Deep
Reinforcement Learning

About me

About me

Gabriel Munoz

Lead data scientist en Intelygenz/Terminus? 7
https://www.terminus7.com/

Msc. Artificial Intelligence & Computer Science, Universidad de Sevilla

Lecturer in the Msc. Big Data & Data Science, Universidad de Sevilla

Roadmap

AN A

Objective of the talk
Introduction

Basic concepts

DQN: Deep Q-Networks
Policy gradient networks
Let'sdoit

a. Atarienvironment
b. DQN using Keras-rl

Conclusions

Objective of the talk

Objective of the talk

The objective of the talk is to give an introduction about deep reinforcement
learning.

We will review two of the most successful approaches that join deep neural
networks and reinforcement learning algorithms.

Also, we will see some available frameworks for implementing this type of
solutions.

Introduction

Definition
“Learning from interaction is a foundational idea underlying nearly all theories

of learning and intelligence.”

“Reinforcement learning [...] is simultaneously a problem, a class of solution
methods that work well on the class of problems, and the field that studies these

problems and their solution methods.”

Reinforcement learning: An Introduction, R. Sutton & A. Barto

“The objective of reinforcement learning is to train an intelligent agent that is
capable of interacting with an environment intelligently”

Deep Q Network vd Policy gradients, Felix Yu

Why reinforcement learning

In my opinion: The natural way of
learning

It allows adaptation to an environment

Could help to reduce the human-bias

SENORG DEICOM

History

In the real world, A.l.
innovation started in
the 1950’s.

SNARC

Stochastic Neural Analog
Reinforcement Computer

First Neural Network Machine
Marvin Minsky, 1951

One of 40 “neurons”

Iesberneticzon com)

2zesoliers/1951-maze-solver-minsky-edmonds-american/

TREND.

MiCRO

Minsky's PHD Thesis (1954)

TD-Gammon (1992)
(temporal difference
learning)

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukeuoglu', David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski, Stig Petersen', Charles Beattie', Amir Sadik', loannis Antonoglou',
Helen King!, Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

- . . '

gt el a1 fslon it s il e

o . .
animal behaviour, of how agents may optimize their control of an

1d complexity, h
A K the
environment from high-dimensional sensory inputs, and use these

rewar weus
approximate the optimal scton-value fanction

Q'(s:a)= maxBre+yrs1 +7 72+ -l =5, a=a, 7],

which is the maxi um of rewards r, di ateach time-
step t, achievable by a behaviour policy 7 = P(als), after making an
observation (s) and taking an action () (see Methods)”.

learning is known to be unstable or even to diverge

. ! b
cessing systems*, the former evidenced by a wealth of neural data

minergic temporal di i learning

when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function®. This
instability has several causes: the correlations present in the sequence

algorithm’.

ip ign ng

P

n-values (0) and thetarget valuesr + 7 max O(5,).

or to domains with fully observed, low-dimensional state spaces.
orks* " to

develop a novel artificial agent, termed a deep Q-network, that can

novel variant of Q-leafning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay®’** that randomizes over the data, thereby

high pr
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games'. We demon-
strate that the deep Q-network agent, receiving only the pixels and

changes in the data distribr yw for details). d, we used
an iterative update that adjusts the action-values (Q) towards target
alues thatare only periodically i

with the target.

Deepmind (2015)

Milestones

Google DeepMind

Milestones

4 o e
e : , O O
I - Cone’ a O

Milestones

Three lidar systems A forward facing camera
Self-driving sensors

)

\k

Milestones

(Not so good) Milestones

Useless Duck Company

The future

One of the hottest fields for
researching.

It could push really interesting data
science branches like transfer learning

It is (really) complex. We need to take
into account a lot of concepts for
developing a correct solution for a
problem.

Basic concepts

Action

Agent

Environment

Observation,
Reward

Environment

The environment is the set of elements where the agent lives.

The agent can interact with some of these elements.

