Tema 1: Sintaxis y Semántica

Dpto. Ciencias de la Computación e Inteligencia Artificial UNIVERSIDAD DE SEVILLA

> Lógica Informática (Tecnologías Informáticas) Curso 2017–18

Lógica Proposicional y de Primer Orden

IIILIOUUCCIOI

Lógica

Proposicion

Sintaxis

Formulas

fórmulas

Semántic

Funciones de verdad

/aloraciones

Consecuencia lógica v satisfactibilidad

Problemas de decisi

Limitaci

ógica de Primei

intovie

Términos y fórmulas

Semánti

Estructuras

Interpretación de términos y fórmu

Consecuencia lógi / validez

Contenido

Introducción

Lógica Proposicional

Sintaxis

Fórmulas

Inducción sobre fórmulas

Semántica

Funciones de verdad

Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisión

Limitaciones

Lógica de Primer Orden

Sintaxis

Términos y fórmulas

Sustituciones

Semántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Lógica Proposicional y de Primer Orden

Dados un conjunto de **afirmaciones** (hechos, hipótesis,...), \mathcal{BC} , y una afirmación, A, decidir si A ha de ser necesariamente cierta, suponiendo que todos las afirmaciones de \mathcal{BC} lo son.

La **Lógica** proporciona formulaciones precisas de este problema y diferentes soluciones.

Algunos aspectos esenciales de este problema son:

- 1. El lenguaje para expresar (representar) las afirmaciones.
- 2. La definición precisa de "afirmación cierta".
- Mecanismos efectivos para garantizar la corrección de las deducciones.

A lo largo de este curso estudiaremos estas cuestiones en los dos casos más comunes: la **Lógica Proposicional**, y la **Lógica de Primer Orden**.

Introducción

Proposiciona

Sintaxis

Fórmulas

Inducción s fórmulas

Funciones de

Valoraciones

Consecuencia lógio

Problemas de

Limitacio

ógica de Primer

intaxis

Términos y fórmulas

emántica Estructuras

Interpretación de términos y fórmula

- ▶ Sus expresiones (fórmulas) representan *afirmaciones* que pueden considerarse *verdaderas* o *falsas*.
- Se construyen a partir de expresiones básicas usando operadores (conectivas).
- ▶ Las conectivas se corresponden con formas sencillas de construir afirmaciones complejas en el lenguaje natural partiendo de otras más sencillas:

```
► Conjunción: "...tal ... y...cual..."
```

- Disyunción: "...tal ... o...cual ..."
- ► Implicación "Si . . . tal . . . entonces. . . cual . . . "
- ▶ Negación: "**No** es cierto que tal ..."
- ▶ Sólo permite analizar las formas de razonamiento ligadas a este tipo de construcciones.

Introducción

Lógica Proposicional

Sintaxis

Fórmulas Inducción sobre fórmulas

Valoraciones

Consecuencia lógica

Problemas de decisio

Limitacio

igica de Primer

Sintaxis

Términos y fórmulas

Semántica Estructuras

Símbolos del lenguaje

Formalmente, el *lenguaje de la Lógica Proposicional* consta de:

- 1. Un conjunto numerable de **variables proposicionales**: $VP = \{p, p_0, p_1, \dots, q, q_0, q_1, \dots, r, r_0, \dots\}$
- Operadores básicos de contrucción, Conectivas lógicas:
 - ▶ De aridad 1: ¬ (negación).
 - De aridad 2: ∨ (disyunción), ∧ (conjunción),
 → (condicional) y ↔ (bicondicional).
- 3. Símbolos auxiliares: "(" y ")".

Lógica Proposicional y de Primer Orden

Introducción

Lógica

Proposiciona

Sintaxis

Fórmulas Inducción sobre

órmulas emántica

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

r robiemas de di

Limitacio

ógica de Prime

intovic

Sintaxis Términos y fórmulas

Semántica Estructuras

Estructuras Interpretación términos y fói

términos y fórmula Consecuencia lógic y validez El conjunto de las fórmulas proposicionales, **PROP**, es el menor conjunto de expresiones que verifica:

- \triangleright $VP \subseteq \mathsf{PROP}$.
- Es cerrado bajo las conectivas, es decir:
 - ▶ Si $F \in PROP$, entonces $\neg F \in PROP$.
 - ▶ Si $F, G \in \mathbf{PROP}$, entonces $(F \lor G)$, $(F \land G)$, $(F \rightarrow G), (F \leftrightarrow G) \in \mathsf{PROP}.$

La sintaxis del lenguaje pretende evitar la ambigüedad en la interpretación de las fórmulas. Esa es la función de los símbolos auxiliares.

Fórmulas

Árboles de formación

- Asociamos a cada fórmula un árbol de formación (esencialmente único) que describe el modo en que se construye la fórmula a partir de otras más sencillas.
- ▶ Ejemplo:

$$\neg(\neg(p \lor q) \to (\neg r \land s))
| (\neg(p \lor q) \to (\neg r \land s))
\neg(p \lor q) (\neg r \land s)
| (p \lor q) \neg r s
| p q r$$

▶ Las fórmulas que aparecen en el árbol de formación de una fórmula F se denominan subfórmulas de F. Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicion

Sintaxis

Fórmulas

Inducción sobre fórmulas

Funciones de verdad Valoraciones

y satisfactibilidad

r robiernas de

Limitacio

ógica de Primer

Sintaxis

Términos y fórmula

Semántica Estructuras

Reducción de paréntesis

Para facilitar la lectura de las fórmulas adoptaremos los siguientes convenios de notación:

- 1. Omitiremos los paréntesis externos.
- Daremos a las conectivas una precedencia de asociación.
 De mayor a menor, están ordenadas por: ¬, ∧, ∨, →, ↔.
 - ▶ **Ejemplo**: $F \land G \rightarrow \neg F \lor G$ es $((F \land G) \rightarrow (\neg F \lor G))$.
- 3. Cuando una conectiva se usa repetidamente, se asocia por la derecha: $F \lor G \lor H$ es $(F \lor (G \lor H))$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Fórmulas

fórmulas Semántica Funciones de verdad

Valoraciones Consecuencia lógica y satisfactibilidad

Problemas de

imitaciones

Lógica de Primer

Sintaxis Términos y fórmulas

Semántica Estructuras Interpretación de términos y fórmula

Principio de Inducción sobre fórmulas

Gracias a la definición de **PROP** si deseamos probar que toda fórmula proposicional satisface cierta propiedad Ψ , podemos probarlo por **inducción sobre fórmulas**.

