Lógica informática (2008-09)

Tema 1: Sintaxis y semántica de la lógica proposicional

José A. Alonso Jiménez María J. Hidalgo Doblado

Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla

1 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Tema 1: Sintaxis y semántica de la lógica proposicional

- 1. Introducción
- 2. Sintaxis de la lógica proposicional
- 3. Semántica proposicional

Tema 1: Sintaxis y semántica de la lógica proposicional

1. Introducción

Panorama de la lógica Ejemplos de argumentos y formalizaciones

- 2. Sintaxis de la lógica proposicional
- 3. Semántica proposicional

3 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

└─Introducción

Panorama de la lógica

Lógica

- Objetivos de la lógica:
 - La formalización del lenguaje natural.
 - Los métodos de razonamiento.
- Sistemas lógicos:
 - Lógica proposicional.
 - Lógica de primer orden.
 - Lógicas de orden superior.
 - Lógicas modales.
 - Lógicas descriptivas.
- Aplicaciones de la lógica en computación:
 - Programación lógica.
 - Verificación y síntesis automática de programas.
 - ► Representación del conocimiento y razonamiento.
 - Modelización y razonamiento sobre sistemas.
- Lógica informática = Representación del conocimiento + Razonamiento

Argumentos y formalización

- ► Ejemplos de argumentos:
 - ▶ Ejemplo 1: Si el tren llega a las 7 y no hay taxis en la estación, entonces Juan llegará tarde a la reunión. Juan no ha llegado tarde a la reunión. El tren llegó a las 7. *Por tanto*, habían taxis en la estación.
 - ► Ejemplo 2: Si hay corriente y la lámpara no está fundida, entonces está encendida. La lámpara no está encendida. Hay corriente. *Por tanto*, la lámpara está fundida.
- Formalización:
 - Simbolización:

Simb.	Ejemplo 1	Ejemplo 2
р	el tren llega a las 7	hay corriente
q	hay taxis en la estación	la lámpara está fundida .
r	Juan llega tarde a la reunión	la lámpara está encendida

- ightharpoonup Si p y no q, entonces r. No r. p. Por tanto, q.

5 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Sintaxis de la lógica proposicional

Tema 1: Sintaxis y semántica de la lógica proposicional

1. Introducción

2. Sintaxis de la lógica proposicional

El lenguaje de la lógica proposicional Recursión e inducción sobre fórmulas Árboles de análisis (o de formación) Eliminación de paréntesis Subfórmulas

3. Semántica proposiciona

El lenguaje de la lógica proposicional

- Alfabeto proposicional:
 - ▶ variables proposicionales: $p_0, p_1, ...; p, q, r$.
 - conectivas lógicas:
 - ▶ monaria: ¬ (negación),
 - ▶ binarias: \land (conjunción), \lor (disyunción), \rightarrow (condicional), \leftrightarrow (bicondicional).
 - símbolos auxiliares: "(" y ")".
- Fórmulas proposicionales:
 - Definición:
 - Las variables proposicionales son fórmulas (fórmulas atómicas).
 - ▶ Si F y G son fórmulas, entonces también lo son $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \to G)$ y $(F \leftrightarrow G)$
 - Ejemplos:
 - ► Fórmulas: p, $(p \lor \neg q)$, $\neg (p \lor p)$, $((p \to q) \lor (q \to p))$ ► No fórmulas: (p), $p \lor \neg q$, $(p \lor \land q)$

7 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Sintaxis de la lógica proposicional

El lenguaje de la lógica proposicional

Fórmulas proposicionales (BNF)

- Notaciones:
 - \triangleright p, q, r, ... representarán variables proposicionales.
 - \triangleright F, G, H, ... representarán fórmulas.
 - VP representa el conjunto de los variables proposicionales.
 - Prop representa el conjunto de las fórmulas.
 - * representa una conectiva binaria.
- ► Forma de Backus Naur (BNF) de las fórmula proposicionales:
 - $F ::= p \mid \neg G \mid (F \land G) \mid (F \lor G) \mid (F \to G) \mid (F \leftrightarrow G).$

