
Decidability of Modal System S5: A Recursive Algorithm.

J.A. Alonso, E. Briales

Facultad de Matemáticas. Universidad de Sevilla

Abstract.- The decidability method, given in [6], for modal system S5 uses the
reduced modal normal form. In this paper we present a recursive algorithm for computing
the reduced modal normal form and use this algorithm as a subroutine for an algorithm
deciding validity of formulas of system S5.

AMS subject classifications: 03B45, 68G15.
ACM subject classifications: F.4.1, I.2.3

0.- Introduction

Modal logics ([6]) have found a variety of uses in Artificial Intelligence and in
Computer Science (cfr. [8], [2], [9]). For such applications, efficient automated proof
systems are very desirable. There are some decision procedures for modal logics (e.g. [1],
[3], [4], [5], [7]). In this paper, we present a recursive algorithm for deciding validity of
formulas of system S5.

1.- Notations and terminology

We shall denote by X1, X2,.... the propositional variables, and for primitive con-
nectives, we shall use the symbols ¬ (negation), ∨ (disjunction), (necessarity).

Definition 1.1. We define the set of formulas P inductively as follows:
(a) The propositional variables are formulas.
(b) If P is a formula, then ¬P and P are formulas.
(c) If P and Q are formulas, then P ∨Q is a formula.

We shall use capital letters P , Q, R,... for metavariables about the formulas.

Definition 1.2. We define new connectives writting:

P ∧Q = ¬(¬P ∨ ¬Q) (P and Q)
P → Q = ¬P ∨Q (if P , then Q)
P ↔ Q = (P → Q) ∧ (Q → P) (P iff Q)
♦P = ¬(¬P) (P is possible)

Definition 1.3. The set of axioms in S5 are:
AX1: P ∨ P → P
AX2: P → P ∨Q
AX3: P ∨Q → Q ∨ P
AX4: (Q → R) → (P ∨Q → P ∨R)
AX5: P → P
AX6: (P → Q) → (P → Q)
AX7: ♦P → ♦P

Definition 1.4. The theorems in S5 are defined inductively as follows:
(a) The axioms are theorems.
(b) If P → Q and P are theorems, then Q is a theorem (Modus-Ponens Rule).
(c) If P is a theorem, P is a theorem (Necessarity Rule).

If P is a theorem in S5, we put ` P .

Theorem 1.5. If P is a tautology in classical propositional calculus, then ` P .

Corollary 1.6. The following formulas are theorems in S5:
(1) ¬(¬Q) ↔ Q
(2) ¬(Q ∧R) ↔ ¬Q ∨ ¬R
(3) ¬(Q ∨R) ↔ ¬Q ∧ ¬R
(4) (Q ∧R) ∨ S ↔ (Q ∨ S) ∧ (R ∨ S)
(5) Q ∨ (R ∧ S) ↔ (Q ∨R) ∧ (Q ∨ S)
(6) (Q ∨R) ∧ S ↔ (Q ∧ S) ∨ (R ∧ S)
(7) Q ∧ (R ∨ S) ↔ (Q ∧R) ∨ (Q ∧ S)

Theorem 1.7. If ` P1, . . . ,` Pm and Q is a tautological consequence of P1, . . . , Pm, then
` Q.

Theorem 1.8. The following formulas are theorems in S5:
(1) ¬(♦P) ↔ (¬P)
(2) ¬(P) ↔ ♦(¬P)
(3) (P) ↔ P
(4) (♦P) ↔ ♦P
(5) (P ∧Q) ↔ (P) ∧ (Q)
(6) ((P) ∨Q) ↔ (P) ∨ (Q)
(7) ((♦P) ∨Q) ↔ (♦P) ∨ (Q)
(8) ♦(P) ↔ P
(9) ♦(♦P) ↔ ♦P

(10) ♦(P ∨Q) ↔ (♦P) ∨ (♦Q)
(11) ♦((P) ∧Q) ↔ ♦(P) ∧ (♦Q)
(12) ♦(P ∨Q) ↔ (♦P) ∨ (♦Q)
(13) ♦((P) ∧Q) ↔ ♦(P) ∧ (♦Q)
(14) ♦((♦P) ∧Q) ↔ ♦(♦P) ∧ (♦Q)
(15) (P ∨ ♦Q) → P ∨ ♦Q
(16) P → (♦P)

The proofs of these theorems are in [6].

