Lógica informática (2005–06) Tema 4: Tableros semánticos

José A. Alonso Jiménez

Grupo de Lógica Computacional

Dpto. Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

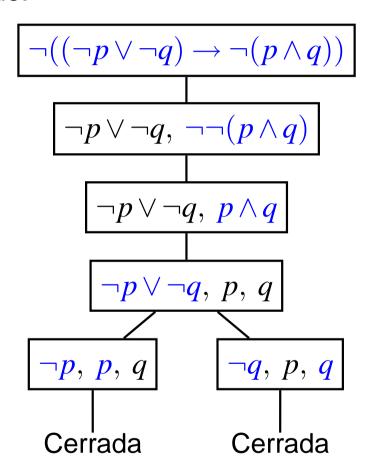
Demostración de fórmula tautológica

• Demostración de $\models \neg p \lor \neg q \to \neg (p \land q)$.

```
\neg p \vee \neg q \to \neg (p \wedge q) \text{ es una tautología} \text{syss } \{\neg (\neg p \vee \neg q \to \neg (p \wedge q))\} \text{ es inconsistente} \text{syss } \{\neg p \vee \neg q, \neg \neg (p \wedge q)\} \text{ es inconsistente} \text{syss } \{\neg p \vee \neg q, p \wedge q\} \text{ es inconsistente} \text{syss } \{p, q, \neg p \vee \neg q\} \text{ es inconsistente} \text{syss } \{p, q, \neg p\} \text{ es inconsistente} \{p, q, \neg q\} \text{ es inconsistente}
```

Demostración por tableros semánticos

Tablero semántico cerrado:



Refutación de fórmula no tautológica

• Refutación $\not\models \neg p \lor \neg q \to \neg (p \land r)$:

$$\neg p \lor \neg q \to \neg (p \land r)$$
 es una tautología syss $\{\neg (\neg p \lor \neg q \to \neg (p \land r))\}$ es inconsistente syss $\{\neg p \lor \neg q, \neg \neg (p \land r)\}$ es inconsistente syss $\{\neg p \lor \neg q, p \land r\}$ es inconsistente syss $\{p, r, \neg p \lor \neg q\}$ es inconsistente syss $\{p, r, \neg p\}$ es inconsistente y $\{p, r, \neg q\}$ es inconsistente

• Contramodelos de $\neg p \lor \neg q \to \neg (p \land r)$:

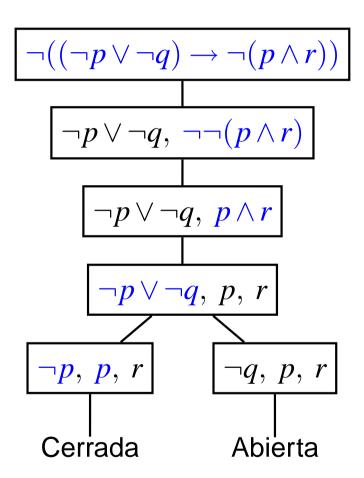
Las valoraciones v tales que v(p) = 1, v(q) = 0 y v(r) = 1.

• Una forma normal disyuntiva de $\neg(\neg p \lor \neg q \to \neg(p \land r))$:

$$p \wedge r \wedge \neg q$$

Refutación por tableros semánticos

Tablero semántico:



Notación uniforme: Literales y dobles negaciones

- Literales
 - ▶ Un literal es un átomo o la negación de un átomo (p.e. $p, \neg p, q, \neg q, \ldots$).
- Dobles negaciones
 - F es una doble negación si es de la forma $\neg \neg G$.
 - Ley de doble negación: Si F es $\neg \neg G$, entonces $F \equiv G$.

Notación uniforme: fórmulas alfa y beta

Las fórmulas alfa, junto con sus componentes, son

F	F_1	F_2
$A_1 \wedge A_2$	A_1	A_2
	A_1	$\neg A_2$
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$
$A_1 \leftrightarrow A_2$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$

- Si F es una fórmula alfa con componentes F_1 y F_2 , entonces $F \equiv F_1 \wedge F_2$.
- Las fórmulas beta, junto con sus componentes, son

F	F_1	F_2
$B_1 \vee B_2$	B_1	B_2
$B_1 \rightarrow B_2$	$\neg B_1$	B_2
$\neg (B_1 \wedge B_2)$	$\neg B_1$	$\neg B_2$
	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 o B_1)$

• Si F es una fórmula beta y con componentes F_1 y F_2 , entonces $F \equiv F_1 \vee F_2$.

Tablero del conjunto de fórmulas S

- El árbol cuyo único nodo tiene como etiqueta S es un tablero de S.
- Sea $\mathscr T$ un tablero de S y S_1 la etiqueta de una hoja de $\mathscr T$.
 - 1. Si S_1 es cerrado (es decir, que contiene una fórmula y su negación), entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con cerrado es un tablero de S_1 .
 - 2. Si S_1 es abierto (es decir, es un conjunto de literales que no es cerrado), entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con abierto es un tablero de S.
 - 3. Si S_1 contiene una doble negación $\neg \neg F$, entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con $(S_1 \setminus \{\neg \neg F\}) \cup \{F\}$ es un tablero de S.
 - 4. Si S_1 contiene una fórmula alfa F de componentes F_1 y F_2 , entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con $(S_1 \setminus \{F\}) \cup \{F_1, F_2\}$ es un tablero de S.
 - 5. Si S_1 contiene una fórmula beta F de componentes F_1 y F_2 , entonces el árbol obtenido añadiendo como hijos de S_1 los nodos etiquetados con $(S_1 \setminus \{F\}) \cup \{F_1\}$ y $(S_1 \setminus \{F\}) \cup \{F_2\}$ es un tablero de S.

