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Introduction

The purpose of this paper is to explain how the theory of Gröbner bases can be
used for automated proving in Monadic Logic.

The paper is organized as follows: in Section 1 we recall the syntax and semantics
of Monadic Logic, and we describe the aim of this paper: the resolution by an algebraic
algorithm of the deduction problem in Monadic Logic. Successively, we reduce the de-
duction problem in Monadic Logic to the propositional calculus (Section 2), to the ideal
membership problem (Section 3), and, finally, to find a Gröbner Base (Section 4). In
Section 5 we give some algorithms that solve the problems described above.

Main sources of the paper are Shoenfield [5] and Boolos & Jeffrey [1] for the
sections 1 and 2; Hsiang [3] and Kapur & Narendran [4] for the section 2; and Buchberger
[2] for the sections 4 and 5.

1.- Preliminaries

A monadic language L consists of: an enumerable set of variables, a set of con-
stants, a set of monadics predicate symbols, the connectives ¬ (negation) and ∧ (conjunc-
tion) and the universal quantifier ∀. The terms of L are the variables and the constants.
We shall use the letter t as metavariable ranging over the terms of L. A formula of L is
any sequence of symbols of L obtained using the following rules:

(1) if P is a predicate symbol of L and t is a term of L, then Pt is a formula of L
(named atomic formula).

(2) if A and B are formulas, then (¬A) and (A ∧B) are formulas.
(3) if x is a variable and A is a formula, then (∀xA) is again a formula.

We shall use capital letters A,B, C . . . as metavariables about formulas. Let us write
(A ∨ B), (A → B), (A ↔ B) and (∃xA) to represent (¬((¬A) ∧ (¬B))), ((¬A) ∨ B),
((A → B) ∧ (B → A)) and (¬(∀x(¬A))), respectively. We shall use the usual rules of
elimination of parentheses.

An occurrence of a variable x in a formula A is bound in A if it occurs in a part
of A of the form ∃xB; otherwise, it is free in A. By Ax1,...,xs [t1, . . . , ts] we represent the
formula obtained by sustitution, simultaneously, of all free occurrences of the variables
x1, . . . , xs in A by t1, . . . , ts, respectively. A variable x is free in a formula A if there is a
free occurrence of x in A. A sentence is a formula in which there are no free occurrences
of any variables. The set of the sentences of L is denoted by Sent(L).

A L-structure M consists of: (1) a nonempty set M , called the universe of M;
(2) for each constant c of L an element M(c) in M ; (3) for each predicate symbol P of



L, a subset M(P ) of M . For each element a of M , we choose a new constant a. By
L(M) we represent the new language obtained by adding to L a new constant a for each
element a of M . For each new constant a we let M(a) = a. The set of truth values is
the field Z2 = {0, 1}, where 1 means “truth”, and 0 means “false”. The truth functions
H¬ : Z2 → Z2 and H∧ : Z2

2 → Z2 of the connectives ¬ and ∧ are defined by:

H¬(u) =
{

1, if u = 0;
0, if u = 1.

H∧(u1, u2) =
{

1, if u1 = u2 = 1;
0, if u1 = 0 or u2 = 0.

Let A be a sentence of L(A). The truth value of A, M(A), is defined recursively, by:

M(A) =





1, if A is Pt and M(t) ∈ M(P );
H¬(M(B)), if A is ¬B;
H∧(M(B),M(C)), if A is B ∧ C;
1, if A is ∀xB and M(Bx[a]) = 1 for all a ∈ M .

An M-occurrence of a formula A is a sentence of L(M) Ax1,...,xn [a1, . . . ,an] ,
where x1, . . . , xn are the free variables of A and a1, . . . , an are elements of M . A formula
A of L is valid in M, M |= A, if M(A′) = 1 for every M-occurrence A′ of A. M is a model
of A if M |= A. A is valid, |= A, if all L-structures are models of A. A is consistent if A
has a model. M is a model of a set Γ of formulas of L, M |= Γ, if all the formulas in Γ
are valid in M. If Γ has a model, we said that Γ is consistent. A is a consequence of Γ,
Γ |= A, if A is valid in every model of Γ.

