Lógica informática (2005–06) Tema 9: Modelos de Herbrand

José A. Alonso Jiménez

Grupo de Lógica Computacional

Dpto. Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Reducción de la LPO básica a proposicional

- Observación:
 - ► En este tema sólo se consideran lenguajes de primer orden sin igualdad.
- Reducción de la LPO básica a proposicional
 - ▶ Def.: Una fórmula básica es una fórmula sin variables ni cuantificadores.
 - ▶ Prop.: Sea S un conjunto de fórmulas básicas. Son equivalentes:
 - 1. S es consistente en el sentido de la lógica de primer orden.
 - 2. S es consistente en el sentido de la lógica proposicional.

Ejemplos de reducción de la LPO básica a proposicional

- $\{P(a) \lor P(b), \neg P(b) \lor P(c), P(a) \to P(c)\}$ es consistente en el sentido de la lógica de primer orden (con modelos $\mathscr{I}_4, \mathscr{I}_6, \mathscr{I}_8$).
- $\{P(a) \lor P(b), \neg P(b) \lor P(c), P(a) \rightarrow P(c), \neg P(c)\}$ es inconsistente en el sentido de la lógica de primer orden.

	P^{I}	$P(a) \vee P(b)$	$\neg P(b) \lor P(c)$	$P(a) \rightarrow P(c)$	$\neg P(c)$
\mathscr{I}_1	Ø	0	1	1	1
\mathscr{I}_2	$\{c^I\}$	0	1	1	0
\mathcal{I}_3	$\{b^I\}$	1	0	1	1
\mathcal{I}_4	$\{b^I,c^I\}$	1	1	1	0
\mathcal{I}_5	$\{a^I\}$	1	1	0	1
\mathcal{I}_6	$\{a^I,c^I\}$	1	1	1	0
\mathscr{I}_7	$\{a^I,b^I\}$	1	0	0	1
\mathcal{I}_8	$\{a^I, b^I, c^I\}$	1	1	1	0

Ejemplos de reducción de la LPO básica a proposicional

• $\{P(a) \lor P(b), \neg P(b) \lor P(c), P(a) \rightarrow P(c)\}$ es consistente en el sentido proposicional (con modelos v_4, v_6, v_8).

• $\{P(a) \lor P(b), \neg P(b) \lor P(c), P(a) \to P(c), \neg P(c)\}$ es inconsistente en el sentido proposicional.

Se consideran los cambios P(a)/p, P(b)/q, P(c)/r

	p	q	r	$p \lor q$	$\neg q \lor r$	$p \rightarrow r$	$\neg r$
v_1	0	0	0	0	1	1	1
v_2	0	0	1	0	1	1	0
<i>v</i> ₃	0	1	0	1	0	1	1
v_4	0	1	1	1	1	1	0
v_5	1	0	0	1	1	0	1
v_6	1	0	1	1	1	1	0
<i>v</i> ₇	1	1	0	1	0	0	1
v_8	1	1	1	1	1	1	0

3

Notación

- L representa un lenguaje de primer orden sin igualdad.
- \mathscr{C} es el conjunto de constantes de L.
- ${\mathscr F}$ es el conjunto de símbolos de función de L.
- \mathscr{R} es el conjunto de símbolos de relación de L.
- \mathscr{F}_n es el conjunto de símbolos de función n-aria de L.
- \mathcal{R}_n es el conjunto de símbolos de relación n-aria de L.
- f/n indica que f es un símbolo de función n-aria de L.
- P/n indica que f es un símbolo de relación n-aria de L.