Teorema por tableros

- Def.: Un tablero completo de S es un tablero de S tal que todas sus hojas son abiertas o cerradas.
- Def.: Un tablero es cerrado si todas sus hojas son cerradas.
- Def.: Una fórmula F es un teorema (mediante tableros semánticos) si tiene una prueba mediante tableros; es decir, si $\{\neg F\}$ tiene un tablero completo cerrado. Se representa por $\vdash_{Tab} F$.
- Ejemplos: $\vdash_{Tab} \neg p \lor \neg q \to \neg (p \land q)$ $\not\vdash_{Tab} \neg p \lor \neg q \to \neg (p \land r)$
- Teor.: El cálculo de tableros semánticos es adecuado y completo; es decir,

Adecuado:
$$\vdash_{Tab} F \implies \models F$$

Completo: $\models F \implies \vdash_{Tab} F$

Si los nodos abiertos de un tablero completo de F son

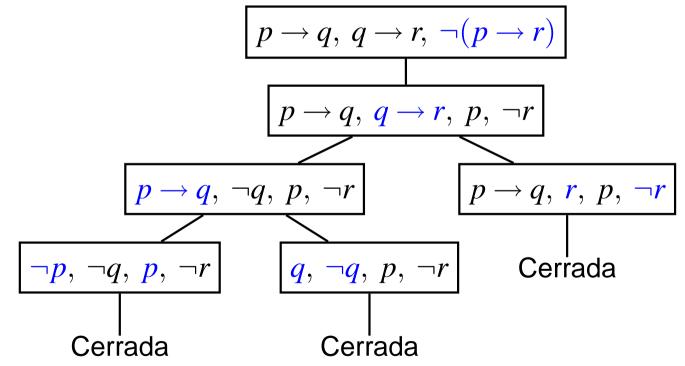
$$\{L_{1,1},\ldots,L_{1,n_1}\},\ldots,\{L_{m,1},\ldots,L_{m,n_m}\},$$

entonces una forma normal disyuntiva de F es

$$(L_{1,1} \wedge \ldots \wedge L_{1,n_1}) \vee \ldots \vee (L_{m,1} \wedge \ldots \wedge L_{m,n_m}).$$

Deducción por tableros

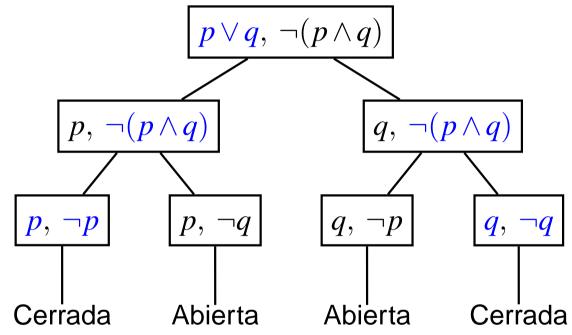
- Def.: La fórmula F es deducible (mediante tableros semánticos) a partir del conjunto de fórmulas S si existe una prueba mediante tableros de F a partir de S; es decir, existe un tablero completo cerrado de $S \cup \{\neg F\}$. Se representa por $S \vdash_{Tab} F$.
- Ejemplo: $\{p \rightarrow q, q \rightarrow r\} \vdash_{Tab} p \rightarrow r$



• Teor.: $S \vdash_{Tab} F$ syss $S \models F$.

Deducción por tableros

• Ejemplo: $\{p \lor q\} \not\vdash_{Tab} p \land q$



• Contramodelos de $\{p \lor q\} \not\vdash_{Tab} p \land q$

las valoraciones v_1 tales que $v_1(p) = 1$ y $v_1(q) = 0$

las valoraciones v_2 tales que $v_2(p) = 0$ y $v_2(q) = 1$

Bibliografía

- 1. Ben–Ari, M. *Mathematical Logic for Computer Science (2nd ed.)* (Springer, 2001)
 - Cap. 2: Propositional calculus: formulas, models, tableaux
- 2. Fitting, M. First-Order Logic and Automated Theorem Proving (2nd ed.) (Springer, 1995)
 - Cap. 3: Semantic tableaux and resolution
- 3. Hortalá, M.T.; Leach, J. y Rogríguez, M. *Matemática discreta y lógica matemática* (Ed. Complutense, 1998)
 - Cap. 7.9: Tableaux semánticos para la lógica de proposiciones
- Nerode, A. y Shore, R.A. Logic for Applications (Springer, 1997)
 Cap. 1.4: Tableau proofs in propositional calculus
- 5. E. Paniagua, J.L. Sánchez y F. Martín *Lógica computacional* (Thomson, 2003)
 - Cap. 4.3: Métodos de las tablas semánticas