Ejercicios de "Teoría de conjuntos"

José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1992

Dpto. de Ciencias de la Computación e Inteligencia Artificial UNIVERSIDAD DE SEVILLA

Contenido

1	Cor	njuntos y clases	4	
	1.1	El lenguaje de la teoría de conjuntos	4	
	1.2	Axiomas de Zermelo–Fraenkel (I) $\ \ldots \ \ldots \ \ldots \ \ldots$	4	
2	Relaciones y funciones			
	2.1	Par ordenado y conjunto cartesiano	10	
	2.2	Relaciones	12	
	2.3	Aplicaciones	12	
3	Cla	ses bien ordenadas	14	
4	La clase de los ordinales			
	4.1	Conjuntos transitivos	18	
	4.2	La clase de los números ordinales	18	
	4.3	Ordenación de los ordinales	19	
5	Clases bien ordenadas y ordinales			
	5.1	El axioma de reemplazamiento	20	
	5.2	Clases bien ordenadas y ordinales	21	
6	Ordinales finitos			
	6.1	Ordinales sucesores y límites	22	
	6.2	El axioma del infinito	22	
	6.3	Propiedades de los números naturales	23	

7	Teo	remas de inducción y recursión	24	
	7.1	Teoremas de inducción	24	
	7.2	Teoremas de recursión	24	
8	Aritmética ordinal			
	8.1	Funciones normales	27	
	8.2	Adición de ordinales	27	
	8.3	Multiplicación de ordinales	29	
	8.4	Sustracción y división de ordinales	30	
	8.5	Exponenciación ordinal	31	
	8.6	Forma normal de Cantor	33	
	8.7	Aritmética ordinal y conjuntos bien ordenados	36	
9	El t	eorema del buen orden y el axioma de elección	38	
10	Con	ijuntos finitos y numerables	40	
	10.1	Conjuntos finitos	40	
	10.2	Conjuntos numerables	40	
	10.3	Conjuntos no–numerables	40	

Conjuntos y clases

1.1 El lenguaje de la teoría de conjuntos

- **1.1.1** Determinar las variables libres de la fórmula $(\forall x)[x \in y \to (\exists y)[y = z]]$.
- **1.1.2** Demostrar que $\neg(\exists y)(\forall x)[x \in y \leftrightarrow \neg(\exists z)[x \in z \land z \in x]$.
- 1.1.3 Escribir las fórmulas representadas por las siguientes expresiones:
 - 1. $\bigcap \{x : \varphi(x)\} \subseteq \bigcup \{x : \psi(x)\}\$
 - $2. \ \{x: \varphi(x)\} \subseteq V$
 - 3. V es una clase propia.
- **1.1.4** Demostrar que para cualquier clase $A, A \subseteq V$.
- **1.1.5** Demostrar que $\{x : \neg(\exists z)[x \in z \land z \in x]\}$ es una clase propia.

1.2 Axiomas de Zermelo-Fraenkel (I)

- **1.2.1** Probar que para cada conjunto x, existe algún y tal que $y \notin x$.
- 1.2.2 Demostrar que el axioma del conjunto vacío es consecuencia del axioma de separación.
- **1.2.3** Demostrar que si en el axioma de separación se permite que la variable y ocurra libre en $\varphi(x)$, entonces $(\forall x)[x=\emptyset]$.
- **1.2.4** Demostrar que si $A \neq \emptyset$, entonces $\bigcap A$ es un conjunto.

- **1.2.5** Demostrar que $\bigcap \emptyset = V$.
- 1.2.6 Demostrar que el axioma del par es consecuencia de los axiomas de la unión y de las partes.
- **1.2.7** Se definen $0 = \emptyset$, $1 = 0 \cup \{0\}$, $2 = 1 \cup \{1\}$, $3 = 2 \cup \{2\}$, $4 = 3 \cup \{3\}$. Probar que 0, 1, 2, 3 y 4 son conjuntos.
- **1.2.8** Expresar el conjunto 4 usando sólo los símbolos $\{,\},\emptyset,\ldots$
- 1.2.9 Simplificar las siguientes expresiones:
 - 1. | J1.
 - 2. $\bigcup\{\{0,1,2\},\{0,4,5\},\{1,6\}\}.$
 - 3. \bigcap {{0,1,2}, {0,4,5}, {1,6}}.
- **1.2.10** Sea $x = \{\{2, 5\}, 4, \{4\}\}$. Calcular $\bigcap (\bigcup x 4)$.
- **1.2.11** Sea $x = \{\{\{1, 2\}, \{1\}\}, \{2\}\}\}$. Calcular:

$$\bigcup x, \qquad \bigcup \bigcup x, \qquad \bigcap x, \qquad \bigcap \bigcap x, \qquad \bigcap \bigcup x, \qquad \bigcup \bigcap x$$

1.2.12 Sea $x = \{\{1, 2\}, \{0, 2\}, \{1, 3\}\}$. Calcular:

$$\bigcup x$$
, $\bigcup \bigcup x$, $\bigcap x$, $\bigcap \bigcup x$, $\bigcup \bigcup x$

- **1.2.13** Encontrar dos conjuntos a y b tales que $a \neq b y \bigcup a = \bigcup b$.
- **1.2.14** Demostrar:
 - 1. $b \in a \to \cap a \subseteq b \subseteq \cup a$.
 - 2. $a \subseteq b \rightarrow \cup a \subseteq \cup b$.
 - 3. $(\forall c \in a)[c \subseteq b] \to \cup a \subseteq b$.
- **1.2.15** Sea $x = \{1, 2\}$. Calcular:

$$\bigcup \bigcup x, \qquad \bigcap \bigcap x, \qquad \Big(\bigcap \bigcup x\Big) \cup \Big(\bigcup \bigcup x - \bigcup \bigcap x\Big), \qquad \bigcup \Big(\bigcup x - \bigcap x\Big)$$

1.2.16 Dar un ejemplo de dos conjuntos a y b tales que

$$a \cap b \neq \emptyset$$
 y $(\bigcap a) \cap (\bigcap b) \neq \bigcap (a \cap b)$