The aim of this paper is the resolution by an algebraic algorithm, of the following:

Problem 1. (Deduction problem in Monadic Logic)
Given a finite set Γ of sentences of L and a sentence A of L. Decide whether Γ |= A.

2.- From Monadic Logic to Propositional Calculus

From now on let L be the monadic language with constants c1, . . . , cr and predicate
symbols P1, . . . , Pm and L′, the language obtained from L by adding the new constants
cr+1, . . . , cn, where n = r + 2m. For each natural number k, we represent by [k] the set
{1, 2, . . . , k}.

A proposition of L′ is a sentence of L′ with no quantifiers. By P(L′) we denote
the set of propositions of L′. A valuation of L′ is a map v from {Picj : i ∈ [m], j ∈ [n]} to
Z2. For each valuation v, we consider a map V : P(L′) → Z2, defined, recursively, by

V (A) =





v(A), if A is atomic;
H¬(V (B)), if A is ¬B;
H∧(V (B), V (C)), if A is B ∧ C.
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An element A of P(L′) is a tautology, |=0 A, if V (A) = 1 for every valuation v. B ∈ P(L′)
is a tautological consequence of a finite subset Γ = {A1, . . . , As} of P(L′), Γ |=0 B, if
V (B) = 1 for every valuation v such that V (A1) = · · · = V (As) = 1.

Let us consider the map ϕ : Sent(L′) → P(L′), defined, recursively, by

ϕ(A) =





A, if A is atomic;
¬ϕ(B), if A is ¬B;
ϕ(B) ∧ ϕ(C), if A is B ∧ C;
ϕ(Bx[c1]) ∧ · · · ∧ ϕ(Bx[cn]), if A is ∀xB.

A L′-structure M is good if for each element a of M there is an element i ∈ [n]
such that M(ci) = a.

Lemma 1. Let M be a good L-structure . For every A ∈ Sent(L), M(A) = M(ϕ(A))

Proof: By induction on the length of A. If A is ∀xB, we use that M(Bx[a]) = 1 for all
a ∈ M if and only if M(Bx[ci]) = 1 for all i ∈ [n].

Lemma 2. Let A ∈ Sent(L) be consistent. There exists a model M of A such that
card(M) ≤ 2m.

Proof: Let M1 be a model of A. In the universe M1 of M1 we define the following relation
a ≡ b if and only if M1(Pia) = M1(Pib) for every i ∈ [m]. ≡ is an equivalence relation. Let
f : M1 → M1/ ≡ be such that f(a) = a/ ≡ for all a ∈ M1. Let M2 be the L(M1)-structure
with universe M2 = {f(a) : a ∈ M1} defined by

M2(a) = f(a) for all a ∈ M1;
M2(ci) = f(M(ci)) for all i ∈ [r];
M2(Pj) = {f(a) : a ∈ M1(Pj)} for all j ∈ [m].

Let M be the restriction of M2 to L (i.e. the universe of M is M2, M(ci) = M2(ci)
for all i ∈ [n] and M(Pj) = M2(Pj) for all j ∈ [m]). Then M verifies that card(M) ≤ 2m,
since the map g : M2 → Zm

2 defined by g(f(a)) = (M1(P1(f(a))), . . . ,M1(Pm(f(a)))) is
injective. M |= A since M1(A) = 1 and

M1(Bx1,...,xs [a1, . . . ,as]) = M(Bx1,...,xs [f(a1) . . . , f(as)])

for every formula B of L(M1) and every (a1, . . . , as) ∈ Ms
1 .

Lemma 3. Let A ∈ Sent(L) and M a model of A. There exists a model M′ of A such that
card(M′) = card(M) + 1.

Proof: Let b0 be an element which is not in M , a0 a fixed element of M and M ′ = M∪{b0}.
Let M′ be the L′-structure with universe M ′ defined by:

M′(ci) = M(ci) for i ∈ [n];

M′(Pj) =
{

M(Pj), if a0 /∈ M(Pj);
M(Pj) ∪ {b0}, if a0 ∈ M(Pj).

