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Abstract.- The decidability method, given in [6], for modal system S5 uses the
reduced modal normal form. In this paper we present a recursive algorithm for computing
the reduced modal normal form and use this algorithm as a subroutine for an algorithm
deciding validity of formulas of system S5.
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0.- Introduction

Modal logics ([6]) have found a variety of uses in Artificial Intelligence and in
Computer Science (cfr. [8], [2], [9]). For such applications, efficient automated proof
systems are very desirable. There are some decision procedures for modal logics (e.g. [1],
3], [4], [5], [7] ). In this paper, we present a recursive algorithm for deciding validity of
formulas of system S5.

1.- Notations and terminology

We shall denote by X7, Xs,.... the propositional variables, and for primitive con-
nectives, we shall use the symbols — (negation), V (disjunction), [] (necessarity).

Definition 1.1. We define the set of formulas P inductively as follows:
(a) The propositional variables are formulas.
(b) If P is a formula, then =P and []P are formulas.
(c) If P and @ are formulas, then PV @ is a formula.
We shall use capital letters P, ), R,... for metavariables about the formulas.

Definition 1.2. We define new connectives writting:

PAQ =~(=PV-Q) (
P—-Q=-PVvQ (if P, then Q)
P>Q=(P—-Q) N(Q—P) (P iff Q)

OGP =-(-P) (P is possible)



Definition 1.3. The set of axioms in S5 are:
AX1: PVP— P
AX2: P > PVQ
AX3: PVQ —QVP
AX4: (@ - R)— (PVQ — PVR)
AX5:[JP — P
AX6: [LI(P - Q) —» (P —-1Q)
AXT7: OGP - [OP

Definition 1.4. The theorems in S5 are defined inductively as follows:
(a) The axioms are theorems.
(b) If P — @ and P are theorems, then @ is a theorem (Modus-Ponens Rule).
(c) If P is a theorem, [JP is a theorem (Necessarity Rule).

If P is a theorem in S5, we put + P.

Theorem 1.5. If P is a tautology in classical propositional calculus, then - P.

Corollary 1.6. The following formulas are theorems in S5:
) (@) < Q
(QAR) < -QV-R
-(QVR) <~ -QAN-R
(QAR)VS < (QVS)AN(RVS)
QV(RANS) <= (QVR)AN(QVS)
(QVRIANS < (QANS)V(RAS)
() QAN (RVS) = (QAR)V(QAS)

Theorem 1.7. If - P;,...,F P,, and @ is a tautological consequence of Pi,..., P, then
FQ.
Theorem 1.8. The following formulas are theorems in S5:
() ~(0P) ~ (P
~([P) < O(~P)
(OP) P
(OP) = &P
(PAQ) = OP)ALIQ)
(
(

(1

(2)
(3)
(4)
(5)
(6)

LprP)ve) ~00PrP)v Q)
(OP)VQ) <PV (LIQ)

OP) < OP

PV Q)< (OP)V(0OQ)
P)AQ) < GEP) A (OQ)
PVQ) < (OP)V(QQ)
EOP)AQ) < G([EOP) A QQ)
(OP)AQ) « G(OP) A (OQ)
(PVOQ)—LIPVOQ

P — (OP)

DoooooooDDDDD

The proofs of these theorems are in [6].
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2.-Extended normal forms

Definition 2.1.

(a) A literal is either a propositional variable X;, or the negation —X; of an propo-
sitional variable.

(b) A formula P is an extended clause if P is a disjunction where each disjunct is
either a literal, or [J1Q, or Q.

(¢) A formula P is in extended conjunctive normal form (E.C.N.F.) if it is of
the form:

Ci N NChp,

where m > 1 and each C} is an extended clause.
(d) A formula P is an extended cube if P is a conjunction where each conjunct is
either a literal, or [J1Q, or Q.
(c) A formula P is in extended disjunctive normal form (E.D.N.F.) if it is of
the form:
CiV--- VO,

where m > 1 and each C} is an extended cube.

Definition 2.2. Let f; : P — P be the map defined inductively as follows:

( P, if P is a propositional variable;
—f1(Q)V fi(R), if Pis Q — R;
filP)=<X fi(Q@ = R)A fi(R— Q), if PisQ < R;
kfi1(Q), if Pis k@, where k is —,[] or {;
f1(@Q)kf1(R), if P is QkR, where k is V or A.

Let us write Py = f1(P).

Theorem 2.3. Let P be an element of P. Then:
(a) F P < fi(P).
(b) In f;(P) the connectives —, < do not appear.