- **1.2.17** ¿Es $a \cup (\bigcup b) = \bigcup \{a \cup c : c \in b\}$?. Si no, ¿qué condiciones se necesitan para que se verifique la igualdad?.
- **1.2.18** Probar que para cualesquiera conjuntos a, b y c

$$\begin{array}{lll} a\cup a=a & a\cap a=a \\ a\cup b=b\cup a & a\cap b=b\cap a \\ a\cup (b\cup c)=(a\cup b)\cup c & a\cap (b\cap c)=(a\cap b)\cap c \\ a\cap (a\cup b)=a & a\cup (a\cap b)=a \\ a\cap (b\cup c)=(a\cap b)\cup (a\cap c) & a\cup (b\cap c)=(a\cup b)\cap (a\cup c) \\ c-(a\cap b)=(c-a)\cup (c-b) & c-(a\cup b)=(c-a)\cap (c-b) \end{array}$$

- ${\bf 1.2.19}~$ Probar que para cualesquiera conjuntos $a,\,b$ y c
 - 1. $a (b c) = (a b) \cup (a \cap c)$
 - 2. $(a \cup b) c = (a c) \cup (b c)$
 - 3. $(a-b) c = a (b \cup c)$
- ${\bf 1.2.20}~$ Sean a y b dos conjuntos. Se define la diferencia simétrica de a y b como

$$a\triangle b = (a-b) \cup (b-a)$$

Probar que:

- 1. $a\triangle b$ es un conjunto
- 2. $a \triangle b = (a \cup b) (a \cap b)$
- 3. $a\triangle b = b\triangle a$

[Conmutativa]

4.
$$a\triangle(b\triangle c) = (a\triangle b)\triangle c$$

[Asociativa]

5.
$$a \cap (b \triangle c) = (a \cap b) \triangle (a \cap c)$$

[Distributiva]

6.
$$a \triangle \emptyset = a$$

[Elemento neutro]

7.
$$a \triangle a = \emptyset$$

[Elementos simétricos]

8.
$$a\triangle b = c\triangle b \implies a = c$$

[Cancelativa]

9.
$$a \triangle b = \emptyset \implies a = b$$

10.
$$(a \cup c) \triangle (b \cup c) = (a \triangle b) - c$$

11.
$$a \cup c = b \cup c \implies a \triangle b \subseteq c$$

- 12. $(\forall a)(\forall b)(\exists!c)[x\triangle c = b]$
- 13. a, b disjuntos $\implies a \cup b = a \triangle b$
- 14. $a \cup b = a \triangle b \triangle (a \cap b)$
- **1.2.21** Demostrar que $\bigcup (a \cup b) = (\bigcup a) \cup (\bigcup b)$.
- **1.2.22** Demostrar que si a y b son no vacíos, entonces $\bigcap (a \cup b) = (\bigcap a) \cap (\bigcap b)$.
- **1.2.23** Sea $x \neq \emptyset$. Demostrar:
 - 1. $\bigcap \{z \cup y : z \in x\} = y \cup (\bigcap x)$
 - 2. $\bigcup \{z \cap y : z \in x\} = y \cap (\bigcup x)$
- **1.2.24** Sean a, b y c conjuntos tales que $a \cup b = a \cup c$ y $a \cap b = a \cap c$. Demostrar que b = c.
- ${f 1.2.25}$ Sea a un conjunto no vacío. Probar que las siguientes clases son propias:
 - 1. $\{x : (\exists y)[y \in a \land x \notin y]\}$
 - 2. $\{x: (\exists y)(\exists z)[y \in a \land z \in y \land x \notin z]\}$
- **1.2.26** Probar que para cualesquiera conjuntos a, b y c se tiene que:
 - 1. $a \subseteq a$.
 - $2. \ a \subseteq b \land b \subseteq a \implies a = b.$
 - $3. \ a \subseteq b \land b \subseteq c \implies a \subseteq c.$
 - $4. \emptyset \subseteq a.$
- ${\bf 1.2.27}$ Probar que para cualesquiera conjuntos a y b las condiciones siguientes son equivalentes:
 - 1. $a \subseteq b$.
 - 2. $a \cup b = b$.
 - 3. $a \cap b = a$.
 - 4. $a b = \emptyset$.

- **1.2.28** Sean a y b subconjuntos de un conjunto c. Se llama complementario de a en c al conjunto c a y se representa por a'.
 - 1. Probar que las condiciones siguientes son equivalentes:
 - (a) $a \subseteq b$.
 - (b) $b' \subseteq a'$.
 - (c) $a \cap b' = \emptyset$.
 - 2. $(a \cup b)' = a' \cap b'$.
 - 3. $(a \cap b)' = a' \cup b'$.
 - 4. $(a b)' = b \cup a'$.
- 1.2.29 Sea a un conjunto. Se definen las clases:

$$\begin{aligned} a^* &= \{b-c : b, c \in a\} \\ a^\cup &= \{b \cup c : b, c \in a\} \\ a^\cap &= \{b \cap c : b, c \in a\} \\ a^\triangle &= \{b \triangle c : b, c \in a\} \end{aligned}$$

- 1. Demostrar que a^* , a^{\cup} , a^{\cap} y a^{\triangle} son conjuntos.
- 2. Determinar cuáles de las siguientes relaciones son válidas:

$$a^* \subseteq (a^*)^*, \qquad (a^*)^* \not\subseteq a^*, \qquad a^{\triangle} \subseteq (a^{\triangle})^{\triangle}, \qquad a^{\cup} \subseteq (a^{\cup})^{\cup}, \qquad a^{\cap} \subseteq (a^{\cap})^{\cap}.$$

1.2.30 Calcular:

- 1. P(0), P(P(0)), P(P(P(0))).
- 2. P(1), P(P(1)).
- 3. P(2), P(P(2)).
- 4. $\bigcap \bigcup (\mathbf{P}(2) 2)$.
- 5. $\bigcap \{ \mathbf{P}(1), \mathbf{P}(\mathbf{P}(1)), \mathbf{P}(\mathbf{P}(\mathbf{P}(1))) \}$
- **1.2.31** Sea $x = \{1, \{1\}\}$. Calcular $\bigcup x$, P(x), $P(\bigcup x)$, $\bigcup P(x)$.
- **1.2.32** Encontrar dos conjuntos a y b tales que $a \in b$ y $\mathbf{P}(a) \notin \mathbf{P}(b)$.
- **1.2.33** Demostrar que $\bigcup P(a) \subseteq a$.