We consider that the constants added to L to get L(M) and L(M′) are the same.
card(M′) = card(M) + 1 since b0 /∈ M .
M′ |= A since M |= A and M(Bx1,...,xs [a0, . . . , a0]) = M′(Bx1,...,xs [b0, . . . ,b0])

for every formula B of L(M′) with s (s ≥ 0) free variables x1, . . . , xs.
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Lemma 4. Let A ∈ Sent(L) be consistent. There exists a model M of A with cardinal 2m.

Proof: Consequence of lemmas 2 and 3.

Lemma 5. Let us assume that A ∈ Sent(L′) is consistent. Then there exists a good
L-structure M such that M(A) = 1.

Proof: Let M′ be a model of A of cardinal 2m, M ′ = {ai : i ∈ [2m]} and M the L′-structure
with universe M defined by

M(ci) =
{

M′(ci), if i ∈ [r];
ai−r, if i ∈ [n]− [r].

M(Pj) = M′(Pj).

Then M is good and M(A) = M′(A) = 1.

Theorem 1. For each A ∈ Sent(L),

|= A if and only if |=0 ϕ(A).

Proof:
(=⇒) Let us assume that ϕ(A) is not a tautology. Then there exists a valuation v

of L′ such that V (ϕ(A)) = 0. Let M′ be the L′-structure with universe M ′ = {c1, . . . , cn}
defined by:

M′(ci) = ci, for i ∈ [n] ;
M′(Pj) = {ci : v(Pjci) = 1} for j ∈ [m].

M′ is a good L′-structure. By Lemma 1

M′(A) = M′(ϕ(A)) = V (ϕ(A)) = 0

So, A is no valid.
(⇐=) Assume that A is no valid. Then ¬A is consistent. By Lemma 5, there

exists a good L′-structure M such that M(¬A) = 1. Let v be the valuation defined by

v(Picj) = M(Picj)

for i ∈ [m] and j ∈ [n]. By Lemma 1,

V (ϕ(A)) = M(ϕ(A)) = M(A) = 0.

So, ϕ(A) is not a tautology.

Theorem 2. Let A1, . . . , As, B be elements of Sent(L). Then

{A1, . . . , As} |= B if and only if {ϕ(A1), . . . , ϕ(As)} |=0 ϕ(B).

Proof:
{A1, . . . , As} |= B ⇐⇒ |= A1 ∧ · · · ∧As → B

⇐⇒ |=0 ϕ(A1 ∧ · · · ∧As → B)
⇐⇒ |=0 ϕ(A1) ∧ · · · ∧ ϕ(As) → ϕ(B)
⇐⇒ {ϕ(A1), . . . , ϕ(As)} |=0 ϕ(B).

This theorem allows us to reduce Problem 1 to
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Problem 2. (Deduction problem in Propositional Calculus)
Given a finite subset Γ of P(L′) and an element A of P(L′). Decide whether Γ |=0 A.

3.- From Propositional Calculus to Polynomial Ring

Let R = Z2[X1, . . . , Xmn] be the polynomial ring with coefficients in Z2. The
ideal generated by the finite set F = {p1, . . . , ps} is

I(F ) = I(p1, . . . , ps) =

{
s∑

i=1

qipi : qi ∈ R

}

In the following, will be denoted by I the ideal generated by

F = {X2
1 + X1, . . . , X

2
mn + Xmn}

and for every p ∈ R, p = p + I.
Let θ : P (L′) → R be the map defined, recursively, by

θ(A) =





X(i−1)n+j , if A is Picj ;
θ(B) + 1, if A is ¬B;
θ(B).θ(C), if A is B ∧ C.

For each valuation v we define a homomorphim V ∗ : R → Z2 by

V ∗(p) =





0, if p = 0;
1, if p = 1;
v(Picj), if p = X(i−1)n+j ;
V ∗(q) + V ∗(r), if p = q + r;
V ∗(q)V ∗(r), if p = qr

By induction on polynomials, we have

Lemma 6. For each valuation v, V = V ∗ ◦ θ.