SUPGR

TROBAOS.

Agent

An agent is a computational element
that interacts with elements of an
environment for achieving a goal.

Generally, the goal is to maximizing a
reward (IE: games).

This will be the intelligent element that
will use the deep neural network that
we will design.

When an agent interacts with an
environment, it has a list of available
actions that it can perform.

The actions by themselves is a
subproblem on reinforcement learning.

Reward

For guide the agent behaviour, we define a reward for the actions.

Using the example of games, the reward could be “get the highest score” or “do not
die”.

LT " HEE kD ilpl|=

PR P} F =

State

SGURE SRraie, JELME
D250 i L=1 =5

Every time that an agent chooses an
action, the environment changes.

The snapshot of the environment for
every moment is called state.

There’s a relationship between the
actions chosen by an agent and the
states that arise.

Action

Agent

Environment

Observation,
Reward

Needed concepts

S-Space: State space

Categorization or discretization of the situation and the environment in different states: S,+S,.S; ..

A-Space: Action space

Categorization or discretization of the possible actions that the agent can carry out:a,, a,, a, ...

Iteration (or step):
Iterative process of trial-and-error observing the changes of state that occur when executing actions.

StateS , Actiona, — NextStateS_, ,Rewardr,

Needed concepts

Episode

Complete set of iterations followed in a time interval.

it : Policy
Function that defines how the agent will behave in a state

r(S) ---> action

The agent aspires to achieve the best behavior or what is called the optimal policy 7*

Needed concepts

For our algorithms, we will need a tuple called Experience.

In each time step:

State S , Action a , Rewardr, , Next StateS

Deep Q-networks

General view

The first algorithm that we are going to

1 2 3 e 1 257 |3 e 1 253 1304

a2 oS a | 5T study is Q-learning.
4 554 |6 4 sé'd 6 4 5 6
B 5 5 ZCENE We can see our problem as a Markov
+1 \;7 1 +1 +1 +1 i i il o ’
-} -} chain. So, based on theory, there's a
5 0o oo 5 0]o]o |0 20]0]o| function able to model which action is
53 o|o0f|o 53 0|01]o0 ss| 00|00 .
5 000 ss]02] 0] 00 s|oz|0]o|o| Dbetterin each state.
sg |02 0] 0| o0 sg |02 0] 0|0 sg |02/ 0] 0|0

Using this function, we can find the
optimal policy.

General view

Q"(s,a) = B[R]

Ri =71+ 971 + 7 T2 + ..

7*(s) = argmax Q(s, a)

The Q-function relates states with
actions. The Q means quality.

Basically, we have a function that
returns “the expected value of the sum
of future rewards” taking an action A in
a state S.

But...what if the problem is really
complex? How we obtain that function?

We approximate the function using
DNN.

General view

Ok, but...
How we choose the actions at the beginning?

How I know what action will be better in the future?

Exploration

First, exploration phase.

We set an Epsilon value to perform random choices. With these random choices,
we explore the environment to check out what actions are better for a state.

This exploration returns the rewards for the pairs (state, action).

Exploitation

Once Epsilon is small enough, we start the next phase called exploitation.

In this phase, we have explored the environment for a number of iterations and
we have knowledge for exploiting the optimal actions for the states.

Bellman equation

Q" (s,a) =7 +ymaxQ(s',a’)

Bellman provides a recursive definition for the optimal Q-function.

The qQ*(s, a) is equal to the summation of immediate reward after performing action a while in
state s and the discounted expected future reward after transition to a next state s

Bellman equation

L= [r+ymaxQ(s,a) ~ Qs,a)

As we want to approximate the Q-function with our DNN, we need a loss for minimizing the
error.

We can use the Bellman equation to iteratively approximate the Q function through temporal
difference learning. Specially, at each time step, we seek to minimize the mean squared error of

the Q(s,Q) (prediction term) and Bellman equation (target term)

DQN algorithm challenge

This will be the algorithm that we are going to use in the practical block.