Para ello probamos:

- 1. Caso base: Todos los elementos de VP tienen la propiedad Ψ .
- 2. Paso de inducción:
 - 2.1 Si $F \in \mathbf{PROP}$ tiene la propiedad Ψ , entonces $\neg F$ tiene la propiedad Ψ .
 - 2.2 Si $F, G \in \textbf{PROP}$ tienen la propiedad Ψ , entonces las fórmulas $(F \vee G), (F \wedge G), (F \rightarrow G)$ y $(F \leftrightarrow G)$ también tienen la propiedad Ψ .

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Inducción sobre fórmulas

formulas Semántica

Valoraciones Consecuencia lógica

Problemas de de

Limitacio

gica de Primer den

Sintaxis

Términos y fórmula:

Semántica Estructuras

estructuras Interpretación de términos y fórmul Consecuencia lógi

Lógica

Lógica Proposiciona

Sintaxis

Fórmulas Inducción sobre

fórmulas Semántica

Funciones de verdad

Valoraciones Consecuencia lógica

Problemas de decisio

.

.....

ógica de Primei Irden

Sintaxis

Términos y fórm Sustituciones

Semántica Estructuras

Interpretación de términos y fórmulas Consecuencia lógica

El significado de una conectiva se determina mediante su función de verdad:

$$H_{\neg}(i) = \begin{cases} 1, & \text{si } i = 0; \\ 0, & \text{si } i = 1. \end{cases}$$

$$H_{\vee}(i,j) = \begin{cases} 0, & \text{si } i = j = 0; \\ 1, & \text{en otro caso.} \end{cases}$$

$$H_{\wedge}(i,j) = \left\{ \begin{array}{ll} 1, & \text{si } i = j = 1; \\ 0, & \text{en otro caso.} \end{array} \right.$$

$$H_{\rightarrow}(i,j) = \left\{ \begin{array}{ll} 0, & \text{si } i = 1, j = 0; \\ 1, & \text{en otro caso.} \end{array} \right.$$

$$\blacktriangleright \ \, H_{\leftrightarrow}(i,j) = \left\{ \begin{array}{ll} 1, & \text{ si } i=j; \\ 0, & \text{ en otro caso.} \end{array} \right.$$

Las variables proposicionales se interpretan mediante una valoración de verdad (o interpretación), es decir, una aplicación

$$v: VP \rightarrow \{0,1\}$$

- ▶ Podemos extender cada valoración, v, de forma única, al conjunto de todas las fórmulas de manera que para cada fórmula F se verifique:
 - $\triangleright v(\neg F) = H_{\neg}(v(F)).$
 - $V((F \vee G)) = H_{\vee}(v(F), v(G)).$
 - $V((F \wedge G)) = H_{\wedge}(v(F), v(G)).$
 - $V((F \to G)) = H_{\to}(v(F), v(G)).$
 - $V((F \leftrightarrow G)) = H_{\leftrightarrow}(v(F), v(G)).$
- Se dice que v(F) es el valor de verdad de F respecto de v.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre

Semántica Funciones de ver

Valoraciones

Consecuencia lógica

Problemas de decision

Limitacio

ógica de Primer

Sintaxis

Términos y fórmula

Semántica Estructuras

Interpretació

Valor de verdad

Veamos el cálculo de $v(\neg(\neg(p\lor q)\lor(\neg r\lor s))$ en el árbol de formación (de abajo a arriba):

Lógica Proposicional y de Primer Orden

Introducción

Lógica

C:_____

Fórmulas

fórmulas

Funciones de verdad

Valoraciones

Consecuencia lógica y satisfactibilidad

Limitacione

Lógica de Primer

Sintaxis

Términos y fórmulas Sustituciones

Estructuras

Ejemplo: si v(p) = v(q) = 0 y v(r) = 1, entonces

$$\begin{array}{ll} v(\neg((p \rightarrow q) \lor r)) &= H_{\neg}(H_{\lor}(v(p \rightarrow q), v(r))) = \\ &= H_{\neg}(H_{\lor}(H_{\rightarrow}(v(p), v(q)), 1)) = 0 \end{array}$$

Fijada v podemos presentar el cálculo de F mediante una tabla que recorre los valores de sus subfórmulas:

Una **tabla de verdad** para F es una tabla similar que contiene una fila por cada posible valoración que asigne valores a las variables proposicionales que aparecen en F.

Introduccion

Lógica Proposicional

Sintaxis

Fórmulas Inducción sobr

Semántica

Funciones de verdad

Valoraciones

y satisfactibilidad Problemas de decisión

_imitacior

_ógica de Prime

. .

Términos y fórmula

Semántica Estructuras

Interpretación de términos y fórmul

Consecuencia lóg y validez

- Notación: $v \models F$.
- ▶ Una valoración v es *modelo* de un conjunto de fórmulas U, $v \models U$, si v es modelo de todas las fórmulas de U.
- ▶ Una fórmula F es una **tautología** (o **válida**) si es válida para toda valoración (notación $\models F$).
- ▶ Una fórmula *F* es **satisfactible** (o consistente) si existe una valoración que es modelo de *F*. En caso contrario diremos que es **insatisfactible** (o inconsistente).
 - Análogamente, un conjunto de fórmulas U es satisfactible (o consistente) si existe una valoración que es modelo de U. En caso contrario diremos que es insatisfactible (o inconsistente).

Introducción

Lógica Proposicional

Fórmulas

fórmulas Semántica

Valoraciones

Consecuencia lógica y satisfactibilidad

i robicinas de decision

Lillitaciones

Lógica de Primer Orden

Sintaxis
Términos y fórmula:

emántica Estructuras

Validez y satisfactibilidad (II)

Relación entre ambos conceptos:

Lema. Para cada $F \in \mathbf{PROP}$ se verifica:

- ▶ Si *F* es un tautología entonces *F* es satisfactible.
- F es una tautología si y sólo si $\neg F$ insatisfactible.