2

2.-Extended normal forms

Definition 2.1.
(a) A literal is either a propositional variable Xi, or the negation ¬Xi of an propo-

sitional variable.
(b) A formula P is an extended clause if P is a disjunction where each disjunct is

either a literal, or Q, or ♦Q.
(c) A formula P is in extended conjunctive normal form (E.C.N.F.) if it is of

the form:
C1 ∧ · · · ∧ Cm,

where m ≥ 1 and each Ci is an extended clause.
(d) A formula P is an extended cube if P is a conjunction where each conjunct is

either a literal, or Q, or ♦Q.
(c) A formula P is in extended disjunctive normal form (E.D.N.F.) if it is of

the form:
C1 ∨ · · · ∨ Cm,

where m ≥ 1 and each Ci is an extended cube.

Definition 2.2. Let f1 : P → P be the map defined inductively as follows:

f1(P) =





P, if P is a propositional variable;
¬f1(Q) ∨ f1(R), if P is Q → R;
f1(Q → R) ∧ f1(R → Q), if P is Q ↔ R;
kf1(Q), if P is kQ, where k is ¬, or ♦;
f1(Q)kf1(R), if P is QkR, where k is ∨ or ∧.

Let us write P1 = f1(P).

Theorem 2.3. Let P be an element of P. Then:
(a) ` P ↔ f1(P).
(b) In f1(P) the connectives →, ↔ do not appear.

Proof: Is a consequence of 1.2.

Definition 2.4. Let f2 : P1 → P be the map defined inductively as follows:

f2(P) =





P, if P is a literal;
f2(Q), if P is ¬(¬Q);
f2(¬Q) ∨ f2(¬R), if P is ¬(Q ∧R);
f2(¬Q) ∧ f2(¬R), if P is ¬(Q ∨R);

f2(¬Q), if P is ¬(♦Q);
♦f2(¬Q), if P is ¬(Q);
kf2(Q), if P is kQ, where k is or ♦;
f2(Q)kf2(R), if P is QkR, where k is ∧ or ∨.

3

Let us put P2 = f2(P1).

Theorem 2.5. Let P be an element of P1. Then:
(a) ` P ↔ f2(P).
(b) In f2(P) the connectives →, ↔ do not appear.
(c) In f2(P), ¬ appears only immediately before propositional variables.

Proof: Is a consequence of 1.6.(1) – (3) and 1.8.(1) – (2).

Definition 2.6. Let f3 : P2 → P be the map defined as follows:
(1) If P is in ECNF, then f3(P) = P .
(2) If P is not in ECNF, then:

(2.1) if P is Q ∧R, then f3(P) = f3(Q) ∧ f3(R);
(2.2) if P is (Q ∧R) ∨ S, then f3(P) = f3(Q ∨ S) ∧ f3(R ∨ S);
(2.3) if P is Q ∨ (R ∧ S), then f3(P) = f3(Q ∨R) ∧ f3(Q ∨ S);
(2.4) Otherwise, P is Q ∨R, then f3(P) = f3(Q) ∨ f3(R).

Theorem 2.7. Let P be an element of P2. Then:
(a) ` P ↔ f3(P).
(b) f3(P) is in ECNF.

Proof: Is a consequence of 1.6.(4) – (5).

Corollary 2.8. Let P be a formula of P. Then
(a) f3(f2(f1(P)))) is in ECNF.
(b) ` P ↔ f3(f2(f1(P)))).

Definition 2.9. Let f4 : P2 → P be the map defined inductively as follows:
(1) If P is in EDNF, then f4(P) = P .
(2) If P is not in EDNF, then:

(2.1) if P is Q ∨R, then f4(P) = f4(Q) ∨ f4(R);
(2.2) if P is (Q ∨R) ∧ S, then f4(P) = f4(Q ∧ S) ∨ f4(R ∧ S);
(2.3) if P is Q ∧ (R ∨ S), then f4(P) = f4(Q ∧R) ∨ f4(Q ∧ S);
(2.4) Otherwise, P is Q ∧R, then f4(P) = f4(Q) ∧ f4(R).