Ejemplos de universo de Herbrand

• Si $\mathscr{C} = \{a,b,c\}$ y $\mathscr{F} = \emptyset$, entonces $H_0(L) = \{a,b,c\}$ $H_1(L) = \{a,b,c\}$ \vdots UH(L) = $\{a,b,c\}$ • Si $\mathscr{C} = \emptyset$ y $\mathscr{F} = \{f/1\}$, entonces $H_0(L) = \{a\}$ $H_1(L) = \{a,f(a)\}$ $H_2(L) = \{a,f(a),f(f(a))\}$

 $\mathsf{UH}(L) = \{a, f(a), f(f(a)), \ldots\} = \{f^{i}(a) : i \in \mathbb{N}\}\$

Universo de Herbrand

- Def.: El universo de Herbrand de L es el conjunto de los términos básicos de L. Se representa por $\mathsf{UH}(L)$.
- Prop.: $UH(L) = \bigcup_{i>0} H_i(L)$, donde $H_i(L)$ es el nivel i del UH(L) definido por

$$H_0(L) = egin{cases} \mathscr{C}, & ext{ si } \mathscr{C}
eq \emptyset; \ \{a\}, & ext{ en caso contrario. (a es una nueva constante).} \ H_{i+1}(L) & = H_i(L) \cup \{f(t_1,\ldots,t_n): f \in \mathscr{F}_n \ ext{y} \ t_1,\ldots,t_n \in H_i(L)\} \end{cases}$$

• Prop.: $\mathsf{UH}(L)$ es finito syss L no tiene símbolos de función.

Ejemplos de universo de Herbrand

• Si $\mathscr{C} = \{a,b\}$ y $\mathscr{F} = \{f/1,g/1\}$, entonces $H_0(L) = \{a,b\}$ $H_1(L) = \{a,b,f(a),f(b),g(a),g(b)\}$ $H_2(L) = \{a,b,f(a),f(b),g(a),g(b), f(f(a)),f(f(b)),f(g(a)),f(g(b)), g(f(a)),g(f(b)),g(g(a)),g(g(b))\}$ \vdots $\text{Si } \mathscr{C} = \{a,b\} \text{ y } \mathscr{F} = \{f/2\}, \text{ entonces } H_0(L) = \{a,b\} H_1(L) = \{a,b,f(a,a),f(a,b),f(b,a),f(b,b)\} H_2(L) = \{a,b,f(a,a),f(a,b),f(b,a),f(b,b),f(a,f(a,a)),f(a,f(a,b)),\ldots\}$

6

5

Base de Herbrand

- Def.: La base de Herbrand de L es el conjunto de los átomos básicos de L. Se representa por $\mathsf{BH}(L)$.
- Prop.: $BH(L) = \{P(t_1, ..., t_n) : P \in \mathcal{R}_n \text{ y } t_1, ..., t_n \in UH(L)\}.$
- Prop.: BH(L) es finita syss L no tiene símbolos de función.
- Ejemplos:

Si
$$\mathscr{C}=\{a,b,c\}, \mathscr{F}=\emptyset$$
 y $\{\mathscr{R}=P/1\}$, entonces
$$\mathsf{UH}(L)=\{a,b,c\}$$

$$\mathsf{BH}(L)=\{P(a),P(b),P(c)\}$$

$$\text{Si } \mathscr{C} = \{a\}, \, \mathscr{F} = \{f/1\} \text{ y } \mathscr{R} = \{P/1, Q/1, R/1\}, \text{ entonces }$$

$$\text{UH}(L) \quad = \{a, f(a), f(f(a)), \ldots\} = \{f^i(a) : i \in \mathbb{N}\}$$

$$\mathsf{BH}(L) = \{ P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \ldots \}$$

9

Interpretaciones de Herbrand

- Def.: Una interpretación de Herbrand es una interpretación $\mathscr{I}=(U,I)$ tal que
 - -U es el universo de Herbrand de L;
 - I(c) = c, para cada constante c de L;
 - -I(f)=f, para cada símbolo de función f de L.
- Prop.: Sea \mathscr{I} una interpretación de Herbrand de L. Si t es un término básico de L, entonces $\mathscr{I}(t) = t$.
- Prop.: Una interpretación de Herbrand queda determinada por un subconjunto de la base de Herbrand, el conjunto de átomos básicos verdaderos en esa interpretación.