Proof: 1Is a consequence of 1.2. i
Definition 2.4. Let fo : P; — P be the map defined inductively as follows:
(P, if P is a literal;
f2(Q), if Pis =(=Q);
fa(=Q) V fa(=R), if Pis ~(Q A R);
f2(2Q) A fo(mR), if Pis =(Q V R);

S Ea X)) if P is ~(0Q);
O f2(—Q), if Pis =(JQ);

kf2(Q), if P is kQ, where k is [] or ;

[ f2(Q)kf2(R), if P is QkR, where k is A or V.
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Let us put P2 = fg(Pl)

Theorem 2.5. Let P be an element of P;. Then:
(a) - P o fo(P).
(b) In fo(P) the connectives —, < do not appear.
(c) In fo(P), - appears only immediately before propositional variables.

Proof: Is a consequence of 1.6.(1) — (3) and 1.8.(1) — (2). 1

Definition 2.6. Let f3: Py — P be the map defined as follows:
(1) If P is in ECNF, then f3(P) = P.
(2) If P is not in ECNF, then:
(2.1) if Pis QA R, then f5(P) = f5(Q) A f5(R);
(2.2) if Pis (QAR)V S, then f3(P) = f3(QV S)A f3(RVS);
(2.3) if PisQV (RAS), then f3(P) = f3(QV R) A f3(QVS);
(2.4) Otherwise, P is Q V R, then f3(P) = f3(Q) V f3(R).

Theorem 2.7. Let P be an element of P5. Then:
(a) F P« f3(P).
(b) f3(P) is in ECNF.

Proof: Is a consequence of 1.6.(4) — (5). 1

Corollary 2.8. Let P be a formula of P. Then
(a) f3(f2(f1(P)))) is in ECNF.
(b) P < f3(f2(fi(P)))).

Definition 2.9. Let f; : Po — P be the map defined inductively as follows:
(1) If P is in EDNF, then fu(P) = P.
(2) If P is not in EDNF, then:
(2.1) if Pis Q V R, then f4(P) = f4(Q) V f4(R);
if Pis (QV R)A S, then f4(P) = f4(QANS)V fa(RAS);
if Pis QA (R \ S), then f4(P) = f4(Q A R) \% f4(Q A S),
Otherwise, P is Q A R, then f4(P) = f4(Q) A fa(R).

Theorem 2.10. Let P be an element of P5. Then:
(b) f4(P) is in EDNF.

S N N N

(2.2
(2.3
(2.4

Proof: 1Is a consequence of 1.6.(6) — (7). §

Corollary 2.11. Let P be a formula of P. Then
(a) fa(f2(f1(P))) is in EDNF.
(b) P f4(f2(f1(P)))

3.- Normal forms



Definition 3.1. We define the degree of a formula P, deg (P), inductively as follows:

0, if P is a propositional variable;
deg () — | 4@, if P is —Q;
1+ deg(Q), if Pis k@, where k is [] or ;

max(deg (Q),deg (R)), if P is QkR, where k is V, A\, — or <.

Definition 3.2.
(a) A formula P is a clause if P is a disjunction where each disjunct is either a literal,
or 1@, or $Q, where deg (Q) = 0.
(b) A clause P is basic if deg (P) = 0.
(¢) A formula P is in conjuctive normal form (C.N.F.) if P is a conjunction of
clauses.

Definition 3.3. Let f5 : P — P be the map defined inductively as follows:
(1) If deg (P) <1, then f5(P) = P.
(2) If deg (P) > 1, then:
(2.1) if Pis Q A R, then f5(Q) A f5(R);
(22) if P is Q V R, then f5(P) = f5(Q) vV f5(R),
(2.3) if PisLI(Q A R), then f5(P) = fs(JQ) A fs(JR);
(2.4) if Pis[1(Q V R), then:
(2.4.1) if Q V R is in ECNF, then P is

LI(PLA---APp)

and
fs(P) = fs(Pi, Ao+~ APy ) N\LI(Py,y Ao AN Py)
where P, ,..., P, (1 <i; <--- <i <mn) are the P; that begins with []
or ¢,and P, ,..., P (1 <ip4 <..<i, <n)are the other ones;
(2.4.2) if Q V R is not in EDNF, then f5(P) = f5((0 f3(P));
(2.5) if P is [1(kQ), where k is [] or <, then f5(P) = f5(kQ);
(26) if P is O(QV R), then f5(P) = f5(0Q) V f5(OR);
(2.7) if P is $(Q A R), then:
(2.7.1) if @ A R is in EDNF, then P is

O(PLV -V Py)

and

f5(P) = fs(Py V--- VP, )VP, V- VP,
where P;,..., P, (1 <i; <...<i, <mn) are the P; that begins with []
or ¢, and P, ,,..., P, (1 <ipy1 <---<i, <n) are the other ones;

(2.7.2) if @ A R is not in ECNF, then f5(P) = f5(O fa(P));
(2.8) if Pis {(kQ), where k is < or L1, then f5(P) = f5(kQ);

Theorem 3.4. Let P be an element of P, then
(a) F P < f5(P).
(b) deg(fs(P)) < 1.