Theorem 2.10. Let P be an element of P2. Then:
(a) ` P ↔ f4(P).
(b) f4(P) is in EDNF.

Proof: Is a consequence of 1.6.(6) – (7).

Corollary 2.11. Let P be a formula of P. Then
(a) f4(f2(f1(P))) is in EDNF.
(b) ` P ↔ f4(f2(f1(P)))

3.- Normal forms

4

Definition 3.1. We define the degree of a formula P , deg (P), inductively as follows:

deg (P) =





0, if P is a propositional variable;
deg (Q), if P is ¬Q;
1 + deg (Q), if P is kQ, where k is or ♦;
max(deg (Q),deg (R)), if P is QkR, where k is ∨, ∧, → or ↔.

Definition 3.2.
(a) A formula P is a clause if P is a disjunction where each disjunct is either a literal,

or Q, or ♦Q, where deg (Q) = 0.
(b) A clause P is basic if deg (P) = 0.
(c) A formula P is in conjuctive normal form (C.N.F.) if P is a conjunction of

clauses.

Definition 3.3. Let f5 : P2 → P be the map defined inductively as follows:
(1) If deg (P) ≤ 1, then f5(P) = P .
(2) If deg (P) > 1, then:

(2.1) if P is Q ∧R, then f5(Q) ∧ f5(R);
(2.2) if P is Q ∨R, then f5(P) = f5(Q) ∨ f5(R);
(2.3) if P is (Q ∧R), then f5(P) = f5(Q) ∧ f5(R);
(2.4) if P is (Q ∨R), then:

(2.4.1) if Q ∨R is in ECNF, then P is

(P1 ∧ · · · ∧ Pn)

and
f5(P) = f5(Pi1 ∧ · · · ∧ Pik

) ∧ (Pik+1 ∧ · · · ∧ Pin)

where Pi1 , . . . , Pik
(1 ≤ i1 < · · · < ik ≤ n) are the Pi that begins with

or ♦, and Pik+1 , . . . , Pin (1 ≤ ik+1 < ... < in ≤ n) are the other ones;
(2.4.2) if Q ∨R is not in EDNF, then f5(P) = f5(f3(P));

(2.5) if P is (kQ), where k is or ♦, then f5(P) = f5(kQ);
(2.6) if P is ♦(Q ∨R), then f5(P) = f5(♦Q) ∨ f5(♦R);
(2.7) if P is ♦(Q ∧R), then:

(2.7.1) if Q ∧R is in EDNF, then P is

♦(P1 ∨ · · · ∨ Pm)

and
f5(P) = f5(Pi1 ∨ · · · ∨ Pik

) ∨ Pik+1 ∨ · · · ∨ Pin

where Pi1 , . . . , Pik
(1 ≤ i1 < . . . < ik ≤ n) are the Pi that begins with

or ♦, and Pik+1 , . . . , Pin (1 ≤ ik+1 < · · · < in ≤ n) are the other ones;
(2.7.2) if Q ∧R is not in ECNF, then f5(P) = f5(♦f4(P));

(2.8) if P is ♦(kQ), where k is ♦ or , then f5(P) = f5(kQ);

Theorem 3.4. Let P be an element of P2, then
(a) ` P ↔ f5(P).
(b) deg (f5(P)) ≤ 1.

Proof: Is a consequence of 1.8.(3) – (14).

5

Theorem 3.5. Let P be a formula of P2. Then
(a) deg (f5(f2(f1(P)))) ≤ 1.
(b) ` P ↔ f5(f2(f1(P))).

Theorem 3.6. Let P be a formula of P. Then
(a) f3(f5(f2(f1(P)))) is in CNF.
(b) ` P ↔ f3(f5(f2(f1(P)))).

4.- The vadility in S5

Definition 4.1.
(a) A model M of S5 is a pair (M, V), where M is a non-empty set (of ‘possible

worlds’) and
V : {X1, X2, . . . } ×M → {0, 1}.

