24.5: 20) [0.005% (28.5: 19)
mknap2-10 71 2|5588% (2: 1) 5484% (6: 1) 5428% (5: 1)
mknap2-15 30 5/0.000% (28:55) |0.000% (26:51) |[0.000% (25.5: 50)
mknap2-17 40 5|0.101% (17: 1) 0.000% (85:16) [0.000% (8: 15)
mknap2-2 60 30/{0.196% (3.5: 1) 0.092% (4:1) 0.066% (4:1)
mknap2-20 50 5/0.041% (2:1) 0.000% (3:5) 0.000% (4:7)
mknap2-26 60 5/0.035% (8:1) 0.013% (8:1) 0.005% (7:1)
mknap2-28 70 5/0.197% (7: 1) 0.043% (5:1) 0.021% (5:1)
mknap2-33 80 5/0.500% (10: 1) 0.205% (9:1) 0.176 % (8: 1)
mknap2-39 90 5(0524% (7:1) 0558% (9: 2) 0498% (9:1)
mknap2-4 24 210.000% (29:57) |0.000% (27:53) |0.000% (24: 47)
mknap2-41 27 4]10.428% (23:1) 0.289% (24: 1) 0.303% (22: 1)
mknap2-45 40 30/1.027% (11: 1) 0.000% (2: 3) 0.168% (12: 2)
mknap2-48 35 4/0983% (18: 1) 0.120% (1:1) 0.087% (1:1)
average | |0.644% (15.2:n.a.) |0.454% (12.9:n.a.) |0.450% (13.3:n.a.)
perfect 3 6 5

awverage non-perfect 0.805% (11.4:n.a.) |0.756% (10.1:n.a.) |0.676 % (10.2:n.a.)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 187
A.1.4 SBPSO
TableA.5: Details of the small MKP tuning results for SBPSO.
GB SBPSO LB SBPSO VN SBPSO

Problem n m error (rank: #best) error (rank: #best) error (rank: # best)
mknap1-4 20 10/0.000% (29: 57) |0.000% (30:59) |0.000% (28.5: 56)
mknap1-5 28 10/0.000% (6.5: 12) |[0.000% (17: 33) |0.000% (17: 33)
mknap2-10 71 2|5199% (1: 1) 5211% (2:1) 5210% (1.5: 2)
mknap2-15 30 5/0.000% (35:69) |0.000% (36: 71) |[0.000% (36.5: 72)
mknap2-17 40 5|0.000% (4.5: 8) 0.000% (23.5: 46) [0.000% (23: 45)
mknap2-2 60 30{0.076% (2: 1) 0.028% (2:1) 0.021% (1:1)
mknap2-20 50 5/0.000% (4:7) 0.000% (9:17) |0.000% (85: 16)
mknap2-26 60 5[0.001% (1.5: 2) 0.000% (3.5: 6) 0.000% (3:5)
mknap2-28 70 5/0.000% (1: 1) 0.002% (4:1) 0.002% (25: 4)
mknap2-33 80 5(0.002% (1: 1) 0.002% (1:1) 0.004% (1:1)
mknap2-39 90 5(0.017% (2: 1) 0.000% (1.5: 2) 0.000% (2: 3)
mknap2-4 24 210.000% (26.5: 52) [0.000% (26: 51) |0.000% (26: 51)
mknap2-41 27 4/0.196 % (1:1) 0.213% (3:1) 0.225% (3:1)
mknap2-45 40 30/0.000% (1: 1) 0.000% (12.5: 24) [0.000% (13: 25)
mknap2-48 35 4/0394% (8: 1) 0.081% (1:1) 0.077% (2:1)
average | |0.392% (83:n.a.) |0.369% (11.5:n.a.) |0.369% (11.2:n.a.)
perfect 8 9 9

awverage non-perfect 0841% (2.4:na.) |0923% (2.2:n.a.) |0923% (1.8:n.a.)

© University of Pretoria

188

g .
& i

&

UNIBESITHI YA

NIVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
PRETORIA

APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.2 Summarized testing results per topology

TableA.6: Summary of the small MKP test results per topology. Bold face indicates statistically signifi-
cant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error (rank error (rank) error (rank error (rank)
average errorl.117 % (2.80)1.089 % (3.56)0.628 % (2.45)0.444% (1.19)
stdev error |1.913 % 1.592 % 1.625 % 1.640 %
average SR | 42.8% (2.81) 29.9% (3.38) 51.4% (2.50) 82.5% (1.31)
stdev SR 41.3 % 34.7 % 35.1% 31.8%

perfect 5 (2.5) 3 (4) 5 (25) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.58 8.21 4.36
p-value 0.0000 0.0000 0.0000
Holm a 0.0250 0.0500 0.0167

\ LB BPSO \ LB MBPSO \ LB PBPSO \ LB SBPSO
average errgr0.841 % (2.95)0.639 % (3.35)0.521 % (2.31)0.440% (1.39)
stdev error |1.716 % 1.620 % 1.634 % 1.641 %
average SR | 50.3% (2.93) 45.7% (3.24) 63.4% (2.28) 81.9% (1.56)
stdev SR 43.3% 374 % 36.8 % 33.2%
perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.40 6.79 3.19
p-value 0.0000 0.0000 0.0007
Holm a 0.0250 0.0500 0.0167

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem error (rank error (rank) error (rank error (rank)
average errgr0.609 % (2.81)0.613% (3.45)0.510% (2.28)0.439% (1.46)
stdev error | 1.635 % 1.623 % 1.633 % 1.641 %
average SR | 56.6 % (2.76) 48.6% (3.31) 64.8% (2.36) 82.7% (1.56)
stdev SR 41.1 % 35.3% 36.8 % 32.6 %

perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)
Z-score 4.68 6.89 2.84

p-value 0.0000 0.0000 0.0023

Holm a 0.0250 0.0500 0.0167

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 189

A.3 Detailed testing results per topology

A.3.1 Star topology

Table A.7: Details of the small MKP test results for the star topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem n m error (rank error (rank error (rank) error (rank)

mknapl-1| 6 10| 0% (25)] 0% (25)] 0% (25)] 0% (25)

mknapl-2| 10 10| 0% (25)] 0% (25)] 0% (25) 0% (25)
mknap1-3| 15 10, 0% (25)| 0% (25)] 0% (25) 0% (2.5)

mknapl-6 | 39 5[0.262% (3)|0.600% (4)|0.261% (2)|0.070% (1)
mknapl-7| 50 5[0.572% (3)|0.725% (4)|0.312% (2) |[0.074% (1)
mknap2-1 | 60 30(0.228% (2) |1.164% (4) |0.242% (3) |0.021% (1)
mknap2-3| 28 2(0.046% (2) |0.730% (4) |0.050% (3) 0% (1)
mknap2-5|28 2[1.811% (4)|1.463% (3)|1.000% (2)(0.114% (1)
mknap2-6 | 28 2(3.919% (3) |3.871% (2)|3.937% (4)|3.698% (1)
mknap2-7| 28 2|0.768% (2) |1.374% (4)|0.853% (3)[0.347% (1)
mknap2-8 | 28 2|0.801% (2)|2.088% (4)|0.851% (3)|0.231% (1)
mknap2-9 |105 2|0.349% (2)|0.950% (4)|0.367% (3)|0.189% (1)
mknap2-11 30 5(0.416% (3) |0490% (4)|0411% (2)]0.348% (1)
mknap2-12 30 5(0.083% (2)|0.201% (4)|0.168% (3)[0.004% (1)
mknap2-13 30 5(3.209% (2) (3.237% (4)|3.209% (2) |3.209% (2)
mknap2-14 30 5(0.030% (2)|0.133% (4) |0.082% (3) 0% (1)
mknap2-16 40 5|0.018% (2) |0.134% (4) |0.045% (3) 0% (1)
mknap2-18 40 5(10.44% (4) |9471% (3) (9.420% (2) |9.407% (1)
mknap2-19 40 5 0% (15)[0317% (4)|0.017% (3) 0% (1.5)
mknap2-21 50 5(0.042% (2)|0.135% (4) |0.046% (3) 0% (1)
mknap2-22 50 5[0.046% (2) |0.452% (4) |0.048% (3) 0% (1)
mknap2-23 50 5 0% (2) |0.012% (4) 0% (2) 0% (2)
mknap2-24 60 5(0.123% (2) |0.509% (4) |0.131% (3) |0.002% (1)
mknap2-28 60 5(0.016% (2) |0.351% (4)|0.032% (3)[0.001% (1)
mknap2-27 60 5(0.006% (3) |0.285% (4) 0% (1.5) 0% (1.5)
mknap2-29 70 5[0.255% (2) |1.243% (4) |0.464% (3) 0% (1)
mknap2-30 70 5(0.031% (2) |0.878% (4) |0.068% (3) 0% (1)
mknap2-31 70 5|0.363% (3) |0.623% (4)|0.350% (2) |0.004% (1)
mknap2-32 80 5(0.197% (3) |0.628% (4) |0.030% (2) 0% (1)
mknap2-34 80 5(0.254% (4)|0.198% (3) |0.064% (2) 0% (1)
mknap2-33 80 5(0.946% (3) |1.385% (4) |0.235% (2) 0% (1)
mknap2-36 90 5|0.867% (4) |0.621% (3) |0.116% (2) 0% (1)
mknap2-37 90 5|0.627% (3) |0.803% (4) |0.055% (2) 0% (1)
mknap2-38 90 5(1.864% (4) |1.255% (3)|0.326% (2)|0.014% (1)
mknap2-40 90 5(1.854% (4)|0.828% (3)|0.233% (2) [0.001% (1)
mknap2-42 34 4|1.668% (4)|0.751% (3)|0.235% (2) |0.005% (1)
mknap2-43 29 2(3.330% (4) |1.442% (3) |0406% (2) 0% (1)
mknap2-44 20 10{3.331% (4) |1.880% (3) |0.269% (2) 0% (1)

mknap2-46 37 30/3.665% (4) |1.778% (3) |0.476% (2) 0% (1)
mknap2-47 28 42.259% (4)|0571% (3)]0.295% (2) |0.007% (1)

average 1.117 % (2.80)1.089 % (3.56)0.628 % (2.45)0.444% (1.19)
perfect 5 (25) 3 (4) 5 (2.5) 21 (1)
#failure 11 (4) 4 (2) 4 (2) 4 (2)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

190 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.3.2 Ring topology

TableA.8: Details of the small MKP test results for the ring topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem n m error (rank error (rank error (rank) error (rank)

mknapl-1| 6 10 0% (25)] 0% (25)] 0% (25) 0% (2.5)

mknapl-2 | 10 10/0.127% (4) 0% (2) 0% (2) 0% (2)
mknapl-3| 15 10 0% (25) 0% (25) 0% (25) 0% (25)
mknapl-6 | 39 5(0.121% (3) |0.296% (4) |0.119% (2) |0.116% (1)
mknapl-7 | 50 5(0.314% (3)|0.385% (4)|0.114% (2)|0.090% (1)
mknap2-1| 60 30{0.358% (4) |0.249% (3)|0.029% (2)[0.001% (1)
mknap2-3 | 28 2 0% (2) [0.047% (4) 0% (2) 0% (2)
mknap2-5| 28 2[0.336% (3)|0.443% (4)|0.145% (2)|0.043% (1)
mknap2-6 | 28 2(3.863% (4)(3.840% (2)|3.846% (3)|3.698% (1)
mknap2-7 | 28 2(0.503% (2)|0849% (4)|0644% (3)]0.286% (1)
mknap2-8 | 28 2[0.235% (2) |0.782% (4)|0.265% (3)[0.121% (1)
mknap2-9 {105 2(0.191% (1) |0.494% (4)|0.207% (2)|0.225% (3)
mknap2-11 30 5(0.368% (2) |0.471% (4)|0.405% (3)|0.348% (1)
mknap2-12 30 5(0.162% (3) |0.126% (2) |0.236% (4) 0% (1)
mknap2-13 30 5(3.209% (2.5)[3.209% (2.5)/3.209% (2.5)/3.209% (25)
mknap2-14 30 5(0.038% (2) |0.110% (3)|0.228% (4) 0% (1)
mknap2-16 40 5(0.012% (2) |0.093% (4) |0.063% (3) 0% (1)
mknap2-18 40 5(9.449% (3) |9.466% (4)|9.408% (2) [9.407% (1)
mknap2-19 40 5 0% (2) [0.088% (4) 0% (2) 0% (2)
mknap2-21 50 5 0% (2) |0.018% (4) 0% (2) 0% (2)
mknap2-22 50 5 0% (2) |0.102% (4) 0% (2) 0% (2)
mknap2-23 50 5 0% (25) 0% (25) 0% (25) 0% (25)
mknap2-24 60 5|0.007% (2)|0.118% (4) |0.015% (3) 0% (1)
mknap2-283 60 5(0.001% (2) |0.045% (4) |0.007% (3) 0% (1)
mknap2-27 60 5 0% (2) |0.027% (4) 0% (2) 0% (2)
mknap2-29 70 5(0.012% (2) |0.223% (4) |0.040% (3) 0% (1)
mknap2-30 70 5(0.007% (3) |0.139% (4) 0% (1.5) 0% (1.5)
mknap2-31 70 5(0.091% (4) |0.051% (3) 0% (1.5) 0% (1.5)
mknap2-32 80 5(0.179% (3) |0.208% (4) |0.004% (2) 0% (1)
mknap2-34 80 5(0.034% (4) |0.032% (3) 0% (15) 0% (1.5)
mknap2-33 80 5|0.666% (4) |0.395% (3) |0.079% (2) 0% (1)
mknap2-36 90 5(0.359% (4) |0.142% (3) |0.016% (2) 0% (1)
mknap2-37 90 5(0.467% (4)|0.357% (3) |0.038% (2) 0% (1)
mknap2-38 90 5(1.418% (4)|0509% (3)|0.184% (2)|0.010% (1)
mknap2-40 90 5(0.998% (4)|0.292% (3)|0.181% (2) |0.001% (1)
mknap2-42 34 4]0.836% (4)]0.231% (3)|0.116% (2)|0.008% (1)
mknap2-43 29 2(2542% (4)|0.392% (3)(0.323% (2)|0.013% (1)
mknap2-44 20 10/2.852% (4) |0.614% (3) |0.372% (2) 0% (1)

mknap2-46 37 30/2.666% (4)|0.435% (3)|0.328% (2)|0.002% (1)
mknap2-47 28 4/1.217% (4) |0.271% (3)|0.225% (2) |0.007% (1)

average 0.841% (2.95)0.639% (3.35)0.521 % (2.31)0.440% (1.39)
perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 191

A.3.3 Von Neumann topology

Table A.9: Details of the small MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance of one algorithm for that topology.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem n m error (rank error (rank error (rank) error (rank)

mknapl-1| 6 10 0% (25)] 0% (25)] 0% (25) 0% (2.5)

mknapl-2 | 10 10/0.212% (4) 0% (2) 0% (2) 0% (2)
mknapl-3| 15 10 0% (2.5) 0% (2.5) 0% (2.5) 0% (2.5)
mknapl-6 | 39 5|0.093% (1.5)[0.278% (4) |0.093% (1.5)/0.104% (3)
mknapl-7 | 50 5|0.235% (3) |0.280% (4)|0.097% (2)|0.054% (1)
mknap2-1 | 60 30/0.087% (3) |0.285% (4) |0.030% (2) 0% (1)
mknap2-3 | 28 2 0% (2) |0.143% (4) 0% (2) 0% (2)
mknap2-5| 28 2|0.308% (3) |0.335% (4)|0.095% (2)|0.054% (1)
mknap2-6 | 28 2|3.943% (4) [3.820% (3)(3.792% (2) [3.698% (1)
mknap2-7| 28 2|0.647% (2) |0.799% (4)|0.689% (3) |0.278% (1)
mknap2-8| 28 2|0.359% (3) |0.883% (4)|0268% (2)|0.110% (1)
mknap2-9 {105 2|0.206% (1) [0.453% (4)|0.225% (2) [0.247% (3)
mknap2-11 30 5|0.399% (2) |0451% (4)|0402% (3) |0.348% (1)
mknap2-12 30 5|0.157% (3) |0.141% (2)|0.198% (4) 0% (1)
mknap2-13 30 5|3.209% (2.5)[3.209% (2.5)[3.209% (2.5)3.209% (2.5)
mknap2-14 30 5/0.038% (3) |0.031% (2)|0.116% (4) 0% (1)
mknap2-16 40 5|0.066% (2) |0.118% (4) |0.072% (3) 0% (1)
mknap2-18 40 5|9.409% (3) |9.465% (4)(9.408% (2) 9.407% (1)
mknap2-19 40 5 0% (2) |0.017% (4) 0% (2) 0% (2)
mknap2-21 50 5|0.002% (3) [0.025% (4) 0% (1.5) 0% (1.5)
mknap2-22 50 5 0% (2) |0.095% (4) 0% (2) 0% (2)
mknap2-23 50 5 0% (2.5) 0% (25) 0% (2.5) 0% (2.5)
mknap2-24 60 5|0.009% (3) |0.157% (4)|0.006% (2) 0% (1)
mknap2-25 60 5|0.005% (2) |0.055% (4) |0.006% (3) 0% (1)
mknap2-27 60 5 0% (2) |0.035% (4) 0% (2) 0% (2)
mknap2-29 70 5/0.007% (2) |0.333% (4) |0.012% (3) 0% (1)
mknap2-3Q0 70 5 0% (2) |0.140% (4) 0% (2) 0% (2)
mknap2-31 70 5 0% (2) |0.125% (4) 0% (2) 0% (2)
mknap2-32 80 5|0.030% (3) |0.133% (4) 0% (1.5) 0% (1.5)
mknap2-34 80 5|0.002% (3) |0.043% (4) 0% (1.5) 0% (1.5)
mknap2-35 80 5|0.144% (3) |0.263% (4) |0.029% (2) 0% (1)
mknap2-36 90 5/0.069% (3) |0.125% (4) |0.022% (2) 0% (1)
mknap2-37 90 5|0.165% (3) |0.279% (4) |0.048% (2) 0% (1)
mknap2-38 90 5|0.452% (4) |0.420% (3)|0.149% (2) |0.008% (1)
mknap2-40 90 5|0.351% (4) |0.208% (3)|0.180% (2) [0.001% (1)
mknap2-42 34 4/0.280% (4) |0.200% (3)]0.126% (2) |0.010% (1)
mknap2-43 29 2|0.883% (4) |0.340% (3)|0311% (2) |0.017% (1)
mknap2-44 20 10/1.183% (4) |0.359% (3)(0.248% (2) 0% (1)
mknap2-46 37 30/0.985% (4) |0.290% (2)|0.351% (3) 0% (1)
mknap2-47 28 4|0.437% (4) |0.181% (2)|0.205% (3) [0.002% (1)
average 0.609% (2.81)0.613% (3.45)0.510% (2.28)0.439% (1.46)
perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

192 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.4 Summarized testing results per algorithm

Table A.10: Summary of the small MKP test results per algorithm. Bold face indicates statistically
significant outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
Measure error (rank error (rank error (rank)
avgerror [1.117 % (2.65)0.841% (1.80)[0.609 % (1.55)
stdev error | 1.913 % 1.716 % 1.635 %

average SR 42.8% (2.45) 50.3% (2.03) 56.6% (1.53
stdevSR | 41.3% 43.3% 41.1%
perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)
Z-score 4.92 1.12
p-value 0.0000 0.1314
Holm o 0.0500 0.0250

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank error (rank error (rank)
avg error [1.089% (2.93)0.639% (1.65)/0.613% (1.43)
stdev error | 1.592 % 1.620 % 1.623 %

average SR 299% (2.78) 45.7% (1.68) 48.6% (1.55
stdevSR | 34.7% 37.4% 35.3%
perfect 3 (3) 4 (1.5) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)
p-value 0.0000 0.1635
Holm a 0.0500 0.0250

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank error (rank error (rank)
avg error |0.628 % (2.68)0.521 % (1.78)/0.510% (1.55)
stdev error | 1.625 % 1.634 % 1.633 %
average SR 51.4% (2.4)| 63.4% (19) 648% (1.7)
stdev SR | 35.1 % 36.8 % 36.8%
perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)
rank of rank 3 2 1
p-value 0.0000 0.1515
Holm o 0.0500 0.0250