- **1.2.34** Demostrar que $a \subseteq \mathbf{P}(\bigcup a)$. ¿Cuándo se da la igualdad?.
- **1.2.35** Demostrar que si $a \in b$, entonces $\mathbf{P}(a) \in \mathbf{P}(\mathbf{P}(\cup b))$.
- **1.2.36** Demostrar que $2 \in \mathbf{P}(\mathbf{P}(\mathbf{P}(a)))$, para cualquier conjunto a.
- **1.2.37** Demostrar que $P(a) = P(b) \implies a = b$.
- **1.2.38** Demostrar que si $a \neq \emptyset$, entonces $\mathbf{P}(\bigcap a) = \bigcap \{\mathbf{P}(c) : c \in a\}$.
- **1.2.39** Demostrar que $\bigcup \{\mathbf{P}(c): c \in a\} \subseteq \mathbf{P}(\cup a)$. ¿Cuándo se da la igualdad?
- **1.2.40** Demostrar que no existe ningún conjunto a tal que $P(a) \subseteq a$.
- ${\bf 1.2.41}$ Sean a y b conjuntos. Demostrar que las siguientes clases son conjuntos:
 - 1. $\{\{\{c\}\}\}: c \in a \cup b\}$
 - 2. $\{a \cup c : c \in b\}$
 - 3. $\{\mathbf{P}(c) : c \in a\}$
 - $4. \{c \cup d : c \in a \land d \in b\}$
- **1.2.42** Demostrar, sin usar el axioma del par, que si a es un conjunto, entonces $\{a\}$ también lo es.

Relaciones y funciones

2.1 Par ordenado y conjunto cartesiano

- **2.1.1** Calcular $(0,1) \cap (1,0)$.
- **2.1.2** Hallar $\bigcap \bigcap \{\langle a, b \rangle\}$.
- **2.1.3** Sean a y b conjuntos. Probar que:
 - 1. $\bigcap \bigcap \langle a, b \rangle = a$.
 - 2. $a \neq b \implies \bigcap (\bigcup \langle a, b \rangle \bigcap \langle a, b \rangle) = b$.
 - 3. $(\bigcap \bigcup \langle a, b \rangle) \cup (\bigcup \bigcup \langle a, b \rangle \bigcup \bigcap \langle a, b \rangle) = b$.
 - 4. $(\bigcap \bigcup \langle a, b \rangle) \cup (\bigcup \bigcup \langle a, b \rangle \bigcap \bigcup \langle a, b \rangle) = a \cup b$.
- **2.1.4** Determinar cuáles de las siguientes propuestas pueden servir como definición de par ordenado (es decir, para cuáles se verifica $\langle a,b\rangle_i=\langle c,d\rangle_i \leftrightarrow a=c \land b=d$)
 - 1. $\langle a, b \rangle_1 = \{a, b\}$
 - 2. $\langle a, b \rangle_2 = \{\{a, 0\}, b\}$
 - 3. $\langle a, b \rangle_3 = \{\{a, 0\}, \{b, \{0\}\}\}\}$
 - 4. $\langle a, b \rangle_4 = \{\{a, 0\}, \{b\}\}\$
 - 5. $\langle a, b \rangle_5 = \{a, \{b\}\}\$
 - 6. $\langle a, b \rangle_6 = \{\{\{a\}, 0\}, \{\{b\}\}\}\$

- **2.1.5** Demostrar que $\{z: (\exists x)(\exists y)[z=\langle x,y\rangle]\}$ es una clase propia.
- **2.1.6** Probar que $\{\{0\}\}$ es un par ordenado.
- 2.1.7 Comprobar que la siguiente definición de terna ordenada es incorrecta:

$$\langle x, y, z \rangle' = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

(es decir, dar un ejemplo en el que $\langle x,y,z\rangle'=\langle u,v,w\rangle',$ pero $x\neq u\vee y\neq v\vee z\neq w.$

- **2.1.8** Hallar a, b, c tales que $\langle \langle a, b \rangle, c \rangle \neq \langle a, \langle b, c \rangle \rangle$
- 2.1.9 Demostrar:
 - 1. $a \times (b \cup c) = (a \times b) \cup (a \times c)$
 - $2. \ a \times (b-c) = (a \times b) (a \times c)$
 - 3. $a \times (b \cap c) = (a \times b) \cap (a \times c)$
- 2.1.10 Dar ejemplos de conjuntos tales que
 - 1. $a \times b \neq b \times a$
 - 2. $a \times (b \times c) \neq (a \times b) \times c$
 - 3. $a \cup (b \times c) \neq (a \cup b) \times (a \cup c)$
 - 4. $a^3 = a \times a^2$
- **2.1.11** Sea $a \neq \emptyset$. Probar que las condiciones siguientes son equivalentes:
 - 1. $b \subseteq c$.
 - 2. $a \times b \subseteq a \times c$.
 - 3. $b \times a \subseteq c \times a$.
- **2.1.12** Demostrar que si $x^2 = y^2$, entonces x = y.
- **2.1.13** Demostrar que si $x \times y = x \times z$ y $x \neq \emptyset$, entonces y = z.
- **2.1.14** Hallar un conjunto x tal que $x^2 = x$.
- **2.1.15** Demostrar que si x e y son conjuntos, entonces $\{\{z\} \times y : z \in x\}$ es un conjunto.

2.2 Relaciones

- **2.2.1** Demostrar que si x es un conjunto, entonces $\{r: r \text{ es una relación en } x\}$ es un conjunto.
- 2.2.2 Escribir todas las relaciones en el conjunto 1.
- **2.2.3** Probar que:
 - 1. $(a \cup b)^{-1} = a^{-1} \cup b^{-1}$
 - 2. $(a \cap b)^{-1} = a^{-1} \cap b^{-1}$
 - 3. $(a-b)^{-1} = a^{-1} b^{-1}$
- **2.2.4** Demostrar que si x e y son conjuntos, entonces $x \upharpoonright y$ también lo es.
- **2.2.5** Probar que $(r \circ s)^{-1} = s^{-1} \circ r^{-1}$.
- **2.2.6** Sea $r = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle\}$. Calcular $r \circ r$, $r \upharpoonright \{1\}$, $r^{-1} \upharpoonright \{1\}$, $r[\{1\}]$, $r^{-1}[\{1\}]$.
- **2.2.7** Calcular todos los pares ordenados de P(2).
- **2.2.8** Calcular $P(2)^{-1} \circ (P(2) \upharpoonright 1)$
- **2.2.9** Demostrar:
 - 1. $r \upharpoonright x = r \cap (x \times \operatorname{rango}(r))$
 - 2. $r \upharpoonright (b \cup c) = (r \upharpoonright b) \cup (r \upharpoonright c)$

2.3 Aplicaciones

- **2.3.1** Demostrar:
 - 1. $f \upharpoonright x, y^x, f[z]$ y $f^{-1}[z]$ son conjuntos.
 - 2. Si $f \in y^x$ y $g \in z^y$, entonces $g \circ f \in z^x$.
- **2.3.2** Demostrar que $A = \{f : f \text{ es una aplicación}\}$ es una clase propia.
- **2.3.3** Demostrar que si x es un conjunto, entonces $A = \{\text{dom}(f) : f \in x\}$ es un conjunto.
- **2.3.4** Sea $f = \{\langle 0, 2 \rangle, \langle 1, 0 \rangle\}.$
 - 1. Demostrar que f es una aplicación.