Definiciones por recursión sobre fórmulas

- Número de paréntesis de una fórmula:
 - ▶ Def: El número de paréntesis de una fórmula F se define recursivamente por:

$$np(F) = \begin{cases} 0, & \text{si } F \text{ es atómica;} \\ np(G), & \text{si } F \text{ es } \neg G; \\ 2 + np(G) + np(H), & \text{si } F \text{ es } (G * H) \end{cases}$$
Figure less

- ► Ejemplos:
 - p(p) = 0
 - p(q) = 0
 - ▶ $np(\neg q) = 0$
 - $\mathsf{np}((\neg q \lor p)) = 2$

9 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Sintaxis de la lógica proposicional

Recursión e inducción sobre fórmulas

Demostración por inducción sobre fórmulas

- Principio de inducción sobre fórmulas: Sea \mathcal{P} una propiedad sobre las fórmulas que verifica las siguientes condiciones:
 - lacktriangle Todas las fórmulas atómicas tienen la propiedad $\mathcal{P}.$
 - ▶ Si F y G tienen la propiedad \mathcal{P} , entonces $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \to G)$ y $(F \leftrightarrow G)$, tienen la propiedad \mathcal{P} .

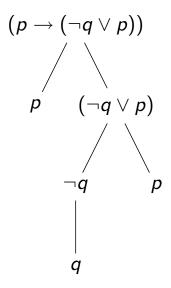
Entonces todas las fórmulas proposicionales tienen la propiedad \mathcal{P} .

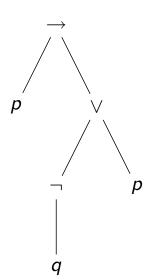
- Propiedad: Todas las fórmulas proposicionales tienen un número par de paréntesis.
 - Demostración por inducción sobre las fórmulas.
 - ▶ Base: F atómica \Longrightarrow np(F) = 0 es par.
 - ▶ Paso: Supongamos que np(F) y np(G) es par (hipótesis de inducción). Entonces,

$$np(\neg F) = np(F)$$
 es par y
 $np((F * G)) = 2 + np(F) + np(G)$ es par,
para cualquier conectiva binaria \star .

10 / 34

Árboles de análisis (o de formación)





11 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Sintaxis de la lógica proposicional

Eliminación de paréntesis

Criterios de reducción de paréntesis

Pueden eliminarse los paréntesis externos.

 $F \wedge G$ es una abreviatura de $(F \wedge G)$.

▶ Precedencia de asociación de conectivas: \neg , \wedge , \vee , \rightarrow , \leftrightarrow .

 $F \wedge G \rightarrow \neg F \vee G$ es una abreviatura de

$$((F \land G) \rightarrow (\neg F \lor G)).$$

Cuando una conectiva se usa repetidamente, se asocia por la derecha.

$$F \lor G \lor H$$
 abrevia $(F \lor (G \lor H))$
 $F \land G \land H \rightarrow \neg F \lor G$ abrevia $((F \land (G \land H)) \rightarrow (\neg F \lor G))$

Subfórmulas

 \blacktriangleright Def: El conjunto Subf(F) de las subfórmulas de una fórmula F se define recursivamente por:

$$\mathsf{Subf}(F) = \begin{cases} \{F\}, & \text{si } F \text{ es at\'omica}; \\ \{F\} \cup \mathsf{Subf}(G), & \text{si } F \text{ es } \neg G; \\ \{F\} \cup \mathsf{Subf}(G) \cup \mathsf{Subf}(H), & \text{si } F \text{ es } G * H \end{cases}$$

- ► Ejemplos:
 - $\mathsf{Subf}(p) = \{p\}$
 - ▶ Subf(q) = {q}
 - Subf $(\neg q) = {\neg q, q}$

 - Subf $(\neg q \lor p) = {\neg q \lor p, \neg q, q, p}$ Subf $(p \to \neg q \lor p) = {p \to \neg q \lor p, p, \neg q \lor p, \neg q, q}$