In the set of monomials of R we define the following relation

Xα1
1 · · ·Xαmn

mn >M Xβ1
1 · · ·Xβmn

mn

if and only if (1)
∑

1≤i≤mn αi >
∑

1≤i≤mn βi or (2)
∑

1≤i≤mn αi =
∑

1≤i≤mn βi and there
exists an element k ∈ [mn] such that αk > βk and αi = βi for all i ∈ {1, . . . , k − 1}. The
relation >M is a noetherian total ordering.
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Lemma 7. For every p ∈ R, p ∈ I if and only if V ∗(p) = 0 for every valuation v.

Proof:
(=⇒) Is an immediate consequence of the definition of I , since that V ∗ is a

homomorphism and u2 + u = 0 for all u ∈ Z2.
(⇐=) Let us assume that p /∈ I. Then there exists an element q ∈ p + I such

that q =
∑

aα1,...,αmn
Xα1

1 · · ·Xαmn
mn , with αi ∈ {0, 1}. Let Xα1

1 · · ·Xαmn
mn be the minor

monomial of q. Let v be the valuation such that V ∗(Xi) = αi for all i ∈ [mn]. Then
V ∗(q) = 1, and V ∗(p) = 1.

Lemma 8. Let p, q be elements of R. p = q if and only if V ∗(p) = V ∗(q) for every valuation
v.

Proof:
p = q ⇐⇒ p− q ∈ I

⇐⇒ V ∗(p− q) = 0 for every valuation v [by Lemma 7]
⇐⇒ V ∗(p) = V ∗(q) for every valuation v.
We define, in P (L′), the relation:

A ∼ B if and only if |=0 A ↔ B

∼ is an equivalence relation in P (L′). Let us denote by [A] the class of A (i.e. [A] = {B ∈
P (L′) : B ∼ A}) and by B the quotient set. We define in B the operations + and · as
follows:

[A] + [B] = [¬(A ↔ B)]
[A] · [B] = [A ∧B]

and the elements 0 and 1 by

0 = [¬(P1c1 ↔ P1c1)]
1 = [P1c1 ↔ P1c1]

(B, +, ·, 0, 1) is a Boolean ring.

Lemma 9. The map θ′ : B → R/I defined by

θ′([A]) = θ(A)

is a ring isomorphism.

Proof:
(a) θ′ is well defined and injective: For all A,B ∈ P (L′),

[A] = [B] ⇐⇒ V (A) = V (B) for every valuation v
⇐⇒ V ∗(θ(A)) = V ∗(θ(B)) for every valuation v [by Lemma 6]
⇐⇒ θ(A) = θ(B) [by Lemma 8].
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(b) θ′ is suprajective, since for every p ∈ R, θ(θ′′(p)) = p, where θ′′ : R → P (L′)
is the map defined by

θ′′(p) =





Xi, if p = Xi;
P1c1 ↔ P1c1, if p = 1;
¬(θ′′(q) ↔ θ′′(r)), if p = q + r;
θ′′(q) ∧ θ′′(r), if p = qr;

(c) θ′ is a homomorphism: the proof is straighforward.

By induction on s we can prove the following Lemmas

Lemma 10. Let A1, . . . , As, B be elements of P (L′).

θ′([A1 ∧ · · · ∧As → B]) = p1 · · · psq + p1 · · · ps + 1,

where pi = θ(Ai) and q = θ(B).

Lemma 11. Let p1, . . . , ps, q be elements of R. Then p1 · · · ps(q + 1) = I if and only if
q + 1 ∈ (p1 · · · ps + 1), where (p1 · · · ps + 1) is the ideal of R/I generated by p1 · · · ps + 1.

Lemma 12. Let p1, . . . , ps be elements of R. Then

(p1 · · · ps + 1) = (p1 + 1, . . . , ps + 1).

Theorem 3. Let A1, . . . , As, B be elements of P (L′). {A1, . . . , As} |=0 B if and only if

θ(B) + 1 ∈ I(θ(A1) + 1, . . . , θ(As) + 1, X2
1 + X1, . . . , X

2
mn + Xmn).