- 2. Calcular f(0), f[0], f[1], f^{-1} , $f \upharpoonright 1 \lor \bigcup \bigcup f$.
- ${\bf 2.3.5}~{\rm Sean}~a$ y b conjuntos y F una función. Probar que:
 - 1. $F^{-1}[\cup a] = \bigcup \{F^{-1}[c] : c \in a\}.$
 - $2. \ a \neq \emptyset \quad \Longrightarrow \quad F^{-1}[\cap a] = \bigcap \{F^{-1}[c] : c \in a\}.$
 - 3. $F^{-1}[a-b] = F^{-1}[a] F^{-1}[b]$.
- **2.3.6** Determinar los siguientes conjuntos: 2^2 , 2^1 , 2^0 , 0^0 , 0^2 .

Clases bien ordenadas

3.0.7 Determinar si las siguientes relaciones son órdenes parciales, órdenes totales o buenos órdenes en A.

- 1. $A = \omega$, $xRy \leftrightarrow x < y$.
- $2. \ A = \mathbb{Z}, \quad xRy \leftrightarrow x < y.$
- 3. $A = \omega$, $xRy \leftrightarrow (x \text{ divide a } y) \land x \neq y$.
- 4. $A = \emptyset$, $R = \emptyset$.
- 5. $A = \omega$, $R = \emptyset$.
- 6. $A = 2^{\omega}$, $fRg \leftrightarrow (\exists n \in \omega)[f(n) < g(n) \land (\forall m < n)[f(m) = g(m)]].$
- **3.0.8** Sean A y B conjuntos y

$$Fn(A, B) = \{f : (f \text{ es una función }) \land \text{dom}(f) \subseteq A \land \text{rang}(f) \subseteq B\}$$

- 1. Demostrar que Fn(A, B) es un conjunto.
- 2. ¿Es \subset un orden parcial en Fn(A, B)?, ¿es total?, ¿es buen orden?.
- **3.0.9** En el conjunto $P(\omega)$ definimos la relación R por:

$$a \triangleleft b \leftrightarrow (\exists n \in \omega)[n \cap a = n \cap b \land n \in a \land n \notin b]$$

¿Es R un orden parcial en $P(\omega)$?, ¿es total?, ¿es buen orden?.

3.0.10 Sea < el orden usual de ω . Para cada $n \in \omega$, sea f(n) el número de divisores primos de n. Sea R la relación definida en ω por:

$$mRn \leftrightarrow f(m) < f(n) \lor (f(m) = f(n) \land m < n)$$

- 1. Representar la relación R.
- 2. ¿Es R un orden parcial en ω ?, ¿es total?, ¿es buen orden?.
- 3. Demostrar que $\langle \omega, \langle \rangle \not\cong \langle \omega, R \rangle$.
- **3.0.11** Sea A un conjunto y $R \subseteq A \times A$. Demostrar o refutar:
 - 1. Si R es un orden parcial en A, entonces R^{-1} es un orden parcial en A.
 - 2. Si R es un orden total en A, entonces R^{-1} es un orden total en A.
 - 3. Si R es un buen orden en A, entonces R^{-1} es un buen orden en A.
- **3.0.12** Sea A un conjunto, $R \subseteq A \times A$ y $B \subseteq A$. Demostrar o refutar:
 - 1. Si R es un orden parcial en A, entonces $R \cap (B \times B)$ es un orden parcial en B.
 - 2. Si R es un orden total en A, entonces $R \cap (B \times B)$ es un orden total en B.
 - 3. Si R es un buen orden en A, entonces $R \cap (B \times B)$ es un buen orden en B.
- **3.0.13** Sean A y B conjuntos, $S \subseteq B \times B$, $F : A \to B$ invectiva y S la relación definida en A por: $xRy \leftrightarrow F(x)SF(y)$. Demostrar o refutar:
 - 1. Si S es un orden parcial en B, entonces R es un orden parcial en A
 - 2. Si S es un orden total en B, entonces R es un orden total en A
 - 3. Si S es un buen orden en B, entonces R es un buen orden en A
- **3.0.14** Sean (A, R) y (B, S) dos conjuntos parcialmente ordenados y supongamos que $A \cap B = \emptyset$. Sea $T = R \cup S \cup (A \times B)$.
 - 1. Demostrar que T es un orden parcial en $A \cup B$.
 - 2. Si R y S son totales, ξ es T total?.
 - 3. Si R y S son buenos órdenes, ¿es T un buen orden?.
- **3.0.15** Sean (A, R) y (B, S) dos conjuntos parcialmente ordenados y T la relación sobre $A \times B$ definida por: $(a, b)T(a', b') \leftrightarrow (aRa') \lor (a = a' \land bSb')$.

- 1. Demostrar que T es un orden parcial en $A \times B$.
- 2. Si R y S son totales, ξ es T total?.
- 3. Si R y S son buenos órdenes, ¿es T un buen orden?.
- **3.0.16** Sean $\langle A, R \rangle$, $\langle B, S \rangle$ conjuntos totalmente ordenados y $F : A \to B$. Demostrar que las siguientes condiciones son equivalentes:
 - 1. F es un homomorfismo (i.e. $(\forall x, y \in A)[xRy \to F(x)SF(y)]$)
 - 2. F es creciente (i.e. $(\forall x, y \in A)[xRy \leftrightarrow F(x)SF(y)]$)
 - 3. F es una inmersión (i.e. F es inyectiva y creciente).
- **3.0.17** Sean $\langle A, R \rangle$, $\langle B, S \rangle$ conjuntos parcialmente ordenados y $F: A \to B$. Demostrar o refutar:
 - 1. Si F es un homomorfismo, entonces F es inyectiva.
 - 2. Si F es un homomorfismo, entonces F es creciente.
- **3.0.18** Sea $\langle x, < \rangle$ un conjunto parcialmente ordenado. Probar que existe un $y \subseteq \mathbf{P}(x)$ tal que $\langle x, < \rangle \cong \langle y, \subset \rangle$.
- **3.0.19** Sea $\langle x, < \rangle$ un conjunto totalmente ordenado y $A = \{s \subseteq x : s \text{ segmento de } x\}$. Probar que:
 - 1. $s, s' \in A \implies s \subseteq s' \lor s' \subseteq s$.
 - $2. \ a,b \in x \land a \neq b \quad \Longrightarrow \quad (\exists s \in A)[(a \in s \land b \not\in s) \lor (a \not\in s \land b \in s)]$
 - $3. \ a \subseteq A \implies \cup a \in A.$
 - $4. \ a \subseteq A \implies x \cap (\cap a) \in A.$
- **3.0.20** Sea $B \subseteq \mathbf{P}(A)$ tal que:

$$(\forall s, s' \in B)[s \subseteq s' \lor s' \subseteq s] (\forall x, y \in A)[x \neq y \rightarrow (\exists s \in B)[(x \in s \land y \notin s) \lor (x \notin s \land y \in s)]$$