Ejemplos:

- ▶ Son tautologías: $(p \lor \neg p)$ y $((p \to q) \to p) \to p$.
- ▶ $p \land \neg p$ es insatisfactible y, por tanto, $\neg(p \land \neg p)$ es una tautología.
- $(p \rightarrow q) \rightarrow p$ es satisfactible pero no es una tautología.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobi fórmulas

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisio

inneactories

ogica de Primer

intaxis

Términos y fórmulas

Semántica Estructuras

▶ Una fórmula F es consecuencia lógica de un conjunto de fórmulas U, si todo modelo de U es modelo de F. Es decir, para toda valoración, v,

$$v \models U \implies v \models F$$

- Notación: $U \models F$.
- La relación de consecuencia lógica permite formular el problema básico en el marco de la lógica proposicional.

Relación entre consecuencia lógica, consistencia y validez:

Proposición. Sea $\{F_1, \dots F_n\} \subseteq \mathsf{PROP}$. Son equivalentes:

- $\blacktriangleright \{F_1,\ldots,F_n\} \models F$
- ▶ $F_1 \wedge \cdots \wedge F_n \rightarrow F$ es un tautología.
- $\{F_1, \ldots, F_n, \neg F\}$ es insatisfactible.

Lógica
Proposicional y de
Primer Orden

Introducción

∟ógica Proposicional

Fórmula

Inducción fórmulas

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Limita di anno

Limitacione

ógica de Prime rden

Sintaxis Términos v fórm

Términos y fórmula: Sustituciones

Semántica Estructuras Interpretación

Algoritmos de decisión (I)

Dado un conjunto de fórmulas proposicionales, U, un **algoritmo de decisión** para U es un algoritmo que dada $A \in PROP$, devuelve SI cuando $A \in U$, y NO si $A \notin U$.

Casos especialmente interesantes:

- ▶ **SAT** = $\{A \in PROP : A \text{ es satisfactible}\}$
- ▶ **TAUT** = $\{A \in PROP : A \text{ es una tautología}\}$
- ▶ Fijado $U \subseteq PROP$, la **Teoría de** U es

$$\mathcal{T}(U) = \{ A \in PROP : U \models A \}$$

Un algoritmo de decisión para $\mathcal{T}(U)$ propociona una respuesta al Problema Básico expuesto al principio del tema.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Inducción s fórmulas

Semántica Funciones de verda

Consecuencia lógica y satisfactibilidad

Problemas de decisión

limitaciones

Lógica de Primer

Sintaxis Términos

Sustituciones

Semántica Estructuras Interpretación

Interpretación de términos y fórmu Consecuencia lóg Obtener un algoritmo que, dado un conjunto finito de fórmulas proposicionales, U, y una fórmula F, decida si $U \models F$.

El problema anterior se reduce a decidir la **satisfactibilidad** de una cierta fórmula (o si se prefiere, la **validez** de otra). Por tanto,

- ► La construcción de tablas de verdad proporciona un algoritmo (ineficiente) para decidir la consecuencia lógica.
- ► El Problema Básico es resoluble algorítmicamente, aunque no se conoce ninguna solución eficiente y se duda de la existencia de algoritmos de decisión eficientes para este problema, ya que ...
- ... determinar la satisfactibilidad de una fórmula proposicional es un problema NP-completo.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicions

Sintaxis

Inducción se fórmulas

Semántica Funciones de verdad Valoraciones

Problemas de decisión

Limitaciones

Lógica de Primer

Sintaxis

Términos y fórmula Sustituciones

Estructuras

Interpretación de términos y fórmul:

Consecuencia l y validez

Algoritmos de decisión (III)

Problema Básico (bis):

Obtener un algoritmo <u>eficiente</u> que, dado un conjunto finito de fórmulas proposicionales, U, y una fórmula F, decida si $U \models F$.

Observaciones:

- Este problema es equivalente al de obtener un algoritmo eficiente para determinar la satisfactibilidad de una fórmula proposicional.
- Se trata de un problema abierto, que posiblemente tendrá una respuesta negativa (se cree que no existen algoritmos eficientes para resolver SAT).
- Para propósitos prácticos puede bastar con algoritmos eficientes para alguna clase especial de fórmulas.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Inducción s fórmulas

Semántica Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisión

Limitaciones

Lógica de Primer

intaxis

Términos y fórmulas

Semántica Estructuras

Limitaciones de la lógica proposicional

- La lógica proposicional posee un semántica sencilla y existen algoritmos de decisión para sus problemas básicos, como SAT o la consecuencia lógica.
- Sin embargo, la expresividad de la lógica proposicional es bastante limitada.
- Existen problemas cuya descripción mediante lógica proposicional es complicada, ya que requieren un gran número de fórmulas o bien fórmulas de gran tamaño.
- Más aún, existen formas de razonamiento válido que no pueden ser expresadas mediante la lógica proposicional, por ejemplo:
 - Todos los hombres son mortales
 - Sócrates es un hombre.
 - Por tanto, Sócrates es mortal.
- ▶ La Lógica de Primer Orden extiende a la Lógica Proposicional proporcionando mayor expresividad.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Fórmulas Inducción so

Semántica Funciones de

Valoraciones
Consecuencia lógica

y satisfactibilidad Problemas de deci

Limitaciones

rden

Sintaxis

Términos y fórmulas

Semántica

Estructuras Interpretación

Ejemplo (I)

Consideremos las siguientes afirmaciones:

- 1. Marco era pompeyano.
- 2. Todos los pompeyanos eran romanos.
- 3. Cada romano, o era leal a César, o le odiaba.
- 4. Todo el mundo es leal a alguien.
- 5. La gente sólo intenta asesinar a aquellos a quienes no es leal.
- 6. Marco intentó asesinar a César.
- 7. Todo pompeyano es leal a su padre.

¿Podemos deducir a partir de esta información que Marco era leal a César? ¿Podemos deducir que Marco odiaba a César? ¿Era César el padre de Marco?

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Fórmulas Inducción s

fórmulas Semántica

Valoraciones
Consecuencia lógica

Problemas de de

L Catalanda Batanan

ógica de Primer rden

Sintaxis

Términos y fórmulas Sustituciones

Semántica Estructuras

Estructuras Interpretació

- ▶ Podemos formalizar las afirmaciones observando que todas ellas expresan propiedades de los elementos de un cierto conjunto de individuos (romanos) y las relaciones que se dan entre ellos.
- Introduzcamos símbolos para expresar estas relaciones y para referirnos a los individuos de los que estamos hablando:
 - \triangleright P(x) expresa "x es pompeyano".
 - ightharpoonup R(x) expresa "x es romano".
 - ► *L*(*x*, *y*): "*x* es leal a *y*".
 - \triangleright O(x,y): "x odia a y".
 - ► IA(x, y): "x intentó asesinar a y".
 - Por último, parece natural introducir una función f que para cada x, devuelve el padre de x, f(x).