Proof: Is a consequence of 1.8.(3) — (14). 1



Theorem 3.5. Let P be a formula of P5. Then

(a) deg(f5(f2(f1(P)))) < 1.
(b) F P« f5(f2(f1(P)))-

Theorem 3.6. Let P be a formula of P. Then

(a) f3(f5(f2(f1(P)))) is in CNF.
(b) =P« f3(fs(f2(f1(P)))).

4.- The vadility in S5

Definition 4.1.
(a) A model M of S5 is a pair (M,V), where M is a non-empty set (of ‘possible

worlds’) and
V:{Xl,XQ,...} XM—>{O,1}

(b) Let (M, V) a model of S5. We define the map V : P x M — {0, 1} inductively as
follows:
(b.1) V(X;,m) = V(X;,m).
( ) V(ﬂPm)—llffV(Pm) 0.
( ) (l:IPm)—11HV(P,m)—1,foreverym’€M.

Lemma 4.2. Let (M,V) be a model of S5, and let P, Q be elements of P, m € M. Then:
(a) V(PAQ,m)=1,iff V(P,m)=V(Q,m) =1

(b) V(P —Q,m) =0, iff V(P,m)=1and V(Q,m) = 0.

(c) V(P Q,m)=1,iff V(P,m)=V(Q,m).

(d) V(OP,m) =1, iff there exists an element m’ € M such that V(P,m’) = 1.

Definition 4.3.
(a) A formula P is valid in a model M = (M, V) of S5, M = P, if V(P,m) = 1, for
every m € M.
(b) P is valid, |= P, if P is valid in any model M of S5.

Example 4.4. The formula X — [JX is not valid: let us consider M = {mj,mo} and
the map V such that V(X,m;) = 1 and V(X,m3) = 0. Then V((JX,m;) = 0 and
V(X - [X,m) =0,s0 X —[]X is not valid.

Theorem 4.5. W P <= P
Proof: In [6]. 1

5.- Description of the algorithm

Lemma 5.1. Let Py,..., Pr be elements of P. The following conditions are equivalent:
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(a) FPLA--- APy
(b) F P, ..., P

Proof: Is a consequence of 4.5 and 4.3.

Lemma 5.2. Let C be a clause. Then there exist a clause C’ such that:
(a) C’ has the following form:

pPvdQ,v---vQ,V OR,
where deg (P) = deg (Q1) = --- = deg (Q,) = deg (R) = 0.
(b) FC < C".

Proof: 1t is clear using that the disjunction is associative and commutative, and 1.8(10).

|
Theorem 5.3. Let C be the formula

PvldQ, Vv ---vUQr VOR

where deg (P) = deg (Q1) = --- = deg (Qn) = deg (R) = 0. The following conditions are
equivalent:
(a) C is a theorem in S5.
(b) Some of the formulas PV R,Q1 V R,...,Qr V R is a theorem in the classical
propositional calculus.

Proof:

(a) = (b) Let us assume that the formulas PV R,Q1 V R,...,Qr V R are not
theorems in the propositional calculus. Then, there exists valuations vg,v1,..., v such
that

’U()(P\/R):Ul(Ql\/R):"':Uk(Qk\/R):O.

Let us consider the following model (M, V):
M = {mo,ml, . ,mk},
V:P x M — {0,1} is the map defined by:

V(Xi,my) =v;(X;), 1<, 0<5 <k

It is clear that V(C,mg) = 0, so C' is not valid, and, by 4.6, C' is not a theorem of S5.
(b) = (a) Let us assume that PV R is a theorem in the propositional calculus,

then
i)FPVR [1.5]
(i) - R — (OR) [1.8.(16)]
(iii) F PV (OR) (1.7, (i) and (ii)]
(iv) F PV (@Q1)V---V({dQk) V(OR) [1.7 and (iii)]
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Let us assume, now, that there exists an 7, 1 < 1 < k, such that ; V R is a theorem in
the propositional calculus, then

)FQ;VR 1. ]
(i) - R — (OR) 1:8.(15)
(iii) - Q: v (OR) [1.7, (i) and (ii)]
(iv) F(Q; V (OR)) [necessarlty rule and (iii)]
(v) H([JQ;) Vv (<>R) [modus ponens, 1.8.(15) and (iv)]
(vi)FPVv Q1) V---v({[dQk) V(OR) [1.7 and (v)]

6.- Implementation and examples

In this section we give an algorithm for S5. Its correctness is an immediate conse-
quence of the preceedings results. It is directly implementable in Lisp.