1. Probar que existe una única relación de orden total, <, sobre A tal que:

$$(\forall s \in B)[s \text{ es un segmento de } \langle A, < \rangle]$$

- 2. Si además se verifican:
 - (a) $C \subseteq B \to \cup C \in B$

(b)
$$C \subseteq B \to A \cap (\cap C) \in B$$

Probar que, si < es la relación de orden total sobre A considerada en el apartado (1), entonces

$$A = \{s : s \text{ es un segmento de } \langle A, < \rangle \}$$

- 3. Buscar ejemplos que prueben que las condiciones (2.a) y (2.b) son necesarias para la igualdad anterior.
- **3.0.21** Para cada una de las siguientes condiciones, buscar un conjunto totalmente ordenado $\langle A, < \rangle$ que la verifique.
 - 1. A tiene un segmento inicial B tal que $A \neq B$ y B no es una sección inicial de A.
 - 2. Existe una $F: A \to B$ creciente tal que F(x) < x para algún $x \in A$.
 - 3. Existe un $x \in A$ tal que $\langle A, < \rangle \cong \langle A_x, < \rangle$.
 - 4. Existe un $F: \langle A, < \rangle \cong \langle A, < \rangle$ tal que $F \neq I_A$.
- **3.0.22** Sea $\langle A, < \rangle$ un conjunto totalmente ordenado. ¿Es válida la siguiente condición?:

$$(\forall x, y \in A)[A_x \cong A_y \to x = y]$$

3.0.23 Sea $\langle A, < \rangle$ una clase bien ordenada y $B \subseteq A$. Demostrar que

$$A \cong B \vee (\exists x \in A)[B \cong A_x]$$

- **3.0.24** Demostrar:
 - 1. Si $a \times a$ es un conjunto bien ordenable, entonces a también lo es.
 - 2. Si P(a) es un conjunto bien ordenable, entonces a también lo es.

La clase de los ordinales

4.1 Conjuntos transitivos

- **4.1.1** Dar conjuntos a, b, c, d, e tales que $\{\{1\}\}, a, b\}$ y $\{\{\{1\}\}\}, c, d, e\}$ sean conjuntos transitivos.
- **4.1.2** Dado $a = \langle 0, 1 \rangle$, hallar un conjunto transitivo b_1 tal que $a \subseteq b_1$ y un conjunto transitivo b_2 tal que $b \in b_2$.
- **4.1.3** Sea a un conjunto.
 - 1. Demostrar que si a es transitivo, entonces $\bigcup a$ también lo es.
 - 2. ¿Es cierto el recíproco?.
 - 3. Demostrar que si a es transitivo, entonces P(a) también lo es.
 - 4. ¿Es cierto el recíproco?.
- **4.1.4** Sea a un conjunto. Demostrar que las siguientes condiciones son equivalentes:
 - 1. a es transitivo.
 - 2. $\int a^+ = a$.

4.2 La clase de los números ordinales

4.2.1 Dar ejemplos de:

- 1. conjuntos transitivos que no sean ordinales.
- 2. conjuntos bien ordenados por la relación de pertenencia que no sean ordinales.
- **4.2.2** Demostrar que si a es un conjunto, entonces son equivalentes:
 - 1. a es un ordinal.
 - 2. \in_a es un buen orden en a y $(\forall x \in a)[x = \{y \in a : y \in x\}].$
 - 3. Existe un buen orden R en a tal que $(\forall x \in a)[x = \{y \in a : yRx\}].$
 - 4. $\subset_a = \{\langle x, y \rangle \in a^2 : x \subset y\}$ es un buen orden en a y $(\forall x \in a)[x = \{y \in a : y \subset x\}]$.

4.3 Ordenación de los ordinales

- **4.3.1** Demostrar que si $\alpha < \beta$, entonces $\alpha^+ < \beta^+$.
- 4.3.2 Sean a y b dos conjuntos de ordinales. Demostrar que si

$$(\forall \alpha \in a)(\exists \beta \in b)[\alpha < \beta],$$

entonces $\bigcup a \in \bigcup b$ ó $\bigcup a = \bigcup b$.

Clases bien ordenadas y ordinales

5.1 El axioma de reemplazamiento

- **5.1.1** Sean a y b conjuntos. Demostrar, usando el axioma de reemplazamiento, que las siguientes clases son conjuntos:
 - 1. $\{\{\{c\}\}: c \in a \cup b\}$
 - $2. \ \{a \cup c : c \in b\}$
 - 3. $\{\mathbf{P}(c) : c \in a\}$
 - $4. \ \{c \cup d : c \in a \land d \in b\}$
- **5.1.2** Demostrar que si F es una aplicación, entonces F es un conjunto syss $\mathrm{dom}(F)$ es un conjunto.
- 5.1.3 Sea F una aplicación. Demostrar o refutar:
 - 1. Si x es un conjunto, entonces $F^{-1}[x]$ es un conjunto.
 - 2. Si x es un conjunto y F es inyectiva, entonces $F^{-1}[x]$ es un conjunto.
- **5.1.4** Demostrar la existencia del producto cartesiano $a \times b$ de dos conjuntos $a \ y \ b$ sin usar el axioma del conjunto de las partes y usando el axioma de reemplazamiento.