13 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Semántica proposicional

Tema 1: Sintaxis y semántica de la lógica proposicional

- 1. Introducción
- 3. Semántica proposicional

Valores y funciones de verdad

Interpretaciones

Modelos, satisfacibilidad y validez

Algoritmos para satisfacibilidad y validez

Selección de tautologías

Equivalencia lógica

Modelos de conjuntos de fórmulas

Consistencia y consecuencia lógica

Argumentaciones y problemas lógicos

Valores y funciones de verdad

- ▶ Valores de verdad (B): 1: verdadero y 0: falso.
- ► Funciones de verdad:

►
$$H_{\neg}: \{0,1\} \rightarrow \{0,1\}$$
 t.q. $H_{\neg}(i) = \begin{cases} 1, & \text{si } i = 0; \\ 0, & \text{si } i = 1. \end{cases}$

►
$$H_{\wedge}: \{0,1\}^2 \to \{0,1\}$$
 t.q. $H_{\wedge}(i,j) = \begin{cases} 1, & \text{si } i = j = 1; \\ 0, & \text{en otro caso.} \end{cases}$

► $H_{\vee}: \{0,1\}^2 \to \{0,1\}$ t.q. $H_{\vee}(i,j) = \begin{cases} 0, & \text{si } i = j = 0; \\ 1, & \text{en otro caso.} \end{cases}$

$$ullet$$
 H_ee : $\{0,1\}^2 o \{0,1\}$ t.q. H_ee (i,j) $= egin{cases} 0, & ext{si } i=j=0; \ 1, & ext{en otro caso.} \end{cases}$

►
$$H_{\rightarrow}: \{0,1\}^2 \rightarrow \{0,1\} \text{ t.q. } H_{\rightarrow}(i,j) = \begin{cases} 0, & \text{si } i=1,j=0; \\ 1, & \text{en otro caso.} \end{cases}$$

► $H_{\leftrightarrow}: \{0,1\}^2 \rightarrow \{0,1\} \text{ t.q. } H_{\leftrightarrow}(i,j) = \begin{cases} 1, & \text{si } i=j; \\ 0, & \text{en otro caso.} \end{cases}$

$$H_{\leftrightarrow}: \{0,1\}^2 \to \{0,1\} \text{ t.q. } H_{\leftrightarrow}(i,j) = \begin{cases} 1, & \text{si } i=j; \\ 0, & \text{en otro caso.} \end{cases}$$

15 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Interpretaciones de fórmulas

Funciones de verdad mediante tablas de verdad:

i	$\neg i$		i	j	$i \wedge j$	$i \lor j$	$i \rightarrow j$	$i \leftrightarrow j$
	0	•	_	_	_	_	1	1
0	1		1	0	0	1	0	0
			0	1	0	1	1	0
			0	0	0	0	1	1

- ► Interpretación:
 - ▶ Def.: Una interpretación es una aplicación $I : VP \rightarrow \mathbb{B}$.
 - Prop: Para cada interpretación / existe una única aplicación $I': \mathsf{Prop} \to \mathbb{B} \mathsf{tal} \mathsf{que}$:

$$I'(F) = \begin{cases} I(F), & \text{si } F \text{ es at\'omica;} \\ H_{\neg}(I'(G)), & \text{si } F = \neg G; \\ H_{\ast}(I'(G), I'(H)), & \text{si } F = G \ast H \end{cases}$$

Se dice que I'(F) es el valor de verdad de F respecto de I.