Proof:
{A1, . . . , As} |=0 B ⇐⇒
⇐⇒ |=0 A1 ∧ · · · ∧As → B
⇐⇒ [A1 ∧ · · · ∧As → B] = 1
⇐⇒ θ′([A1 ∧ · · · ∧As → B]) = 1
⇐⇒ p1 · · · psq + p1 · · · ps + 1 = 1 [by Lemma 10]
⇐⇒ p1 · · · ps(q + 1) = I
⇐⇒ q + 1 ∈ (p1 · · · ps + 1) [by Lemma 11]
⇐⇒ q + 1 ∈ (p1 + 1, . . . , ps + 1) [by Lemma 12]
⇐⇒ there exist r1, . . . , rs ∈ R such that

q + 1 =
∑s

i=1 ri · pi + 1
⇐⇒ there exist r1, . . . , rs, r

′
1, . . . , r

′
mn ∈ R such that

(q + 1) =
∑s

i=1 ri(pi + 1) +
∑mn

j=1 r′j(X
2
j + Xj)

⇐⇒ q + 1 ∈ I(p1 + 1, . . . , ps + 1, X2
1 + X1, . . . , X

2
mn + Xmn)

⇐⇒ θ(B) + 1 ∈ I(θ(A1) + 1, . . . , θ(As) + 1, X2
1 + X1, . . . , X

2
mn + Xmn).

This theorem allows us to reduce Problem 2 to
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Problem 3. (Ideal membership problem)
Given a finite subset F of R and an element q of R. Decide whether q is an element of
I(F ).

4.- Gröbner bases

From now on, we shall use the following syntacticals variables p, q, q′, . . . to rep-
resent the polynomials of R; u, u1, u2, . . . for the monomials of R; and F,G, . . . for finite
subsets of R.

Let us assume that the nonzero polynomials are represented by a decreasing sum
of monomials, i.e., p = u1 + · · · + uk with u1 >M · · · >M uk. Let us put L(p) = u1 and
R(p) = u2 + · · ·+ uk to represent the leader of p and the rest of p, respectively.

We consider the relation in R: p > q if and only if (1) p 6= 0 and q = 0, or (2)
p 6= 0, q 6= 0 and L(p) >M L(q), or (3) p 6= 0, q 6= 0, L(p) = L(q) and R(p) > R(q). > is a
noetherian total ordering in R.

For each polynomial p and monomial u, we define a map ρ(p, u) : R → R by
ρ(p, u)(q) = q − coef(uL(p), q)up, where coef(u, p) is the coefficient of u in p.

We say that the polynomial q reduces to q′ using the polynomial p and the mono-
mial u, q −→p,u q′, if q′ = ρ(p, u)(q) 6= q. q −→p q′ means that there exists a monomial u
such that q −→p,u q′ , and, if F is a finite set of polynomials, q −→F q′ means that there
exists a polynomial p ∈ F such that q −→p q′.

It is clear that −→F⊆> (i.e. q −→F q′ implies that q > q′), and so, −→F is
noetherian.

By ∗−→F we represent the reflexive-transitive closure of −→F . We say that a
polynomial q is F -irreducible if there exists no polynomial q′ of R such that q −→F q′ ,
and we say that q′ is an F -irreducible form of q if q′ is F -irreducible and q

∗−→F q′.
Since −→F is noetherian, then for each polynomial there exists, at least, an F -

irreducible form. (The F -irreducible form of a polynomial is not unique in general. For
instance, if R = Z2[X1, X2, X3], and F = {X1 + X2, X1 + X3}, then X2 and X3 are
F -irreducible forms of X1).

F is a Gröbner base if for each polynomial there exists one and only one F -
irreducible form. G is a Gröbner base of I(F ) if G is a Gröbner base and I(G) = I(F ).

Theorem 4. (Buchberger 1976) G is a Gröbner base of I(F ) iff I(F ) = {q ∈ R : q
∗−→G 0}.