5.2 Clases bien ordenadas y ordinales

5.2.1 Demostrar que si $\langle a, < \rangle$ es un conjunto bien ordenado y $a \neq \emptyset$, entonces

$$t.o.(\langle a, z \rangle) = \{t.o.(\langle a_x, < \rangle) : x \in a\}$$

- **5.2.2** Sea $a = \{x, y, z\}$ y < el orden definido por x < y < z. Calcular, aplicando el ejercicio anterior, el tipo ordinal de $\langle a, < \rangle$.
- **5.2.3** Sea R la relación definida en \mathbb{Z} por

$$xRy \leftrightarrow |x| < |y| \lor (|x| = |y| \land x < y)$$

- 1. Demostrar que R es un buen orden en \mathbb{Z} .
- 2. Calcular $t.o.(\langle \mathbb{Z}_3, R \rangle)$.
- 3. Calcular $t.o.(\langle \mathbb{Z}_x, R \rangle)$.
- **5.2.4** Sea R la relación definida en $\mathbb{Z} \times \mathbb{N}$ por

$$\langle x, y \rangle R \langle x', y' \rangle \leftrightarrow x + y < x' + y' \lor (x + y = x' + y' \land x < x')$$

- 1. Demostrar que R es un buen orden en $\mathbb{N} \times \mathbb{N}$.
- 2. Calcular $t.o.(\langle \mathbb{N} \times \mathbb{N}_{\langle 1,2 \rangle}, R \rangle)$.
- 3. Calcular $t.o.(\langle \mathbb{N} \times \mathbb{N}_{\langle x,y \rangle}, R \rangle)$.
- **5.2.5** Sea R la relación definida en $\mathbb{Z} \times \mathbb{N}$ por

$$\langle x,y \rangle R \langle x,' \rangle y' \leftrightarrow \left\{ \begin{array}{l} \max(x,y) < \max(x',y') \\ \vee \\ (\max(x,y) = \max(x',y') \land x < x') \\ \vee \\ (\max(x,y) = \max(x',y') \land x = x' \land y < y') \end{array} \right.$$

- 1. Demostrar que R es un buen orden en $\mathbb{N} \times \mathbb{N}$.
- 2. Calcular $t.o.(\langle \mathbb{N} \times \mathbb{N}_{\langle 1,2 \rangle}, R \rangle)$.
- 3. Calcular $t.o.(\langle \mathbb{N} \times \mathbb{N}_{\langle 0, y \rangle}, R \rangle)$.
- 4. Calcular $t.o.(\langle \mathbb{N} \times \mathbb{N}_{\langle x,y \rangle}, R \rangle)$.

Ordinales finitos

6.1 Ordinales sucesores y límites

- **6.1.1** Sea $\langle a, < \rangle$ un conujunto bien ordenado no vacío y $\alpha = t.o.(\langle a, < \rangle)$. Demostrar:
 - 1. Si a no tiene elemento maxiomal, entonces α es límite.
 - 2. ¿Es cierto el recíproco?.
- 6.1.2 Sea a un conjunto no vacío de ordinales. Demostrar o refutar:
 - 1. Si los elementos de a son límites, entonces $\bigcup a$ es límite.
 - 2. Si los elementos de a son sucesores, entonces $\bigcup a$ es sucesor.
- **6.1.3** Demostrar que si α es límite y $\beta < \alpha$, existe \gg tal que $\beta < \gg < \alpha$.
- **6.1.4** Demostrar que

$$\bigcup \alpha = \begin{cases} 0, & \text{si } \alpha = 0; \\ \beta, & \text{si } \alpha = \beta + 1; \\ \alpha, & \text{si } \alpha \text{ es límite.} \end{cases}$$

6.2 El axioma del infinito

 ${f 6.2.1}$ Sea a un conjunto inductivo. Demostrar que los siguientes conjuntos son inductivos:

- 1. $\{x \in a : x \text{ transitivo}\}$
- 2. $\{x \in a : x \text{ transitivo } \land x \notin x\}$
- 3. $\{x \in a : x = 0 \lor (x \text{ sucesor})\}$
- **6.2.2** Sea α un ordinal. Demostrar que α es límite syss α es inductivo.
- **6.2.3** Sea a un conjunto no vacío. Demostrar que si los elementos de a son inductivos, entonces $\bigcap a$ es inductivo.
- **6.2.4** Demostrar que si a es inductivo, entonces $a \cap \mathbf{Ord}$ es inductivo.

6.3 Propiedades de los números naturales

- **6.3.1** Demostrar que $P(\omega)$ no es un ordinal.
- **6.3.2** ¿Es cierto que si a es inductivo, entonces P(a) es inductivo?.
- **6.3.3** Sean R y S las relaciones sobre $2 \times \omega$ definidas por

$$\langle x, y \rangle R \langle x', y' \rangle \leftrightarrow x + y < x' + y' \lor (x + y = x' + y' \land x < x')$$

$$\langle x, y \rangle S \langle x', y' \rangle \leftrightarrow x < x' \lor (x = x' \land y < y')$$

Demostrar:

- 1. $t.o.(\langle 2 \times \omega, R \rangle) = \omega$
- 2. $t.o.(\langle 2 \times \omega, S \rangle)$ es un ordinal límite.
- 3. $t.o.(\langle 2 \times \omega, S \rangle) > \omega$.
- **6.3.4** Demostrar que si $a \subseteq \omega$ es no vacío y acotado superiormente, entonces a tiene un elemento máximo.
- **6.3.5** Demostrar que un ordinal α es un número natural syss todo subconjunto no vacío de α tiene máximo.

Teoremas de inducción y recursión

7.1 Teoremas de inducción

7.1.1 Demostrar que si a es un conjunto y $G: V \times V \to V$, entonces existe una única $f: \omega \to V$ tal que

$$f(0) = a$$

 $(\forall n)[f(n+1) = G(f(n), n)]$

7.2 Teoremas de recursión

7.2.1 Demostrar que si a es un conjunto y $G, H: V \to V$, entonces existe una única $F: \mathbf{Ord} \to V$ tal que

$$F(\alpha) = \begin{cases} a, & \text{si } \alpha = 0; \\ G(F(\beta)), & \text{si } \alpha = \beta + 1; \\ H(F(\alpha)), & \text{si } \alpha \text{ es límite} \end{cases}$$

7.2.2 Demostrar que si $G:V\times V\to V,$ entonces existe una única $F:V\times \mathbf{Ord}\to V$ tal que

$$(\forall a)(\forall \alpha)[F(\alpha) = G(a, F_a \upharpoonright \alpha)],$$

donde $F_a: V \to V$ está definida por $F_a(b) = F(a, b)$.

