Ejercicio 1 [2.5 puntos] *Demostrar mediante deducción natural*
$$\vdash (\neg q \rightarrow \neg p) \rightarrow ((\neg p \rightarrow q) \rightarrow q)$$

Solución:

1	$\neg q \rightarrow \neg p$	supuesto
2	eg p o q	supuesto
3	$\neg q$	supuesto
4	$\neg p$	→e 1,3
5	q	→e 2,4
6	T	¬e 3,5
7	q	RAA3-6
8	$(\neg p \to q) \to q$	\rightarrow i $2-7$
9	$(p \to q) \to ((\neg p \to q) \to q)$	\rightarrow i 1 $-$ 8

Ejercicio 2 [2.5 puntos] *Demostrar o refutar las siguientes proposiciones:*

- 1. Si un conjunto de literales S es inconsistente, entonces existe un literal $L \in S$ tal que $\neg L \in S$.
- 2. Si un conjunto de fórmulas S es inconsistente, entonces existe una fórmula $F \in S$ tal que $\neg F \in S$.

Solución:

Solución del apartado 1: La proposición es cierta, ya que si no existe un literal $L \in S$ tal que $\neg L \in S$ el conjunto S es consistente y un modelo de S es la intepretación I tal que para todo p, I(p) = 1 syss $p \in S$.

Solución del apartado 2: La proposición es falsa. Por ejemplo, el conjunto $S = \{p, p \rightarrow q, p \rightarrow \neg q\}$

es inconsistente y no existe ninguna fórmula $F \in S$ tal que $\neg F \in S$.

Ejercicio 3 [2.5 puntos] Decidir, mediante tableros semánticos, si la fórmula

$$p \rightarrow q \vee s$$

es consecuencia lógica del conjunto de fórmulas

$$\{q \to s, \neg(\neg p \land q)\}$$

En el caso de que no lo sea, dar un contramodelo.

Solución:

La fórmula es consecuencia syss el conjunto

$$\{q \to s, \neg(\neg p \land q), \neg(p \to q \lor s)\}$$

tiene un tablero completo cerrado.

Como el tablero

1.
$$q \to s$$

2. $\neg(\neg p \land q)$
3. $\neg(p \to q \lor s)$
4. p (3)
5. $\neg(q \lor s)$ (3)
6. $\neg q$ (5)
7. $\neg s$ (5)
8. $\neg q$ (1) 9. s (1)
10. $\neg \neg p$ (2) 11. $\neg q$ (2)
12. p (10)
Abierta

tiene una rama abierta, la fórmula no es consecuencia. Además, un contramodelo es la interpretación I tal que I(p) = 1, I(q) = I(s) = 0.

Ejercicio 4 [2.5 puntos] *Decidir, mediante resolución, si el siguiente conjunto es consistente* $S = \{p \leftrightarrow \neg q, q \rightarrow p, r \rightarrow q, q \rightarrow r \land p, \neg (q \rightarrow r) \lor p\}$

En el caso de que lo sea, calcular sus modelos y decidir cuáles de las siguientes fórmulas son consecuencias de S:

$$\bullet \ (p \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land \neg r) \lor (p \rightarrow (r \leftrightarrow s)))$$

Solución:

En primer lugar, calculamos las formas clausales de cada fórmula del conjunto:

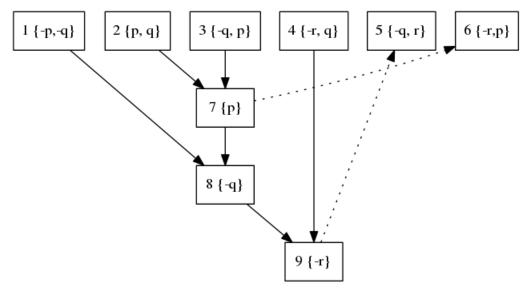
$$\begin{aligned} p &\leftrightarrow \neg q &\equiv (p \to \neg q) \land (\neg q \to p) \\ &\equiv (\neg p \lor \neg q) \land (\neg \neg q \lor p) \\ &\equiv (\neg p \lor \neg q) \land (q \lor p) \\ &\equiv \{\{\neg p, \neg q\}, \{p, q\}\} \\ \\ q &\to p &\equiv \neg q \lor p \\ &\equiv \{\{\neg q, p\}\} \\ \\ r &\to q &\equiv \neg r \lor q \\ &\equiv \{\{\neg r, q\}\} \\ \\ q &\to r \land p &\equiv \neg q \lor (r \land p) \\ &\equiv (\neg q \lor r) \land (\neg q \lor p)) \\ &\equiv \{\{\neg q, r\}, \{\neg q, p\}\} \end{aligned}$$

$$\neg(q \to r) \lor p \equiv \neg(\neg q \lor r) \lor p
\equiv (q \land \neg r) \lor p
\equiv (q \lor p) \land (\neg r \lor p)
\equiv \{\{q, p\}, \{\neg r, p\}\}$$

Aplicando resolución proposicional al conjunto de cláusulas

$$\{\{\neg p, \neg q\}, \{p,q\}, \{\neg q,p\}, \{\neg r,q\}, \{\neg q,r\}, \{\neg r,p\}\}\}$$

se obtiene el siguiente grafo:



Obsérvese que el grafo es saturado y que las cláusulas no subsumidas son $\{p\}, \{\neg q\}$ y $\{\neg r\}$. Por tanto, el conjunto de fórmulas es consistente. Un modelo del mismo es una interpretación I tal que I(p)=1 e I(q)=I(r)=0.

Para comprobar si son consecuencia de *S* basta calcular el valor de la fórmula en el *I* modelo de *S*. La evaluación de la primera fórmula es

$$I(p \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land \neg r) \lor (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg 0 \land \neg 0) \lor (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \lor (p \leftrightarrow (q \land s))) \leftrightarrow (1 \lor (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \leftrightarrow 1)$$

$$= 1$$

Por tanto, $p \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land \neg r) \lor (p \rightarrow (r \leftrightarrow s))$ es consecuencia lógica de S. La evaluación de la segunda fórmula es.

$$I(p \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land r) \land (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land 0) \land (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \lor (p \leftrightarrow (q \land s))) \leftrightarrow (0 \land (p \rightarrow (r \leftrightarrow s)))$$

$$= I(1 \leftrightarrow 0)$$

$$= 0$$

Por tanto, $p \lor (p \leftrightarrow (q \land s))) \leftrightarrow ((\neg q \land r) \land (p \rightarrow (r \leftrightarrow s))$ no es consecuencia lógica de S.