This theorem allows us to reduce Problem 3 to:

Problem 4. Given a finite set F of polynomials. Find a Gröbner base G of I(F ).

Problem 5. Given a finite set F of polynomials and a polynomial p. Find an F -irreducible
form of p.
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5.- Algorithms and Examples

5.1 Irreducible form

The following algorithm solves Problem 5.

Algorithm 1
Input: A polynomial p = u1 + · · · + uk and a finite set of polynomials F =

{q1, . . . , qm}.
Output: A polynomial q such that q is an F -irreducible form of p.
Procedure FN(p, F ):

while q is not F -irreducible do
j := inf{i ∈ [m] : (∃u)[ρ(qi, u)(q) 6= q]}
j′ := inf{i ∈ [k] : (∃u)[uL(qj) = ui]}
q := FN

(
ρ

(
qj ,

u′j
L(qj)

)
(q), F

)

Example 1. If F = {X1X2 + X1 + 1, X2
1 + 1} and p = X3

1 + X1X
2
2 , then

FN(p, F ) = FN(X3
1 + X1X

2
2 , F ) =

= FN(X3
1 + X1X3 + X2, F ) =

= FN(X3
1 + X1 + X2 + 1, F ) =

= FN(X2 + 1, F ) =
= X2 + 1

5.2 Gröbner bases

We define the S-polynomial of the polynomials q1 and q2 by

S(q1, q2) =
2∑

i=1

lcm((L(q1), L(q2))
L(qi)

· qi

Since

Theorem 5. (Buchberger 1976) F is a Gröbner base if and only if for every q1, q2 ∈
F, S(q1, q2)

∗−→F 0.

The following algorithm solves Problem 4:
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Algorithm 2 (Buchberger’s algorithm)
Input: A finite set of polynomials F = {p1, . . . , pk}.
Output: A Gröbner base G of I(F ).
Procedure BG(F ) :

G := F
B := {(pi, pj) : 1 ≤ i < j ≤ k}
while B 6= ∅ do

(q1, q2) := first element of B
B := B − {(q1, q2)}
h := FN(S(q1, q2), G)
if h 6= 0 then B := B ∪ ({h} ×G)

G := G ∪ {h}

Example 2. If

F = {X2X4 + X1 + X4 + 1, X3X4 + X4, X1X2 + X2},

then
BG(F ) = F ∪ {X1X4 + X1 + X4 + 1, X1X3 + X1 + X3 + 1}.

5.3 Ideal membership problem

The following algorithm solves Problem 3:

Algorithm 3
Input: F and q.
Output: “yes”, if q ∈ F ; “not”, if q /∈ F .
Procedure:

let G := BG(F ), q′ := FN(q, G)
if q′ = 0 then “yes”

else “not”

Example 3. If F is the set of example 2, then p = X1X4+X2X4 ∈ I(F ), since FN(p,BG(F )) =
0, but p′ = X1X4 + X3X4 /∈ I(F ), because FN(p′, BG(F )) = X1 + 1.

5.4 Deduction in Propositional Calculus

The following algorithm solves the deduction problem in Propositional Calculus
(Problem 2):
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Algorithm 4
Input: A finite set Γ of propositions in L′ and a proposition B of L′.
Output: “yes” if Γ |=0 B, “not” otherwise.
Procedure:

F := {θ(A) + 1 : A ∈ Γ} ∪ {X2
i + Xi : i ∈ [mn]}

G := BG(F )
h := FN(θ(B) + 1), G)
if h = 0 then “yes” else “not”

Example 4. If

Γ = {X1 ∨X2, X2 ↔ (X1 → X3), X3 ∨ (X2 ∧X4), X4 ↔ (X3 → X2)}
and

B = X2 ∧X4,

then

F = {X1X2 + X1 + X2 + 1, X1X3 + X1 + X3 + 1, X2X3X4 + X2X4 + X3 − 1,

X2X3 + X3 + X4 + 1, X2
1 + X1, X

2
2 + X2, X

2
3 + X3, X

2
4 + X4}

G = F ∪ {X2 + 1, X4 + 1}
h = FN(X2X4 + 1, G) = 0

So, Γ |=0 B.