Lógica Proposicional y de Primer Orden

Limitaciones

- 1. P(Marco) expresa "Marco es pompeyano"
- 2. $\forall x (P(x) \rightarrow R(x))$
 - "Todos los pompeyanos son romanos"
- 3. $\forall x (R(x) \rightarrow (L(x, \mathbf{Cesar}) \lor O(x, \mathbf{Cesar}))$
 - "Todo romano es leal a César o le odia"
- 4. $\forall x \exists y L(x, y)$
 - ▶ "Todo el mundo es leal a alguien".
- 5. $\forall x \forall y (IA(x,y) \rightarrow \neg L(x,y))$
 - "La gente sólo intenta asesinar a aquellos a quienes no es leal".
- 6. IA(Marco, Cesar)
 - "Marco intentó asesinar a César".
- 7. $\forall x (P(x) \rightarrow L(x, f(x)))$
 - "Todo pompeyano es leal a su padre".

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintavia

Fórmulas

Inducción

tormulas

Funciones de ve

Valoraciones

Consecuencia lógic y satisfactibilidad

Problemas de

Limitaciones

Zutas da Butas a

ogica de Frimei Orden

Sintaxis

Términos y fórmula

emántica Estructuras

Estructuras

Ejemplo (IV)

- Para las preguntas podemos escribir:
 - a. L(Marco, Cesar): Marco es leal a César.
 - b. O(Marco, Cesar): Marco odia a César.
- ▶ Sin embargo, no podemos expresar que "Marco es el padre de César" sin considerar algún símbolo más.
- Una posibilidad es añadir a nuestro lenguaje el símbolo "=" para expresar al igualdad entre dos objetos. De este modo tendríamos:
 - f(Marco) = Cesar: César es el padre de Marco.
- Como puede verse, hemos ampliado el conjunto de símbolos disponibles en la lógica proposicional.
- El conjunto de símbolos introducidos constituye lo que denominamos un Lenguaje de Primer Orden.

Lógica Proposicional y de Primer Orden

Limitaciones

Símbolos lógicos (comunes a todos los lenguajes):

1. Un conjunto de **variables**: $V = \{x_0, x_1, \dots\}$.

2. Conectivas lógicas: \neg , \lor , \land , \rightarrow , \leftrightarrow .

3. **Cuantificadores**: \exists (existencial), \forall (universal).

4. Símbolos auxiliares: "(", ")" y ","

Símbolos no lógicos (propios de cada lenguaje):

1. Un conjunto L_C de **constantes**.

2. Un conjunto de **símbolos de función** $L_F = \{f_0, f_1, \dots\}$, cada uno con su aridad.

3. Un conjunto de **símbolos de predicados** $L_P = \{p_0, p_1, \dots\}$, cada uno con su aridad.

(Los conjuntos V, L_F, L_C y L_P son disjuntos)

- ► Los símbolos de predicado de aridad 0 actúan como símbolos proposicionales.
- El símbolo = no es un predicado común a todos los lenguajes de primer orden. Cuando está incluido en el lenguaje decimos que se trata de un Lenguaje de
 Primer Orden con igualdad.

Lógica Proposicional y de Primer Orden

Introduccion

Lógica Proposiciona

Sintaxis

Fórmulas

Inducción

Semántica

Funciones de ve Valoraciones

Consecuencia lógica y satisfactibilidad

r robicinas ac t

ógica de Prir

gica de Prime den

Sintaxis

Sustituciones
Semántica
Estructuras
Interpretación de términos y fórmulas
Consecuencia lógica y validez

$$LR = \{ \underbrace{\mathbf{Marco}, \mathbf{Cesar}}_{\text{constantes}}, \underbrace{P, L, O, R, IA}_{\text{símb. predicado}}, \underbrace{f}_{\text{símb. función}} \}$$

P, R y f tienen aridad 1. L, O y IA tienen aridad 2.

► El lenguaje de la Aritmética (números naturales):

$$LA = \{ \underbrace{\mathbf{0} \quad , \quad \mathbf{1}}_{\text{constantes}}, \underbrace{\text{símb. predicado}}_{\text{símb. de función}}, \underbrace{\phantom{\text{constantes}}}_{\text{símb. de función}}$$

<, + y \cdot tienen aridad 2.

Un lenguaje para el parentesco:

$$LP = \{padre_de, madre_de, hijo, hermano, casados\}$$
 símb. predicado

Todos de aridad 2.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

> intaxis Fórmulas ndussión sobre

fórmulas Semántica Funciones de verda

Valoraciones Consecuencia lógica y satisfactibilidad

Problemas de di

IIIItaciones

gica de Primer den

Sintaxis

Sustituciones
Semántica
Estructuras
Interpretación de términos y fórmulas

Términos

- ▶ Los **términos** de un lenguaje *L* se definen como:
 - 1. Las variables y las constantes son términos.
 - 2. Si t_1, \ldots, t_n son términos y f es un símbolo de función de L de aridad n, entonces $f(t_1, \ldots, t_n)$ es un término.
- Los términos son expresiones que me permiten hablar de objetos del mundo.
- Ejemplos:
 - ► Son términos del lenguaje *LR*:

Marco, Cesar,
$$f(x)$$
, $f(Cesar)$, $f(f(Cesar))$, ...

Son términos del lenguaje de la Aritmética:

$$\mathbf{0}, +(x,y), \cdot (x,+(y,\mathbf{1})), \dots$$

Utilizando la notación infija tradicional se escriben

$$x + y$$
, $x \cdot (y + 1)$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis Fórmulas

fórmulas

Funciones de verdad Valoraciones

y satisfactibilidad

Imitacion

ógica de Prime

Sintaxis

Términos y fórmulas

Semántica Estructuras

Interpretación de términos y fórmu

Consecuencia I y validez

Fórmulas

- Las fórmulas son expresiones que permiten hablar de veracidad y falsedad.
- Las **fórmulas atómicas** de L son las expresiones $p(t_1, \ldots, t_n)$, donde p es un símbolo de predicado de aridad n y t_1, \ldots, t_n son términos.
- Las **fórmulas** de *L* se definen como sigue:
 - 1. Las fórmulas atómicas de L son fórmulas de L.
 - 2. Si F y G son fórmulas de L, entonces $\neg F$, $(F \lor G)$ $(F \land G)$, $(F \rightarrow G)$ y $(F \leftrightarrow G)$ también lo son.
 - 3. Si x es una variable y F es una fórmula de L, entonces $\exists x \ F$ y $\forall x \ F$ también son fórmulas.