Actually, the environment will be the Atari environment, so we will teach our
agent to play by itself to Atari games!

But...

If you try this algorithm like it is defined, you will have issues with convergence
and learning. Let’s check some needed advanced concepts.

Advanced concepts

- Target network
- Memory buffer

The objective is to stabilize the network learning.

(We can go into details with our practical example)

DQN algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z1} and preprocessed sequenced ¢; = ¢(s1)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(st), a;0)
Execute action a; in emulator and observe reward r; and image x;
Set 51,1 = 8¢, a¢, T¢41 and preprocess ¢y 1 = ¢(8:41)
Store transition (¢¢, a;,7¢, $¢11) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Sofp=id for terminal ¢,
Y= rj+ymaxe Q(¢j41,a';0) for non-terminal ;41

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for

end for

Policy gradient networks

Policy gradients

Probability of Choosing
A Particular Action

[[L0.0.0] -~ [0.0.0.0]] J

In the previous algorithm, we wanted to
approximate a function, the Q-function.

Then, we used this function to get the
optimal policy for our problem.

What if we approximate directly the
policy?

Welcome policy gradients.

Policy gradients

Probability of Choosing
A Particular Action

[[L0.0.0] -~ [0.0.0.0]] J

E|R;]

In this method, we want to model the
action-selection.

We will obtain an array of probabilities
related to each available action for an
agent in a state.

So, we update the weights of the actions
in each iteration according to
maximizing the expected reward.

Policy gradients

VoE|R:| = E|VelogP(a)R:]

How we achieve this?

“Rtis the scaling factor which dictates how the P(a) should change in order to maximize the
expected future rewards. If action a is good (i.e. large Rt), P(a) will get pushed up by a large

magnitude, on the other hand, if action a is bad (i.e. small or negative Rt), P(a) will be
discouraged. Eventually, good actions will have an increased likelihood to get sampled in future
iterations”.

Policy gradients algorithm

function REINFORCE
Initialise # arbitrarily
for each episode {s1.a1.m.....sT_1,ar_1.r7} ~ 7y do
fort=1to T —1do
0+ 0 + aVylog mg(st. at) vi
end for
end for
return ¢
end function

Let'sdo it

Atari environment

Our environment will be the Atari environment.

This environment has become itself almost a benchmark for reinforcement
learning solutions.

It includes +50 Atari 2600 games.

For installing the package:

pip install atari-py

https://github.com/openai/atari-py

Atari environment

This environment is ready to use it. It works like we have studied, with a wrapper
of the environment that allows us to interact with the environment easily.

- How to change the state?
- Actions?
- Reward?

All of these questions are performed by the environment.

Keras-rl

Once we have the environment ready, we need a framework to use the concepts.

The selected framework is keras-rl. Keras-rl is a high level framework that acts
like a wrapper for RL algorithms.

|

pip install keras-rl

https://github.com/keras-rl/keras-rl

Other frameworks

Tensorforce

https://github.com/reinforceio/tensorforce

Baselines

https://github.com/openai/baselines

Our example

njujn

We are going to develop a
reinforcement learning agent for
playing to Breakout!

We will follow the code line by line for
explaining what's happening.

Conclusions

Conclusions

1) Now, Reinforcement learning has a lot of opportunities for researching

2) Itisveryhard to develop a good Reinforcement learning solution

a) Reward
b) Exploration-Exploitation tradeoff

c)
3) From alearning perspective, is a natural way of learning. It allows
adaptation.

4) Itisfun!

Bibliography

Bibliography

Reinforcement learning: An Introduction, R. Sutton & A. Barto

“Deep Q Network vs Policy Gradients - An Experiment on VizDoom with Keras”, Felix yu
https://goo.gl/Vc76Yn

“Deep Reinforcement Learning: Pong from Pixels“, Andrej Karpathy
https://goo.gl/8ggArD

