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Objective of the talk
The objective of the talk is to give an introduction about deep reinforcement 
learning.

We will review two of the most successful approaches that join deep neural 
networks and reinforcement learning algorithms.

Also, we will see some available frameworks for implementing this type of 
solutions.



Introduction



Definition
“Learning from interaction is a foundational idea underlying nearly all theories 
of learning and intelligence.”

“Reinforcement learning [...] is simultaneously a problem, a class of solution 
methods that work well on the class of problems, and the field that studies these 
problems and their solution methods.”

“The objective of reinforcement learning is to train an intelligent agent that is 
capable of interacting with an environment intelligently”

Reinforcement learning: An Introduction, R. Sutton & A. Barto

Deep Q Network vd Policy gradients, Felix Yu



Why reinforcement learning

In my opinion: The natural way of 
learning

It allows adaptation to an environment

Could help to reduce the human-bias



History

Minsky’s PHD Thesis (1954) TD-Gammon (1992)
(temporal difference 

learning)

Deepmind (2015)
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(Not so good) Milestones



The future
One of the hottest fields for 
researching.

It could push really interesting data 
science branches like transfer learning

It is (really) complex. We need to take 
into account a lot of concepts for 
developing a correct solution for a 
problem.



Basic concepts







Environment

The environment is the set of elements where the agent lives.

The agent can interact with some of these elements.



Agent
An agent is a computational element 
that interacts with elements of an 
environment for achieving a goal.

Generally, the goal is to maximizing a 
reward (IE: games).

This will be the intelligent element that 
will use the deep neural network that 
we will design.



Action

When an agent interacts with an 
environment, it has a list of available 
actions that it can perform.

The actions by themselves is a 
subproblem on reinforcement learning.



Reward
For guide the agent behaviour, we define a reward for the actions.

Using the example of games, the reward could be “get the highest score” or “do not 
die”.



State

Every time that an agent chooses an 
action, the environment changes.

The snapshot of the environment for 
every moment is called state.

There’s a relationship between the 
actions chosen by an agent and the 
states that arise.





Needed concepts

S-Space:  State space 
Categorization or discretization of the situation and the environment in different states: S1 , S2 , S3 ...

A-Space: Action space
Categorization or discretization of the possible actions that the agent can carry out: a1 , a2 , a3  …. 

Iteration (or step): 
Iterative process of trial-and-error observing the changes of state that occur when executing actions. 

State St , Action at   → Next State St +1 , Reward rt 



Needed concepts
Episode

Complete set of iterations followed in a time interval.

Ṑ : Policy
Function that defines how the agent will behave in a state

Ṑ(S) ---> action

The agent aspires to achieve the best behavior or what is called the optimal policy Ṑ*



Needed concepts
For our algorithms, we will need a tuple called Experience.

In each time step:

State St , Action at , Reward rt , Next State St+1 



Deep Q-networks



General view

The first algorithm that we are going to 
study is Q-learning.

We can see our problem as a Markov 
chain. So, based on theory, there’s a 
function able to model which action is 
better in each state.

Using this function, we can find the 
optimal policy.



General view
The Q-function relates states with 
actions. The Q means quality.

Basically, we have a function that 
returns “the expected value of the sum 
of future rewards” taking an action A in 
a state S.

But...what if the problem is really 
complex? How we obtain that function?

We approximate the function using 
DNN.



General view
Ok, but...

How we choose the actions at the beginning?

How I know what action will be better in the future?



Exploration
First, exploration phase.

We set an Epsilon value to perform random choices. With these random choices, 
we explore the environment to check out what actions are better for a state.

This exploration returns the rewards for the pairs (state, action).



Exploitation
Once Epsilon is small enough, we start the next phase called exploitation.

In this phase, we have explored the environment for a number of iterations and 
we have knowledge for exploiting the optimal actions for the states.



Bellman equation

Bellman provides a recursive definition for the optimal Q-function.

The Q*(s, a) is equal to the summation of immediate reward after performing action a while in 
state s and the discounted expected future reward after transition to a next state s'.



Bellman equation

As we want to approximate the Q-function with our DNN, we need a loss for minimizing the 
error.

We can use the Bellman equation to iteratively approximate the Q function through temporal 
difference learning. Specially, at each time step, we seek to minimize the mean squared error of 
the Q(s,a) (prediction term) and Bellman equation (target term)



DQN algorithm challenge
This will be the algorithm that we are going to use in the practical block.

Actually, the environment will be the Atari environment, so we will teach our 
agent to play by itself to Atari games!

But…

If you try this algorithm like it is defined, you will have issues with convergence 
and learning. Let’s check some needed advanced concepts.



Advanced concepts
- Target network
- Memory buffer

The objective is to stabilize the network learning.

(We can go into details with our practical example)



DQN algorithm



Policy gradient networks



Policy gradients
In the previous algorithm, we wanted to 
approximate a function, the Q-function.

Then, we used this function to get the 
optimal policy for our problem.

What if we approximate directly the 
policy?

Welcome policy gradients.



Policy gradients
In this method, we want to model the 
action-selection.

We will obtain an array of probabilities 
related to each available action for an 
agent in a state.

So, we update the weights of the actions 
in each iteration according to 
maximizing the expected reward.



Policy gradients

How we achieve this?

“R​t​​ is the scaling factor which dictates how the P(a) should change in order to maximize the 
expected future rewards. If action a is good (i.e. large Rt​​), P(a) will get pushed up by a large 
magnitude, on the other hand, if action a is bad (i.e. small or negative Rt​​), P(a) will be 
discouraged. Eventually, good actions will have an increased likelihood to get sampled in future 
iterations”.



Policy gradients algorithm



Let’s do it



Atari environment
Our environment will be the Atari environment.

This environment has become itself almost a benchmark for reinforcement 
learning solutions.

It includes +50 Atari 2600 games.

For installing the package:

pip install atari-py

https://github.com/openai/atari-py



Atari environment
This environment is ready to use it. It works like we have studied, with a wrapper 
of the environment that allows us to interact with the environment easily.

- How to change the state?
- Actions?
- Reward?

All of these questions are performed by the environment.



Keras-rl
Once we have the environment ready, we need a framework to use the concepts.

The selected framework is keras-rl. Keras-rl is a high level framework that acts 
like a wrapper for RL algorithms.

pip install keras-rl

https://github.com/keras-rl/keras-rl



Other frameworks

Tensorforce

https://github.com/reinforceio/tensorforce

Baselines

https://github.com/openai/baselines



Our example

We are going to develop a 
reinforcement learning agent for 
playing to Breakout!

We will follow the code line by line for 
explaining what’s happening.



Conclusions



Conclusions
1) Now, Reinforcement learning has a lot of opportunities for researching
2) It is very hard to develop a good Reinforcement learning solution

a) Reward
b) Exploration-Exploitation tradeoff
c) …

3) From a learning perspective, is a natural way of learning. It allows 
adaptation.

4) It is fun!
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