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank error (rank error (rank)
avg error |0.444% (2.13)0.440% (2.01)0.439% (1.86
stdev error | 1.640 % 1.641 % 1.641 %

average SR 82.5% (2.09) 81.9% (2.04) 82.7% (1.88
stdevSR | 31.8% 33.2% 32.6 %

perfect 21 (3) 23 (2) 25 (1)

failure 4 (2) 4 (2) 4 (2)

p-value 0.1131 0.2514

Holm o 0.0500 0.0250

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS 193

A.5 Detailed testing results per algorithm

A.5.1 BPSO

Table A.11: Details of the small MKP test results for BPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
oblem n m error (rank) error (rank error (rank)
mknapl-1| 6 10 0% (2) 0% (2) 0% (2)
mknapl1-2 | 10 10 0% (1) |0127% (2)|0.212% (3)
mknapl1-3 | 15 10 0% (2) 0% (2) 0% (2)
mknapl-6 | 39 5| 0.262% (3) |0.121% (2) |[0.093% (1)
mknapl-7| 50 5| 0.572% (3)|0314% (2)]0.235% (1)
mknap2-1| 60 30, 0.228% (2) |{0.358% (3) |0.087% (1)
mknap2-3| 28 2| 0.046% (3) 0% (1.5) 0% (1.5)
mknap2-5|28 2| 1.811% (3)|0.336% (2)]0.308% (1)
mknap2-6 | 28 2| 3.919% (2) |3.863% (1) [3.943% (3)
mknap2-7| 28 2| 0.768% (3) |0503% (1) |0.647% (2)
mknap2-8 | 28 2| 0.801% (3)|0.235% (1)]0359% (2)
mknap2-9 {105 2| 0.349% (3) |0.191% (1) |0.206% (2)
mknap2-11 30 5| 0.416% (3) |0.368% (1) |0.399% (2)
mknap2-12 30 5| 0.083% (1) |0.162% (3) |0.157% (2)
mknap2-13 30 5| 3.209% (2) |3.209% (2)[3.209% (2)
mknap2-14 30 5| 0.030% (1) |0.038% (2.5) 0.038% (2.5)
mknap2-16 40 5| 0.018% (2) |0.012% (1) |0.066% (3)
mknap2-18 40 5|10.440% (3)[9.449% (2)|9409% (1)
mknap2-19 40 5 0% (2) 0% (2) 0% (2)
mknap2-21 50 5| 0.042% (3) 0% (1) |0.002% (2)
mknap2-22 50 5| 0.046% (3) 0% (15) 0% (15)
mknap2-23 50 5 0% (2) 0% (2) 0% (2)
mknap2-24 60 5| 0.123% (3) |0.007% (1) |0.009% (2)
mknap2-23 60 5| 0.016% (3) |0.001% (1) |0.005% (2)
mknap2-27 60 5| 0.006% (3) 0% (15) 0% (15)
mknap2-29 70 5| 0.255% (3) |0.012% (2) |0.007% (1)
mknap2-30 70 5| 0.031% (3) |0.007% (2) 0% (1)
mknap2-31 70 5| 0.363% (3) |0.091% (2) 0% (1)
mknap2-32 80 5| 0.197% (3) |0.179% (2)|0.030% (1)
mknap2-34 80 5| 0.254% (3) |0.034% (2)]0.002% (1)
mknap2-33 80 5| 0.946% (3) |0.666% (2)[0.144% (1)
mknap2-36 90 5| 0.867% (3) |0.359% (2)[0.069% (1)
mknap2-37 90 5| 0.627% (3) |0.467% (2)|0.165% (1)
mknap2-38 90 5| 1.864% (3)|1.418% (2)|0452% (1)
mknap2-40 90 5| 1.854% (3) |0.998% (2)]0.351% (1)
mknap2-42 34 4| 1.668% (3)|0.836% (2)]0.280% (1)
mknap2-43 29 2| 3.330% (3) |2542% (2)]0.883% (1)
mknap2-44 20 10, 3.331% (3) |2.852% (2)|1.183% (1)
mknap2-46 37 30, 3.665% (3) |2666% (2)|0985% (1)
mknap2-47 28 4| 2.259% (3) |1.217% (2)|0437% (1)
average 1.117 % (2.65)0.841 % (1.80)|0.609 % (1.55)
perfect 5 (3) 7 (2) 9 (1)
#failure 11 (3) 10 (2) 6 (1)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

194 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A5.2 MBPSO

TableA.12: Details of the small MKP test results for MBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB MBPSO LB MBPSO VN MBPSO

problem n m error (rank error (rank) error (rank)
mknapl-1| 6 10 0% (2) 0% (2) 0% (2)
mknapl-2 | 10 10 0% (2) 0% (2) 0% (2)
mknapl1-3 | 15 10 0% (2) 0% (2) 0% (2)
mknapl-6 | 39 5|0.600% (3)|0296% (2)[0.278% (1)

mknapl-7 | 50 5|0.725% (3)[0.385% (2)]0.280% (1)
mknap2-1 | 60 30[{1.164% (3) |0.249% (1) [0.285% (2)
mknap2-3 | 28 2|0.730% (3) |0.047% (1) [0.143% (2)
mknap2-5| 28 2|1.463% (3) |0443% (2)[0.335% (1)
mknap2-6 | 28 2|3.871% (3) |3.840% (2)(3820% (1)
mknap2-7 | 28 2|1.374% (3)[0849% (2)[0.799% (1)
mknap2-8 | 28 2|2.088% (3) |0.782% (1) [0.883% (2)
mknap2-9 {105 2|0.950% (3) |0.494% (2) [0.453% (1)
mknap2-11 30 5|0.490% (3) |0.471% (2) (0451% (1)
mknap2-12 30 5|0.201% (3) |0.126% (1) [0.141% (2)
mknap2-13 30 5|3.237% (3) [3.209% (1.5)3.209% (1.5)
mknap2-14 30 5|0.133% (3)(0.110% (2)|0.031% (1)
mknap2-16 40 5|0.134% (3) |0.093% (1) [0.118% (2)
mknap2-18 40 5(9.471% (3) |9.466% (2) [9.465% (1)
mknap2-19 40 5|0.317% (3) |0.088% (2) [0.017% (1)
mknap2-21 50 5|0.135% (3) |0.018% (1) [0.025% (2)
mknap2-22 50 5|0.452% (3)(0.102% (2)|0.095% (1)
mknap2-23 50 5|0.012% (3) 0% (1.5) 0% (1.5)
mknap2-24 60 5|0509% (3) |0.118% (1) [0.157% (2)
mknap2-25 60 5|0.351% (3) |0.045% (1) [0.055% (2)
mknap2-27 60 5|0.285% (3) |0.027% (1) [0.035% (2)
mknap2-29 70 5(1.243% (3)]0.223% (1)]0.333% (2)
mknap2-30 70 5|0.878% (3) |0.139% (1) [0.140% (2)
mknap2-31 70 5|0.623% (3) |0.051% (1) [0.125% (2)
mknap2-32 80 5|0.628% (3) |0.208% (2) [0.133% (1)
mknap2-34 80 5[0.198% (3) |0.032% (1) [0.043% (2)
mknap2-33 80 5(1.385% (3) |0.395% (2) [0.263% (1)
mknap2-36 90 5|0.621% (3)(0.142% (2)(0.125% (1)
mknap2-37 90 5|0.803% (3) |0.357% (2) [0.279% (1)
mknap2-38 90 5(1.255% (3) |0509% (2) [0.420% (1)
mknap2-40 90 5|0.828% (3) |0.292% (2) [0.208% (1)
mknap2-42 34 4|0.751% (3)]0.231% (2)(0.201% (1)
mknap2-43 29 2(1.442% (3)]0.392% (2)(0.340% (1)
mknap2-44 20 10{1.880% (3) |0.614% (2) [0.359% (1)
mknap2-46 37 30[{1.778% (3) |0435% (2)[0.290% (1)
mknap2-47 28 4|0571% (3) |0.271% (2) (0.181% (1)
average 1.089 % (2.93)0.639% (1.65)/0.613% (1.43)
perfect 3 (3) 4 (15) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)

© University of Pretoria

IVERSITEIT
IVERSITY
NIBESITHI

ﬂ UN
< 0

VAN PRETORIA
OF PRETORIA
YA PRETORIA

APPENDIX A. DETAILED RESULTS FOR SMALL MKPS

195

A.5.3 PBPSO

TableA.13: Details of the small MKP test results for PBPSO. Bold face indicates statistically significant

outperformance of one or more topologies for that algorithm.

GB PBPSO LB PBPSO VN PBPSO
problem n m error (rank error (rank) error (rank)
mknapl-1| 6 10 0% (2) 0% (2) 0% (2)
mknapl-2 | 10 10 0% (2) 0% (2) 0% (2)
mknapl-3| 15 10 0% (2) 0% (2) 0% (2)
mknapl-6 | 39 5|0.261% (3)|0.119% (2)[0.093% (1)
mknapl-7 | 50 5|0.312% (3) |0.114% (2) [0.097% (1)
mknap2-1 | 60 30[{0.242% (3) |0.029% (1) [0.030% (2)
mknap2-3 | 28 2|0.050% (3) 0% (1.5) 0% (1.5)
mknap2-5| 28 2|1.000% (3) |0.145% (2) [0.095% (1)
mknap2-6 | 28 2|3.937% (3)[3.846% (2)[3.792% (1)
mknap2-7 | 28 2|0.853% (3)|0.644% (1) |0.689% (2)
mknap2-8 | 28 2|0.851% (3) |0.265% (1) [0.268% (2)
mknap2-9 {105 2|0.367% (3) |0.207% (1) [0.225% (2)
mknap2-11 30 5|0.411% (3) |0405% (2) [0.402% (1)
mknap2-12 30 5|0.168% (1) |0.236% (3) [0.198% (2)
mknap2-13 30 5|3.209% (2)|3.209% (2)[3.209% (2)
mknap2-14 30 5|0.082% (1) |0.228% (3) [0.116% (2)
mknap2-16 40 5|0.045% (1) |0.063% (2) [0.072% (3)
mknap2-18 40 5|9.420% (3) |9.408% (1.5)9.408% (1.5)
mknap2-19 40 5|0.017% (3) 0% (1.5) 0% (1.5)
mknap2-21 50 5|0.046% (3) 0% (1.5) 0% (1.5)
mknap2-22 50 5|0.048% (3) 0% (1.5) 0% (15)
mknap2-23 50 5 0% (2) 0% (2) 0% (2)
mknap2-24 60 5|0.131% (3) |0.015% (2) [0.006% (1)
mknap2-25 60 5|0.032% (3) |0.007% (2) [0.006% (1)
mknap2-27 60 5 0% (2) 0% (2) 0% (2)
mknap2-29 70 5|0.464% (3)|0.040% (2)[0.012% (1)
mknap2-3Q0 70 5|0.068% (3) 0% (1.5) 0% (1.5)
mknap2-31 70 5|0.350% (3) 0% (1.5) 0% (1.5)
mknap2-32 80 5|0.030% (3) |0.004% (2) 0% (1)
mknap2-34 80 5(0.064% (3) 0% (1.5) 0% (1.5)
mknap2-35 80 5|0.235% (3)|0.079% (2)[0.029% (1)
mknap2-36 90 5|0.116% (3)|0.016% (1) |0.022% (2)
mknap2-37 90 5|0.055% (3) |0.038% (1) [0.048% (2)
mknap2-38 90 5|0.326% (3) |0.184% (2) [0.149% (1)
mknap2-40 90 5|0.233% (3) |0.181% (2) (0.180% (1)
mknap2-42 34 4|0.235% (3)[0.116% (1) |0.126% (2)
mknap2-43 29 2|0.406% (3) |0.323% (2) [0311% (1)
mknap2-44 20 10/{0.269% (2) |0.372% (3) [0.248% (1)
mknap2-46 37 30/0.476% (3)|0.328% (1) [0.351% (2)
mknap2-47 28 4|0.295% (3) |0.225% (2) [0.205% (1)
average 0.628 % (2.68)0.521% (1.78)/0.510% (1.55)
perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

196 APPENDIXA. DETAILED RESULTS FOR SMALL MKPS

A.5.4 SBPSO

TableA.14: Details of the small MKP test results for SBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB SBPSO LB SBPSO VN SBPSO
problem n m error (rank error (rank) error (rank)
mknapl-1| 6 10 0% (2) 0% (2) 0% (2)
mknapl-2 | 10 10 0% (2) 0% (2) 0% (2)
mknapl-3| 15 10 0% (2) 0% (2) 0% (2)
mknapl-6 | 39 5|0.070% (1) |0.116% (3) |0.104% (2)
mknapl-7 | 50 5|0.074% (2)|0.090% (3) |0.054% (1)
mknap2-1 | 60 30/0.021% (3) |0.001% (2) 0% (1)
mknap2-3 | 28 2 0% (2) 0% (2) 0% (2)
mknap2-5| 28 2|0.114% (3) |0.043% (1) |0.054% (2)
mknap2-6 | 28 2|3.698% (2) |3.698% (2) [3.698% (2)
mknap2-7 | 28 2|0.347% (3) |0.286% (2)(0.278% (1)
mknap2-8 | 28 2|0.231% (3) |0.121% (2) |0.110% (1)
mknap2-9 {105 2|0.189% (1) |0.225% (2) (0.247% (3)
mknap2-11 30 5|0.348% (2) |0.348% (2) |0.348% (2)
mknap2-12 30 5|0.004% (3) 0% (1.5) 0% (1.5)
mknap2-13 30 5|3.209% (2) (3.209% (2) [3.209% (2)
mknap2-14 30 5 0% (2) 0% (2) 0% (2)
mknap2-16 40 5 0% (2) 0% (2) 0% (2)
mknap2-18 40 5|9.407% (2) |9.407% (2)(9.407% (2)
mknap2-19 40 5 0% (2) 0% (2) 0% (2)
mknap2-21 50 5 0% (2) 0% (2) 0% (2)
mknap2-22 50 5 0% (2) 0% (2) 0% (2)
mknap2-23 50 5 0% (2) 0% (2) 0% (2)
mknap2-24 60 5|0.002% (3) 0% (1.5) 0% (1.5)
mknap2-25 60 5|0.001% (3) 0% (1.5) 0% (1.5)
mknap2-27 60 5 0% (2) 0% (2) 0% (2)
mknap2-29 70 5 0% (2) 0% (2) 0% (2)
mknap2-3Q 70 5 0% (2) 0% (2) 0% (2)
mknap2-31 70 5|0.004% (3) 0% (1.5) 0% (1.5)
mknap2-32 80 5 0% (2) 0% (2) 0% (2)
mknap2-34 80 5 0% (2) 0% (2) 0% (2)
mknap2-35 80 5 0% (2) 0% (2) 0% (2)
mknap2-36 90 5 0% (2) 0% (2) 0% (2)
mknap2-37 90 5 0% (2) 0% (2) 0% (2)
mknap2-38 90 5|0.014% (3) |0.010% (2) |0.008% (1)
mknap2-40 90 5|0.001% (2) |0.001% (2) |0.001% (2)
mknap2-42 34 4|0.005% (1) |0.008% (2) |0.010% (3)
mknap2-43 29 2 0% (1) [0.013% (2) |0.017% (3)
mknap2-44 20 10 0% (2) 0% (2) 0% (2)
mknap2-46 37 30 0% (15)|0.002% (3) 0% (1.5)
mknap2-47 28 4|0.007% (2.5)/0.007% (2.5)[{0.002% (1)
average 0.444% (2.13)0.440% (2.01)0.439% (1.86)
perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Appendix B

Detailed results for large MKPs

This appendix contains the detailed results of the experiments run on the large MKPs. In total 270 such
problems were considered, all of which are known from the literature and are described by Chu and
Beasley [[18]. All problems used are available on-line at the Operations Researcf@libﬁm/ 270
problems used can be found in the files “mknapcbl.txt” until “mknapcb9.txt.txt” and are labeled with
that filename and the order in which they can be found the files: the problem labeled “mknapcb2-3” is
thus the third problem found in the file “mknapcb?2.txt”.

Four different algorithms as previously (BPSO, MBPSO, PBPSO, SBPSO) were compared and each
algorithm was run using three different topologies for the particle swarm: star (GB), ring (LB), and
Von Neumann (VN). Each combination of algorithm and topology was first tuned on the tuning set of
27 problems. The tuned combinations of algorithm and topology were then applied on the test set of
243 problems, where 30 independent runs were simulated for each of these 12 combinations. The exact
experimental set-up for both the tuning and the testing process is described in detail in sections 5.2
and’5.3.

This appendix contains detailed results of both the tuning experiments as well as the testing results
based on the tuned algorithm topology pairs. An overview of all result tables for the large MKP in this
appendix can be found in talille B.1.

The detailed results for the tuning experiments are shown organized by algorithm in four[tables (B.2,
B.3,[B.4[B.%). Shown in all result tables for tuning problems is the average error across the independent
runs versus the optimum of the LP relaxation problem followed by a rank shown between brackets. In
case of the results tables for the tuning group the rank shown is the rank of the chosen best parameter
combination in the set of 128 parameter combinations for the problem named on that line. This ranking
indicates how well the chosen parameter combination is suited to the problem listed compared to the
other parameter combinations investigated.

The result tables for the experiments on the tuned algorithm topology combinations fall into two cat-
egories: inter algorithm comparisons and intra algorithm comparisons. The inter algorithm comparisons
show the results of the four algorithms for one of the three topologies used, resulting in threé fables (B.7,
B.8,[B.9). These results are summarized in tablé B.6. The intra algorithm comparisons each show the

Ihttp://people.brunel.ac. uk/~mastjjb/jeb/orlib/mknapinfo.html

© University of Pretoria

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

198 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

Table B.1: Guide to tables in Appendix B

Group Type of comparison Description Table Statistically best
tuning intra algorithm BPSO B2 notapplicable
tuning intra algorithm MBPSO not applicable
tuning intra algorithm PBPSO B4 notapplicable
tuning intra algorithm SBPSO B.S notapplicable
testing inter algorithm Summary SBPSO

testing intra algorithm Summary B.Id Star & Von Neumann
testing inter algorithm Star topology B71 GB SBPSO
testing inter algorithm Ring topology B.8 LB SBPSO
testing inter algorithm Von Neumann topology[_B.9 VN SBPSO
testing intra algorithm BPSO B.I1 GBBPSO
testing intra algorithm MBPSO BI2 VN MBPSO
testing intra algorithm PBPSO BI3 VNPBPSO
testing intra algorithm SBPSO BI4 GBSBPSO

results of all three topologies for one of the four algorithms used, resulting intdbies [(B.11[B.12,
B.13,[B.14). These results are summarized in tablelB.10.

Shown in all result tables for tuning problems is the average error across the independent runs versus
the optimum of the LP relaxation problem followed by a rank shown between brackets. In case of the
results tables for the testing group the rank shown is the relative performance (based on average error)
of that algorithm topology combination versus the other combinations in the same table. This rank is
determined for each problem separately and the number on a given line is the average rank over all
problems summarized on that line. These ranks thus indicate the relative performance of the algorithm
topology combination compared to the other pairs in the same table and are used to determine possible
statistically significant outperformance.

The overview tablé Bl1 also lists the best topology or algorithm that resulted from the comparisons
made using testing results. The best in this case is meant as statistically significant outperformance
(a = 0.05) according to a Iman-Davenport test and further Nemenyi-tests with Holm-admsteor a
detailed description of this statistical test see appendix E.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS

199

B.1 Detailed tuning results per algorithm
B.1.1 BPSO
Table B.2: Details of the large MKP tuning results for BPSO.

GB BPSO LB BPSO VN BPSO
problem n m a error (rank) error (rank) error (rank)
mknapcb1-6 | 100 5 0.25| 338% (1) | 7.05% (1) | 7.92% (3)
mknapcb1-17| 100 5 050, 1.84% (1) | 326% (1) | 3.03% (1)
mknapcb1-27| 100 5 0.75| 0.83% (1) | 136% (1) | 1.30% (1)
mknapch2-7 | 100 10 0.25) 10.77% (2) | 1563% (5) | 1590% (5)
mknapcb2-11) 100 10 0.50| 4.20% (1) | 654% (1) | 6.70% (1)
mknapcb2-22| 100 10 0.75| 230% (1) | 3.66% (1) | 364% (1)
mknapch3-3 | 100 30 0.25 1849% (9) | 20.09% (9) | 20.12% (10)
mknapcb3-20] 100 30 0.50| 7.34% (1) | 921% (1) | 924% (1)
mknapch3-24/ 100 30 0.75| 3.41% (1) | 493% (1) | 491% (1)
mknapcb4-3 | 250 5 0.25| 574% (2) | 912% (3) | 898% (3)
mknapcb4-12 250 5 050| 2.30% (1) | 354% (1) | 3.72% (1)
mknapcb4-27| 250 5 0.75| 147% (1) | 1.86% (1) | 1.69% (1)
mknapch5-7 | 250 10 0.25) 13.01% (4) | 16.21% (5) | 16.07% (5)
mknapch5-20] 250 10 0.50| 554% (1) | 823% (1) | 804% (1)
mknapcb5-21| 250 10 0.75| 2.43% (1) | 3.78% (1) | 386% (1)
mknapcb6-7 | 250 30 0.25| 20.26% (11) | 21.33% (10) | 21.28% (8)
mknapcb6-16/ 250 30 0.50| 8.71% (1) | 10.34% (1) | 1058% (1)
mknapch6-23/ 250 30 0.75| 3.63% (1) | 504% (1) | 501% (1)
mknapcb7-1 | 500 5 0.25| 6.37% (1) | 1024% (3) | 1064% (3)
mknapcb7-19) 500 5 0.50| 2.79% (1) | 4.44% (1) | 450% (1)
mknapcb7-30, 500 5 0.75| 1.75% (1) | 234% (1) | 229% (1)
mknapch8-10] 500 10 0.25| 1532% (4) | 17.54% (5) | 18.02% (5)
mknapcb8-16/ 500 10 050, 598% (1) | 837% (1) | 820% (1)
mknapch8-26 500 10 0.75| 2.89% (1) | 423% (1) | 412% (1)
mknapcb9-8 | 500 30 0.25/ 2059% (9) | 21.60% (8) | 21.87% (10)
mknapch9-18/ 500 30 0.50| 9.41% (1) | 10.90% (1) | 1094% (1)
mknapch9-26) 500 30 0.75| 4.15% (1) | 566% (1) | 561% (1)
average | | 685% (23)| 876% (25)| 882% (2.6)

© University of Pretoria

200

ﬂ UN
< 0

TY

IVERSITEIT VAN PRETORIA
IVERSI
NIBESITHI YA PRETORIA

OF PRETORIA

APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.1.2 MBPSO

TableB.3: Details of the large MKP tuning results for MBPSO.