Modelos de Herbrand

- Nota: Las definiciones de universo de Herbrand, base de Herbrand e interpretación de Herbrand definidas para un lenguaje se extienden a fórmulas y conjuntos de fórmulas considerando el lenguaje formado por los símbolos no lógicos que aparecen.
- Def.: Un modelo de Herbrand de una fórmula F es una interpretación de Herbrand de F que es modelo de F.
- Def.: Un modelo de Herbrand de un conjunto de fórmulas *S* es una interpretación de Herbrand de *S* que es modelo de *S*.
- Ejemplo: Los modelos de Herbrand de $\{P(a) \lor P(b), \neg P(b) \lor P(c), P(a) \rightarrow P(c)\}\$ son $\{P(b), P(c)\}, \{P(a), P(c)\}\$ y $\{P(a), P(b), P(c)\}\$ (ver página 3).
- Ejemplo: Sea $S = \{(\forall x)(\forall y)[Q(b,x) \to P(a) \lor R(y)], P(b) \to \neg(\exists z)(\exists u)Q(z,u)\}. \text{ Entonces,}$ $\mathsf{UH}(S) = \{a,b\}$ $\mathsf{BH}(S) = \{P(a),P(b),Q(a,a),Q(a,b),Q(b,a),Q(b,b),R(a),R(b)\}$ Un modelo de Herbrand de S es $\{P(a)\}.$

11

Interpretación de Herbrand correspondiente

• Sea $S = \{\{\neg Q(b,x), P(a), R(y)\}, \{\neg P(b), \neg Q(z,u)\}\}$ e $\mathscr{I} = (\{1,2\}, I)$ con $a^I = 1, b^I = 2, P^I = \{1\}, Q^I = \{(1,1), (2,2)\}, R^I = \{2\}$. Entonces, $\mathscr{I} \models S$. Cálculo de la interpretación de Herbrand \mathscr{I}^* correspondiente a \mathscr{I} :

Interpretación de Herbrand correspondiente

• Sea S el conjunto de cláusulas $\{P(a)\}, \{Q(y, f(a))\}\}$ e $\mathscr{I} = (\{1, 2\}, I)$ con $a^{I} = 1, f^{I} = \{(1,2), (2,1)\}, P^{I} = \{1\}, O^{I} = \{(1,2), (2,2)\}.$ Entonces, $\mathscr{I} \models S$. Cálculo de la interpretación de Herbrand \mathscr{I}^* correspondiente a \mathscr{I} :

Consistencia mediante modelos de Herbrand

- Prop.: Sea S un conjunto de fórmulas básicas. Son equivalentes:
 - 1. S es consistente.
 - 2. S tiene un modelo de Herbrand.
- Prop.: Sea S un conjunto de cláusulas. Si \mathscr{I}^* es una interpretación de Herbrand correspondiente a un modelo \mathscr{I} de S, entonces \mathscr{I}^* es un modelo de S.
- Prop.: Sea S un conjunto de cláusulas. Son equivalentes:
 - 1. *S* es consistente.
 - 2. S tiene un modelo de Herbrand.
- Prop.: Sea S un conjunto de cláusulas. Son equivalentes:
 - 1. S es inconsistente.
 - 2. S no tiene ningún modelo de Herbrand.
- Prop.: Existen conjuntos de fórmulas consistentes sin modelos de Herbrand.