Lógica Proposicional y de Primer Orden

Introducciói

Lógica Proposiciona

Sintaxis

Fórmulas Inducción sol

fórmulas

Funciones de verdad

Valoraciones
Consecuencia lógica

Problemas de

Limitaci

Lárica do Primor

Orden

Sintaxis

Términos y fórmulas

Semántica Estructuras

Estructuras Interpretació

Eiemplos

- ► En *LA*, $\neg \exists x (x \cdot \mathbf{0} = y)$
- ▶ En LP, $\exists x(padre_de(x,y) \land padre_de(x,z))$. Pero $\exists x \ padre_de(padre_de(x,y),z)$, NO es una fórmula.
- ► En *LR*,

$$\forall x \,\exists y \, L(x,y)$$
$$\forall x \, (R(x) \to (L(x, \mathsf{Cesar}) \lor O(x, \mathsf{Cesar})))$$

- ▶ **Notación**: Para facilitar la lectura de las fórmulas y reducir el número de paréntesis adoptamos los mismos convenios que para la lógica proposicional:
 - Omitiremos los paréntesis externos.
 - ▶ Daremos a las conectivas una precedencia de asociación. De mayor a menor, están ordenadas por: $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Lógica Proposicional y de Primer Orden

Introducció

Lógica Proposicions

Sintaxis

Inducción s fórmulas

Semántica Funciones de verdad

Valoraciones Consecuencia lógica

Problemas de decis

Limitacio

ógica de Primer

Sintaxis

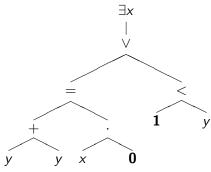
Términos y fórmulas

Semántica Estructuras

Estructuras Interpretación de términos y fórmu

Árboles de formación

Análisis sintáctico de la expresión $\exists x(y + y = x \cdot \mathbf{0} \lor \mathbf{1} < y)$



O también:

O también:

$$\exists x (y + y = x \cdot \mathbf{0} \lor \mathbf{1} < y)$$

$$(y + y = x \cdot \mathbf{0} \lor \mathbf{1} < y)$$

$$y + y = x \cdot \mathbf{0}$$

$$\mathbf{1} < y$$

Las fórmulas de los nodos se denominan subfórmulas.

Lógica Proposicional y de Primer Orden

Términos y fórmulas

Tratamiento de la cuantificación

- ▶ Significado intuitivo de $\exists x(y \cdot x = 1)$:
- ▶ Dado y, existe un elemento, que denotamos por x (no sabemos exactamente su valor), que satisface la propiedad $x \cdot y = 1$, pero no es cualquiera.
- ▶ El símbolo que usemos para ese elemento no es importante: la fórmula $\exists z(y \cdot z = 1)$ expresa la misma propiedad para y.
- La fórmula dice algo sobre y (en este caso, si sustituyo y por un elemento del universo, afirma que tal elemento tiene inverso a la derecha), no sobre el elemento x: Si cambio x por y, la fórmula resultante $\exists y(y \cdot y = 1)$ no expresa lo mismo que la original.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción : fórmulas

Funciones de verdac

y satisfactibili

Problemas de d

imitaciones

ogica de Primer Orden

intaxis

Términos y fórmulas

Semántica Estructuras

Estructuras
Interpretación de términos y fórmulas
Consecuencia lógica

Estancias libres y ligadas

- Una estancia ligada de una variable x en una fórmula F es una aparición de x en una subfórmula del tipo ∃x F o ∀x F. En otro caso, diremos que es una estancia libre.
 - ▶ Variable libre en F: Al menos una estancia libre.
 - ▶ Variable ligada en F: Al menos una estancia ligada.
- Según las estancias de sus variables, podemos distinguir los siguientes tipos de expresiones:
 - Término cerrado: no contiene variables.
 - Fórmula cerrada: no contiene variables libres.
 - Fórmula abierta: no contiene cuantificadores.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicions

Sintaxis

-ormulas nducción sobre órmulas

Funciones de verdad Valoraciones

Consecuencia lógic y satisfactibilidad Problemas de decisi

Limitacio

ógica de Primer

Sintaxis

Términos y fórmulas

Sustituciones

Estructuras Interpretación de términos y fórmu

Ejemplos

- ▶ $\exists x \, \forall y \, (x \cdot y = z \cdot \mathbf{1})$ no es cerrada (z es libre).
- ▶ $\exists x (\forall y (x \cdot y = 1) \lor x \cdot y = x)$ no es cerrada.
 - La variable y aparece libre y ligada.
 - Aunque sintácticamente es correcto, no escribiremos fórmulas en las que una misma variable aparezca libre y ligada. Usaremos en su lugar la fórmula

$$\exists x \, (\forall y \, (x \cdot y = \mathbf{1}) \lor (x \cdot z = x))$$

- ▶ $\forall x \exists y \, \forall z \, (z < x \leftrightarrow z < y)$ es una fórmula cerrada.
- ▶ $padre_de(y,x) \lor hermano(z,x)$ es abierta.
- ► La fórmula

$$L(x,y) \wedge \exists z \, IA(y,z) \rightarrow \neg IA(x,z)$$

no es cerrada ni abierta.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Fórmulas

fórmulas

Funciones de verdad

Valoraciones Consecuencia lógica

Problemas de

i iobicilias de

IIIILaCIOII

ógica de Primer

Sintaxis

Términos y fórmulas

Semántica

Estructuras Interpretación términos y fó

Consecuencia lógi y validez

Sustituciones (I)