GB MBPSO LB MBPSO VN MBPSO
problem n m a error (rank) error (rank) error (rank)
mknapcb1-6 | 100 5 0.25| 580% (11) | 423% (13) | 3.27% (4)
mknapcb1-17 100 5 0.50| 2.83% (4) | L.70% (8) | 1.55% (4)
mknapcbl-27) 100 5 0.75| 1.48% (9) | 0.92% (6) | 0.79% (4)
mknapcb2-7 | 100 10 0.25| 7.95% (4) | 4.20% (2) | 3.95% (2)
mknapcbh2-11| 100 10 0.50| 4.75% (8) | 227% (4) | 210% (5)
mknapch2-22| 100 10 0.75| 2.23% (2) | 1.12% (1) | 0.94% (1)
mknapch3-3 | 100 30 0.25| 9.98 % (6) | 6.12% (5) | 6.03% (4)
mknapcbh3-20| 100 30 0.50| 6.25% (3) | 3.20% (1) | 3.29% (2)
mknapch3-24/ 100 30 0.75| 3.04 % (2) | 1.64% (3) | 1.55% (1)
mknapch4-3 | 250 5 0.25| 6.37% (4) | 4.80% (7) | 443% (3)
mknapcb4-12/ 250 5 0.50| 3.40% (8) | 214% (2) | 1.94% (3)
mknapch4-27) 250 5 0.75| 2.30% (23) | 1.44% (4) | 1.28% (2)
mknapch5-7 | 250 10 0.25| 9.03% (12) | 6.17% (7) | 510% (2)
mknapch5-20| 250 10 0.50| 5.19% (2) | 2.87% (3) | 2.38% (1)
mknapcb5-21| 250 10 0.75| 254% (1) [150% (2) | 137% (6)
mknapcbh6-7 | 250 30 0.25| 11.08 % (6) | 7.75% (5) | 6.67% (3)
mknapcb6-16| 250 30 0.50| 7.64 % (3) | 4.78% (2) | 4.34% (2)
mknapch6-23) 250 30 0.75| 3.72% (7) | 2.09% (1) | 2.16% (4)
mknapcb7-1 | 500 5 0.25| 7.62% (14) | 6.28% (12) | 5.59% (4)
mknapcb7-19) 500 5 0.50| 3.67 % (2) | 2.86% (4) | 275% (5)
mknapcb7-30 500 5 0.75| 2.20% (1) | 1.95% (5) | 1.73% (4)
mknapch8-10| 500 10 0.25| 8.82% (3) | 6.56% (4) | 6.18% (3)
mknapch8-16| 500 10 0.50| 598% (11) | 3.57% (3) | 3.48% (5)
mknapch8-26| 500 10 0.75| 3.00% (8) | 1.88% (1) | 1.81% (3)
mknapch9-8 | 500 30 0.25| 11.70% (13) | 7.98% (2) | 7.53% (3)
mknapch9-18) 500 30 0.50| 7.70% (1) | 5.55% (1) | 483% (2)
mknapch9-26| 500 30 0.75| 4.09 % (8) | 2.87% (4) | 240% (3)
average | 557% (65)|365% (41)]331% (31)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 201

B.1.3 PBPSO

TableB.4: Details of the large MKP tuning results for PBPSO.

GB PBPSO LB PBPSO VN PBPSO
a error (rank) error (rank) error (rank)

0.25| 268% (1) | 228% (2) | 157% (1)
0.50| 1.76 % (6) | 0.95% (2) | 0.72% (1)
mknapcb1-27| 100 0.75/ 0.88% (3) | 063% (3) | 052% (2)
mknapcb2-7 | 100 025/ 333% (1) | 428% (1) | 400% (1)
mknapcb2-11| 100 10 050/ 1.40% (1) | 226% (1) | 1.86% (1)
mknapcb2-22| 100 10 0.75/ 0.92% (1) | 1.21% (2) | 1.06% (2)
mknapcb3-3 | 100 30 0.25/ 523% (2) | 7.86% (1) | 6.99% (1)
mknapcb3-20| 100 30 0.50| 2.65% (1) | 455% (1) | 4.02% (1)
mknapcb3-24| 100 30 0.75| 1.59% (1) | 2.83% (2) | 263% (1)

mknapcb4-3 | 250 5 0.25|/4.71% (7) | 3.17% (2) |282% (2)
mknapcb4-12| 250 5 0.50(2.37% (8) | 1.44% (1) |1.25% (1)
mknapcb4-27 250 5 0.75| 1.36% (3) | 1.10% (2) | 088% (1)
mknapcb5-7 | 250 10 0.25/ 438% (2) |486% (1) | 482% (1)
mknapcb5-20| 250 10 0.50/ 2.03% (2) | 237% (1) | 208% (1)
mknapcb5-21| 250 10 0.75(1.24% (1) | 1.44% (1) | 1.18% (1)
mknapch6-7 | 250 30 0.25/584% (2) |837% (1) | 767% (1)
mknapcb6-16| 250 30 0.50| 3.47% (2) | 506% (1) |429% (1)
mknapcb6-23| 250 30 0.75/ 1.89% (1) | 3.02% (2) |265% (1)

mknapcb7-1 | 500 5 0.25| 576% (7) | 442% (2) | 427% (2)
mknapcb7-19| 500 5 0.50| 265% (2) | 1.86% (1) | 1.78% (2)
mknapcb7-30| 500 5 0.75| 1.92% (55)| 1.36% (2) | 1.24% (1)
mknapcb8-10| 500 10 0.25/ 493% (2) | 559% (1) | 517% (1)
mknapcb8-16| 500 10 0.50| 251% (1) | 3.17% (1) | 280% (1)
mknapch8-26| 500 10 0.75| 1.62% (1) | 1.69% (1) | 1.47% (1)
mknapch9-8 | 500 30 025/ 6.41% (2) | 873% (1) | 844% (1)
mknapcb9-18| 500 30 0.50| 4.08% (2) | 554% (1) | 495% (1)
mknapch9-26| 500 30 0.75/ 230% (1) | 321% (1) | 3.07% (1)

average | 1296% (25)]345% (14)|312% (12)

problem n

mknapcb1-6 | 100
mknapcb1-17| 100

H
Soaua| 3

© University of Pretoria

202

ﬂ UN
< 0

TY

IVERSITEIT VAN PRETORIA
IVERSI
NIBESITHI YA PRETORIA

OF PRETORIA

APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.1.4 SBPSO

TableB.5: Details of the large MKP tuning results for SBPSO.

GB SBPSO LB SBPSO VN SBPSO
problem n m a error (rank) error (rank) error (rank)
mknapcbhl-6 | 100 5 0.25| 2.63% (6) | 2.80% (2) | 275% (3)
mknapcb1-17) 100 5 0.50| 0.89 % (1) | 1.34% (2) | 1.04% (1)
mknapcb1-27) 100 5 0.75| 0.54 % (4) | 0.71% (3) | 0.59% (1)
mknapcb2-7 | 100 10 0.25| 2.51% (4) | 3.63% (3) | 3.44% (2)
mknapcb2-11) 100 10 0.50| 1.04 % (1) | 1.60% (2) | 1.59% (2)
mknapcbh2-22| 100 10 0.75| 0.42% (1) | 0.82% (2) | 0.82% (2)
mknapch3-3 | 100 30 0.25| 2.98 % (3) | 412% (2) | 3.61% (2)
mknapcb3-20, 100 30 0.50| 1.37 % (1) | 213% (2) | 1.80% (2)
mknapch3-24| 100 30 0.75| 0.58 % (1) | 1.03% (1) | 0.84% (1)
mknapcbh4-3 | 250 5 0.25| 3.30% (4) | 3.82% (3) | 3.53% (2)
mknapcb4-12) 250 5 0.50| 1.34 % (1) | 1.77% (3) | 1.47% (1)
mknapch4-27| 250 5 0.75| 0.86 % (1) | 1.09% (1) | 1.08% (2)
mknapcbh5-7 | 250 10 0.25| 3.19% (2) | 4.12% (1) | 3.86% (2)
mknapcbh5-20, 250 10 0.50| 1.15% (1) | 2.06% (2) | 1.83% (2)
mknapcbh5-21) 250 10 0.75| 0.60 % (1) | 1.04% (6) | 0.92% (3)
mknapcbh6-7 | 250 30 0.25| 3.36 % (1) | 4.69% (3) | 4.00% (2)
mknapcb6-16| 250 30 0.50| 1.41 % (1) | 244% (2) | 226% (2)
mknapch6-23| 250 30 0.75| 0.73 % (1) | 1.36% (5) | 1.14% (3)
mknapcb7-1 | 500 5 0.25| 4.67 % (4) | 4.62% (1) | 4.27% (1)
mknapcb7-19| 500 5 0.50| 1.80 % (1) | 227% (4) | 216% (4)
mknapcb7-30] 500 5 0.75| 1.21% (1) | 1.44% (4) | 1.29% (1)
mknapch8-10, 500 10 0.25| 3.49 % (1) | 4.33% (1) | 4.35% (2)
mknapch8-16) 500 10 0.50| 1.66 % (1) | 2.37% (3) | 221% (3)
mknapcbh8-26) 500 10 0.75| 0.79 % (1) | 1.23% (6) | 1.04% (3)
mknapcb9-8 | 500 30 0.25| 3.27 % (1) | 473% (2) | 4.37% (2)
mknapch9-18| 500 30 0.50| 1.62 % (1) | 279% (4) | 254% (4)
mknapch9-26| 500 30 0.75| 0.87 % (1) | 1.37% (5) | 1.25% (3)
average \ 1.79% (1.7) \ 244% (2.8) \ 222% (2.1)

© University of Pretoria

&

NIVERSITEIT VAN PRETORIA

e .
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI YA

PRETORIA

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS

203

B.2 Summarized testing results per topology

TableB.6: Summary of the large MKP test results per topology. Bold face indicates statistically signifi-

cant outperformance of one algorithm for that topology.

Measure

GB BPSO
error (rank)

GB MBPSO
error (rank)

GB PBPSO
error (rank)

GB SBPSO
error (rank)

average error

stdev error

4.679 % (2.909
3.468 %

5.619 % (3.885
2.723%

3.250 % (2.206
1.718 %

1.740 % (1.000)
1.170 %

n

5 S

100
250
500

3.831% (2.877
4.679% (2.877
5.526 % (2.975

5.160 % (3.889
5.663 % (3.889
6.034 % (3.877

2.568 % (2.235
3.286 % (2.235
3.896 % (2.148

1.260 % (1.000)
1.758 % (1.000)
2.201 % (1.000)

5
10
30

3.037 % (2.383
3.942 % (3.012
7.057 % (3.333

4.354 % (4.000
5.521 % (3.988
6.983 % (3.667

3.134 % (2.617
2.763 % (2.000
3.853 % (2.000

1.875 % (1.000)
1.553 % (1.000)
1.791 % (1.000)

QQ Q|3 33

0.25
0.50
0.75

8.253 % (3.122
3.751% (2.831
1.909 % (2.769

8.664 % (3.659
5.344 % (4.000
2.712 % (4.000

5.264 % (2.220
2.799 % (2.169
1.613% (2.231

3.141 % (1.000)
1.355 % (1.000)
0.676 % (1.000)

Measure

LB BPSO
error (rank)

LB MBPSO
error (rank)

LB PBPSO
error (rank)

LB SBPSO
error (rank)

average error

stdey error

7.006 % (3.737
5.037 %

3.922 % (2.959
2.059 %

3.650 % (1.971
2.591 %

2.292 % (1.333)
1.331 %

n

35 O

100
250
500

6.348 % (3.778
6.951 % (3.753
7.719 % (3.679

3.044 % (2.852
3.917 % (2.938
4.805 % (3.086

3.101 % (2.037
3.626 % (1.975
4.221% (1.901

1.767 % (1.333)
2.366 % (1.333)
2.743 % (1.333)

5
10
30

3.091% (3.210
7.520 % (4.000
10.407 % (4.000

3.289 % (3.790
3.654 % (2.963
4.824 % (2.123

1.994 % (1.000)
3.112 % (2.037
5.842 % (2.877

2.334% (2.000)
2.075 % (1.000)
2.468 % (1.000)

QQ Q|33 3

0.25
0.50
0.75

11.961 % (3.829
5.817 % (3.723
3.063 % (3.654

6.185% (2.817
3.608 % (3.060
1.878 % (3.000

6.059 % (2.024
3.066 % (1.892
1.738 % (2.000

3.893 % (1.329)
1.957 % (1.325)
0.966 % (1.346)

Measure

VN BPSO
error (rank)

VN MBPSO
error (rank)

VN PBPSO
error (rank)

VN SBPSO
error (rank)

average error

stdev error

6.973 % (3.823
5.039 %

3.403 % (2.811
1.742 %

3.348 % (2.025
2.533%

2.249 % (1.342)
1.275 %

n

5 S

100
250
500

6.291 % (3.815
6.920 % (3.864
7.707 % (3.790

2.647 % (2.790
3.418 % (2.765
4.145% (2.877

2.762 % (2.049
3.330 % (2.037
3.954 9% (11.988

1.772 % (1.346)
2.294 % (1.333)
2.680 % (1.346)

5
10
30

3.076 % (3.469
7.465 % (4.000
10.377 % (4.000

2.980 % (3.506
3.191% (2.914
4.039 % (2.012

1.783 % (1.000)
2.847 % (2.086
5.416 % (2.988

2.433% (2.025)
2.046 % (1.000)
2.266 % (1.000)

QQ Q|3 33

0.25
0.50
0.75

11.943 % (3.976
5.775 % (3.855
3.023% (3.628

5.382 % (2.610
3.089 % (2.819
1.658 % (3.013

5.739% (2.085
2.693 % (2.000
1.533% (1.987

3.789 % (1.329)
1.917 % (1.325)
0.981 % (1.372)

Note that the results shown in talble B.6 are repeated results previously shoaineis 5.16 5.17,
and’5.18, but th&-scoresp-values, and Holnar's have been left out due to lack of space.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

204 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.3 Detailed test results per topology

B.3.1 Star topology

Table B.7: Details of the large MKP test results for the star topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
probleml n m a error (rank) error (rank) error (rank) error (rank)

average| 100 5 0.25 3.772% (2.222) 6.071% (4) |3.986% (2.778)1.951% (1)
average|100 5 0.50 1.835% (2.333) 3.392% (4) |1.959% (2.667)0.873% (1)
average|100 5 0.75 1.155% (2.333) 1.785% (4) |1.212% (2.667)0.505% (1)
awerage| 100 10 0.25 5.334% (3) | 8.291% (4) [3.631% (2) |2.181% (1)
average|100 10 050 2.384% (3) | 4605% (4) |1.851% (2) |0.853% (1)
awerage|100 10 0.7 1.217% (3) | 2371% (4) |1.053% (2) |0.399% (1)
average|100 30 0.2511.396% (4) |10.276% (3) |4.928% (2) |2.773% (1)
average|100 30 050 4.786% (3) | 6.232% (4) |2.748% (2) |1.195% (1)
awerage| 100 30 0.75 2.327% (3) | 3.069% (4) [1.621% (2) |0540% (1)

average|250 5 0.25 5.182% (2.333) 7.140% (4) |5.219% (2.667)3.294% (1)
awerage|250 5 0.50 2.680% (2.444) 4.158% (4) |2.782% (2.556)1.541% (1)
awerage|250 5 0.75 1.390% (2.111) 2.076% (4) |1.496% (2.889)0.735% (1)
awerage|250 10 0.25 6.917% (3) | 8399% (4) |4502% (2) |2845% (1)
awerage|250 10 0.50 3.161% (3) | 5288% (4) (2397% (2) |1.186% (1)
awerage|250 10 0.75 1546% (3) | 2603% (4) [1.340% (2) |0561% (1)
awerage| 250 30 0.2512.765% (4) |10492% (3) (6.282% (2) |3.451% (1)
awerage|250 30 0.50 5556% (3) | 7.004% (4) [3.422% (2) [1471% (1)
average| 250 30 0.79 2.738% (3) | 3.513% (4) |2013% (2) |0.670% (1)

average|500 5 0.25 6.349% (2.444) 7.798% (4) |6.507 % (2.556)4.749% (1)
average|500 5 0.50 3.134% (2.667) 4374% (4) |3.184% (2.333)2.066% (1)
awerage|500 5 0.75 1.837% (2.556) 2.392% (4) |1.857% (2.444)1.160% (1)
average|500 10 0.25 8.357% (3.1)| 8.684% (3.9)|5.194% (2) |3.404% (1)
average|500 10 0.50 3.776% (3) | 5588% (4) |2.819% (2) |1.455% (1)
average|500 10 0.75 1.889% (3) | 2.919% (4) |1.562% (2) |0.726% (1)
average|500 30 0.2514.189% (4) |10.823% (3) |7.133% (2) |3.592% (1)
average|500 30 0.50 6.398% (3) | 7.360% (4) |4.075% (2) |1.593% (1)
average|500 30 0.75 3.083% (3) | 3.727% (4) |2.329% (2) |0.764% (1)

average| | 4.635% (2.909) 5.571% (3.885)3.226 % (2.206)1.723% (1)

Each line in table Bl7 represents the average performance over a set wfstipmblems. These sets
are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 205

B.3.2 Ring topology

TableB.8: Details of the large MKP test results for the ring topology. Bold face indicates statistically
significant outperformance of one algorithm for that topology.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
probleml n m «a error (rank) error (rank) error (rank) error (rank)

average| 100 5 0.25 4.209% (3.667)4.173% (3.333) 2.107% (1) |2.750% (2)
awerage|100 5 0.50 1.928% (3.333)1.982% (3.667) 0976 % (1) [1.261%, (2)
awerage|100 5 0.75 0.995% (3) |1.242% (4) | 0625% (1) |0.757% (2)
awerage|100 10 0.2511.659% (4) |4.678% (2.778) 4.463% (2.222)2.932% (1)
awerage|100 10 0.50 5413% (4) |2471% (3) | 2213% (2) | 1358 % (1)
awerage|100 10 0.785 2.847% (4) |1.362% (2.889) 1.220% (2.111)0.630% (1)
awerage|100 30 0.2517.139% (4) |5908% (2) | 8945% (3) [3439% (1)
average|100 30 0.50 8.023% (4) |3592% (2) | 4487% (3) | 1836% (1)
average|100 30 0.75 4.533% (4) |1.789% (2) | 2672% (3) [0826% (1)

average|250 5 0.2 5.527 % (3.667)5.431% (3.333) 3.422% (1) | 4.074% (2)
average|250 5 0.50 2.693 % (3.111)2.859% (3.889) 1.658% (1) | 2.069% (2)
average|250 5 0.75 1.216% (3) |1.535% (4) | 0.840% (1) | 0.967% (2)
average|250 10 0.2512.790% (4) |5.671% (3) | 5.095% (2) | 3.592% (1)
average|250 10 0.50 6.138% (4) |3.288% (3) | 2.620% (2) | 1.794% (1)
average|250 10 0.75 3.079% (4) |1.724% (3) | 1.428% (2) | 0.870% (1)
average|250 30 0.2517.349% (4) |7.451% (2) | 9.625% (3) | 4.374% (1)
average|250 30 0.50 8.586% (4) |4.819% (2.222) 4.909% (2.778)2.345% (1)
average|250 30 0.75 4.840% (4) |2.304% (2) | 2.907% (3) | 1.107% (1)

average|500 5 0.25 6.637 % (3.111)6.878% (3.889) 4.861% (1) |5282% (2)
awerage|500 5 0.50 3.050% (3) |3514% (4) | 2212% (1) |2482% (2)
awerage|500 5 0.75 1565% (3) |1.991% (4) | 1.246% (1) |1.361% (2)
awerage|500 10 0.2513.926% (4) |6.737% (3) | 5803% (2) |4.071% (1)
average|500 10 0.50 6.802% (4) |(4143% (3) | 2958% (2) [1997% (1)
awerage|500 10 0.75 3.529% (4) |2123% (3) | 1.612% (2) [0981% (1)
awerage|500 30 0.2518.192% (4) |8.677% (2) |10235% (3) | 4507% (1)
average|500 30 0.50 9.439% (4) |5.846% (2.889) 5.453% (2.111)2.498% (1)
awerage|500 30 0.78 5.178% (4) |2.828% (2) | 3.146% (3) |1.168% (1)

average| | 6.936% (3.737)3.889 % (2.959) 3.620 % (1.971)2.271% (1.333)

Each line in table BI8 represents the average performance over a set te#fgtipmblems. These sets
are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

206 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.3.3 Von Neumann topology

TableB.9: Details of the large MKP test results for the Von Neumann topology. Bold face indicates
statistically significant outperformance of one algorithm for that topology.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
probleml n m «a error (rank) error (rank) error (rank) error (rank)

average| 100 5 0.25 4.125% (3.778)3.625% (3.222) 1.757% (1) |2.975% (2)
average| 100 5 0.50 1.883 % (3.667)1.774% (3.333) 0.796% (1) |[1.386% (2)
average| 100 5 0.75 0.947 % (2.889)1.077% (4) | 0.504% (1) |0.832% (2.111)
average| 100 10 0.2511.595% (4) |4.064% (2.556) 4.052% (2.444)2.862% (1)
average| 100 10 0.50 5.354% (4) |2.160% (3) | 1.868% (2) [1.382% (1)
average| 100 10 0.75 2.783% (4) |1.206% (3) | 1.031% (2) |0.664% (1)
average| 100 30 0.2517.095% (4) |5.132% (2) | 8.411% (3) [3.235% (1)
average| 100 30 0.50 7.947% (4) |3.057% (2) | 3.902% (3) [1.717% (1)
average| 100 30 0.75 4510% (4) |1.566% (2) | 2.364% (3) [0.795% (1)

average|250 5 0.25 5.610% (4) |4.995% (3) | 3.066% (1) |4.078% (2)
average|250 5 0.50 2.668 % (3.778)2.617 % (3.222) 1.437% (1) [2.149% (2)
average|250 5 0.73 1.203% (3) [1.362% (4) | 0.740% (1) [1.082% (2)
average| 250 10 0.2512.675% (4) |4.895% (2.667) 4.801% (2.333)3.471% (1)
average| 250 10 0.50 6.051% (4) |2.904% (3) | 2.312% (2) [1.753% (1)
average| 250 10 0.75 3.070% (4) |1.522% (3) | 1.237% (2) |0.860% (1)
average| 250 30 0.2517.332% (4) |6.333% (2) | 9.356% (3) [3.991% (1)
average| 250 30 0.50 8.555% (4) [3.921% (2) | 4.308% (3) [2.125% (1)
average| 250 30 0.75 4.787% (4) |2.055% (2) | 2595% (3) [1.036% (1)

average/500 5 0.25 6.738% (4) |6.299% (3) | 4565% (1) [5412% (2)
average|500 5 0.50 3.006 % (3.222)3.219% (3.778) 2.026% (1) [2565% (2)
awerage|500 5 0.7 1.504% (2.889)1.849% (4) | 1.157% (1) |1.422% (2.111)
awerage|500 10 0.2513.917% (4) |5943% (3) | 5652% (2) |4.017% (1)
awerage|500 10 0.50 6.788% (4) |3.522% (3) | 2677% (2) [1973% (1)
average|500 10 0.7 3.461% (4) |1.905% (3) | 1.399% (2) [0997% (1)
awerage|500 30 0.2518.178% (4) |7.089% (2) [10.003% (3) [4.037% (1)
average|500 30 0.50 9.449% (4) |4.655% (2.111) 4.822% (2.889)2.246% (1)
awerage|500 30 0.75 5.160% (4) |2378% (2) | 2811% (3) |1.112% (1)

average| | 6.903% (3.823)3.375% (2.811) 3.32% (2.025)2.229 % (1.342)

