Lógica Informática. (Tecnologías Informáticas)

Curso 2018–2019

Relación 4:. Formas Prenex, de Skolem y Teorema de Herbrand.

Ejercicio 57.- Da una forma prenexa de las siguientes fórmulas:

- 1. $\exists x(\forall y \exists z p(x, y, z) \land \exists z \forall y \neg p(x, y, z))$
- 2. $\forall x(\exists yq(x,y) \lor \forall y\exists zp(x,y,z))$
- 3. $\forall x \neg \exists y p(x, y) \rightarrow \exists x q(x, x)$
- 4. $\forall x [P(x) \rightarrow P(x)]$
- 5. $[\neg [\forall x \ P(x)]] \rightarrow \exists x \ [\neg P(x)]$
- 6. $\neg \forall x \ [P(x) \to [\forall y \ [P(y) \to P(f(x,y))] \land \neg \forall y \ [Q(x,y) \to P(y)]]]$
- 7. $\forall x \; \exists y \; [[P(x,y) \to Q(y,x)] \land [Q(x,y) \to S(x,y)]] \to \exists x \; \forall y \; [P(x,y) \to S(x,y)]$
- 8. $\forall x \exists v \forall u [Q(u,x) \rightarrow (\exists y P(u,y) \rightarrow \exists y (Q(y,v) \land P(u,y)))]$

Ejercicio 58.— Para cada una de las siguientes fórmulas, encuentra una forma prenexa con matriz en FND y otra en FNC.

- 1. $\forall x \exists y (x+y=0) \land \exists u \forall x (x+u=x \land u+u=0) \land \forall x (\neg(x=u) \rightarrow x+x=x)$
- 2. $\forall x (\neg(x=0) \rightarrow \forall y (x+y=0 \rightarrow \neg(x=y)))$
- 3. $\forall x(x+y=y\to\forall y\forall x(x+y=x))$

Ejercicio 59.— Obtener formas clausales de las siguientes fórmulas:

- 1. $\forall x [P(x) \rightarrow P(x)]$
- 2. $[\neg[(\forall x)P(x)]] \rightarrow (\exists x)[\neg P(x)]$
- 3. $\neg(\forall x)[P(x) \rightarrow [(\forall y)[P(y) \rightarrow P(f(x,y))] \land \neg(\forall y)[Q(x,y) \rightarrow P(y)]]]$
- 4. $(\forall x)(\exists y)[[P(x,y) \to Q(y,x)] \land [Q(x,y) \to S(x,y)]] \to (\exists x)(\forall y)[P(x,y) \to S(x,y)]$

Ejercicio 60.— Obtener formas prenex, de Skolem y clausal de la fórmula:

$$\forall x \exists v \forall u \left[Q(u, x) \to (\exists y \, P(u, y) \to \exists y \, (Q(y, v) \land P(u, y))) \right]$$

Ejercicio 61.— Introduciendo la notación apropiada, escribir las sentencias de los siguientes razonamientos como fórmulas de primer orden y decidir si la conclusión es consecuencia lógica de las premisas, utilizando para ello formas clausales.

- 1. Todos los científicos están locos. No existen vegetarianos locos. Por tanto, no existen científicos vegetarianos.
- 2. Todos los hombres son animales. Algunos animales son carnívoros. Por tanto, algún hombre es carnívoro.
- 3. Todo barbero de esta ciudad afeita exactamente a los hombres que no se afeitan a si mismos. Por tanto, no existen barberos en esta ciudad.
- 4. Para cualesquiera $x \in y$, si $x > y \in y > z$, entonces x > z. Además, x > x es falso para cualquier x. Por tanto, para cualesquiera $x \in y$, si x > y, entonces no es posible que y > x.

Ejercicio 62.— Para cada una de las siguientes fórmulas, encontrar una forma de Skolem y un subconjunto finito de su extensión de Herbrand que sea inconsistente.

- 1. $\exists x \forall y (p(x,y) \leftrightarrow \neg p(y,y))$
- 2. $\exists x \forall y [p(x,y) \leftrightarrow \neg \exists z (p(y,z) \land p(z,y))].$

Ejercicio 63.— Consideremos las siguientes fórmulas

$$\varphi_1: \quad \forall x [p(c) \land \neg p(f(c)) \land p(f(f(f(c)))) \land (\neg p(x) \lor p(f(f(x)))]$$

$$\varphi_2: \quad \forall x [p(c) \land \neg p(f(c)) \land p(f(f(f(f(c))))) \land (\neg p(x) \lor p(f(f(x)))]$$

- 1. Probar que φ_1 es satisfactible.
- 2. Probar que φ_2 es insatisfactible. Dar un conjunto de la extensión de Herbrand de su matriz que sea inconsistente.

Ejercicio 64.— En el lenguaje con igualdad $L = \{a, f\}$, siendo f un símbolo de función de aridad 1 y a una constante, se consideran las siguientes fórmulas:

$$\begin{array}{ll} \varphi_1: & \forall x (f(x) \neq a) \\ \varphi_2: & \forall x \forall y (f(x) = f(y) \rightarrow x = y) \\ \varphi_3: & \forall x (x \neq a \rightarrow \exists y (f(y) = x)) \end{array}$$

Probar que ninguna de estas fórmulas es consecuencia lógica de las demás mediante el teorema de Herbrand.

Ejercicio 65.— Determinar si son ciertas las siguientes afirmaciones, utilizando en ambos casos el teorema de Herbrand:

- 1. $\models \exists x P(x) \rightarrow P(a)$, (a símbolo de constante).
- 2. $\{ \forall x (P(x) \to Q(x)), \forall y (Q(a) \lor R(y) \to S(a)) \} \models \forall x (P(x) \to S(a)).$