Ejemplo de consistente sin modelos de Herbrand

```
• Sea S = \{(\exists x)P(x), \neg P(a)\}. Entonces,
    − S es consistente.
       \mathscr{I} \models S \text{ con } \mathscr{I} = (\{1,2\},I), a^I = 1 \text{ y } P^I = \{2\}.
    - S no tiene modelos de Herbrand
       UH(S) = \{a\}
       BH(S) = \{P(a)\}\
       Las interpretaciones de Herbrand de S son \emptyset y \{P(a)\}.
       \emptyset \not\models S
       \{P(a)\}\not\models S
```

15

Instancias básicas de una cláusula

- Def.: Una sustitución σ (de L) es una aplicación σ : Var \rightarrow Térm(L).
- Def.: Sea $C = \{L_1, \dots, L_n\}$ una cláusula de L y σ una sustitución de L. Entonces, $C\sigma = \{L_1\sigma, \dots, L_n\sigma\}$ es una instancia de C.
- Ejemplo: Sea $C = \{P(x, a), \neg P(x, f(y))\}.$ $C[x/a, y/f(a)] = \{P(f(a), a), \neg P(f(a), f(f(a)))\}$
- Def.: $C\sigma$ es una instancia básica de C si todos los literales de $C\sigma$ son básicos.
- Ejemplo: Sea $C = \{P(x, a), \neg P(x, f(y))\}.$ $\{P(f(a),a), \neg P(f(a),f(f(a)))\}$ es una instancia básica de C. $\{P(f(a),a), \neg P(f(f(a)), f(a))\}$ no es una instancia básica de C. $\{P(x,a), \neg P(f(f(a)), f(a))\}$ no es una instancia básica de C.

Extensiones de Herbrand

 Def.: La extensión de Herbrand de un conjunto de cláusulas S es el conjunto de fórmulas

$$\mathsf{EH}(S) = \{C\sigma : C \in S \text{ y, para toda variable } x \text{ en } C, \sigma(x) \in \mathsf{UH}(S)\}.$$

- Prop.: $\mathsf{EH}(L) = \bigcup_{i \geq 0} \mathsf{EH}_i(L)$, donde $\mathsf{EH}_i(L)$ es el nivel i de la $\mathsf{EH}(L)$ definido por $\mathsf{EH}_i(S) = \{C\sigma : C \in S \text{ y, para toda variable } x \text{ en } C, \sigma(x) \in \mathsf{UH}_i(S)\}.$
- Ejemplos:
 - Sea $S = \{ \{P(x)\}, \{\neg P(f(x))\} \}$ (p. 8.17). Entonces,

$$\begin{split} \mathsf{EH}_0(S) &= \{\{P(a)\}, \{\neg P(f(a))\}\} \\ \mathsf{EH}_1(S) &= \mathsf{EH}_0(S) \cup \{\{P(f(a))\}, \{\neg P(f(f(a)))\}\} \\ \mathsf{EH}_2(S) &= \mathsf{EH}_1(S) \cup \{\{P(f(f(a)))\}, \{\neg P(f(f(f(a))))\}\} \end{split}$$

- ▶ Sea $S = \{\{\neg P(x), Q(x)\}, \{P(a)\}, \{\neg Q(z)\}\}$ (p. 8.21). Entonces, $\mathsf{EH}(S) = \{\{\neg P(a), Q(a)\}, \{P(a)\}, \{\neg Q(a)\}\}$.
- ▶ Sea $S = \{\{\neg P(x), Q(x)\}, \{\neg Q(y), R(y)\}, \{P(a)\}, \{\neg R(a)\}\}$ (p. 8.21). Entonces, $\mathsf{EH}(S) = \{\{\neg P(a), Q(a)\}, \{\neg Q(a), R(a)\}, \{P(a)\}, \{\neg R(a)\}\}$.

Semidecisón mediante el teorema de Herbrand

- Entrada: Un conjunto de cláusulas S.
- Procedimiento:
- 1. Hacer i := 0.
- 2. Calcular $EH_i(S)$.
- 3. Si $\mathsf{EH}_i(S)$ es inconsistente (en el sentido proposicional), parar e indicar que S es inconsistente.
- 4. Si $\mathsf{EH}_i(S)$ es consistente (en el sentido proposicional), hacer i:=i+1 y volver al paso 2.