Each line in table Bl9 represents the average performance over a set te#fgtipmblems. These sets
are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

&

W UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 207

B.4 Summarized testing results per algorithm

Table B.10: Summary of the large MKP test results per algorithm. Bold face indicates statistically
significant outperformance of one or more topologies for that algorithm.

problem

error (rank)
GB BPSO

error (rank)
LB BPSO

error (rank)
VN BPSO

average error
stdey error

4679% (1.340)
3.468 %

7.006 % (2.510
5.000 %

6.973% (2.150)
5.000 %

100
250
500

3.831%
4.679 %
5.526 %

(1.296)
(1.327)
(1.395)

6.348 %
6.951 %
7.719 %

(2537
(2.531
(2.451

6.291 %
6.920 %
7.707 %

(2.167)
(2.142)
(2.154)

5
10
30

3.037 %
3.942 %
7.057 %

(2.019)
(1.000)
(1.000)

3.091 %
7.520 %
10.407 %

(2.179
(2.704
(2.636

3.076 %
7.465 %
10.377 %

(1.802)
(2.296)
(2.364)

0.25
0.50
0.75

Q QeI 3355>

8.253 %
3.751% (1.307)
1.909 % (1.692)

(1.037)

11.961 %
5.817 % (2.530
3.063% (2.429

(2.555

11.943% (2.409)
5.775% (2.163)
3.023% (1.878)

GB MBPSO

LB MBPSO

VN MBPSO

average error
stdev error

5619% (3)

3.922% (1.99)
2.100 %

3.403% (1.01)
1.700 %

100
250
500

2.723 %
5.160 % (3.000
5.663% (3.000

(3.000

3.044 %
3.917 %
4.805 %

(1.988
(2.000
(1.975

2.647 %
3.418 %
4.145 %

(1.012)
(1.000)
(1.025)

5
10
30

6.034 %
4.354% (3.000
5.521% (3.000

(3.000

3.289 %
3.654 %
4.824 %

(1.963
(2.000
(2.000

2.980 %
3.191 %
4.039 %

(1.037)
(1.000)
(1.000)

0.25
0.50
0.75

QQQ3 33555

6.983 %
8.664 % (3.000
5.344 % (3.000
2.712% (3.000

6.185 %
3.608 % (1.988
1.878% (1.974

(2.000

5.382 %
3.089% (1.012)
1.658 % (1.026)

(1.000)

GB PBPSO

LB PBPSO

VN PBPSO

average error
stdev error

3.250% (1.860
1.718 %

3.650% (2.650
2.600 %

3.348% (1.500)
2.500 %

100
250
500

2.568 %
3.286 %
3.896 %

(1.790)
(1.864
(1.914

3.101 %
3.626 %
4.221 %

(2.667
(2.654
(2.617

2.762 %
3.330 %
3.954 %

(1.543)
(1.481)
(1.469)

5
10
30

3.134 %
2.763 %
3.853 %

(3.000
(1.568)
(1.000)

1.994 %
3.112 %
5.842 %

(2.000
(2.951
(2.988

1.783 %
2.847 %

(1.000)
(1.481)
5.416 % (2.012)

0.25
0.50
0.75

QQQ3 33555

5.264 %
2.799% (1.904
1.613% (1.974

(1.695)

6.059 %
3.066 % (2.663
1.738% (2.628

(2.646

5.739% (1.659)
2.693% (1.434)
1.533% (1.397)

GB SBPSO

LB SBPSO

VN SBPSO

average error
stdev error

1.740% (1.000)
1.170 %

2.292% (2570
1.300 %

2.249% (2.430)
1.300 %

100
250
500

1.260 %
1.758 %
2.201 %

(1.000)
(1.000)
(1.000)

1.767 %
2.366 %
2.743 %

(2,519
(2.636
(2.543

1.772%
2.294 %
2.680 %

(2.481)
(2.364)
(2.457)

5
10
30

1.875%
1.553 %
1.791 %

(1.000)
(1.000)
(1.000)

2.334 %
2.075%
2.468 %

(2173
(2.549
(2.975

2.433 %
2.046 %
2.266 %

(2.827)
(2.451)
(2.025)

0.25
0.50
0.75

QQ Q333555

3.141 %
1.355 %
0.676 %

(1.000)
(1.000)
(1.000)

3.893 %
1.957 %
0.966 %

(2.659
(2.566
(2.468

3.789 %
1.917 %
0.981 %

(2.341)
(2.434)
(2.532)

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

208 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.5 Detailed test results per algorithm

B.5.1 BPSO

Table B.11: Details of the large MKP test results for BPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB BPSO LB BPSO VN BPSO
o \ error (rank) error (rank) error (rank)

problem| n m
average| 100 5 0.25| 3.772% (1.111) 4.209% (2.667) 4.125% (2.222)
5
5

awerage | 100 0.50| 1.835% (1.556) 1.928% (2.556) 1.883% (1.889)
awerage | 100 0.75| 1.155% (3.000)] 0.995% (1.889) 0.947% (1.111)
awerage | 100 10 0.25| 5.334% (1.000) 11.659% (2.778) 11.595% (2.222)
awerage | 100 10 0.50| 2.384% (1.000) 5.413% (2.556) 5.354% (2.444)
awerage | 100 10 0.75 1.217% (1.000) 2.847% (2.667) 2.783% (2.333)
awerage | 100 30 0.25| 11.396% (1.000) 17.139% (2.389) 17.095% (2.611)
awerage | 100 30 0.50| 4.786% (1.000) 8.023% (2.700) 7.947% (2.300)
awerage | 100 30 0.75| 2.327% (1.000)] 4.533% (2.625) 4.510% (2.375)

average| 250 5 0.25| 5.182% (1.111) 5527% (2.333) 5.610% (2.556)
awrage | 250 5 0.50| 2.680% (1.833) 2.693% (2.222) 2.668% (1.944)
awrage | 250 5 0.75| 1.390% (3.000) 1.216% (1.667) 1.203% (1.333)
awrage | 250 10 0.25| 6.917% (1.000) 12.790% (2.778) 12.675% (2.222)
awrage | 250 10 0.50| 3.161% (1.000) 6.138% (2.800) 6.051% (2.200)
awerage | 250 10 0.75| 1.546% (1.000) 3.079% (2.625) 3.070% (2.375)
awerage | 250 30 0.25| 12.765% (1.000) 17.349% (2.556) 17.332% (2.444)
awerage | 250 30 0.50| 5.556% (1.000) 8.586% (2.778) 8.555% (2.222)
awrage | 250 30 0.75| 2.738% (1.000) 4.840% (3.000) 4.787% (2.000)

average| 500 5 0.25| 6.349% (1.111) 6.637% (2.333) 6.738% (2.556)
awrage | 500 5 0.50| 3.134% (2.444) 3.050% (2.000) 3.006% (1.556)
awrage | 500 5 0.75| 1.837% (3.000) 1.565% (1.944) 1.504% (1.056)
awerage | 500 10 0.25| 8.357% (1.000) 13.926% (2.700) 13.917 % (2.300)
awerage | 500 10 0.50| 3.776% (1.000) 6.802% (2.556) 6.788% (2.444)
awerage | 500 10 0.75| 1.889% (1.000) 3.529% (2.875) 3.461% (2.125)
awerage | 500 30 0.25 14.189% (1.000) 18.192% (2.444) 18.178% (2.556)
awerage | 500 30 0.50| 6.398% (1.000) 9.439% (2.556) 9.449% (2.444)
awerage | 500 30 0.75| 3.083% (1.000) 5.178% (2.667) 5.160% (2.333)

average | | 4635% (1.339) | 6.936% (2.506) 6.903% (2.155)

Each line in tablé B. 11 represents the average performance over a set tdstipeoblems. These
sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
Que# YUNIBESITHI

YA PRETORIA

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 209

B.5.2 MBPSO

TableB.12: Details of the large MKP test results for MBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB MBPSO LB MBPSO VN MBPSO

problem| n o \ error (rank) error (rank) error (rank)

m

average | 100 5 0.25| 6.071% (3.000) 4.173% (2.000) 3.625% (1.000)
5
5

average | 100 0.50| 3.392% (3.000) 1.982% (2.000) 1.774% (1.000)
average | 100 0.75| 1.785% (3.000) 1.242% (1.889) 1.077% (1.111)
awerage | 100 10 0.25| 8.291% (3.000) 4.678% (2.000) 4.064% (1.000)
awerage | 100 10 0.50| 4.605% (3.000) 2.471% (2.000) 2.160% (1.000)
awerage | 100 10 0.75| 2.371% (3.000) 1.362% (2.000) 1.206% (1.000)
awerage | 100 30 0.25| 10.276% (3.000) 5.908% (2.000) 5.132% (1.000)
awerage | 100 30 0.50| 6.232% (3.000) 3.592% (2.000) 3.057% (1.000)
awerage | 100 30 0.75| 3.069% (3.000) 1.789% (2.000) 1.566% (1.000)

average| 250 5 0.25| 7.140% (3.000) 5.431% (2.000) 4.995% (1.000)
awerage | 250 5 0.50| 4.158% (3.000) 2.859% (2.000) 2.617% (1.000)
awerage | 250 5 0.75| 2.076% (3.000) 1.535% (2.000) 1.362% (1.000)
awerage | 250 10 0.25| 8.399% (3.000) 5.671% (2.000) 4.895% (1.000)
awerage | 250 10 0.50| 5.288% (3.000) 3.288% (2.000) 2.904% (1.000)
awerage | 250 10 0.75| 2.603% (3.000) 1.724% (2.000) 1.522% (1.000)
awerage | 250 30 0.25| 10.492% (3.000) 7.451% (2.000) 6.333% (1.000)
awerage | 250 30 0.50| 7.004% (3.000) 4.819% (2.000) 3.921% (1.000)
awerage | 250 30 0.75| 3.513% (3.000) 2.304% (2.000) 2.055% (1.000)

average | 500 5 0.25| 7.798% (3.000) 6.878% (2.000) 6.299% (1.000)
awerage | 500 5 050 4.374% (3.000) 3.514% (1.889) 3.219% (1.111)
awerage | 500 5 0.75| 2.392% (3.000) 1.991% (1.889) 1.849% (1.111)
awerage | 500 10 0.25| 8.684% (3.000) 6.737% (2.000) 5.943% (1.000)
awerage | 500 10 0.50| 5.588% (3.000) 4.143% (2.000) 3.522% (1.000)
awerage | 500 10 0.75| 2.919% (3.000) 2.123% (2.000)| 1.905% (1.000)
awerage | 500 30 0.25| 10.823% (3.000) 8.677% (2.000) 7.089% (1.000)
awerage | 500 30 0.50| 7.360% (3.000) 5.846% (2.000) 4.655% (1.000)
awerage | 500 30 0.75| 3.727% (3.000) 2.828% (2.000) 2.378% (1.000)

average | | 5571% (3.000) 3.889% (1.988) 3.375% (1.012)

Each line in tablé B.12 represents the average performance over a set tdstipeoblems. These
sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

ﬂ UN
< 0

210 APPENDIXB. DETAILED RESULTS FOR LARGE MKPS

B.5.3 PBPSO

TableB.13: Details of the large MKP test results for PBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB PBPSO LB PBPSO VN PBPSO

problem| n a \ error (rank) error (rank) error (rank)

m

average | 100 5 0.25| 3.986% (3.000) 2.107% (2.000) 1.757% (1.000)
5
5

average | 100 0.50| 1.959% (3.000)| 0.976% (2.000) 0.796% (1.000)
average | 100 0.75| 1.212% (3.000)| 0.625% (2.000) 0.504% (1.000)
awerage | 100 10 0.25| 3.631% (1.000)| 4.463% (3.000) 4.052% (2.000)
average | 100 10 0.50| 1.851% (1.556)| 2.213% (3.000) 1.868% (1.444)
awerage | 100 10 0.75| 1.053% (1.556)| 1.220% (3.000) 1.031% (1.444)
awerage | 100 30 0.25| 4.928% (1.000)| 8.945% (3.000) 8.411% (2.000)
average | 100 30 0.50| 2.748% (1.000)| 4.487% (3.000) 3.902% (2.000)
awerage | 100 30 0.75| 1.621% (1.000)| 2.672% (3.000) 2.364% (2.000)

average| 250 5 0.25| 5.219% (3.000)| 3.422% (2.000) 3.066% (1.000)
awerage | 250 5 0.50| 2.782% (3.000)| 1.658% (2.000) 1.437% (1.000)
awerage | 250 5 0.75| 1.496% (3.000)| 0.840% (2.000) 0.740% (1.000)
awerage | 250 10 0.25] 4502% (1.222)| 5.095% (3.000) 4.801% (1.778)
awerage | 250 10 0.50| 2.397% (1.700)| 2.620% (3.000) 2.312% (1.300)
awerage | 250 10 0.75| 1.340% (1.875)| 1.428% (3.000) 1.237% (1.125)
average | 250 30 0.25| 6.282% (1.000)| 9.625% (2.889) 9.356% (2.111)
average | 250 30 0.50| 3.422% (1.000)| 4.909% (3.000) 4.308% (2.000)
awerage | 250 30 0.75| 2.013% (1.000)| 2.907% (3.000) 2.595% (2.000)

average | 500 5 0.25| 6.507% (3.000)| 4.861% (2.000) 4.565% (1.000)
awerage | 500 5 0.50| 3.184% (3.000)| 2.212% (2.000) 2.026% (1.000)
awerage | 500 5 0.75| 1.857% (3.000) 1.246% (2.000) 1.157% (1.000)
awerage | 500 10 0.25 5.194% (1.100) 5.803% (2.900) 5.652% (2.000)
average | 500 10 0.50| 2.819% (2.000)| 2.958% (2.889) 2.677% (1.111)
awerage | 500 10 0.75| 1.562% (2.250)| 1.612% (2.750) 1.399% (1.000)
awerage | 500 30 0.25| 7.133% (1.000)| 10.235% (3.000) 10.003% (2.000)
awerage | 500 30 0.50| 4.075% (1.000) 5.453% (3.000) 4.822% (2.000)
awerage | 500 30 0.75] 2.329% (1.000) 3.146% (3.000) 2.811% (2.000)

average | | 3.226% (1.861) 3.620% (2.645) 3.320% (1.493)

Each line in tablé B.13 represents the average performance over a set tdstipeoblems. These
sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX B. DETAILED RESULTS FOR LARGE MKPS 211

B.5.4 SBPSO

TableB.14: Details of the large MKP test results for SBPSO. Bold face indicates statistically significant
outperformance of one or more topologies for that algorithm.

GB SBPSO LB SBPSO VN SBPSO

problem| n a \ error (rank) error (rank) error (rank)

m
average| 100 5 0.25| 1.951% (1.000) 2.750% (2.111) 2.975% (2.889)
awerage | 100 5 050/ 0.873% (1.000) 1.261% (2.000) 1.386% (3.000)
awerage | 100 5 0.75 0.505% (1.000) 0.757% (2.111) 0.832% (2.889)
average | 100 10 0.25 2.181% (1.000) 2.932% (2.778) 2.862% (2.222)
average | 100 10 0.50 0.853% (1.000) 1.358% (2.444) 1.382% (2.556)
awerage | 100 10 0.75 0.399% (1.000) 0.630% (2.222) 0.664% (2.778)
awerage | 100 30 0.25 2.773% (1.000) 3.439% (3.000) 3.235% (2.000)
awerage | 100 30 0.50 1.195% (1.000) 1.836% (3.000) 1.717% (2.000)
average | 100 30 0.75 0.540% (1.000) 0.826 % (3.000) 0.795% (2.000)

average| 250 5 0.25| 3.294% (1.000) 4.074 % (2.444) 4.078% (2.556)
awerage | 250 5 0.50| 1.541% (1.000) 2.069% (2.333) 2.149% (2.667)
awerage | 250 5 0.75| 0.735% (1.000) 0.967 % (2.000) 1.082% (3.000)
awerage | 250 10 0.25| 2.845% (1.000) 3.592% (2.778) 3.471% (2.222)
awerage | 250 10 0.50 1.186% (1.000) 1.794% (2.600) 1.753% (2.400)
awerage | 250 10 0.75| 0.561% (1.000) 0.870% (2.563) 0.860% (2.438)
awerage | 250 30 0.25 3.451% (1.000) 4.374% (3.000) 3.991% (2.000)
average | 250 30 0.50 1.471% (1.000) 2.345% (3.000) 2.125% (2.000)
awerage | 250 30 0.75| 0.670% (1.000) 1.107% (3.000) 1.036% (2.000)

average| 500 5 0.25| 4.749% (1.000) 5.282% (2.222) 5.412% (2.778)
awerage | 500 5 0.50| 2.066% (1.000) 2.482% (2.222) 2.565% (2.778)
awverage | 500 5 0.75| 1.160% (1.000) 1.361% (2.111) 1.422% (2.889)
average | 500 10 0.25 3.404% (1.000) 4.071% (2.600) 4.017% (2.400)
awerage | 500 10 0.50 1.455% (1.000) 1.997 % (2.444) 1.973% (2.556)
awerage | 500 10 0.75 0.726% (1.000) 0.981% (2.500) 0.997 % (2.500)
awerage | 500 30 0.25 3.592% (1.000) 4.507 % (3.000) 4.037% (2.000)
average | 500 30 0.50| 1.593% (1.000) 2.498% (3.000) 2.246 % (2.000)
average | 500 30 0.75| 0.764% (1.000) 1.168% (2.778) 1.112% (2.222)

average | | 1.723% (1.000) | 2271 % (2.565) 2.229 % (2.435)

Each line in tablé B.14 represents the average performance over a set tdstipeoblems. These
sets are too small to indicate statistical outperformance of any algorithm-topology pair on that subset.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Appendix C

Detailed results for the FSP

This appendix contains the detailed results of the experiments run on the FSP. In total, 38 such problems
were considered, all of which are known from the literature and are described in appéndix D. To solve
the underlying classification problem, three different classifiers were used: the GNB, J4gNahd
classifiers.

The J48 ank-NN classifiers have parameters that need to be set and these values influence the
behavior of the classifier. Therefore, a classifier tuning process was used and this was described in
section[6.2.3]3. A separate investigation using an exhaustive search of the classifiers parameters and
the feature subset was conducted to test whether this setup of the classifier tuning was adequate. This
investigation and an overview of its results was described in sdctibn 6.4. In decfion C.1 of this appendix,
detailed results of the investigation on the J48 classifier are given.

Four different algorithms, BPSO, CFBPSO, PBPSO, and SBPSO, were compared in the experiments
on the FSP and each algorithm was run in a wrapper setup for each of the three classifiers, resulting in
12 algorithm-classifier pairs. Each such combination of an algorithm and a classifier was tuned on eight
tuning problems. This tuning process was described in selction 6.5, where an overview of the results
was also given. Sectidn C.2 of this appendix contains the detailed results of the PSO parameter tuning
experiments.

The tuned algorithm-classifier pair were then applied on the test set of 30 problems, where 30 in-
dependent runs were simulated for each of these 12 combinations. The exact experimental set-up for
the testing process was described in detail in sectidn 6.2 and an overview of the results was given in
sectior 6.b. Sectidn G.3 of this appendix contains the detailed results of these experiments on the tuned
PSO algorithms.

C.1 Detailed FSP results for exhaustive search on J48 parameters

This section contains the detailed results of the experiments in which the parameters for the J48 classifiers
were investigated using an exhaustive search. The main results were discussed if secfibn 6.4.2.1 with the
summary of the results listed in tables 8.11 And16.12. The detailed results of the experiments are listed
below using a separate table and discussed in a separate subsection for each of the nine datasets studied,

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX C. DETAILED RESULTS FOR THE FSP 213

namely iris, corral, liver, monk-1, monk-2, pima, breasttissue, glass, and tic-tac-toe.

Eachtable in this section shows the probability scores for the 49 parameter combinations. The cells
in the table are colored in grey-scale according to the value in the cell, with a darker hue indicating a
higher probability score. The parameteasndy which combine to form the combination with the highest
probability are indicated in bold and the corresponding cell has the darkest hue. This color scheme makes
it possible to quickly identify areas of good combinations ahdy for use in the J48 classifier on the

dataset.

C.1.1 Iris dataset

Table[C.1 shows the probability scores for the iris dataset. The best parameter values fduad?are
andy = 0.050. A combination of low values for bothand y performs best. Higher values fblead

to deterioration in the performance of the J48 classifier. A higher valug liais only leads to a small
decrease in performance during exhaustive search.

The parameters actually used in the exhaustive search and found using the method described in sec-
tion[6.2.3.8 weré = 18 andy = 0.275. This parameter combination for the J48 classifier is suboptimal,
ranking 15th out of 49, but can hardly be distinguished from any combinatibiod y werel ranges
between 2 and 34. The chosen parameters valudsdod y thus seem acceptable, as this parameter
combination’s probability, 2.5%, is 82% of the highest found probability, 3.1%.