Algorithm 6.1. (proof)
Input: A formula P of S5.
Output: “yes”, if H P; “not”, otherwise.
Procedure: proof (P)

begin

Q = f3(fs(f2(f1(P))))
Cq,...,C, are clauses such that Q = C; A--- AC,,
1:=1
while 7 < n do

begin

if proof-clause(C;) = “yes” theni:=17+ 1
else return “not”
end

return “yes”
end

Algorithm 6.2. (proof-clause)
Input: A clause C =P,V ---V P,.
Output: “yes”, if H C; “not”, otherwise.
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Procedure: proof-clause(C)

begin
{Pr,...,Ps} ={Pe{P,...,P,}: Pis aliteral }
P=PV---VP
{Rl,...,Ru} = {RQRE {Pl,...,Pn}}
R:=RyV---VR,
if tautology(P V R) = “yes” then return “yes”
else {Q1,...,Q:}:={Q :1JQ € {Py,...,P,}}

1:=1
while 7 < ¢ do
begin
if tautology(RV Q;) = “yes” then return “yes”
elsei:=i+1
end
return “not”
end
Algorithm 6.3. (tautology)
Input: A formula P of P, with degree 0.
Output: “yes”, if F P; “not”, otherwise.
Procedure: tautology(P)
begin
Q = f3(P)
C4,...,C), are basic clauses such that QQ :=C{ A --- ANC),
1:=1
while 1 < n do
begin

if basic-proof-clause(C;) = “yes” then i :=i+ 1
else return “not”
end
return “yes”
end

Algorithm 6.4. (basic-proof-clause)
Input: A basic clause C' = P,V ---V P,.
Output: “yes”, if = C'; “not”, otherwise.
Procedure: basic-proof-clause(C')

begin
LP:={Q €{P,...,P,} : Q is a propositional variable}
LN = {Ri"RE {pl,...,pn}}
if LPN LN = () then return “not”
else return “yes”
end



Example 6.5. We are going to apply the preceedings algorithms to the following formula:

L0 (p — (@A OT)) — =O(p A —g A =$r)

Using 6.1 we compute
proof AU (p — (g A 1)) = =0 (p A =g A=$r))

f3(fs(fo(AOO®m = (@A OT)) = ~O(p A =g A=) =
= f3(fs(fo(-ET(mp V (g AOT)) V2O A g A=OT)))) =
= f3(f5(OQ(p A (mgV=r)) VO (=pV gV Or))) =
= [3(fs(OO A (mgv=r) V f5(d(=pVqVor))) =
by 3.3.(2.1)]
= f3(fs(Op A (mgVL-r))) V f5(Or) VE(=pV q)) =
[by 3.3.(2.8 v 2.4.1)]
= f[3(fs(O(falp A (mgvE=r))) VOr v (-p Vq)) =
by 3.3.(2.7.2 v 1)]
[3(fs(O((pA—q) vV (pAL=r))) vV Or vV (-p Vq)) =
f3(fs(Op A=)V fs(O(p A=) v Or v (-p V) =
[by 3.3.(2.6)]
f3( 0 A=g) V (Op A fs(-r)) v Or VI (=p V g)) =
/3

by 3.3.(1y 2.7.1)]
Qo A=g) VvV (OpAL=r)vVor v (—pVe)) =

by 3.3.(1)]
= (O A=q) VOpVOr vV (=pV @) A (O(pA—g) VL-r VvV or vVE(=pVq))

Using 6.2 we compute

proof-clause($(p A —q) V Op VvV Gr VI (—p V q))

{R17 RZ; R3} = {p A _'Q7p7r}
R:=(pA—-q)VpVr
tautology((p A =q) Vp V1) = “not”

{Qi} ={-pVdg}
tautology((p A—=q) VpVrV -pVq) = “yes’

Then,
proof-clause($(p A —q) V Op VvV Or VI (—p V q)) = “yes”
Using 6.2 we compute
proof-clause((p A —q) VI—r vV Or VI (—p V q))
{R1, Ro} := {p A —q,r}
R:==(pA-q)Vr

tautology((p A —q) V r) = “not”
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{Ql? QQ} = {_'Ta pV Q}

tautology((p A —q) V r V —r) = “yes”
tautology((p A =q) Vr NV —pV q) = “yes”
Then,

proof-clause(H(p A —q) VIEI—r vV Gr VI (—p V) = “yes”

Therefore,

proof (LI (p — (g A Q1)) — =O(p A =g A1) = “yes”
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