- Una sustitución, θ, es una asignación de términos a un conjunto finito de variables.
- La forma de describirla, si $\theta(x_1) = t_1, \dots, \theta(x_n) = t_n$ y las restantes variables quedan invariantes, es $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ ó $\theta = \{(x_1, t_1), \dots, (x_n, t_n)\}$
- Aplicación de θ a un término t: $\theta(t) := \begin{cases} \theta(t), & \text{si } t \text{ es una variable;} \\ f(\theta(t_1), \dots, \theta(t_n)), & \text{si } t \equiv f(t_1, \dots, t_n) \end{cases}$ (también se denota por $t\{x_1/t_1, \dots, x_n/t_n\}$).
- ► Ejemplos:
 - Si $\theta = \{x/(x+y), z/0, u/1\}$, y t = (x+y) + z, entonces

$$\theta(t) \equiv ((x+y)+y)+\mathbf{0}$$

 $(x \cdot 1)\{x/y, y/1\} \equiv y \cdot 1$

Lógica Proposicional y de Primer Orden

Introducción

Lógica

Sintaxis

Fórmulas Inducción sobr

emántica

Valoraciones

Consecuencia lógica y satisfactibilidad

i iobiciilas de

Limitacio

ógica de Primer

intaxis

Términos y fórmulas

Sustituciones Semántica

Estructuras Interpretación de términos y fórmula Consecuencia lógic

$$F\{x/t\} := \begin{cases} p(t_1\{x/t\}, \dots, t_n\{x/t\}), & \text{si } F \equiv p(t_1, \dots, t_n) \\ \neg G\{x/t\}, & \text{si } F \equiv \neg G; \\ G\{x/t\} \lor H\{x/t\}, & \text{si } F \equiv G \lor H: \\ G\{x/t\} \land H\{x/t\}, & \text{si } F \equiv G \land H: \\ G\{x/t\} \rightarrow H\{x/t\}, & \text{si } F \equiv G \rightarrow H: \\ G\{x/t\} \leftrightarrow H\{x/t\}, & \text{si } F \equiv G \leftrightarrow H: \\ \exists yG\{x/t\}, & \text{si } F \equiv \exists yG \ y \ x \neq y; \\ \forall yG\{x/t\}, & \text{si } F \equiv \exists yG \ y \ x \neq y; \\ \exists xG, & \text{si } F \equiv \exists xG; \\ \forall xG, & \text{si } F \equiv \forall xG; \end{cases}$$

Análogamente se define $F\{x_1/t_1,\ldots,x_n/t_n\}$.

Introducció

Lógica

Sintaxis

Fórmulas Inducción sobre

Semántica

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisió

Limitaciones

Lógica de Primer Orden

Sintaxis

Términos y fórmu

Sustituciones Semántica

Estructuras Interpretación de términos y fórmul: No toda sustitución es admisible:

Si
$$F \equiv \exists x \neg (x = y)$$
 ("existen al menos dos elementos") y $\theta = \{y/x\}$, entonces $\theta(F) \equiv \exists x \neg (x = x)$ ¡Que es falso!

- Solución: No admitir la creación de nuevas estancias ligadas.
- ▶ Una variable x de F es **sustituible** por el término t si se cumple una de las siguientes condiciones:
 - 1. F es atómica;
 - 2. $F \equiv \neg G$ y x es sustituible por t en G;
 - 3. $F \equiv G \lor H$, $F \equiv G \land H$, $F \equiv G \rightarrow H$ o bien $F \equiv G \leftrightarrow H \lor x$ es sustituible por t en $G \lor$ en H:
 - 4. $F \equiv \exists xG$; o bien, $F \equiv \exists yG$, $x \neq y$, y no ocurre en t, y x es sustituible por t en G.
 - 5. $F \equiv \forall xG$; o bien, $F \equiv \forall yG$, $x \neq y$, y no ocurre en t, y x es sustituible por t en G.
- ➤ x es sustituible por t en F si al hacer la sustitución no se crean estancias ligadas nuevas.

Introducción

Lógica Proposicional

Sintaxis

Inducción so fórmulas

Valoraciones

Consecuencia lógi

y satisfactibilio Problemas de d

i iobicilias de di

Limitacio

ógica de Primer

Sintaxis

érminos y fórn

Sustituciones

Estructuras Interpretación de términos y fórmulas

Consecuencia y validez

Notación

- ▶ En lo sucesivo, al escribir $F\{x/t\}$, supondremos que x es sustituible por t en F.
- Escribiremos $F(x_1,...,x_n)$ si $x_1,...,x_n$ son sus variables libres.
- Abreviaremos $F\{x_1/t_1, \dots x_n/t_n\}$ por $F(t_1, \dots, t_n)$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicion:

Sintaxis

Fórmulas Inducción sobre

Semántica Funciones de verdad

Consecuencia lógica y satisfactibilidad

Problemas de di

inntaciones

_ógica de Primer

Logica de Primer Orden

Términos y fórmulas Sustituciones

- Términos cerrados: elementos del universo.
- Significado de las fórmulas: propiedades sobre los elementos del universo.
- ▶ Una *L*-estructura (o interpretación) *M*, consta de:
 - ▶ Un conjunto no vacío $M \neq \emptyset$ (el **universo** de la estructura).
 - ▶ Una interpretación en *M* para cada símbolo de *L*:
 - 1. Para cada constante $c, c^{\mathcal{M}} \in M$.
 - 2. Para cada función, f, de aridad n > 0, $f^{\mathcal{M}}: M^n \to M$.
 - 3. Para cada predicado, p, de aridad n > 0, $p^{\mathcal{M}} : M^n \to \{0, 1\}$ (equiv., $p^{\mathcal{M}} \subseteq M^n$).
 - 4. Si L es un LPO con igualdad la interpretación de = es

$$\{(a,a):\ a\in M\}$$

► Si no hay confusión, escribiremos M en vez de \mathcal{M} , p^M en lugar de $p^{\mathcal{M}}$, etc.

Introducció

Logica Proposicional

Sintaxis

Fórmulas Inducción sol

fórmulas

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

r iobieillas de d

Limitacio

ógica de Primer

Sintaxis

Términos y fórmulas

Semántic

Estructuras

Ejemplos (I)

- ▶ Para LP, sea \mathcal{M}_1 la estructura dada por:
 - ▶ Universo: $M_1 = \{Pedro, Pablo, Ana, Laura\}$.
 - ightharpoonup padre_de^{M1} = {(Pablo, Ana), (Pedro, Pablo)}.
 - $ightharpoonup madre_de^{M_1} = \{(Ana, Laura)\}.$
 - ightharpoonup hermano $M_1 = \emptyset$.
 - casados^{M1} = ∅.
- ▶ Para *LP*, consideremos \mathcal{M}_2 dada por:
 - Universo: $M_2 = \{0, 1, 2, 3, 4, 5, 6\}$.
 - padre_de^{M2} ≡ ser múltiplo de.
 - $ightharpoonup madre_de^{M_2} \equiv \text{ser menor.}$
 - $hermano^{M_2} \equiv primos entre sí.$
 - ightharpoonup casados $M_2 = \emptyset$.