Table C.1: Detailed results classifier parameter values for J48 classifier on iris dataset.

y\l 2 10 18 26 34 42 50

0.050- 26% 24% 24%25% 1.5% 0.2%
0.125/25% 2.6% 25% 24%/26% 1.5% 0.2%
0.20012.7% 2.6% 25% 25% 26% 1.5% 0.2%
0.275 25% 25% 25% 25% 2.6% 1.5% 0.2%
0.350 23 % 25% 25% 25% 2.6% 1.5% 0.2%
0.425 23% 2.4% 25% 24% 26% 1.5% 0.2%
0.500 23% 2.4% 25% 24% 2.6% 1.5% 0.2%

C.1.2 Corral dataset

Table[C.2 shows the probability scores for the corral dataset. The best parameter values fduad are
2 andy = 0.125. Low values forl perform best whild > 26 quickly leads to deterioration in the
performance of the J48 classifier. Performance is less sensitive to the valuE@fhigher values oy
combinations witH = 10 perform less well than those with eitler 2 or| = 18, leading to a slightly
more complicated performance landscape.

The parameters actually used in the exhaustive search and found using the method described in
sectiori 6.2.313 werle= 2 andy = 0.050. This parameter combination for the J48 classifier is suboptimal,
ranking 7th from 49, as a higher value fgryields better performance in all cases except where

© University of Pretoria

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

NIVERS
NIVER
UNIBE

(@

<cc

214 APPENDIXC. DETAILED RESULTS FOR THE FSP

10. still, the relative performance seems adequate for use in the exhaustiveesgatiments as the
probability score for the chosen parameter combination, 4.1%, is more than 75% of the probability score
for the best parameter combination, 4.9%.

Table C.2: Detailed results classifier parameter values for J48 classifier on corral dataset.

y\ I 2 10 18 26 34 42 50

0.050 3.8% 3.3% 3.4% 15% 05% 0.5% 0.5%
0.125- 34% 36% 19% 05% 0.5% 0.5%
0.20049% 3.0% 3.6% 1.9% 05% 0.5% 0.5%
0.27549% 2.8% 3.6% 1.9% 05% 0.5% 0.5%
0.35044% 25% 3.6% 1.9% 05% 0.5% 0.5%
0425 42% 2.3% 3.6% 1.8% 05% 0.5% 0.5%
0.50014.1% 2.3% 3.6% 1.8% 05% 0.5% 0.5%

C.1.3 Liver dataset

TablelC.3 shows the probability scores for the liver dataset. The best parameter values fouadi@re
andy = 0.125. Higher values fol perform better in general on this dataset, wita 42 being the
optimum for any of the seven possible values/ofFor lowery values lead to better performance, and
the combination with = 42 is the only one for which the lowest valye= 0.050 is not the best. The
parameter has a slightly larger impact on performance thahghemeter.

The parameters actually used in the exhaustive search and found using the method described in sec-
tion[6.2.3.8 weré = 26 andy = 0.275. This parameter combination for the J48 classifier is suboptimal,
ranking 17th from 49. Also its probability is only 69% of that for the best found probability, the worst
result for the chosen parameter combination for the J48 classifier across the five datasets investigated.
This seems not an unacceptable result, but clearly not desirable.

Table C.3: Detailed results classifier parameter values for J48 classifier on liver dataset.

y\l 2 10 18 26 34 42 50

0.050 23% 19% 2.2% 2.7% 25% 3.0% 2.5%
0.125 2.0% 15% 19% 2.6 % 2.4%- 2.3 %
0.200 1.8% 1.3% 1.8% 25% 24% 3.2% 2.2%
0.275 1.8% 1.3% 1.8% 23% 22% 28% 2.0%
0.350 1.6% 1.2% 1.7% 21% 21% 2.7% 1.9%
0425 1.6% 1.1% 1.8% 2.0% 21% 26% 1.9%
0.500 1.3% 09% 1.6% 1.8% 1.8% 23% 1.6%

© University of Pretoria

P
si UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA

Que# YUNIBESITHI YA PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP 215

C.1.4 Monk-1 dataset

Table[C.4 shows the probability scores for the monk-1 dataset. The best parameter values found are
| =2 andy = 0.050. Low valueg clearly perform best on this dataset, while performance is completely
insensitive to the value df Fory, lower values lead to better performance, and the combination with
| =42 is the only one for which the lowest valye= 0.050 is not the best. Theparameter has a slightly
larger impact on performance than thgarameter.

The parameters actually used in the exhaustive search and found using the method described in
section 6.2.3]3 were= 34 andy = 0.275. Although the different value fdris inconsequential, the
value chosen foy is clearly not ideal. The chosen parameter combination ranks 22nd out of 49. Its
probability is still 78% of that for the best found probability, which seems acceptable.

Table C.4: Detailed results classifier parameter values for J48 classifier on monk-1 dataset.

y\l 2 10 18 26 34 42 50

0.050 2.7% 2.7% 2.7% 2.7% 2.7% 2.7% 2.7%

0.125 25% 25% 25% 25% 25% 25% 25%
0.200 25% 25% 25% 25% 25% 25% 2.5%
0275 21% 21% 21% 21% 21% 21% 2.1%
0350 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%
0425 1.4% 14% 14% 14% 14% 1.4% 1.4%
0.500 1.4% 14% 14% 14% 14% 1.4% 1.4%

C.1.5 Monk-2 dataset

Table[C.B shows the probability scores for the monk-2 dataset. The best parameter values found are
| =2 andy = 0.275. It can be easily seen that performance is very equal across most combinations
investigated, with 40 out of 49 attaining a probability within 75% of that for the best combination and 29
scoring a probability of 2.2%. Only combinations of higlhalues and < 42 lead to poor results.

Table C.5: Detailed results classifier parameter values for J48 classifier on monk-2 dataset.

y\ I 2 10 18 26 34 42 50

0.050 2.2% 2.2% 22% 22% 22% 22% 2.2%
0.125 22% 22% 22% 22% 22% 22% 2.2%
0.20022% 2.2% 2.2% 22% 22% 22% 2.2%
0.275- 21% 21% 21% 22% 22% 2.2%
0.350 23% 19% 2.0% 21% 21% 22% 2.2%
0425 19% 1.6% 1.6% 1.8% 20% 2.1% 2.2%
0.500 1.3% 0.9% 09% 1.0% 1.4% 1.5% 2.2%

The J48 parameters actually used during the exhaustive search addifaug the method described

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

216 APPENDIXC. DETAILED RESULTS FOR THE FSP

in section[6.2.313 were= 2 andy = 0.425. Given that performance is so equal across most of the
parameter combinations, it is remarkable that the chosen combination actually is quite poorly ranked:
39th out of 49. Its probability score is still 78% of that for the best found score, however, which seems
acceptable.

C.1.6 Pima dataset

Table[C.6 shows the probability scores for the pima dataset. The best parameter values foundare
andy = 0.200. Small values dfcombine with larger values fgrare seen to perform worst. This differs
from the patterns generally seen on the other datasets, which favor smaller values faarmbyh

The parameters actually used in the exhaustive search and found using the method described in
sectiori 6.2.3]3 werke= 2 andy = 0.425. This parameter combination for the J48 classifier is very poor,
ranking 48th out of 49. Tuning the J48 classifier using all features thus yields a poorly tuned classifier if
used on only a subset of features and can be said to fail on this dataset.

Table C.6: Detailed results classifier parameter values for J48 classifier on pima dataset.

y\l 2 10 18 26 34 42 50

0.050 1.6% 2.0% 1.8% 23%|2.7% 2.7% 2.7%
0.125 1.4% 1.8% 1.7% 22% 28% 2.7% 2.7%
0.200 1.4% 1.9% 1.7% 2.3%- 2.7% 2.7%
0.275 1.2% 1.8% 1.7% 22% 29% 26% 2.7%
0.350 1.0% 1.6% 1.6% 21% 2.7% 25% 2.6%
0.425 0.8% 1.3% 15% 19% 24% 23% 24 %
0.500 0.8% 1.2% 1.3% 1.8% 23% 2.0% 2.2%

C.1.7 Breasttissue dataset

TablelC. 4 shows the probability scores for the breasttissue dataset.

Table C.7: Detailed results classifier parameter values for J48 classifier on breasttissue dataset.

y\ I 2 10 18 26 34 42 50

0.050- 54% 0.2% 0.0% 0.0% 0.0% 0.0%
0.125/95% 5.1% 0.2% 0.0% 0.0% 0.0% 0.0%
0.20019.1% 5.1% 0.2% 0.0% 0.0% 0.0% 0.0%
0.275/89% 5.3% 0.2% 0.0% 0.0% 0.0% 0.0%
0.350/89% 48% 0.2% 0.0% 0.0% 0.0% 0.0%
0.425/89% 45% 0.2% 0.0% 0.0% 0.0% 0.0%
0.500/8.7% 45% 0.2% 0.0% 0.0% 0.0% 0.0%

The best parameter values found &re 2 and y = 0.050, which is in line with the behavior seen

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

APPENDIX C. DETAILED RESULTS FOR THE FSP 217

across most of the nine datasets investigated. Any parameter combination intotvidgvorks well,
those with = 10 work adequately, butlfis set higher than 10, performance suffers a great deal, resulting
in a combined probability of less than 2% that such a parameter combination works well on any given
features subset.

The parameters actually used in the exhaustive search and found using the method described in
sectior 6.2.3]3 werk= 2 andy = 0.125. This parameter combination ranks second best out of 49 and
the chosen classifier tuning method thus is shown to work very well on the breasttissue dataset.

C.1.8 Glass dataset

Table[C.8 shows the probability scores for the glass dataset. The best parameter values foen2 are
andy = 0.050, which is in line with the behavior seen across most of the nine datasets investigated.
Any parameter combination involving= 2 works well, those with = 10 work adequately, but if is

set higher than 10, performance suffers a great deal: the sum of probability scores for all parameter
combinations witH > 10 was less than 15%. This means that parameter combinationsl| usi@gor

| =10 have a combined probability score of more than 85% and should work well on any given features
subset.

Table C.8: Detailed results classifier parameter values for J48 classifier on glass dataset.

y\ I 2 10 18 26 34 42 50

0.050- 44% 08% 0.7% 0.2% 0.1% 0.1%
0.125/82% 49% 0.8% 0.7% 0.2% 0.1% 0.1%
0.200 7.9% 4.7% 0.7% 0.8% 0.2% 0.1% 0.1%
0.275 7.3% 48% 09% 0.8% 0.3% 0.1% 0.1%
0.350 7.2% 4.6% 0.9% 0.8% 0.3% 0.1% 0.1%
0.425/7.2% 4.7% 09% 0.8% 0.3% 0.1% 0.1%
0.500/7.0% 4.7% 09% 0.8% 0.3% 0.1% 0.1%

The parameters actually used in the exhaustive search and found using the ohethoded in
sectior 6.2.3]3 werk= 2 andy = 0.125. This parameter combination ranks second best out of 49 and
the chosen classifier tuning method thus is shown to work very well on the glass dataset.

C.1.9 Tic-tac-toe dataset

Table[C.9 shows the probability scores for the tic-tac-toe dataset. The best parameter values found are
| =18 andy = 0.125 and in general the probability score reduces for higher valuésifat lower values
for y, but the shape of the surface is not completely straightforward: the upper and lower edges of the
grid show better scores than the minimunt at50 andy = 0.200.

The J48 parameters actually used during the exhaustive search and found using the method described
in sectior 6.2.313 were= 18 andy = 0.125. This chosen parameter combination ranks 19th out of 49,
and its probability score is only 45% of the maximum recorded probability score. Thus, the chosen clas-

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

218 APPENDIXC. DETAILED RESULTS FOR THE FSP

sifier tuning method has not yielded a good result for the tic-tac-toe datasets Shimewhat surprising,
as the concept underlying the artificial dataset requires all features for successful classification.

Table C.9: Detailed results classifier parameter values for J48 classifier on tic-tac-toe dataset.

y\l 2 10 18 26 34 42 50

0.050/3.6% 2.0% 19% 14% 1.1% 1.2% 1.2%
0.125/39% 24% 2.1% 1.5% 1.0% 1.0% 0.9%
0.200/4.1% 2.8% 2.0% 1.8% 1.0% 1.0% 0.9%
0.275/14.0% 29% 22% 22% 1.1% 1.2% 1.0%
0.350- 33% 20% 24% 1.3% 1.4% 1.3%
0.42544% 3.1% 1.7% 23% 1.2% 1.5% 1.4%
0.50043% 2.7% 1.4% 22% 1.2% 1.6% 1.4%

C.2 Detailed FSP tuning results

This section lists the detailed results of the experiments performed to tune the four PSO algorithms
(BPSO, CFBPSO, PBPSO and SBPSO) on the FSP. In this tuning process 128 different parameter com-
binations were investigated for each PSO algorithm and each classifier. The parameters resulting from
the tuning process were discussed in se¢tioh 6.5. The accuracy achieved and number of features selected
using the chosen combination of parameters for each of the four PSO algorithms and each of the three
classifiers is shown below.

Note that the process used for tuning was set out in section 6.5.1 and a brief statistical summary
(the number of instances, classes and features) of the eight datasets used in the PSO tuning process for
FSP can be found in table 6.2. A detailed description of the datasets and any specific actions taken in
preprocessing the data is set out in appehdlix D.

The results in this section are shown separately for each of the three classifiers investigated: the GNB
classifier in section C.2.1, the J48 classifier in sedtion €.2.2, ank-Mi¢ classifier in section C.2.3.

Each of the three sections contains two tables. The first table lists the average accuracy and standard
deviation of that accuracy for the best solution found by the PSO, for each of the eight tuning datasets
and each of the four PSO algorithms. The average and standard deviation of the accuracy were calculated
across 10 independent runs of the PSO algorithm and the accuracy reported for each such run was itself
calculated by 10 repeated calculations using 10-fold cross validation with different splits of the dataset.
The second table in each section lists the average number of features found and the standard deviation
for the same datasets and PSO algorithms.

It is important to keep in mind that the results shown in this sectiomateepresentative of the
performance of the four PSO algorithms on the eight tuning datasets, but instead will probaisiyate
that performance: the accuracies shown are those for that parameter combination out of 128 possible
combinations that performed best on average across the same datasets. Hence the results are designed to
be the best possible ones to be achieved by the PSO algorithms, rather than what would be expected if
the PSO algorithms were tuned in another manner.

© University of Pretoria

IVERS|

(@

UN
UN
YUNIBES

IVERSI

TEIT VAN PRETORIA
TY OF PRETORIA
ITHI YA PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP

219

C.2.1 GNB classifier

TableC.10: Detailed accuracy results for the GNB classifier on the FSP tuning datasets achieved by the

chosen PSO parameter combination.

Data®t

BPSO

Avg. =+ Stdev Ran

Jg Avg.

CFBPSO

+ Stdev Rank

PBPSO
Avg.

+ Stdev Rank

SBPSO

Avg. =+ Stdev Rank

All features
Avg. =+ Stdev

echocardiogran
hepatitis
labor
lung-cancer
lymphograply
promoter
wine

194.06% =+ 0.23% (1.5)
88.13% = 0.64% (4)
95.07% + 0.50% (2)
76.10% + 1.60% (3)
85.42% + 0.17% (1.5)
88.92% + 0.56% (3)
97.20% + 0.01% (1.5)

Z0o

96.71% + 0.17% (1)

94.04% -+ 0.19%
88.45% + 0.62%
94.85% -+ 0.24%
76.65% + 1.77%
85.22% + 0.21% (4)

89.35% + 0.43% (2)

97.20% -+ 0.01% (3.5)

©)
)
4)
3

94.01% -+ 0.14%
88.21% + 0.50%
95.01% -+ 0.30%
73.18% + 2.80%
85.40% + 0.13% (3)

88.41% + 0.37% (4)

97.20% -+ 0.05% (1.5)

4)
)
©)
4

96.54% + 0.13% (4)

96.64% + 0.12% (3)

94.06% =+ 0.24% (1.5)
88.19% + 0.69% (3)
95.11% + 0.29% (1)
79.45% + 2.31% (1)
85.42% + 0.17% (1.5)
89.88% + 1.34% (1)
97.20% =+ 0.01% (3.5)
96.69% + 0.18% (2)

84.52% + 0.53%
83.06% + 0.81%
42.73% £ 1.59%
30.58% + 3.31%
71.81% =+ 3.16%
70.79% =+ 0.99%
92.92% + 0.47%
90.08% =+ 0.75%

average |

90.20% 2.1q

90.29% 2.94{

89.76%

3.06

90.75% 1.81[

70.81%

Table C.11: Detailed feature selection results for the GNB classifier on the FSP datasgts achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Average
echocardiogram 5.8 +0.9 56 +1.0 58 +04 55 +0.5 12
hepatitis 10.7 £25 84 +20 10.6 +2.3 11.7 +£29 19
labor 72 +0.8 6.7 +£0.7 73 +£0.7 73 +£12 16
lung-cancer 234 +£36 171 +£3.3 241 +£45 16.7 £5.6 56
lymphograply | 10.1 +1.0 94 +1.1 10.2 £0.6 95 +£1.8 18
promoter 304 +34 259 +14 30.8 £25 29.1 +6.1 57
wine 6.3 +£0.9 6.1 +0.9 6.5 +0.8 6.6 +0.5 13
Z00 10.1 +£0.3 10.0 £0.5 10.0 £0.0 10.1 +£0.3 16

© University of Pretoria

220

UN
UN
YUNIBESI

(@

IVERSITEIT VAN PRETORIA
IVERSI

TY OF PRETORIA
THI YA PRETORIA

APPENDIXC. DETAILED RESULTS FOR THE FSP

C.2.2 148 classifier

TableC.12: Detailed accuracy results for the J48 classifier on the FSP tuning datasets achieved by the

chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features

Datagt Avg. =+ Stdev RanJF Avg. £ Stdev Rank Avg. =+ Stdev Rank Avg. 4+ Stdev Rank Avg. =+ Stdev
echocardiogranf92.75% + 0.98% (2) |92.80% =+ 0.70% (1) |92.64% + 0.27% (4) |92.65% =+ 0.44% (3) |87.43% + 1.53%
hepatitis 86.99% + 1.15% (4) [87.49% +0.93% (2) [87.29% + 1.14% (3) [87.68% + 0.68% (1) [83.26% + 1.25%
labor 95.50% + 0.81% (2) |95.33% =+ 0.70% (3.5)|95.83% + 0.88% (1) |95.33% =+ 0.70% (3.5)|83.20% + 2.01%
lung-cancer |71.75%+ 9.67% (3) [73.25% + 11.14% (2) |71.50% + 9.12% (4) |74.50% + 12.35% (1) [41.42% + 7.05%
lymphograply |88.68% + 1.63% (2) (88.70% =+ 1.61% (1) |87.86% + 1.40% (4) |88.25% =+ 1.31% (3) |77.21% + 2.34%
promoter 91.54% + 0.76% (3) |91.56% +0.72% (2) [91.39% + 1.17% (4) |92.54% + 1.66% (1) |78.52% + 2.88%
wine 98.10% + 0.39% (4) |98.31% +0.26% (2) [98.32% + 0.25% (1) |98.16% +0.27% (3) |93.30% + 1.20%
Z00 98.09% + 0.00% (1.5)|98.09% =+ 0.00% (1.5)|97.82% + 0.44% (4) |97.89% + 0.38% (3) |92.38% + 1.24%
average | 90.20% 2.69 90.69% 1.84 90.33% 3.13 90.88% 2.31 79.59%

Table C.13: Detailed feature selection results for the J48 classifier on the FSP datasgts achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Average
echocardiogram 6.9 +1.6 6.3 +1.6 6.3 +1.6 56 +2.8 12
hepatitis 6.3 +3.0 6.6 +2.6 76 +20 71 £35 19
labor 6.4 +1.6 58 +1.3 8 +0.7 8 +1.6 16
lung-cancer 23 £5.0 18.2 +£6.2 20.7 £6.5 171 +9.8 56
lymphograply 85 +14 78 £1.2 86 1.7 7.7 £1.8 18
promoter 23.8 +£4.7 242 +£4.0 28 +44 18.3 +6.2 57
wine 6.6 +1.3 74 +15 6.7 +£15 6.6 +15 13
Z00 82 +09 81 +1.6 84 +16 84 +12 16

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX C. DETAILED RESULTS FOR THE FSP 221

C.2.3 k-NN classifier

Table C.14: Detailed accuracy results for BN classifier on the FSP tuning datasets achieved by the
chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Datat Avg. + Stdev Rank Avg. =+ Stdev Rank Avg. =+ Stdev Rank Avg. + Stdev Rank Avg. =+ Stdev
echocardiogran95.26% + 0.37% (2) |95.07% + 0.63% (4) |95.35% + 0.45% (1) |95.23% + 0.38% (3) |[90.95% + 1.24%
hepatitis 90.51% + 0.23% (1) [90.28% + 0.36% (3) |90.30% + 0.34% (2) |90.20% + 0.29% (4) |83.97% + 0.55%
labor 98.67% + 0.70% (3) [98.67% + 0.70% (3) |98.83% + 0.81% (1) |98.67% + 0.70% (3) [90.33% + 1.13%

lung-cancer |84.25% 4 1.44% (2) |82.50% = 2.83% (4) |83.92% + 2.64% (3) |85.92% 4 2.76% (1) |53.83% =+ 3.00%
lymphograply |87.50% + 0.95% (1) |87.40% + 0.88% (2) |87.31% + 0.66% (4) |87.35% + 0.92% (3) |80.21% =+ 1.62%

promoter 89.29% + 0.63% (3) [90.37% £+ 0.97% (2) |89.28% + 1.78% (4) |91.51% £+ 1.92% (1) |76.35% + 2.56%
wine 99.33% + 0.35% (1) |99.06% =+ 0.27% (2.5)|99.06% =+ 0.27% (2.5)|99.00% + 0.23% (4) |96.31% + 0.59%
Z00 99.07% + 0.47% (4) [99.53% + 0.50% (1) |99.15% + 0.30% (3) |99.26% =+ 0.39% (2) |95.55% + 1.28%
average ‘ 90.20% 2.13 92.86% 2.6q 92.90% 2.5@ 93.39% 2.63 83.44%

Table C.15: Detailed feature selection results forkiidN classifier on the FSP tuning datasets achieved
by the chosen PSO parameter combination.