(b) Let (M, V) a model of S5. We define the map V : P×M → {0, 1} inductively as
follows:

(b.1) V (Xi,m) = V (Xi, m).
(b.2) V (¬P, m) = 1 iff V (P, m) = 0.
(b.3) V (P ∨Q,m) = 0, iff V (P, m) = V (Q,m) = 0.
(b.4) V (P,m) = 1 iff V (P,m′) = 1, for every m′ ∈ M .

Lemma 4.2. Let (M, V) be a model of S5, and let P , Q be elements of P, m ∈ M . Then:
(a) V (P ∧Q,m) = 1, iff V (P,m) = V (Q,m) = 1.
(b) V (P → Q,m) = 0, iff V (P, m) = 1 and V (Q,m) = 0.
(c) V (P ↔ Q,m) = 1, iff V (P, m) = V (Q,m).
(d) V (♦P, m) = 1, iff there exists an element m′ ∈ M such that V (P, m′) = 1.

Definition 4.3.
(a) A formula P is valid in a model M = (M, V) of S5, M |= P , if V (P, m) = 1, for

every m ∈ M .
(b) P is valid, |= P , if P is valid in any model M of S5.

Example 4.4. The formula X → X is not valid: let us consider M = {m1,m2} and
the map V such that V (X, m1) = 1 and V (X, m2) = 0. Then V (X,m1) = 0 and
V (X → X, m1) = 0, so X → X is not valid.

Theorem 4.5. ` P ⇐⇒ |= P

Proof: In [6].

5.- Description of the algorithm

Lemma 5.1. Let P1, . . . , Pk be elements of P. The following conditions are equivalent:

6

(a) ` P1 ∧ · · · ∧ Pk.

(b) ` P1, . . . ,` Pk.

Proof: Is a consequence of 4.5 and 4.3.

Lemma 5.2. Let C be a clause. Then there exist a clause C ′ such that:
(a) C ′ has the following form:

P ∨ Q1 ∨ · · · ∨ Qn ∨ ♦R,

where deg (P) = deg (Q1) = · · · = deg (Qn) = deg (R) = 0.

(b) ` C ↔ C ′.

Proof: It is clear using that the disjunction is associative and commutative, and 1.8(10).

Theorem 5.3. Let C be the formula

P ∨ Q1 ∨ · · · ∨ Qk ∨ ♦R

where deg (P) = deg (Q1) = · · · = deg (Qn) = deg (R) = 0. The following conditions are
equivalent:

(a) C is a theorem in S5.
(b) Some of the formulas P ∨ R, Q1 ∨ R, . . . , Qk ∨ R is a theorem in the classical

propositional calculus.

Proof:
(a) =⇒ (b) Let us assume that the formulas P ∨ R,Q1 ∨ R, . . . , Qk ∨ R are not

theorems in the propositional calculus. Then, there exists valuations v0, v1, . . . , vk such
that

v0(P ∨R) = v1(Q1 ∨R) = · · · = vk(Qk ∨R) = 0.

Let us consider the following model (M, V):
M = {m0,m1, . . . , mk},
V : P×M → {0, 1} is the map defined by:

V (Xi,mj) = vj(Xi), 1 ≤ i, 0 ≤ j ≤ k.

It is clear that V (C,m0) = 0, so C is not valid, and, by 4.6, C is not a theorem of S5.
(b) =⇒ (a) Let us assume that P ∨ R is a theorem in the propositional calculus,

then
(i) ` P ∨R [1.5]
(ii) ` R → (♦R) [1.8.(16)]
(iii) ` P ∨ (♦R) [1.7, (i) and (ii)]
(iv) ` P ∨ (Q1) ∨ · · · ∨ (Qk) ∨ (♦R) [1.7 and (iii)]

7

Let us assume, now, that there exists an i, 1 ≤ 1 ≤ k, such that Qi ∨ R is a theorem in
the propositional calculus, then

(i) ` Qi ∨R [1.5]
(ii) ` R → (♦R) [1.8.(15)]
(iii) ` Qi ∨ (♦R) [1.7, (i) and (ii)]
(iv) ` (Qi ∨ (♦R)) [necessarity rule and (iii)]
(v) ` (Qi) ∨ (♦R) [modus ponens, 1.8.(15) and (iv)]
(vi) ` P ∨ (Q1) ∨ · · · ∨ (Qk) ∨ (♦R) [1.7 and (v)]

6.- Implementation and examples

In this section we give an algorithm for S5. Its correctness is an immediate conse-
quence of the preceedings results. It is directly implementable in Lisp.