Semántica proposicional

^{∟&}lt;sub>Interpretaciones</sub>

Interpretaciones de fórmulas

- ▶ Ejemplo: Sea $F = (p \lor q) \land (\neg q \lor r)$
 - ightharpoonup valor de F en una interpretación I_1 tal que

$$egin{aligned} I_1(p) &= I_1(r) = 1, I_1(q) = 0 \ (p &\lor q) &\land (\lnot q &\lor r) \ (1 &\lor 0) &\land (\lnot 0 &\lor 1) \ &1 &\land (1 &\lor 1) \ &1 &\land &1 \ &1 \end{aligned}$$

ightharpoonup valor de F en una interpretación I_2 tal que

$$I_2(r) = 1, I_2(p) = I_2(q) = 0$$

 $(p \lor q) \land (\neg q \lor r)$
 $0 \quad 0 \quad 0 \quad 10 \quad 1 \quad 1$

- ▶ Prop.: Sea F una fórmula y I_1 , I_2 dos interpretaciones. Si $I_1(p) = I_2(p)$ para todos las variables proposicionales de F, entonces $I'_1(F) = I'_2(F)$.
- Notación: Se escribe I(F) en lugar de I'(F).

17 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Semántica proposicional

Modelos, satisfacibilidad y validez

Modelos y satisfacibilidad

- Modelo de una fórmula
 - ▶ Def.: I es modelo de F si I(F) = 1.
 - Notación: $I \models F$.
 - ► Ejemplo (continuación del anterior):

- si
$$I_1(p) = I_1(r) = 1$$
, $I_1(q) = 0$, entonces $I_1 \models (p \lor q) \land (\neg q \lor r)$
- si $I_2(r) = 1$, $I_2(p) = I_2(q) = 0$, entonces $I_2 \not\models (p \lor q) \land (\neg q \lor r)$.

- Fórmulas satisfacibles e insatisfacibles
 - ▶ Def.: F es satisfacible si F tiene algún modelo.
 - ► Ejemplo: $(p \rightarrow q) \land (q \rightarrow r)$ es satisfacible I(p) = I(q) = I(r) = 0.
 - ▶ Def.: F es insatisfacible si F no tiene ningún modelo.
 - ▶ Ejemplo: $p \land \neg p$ es insatisfacible

$$\begin{array}{c|cccc}
p & \neg p & p \land \neg p \\
\hline
1 & 0 & 0 \\
0 & 1 & 0
\end{array}$$

Tautologías y contradicciones

- ▶ Def.: F es una tautología (o válida) si toda interpretación es modelo de F. Se representa por $\models F$.
- ▶ Def.: F es una contradicción si ninguna interpretación es modelo de F.
- ▶ Def.: F es contingente si no es tautología ni contradicción.
- Ejemplos:
 - 1. $(p \rightarrow q) \lor (q \rightarrow p)$ es una tautología.
 - 2. $(p \rightarrow q) \land \neg (p \rightarrow q)$ es una contradicción.
 - 3. $p \rightarrow q$ es contingente.

р	q	$p \rightarrow q$	$q \rightarrow p$	(p ightarrow q) ee (q ightarrow p)	$\neg(p o q)$	$(p ightarrow q) \wedge eg (p ightarrow q)$
1	1	1	1	1	0	0
1	0	0	1	1	1	0
0	1	1	0	1	0	0
0	0	1	1	1	0	0

19 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Clasificaciones de fórmulas

Todas las fórmulas							
Tautologías	Contigentes	Contradicciones					
Verdadera en todas las interpretaciones	Verdadera en algunas interpretaciones y falsa en otras	Falsa en todas las interpretaciones					
(ej. $p \lor \neg p$)	(ej. $p o q$)	(ej. $p \land \neg p$)					
Safisf	Insatisfacibles						
Todas las fórmulas							

Semántica proposicional

Modelos, satisfacibilidad y validez

Satisfacibilidad y validez

- ▶ Los problemas SAT y TAUT:
 - ▶ Problema SAT: Dada F determinar si es satisfacible.
 - ▶ Problema TAUT: Dada F determinar si es una tautología.
- ▶ Relaciones entre satisfacibilidad y tautologicidad:
 - ▶ F es tautología $\iff \neg F$ es insatisfacible..
 - ightharpoonup F es tautología \implies F es satisfacible..
 - ▶ F es satisfacible $\implies \neg F$ es insatisfacible.

$$p \rightarrow q$$
 es satisfacible.