Using that F = {X2
i + Xi : i ∈ [mn]} is a Gröbner bases, the following algorithm

solves the validity problem in propositional calculus:

Algorithm 5
Input: A proposition A of P (L′).
Output: “yes” if |=0 A, “not” otherwise.
Procedure:

F := {X2
i + Xi : i ∈ [mn]}

if FN(θ(A), F ) = 1 then “yes” else “not”
Example 5. If A = (X1 → X2) ∨ (X2 → X1), then θ(A) = X2

1X2
2 + X2

1X2 + X1X
2
2 +

X1X2 + 1, FN(θ(A), F ) = 1 and |=0 A. If A′ = (X1 ↔ X2) ∧ (X1 ↔ ¬X2), then
θ(A′) = X2

1 + X1 + X2, FN(θ(A′), F ) = 0 and 6|=0 A′.

5.5 Deduction in Monadic Logic

Let ψ : Sent(L′) → R be the map defined by

ψ(A) =





X(i−1)n+j , if A is Picj ;
ψ(B) + 1, if A is ¬B;
ψ(B)ψ(C), if A is B ∧ C;∏

1≤j≤n ψ (Bx[cj ]) , if A is ∀xB

It is clear that ψ = θ ◦ ϕ , and by Theorems 2 and 3, we obtain the
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Theorem 6. Let A1, . . . , As, B be elements of Sent(L) . Then {A1, . . . As} |= B if and only
if

ψ(B) + 1 ∈ I(ψ(A1) + 1, . . . , ψ(As) + 1, X2
1 + X1, . . . , X

2
mn + Xmn).

This theorem allows us to describe an algorithm that solves the deduction problem
in the Monadic Logic (Problem 1)

Algorithm 6
Input: A finite set Γ of sentences of L and a sentence B of L.
Output: “yes” if Γ |= A, “not” otherwise.
Procedure:

F := {ψ(A) + 1 : A ∈ Γ} ∪ {X2
i + Xi : i ∈ [mn]}

G := BG(F )
h := FN(ψ(B) + 1, G)
if h = 0 then “yes” else “not”

Example 6. If
Γ = {P1c1,¬P1c2}

and
B = ¬(∀x)(∀y)[P1x ↔ P1y]

then
G = {X1 + 1, X2} ∪ {X2

i + Xi : i ∈ [4]},
h = FN(

∏

1≤i,j≤4

(Xi + Xj + 1), G) = 0,

and
Γ |= B.

The following algorithm solves the validity problem in Monadic Logic:

Algorithm 7
Input: A sentence A of L.
Output: “yes” if |= A, “not” otherwise.
Procedure:

F := {X2
i + Xi : i ∈ [mn]}

if FN(ψ(A), F ) = 1 then “yes” else “not”

Example 7. If
A = (∃x)(∀y)[P1x → P1y],

then
ψ(A) = ψ((∀y)[P1c1 → P1y]) + ψ((∀y)[P1c2 → P1y])

+ ψ((∀y)[P1c1 → P1y])ψ((∀y)[P1c2 → P1y]),
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ψ((∀y)[P1c1 → P1y]) = ψ(P1c → P1c1)ψ(P1c → P1c2),
ψ(P1c1 → P1c1) = X2

1 + X1 + 1 ∗−→F 1,
ψ(P1c1 → P1c2) = X1X2 + X1 + 1,

ψ((∀y)[P1c1 → P1y]) ∗−→F X1X2 + X1 + 1.
In the same way,

ψ((∀y)[P1c2 → P1y]) ∗−→F X1X2 + X2 + 1.
So,

ψ(A) ∗−→F (X1X2 + X1 + 1) + (X1X2 + X2 + 1) + (X1X2 + X1 + 1)(X1X2 + X2 + 1)
∗−→F 1

and |= A.

REFERENCES

[1] Boolos, G. and R. Jeffrey Computability and logic. Cambridge Univ. Press,
London, 1974.
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