7.2.3 Dar un ejemplo de un conjunto inductivo que no sea un ordinal.

7.2.4 Sea a un conjunto, $G:V\to V$ y $f:\omega\to V$ definida por

$$\begin{split} f(0) &= a \\ (\forall n) [f(n+1) &= G(f(n))] \end{split}$$

Demostrar que si G es inyectiva y $a \notin \operatorname{rango}(G)$, entonces f es inyectiva.

7.2.5 Demostrar que si a es un conjunto y $G: V \to V$, entonces existe una única $f: \omega \to V$ tal que

$$f(0) = a$$
$$(\forall n)[f(n+1) = G(f(n))]$$

7.2.6 Demostrar que si $H:V\to V$ y $G:V\times V\times V\to V$ entonces existe una única $F:V\times \omega\to V$ tal que

$$(\forall a)[F(a,0) = H(a)]$$

$$(\forall a)(\forall n)[F(a,n+1) = G(a,F(a,n),n)]$$

7.2.7 Demostrar que si $h:a\to b$ y $g:a\times b\times \omega\to b$ entonces existe una única $F:a\times \omega\to b$ tal que

$$(\forall x \in a)[f(x,0) = h(x)]$$

$$(\forall x \in a)(\forall n)[f(x,n+1) = g(x,f(x,n),n)]$$

7.2.8 Demostrar que existe una única $+: \omega \times \omega \to \omega$ tal que

$$(\forall m)[+(m,0) = m]$$

 $(\forall m)(\forall n)[+(m,n+1) = +(m,n) + 1]$

7.2.9 Demostrar que existe una única $\cdot : \omega \times \omega \to \omega$ tal que

$$(\forall m)[\cdot(m,0) = 0]$$

$$(\forall m)(\forall n)[\cdot(m,n+1) = \cdot(m,n) + m]$$

7.2.10 (La función factorial) Demostrar que existe una única $f:\omega\to\omega$ tal que

$$f(0) = 1 (\forall n)[f(n+1) = (n+1)f(n)]$$

7.2.11 (La función de Fibonacci) Demostrar que existe una única $f:\omega\to\omega$ tal que

$$f(0) = 1$$

$$f(1) = 1$$

$$(\forall n)[f(n+2) = f(n) + f(n+1)]$$

7.2.12 Demostrar que las siguientes clases son conjuntos:

- 1. $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}$
- 2. $\{\emptyset, \mathbf{P}(\emptyset), \mathbf{P}(\mathbf{P}(\emptyset)), \ldots\}$
- 3. $\{0, 1, 2, \dots, \omega, \omega^+, \omega^{++}, \dots\}$

Aritmética ordinal

8.1 Funciones normales

- **8.1.1** Determinar cuáles de las siguientes funciones $F_i: \mathbf{Ord} \to \mathbf{Ord}$ son normales:
 - 1. $F_1(\alpha) = \alpha + 1$
 - 2. $F_2(\alpha) = \begin{cases} \alpha, & \text{si } \alpha < \omega; \\ \omega, & \text{si } \omega \ge \omega. \end{cases}$
 - 3. $F_3(\alpha) = \begin{cases} \alpha + 1, & \text{si } \alpha \text{ no es límite;} \\ \alpha, & \text{si } \alpha \text{ es límite.} \end{cases}$
 - 4. $F_4(\alpha) = \bigcup \alpha$
- **8.1.2** Demostrar que si F es una función normal, entonces $\{\alpha: F(\alpha) = \alpha\}$ es una clase propia.
- **8.1.3** Demostrar que la clase $\{\alpha : \alpha \text{ es límite}\}\$ es una clase propia.

8.2 Adición de ordinales

- **8.2.1** Simplificar la expresión $(\omega + 1) + \omega$.
- **8.2.2** Demostrar que si $\alpha + \beta = \gamma$, entonces $\alpha \leq \gamma$ y $\beta \leq \gamma$.
- 8.2.3 ¿Existe algún ordinal α tal que $\alpha + \omega = \alpha^+$?.
- **8.2.4** Determinar los ordinales $\alpha + \beta + \gamma$ cuando $\{\alpha, \beta, \gamma\} = \{1, 2, \omega\}$.

- **8.2.5** En cada caso, dar tres ordinales α , β y γ de modo que al formar todas las posibles sumas $\alpha' + \beta' + \gamma'$ con $\{\alpha', \beta', \gamma'\} = \{\alpha, \beta, \gamma\}$ nos dé exactamente 1, 2, 3, 4 ó 5 valores distintos.
- **8.2.6** Calcular todas las sumas $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ siendo $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} =$ $\{1, 2, 4, 5, \omega\}.$
- **8.2.7** Dar ejemplos de ordinales $\alpha < \beta$ tales que
 - 1. $\alpha + \beta < \beta + \alpha$
 - 2. $\beta + \alpha < \alpha + \beta$
- 8.2.8 Determinar una permutación de los ordinales $1, 2, \omega$ tal que su suma sea:
 - 1. ω
 - 2. $\omega + 1$
 - 3. $\omega + 2$
 - 4. $\omega + 3$
- **8.2.9** Sea $\mathbf{Ord}^{<\omega} = \bigcup \{Ord^n : n \in \omega\}$, donde Ord^n es el conjunto de las aplicaciones de n en \mathbf{Ord} .
 - 1. Demostrar que $\mathbf{Ord}^{<\omega}$ es una clase propia.
 - 2. Sobre $\mathbf{Ord}^{<\omega}$ definimos la siguiente relación, \triangleleft . Sea $s,t \in \mathbf{Ord}^{<\omega}$

Sobre
$$\mathbf{Ord}^{<\omega}$$
 definimos la siguiente relación, \triangleleft . Sea $s,t \in \mathbf{Ord}^{<\omega}$

$$\begin{cases} sup(rang(s)) < sup(rang(t)) \\ \lor \\ (sup(rang(s)) = sup(rang(t)) \land dom(s) < dom(t)) \\ \lor \\ \left\{ (sup(rang(s)) = sup(rang(t)) \land dom(s) = dom(t) \\ \land \\ (\exists k \in dom(s))[s \upharpoonright k = t \upharpoonright k \land s(k) < t(k)] \right\} \end{cases}$$
Probar que:

Probar que:

- (a) Para todo $t \in \mathbf{Ord}^{<\omega}, \{s \in \mathbf{Ord}^{<\omega} : s \triangleleft t\}$ es un conjunto.
- (b) \triangleleft es un buen orden sobre $\mathbf{Ord}^{<\omega}$.
- (c) Existe un único isomorfismo $F: \mathbf{Ord} \to \mathbf{Ord}^{<\omega}$.