$$I(p) = I(q) = 1$$

 $\neg (p \rightarrow q)$ es satisfacible.

$$I(p) = 1, I(q) = 0.$$

21 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Algoritmos para SAT y TAUT

▶ Tabla de verdad para $\models (p \rightarrow q) \lor (q \rightarrow p)$:

p	q	(p ightarrow q)	(q ightarrow p)	(p o q)ee (q o p)
1	1	1	1	1
1	0	0	1	1
0	1	1	0	1
0	0	1	1	1

▶ Tabla de verdad simplificada para $\models (p \rightarrow q) \lor (q \rightarrow p)$:

p	q	(<i>p</i>	\longrightarrow	q)	\vee	(q	\longrightarrow	p)
1	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0	1	1
0	1	0	1	1	1	1	0	0
0	0	0	1	0	1	0	1 1 0 1	0

Semántica proposicional

Algoritmos para satisfacibilidad y validez

Algoritmos para SAT y TAUT

▶ Método de Quine para \models $(p \rightarrow q) \lor (q \rightarrow p)$

▶ Método de Quine para \models $(p \rightarrow q) \lor (q \rightarrow p)$

$$(p \rightarrow q) \lor (q \rightarrow p) \\ 0 0 1 0 1 0 0 \\ 1*$$

23 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Algoritmos para satisfacibilidad y validez

Algoritmos para SAT y TAUT

▶ Tablas de verdad para $\not\models (p \leftrightarrow q) \lor (q \leftrightarrow p)$

p	q	$(p \leftrightarrow q)$	$(q \leftrightarrow p)$	$(p \leftrightarrow q) \lor (q \leftrightarrow p)$
1	1	1	1	1
1	0	0	0	0
0	1	0	0	0
0	0	1	1	1

▶ Método de Quine para $\not\models (p \leftrightarrow q) \lor (q \leftrightarrow p)$

Semántica proposicional

Selección de tautologías

1. $F \rightarrow F$

(ley de identidad).

2. $F \vee \neg F$

(ley del tercio excluso).

3. $\neg (F \land \neg F)$

(principio de no contradicción).

4. $(\neg F \rightarrow F) \rightarrow F$

(ley de Clavius).

5. $\neg F \rightarrow (F \rightarrow G)$

(ley de Duns Scoto).

6. $((F \rightarrow G) \rightarrow F) \rightarrow F$ (ley de Peirce).

7. $(F \rightarrow G) \land F \rightarrow G$ (modus ponens). 8. $(F \rightarrow G) \land \neg G \rightarrow \neg F$ (modus tollens).

25 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Semántica proposicional

Equivalencia lógica

Fórmulas equivalentes

- ▶ Def.: $F ext{ y } G ext{ son equivalentes si } I(F) = I(G) ext{ para toda}$ interpretación *I*. Representación: $F \equiv G$.
- Ejemplos de equivalencias notables:
 - 1. Idempotencia: $F \vee F \equiv F$; $F \wedge F \equiv F$.
 - 2. Conmutatividad: $F \lor G \equiv G \lor F$; $F \land G \equiv G \land F$.
 - 3. Asociatividad: $F \lor (G \lor H) \equiv (F \lor G) \lor H$; $F \wedge (G \wedge H) \equiv (F \wedge G) \wedge H$
 - 4. Absorción: $F \wedge (F \vee G) \equiv F$; $F \vee (F \wedge G) \equiv F$.
 - 5. Distributividad: $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$; $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H).$
 - 6. Doble negación: $\neg \neg F \equiv F$.
 - 7. Leyes de De Morgan: $\neg (F \land G) \equiv \neg F \lor \neg G$; $\neg (F \lor G) \equiv \neg F \land \neg G$
 - 8. Leyes de tautologías: Si F es una tautología, $F \wedge G \equiv G : F \vee G \equiv F$.
 - 9. Leyes de contradicciones: Si F es una contradicción $F \wedge G \equiv F ; F \vee G \equiv G$.