BPSO CFBPSO PBPSO SBPSO All features
Dataset Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Avg. =+ Stdev| Average
echocardiogram 5.1 +1.1 54 +13 47 +£1.2 3.7 £0.8 12
hepatitis 11 +26 123 +1.7 119 +15 109 +2.0 19
labor 93 +11 105 +2.3 87 +1.6 9 +21 16
lung-cancer 254 +54 29.2 +4.38 26.4 +4.2 17.6 +£55 56
lymphograply | 12.6 +1.8 13 +1.6 116 +1.0 127 +1.8 18
promoter 36.7 £5.1 38.6 +3.9 395 +£57 38.1 +£5.3 57
wine 74 +1.3 87 +15 85 +1.4 85 +0.8 13
Z00 122 +1.6 125 +1.1 114 +1.6 124 +1.7 16

© University of Pretoria

NIVERS
NIVER
UNIBE

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

(@

<cc

222 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3 Detailed FSP testing results

The main numerical experiments performed using a PSO wrapper method to solve the FSP were de-
scribed in chaptdr]6 and an overview of the results using the tuned PSO algorithms was presented in
sectior 6.6. This section of the appendix contains the detailed results of the experiments on the FSP test-
ing datasets using the four tuned PSO algorithms: BPSO, CFBPSO, PBPSO, and SBPSO. For each of the
three classifiers used in these experiments, a separate subsection is included below: the GNB classifier
in subsectiof C.311, the J48 classifier in subsediion [C.3.2, arkdNin classifier in subsectidn C.3.3.

Each such subsection in turn contains three tables with detailed results on

1. the classification accuracy,
2. the statistical tests performed, and

3. the number of features selected by the PSO algorithms.

The table with the classification accuracy contains the average classification accuracy for all the 30
testing datasets for each of the four PSO algorithms. The classification accuracy is calculated using
10 repetitions of the 10-fold cross validation using only the features selected by each of the four PSO
algorithms for that dataset respectively. The standard deviation of the accuracy across those 10 repetitions
is listed in the column labeled “stdev”. The columns labeled “rank” denote the rank of the achieved
accuracy compared to that of the other three PSO algorithms. The bottom line of the table shows the
average classification accuracy, which is less informative, and the more important average rank achieved
by each of the four PSO algorithms on the 30 testing datasets.

The section labeled “statistical test” contains a table with the results of two different sets of statistical
tests. The first of these is tietest that was discussed in section 8.6.1. The three right most columns of
the table contain thE-statistic andp-value of theF-test, and whether the outcome showed a significant
difference at a confidence level af= 5% labeled “Signif.”. The second set of tests uses the ranks of the
average classification accuracy for the four PSO algorithms. The leftmost four columns show the ranks
for all datasets, while columns five to eight show the same ranks, but only for those datasets for which
the F-test showed a significant difference. The bottom lines of the table contaif+$laere,p-value,
and Holme« of the Iman-Davenport test. This is performed once using all 30 datasets, and once using
only those datasets that are selected byFttest.

The table with the number of features selected contains just that: the average number of features
selected and the standard deviation across the 30 independent runs of each PSO algorithm.

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP 223

C.3.1 GNB classifier

C.3.1.1 Classification accuracy

Table C.16: Final accuracy results on the FSP using the GNB classifier

GNB BPSO CFBPSO PBPSO SBPSO

Dataset Average Stdev Ranlverage Stdev Ranldverage Stdev Ranlverage Stdev Rank
arrhythmia 65.60% 0.81% (3)65.97% 0.65% (1)64.11% 0.64% (4)65.71% 1.63% (2)
audiology 76.55% 0.27% (2)76.57% 0.51% (1) 75.66% 0.56% (4)76.23% 0.47% (3)
australian 87.03% 0.12% (4)87.04% 0.15% (2)87.03% 0.19% (3)87.07% 0.12% (1)
bands 74.36% 0.68% (1) 74.35% 0.53% (2)73.85% 0.66% (4)74.08% 0.97% (3)
breasttissue 67.47% 0.53% (3)67.40% 0.58% (4)67.50% 0.38% (2)67.57% 0.54% (1)
corral 85.67% 0.68% (3)85.71% 0.82% (2)85.76% 0.85% (1)85.43%0.91% (4)
crx 73.54% 0.05% (2)73.56% 0.07% (1) 73.54% 0.06% (3)73.54% 0.12% (4)
dermatology |95.50% 0.43% (1)95.42% 0.43% (3)94.91% 0.59% (4)95.49% 0.60% (2)
german 76.59% 0.15% (2)76.64% 0.13% (1) 76.55% 0.17% (3)76.55% 0.25% (4)
glass 47.60% 0.25% (3)47.66% 0.29% (1)47.54% 0.27% (4)47.63% 0.26% (2)
hill-valley 50.51% 0.37% (2)50.47% 0.40% (3)50.46% 0.37% (4)50.66% 0.37% (1)

horse-colic | 89.48% 0.14% (3)89.52% 0.15% (2)89.23% 0.25% (4)89.54% 0.17% (1)
ionosphere | 68.98% 11.24% (3)72.67% 0.51% (1) 65.43% 13.47% (4)70.25% 9.35% (2)

iris 96.41% 0.11% (4)96.44% 0.11% (3)96.47% 0.14% (1) 96.45% 0.11% (2)
liver 59.94% 0.36% (3)59.93% 0.43% (4)60.03% 0.48% (1)59.98% 0.33% (2)
monk-1 64.80% 0.32% (4)64.89% 0.34% (1)64.88% 0.35% (2)64.88% 0.31% (3)
monk-2 67.13% 0.01% (1)67.13% 0.01% (2)67.13% 0.01% (3)67.13% 0.01% (4)
movement-libras39.49% 0.76% (3)40.43% 0.73% (2)37.50% 0.87% (4)41.67% 1.15% (1)
musk-1 72.48% 0.81% (3)74.37% 0.72% (2)69.86% 2.74% (4)80.41% 1.20% (1)
parity5-5 46.31% 0.35% (4)46.35% 0.28% (1)46.33% 0.35% (2)46.31% 0.37% (3)
parkinsons | 86.80% 0.37% (3)87.35% 0.39% (1)86.74% 0.27% (4)87.00% 0.58% (2)
pima 76.50% 0.09% (2)76.49% 0.10% (4)76.50% 0.10% (3)76.52% 0.09% (1)
sonar 82.62% 0.70% (2)82.24% 0.84% (3)81.70% 0.74% (4)82.98% 0.80% (1)
soybean 78.00% 1.25% (3)79.55% 2.72% (1)78.16% 1.49% (2)77.85% 1.38% (4)
spectf 79.42% 0.00% (3)79.42% 0.00% (1)79.42% 0.00% (4)79.42% 0.01% (2)
tic-tac-toe 74.48% 0.07% (3)74.52% 0.11% (2)74.47% 0.10% (4)74.52% 0.11% (1)
vehicle 59.54% 0.35% (2)59.55% 0.44% (1)59.43% 0.31% (3)59.33% 0.71% (4)
vote 95.75% 0.09% (4)95.78% 0.07% (1)95.77% 0.08% (3)95.77% 0.09% (2)
vowel 45.13% 0.18% (2)45.07% 0.15% (3)45.14% 0.18% (1)45.07% 0.17% (4)
wdbc 96.45% 0.10% (2)96.44% 0.14% (3)96.39% 0.18% (4)96.49% 0.15% (1)
average | 72.67% (2.67)72.96% (1.97)72.25% (3.10)73.05% (2.27)

© University of Pretoria

224

(@

<cc

N
NIV
u

IVERS

NIBESITHI YA

ITEIT VAN PRETORIA
ERSITY OF PRETORIA
E

PRETORIA

APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.1.2 Statistical test

TableC.17: Statistical tests on final accuracy results on the FSP using the GNB classifier

GNB All datasets Selected datasets F-test

BPSO CFBPSO PBPSO SBP SO CFBPSO PBPSO SBPSO a =0.05
Dataset (Rank) (Rank) (Rank) (RankjRank) (Rank) (Rank) (Rank}-stat.p-value Signif.
arrhythmia (3) (1) (4) (2)| (3) (1) (4) (2) | 15.22 0.0000 TRUE
audiology (2) (1) (4) (3)| (2) (1) (4) (3) | 18.91 0.0000 TRUE
australian (4) (2) (3) (1) 0.40 0.7533 FALSE
bands (1) (2) (4) (3) 2.59 0.0580 FALSE
breasttissue (3) (4) (2) (1) 0.44 0.7264 FALSE
corral (3) (2) (1) (4) 0.70 0.5547 FALSE
crx (2) (1) (3) (4) 0.19 0.9005 FALSE
dermatology (1) (3) (4) (2)] (1) (3) (4) (2) 6.78 0.0004 TRUE
german (2) (1) (3) (4) 1.24 0.3010 FALSE
glass (3) (1) (4) (2) 0.81 0.4915 FALSE
hill-valley (2) (3) (4) (1) 1.26 0.2931 FALSE
horse-colic (3) (2) (4) (1) (3) (2) (4) (1) | 13.73 0.0000 TRUE
ionosphere (3) (1) (4) (2) 2.07 0.1095 FALSE
iris (4) (3) (1) (2) 1.18 0.3208 FALSE
liver (3) (4) (1) (2) 0.29 0.8304 FALSE
monk-1 (4) (1) (2) (3) 0.37 0.7700 FALSE
monk-2 (1) (2) (3) (4) 0.06 0.9809 FALSE
movement-libras (3) (2) (4) (1) (3) (2) (4) (1) | 87.88 0.0000 TRUE
musk-1 (3) (2) (4) (1) (3) (2) (4) (1) |179.37 0.0000 TRUE
parity5-5 (4) (1) (2) (3) 0.06 0.9802 FALSE
parkinsons (3) (1) (4) (2)] (3) (1) (4) (2) 9.73 0.0000 TRUE
pima (2) (4) (3) (1) 0.35 0.7873 FALSE
sonar (2) (3) (4) (1) | (2) (3) (4) (1) | 11.24 0.0000 TRUE
soybean (3) (1) (2) (4)] (3) (1) (2) (4)] 4.21 0.0079 TRUE
spectf (3) (1) (4) (2) 0.39 0.7585 FALSE
tic-tac-toe (3) (2) (4) (1) 1.52 0.2141 FALSE
vehicle (2) (1) (3) (4) 1.04 0.3805 FALSE
vote (4) (1) (3) (2) 0.69 0.5578 FALSE
vowel (2) (3) (1) (4) 1.11 0.3505 FALSE
wdbc (2) (3) (4) (1) 1.81 0.1514 FALSE
averagerank [(2.67) (1.97) (3.10)(2.27)(2.56) (1.78) (3.78) (1.89) # datasets 9
rankof rank (3) (1) (4) (2)| (3) (1) (4) (2)
Z-score 2.1000 3.4000 0.900@.8520 2.1909 0.1217
p-value 0.0179 0.0003 0.184D.1971 0.0142 0.4516
Holm o 0.0250 0.0500 0.016D.0250 0.0500 0.0167

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP 225

C.3.1.3 Number of features selected

TableC.18: Number of features selected using the GNB classifier

GNB BPSO CFBPSO PBPSO SBPSO

Dataset # Ftrs | Average Stdev] Average Stdev] Average Stdev) Average Stdev
arrhythmia 279 1371 124 98.2 9.5 159.4 9.9 137.7 36.0
audiology 69 34.3 2.7 29.5 3.1 39.8 3.8 41.6 3.7
australian 14 9.0 11 8.5 1.2 9.0 1.0 9.4 0.7
bands 39 19.8 2.1 16.5 24 22.0 2.0 21.0 3.6
breasttissue 9 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0
corral 6 4.0 0.0 4.0 0.2 4.1 0.3 4.2 0.4
crx 15 4.5 0.5 4.2 0.4 4.9 0.6 4.6 0.8
dermatology 34 16.7 1.6 14.7 15 17.8 1.7 18.0 1.5
german 24 104 1.2 10.0 1.2 10.8 1.2 11.3 1.6
glass 9 3.5 0.9 3.1 1.0 3.3 1.0 3.1 1.0
hill-valley 100 53.8 10.1 479 140 53.5 7.2 56.0 16.8
horse-colic 36 11.2 1.2 9.6 1.2 13.2 1.9 11.0 1.5
ionosphere 34 4.9 3.5 2.9 1.6 5.6 6.2 4.7 4.9
iris 4 2.0 0.0 2.0 0.0 20 0.0 2.0 0.0
liver 6 2.1 0.4 2.0 0.0 2.2 0.5 2.1 0.4
monk-1 6 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
monk-2 6 2.9 13 2.4 14 3.0 1.2 34 14
mavement-libras 90 31.3 3.6 23.2 35 37.6 6.0 235 6.4
musk-1 166 52.3 5.8 35.9 55 493 217 24.2 7.8
parity5-5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
parkinsons 22 9.6 2.4 5.9 15 10.3 2.3 9.5 3.2
pima 8 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0
sonar 60 24.5 2.7 20.6 3.3 28.6 2.6 21.7 5.3
soybean 35 21.0 2.2 19.0 2.6 219 2.4 21.9 2.1
spectf 44 22.2 7.5 19.9 7.5 23.2 5.0 21.0 7.8
tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 9.2 0.5 9.1 0.4 9.3 0.5 9.3 0.8
vote 16 4.6 0.6 4.4 0.7 4.7 0.8 4.5 1.0
vowel 10 4.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0
wdbc 30 9.0 1.3 8.3 14 9.6 1.2 8.3 1.6

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

226

APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.2 J48 classifier

C.3.2.1 Classification accuracy

Table C.19: Final accuracy results on the FSP using the J48 classifier

J48 BPSO CFBPSO PBPSO SBPSO

Dataset Average Stdev Rarlk\verage Stdev Rarik\verage Stdev Rarlkverage Stdev Rank
arrhythmia 73.49%0.82% (2)73.66%0.62% (1)73.329%0.79% (3)73.17%0.90% (4)
audiology 79.82%0.80% (1)79.81%0.72% (2)79.48%0.90% (4)79.60%0.68% (3)
australian 87.19%0.52% (1)87.12%0.68% (3)87.15%0.45% (2)87.09%0.52% (4)
bands 79.33%1.12% (2)79.43%1.23% (1)79.07%1.11% (4)79.15%1.46% (3)
breasttissue |69.79%1.50% (3)70.27%1.31% (1)70.24%1.30% (2)69.38%1.78% (4)
corral 98.90%0.73% (3)98.91%0.66% (2)98.88%0.70% (4)98.97%0.62% (1)
crx 74.10%0.54% (4)74.14%0.53% (3)74.15%0.51% (2)74.32%0.65% (1)
dermatology |97.38%0.13% (1)97.30%0.20% (3)97.25%0.21% (4)97.30%0.22% (2)
german 74.20%0.76% (1)74.04%0.66% (4)74.19%0.66% (2)74.09%0.72% (3)
glass 73.51%1.82% (2)73.21%2.13% (4)73.39%1.82% (3)73.57%1.35% (1)
hill-valley 46.62%0.78% (3)50.13%0.42% (1)46.60%0.74% (4)47.13%1.36% (2)
horse-colic 88.59%0.76% (4)88.63%0.66% (2)88.629%0.56% (3)88.69%0.41% (1)
ionosphere 92.45%0.98% (3)92.63%0.65% (1)92.43%0.74% (4)92.53%1.10% (2)
iris 94.64%0.41% (3)94.58%0.36% (4)94.76%0.25% (1)94.71%0.31% (2)
liver 68.84%1.63% (3)68.70%1.43% (4)68.90%1.40% (2)68.95%1.29% (1)
monk-1 75.01%0.00% (2)75.01%0.00% (4)75.019%0.00% (3)75.01%0.03% (1)
monk-2 89.81%0.54% (1)89.79%0.88% (2)89.72%0.69% (4)89.74%0.79% (3)
maovement-libras73.27%1.02% (2)73.68%1.09% (1)72.84%1.27% (3)72.10%1.28% (4)
musk-1 86.15%1.21% (2)86.28%0.83% (1)85.63%0.94% (3)85.55%1.00% (4)
parity5-5 96.64%0.52% (4)97.10%0.45% (1)97.05%0.61% (2)96.86%0.45% (3)
parkinsons 90.21%1.68% (2)89.96%1.71% (3)89.73%1.64% (4)90.21%1.56% (1)
pima 75.11%0.41% (3)75.16%0.41% (1)75.09%0.50% (4)75.12%0.40% (2)
sonar 82.36%1.67% (1)81.91%1.33% (3)80.81%1.66% (4)81.95%2.33% (2)
soybean 95.25%0.29% (2)95.20%0.32% (3)95.119%0.27% (4)95.33%0.27% (1)
spectf 80.60%1.93% (2)80.42%1.85% (3)80.24%1.71% (4)81.21%1.92% (1)
tic-tac-toe 93.25%0.56% (4)93.45%0.50% (2)93.449%0.58% (3)93.48%0.46% (1)
vehicle 72.89%0.51% (2)72.94%0.49% (1)72.76%0.65% (4)72.87%0.43% (3)
vote 96.36%0.15% (1)96.34%0.22% (2)96.33%0.23% (3)96.31%0.21% (4)
vowel 79.13%0.52% (3)79.20%0.42% (2)79.21%0.53% (1)79.06%0.41% (4)
wdbc 95.65%0.55% (4)95.81%0.62% (2)95.66%0.59% (3)95.90%0.63% (1)
average 82.68% (2.37)82.83% (2.23)82.57% (3.10)82.65% (2.30)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX C. DETAILED RESULTS FOR THE FSP 227

C.3.2.2 Statistical test

TableC.20: Statistical tests on final accuracy results on the FSP using the J48 classifier

J48 All datasets Selected datasets F-test

BPSO CFBPSO PBPSO SBPEPSO CFBPSO PBPSO SBPSO a =0.05
Dataset (Rank) (Rank) (Rank) (RanKRank) (Rank) (Rank) (Rankj-stat. p-value Signif.
arrhythmia (2) (1) (3) (4) 1.66 0.1812 FALSE
audiology (1) (2) (4) (3) 1.03 0.3852 FALSE
australian (1) (3) (2) (4) 0.12 0.9461 FALSE
bands (2) (1) (4) (3) 0.40 0.7520 FALSE
breasttissue (3) (1) (2) (4) 1.79 0.1546 FALSE
corral (3) (2) (4) (1) 0.08 0.9699 FALSE
crx (4) (3) (2) (1) 0.69 0.5628 FALSE
dermatology (1) (3) (4) (2) 1.61 0.1921 FALSE
german (1) (4) (2) (3) 0.26 0.8530 FALSE
glass (2) (4) (3) (1) 0.18 0.9103 FALSE
hill-valley (3) (1) (4) (2)(3) (1) (4) (2)]80.65 0.0000TRUE
horse-colic (4) (2) (3) (1) 0.12 0.9454 FALSE
ionosphere (3) (1) (4) (2) 0.23 0.8752 FALSE
iris (3) (4) (1) (2) 1.31 0.2755 FALSE
liver (3) (4) (2) (1) 0.13 0.9402 FALSE
monk-1 (2) (4) (3) (1) 0.80 0.5000 FALSE
monk-2 (1) (2) (4) (3) 0.08 0.9695 FALSE
movement-libras (2) (1) (3) (4)] (2) (1) (3) (4)]| 7.52 0.0002 TRUE
musk-1 (2) (1) (3) (4| (2) (1) (3) (4)| 296 0.0368 TRUE
parity5-5 (4) (1) (2) (3)|(4) (1) (2) (3)| 373 0.0143TRUE
parkinsons (2) (3) (4) (1) 0.43 0.7294 FALSE
pima (3) (1) (4) (2) 0.09 0.9628 FALSE
sonar (1) (3) (4) (2)]| (1) (3) (4) (2)| 3.10 0.0308 TRUE
soybean (2) (3) (4) (1) 2.49 0.0657 FALSE
spectf (2) (3) (4) (1) 1.17 0.3242 FALSE
tic-tac-toe (4) (2) (3) (1) 0.87 0.4580 FALSE
vehicle (2) (1) (4) (3) 0.49 0.6932 FALSE
vote (1) (2) (3) (4) 0.26 0.8530 FALSE
vowel (3) (2) (1) (4) 0.47 0.7019 FALSE
wdbc (4) (2) (3) (1) 0.88 0.4522 FALSE
averagerank |(2.37) (2.23)(3.10) (2.30)(2.40) (1.40) (3.20) (3.00)|# datasets selected 5
rankof rank (3) (1) (4) (2)|(2) (1) (4) (3)
Z-score 0.4000 2.6000 0.200@.0954 1.9718 1.7527
p-value 0.3446 0.0047 0.4200.1367 0.0243 0.0398
Holm a 0.0250 0.0500 0.016@.0167 0.0500 0.0250