Lógica Proposicional y de Primer Orden

Estructuras

Ejemplos (II)

- ▶ Para LA, sea \mathcal{M}_3 dada por:
 - ▶ Universo: $M_3 = \mathbb{N}$
 - $\mathbf{0}^{M_3} = 0.$
 - ▶ $\mathbf{1}^{M_3} = 1$.
 - La función + M₃ es la suma de números naturales.
 - ▶ La función \cdot^{M_3} es el producto de números naturales.
 - $ightharpoonup = M_3$ es la igualdad entre números naturales.
 - $ightharpoonup < M_3$ es el orden entre números naturales.
- ▶ Para LA, sea \mathcal{M}_4 dada por:
 - ▶ Universo: $M_4 = \mathbb{Q}$
 - $\mathbf{0}^{M_4} = \frac{1}{2}$.
 - $\mathbf{1}^{M_4} = \bar{2}.$
 - ▶ La función $+^{M_4}$ es la diferencia de números racionales.
 - ▶ La función \cdot^{M_4} está dada por $p \cdot^{M_4} q = p$.
 - $ightharpoonup = M_4$ es la igualdad entre números naturales.
 - $ightharpoonup <^{M_4}$ es el orden entre números racionales.

Lógica Proposicional y de Primer Orden

Introducciói

Lógica

Proposicion

Sintaxis

Inducción sob

fórmulas Semántica

Funciones de verdad

Valoraciones

y satisfactibilidad

r robiernas de i

Limitacio

.ógica de Primer Orden

Sintaxis

Términos y fórmula: Sustituciones

Semántica

Estructuras

Interpretación de términos (I)

- Dada una L-estructura M, a cada término t de L, sin variables, le corresponde un elemento de M, que denotamos por t^M (su interpretación en M):
 - ▶ Si $t \equiv c$ una constante, entonces $t^{\mathcal{M}} = c^{\mathcal{M}} \in M$.
 - ▶ Si $t \equiv f(t_1, ..., t_n)$, entonces $t^{\mathcal{M}} = f^{\mathcal{M}}(t_1^{\mathcal{M}}, ..., t_n^{\mathcal{M}})$.
- ► Ejemplos:

$$((\mathbf{0} \cdot \mathbf{1}) + \mathbf{1})^{M_3} = ((\mathbf{0} \cdot \mathbf{1})^{M_3} + {}^{M_3} \mathbf{1}^{M_3})$$

$$= (\mathbf{0}^{M_3} \cdot {}^{M_3} \mathbf{1}^{M_3}) + 1$$

$$= (\mathbf{0} \cdot \mathbf{1}) + 1 = 1$$

$$((\mathbf{0} \cdot \mathbf{1}) + \mathbf{1})^{M_4} = ((\mathbf{0} \cdot \mathbf{1})^{M_4} + {}^{M_4} \mathbf{1}^{M_4})$$

$$= (\mathbf{0}^{M_4} \cdot {}^{M_4} \mathbf{1}^{M_4}) - 2$$

$$= (\frac{1}{2} \cdot {}^{M_4} 2) - 2$$

$$= \frac{1}{2} - 2 = -\frac{3}{2}$$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Fórmulas Inducción s

fórmulas Semántica

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de

Limitacio

.ógica de Primer Orden

Sintaxis

Sustitucione Semántica

Estructuras

Interpretación de términos (II)

- Asociamos a cada L-estructura, \mathcal{M} , un lenguaje $L(\mathcal{M})$, que tiene todos los símbolos de L y, además, una constante a por cada elemento $a \in \mathcal{M}$.
- La interpretación de los símbolos de $L(\mathcal{M})$ en \mathcal{M} es la misma para los símbolos de L, y para cada $a \in \mathcal{M}$,

$$\underline{a}^{\mathcal{M}}=a$$

Ahora podemos calcular $t^{\mathcal{M}}$ para todo término de $L(\mathcal{M})$ sin variables:

$$((\underline{2} \cdot \underline{5}) + \mathbf{1})^{M_3} = ((\underline{2} \cdot \underline{5})^{M_3} + {}^{M_3} \mathbf{1}^{M_3})$$

= $(\underline{2}^{M_3} \cdot {}^{M_3} \underline{5}^{M_3}) + 1$
= $(2 \cdot 5) + 1 = 11$

$$((\underline{2}^{M_4} \cdot \underline{5}^{M_4}) + \mathbf{1})^{M_4} = ((x \cdot y)^{M_4} + {}^{M_4}\mathbf{1}^{M_4}) = (\underline{2}^{M_4} \cdot {}^{M_4}\underline{5}^{M_4}) - 2 = 2 - 2 = 0$$

Lógica Proposicional y de Primer Orden

Introducción

Lógica

Sintaxis

Fórmulas

Semántica

Valoraciones

Consecuencia lógica

Problemas de o

Limitacio

ógica de Primer

Sintaxis

Términos y fórm

Semántica Estructuras

Interpretación de términos y fórmu

términos y fórmulas Consecuencia lógica

Consecuencia ló validez

Interpretación de fórmulas (I)

Dada una L-estructura \mathcal{M} , decimos que una fórmula F <u>cerrada</u> de $L(\mathcal{M})$ se **satisface** en \mathcal{M} , $\mathcal{M} \models F$, si:

- ▶ Si F es $p(t_1, ..., t_n)$ (atómica), entonces $\mathcal{M} \models F$ sii $(t_1^{\mathcal{M}}, ..., t_n^{\mathcal{M}}) \in p^{\mathcal{M}}$.
- ▶ Si F es $F_1 \vee F_2$, entonces $\mathcal{M} \models F$ sii se verifica que

$$\mathcal{M} \models F_1$$
 ó $\mathcal{M} \models F_2$

- ▶ Las conectivas \land , \rightarrow y \leftrightarrow se tratan de manera similar.
- ▶ Si F es $\neg F_1$, entonces $\mathcal{M} \models F$ sii no se tiene $\mathcal{M} \models F_1$.
- ▶ Si F es $\exists x F_1(x)$, entonces $\mathcal{M} \models F$ sii

existe
$$b \in M$$
 tal que $\mathcal{M} \models F_1(\underline{b})$

▶ Si F es $\forall xF_1(x)$, entonces $\mathcal{M} \models F$ sii

para todo
$$b \in M$$
, se tiene $\mathcal{M} \models F_1(\underline{b})$

Lógica Proposicional y de Primer Orden

Introducción

Lógica

Sintaxis

Inducción sobre fórmulas

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad Problemas de decisión

Limitacione

Lógica de Primer

Orden

Términos y fórmu Sustituciones

Semántica Estructuras

Interpretación de fórmulas (II)

- ▶ En particular, la definición anterior nos permite precisar cuándo una fórmula cerrada de L, F, es válida en \mathcal{M} (o bien que \mathcal{M} es un modelo de F) y escribir $\mathcal{M} \models F$.
- ▶ Si F no es cerrada, por definición,

$$\mathcal{M} \models F(x_1, \dots x_n) \iff \mathcal{M} \models \forall x_1 \dots \forall x_n F(x_1, \dots x_n)$$

Si Σ es un conjunto de fórmulas de un lenguaje L y M una estructura para L, decimos que M es un modelo de Σ, si

para toda fórmula $F \in \Sigma$, $\mathcal{M} \models F$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis Fórmulas

Inducción s fórmulas

Semántica Funciones de verdad

Valoraciones Consecuencia lógica

Problemas de de

Limitacion

gica de Primi den

intaxis

Términos y fórmulas

Semántica Estructuras

Ejemplos

En \mathcal{M}_1 :

- ▶ Universo: $M_1 = \{Pedro, Pablo, Ana, Laura\}$.
- ightharpoonup padre_de^{M1} = {(Pablo, Ana), (Pedro, Pablo)}.
- $ightharpoonup madre_de^{M_1} = \{(Ana, Laura)\}.$
- ightharpoonup hermano $^{M_1} = \emptyset$, casados $^{M_1} = \emptyset$.

Se tiene:

- $ightharpoonup \mathcal{M}_1 \models \exists x (padre_de(Pablo, x) \land madre_de(x, Laura))$
- $ightharpoonup \mathcal{M}_1 \models \neg \exists x \ padre_de(x, Laura)$
- \blacktriangleright $\mathcal{M}_1 \models \forall x \forall y \forall z (padre(x, z) \land madre(y, z) \rightarrow$ $\neg casados(x, y)$).
- $\blacktriangleright \mathcal{M}_1 \models hermano(x, y) \leftrightarrow hermano(y, x)$
- $\blacktriangleright \mathcal{M}_1 \not\models \exists x \ padre_de(x, y)$

Lógica Proposicional y de Primer Orden

Interpretación de términos y fórmulas

Ejemplos (II)

En \mathcal{M}_2 :

- Universo: $M_2 = \{0, 1, 2, 3, 4, 5, 6\}$.
- ▶ $padre_de^{M_2} \equiv ser múltiplo de$.
- $ightharpoonup madre de^{M_2} \equiv \text{ser menor.}$
- hermano $M_2 \equiv \text{primos entre si}$, casados $M_2 = \emptyset$.

Se tiene:

- $ightharpoonup \mathcal{M}_2 \models \exists x (padre_de(4, x) \land madre_de(x, 3))$
- $\blacktriangleright \mathcal{M}_2 \models \exists x \ padre_de(x,3)$
- $ightharpoonup \mathcal{M}_2 \models hermano(x,y) \leftrightarrow hermano(y,x)$
- $\blacktriangleright \mathcal{M}_2 \models \exists x \forall y \ padre_de(x, y)$ [x = 0]
- ▶ ¿Se tiene $\mathcal{M}_2 \models hermano(x, y) \rightarrow \neg padre_de(x, y)$?

Lógica Proposicional y de Primer Orden

Interpretación de

términos y fórmulas

▶ Una fórmula $F(x_1,...,x_n)$ de L es **satisfactible** si existe una L-estructura M y elementos $a_1,...,a_n \in M$ tales que

$$\mathcal{M} \models F(\underline{a}_1, \dots, \underline{a}_n)$$

- ▶ Ejemplo: $\exists x \ padre_de(x, y)$
- ▶ Un conjunto de fórmulas cerradas Σ de un lenguaje L es **consistente** si existe una L-estructura, \mathcal{M} , tal que

para toda formula
$$F \in \Sigma$$
, $\mathcal{M} \models F$

- ▶ Una fórmula F es **lógicamente válida** si para toda estructura \mathcal{M} se tiene que $\mathcal{M} \models F$ (Notación: $\models F$).
 - ▶ Ejemplo: $\forall x P(x) \lor \exists x \neg P(x)$

Lógica Proposicional y de Primer Orden

Introducción

∟ógica Proposicional

Sintaxis

Inducción fórmulas

Semántica Funciones de verdad

Valoraciones Consecuencia lógica

Problemas de

Limitacio

Lógica de Primer

Orden

Sintaxis Términos y fói

emántica Estructuras

Interpretación

términos y fórmulas Consecuencia lógica

Consecuencia lógio y validez

Consecuencia lógica y equivalencia

▶ Diremos que una fórmula F es **consecuencia lógica** de un conjunto de fórmulas cerradas Σ , $(\Sigma \models F)$, si para toda L-estructura \mathcal{M} se tiene que

si
$$\mathcal{M} \models \Sigma$$
, entonces $\mathcal{M} \models F$

- **E**s decir, si todo modelo de Σ es modelo de F.
- ▶ Dos fórmulas F y G son (lógicamente) **equivalentes** $F \equiv G$ si la fórmula $F \leftrightarrow G$ es lógicamente válida.
- Los problemas de la consistencia, consecuencia lógica y la validez para la lógica primer orden, no son decidibles.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

fórmulas

Funciones de verdad Valoraciones

Consecuencia lógica y satisfactibilidad

Limitacioi

Lógica de Primer Orden

Sintaxis

Términos y fórmula

Semántica Estructuras

Interpretación de términos y fórmul

Consecuencia lógica y validez