Propiedades de la equivalencia lógica

- ► Relación entre equivalencia y bicondicional:
 - ▶ $F \equiv G$ syss $\models F \leftrightarrow G$.
- Propiedades básicas de la equivalencia lógica:
 - ▶ Reflexiva: $F \equiv F$.
 - ▶ Simétrica: Si $F \equiv G$, entonces $G \equiv F$.
 - ▶ Transitiva: Si $F \equiv G$ y $G \equiv H$, entonces $F \equiv H$.
- Principio de sustitución de fórmulas equivalentes:
 - Prop.: Si en la fórmula F se sustituye una de sus subfórmulas G por una fórmula G' lógicamente equivalente a G, entonces la fórmula obtenida, F', es lógicamente equivalente a F.
 - ► Ejemplo: $F = \neg(p \land q) \rightarrow \neg(p \land \neg \neg r)$ $G = \neg(p \land q)$ $G' = \neg p \lor \neg q$ $F' = (\neg p \lor \neg q) \rightarrow \neg(p \land \neg \neg r)$

27 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Semántica proposicional

Modelos de conjuntos de fórmulas

Modelo de conjuntos de fórmulas

- Notación:
 - \triangleright S, S_1, S_2, \ldots representarán conjuntos de fórmulas.
- Modelo de un conjunto de fórmulas:
 - ▶ Def.: I es modelo de S si para toda $F \in S$ se tiene que $I \models F$.
 - Representación: $I \models S$.
 - ▶ Ejemplo: Sea $S = \{(p \lor q) \land (\neg q \lor r), q \to r\}$ La interpretación I_1 tal que $I_1(p) = 1, I_1(q) = 0, I_1(r) = 1$ es modelo de S $(I_1 \models S)$.

La interpretación I_2 tal que $I_2(p) = 0$, $I_2(q) = 1$, $I_2(r) = 0$ no es modelo de S ($I_2 \not\models S$).

Conjunto consistente de fórmulas

- ▶ Def.: S es consistente si S tiene algún modelo.
- ▶ Def.: *S* es inconsistente si *S* no tiene ningún modelo.
- ► Ejemplos:
 - $\{(p \lor q) \land (\neg q \lor r), p \rightarrow r\}$ es consistente (con modelos I_4, I_6, I_8)
 - $\{(p \lor q) \land (\neg q \lor r), p \rightarrow r, \neg r\}$ es inconsistente

	p	q	r	$(p \lor q)$	$(\neg q \lor r)$	$(p \lor q) \land (\neg q \lor r)$	$p \rightarrow r$	$\neg r$
I_1	0	0	0	0	1	0	1	1
I_2	0	0	1	0	1	0	1	0
I_3	0	1	0	1	0	0	1	1
I_4	0	1	1	1	1	1	1	0
<i>I</i> ₅	1	0	0	1	1	1	0	1
I_6	1	0	1	1	1	1	1	0
I_7	1	1	0	1	0	0	0	1
<i>I</i> ₈	1	1	1	1	1	1	1	0

29 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Consecuencia lógica

- ▶ Def.: F es consecuencia de S si todos los modelos de S son modelos de F.
- ▶ Representación: $S \models F$.
- ▶ Ejemplos: $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r \ y \ \{p\} \not\models p \land q$

	p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	ļ)	q	$p \wedge q$
I_1	0	0	0	1	1	1		L	1	1
I_2	0	0	1	1	1	1	1	L	0	0
I_3	0	1	0	1	0	1	()	1	0
I_4	0	1	1	1	1	1	()	0	0
<i>I</i> ₅	1	0	0	0	1	0		,		
I_6	1	0	1	0	1	1				
I_7	1	1	0	1	0	0				
<i>I</i> ₈	1	1	1	1	1	1				