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

228 APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.2.3 Number of features selected

TableC.21: Number of features selected using the J48 classifier

J48 BPSO CFBPSO PBPSO SBPSO

Dataset # Ftrs | Average Stdev] Average Stdev] Average Stdev) Average Stdev
arrhythmia 279 125.2 159 1232 14.2 126.8 14.6 160.5 27.0
audiology 69 34.2 4.1 37.3 5.7 35.3 6.6 43.6 6.3
australian 14 7.0 14 7.2 1.6 7.6 2.1 8.0 1.8
bands 39 18.3 3.1 17.9 35 17.4 3.0 20.0 5.2
breasttissue 9 4.5 11 4.4 0.8 4.4 0.8 4.6 11
corral 6 4.6 0.5 4.5 0.5 4.6 0.5 4.8 0.4
crx 15 7.8 2.3 8.3 2.2 8.1 1.7 8.4 1.8
dermatology 34 17.3 24 17.8 2.0 17.3 24 19.5 2.9
german 24 11.8 3.1 12.4 3.1 115 2.8 13.8 4.0
glass 9 5.2 0.8 5.2 0.8 5.1 0.8 5.4 0.9
hill-valley 100 46.2 121 0.0 0.0 46.6 11.0 477 285
horse-colic 36 18.1 3.1 19.5 3.1 18.6 3.2 24.8 3.2
ionosphere 34 14.8 3.5 14.3 3.4 14.1 3.3 14.6 4.1
iris 4 2.9 0.6 3.0 0.6 29 0.6 2.8 0.7
liver 6 4.2 11 3.9 1.3 4.2 1.0 4.1 1.0
monk-1 6 3.9 11 35 11 3.5 1.1 3.3 1.2
monk-2 6 6.0 0.0 6.0 0.0 6.0 0.0 6.0 0.0
mavement-libras 90 40.1 7.9 38.5 4.9 41.6 6.4 52.7 125
musk-1 166 82.6 14.7 83.7 115 79.7 129 1040 191
parity5-5 10 5.4 1.3 5.6 0.6 5.6 0.7 5.8 0.7
parkinsons 22 7.4 2.6 7.3 2.6 8.1 2.1 6.6 2.7
pima 8 5.7 11 5.7 1.1 55 1.3 6.3 11
sonar 60 22.0 35 22.5 4.8 24.7 4.1 24.4 6.9
soybean 35 21.3 2.2 22.5 13 21.7 2.4 23.1 2.8
spectf 44 154 3.5 14.3 4.1 17.2 4.2 10.9 4.6
tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 13.2 1.5 13.6 1.6 12.7 1.8 14.4 2.2
vote 16 8.5 1.6 9.6 1.9 9.2 1.7 10.8 2.0
vowel 10 8.2 11 8.7 1.1 8.4 1.2 8.6 1.0
wdbc 30 11.8 3.2 11.2 2.3 12.7 24 11.6 3.6

© University of Pretoria

&

g .
& i

UNIBESITHI

YA

NIVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA

PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP 229
C.3.3 k-NN classifier
C.3.3.1 Classification accuracy

Table C.22: Final accuracy results on the FSP usingN&! classifier

k-NN BPSO CFBPSO PBPSO SBPSO
Dataset Average Stdev RankAverage Stdev RankAverage Stdev RankAverage Stdev Rank
arrhythmia 65.24% 1.09% (4) 66.24% 1.13% (2) 65.49% 1.14% (3) 70.06% 3.12% (1)
audiology 83.00% 0.70% (4) 83.33% 0.58% (2) 83.15% 0.64% (3) 83.68% 0.56% (1)
australian 87.41% 0.39% (3) 87.44% 0.34% (2) 87.23% 0.38% (4) 87.47% 0.50% (1)
bands 81.54% 3.07% (2) 81.05% 3.50% (3) 80.77% 4.02% (4) 82.03% 4.24% (1)
breasttissue 70.86% 1.09% (2) 70.67% 1.51% (4) 70.75% 1.18% (3) 71.02% 1.03% (1)
corral 99.24% 1.87% (3) 99.63% 0.87% (1) 99.43% 1.35% (2) 99.23% 1.34% (4)
crx 71.01% 1.16% (3) 71.10% 1.10% (2) 70.96% 1.11% (4) 71.24% 1.16% (1)
dermatology | 98.13% 0.34% (2) 98.02% 0.38% (3) 97.97% 0.41% (4) 98.18% 0.25% (1)
german 76.38% 0.74% (4) 76.55% 0.80% (2) 76.44% 0.64% (3) 77.00% 0.73% (1)
glass 77.40% 2.18% (2) 77.59% 1.94% (1) 77.19% 2.38% (4) 77.27% 2.18% (3)
hill-valley 62.55% 0.65% (3) 62.46% 0.68% (4) 62.63% 0.67% (2) 63.51% 1.16% (1)
horse-colic 88.12% 0.51% (2) 87.65% 0.56% (4) 87.79% 0.56% (3) 88.16% 0.66% (1)
ionosphere 93.75% 0.56% (3) 93.71% 0.62% (4) 93.76% 0.74% (2) 94.43% 0.46% (1)
iris 96.16% 0.42% (4) 96.21% 0.44% (1) 96.17% 0.37% (2) 96.17% 0.39% (3)
liver 67.87% 1.02% (2) 67.42% 1.27% (4) 67.73% 1.22% (3) 67.96% 1.16% (1)
monk-1 100.00% 0.00% (2.500.00% 0.00% (2.5100.00% 0.00% (2.5)00.00% 0.00% (2.5)
monk-2 82.70% 0.53% (4) 82.86% 0.46% (1) 82.79% 0.45% (3) 82.83% 0.50% (2)
movement-libras 88.91% 0.50% (4) 88.98% 0.39% (3) 88.98% 0.55% (2) 89.51% 0.65% (1)
musk-1 93.99% 0.86% (2) 93.68% 1.20% (3) 93.28% 1.32% (4) 95.16% 1.09% (1)
parity5-5 98.33% 9.09% (2) 99.99% 0.03% (1) 96.59% 12.93% (4) 98.32% 9.13% (3)
parkinsons 99.29% 0.18% (2) 99.30% 0.16% (1) 99.28% 0.20% (3) 99.19% 0.27% (4)
pima 74.93% 0.65% (4) 74.99% 0.50% (3) 75.07% 0.50% (2) 75.19% 0.38% (1)
sonar 92.25% 1.81% (2) 91.70% 2.03% (4) 91.74% 1.71% (3) 92.62% 1.97% (1)
soybean 94.48% 0.26% (2) 94.47% 0.30% (3) 94.46% 0.43% (4) 94.50% 0.33% (1)
spectf 83.00% 1.40% (4) 83.17% 0.84% (2) 83.08% 1.53% (3) 84.00% 1.16% (1)
tic-tac-toe 90.47% 0.26% (3) 90.51% 0.24% (2) 90.46% 0.27% (4) 90.56% 0.22% (1)
vehicle 73.72% 0.61% (2) 73.49% 0.67% (4) 73.59% 0.50% (3) 73.77% 0.58% (1)
vote 96.25% 0.31% (1) 96.13% 0.38% (3) 96.08% 0.40% (4) 96.17% 0.48% (2)
vowel 99.11% 0.07% (1) 99.09% 0.08% (2) 99.08% 0.09% (3) 99.08% 0.09% (4)
wdbc 97.60% 0.19% (4) 97.67% 0.18% (1) 97.65% 0.24% (2) 97.63% 0.20% (3)
average | 86.12% (2.79) 86.17% (2.48) 85.99% (3.08) 86.53% (1.68)

© University of Pretoria

230

(@

UN
UNIVERS
Yu

IVERSITEIT VAN PRETORIA
ITY OF PRETORIA

NIBESITHI YA PRETORIA

APPENDIXC. DETAILED RESULTS FOR THE FSP

C.3.3.2 Statistical test

TableC.23: Statistical tests on final accuracy results on the FSP usingNiheclassifier

k-NN All datasets Selected datasets F-test

BPSO CFBPSO PBPSO SBPEPSO CFBPSO PBPSO SBPSO o =0.05
Dataset (Rank) (Rank) (Rank) (RanklRank) (Rank) (Rank) (Rankj-stat. p-value Signif.
arrhythmia (4) (2) (3) (1) (4) (2) (3) (1)|33.65 0.0000TRUE
audiology (4) (2) (3) (1) (4) (2) (3) (1) 4.88 0.0035TRUE
australian (3) (2) (4) (1) 1.56 0.2045 FALSE
bands (2) (3) (4) (1) 0.50 0.6841 FALSE
breasttissue (2) (4) (3) (1) 0.34 0.7979 FALSE
corral (3) (1) (2) (4) 0.42 0.7424 FALSE
crx (3) (2) (4) (1) 0.26 0.8541 FALSE
dermatology (2) (3) (4) (1) 1.74 0.1657 FALSE
german (4) (2) (3) (1) (4) (2) (3) (1) 3.32 0.0236 TRUE
glass (2) (1) (4) (3) 0.15 0.9313 FALSE
hill-valley (3) (4) (2) (1) (3) (4) (2) (1) 7.96 0.0001 TRUE
horse-colic (2) (4) (3) (1) (2) (4) (3) (1) 424 0.0076 TRUE
ionosphere (3) (4) (2) (1)1 (3) (4) (2) (1) 741 0.0002 TRUE
iris (4) (1) (2) (3) 0.07 0.9736 FALSE
liver (2) (4) (3) (1) 0.92 0.4361 FALSE
monk-1 (25) (25) (25) (25 FALSE
monk-2 (4) (1) (3) (2) 0.45 0.7193 FALSE
movement-libras (4) (3) (2) (1) (4) (3) (2) (1)]| 6.34 0.0006 TRUE
musk-1 (2) (3) (4) (1) (2) (3) (4) (1) 1164 0.0000TRUE
parity5-5 (2) (1) (4) (3) 0.52 0.6705 FALSE
parkinsons (2) (1) (3) (4) 1.46 0.2312 FALSE
pima (4) (3) (2) (1) 1.03 0.3837 FALSE
sonar (2) (4) (3) (1) 1.23 0.3043 FALSE
soybean (2) (3) (4) (1) 0.05 0.9829 FALSE
spectf (4) (2) (3) (1) (4) (2) (3) (1) 3.07 0.0318 TRUE
tic-tac-toe (3) (2) (4) (1) 0.64 0.5889 FALSE
vehicle (2) (4) (3) (1) 1.03 0.3822 FALSE
vote (1) (3) (4) (2) 0.73 0.5381 FALSE
vowel (1) (2) (3) (4) 0.78 0.5095 FALSE
wdbc (4) (1) (2) (3) 0.43 0.7350 FALSE

average rank
rankof rank

(2.75) (2.48) (3.08)1.68)
(3) (2) (4) (1)

(3.33) (2.89)(2.78) (1.00)
(4) (3) (2) (1)

datasets selected 9

Z-score
p-value
Holm a

3.2000 2.4000 4.2000
0.0007 0.0082 0.0000
0.0250 0.0167 0.0500

2.5560 2.0692 1.9475
0.0053 0.0193 0.0257

0.0500 0.0250 0.0167

© University of Pretoria

&

ﬂ UNIVERSITEIT VAN PRETORIA
"/ UNIVERSITY OF PRETORIA
et ¥

UNIBESITHI YA PRETORIA

APPENDIX C. DETAILED RESULTS FOR THE FSP 231

C.3.3.3 Number of features selected

TableC.24: Number of features selected usingkHeéN classifier

k-NN BPSO CFBPSO PBPSO SBPSO

Dataset # Ftrs | Average Stdev Average Stdev| Average Stdev] Average Stdev
arrhythmia 279 119.7 175 1009 36.7 1193 194 65.6 434
audiology 69 41.7 3.2 45.6 3.3 45.3 3.3 45.4 4.7
australian 14 6.5 1.0 6.8 1.1 7.2 1.1 6.3 1.3
bands 39 20.0 3.0 235 5.2 21.7 4.9 17.4 7.7
breasttissue 9 6.6 1.3 6.7 1.4 5.9 1.3 5.8 1.5
corral 6 4.2 04 4.1 0.3 4.2 0.4 4.3 0.4
crx 15 8.8 2.2 8.9 1.8 9.4 2.1 7.7 1.9
dermatology 34 23.1 2.9 25.7 3.2 24.5 2.4 24.6 2.9
german 24 114 2.0 12.1 1.9 11.8 1.9 9.0 2.0
glass 9 6.1 0.7 6.4 0.6 6.4 0.7 6.0 0.8
hill-valley 100 47.9 5.6 51.1 7.1 47.0 5.2 404 116
horse-colic 36 22.0 3.9 24.4 3.4 22.7 4.1 22.2 5.2
ionosphere 34 11.0 2.0 11.0 2.2 10.4 2.4 7.6 1.6
iris 4 3.3 0.9 3.3 0.9 3.2 1.0 3.3 0.9
liver 6 35 0.9 3.5 0.9 3.6 0.9 3.5 0.8
monk-1 6 3.8 0.4 3.8 0.4 3.8 0.4 3.9 0.3
monk-2 6 6.0 0.0 6.0 0.0 6.0 0.0 6.0 0.0
maovement-libras 90 445 6.3 46.2 6.4 44.6 54 38.6 8.9
musk-1 166 84.1 7.3 94.2 5.9 85.4 9.9 69.9 143
parity5-5 10 6.6 1.3 6.8 0.8 6.2 1.6 6.6 1.3
parkinsons 22 12.9 1.4 13.4 1.7 13.4 13 12.9 1.2
pima 8 5.6 1.2 5.6 1.2 5.7 1.2 5.1 1.4
sonar 60 29.4 3.2 33.2 3.5 29.4 4.1 25.9 4.6
soybean 35 22.3 1.9 24.0 1.7 22.4 2.0 22.1 2.0
spectf 44 18.2 4.2 19.3 3.6 18.2 4.0 12.8 3.0
tic-tac-toe 9 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
vehicle 18 12.2 15 12.6 1.2 12.1 1.6 11.8 14
vote 16 5.9 11 6.7 1.6 6.5 1.6 5.8 1.7
vowel 10 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0
wdbc 30 20.2 2.1 21.2 2.6 20.6 2.1 20.7 2.3

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Appendix D

Description of datasets used for the FSP

This appendix contains a description of all datasets used in the experiments in this thesis. Table D.1 lists
the datasets alphabetically, noting the number of instances classes, and features. The number of features
is further split into nominal and numerical features. Also listed is whether the dataset was used during
the tuning of the PSO algorithms, or during testing instead.

The separate sections below contain a description of the various datasets used. Each section is labeled
with the full dataset name followed by the shorthand name used in the rest of the text between parenthe-
ses. More detailed information on the features and classes present in each dataset can be found at the
UCI machine learning repositoryi [5] on-line. For this purpose a link to the page dedicated to the dataset
is listed at the end of each section. Where possible these descriptions were copied directly from the
description provided at the UCI machine learning repository. Note that two of the datasets used can no
longer be found on the UCI machine learning repository. For these datasets, a different URL is provided.
The datasets no longer available in the UCI machine learning repository are corral and parity5-5.

Also listed are any actions taken or alterations made to the dataset for the experiments in this thesis
that are not covered by the standard data preprocessing described in[section 6.2.2. Most often this means
that a separate training and testing set provided at the UCI Machine Learning repository was combined to
form a single set of instances. This was done becaudefitid cross validation process used repeatedly
splits the dataset into training and testing sets, removing the need to have these sets separated beforehand.

Cardiac Arrhythmia Database (arrhythmia)

Concerning the original study:

The aim is to distinguish between the presence and absence of cardiac arrhythmia and to
classify it in one of the 16 groups. Class 01 refers to “normal” ECG classes, 02 to 15 refers
to different classes of arrhythmia, and class 16 refers to the rest of unclassified ones. For
the time being, there exists a computer program that makes such a classification. However,
there are differences between the cardiologist’s and the programs classification. Taking the
cardiologist’s as a gold standard we aim to minimize this difference by means of machine
learning tools.

http://archive.ics.uci.edu/ml/datasets/arrhythmia

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/arrhythmia

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 233

Table D.1: Note that the information in this table is an amalgamation of that in fables @al2Zand

dataset | #instances # classes # featufe# numerical # nomina| Use

arrhythmia 452 13 279 267 12| testing
audiology 226 24 69 0 69 | testing
australian 690 2 14 8 6 | testing
bands 540 2 39 20 19| testing
breasttissue 106 6 9 9 0 | testing
corral 64 2 6 0 6 | testing
Crx 690 2 15 6 9 | testing
dermatology 366 6 34 1 33| testing
echocardiogram 132 2 12 12 0| tuning
german 1000 2 24 7 13| testing
glass 214 7 9 9 0 | testing
hepatitis 155 2 19 19 0 | tuning
hill-valley 1212 2 100 100 0| testing
horse-colic 368 2 36 7 29 | testing
ionosphere 351 2 34 34 0| testing
iris 150 3 4 4 0 | testing
labor 57 2 16 8 8 | tuning
liver 345 2 6 6 0 | testing
lung-cancer 32 3 56 0 56 | tuning
lymphograply 148 4 18 3 15| tuning
monk-1 432 2 6 6 0 | testing
monk-2 432 2 6 6 0 | testing
movement-libras 360 15 90 90 0| testing
musk-1 476 2 166 166 0| testing
parity5-5 1024 2 10 0 10 | testing
parkinsons 195 2 22 22 0 | testing
pima 768 2 8 8 0 | testing
promoter 106 2 57 0 57 | tuning
sonar 208 2 60 60 0| testing
soybean 683 19 35 0 35| testing
spectf 267 2 44 44 0 | testing
tic-tac-toe 958 2 9 9 2 | testing
vehicle 847 5 18 18 0 | testing
vote 435 2 16 0 16 | testing
vowel 990 11 10 10 0 | testing
wdbc 569 2 30 30 0| testing
wine 178 3 13 13 0| tuning
zoo 101 7 16 0 16 | tuning

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

234 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Audiology Database - Standardized (audiology)

The dataset stems from the domain of clinical audiology which involves the evaluation and diagnosis
of hearing disorders. The dataset contains sequential cases from Baylor College of Medicine. Each
instance contains a hearing disorder diagnosis, plus information on patient-reported symptoms, patient
history information, and the results of routine tests. The latter is the data that a clinician considers when
diagnosing a patient.

The database used is audiology.standardized, a standardized version of the original dataset. Note that
in the experiments in this thesis the original training set of 200 instances and test set of 26 instances were
combined into a single dataset of 226 instances.

http://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized’29

Australian Credit Approval (australian)

This dataset concerns credit card applications. All feature names and values have been changed to
meaningless symbols to protect confidentiality of the data. This dataset is interesting because there is
a good mix of features — continuous, nominal with small numbers of values, and nominal with larger
numbers of values. There are also a few missing values.

http://archive.ics.uci.edu/ml/datasets/australian

Cylinder Bands (bands)

The abstract from the original study reads as:

Machine learning tools show significant promise for knowledge acquisition, particularly
when human expertise is inadequate. Recently, process delays known as cylinder banding
in rotogravure printing were substantially mitigated using control rules discovered by deci-
sion tree induction. Our work exemplifies a more general methodology which transforms
the knowledge acquisition task from one in which rules are directly elicited from an expert,
to one in which a learning system is responsible for rule generation. The primary respon-
sibilities of the human expert are to evaluate the merits of generated rules, and to guide
the acquisition and classification of data necessary for machine induction. These responsi-
bilities require the expert to do what an expert does best: to exercise his or her expertise.
This seems a more natural fit to an expert’s capabilities than the requirements of traditional
methodologies that experts explicitly enumerate the rules that they employ.

http://archive.ics.uci.edu/ml/datasets/bands

Breast Tissue Data Set (breasttissue)

This dataset contains transformed data from clinical images made from breast tissue in the form of an
impedance spectrum combined with a classification by experts. Impedance measurements of freshly ex-

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29
http://archive.ics.uci.edu/ml/datasets/australian
http://archive.ics.uci.edu/ml/datasets/bands

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 235

cised breast tissue were made at the following frequencies: 15.625, 2.35,125, 250, 500, 1000

KHz. These measurements plotted in the (real, -imaginary) plane constitute the impedance spectrum
from where the breast tissue features are computed. The dataset can be used for predicting the clas-
sification of either the original six classes or of four classes by merging together the fibro-adenoma,
mastopathy and glandular classes whose discrimination is not important (they cannot be accurately dis-
criminated anyway).

http://archive.ics.uci.edu/ml/datasets/breast+tissue

Corral Data Set (corral)

The basic idea behind this dataset is an artificial domain where the target con@ept) vV (BoABz).
Additionally, one irrelevant and one correlated feature are added. The correlated feature is a feature
highly correlated with the label, but with a 25% error rate.

Note that in the experiments in this thesis the original training set of 32 instances and test set of 32
instances were combined into a single dataset of 64 instances.

This dataset is no longer available on the UCI Machine Learning repository.

http://www.sgi.com/tech/mlc/db/corral.names

Credit Approval Data Set (crx)

This file concerns credit card applications. All feature names and values have been changed to mean-
ingless symbols to protect confidentiality of the data. This dataset is interesting because there is a good
mix of features — continuous, nominal with small numbers of values, and nominal with larger numbers
of values. There are also a few missing values.

http://archive.ics.uci.edu/ml/datasets/credit+approval

Dermatology Data Set (dermatology)

The differential diagnosis of erythemato-squamous diseases is a real problem in dermatology. They all
share the clinical features of erythema and scaling, with very little differences. The diseases in this
group are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis
rubra pilaris. Usually a biopsy is necessary for the diagnosis but unfortunately these diseases share many
histopathological features as well. Another difficulty for the differential diagnosis is that a disease may
show the features of another disease at the beginning stage and may have the characteristic features at the
following stages. Patients were first evaluated clinically with 12 features. Afterwards, skin samples were
taken for the evaluation of 22 histopathological features. The values of the histopathological features are
determined by an analysis of the samples under a microscope.

In the dataset constructed for this domain, the family history feature has the value 1 if any of these
diseases has been observed in the family, and 0 otherwise. The age feature simply represents the age of
the patient. Every other feature (clinical and histopathological) was given a degree in the range of 0 to

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/breast+tissue
http://www.sgi.com/tech/mlc/db/corral.names
http://archive.ics.uci.edu/ml/datasets/credit+approval

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

236 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

3. Here, 0 indicates that the feature was not present, 3 indicates the kangasnt possible, and 1, 2
indicate the relative intermediate values.
http://archive.ics.uci.edu/ml/datasets/Dermatology

Echocardiogram Data Set (echocardiogram)

All the patients suffered heart attacks at some point in the past. Some are still alive and some are not.
The survival and still-alive variables, when taken together, indicate whether a patient survived for at least
one year following the heart attack.

The problem addressed by past researchers was to predict from the other variables whether or not the
patient will survive at least one year. The most difficult part of this problem is correctly predicting that
the patient will NOT survive. (Part of the difficulty seems to be the size of the data set.)

http://archive.ics.uci.edu/ml/datasets/echocardiogram

Statlog (German Credit Data) Data Set (german)

This dataset concerns credit card applications in Germany. The original dataset, in the form provided by
Prof. Hofmann, was used which contains categorical/symbolic features.
http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

Glass ldentification Data Set (glass)

The study of classification of types of glass was motivated by criminological investigation. At the scene
of the crime, the glass left can be used as evidence if it is correctly identified. The data set contains
measurements of the refractive index and different mineral and metal contents.

