Soluciones del examen de $L\'{o}gica$ informática (Grupo 2) del 5 de Mayo de 2005

José A. Alonso Jiménez

Ejercicio 1 [2.5 puntos] Calcular una forma normal conjuntiva de la fórmula F sabiendo que está compuesta con las tres variables p, q y r y que, para toda valoración v, se tiene que

$$v(F) = \begin{cases} 1, & si \ v(p) = v(\neg q \lor r) \\ 0, & en \ caso \ contrario \end{cases}$$

Solución:

La fórmula F es equivalente a $p \leftrightarrow \neg q \lor r$. Por tanto, el cálculo de una FNC de F es

$$\begin{array}{c} p \leftrightarrow \neg q \vee r \\ \equiv (p \to \neg q \vee r) \wedge (\neg q \vee r \to p) \\ \equiv (\neg p \vee (\neg q \vee r)) \wedge (\neg (\neg q \vee r) \vee p) \\ \equiv (\neg p \vee \neg q \vee r) \wedge ((\neg \neg q \wedge \neg r) \vee p) \\ \equiv (\neg p \vee \neg q \vee r) \wedge ((q \wedge \neg r) \vee p) \\ \equiv (\neg p \vee \neg q \vee r) \wedge (q \vee p) \wedge (\neg r \vee p) \\ \text{Una FNC de } F \text{ es } (\neg p \vee \neg q \vee r) \wedge (q \vee p) \wedge (\neg r \vee p). \end{array}$$

Ejercicio 2 [2.5 puntos] Calcular una forma normal disyuntiva de A y una forma normal conjuntiva de $\neg A$ siendo A la fórmula cuya tabla de verdad es

p	q	r	A
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Solución:

- $FND(A) = (p \land q \land r) \lor (\neg p \land q \land \neg r)$
- $FNC(\neg A) = (\neg p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor r)$

Ejercicio 3 [2.5 puntos] *Decidir, mediante deducción natural, si* $(p \to q) \land (p \to r) \models p \to (q \land r).$

Solución:

1	$(p \to q) \land (p \to r)$	premisa
2	p	supuesto
3	$p \to q$	\mathcal{E}_{\wedge} 1
4	q	$\mathcal{E}_{\rightarrow} 3, 2$
5	$p \rightarrow r$	\mathcal{E}_{\wedge} 1
6	r	$\mathcal{E}_{\rightarrow}$ 5, 3
7	$q \wedge r$	\mathcal{I}_{\wedge} 4,6
8	$p \to (q \land r)$	$\mathcal{I}_{\rightarrow} 3 - 7$

Ejercicio 4 [2.5 puntos] *Decidir, mediante tableros semánticos, si* $(p \to q) \lor (p \to r) \models p \to (q \land r).$

Solución:

El problema se reduce a decidir si $\{(p \to q) \lor (p \to r), \neg (p \to (q \land r))\}$ es inconsistente.

1.
$$(p \rightarrow q) \lor (p \rightarrow r)$$

2. $\neg (p \rightarrow (q \land r))$
3. $p(2)$
4. $\neg (q \land r)(2)$
5. $\neg q(2)$
6. $\neg r(2)$
7. $(p \rightarrow q)(1)$
8. $(p \rightarrow r)(2)$
9. $\neg p(8)$
10. $r(8)$
Cerrada Abierta
 $[p, \neg q, r]$

Por tanto, $(p \to q) \lor (p \to r) \not\models p \to (q \land r)$ y un contramodelo es la interpretación v tal que $v(p)=1,\,v(q)=0$ y v(r)=1.