Algorithm 6.1. (proof)

Input: A formula P of S5.

Output: “yes”, if ` P ; “not”, otherwise.

Procedure: proof (P)

begin
Q := f3(f5(f2(f1(P))))
C1, . . . , Cn are clauses such that Q = C1 ∧ · · · ∧ Cn

i := 1
while i ≤ n do

begin
if proof-clause(Ci) = “yes” then i := i + 1

else return “not”
end

return “yes”
end

Algorithm 6.2. (proof-clause)

Input: A clause C = P1 ∨ · · · ∨ Pn.

Output: “yes”, if ` C; “not”, otherwise.

8

Procedure: proof-clause(C)

begin
{P1, . . . , Ps} := {P ∈ {P1, . . . , Pn} : P is a literal}
P := P1 ∨ · · · ∨ Ps

{R1, . . . , Ru} := {R : ♦R ∈ {P1, . . . , Pn}}
R := R1 ∨ · · · ∨Ru

if tautology(P ∨R) = “yes” then return “yes”
else {Q1, . . . , Qt} := {Q : Q ∈ {P1, . . . , Pn}}

i := 1
while i ≤ t do

begin
if tautology(R ∨Qi) = “yes” then return “yes”

else i := i + 1
end

return “not”
end

Algorithm 6.3. (tautology)
Input: A formula P of P2 with degree 0.
Output: “yes”, if ` P ; “not”, otherwise.
Procedure: tautology(P)

begin
Q := f3(P)
C1, . . . , Cn are basic clauses such that Q := C1 ∧ · · · ∧ Cn

i := 1
while i ≤ n do

begin
if basic-proof-clause(Ci) = “yes” then i := i + 1

else return “not”
end

return “yes”
end

Algorithm 6.4. (basic-proof-clause)
Input: A basic clause C = P1 ∨ · · · ∨ Pn.
Output: “yes”, if ` C; “not”, otherwise.
Procedure: basic-proof-clause(C)

begin
LP := {Q ∈ {P1, . . . , Pn} : Q is a propositional variable}
LN := {R : ¬R ∈ {P1, . . . , Pn}}
if LP ∩ LN = ∅ then return “not”

else return “yes”
end

9

Example 6.5. We are going to apply the preceedings algorithms to the following formula:

(p → (q ∧ ♦r)) → ¬♦(p ∧ ¬q ∧ ¬♦r)

Using 6.1 we compute

proof ((p → (q ∧ ♦r)) → ¬♦(p ∧ ¬q ∧ ¬♦r))

f3(f5(f2(f1((p → (q ∧ ♦r)) → ¬♦(p ∧ ¬q ∧ ¬♦r))))) =
= f3(f5(f2(¬ (¬p ∨ (q ∧ ♦r)) ∨ ¬♦(p ∧ ¬q ∧ ¬♦r)))) =
= f3(f5(♦♦(p ∧ (¬q ∨ ¬r)) ∨ (¬p ∨ q ∨ ♦r))) =
= f3(f5(♦♦(p ∧ (¬q ∨ ¬r))) ∨ f5((¬p ∨ q ∨ ♦r))) =

[by 3.3.(2.1)]
= f3(f5(♦(p ∧ (¬q ∨ ¬r))) ∨ f5(♦r) ∨ (¬p ∨ q)) =

[by 3.3.(2.8 y 2.4.1)]
= f3(f5(♦(f4(p ∧ (¬q ∨ ¬r))) ∨ ♦r ∨ (¬p ∨ q)) =

[by 3.3.(2.7.2 y 1)]
= f3(f5(♦((p ∧ ¬q) ∨ (p ∧ ¬r))) ∨ ♦r ∨ (¬p ∨ q)) =
= f3(f5(♦(p ∧ ¬q)) ∨ f5(♦(p ∧ ¬r)) ∨ ♦r ∨ (¬p ∨ q)) =