19

Teorema de Herbrand

- Teorema de Herbrand: Sea *S* un conjunto de cláusulas. Son equivalentes:
 - 1. S es consistente.
 - 2. EH(S) es consistente (en el sentido proposicional).
- Prop.: Sea S un conjunto de cláusulas. Entonces, son equivalentes
 - 1. S es inconsistente.
 - 2. $\mathsf{EH}(S)$ tiene un subconjunto finito inconsistente (en el sentido proposicional).
 - 3. Para algún i, $\mathsf{EH}_i(S)$ es inconsistente (en el sentido proposicional).

Ejemplos de decisión mediante el teorema de Herbrand

```
• S = \{\{\neg P(x), Q(x)\}, \{P(a)\}, \{\neg Q(z)\}\}\ (p. 17) es inconsistente.
      \mathsf{EH}_0(S) = \{ \{ \neg P(a), Q(a) \}, \{ P(a) \}, \{ \neg Q(a) \} \} es inconsistente.
           1 \{\neg P(a), Q(a)\}
           2 \{P(a)\}
           3 \{ \neg Q(a) \}
           4 \{Q(a)\}
                                    Res 1, 2
           5
                                    Res 3,4
• S = \{\{\neg P(x), Q(x)\}, \{\neg Q(y), R(y)\}, \{P(a)\}, \{\neg R(a)\}\}\ es inconsistente.
      \mathsf{EH}_0(S) = \{ \{ \neg P(a), Q(a) \}, \{ \neg Q(a), R(a) \}, \{ P(a) \}, \{ \neg R(a) \} \}.
           1 \{\neg P(a), Q(a)\}
           2 \{ \neg Q(a), R(a) \}
           3 \{P(a)\}
           4 \{\neg R(a)\}
           5 \{Q(a)\}
                                    Res 1.3
           6 \{R(a)\}
                                    Res 5, 2
           7 \square
                                    Res 6, 4
```

17

Ejemplos de decisión mediante el teorema de Herbrand

```
• S = \{ \{ P(x) \}, \{ \neg P(f(x)) \} \} es inconsistente (p. 17).
   - EH_0(S) = \{ \{ P(a) \}, \{ \neg P(f(a)) \} \} es consistente
       \mathscr{I} = \{P(a)\} \models \mathsf{EH}_0(S)
   - EH_1(S) = EH_0(S) \cup \{ \{ P(f(a)) \}, \{ \neg P(f(f(a))) \} \} es inconsistente.
        1 \{P(f(a))\}
        2 \{ \neg P(f(a)) \}
        3 \square
                              Res 1.2
• S = \{\{\neg P(x), Q(f(x), x)\}, \{P(g(b))\}, \{\neg Q(y, z)\}\} es inconsistente. Dem.:
   S' = \{ \{ \neg P(g(b)), Q(f(g(b)), g(b)) \}, \{ P(g(b)) \}, \{ \neg Q(f(g(b)), g(b)) \} \} \subset \mathsf{EH}(S)
   es inconsistente.
        1 \{\neg P(g(b)), Q(f(g(b)), g(b))\}\
        2 \{P(g(b))\}
        3 \{ \neg Q(f(g(b)), g(b)) \}
        4 {Q(f(g(b)),g(b))}
                                                   Res 1, 2
        5 □
                                                   Res 3, 3
                                                                                                  21
```

Bibliografía

- 1. M.L. Bonet *Apuntes de LPO*. (Univ. Politécnica de Cataluña, 2003) pp. 31–34.
- 2. C.L. Chang y R.C.T. Lee *Symbolic logic and mechanical theorem proving* (Academic Press, 1973) pp. 51–62.
- 3. M. Ojeda e I. Pérez Lógica para la computación (Vol. 2: Lógica de Primer Orden) (Ágora, 1997) pp. 59–74.
- 4. E. Paniagua, J.L. Sánchez y F. Martín *Lógica computacional* (Thomson, 2003) pp. 160–169.
- 5. L. Paulson Logic and proof (U. Cambridge, 2002) pp. 47–50.
- 6. U. Schöning Logic for computer scientists (Birkäuser, 1989) pp. 70-78.