Ejercicio 1 *Demostrar o refutar razonadamente:*

- 1. Si F es consecuencia lógica de S_1 y de S_2 , también es consecuencia lógica de $S_1 \cap S_2$.
- 2. Si para todo conjunto S se verifica que $S \models F \Leftrightarrow S \models G$, entonces $F \equiv G$.

Solución:

Apartado 1. Es falso ya que si $S_1 = \{p\}$, $S_2 = \{q\}$ y $F = p \lor q$, entonces $S_1 \cap S_2 = \emptyset$, F es consecuencia lógica de S_1 y de S_2 , pero lo es de $S_1 \cap S_2$.

Apartado 2. Es cierto, ya que tomando como S el conjunto $\{F\}$ se tiene que $\{F\} \models F \Leftrightarrow \{F\} \models G$ y, puesto que $\{F\} \models F$ se tiene que $\{F\} \models G$ y, por tanto, $F \models G$.

Análogamente, tomando como S el conjunto $\{G\}$, se tiene $G \models F$.

Por consiguiente, $F \equiv G$.

Ejercicio 2 Demostrar mediante deducción natural

1.
$$\vdash (p \rightarrow q) \rightarrow ((\neg p \rightarrow q) \rightarrow q)$$

2.
$$\{\forall x \neg R(x,x), \forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))\} \vdash \forall x \forall y (R(x,y) \rightarrow \neg R(y,x))$$

Solución:

Apartado 1.

1	$p \rightarrow q$	Supuesto
2	$\neg p \rightarrow q$	Supuesto
3	$p \lor \neg p$	LEM
4	p	Supuesto
5	q	→e 1,4
6	$\neg p$	Supuesto
7	q	→e 2,6
8	q	$\vee e 3, 4-5, 6-7$
9	$(\neg p \to q) \to q$	\rightarrow i $2-8$
10	$(p \to q) \to ((\neg p \to q) \to q)$	\rightarrow i 1 – 9

Apartado 2.

1	$\forall x \neg R(x, x)$	Premisa
2	$\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))$	Premisa
3	a	Supuesto
4	b	Supuesto
5	R(a,b)	Supuesto
6	R(b,a)	Supuesto
7	$\neg R(a,a)$	∀e 1,3
8	$\forall y \forall z (R(a,y) \land R(y,z) \rightarrow R(a,z))$	∀e 2,3
9	$\forall z (R(a,b) \land R(b,z) \rightarrow R(a,z))$	∀e 8,4
10	$R(a,b) \wedge R(b,a) \rightarrow R(a,a)$	∀e 9,3
	$R(a,b) \wedge R(b,a)$	∧i 5,6
12	R(a,a)	→e 10,11
13		¬e 7,12
14	$\neg R(b,a)$	¬i 6 − 13
15	$R(a,b) \rightarrow \neg R(b,a)$	\rightarrow i 5 $-$ 14
16	$\forall y (R(a,y) \to \neg R(y,a))$	∀i 4 – 15
17	$\forall x \forall y (R(x,y) \to \neg R(y,x))$	∀i 3 – 16

Ejercicio 3 Decidir, por tableros semánticos, si las siguientes fórmulas son válidas:

1.
$$p \to (q \lor r) \land (\neg q \land (p \lor r)) \to (r \to q)$$

2.
$$\neg \forall x \exists y \forall z (\neg P(x,z) \land P(z,y))$$

Solución:

Apartado 1.

1.
$$\neg (p \to ((q \lor r) \land (\neg q \land (p \lor r)) \to (r \to q)))$$

2. p (1)
3. $\neg ((q \lor r) \land (\neg q \land (p \lor r)) \to (r \to q))$ (1)
4. $(q \lor r) \land (\neg q \land (p \lor r))$ (3)
5. $\neg (r \to q)$ (3)
6. $q \lor r$ (4)
7. $\neg q \land (p \lor r)$ (4)
8. r (5)
9. $\neg q$ (5)
10. $\neg q$ (7)
11. $p \lor r$ (7)
12. q (6) (7)
13. r (6) (7)
Cerrada 12,9
14. p (11) 15. r (11)
Abierta $\{p, \neg q, r\}$ Abierta $\{p, \neg q, r\}$

Al tener ramas abiertas, la fórmula no es válida y un contramodelo es la interpretación I tal que I(p) = 1, I(q) = 0 e I(r) = 1.