Semántica proposicional

Consistencia y consecuencia lógica

Semántica proposicional

Consistencia y consecuencia lógica

Propiedades de la consecuencia

- Propiedades básicas de la relación de consecuencia:
 - ▶ Reflexividad: $S \models S$.
 - ▶ Monotonía: Si $S_1 \models F$ y $S_1 \subseteq S_2$, entonces $S_2 \models F$.
 - ▶ Transitividad: Si $S \models F$ y $\{F\} \models G$, entonces $S \models G$.
- Relación entre consecuencia, validez, satisfacibilidad y consistencia:
 - Las siguientes condiciones son equivalentes:
 - 1. $\{F_1, ..., F_n\} \models G$
 - 2. $\models F_1 \wedge \cdots \wedge F_n \rightarrow G$
 - 3. $\neg (F_1 \land \cdots \land F_n \rightarrow G)$ es insatisfacible
 - 4. $\{F_1, \ldots, F_n, \neg G\}$ es inconsistente

31 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional

Semántica proposicional

Argumentaciones y problemas lógicos

Ejemplo de argumentación

- ▶ Problema de los animales: Se sabe que
 - 1. Los animales con pelo o que dan leche son mamíferos.
 - 2. Los mamíferos que tienen pezuñas o que rumian son ungulados.
 - 3. Los ungulados de cuello largo son jirafas.
 - 4. Los ungulados con rayas negras son cebras.

Se observa un animal que tiene pelos, pezuñas y rayas negras. Por consiguiente, se concluye que el animal es una cebra.

► Formalización:

```
{ tiene_pelos ∨ da_leche → es_mamífero,
    es_mamífero ∧ (tiene_pezuñas ∨ rumia) → es_ungulado,
    es_ungulado ∧ tiene_cuello_largo → es_jirafa,
    es_ungulado ∧ tiene_rayas_negras → es_cebra,
    tiene_pelos ∧ tiene_pezuñas ∧ tiene_rayas_negras}
    ⊨ es_cebra
```

Problemas lógicos: veraces y mentirosos

- ▶ Enunciado: En una isla hay dos tribus, la de los veraces (que siempre dicen la verdad) y la de los mentirosos (que siempre mienten). Un viajero se encuentra con tres isleños A, B y C y cada uno le dice una frase
 - 1. A dice "B y C son veraces syss C es veraz"
 - B dice "Si A y C son veraces, entonces B y C son veraces y A es mentiroso"
 - 3. C dice "B es mentiroso syss A o B es veraz"

Determinar a qué tribu pertenecen A, B y C.

- ▶ Simbolización: a: "A es veraz", b: "B es veraz", c: "C es veraz".
- ▶ Formalización:

$$F_1 = a \leftrightarrow (b \land c \leftrightarrow c), F_2 = b \leftrightarrow (a \land c \rightarrow b \land c \land \neg a)$$
 y $F_3 = c \leftrightarrow (\neg b \leftrightarrow a \lor b).$

- ▶ Modelos de $\{F_1, F_2, F_3\}$: Si I es modelo de $\{F_1, F_2, F_3\}$, entonces I(a) = 1, I(b) = 1, I(c) = 0.
- Conclusión: A y B son veraces y C es mentiroso.

33 / 34

PD Tema 1: Sintaxis y semántica de la lógica proposicional Bibliografía

Bibliografía

1. C. Badesa, I. Jané y R. Jansana *Elementos de lógica formal.* (Ariel, 2000)

Cap. 0 (Introducción), 6 (Sintaxis de la lógica proposicional), 7 (Semántica de la lógica proposicional), 9 (Consecuencia lógica) y 11 (Lógica proposicional y lenguaje natural).

2. M. Ben-Ari, *Mathematical logic for computer science (2nd ed.).* (Springer, 2001)

Cap. 1 (Introduction) y 2 (Propositional calculus: formulas, models, tableaux).

- 3. J.A. Díez *Iniciación a la Lógica*, (Ariel, 2002) Cap. 2 (El lenguaje de la lógica proposicional) y 3 (Semántica formal. Consecuencia lógica).
- 4. M. Huth y M. Ryan Logic in computer science: modelling and reasoning about systems. (Cambridge University Press, 2000)

 Cap. 1 (Propositional logic).