Note that the original data file “ glass.data” contains an ID number for each instance. Since the
instances are also ordered by class, this ID number can be used to classify the dataset with 100% accuracy.
In the experiments in this thesis the ID number was excluded from the dataset.

http://archive.ics.uci.edu/ml/datasets/Glass+Identification

Hepatitis Data Set (hepatitis)

The dataset contains information on chronic hepatitis patients and the classes indicate if the patient lives
or dies. For each patient, the 19 features are potentially useful predictors like age, sex and standard
chemical measurements.

http://archive.ics.uci.edu/ml/datasets/Hepatitis

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Dermatology
http://archive.ics.uci.edu/ml/datasets/echocardiogram
http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://archive.ics.uci.edu/ml/datasets/Hepatitis

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 237

Hill-Valley Data Set (hill-valley)

This is an artificially generated dataset which contains examples of stylized hills and valley's. Each
record represents 100 points on a two-dimensional graph. When plotted in order (from 1 through 100)
as the Y co-ordinate, the points will create either a Hill (a bump in the terrain) or a Valley (a dip in the
terrain).

The dataset consists of different parts:

¢ two datasets (without noise) are a training/testing set pair where the hills or valleys have a smooth
transition.

¢ two datasets (with noise) are a training/testing set pair where the terrain is uneven, and the hill or
valley is not as obvious when viewed closely.

Note that in the experiments in this thesis all four original training and tests sets were combined into a
single dataset of 1212 instances.
http://archive.ics.uci.edu/ml/datasets/hill-valley

Horse Colic Data Set (horse-colic)

Note that features 25, 26, and 27 in the original dataset each are codes that combine four indicators with
regards to lesions. These three features were each split into four separate features. Attribute 24, which
indicates whether the problem (lesion) was surgical. was chosen as the class feature.

http://archive.ics.uci.edu/ml/datasets/Horse+Colic

lonosphere (ionosphere)

This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased
array of 16 high-frequency antennas with a total transmitted power in the order of 6.4 kilowatts. See the
work by Sigillito et al.[128] for more details. The targets were free electrons in the ionosphere. “Good”
radar returns are those showing evidence of some type of structure in the ionosphere. “Bad” returns are
those that do not; their signals pass through the ionosphere.

Received signals were processed using an autocorrelation function whose arguments are the time of
a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this
database are described by 2 features per pulse number, corresponding to the complex values returned by
the function resulting from the complex electromagnetic signal.

http://archive.ics.uci.edu/ml/datasets/ionosphere

Iris Data Set (iris)

The data set contains three classes of 50 instances each, where each class refers to a type of iris plant.
One class is linearly separable from the other two; the latter are not linearly separable from each other.
The predicted feature is the class of iris plant.

http://archive.ics.uci.edu/ml/datasets/Iris

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/hill-valley
http://archive.ics.uci.edu/ml/datasets/Horse+Colic
http://archive.ics.uci.edu/ml/datasets/ionosphere
http://archive.ics.uci.edu/ml/datasets/Iris

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

238 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Labor Relations Data Set (labor)

Thedata includes all collective agreements reached in the business and personal services sector for locals
with at least 500 members (teachers, nurses, university staff, police, etc) in Canada in 1987 and the first
quarter of 1988.

http://archive.ics.uci.edu/ml/datasets/Labor+Relations

BUPA Liver Disorders Data Set (liver)

The dataset consists of simplified medical records of individual male individuals who were treated for
a liver disorder, classified into two different classes of disorders. Included are five variables from blood
tests which are thought to be sensitive to liver disorders that might arise from excessive alcohol con-
sumption. The other variable notes the number of half-pint equivalents of alcoholic beverages drunk per
day by the individual.

It is known that in the original dataset four duplicates are present (row 84 and 86, row 141 and 318,
row 143 and 150, row 170 and 176). These duplicated rows were not removed, but the full set of 345
instances was used.

http://archive.ics.uci.edu/ml/datasets/Liver+Disorders

Lung Cancer Data Set (lung-cancer)

The data describes three types of pathological lung cancers. No information is known on what the 56
individual variables represent nor on where the data was originally used. All variables are nominal,
taking on integer values 0-3. In the original data four values for the fifth feature were -1. These values
have been changed to unknown. In the original data one value for the 39th feature was 4. This value has
been changed to unknown.

http://archive.ics.uci.edu/ml/datasets/Lung+Cancer

Lymphography Data Set (lymphography)

This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the
machine learning literature. The other two are the Breast Cancer Data Set and the Primary Tumor Data
Set. The data consists of a classification of the diagnosis of a lymph in one of four classes, plus 18
features each described by nominal values in the original dataset.
http://archive.ics.uci.edu/ml/datasets/lymphography

MONK-1 Data Set (monk-1)

The MONK'’s problems were the basis of a first international comparison of learning algorithms. One
significant characteristic of this comparison is that it was performed by a collection of researchers, each

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Labor+Relations
http://archive.ics.uci.edu/ml/datasets/Liver+Disorders
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
http://archive.ics.uci.edu/ml/datasets/lymphography

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 239

of whom was an advocate of the technique they tested (often they were the codab@rsarious meth-
ods). In this sense, the results are less biased than in comparisons performed by a single person advo-
cating a specific learning method, and more accurately reflect the generalization behavior of the learning
techniques as applied by knowledgeable users.

There are three MONK'’s problems. Each problem relies on the same artificial robot domain, in
which robots are described by six different features:

1. head shape round, square, octagon
. body shape& round, square, octagon

. is smilinge yes, no

2

3

4. holdinge sword, balloon, flag

5. jacket colore red, yellow, green, blue
6

. has tiec yes, no

For MONK-1, the class is a binary concept described by
(head shape- body shapey (jacket color= red)

and there is no noise in the dataset. Hence, features 1, 2, and 5 should be selected.

http://archive.ics.uci.edu/ml/datasets/monks-problems

MONK-2 Data Set (monk-2)

The domain for the MONK-2 problem is exactly the same as that described above under the MONK-1
Data Set. For MONK-2, the class concept described by the data set is that exactly two of the six features
have their first value. There is no noise in the dataset. All features should be selected to be able to
correctly determine the class concept.

http://archive.ics.uci.edu/ml/datasets/monks-problems

Libras Movement Data Set (movement-libras)

The dataset contains 15 classes of 24 instances each, where each class references a hand movement type
in LIBRAS. Videos of the movements have been converted into 90 numeric features.

In the video pre-processing, a time normalization is carried out selecting 45 frames from each video,
according to an uniform distribution. In each frame, the centroid pixels of the segmented objects (the
hand) are found, which compose the discrete version of the curve F with 45 points. All curves are
normalized in the unitary space.

In order to prepare these movements to be analyzed by algorithms, a mapping operation was con-
ducted, thatis, each curve F was mapped in a representation with 90 features, representing the coordinates
of movement.

http://archive.ics.uci.edu/ml/datasets/Libras+Movement

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/monks-problems
http://archive.ics.uci.edu/ml/datasets/monks-problems
http://archive.ics.uci.edu/ml/datasets/Libras+Movement

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

240 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Musk (Version 1) Data Set (musk-1)

Thedataset describes a set of 92 molecules of which 47 are judged by human experts to be musks and
the remaining 45 molecules are judged to be non-musks. The goal is to learn to predict whether new
molecules will be musks or non-musks. However, the 166 features that describe these molecules depend
upon the exact shape, or conformation, of the molecule. Because bonds can rotate, a single molecule can
adopt many different shapes. To generate this data set, the low-energy conformations of the molecules
were generated and then filtered to remove highly similar conformations. This left 476 conformations.
Then, a feature vector was extracted that describes each conformation.

This many-to-one relationship between feature vectors and molecules is called the multiple instance
problem. When learning a classifier for this data, the classifier should classify a molecule as “musk” if
any of its conformations is classified as a musk. A molecule should be classified as “non-muoskéif
of its conformations is classified as a musk.

As prescribed by the data set’s creators, the features “mol@eutee” and “conformatiomame”
wereexcluded from the dataset used in the experiments.

http://archive.ics.uci.edu/ml/datasets/Musk+/,28Version+1%29

Parity 5+5 Data Set (parity5-5)

The dataset consists of instances of 10 features that are bits, with the class being the parity of the bits 2,
3, 4, 6, and 8. The other five features are irrelevant for the classification.

Note that in the experiments in this thesis the full set of all 1024 possible combinations of bits was
used.

This dataset is no longer available on the UCI machine learning repository.

http://www.sgi.com/tech/mlc/db/parity5+5.all

Parkinsons Data Set (parkinsons)

This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkin-
son’s disease (PD). Each column in the table is a particular voice measure, and each row corresponds
to one of 195 voice recordings from these individuals (“name” column). The main aim of the data is
to discriminate healthy people from those with PD, according to “status” column which is set to O for
healthy and 1 for PD. There are around six recordings per patient, the name of the patient is identified in
the first column.

Note that the names of the patients were discarded for the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/parkinsons

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+1%29
http://www.sgi.com/tech/mlc/db/parity5+5.all
http://archive.ics.uci.edu/ml/datasets/parkinsons

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 241

Pima Indians Diabetes Data Set (pima)

Thedataset comes from the National Institute of Diabetes and Digestive and Kidney Diseases. The aim is
to forecast the onset of diabetes mellitus. The diagnostic, binary-valued variable investigated is whether
the patient shows signs of diabetes according to World Health Organization criteria (i.e., if the two hour
post-load plasma glucose was at least 200 mg/dl at any survey examination or if found during routine
medical care). The population lives near Phoenix, Arizona, USA. Several constraints were placed on the
selection of these instances from a larger database. In particular, all patients here are females at least 21
years old of Pima Indian heritage.

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

Molecular Biology (Promoter Gene Sequences) Data Set (promoter)

The dataset contains E. Coli gene sequences (DNA) which represent either promoter sequences or non-
promoter sequences. The domain theory for recognizing promoters is that promoters have a region
where a protein (RNA polymerase) must make contact and the helical DNA sequence must have a valid
conformation so that the two pieces of the contact region spatially align.

The original dataset consists of instances with the features coded as text strings of length 57 listing
the DNA nucleotides, each a letter from “agtc”. These were converted to 57 integers 1-4 based on the
rank from the list “agtc”. The name feature was discarded for the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/promoter

Connectionist Bench (Sonar, Mines vs. Rocks) Data Set (sonar)

The dataset consists of patterns obtained by bouncing sonar signals off rocks and a metal cylinder at
various angles and under various conditions. The transmitted sonar signal is a frequency-modulated
chirp, rising in frequency. The data set contains signals obtained from a variety of different aspect
angles, spanning 90 degrees for the cylinder and 180 degrees for the rock.

Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents the energy within
a particular frequency band, integrated over a certain period of time. The integration aperture for higher
frequencies occur later in time, since these frequencies are transmitted later during the chirp.

The label associated with each record contains the letter “R” if the object is a rock and “M” if it is a
mine (metal cylinder). The numbers in the labels are in increasing order of aspect angle, but they do not
encode the angle directly.

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar
%2C+Mines+vs.+Rocks’29

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/promoter
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

242 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Soybean (Large) Data Set (soybean)

This dataset consists of instances of soybean diseases, classified by experts into 19 classes. There are 35
categorical features, some nominal and some ordered. The values for features are encoded numerically,
with the first value encoded as 0, the second as 1, and so forth. This mean the data was already partially
preprocessed as the textual values were converted into numbers.
Note that in the experiments in this thesis the original training set of 307 instances and test set of 376
instances were combined into a single dataset of 683 instances.
http://archive.ics.uci.edu/ml/datasets/Soybean+},28Large’29

SPECTF Heart Data Set (spectf)

The dataset describes diagnoses of cardiac Single Proton Emission Computed Tomography (SPECT)
images. Each of the patients is classified based on the cardiologists’ diagnoses into two categories:
normal or abnormal. The database of 267 SPECT image sets (patients) was processed to extract features
that summarize the original SPECT images. As a result, 44 continuous feature patterns were created for
each patient.

Note that in the experiments in this thesis the original training set of 80 instances and test set of 187
instances were combined into a single dataset of 267 instances.

http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart

Tic-Tac-Toe Endgame Data Set (tic-tac-toe)

This database encodes the complete set of possible board configurations at the end of tic-tac-toe games,
where “x” is assumed to have played first. This means all 958 board configurations were either “X” or
“0” has won, or the board has been completely filled resulting in a tie. The target concept encoded by
the class feature is “win for X" (i.e., true when “x” has one of eight possible ways to create a “three-in-a-
row”).

http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

Statlog (Vehicle Silhouettes) Data Set (vehicle)

The purpose is to classify a given silhouette as one of four types of vehicle, using a set of features
extracted from the silhouette. The vehicle may be viewed from one of many different angles. Four
“Corgie” model vehicles were used for the experiment: a double decker bus, Chevrolet van, Saab 9000
and an Opel Manta 400. This particular combination of vehicles was chosen with the expectation that
the bus, van and either one of the cars would be readily distinguishable, but it would be more difficult to
distinguish between the cars.

The features were extracted from the silhouettes by the HIPS (Hierarchical Image Processing System)
extension BINATTS, which extracts a combination of scale independent features utilizing both classical

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29
http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 243

moments based measures such as scaled variance, skewness and kurtosie ategat/minor axes and
heuristic measures such as hollows, circularity, rectangularity and compactness.

The images were acquired by a camera looking downwards at the model vehicle from a fixed angle
of elevation (34.2 degrees to the horizontal). The vehicles were placed on a diffuse back-lit surface (light
box). The vehicles were painted matte black to minimize highlights. The images were captured using
a CRS4000 framestore connected to a vax 750. All images were captured with a spatial resolution of
128x128 pixels quantized to 64 greylevels. These images were thresholded to produce binary vehicle
silhouettes, negated (to comply with the processing requirements of BINATTS) and thereafter subjected
to shrink-expand-expand-shrink HIPS modules to remove “salt and pepper” image noise.

The vehicles were rotated and their angle of orientation was measured using a radial graticule beneath
the vehicle. 0 and 180 degrees corresponded to “head on” and “rear” views respectively while 90 and
270 corresponded to profiles in opposite directions. Two sets of 60 images, each set covering a full
360 degree rotation, were captured for each vehicle. The vehicle was rotated by a fixed angle between
images. These datasets are known as e2 and e3 respectively.

A further two sets of images, e4 and e5, were captured with the camera at elevations of 37.5 degrees
and 30.8 degrees respectively. These sets also contain 60 images per vehicle apart from the vans in
image set e4, which contains only 46 owing to the difficulty of containing the van in the image at some
orientations.

The dataset on the UCI Machine Learning repository consists of nine separate files which form a
roughly equal split of the instances. In the experiments in this thesis these files are combined into a
single dataset.

http://archive.ics.uci.edu/ml/datasets/Statlog+,28Vehicle+Silhouettes’29

Congressional Voting Records Data Set (vote)

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key
votes identified by the Congressional Quarterly Almanac (CQA), 98th Congress, 2nd session 1984. The
CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to
yea), voted against, paired against, and announced against (these three simplified to nay), voted present,
voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these
three simplified to an unknown disposition). Hence, the dataset contains instances (one for each rep-
resentative) which each consists of a class label identifying party affiliation and 16 features stating the
simplified vote made on key issues.

Note that for this dataset it was ensured that the label “unknown” was converted to a numerical value
of 0.5, with yea valued as 1 and nay as 0.

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

244 APPENDIXD. DESCRIPTION OF DATASETS USED FOR THE FSP

Connectionist Bench (Vowel Recognition) Data Set (vowel)

Thedataset consists of a numerical representation of vowel sounds from multiple speakers. The vowel
data was recorded for examples of the eleven steady state vowels of English spoken by fifteen speakers
for a speaker normalization study. The steady state vowel were spoken using the following 11 words:
heed, hid, head, had,hard, hud, hod, hoard, hood, who'd, heard. The word was uttered once by each of
the fifteen speakers.

The speech signals were low pass filtered at 4.7kHz and then digitized to 12 bits with a 10kHz
sampling rate. Twelfth order linear predictive analysis was carried out on six 512 sample Hamming
windowed segments from the steady part of the vowel. The reflection coefficients were used to calculate
10 log area parameters, yielding 10 numerical features.

Each speaker thus yielded six frames of speech from eleven vowels. This combines to 15 (speakers)
times 6 (frames) times 11 (vowels) equals 990 instances. The classification problem is to determine the
vowel spoken from the 10 features.

Note that in the experiments in this thesis the original training set from “speakers” 0-47 and test set
of speakers 48-99 were combined into a single dataset.

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+

%28Vowel+Recognition+-+Deterding+Data%29

Breast Cancer Wisconsin (Diagnostic) Data Set (wdbc)

This database consists or diagnoses of breast cancer from images. The data comes from the University
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. Samples arrive periodically as Dr.
Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the
data.

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They
describe characteristics of the cell nuclei present in the image. Thirty real-valued features are computed
for each cell nucleus. The class is set by the diagnosis whether the cell is benign or malignant.

Data was taken from the file labeled "wdbc.data”, containing 569 instances. The case number present
in the dataset was not used in the experiments in this thesis.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+j28Diagnostic
529

Wine Data Set (wine)

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quantities of 13 constituents found in each of
the three types of wines.

http://archive.ics.uci.edu/ml/datasets/wine

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deterding+Data%29
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deterding+Data%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/wine

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

(@

<cc

APPENDIX D. DESCRIPTION OF DATASETS USED FOR THE FSP 245

Zoo Data Set (zoo0)

This dataset consists of classifications of animals into seven different types using 16 features. Of these
features, 15 are boolean and the other - denoting the number of legs - is integer valued. A breakdown of
which animals are in which type is enumerated below.

1.

3
4,
5
6

7.

aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant, fruit bat, gi-
raffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink, mole, mongoose, opossum, oryx,
platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sea lion, squirrel, vam-
pire, vole, wallaby,wolf

chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet, penguin, pheasant,
rhea, skimmer, skua, sparrow, swan, vulture, wren

. pit viper, sea snake, slow worm, tortoise, tuatara

bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole, stingray, tuna

. frog, frog, newt, toad

. flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

clam, crab, crayfish, lobster, octopus, scorpion, sea wasp, slug, starfish, worm

The dataset contains one instance for each animal, except for “frog”. The two instances for frog a
different, as one has the feature for venomous set to true, the other has it set to false.

Note that the full dataset of 101 instances (with two instances for frog) and 16 features was used the
experiments in this thesis, while the name feature was discarded.

http://archive.ics.uci.edu/ml/datasets/zoo

© University of Pretoria

http://archive.ics.uci.edu/ml/datasets/zoo

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(@

Appendix E

Statistical methodology

The algorithm-topology pairs were compared for significant differences in performance using the Iman-
Davenport test (ID-test) [55], which is a refinement of the better known Friedman_test [37]. The ID-
test was used to analyze the performance, measured for the MKP as the aver h of the
problems and for FSP as the average classification error on each of the datasets. The null hypothesis of
the ID-test was that all algorithm-topology pairs had the same median performance. The significance
level was chosen as@b.

In case the ID-test rejected the null-hypotheses and showed a significant difference in the perfor-
mance of the algorithm-topology pairs, further post-hoc tests were performed in order to determine
which of the algorithm-topology pairs outperformed the other pairs. The post-hoc test used was that pro-
posed by Nemenyl [103], which considers the differences in the average rank of the performance over
all problems.

For the Nemenyi test, thé-score (the normalized distance in average rank of the average error) was

used as input: L
_ [Ri—Ry|

k (k+1)
TN

z (E.1)

whereR,; is the average rank of the average error for algorithm-topologyi pliis the total number of
algorithm-topology pairs being compared, axds the number of problems or datasets on which the
pairs were compared. This standard normally distribi@edore was then translated intgavalue.

Because the post-hoc tests involved multiple pair-wise comparisons, the significanae teested
to be adjusted in order to maintain equal family-wise error rates. For this purpose the Holm-Bonferroni
method [53] was used: the largest difference in average rank found in the Nemenyi test was compared at
significance levetr, the second largest difference was compared at significancedé®eland thek-th
largest difference was compared at significance layéd

1The error is defined as the deviation from the known optimum for the small MKPs, and as the deviation from the LP
relaxation bound for the large MKPs.

© University of Pretoria

	Pre-face
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	I Background
	Particle swarm optimization
	Introduction
	Continuous PSO
	Discrete PSO
	Conclusions

	Multidimensional knapsack problem
	Introduction
	Definition of the MKP
	Benchmark problems
	Literature on solving the MKP
	Conclusions

	Feature selection problem
	Introduction
	The classification problem in machine learning
	Definition of the FSP
	Literature on solving the FSP
	Conclusions

	II Generic set-based particle swarm optimization
	Set-based particle swarm optimization
	Introduction
	Set-based Concepts
	Operators
	Update equations
	Conclusions

	III Empirical analysis
	Experiments on the multidimensional knapsack problem
	Introduction
	Experimental procedure
	PSO parameter tuning
	Sensitivity analysis of SBPSO's parameters
	Experimental results
	Conclusions

	Experiments on the feature selection problem
	Introduction
	Experimental procedure
	Exhaustive search to test the fitness function
	Exhaustive search of classifier parameter space
	PSO parameter tuning
	Experimental results
	Conclusions

	IV Conclusions and future work
	Conclusions and future work
	Conclusions
	Future work

	Bibliography

	V Appendices
	Detailed results for small MKPs
	Detailed tuning results per algorithm
	Summarized testing results per topology
	Detailed testing results per topology
	Summarized testing results per algorithm
	Detailed testing results per algorithm

	Detailed results for large MKPs
	Detailed tuning results per algorithm
	Summarized testing results per topology
	Detailed test results per topology
	Summarized testing results per algorithm
	Detailed test results per algorithm

	Detailed results for the FSP
	Detailed FSP results for exhaustive search on J48 parameters
	Detailed FSP tuning results
	Detailed FSP testing results

	Description of datasets used for the FSP
	Statistical methodology