Apartado 2.

1.
$$\neg \neg \forall x \exists y \forall z (\neg P(x,z) \land P(z,y))$$

2. $\forall x \exists y \forall z (\neg P(x,z) \land P(z,y))$ (1)
3. $\exists y \forall z (\neg P(a,z) \land P(z,y))$ (2)
4. $\forall z (\neg P(a,z) \land P(z,b))$ (3)
5. $\neg P(a,b) \land P(b,b)$ (4)
6. $\neg P(a,b)$ (5)
7. $P(b,b)$ (5)
8. $\neg P(a,a) \land P(a,b)$ (4)
9. $\neg P(a,a)$ (8)
10. $P(a,b)$ (8)
Cerrado 10,6

Por tanto, la fórmula es válida.

Ejercicio 4 Decidir, usando resolución, si las siguientes afirmaciones son correctas. Si alguna no es cierta, proporcionar una interpretación que lo justifique.

1.
$$\{\exists x P(x), \forall x \forall y (\neg P(x) \lor Q(y))\} \models \forall x Q(x)$$

2.
$$\{\exists x P(x), \exists x \forall y (\neg P(x) \lor Q(y))\} \models \exists x Q(x)$$

Solución:

Apartado 1. En primer lugar se calculan las cláusulas:

■ Fórmula 1:

$$\exists x P(a)
\approx P(a)
\equiv \{\{P(a)\}\}$$

■ Fórmula 2:

$$\forall x \forall y (\neg P(x) \lor Q(y))$$

$$\equiv \neg P(x) \lor Q(y)$$

$$\equiv \{\{\neg P(x), Q(y)\}\}$$

■ Fórmula 3:

$$\neg \forall x Q(x)
\equiv \exists x \neg Q(x)
\approx \neg Q(b)
\equiv \{\{\neg Q(b)\}\}$$

La resolución es

1
$$\{P(a)\}$$
 Premisa

 2 $\{\neg P(x), Q(y)\}$
 Premisa

 3 $\{\neg Q(b)\}$
 Premisa

 4 $\{Q(y)\}$
 Res. 1,2 $[x/a]$

 4 \square
 Res. 3,4 $[y/b]$

Por tanto, la fórmula se verifica la relación de consecuencia lógica.

Apartado 2. En primer lugar se calculan las cláusulas:

■ Fórmula 1:

$$\exists x P(a) \\ \approx P(a) \\ \equiv \{\{P(a)\}\}\$$

■ Fórmula 2:

$$\exists x \forall y (\neg P(x) \lor Q(y))$$

$$\approx \forall y (\neg P(b) \lor Q(y))$$

$$\equiv \neg P(b) \lor Q(y)$$

$$\equiv \{\{\neg P(b), Q(y)\}\}$$

■ Fórmula 3:

$$\neg \exists x Q(x)$$

$$\approx \forall x \neg Q(x)$$

$$\equiv \neg Q(x)$$

$$\equiv \{\{\neg Q(x)\}\}$$

La resolución es

```
 \begin{array}{lll} 1 & \{P(a)\} & \text{Premisa} \\ 2 & \{\neg P(b), Q(y)\} & \text{Premisa} \\ 3 & \{\neg Q(x)\} & \text{Premisa} \\ 4 & \{\neg P(b)\} & \text{Res. } 1,2 \left[x/y\right] \end{array}
```

Por tanto, la fórmula no se verifica la relación de consecuencia lógica y tiene un contramodelo de Herbrand con universo $U = \{a,b\}$, $I(P) = \{a\}$ e $I(Q) = \emptyset$.