[by 3.3.(2.6)]
= f3(♦(p ∧ ¬q) ∨ (♦p ∧ f5(¬r)) ∨ ♦r ∨ (¬p ∨ q)) =

[by 3.3.(1 y 2.7.1)]
= f3(♦(p ∧ ¬q) ∨ (♦p ∧ ¬r) ∨ ♦r ∨ (¬p ∨ q)) =

[by 3.3.(1)]
= (♦(p ∧ ¬q) ∨ ♦p ∨ ♦r ∨ (¬p ∨ q)) ∧ (♦(p ∧ ¬q) ∨ ¬r ∨ ♦r ∨ (¬p ∨ q))

Using 6.2 we compute

proof-clause(♦(p ∧ ¬q) ∨ ♦p ∨ ♦r ∨ (¬p ∨ q))

{R1, R2, R3} := {p ∧ ¬q, p, r}
R := (p ∧ ¬q) ∨ p ∨ r
tautology((p ∧ ¬q) ∨ p ∨ r) = “not”
{Q1} = {¬p ∨ q}
tautology((p ∧ ¬q) ∨ p ∨ r ∨ ¬p ∨ q) = “yes”

Then,

proof-clause(♦(p ∧ ¬q) ∨ ♦p ∨ ♦r ∨ (¬p ∨ q)) = “yes”

Using 6.2 we compute

proof-clause(♦(p ∧ ¬q) ∨ ¬r ∨ ♦r ∨ (¬p ∨ q))

{R1, R2} := {p ∧ ¬q, r}
R := (p ∧ ¬q) ∨ r
tautology((p ∧ ¬q) ∨ r) = “not”

10

{Q1, Q2} := {¬r,¬p ∨ q}
tautology((p ∧ ¬q) ∨ r ∨ ¬r) = “yes”
tautology((p ∧ ¬q) ∨ r ∨ ¬p ∨ q) = “yes”
Then,

proof-clause(♦(p ∧ ¬q) ∨ ¬r ∨ ♦r ∨ (¬p ∨ q)) = “yes”

Therefore,

proof ((p → (q ∧ ♦r)) → ¬♦(p ∧ ¬q ∧ ¬♦r)) = “yes”

REFERENCES
[1] Abadi,M. & Manna, Z. Modal theorem proving, 8th International Conference on

Automated Deduction, J. H. Siekmann, ed., Lect. Notes in Comp. Science 230,
Berlin, Springer–Verlag, pp 172–186, 1986.

[2] Audereau,E. & Fariñas,L. & Enjalbert,P. Théorie de la programmation et logique
temporelle, Technique et Science Informatiques 6 (1987), pp 527–540.

[3] Cavalli,A. & Fariñas,L. A decision method for linear temporal logic, 7th Interna-
tional Conference on Automated Deduction, R. E. Shostak, ed., Lect. Notes in
Comp. Science 170, Berlin, Springer–Verlag, pp 113–127, 1984.

[4] Enjalbert,P. & Fariñas,L. Modal resolution in clausal form, Theoretical Computer
Science 65 (1989), pp 1–33.

[5] Fariñas,L. & Herzig,A. Linear modal deductions, 9th International Conference on
Automated Deduction, E. Lusk and R. Overbeek, eds., Lect. Notes in Comp.
Science 310, Berlin, Springer–Verlag, pp 487–499, 1988.

[6] Hughes, G. & Cresswell, M. An introduction to Modal Logic. Methuen and Co.,
1968.

[7] Ohlbach,H. A resolution calculus for modal logics, 9th International Conference
on Automated Deduction, E. Lusk and R. Overbeek, eds., Lect. Notes in Comp.
Science 310, Berlin, Springer–Verlag, pp 500–516, 1988.

[8] Thayse, A., & als. Approche logique de l’intelligence artificielle (Vol. 2: De la
logique modale à la logique des bases de données. Dunop, Paris, 1989.

[9] Turner, R. Logics for Artificial Intelligence. Ellis Horwood Limited, Chichester,
1984.

11