- (d) Calcular F(0), $F(\omega)$ y $F(\omega + \omega)$.
- **8.2.10** Encontrar un conjunto $A \subseteq \mathbb{Q}$ tal que el tipo ordinal de $\langle A, <_{\mathbb{Q}} \rangle$ sea:
 - 1. $\omega + 1$
 - 2. $\omega + n$, con n > 0
 - 3. $\omega + \omega$
- **8.2.11** Sea $n < \omega$. Calcular el menor α tal que $n + \alpha = \alpha$ (es decir, el menor punto fijo de $F_n(\xi) = n + \xi$).
- **8.2.12** Probar que para cada α existe un único ordinal β y un único $n \in \omega$ tales que $\alpha = \beta + n$ y $\beta = 0$ ó β es límite.
- **8.2.13** Sean $\alpha, \beta \in \mathbf{Ord}$ con $\beta \neq 0$. Demostrar que $\alpha + \beta$ es límite syss β es límite.
- **8.2.14** Demostrar que si α es límite y $n \in \omega$, entonces $n + \alpha = \alpha$.

8.3 Multiplicación de ordinales

- **8.3.1** Determinar una permutación de los ordinales $\omega, \omega+1$ y $\omega.2+1$ tales que su suma sea:
 - $1. \omega.4$
 - 2. $\omega . 4 + 1$.
- **8.3.2** Simplificar:
 - $1. \ 2.\omega$
 - 2. $(\omega . 3 + 2) + (\omega + 1)$.
- **8.3.3** Calcular todas las sumas posibles de los siguientes ordinales (incluyendo en cada caso todos los sumandos):
 - 1. $\omega . 2, \omega . 2 + 1$
 - 2. $\omega.2, \omega.2 + 1, \omega.4$

- 3. $1, \omega, \omega.2$
- **8.3.4** Demostrar que si m > 0, entonces $n + \omega . m = \omega . m$.
- **8.3.5** Demostrar que para todo α , $\alpha + 1 + \alpha = 1 + \alpha.2$.
- **8.3.6** Sea $n \in \omega$. Calcular el menor α tal que $n \cdot \alpha = \alpha$.
- **8.3.7** Encontrar un conjunto $A \subseteq \mathbb{Q}$ tal que el tipo ordinal de $\langle A, <_{\mathbb{Q}} \rangle$ sea:
 - 1. ω .2
 - $2. \omega.3$
 - 3. $\omega.\omega$
- **8.3.8** Determinar si la función $F: \mathbf{Ord} \to \mathbf{Ord}$ definida por $F(\alpha) = \alpha.2$ es creciente, continua o normal.
- **8.3.9** Demostrar que si m > 0, entonces $n + \omega . m = \omega . m$.
- **8.3.10** Sean $m, n_1, n_2 \in \omega$. Calcular:
 - 1. $(\omega . n_1 + n_2) m$
 - 2. $m(\omega . n_1 + n_2)$
 - 3. $(\omega . n_1 + n_2)\omega$
 - 4. $\omega(\omega . n_1 + n_2)$
- **8.3.11** Demostrar que $\alpha.\beta = 0$ syss $\alpha = 0$ ó $\beta = 0$.
- **8.3.12** Demostrar que si $\alpha < \beta$ y γ es sucesor, entonces $\alpha \gamma < \beta \gamma$.
- **8.3.13** Demostrar que si $\alpha > 1$ y $\beta > 1$, entonces $\alpha + \beta \leq \alpha \beta$.
- **8.3.14** Demostrar que $\alpha\beta = \sup\{\alpha\gamma + \alpha : \gamma < \beta\}.$

8.4 Sustracción y división de ordinales

- **8.4.1** En cada caso, hallar el cociente y el resto de dividir α por β :
 - 1. $\alpha = \omega + 4, \beta = \omega$
 - 2. $\alpha = \omega . 3 + 2, \beta = \omega + 1$
 - 3. $\alpha = \omega^{\omega}, \beta = \omega$

4.
$$\alpha = \omega^2 + \omega.5 + 3, \beta = \omega^2 + 1$$

5.
$$\alpha = \omega^{\omega} + \omega^3 + \omega \cdot 3 + 2, \beta = \omega^5$$

6.
$$\alpha = \omega^5, \beta = \omega^\omega + \omega^3 + \omega \cdot 3 + 2$$

8.4.2 Para cada $n \in \omega$, se definen

$$A_n = \{\alpha : n + \alpha = \alpha\}$$
 $A'_n = \{\alpha : n \cdot \alpha = \alpha\}$

Demostrar:

- 1. Si n = 0, entonces $A_n = \mathbf{Ord}$.
- 2. Si $n \neq 0$, entonces $A_n = \mathbf{Ord} \omega$.
- 3. Si n = 0, entonces $A'_n = 1$.
- 4. Si $n \neq 0$, entonces $A'_n = \{\omega.\beta : \beta > 0\}$.
- **8.4.3** Demostrar que si α es límite y $m \neq 0$, entonces $m(\alpha + n) = \alpha + mn$
- **8.4.4** Demostrar que si $\alpha > 0$ y β es límite, entonces $(\alpha + 1)\beta = \alpha\beta$.

8.5 Exponenciación ordinal

- **8.5.1** Determinar todos los ordinales $\alpha.\beta.\gamma$ tales que $\{\alpha,\beta,\gamma\} = \{3,\omega,\omega.2\}$.
- **8.5.2** Determinar si las siguientes funciones $F_i : \mathbf{Ord} \to \mathbf{Ord}$ son continuas o crecientes:

1.
$$F_1(\alpha) = \alpha^2$$

2.
$$F_2(\alpha) = \omega^{\alpha} + \omega$$

- **8.5.3** Demostrar que si n > 1, entonces $n^{\omega} = \omega$.
- **8.5.4** Demostrar o refutar:

1.
$$(\forall \alpha)(\forall \beta)(\forall \gamma)[\alpha^{\beta} = \alpha^{\gamma} \rightarrow \beta = \gamma]$$

2.
$$(\forall \alpha)(\forall \beta)(\forall \gamma)[\alpha < \beta \rightarrow \alpha^{\gamma} < \beta^{\gamma}]$$

8.5.5 Demostrar:

- 1. Si $\alpha > 1$ y β es límite, entonces α^{β} es límite.
- 2. Si α es límite y $\beta > 0$, entonces α^{β} es límite.
- **8.5.6** Demostrar que si $\alpha > 1$, entonces $\beta \leq \alpha^{\beta}$.
- **8.5.7** Sean α y β dos ordinales tales que $\alpha < \beta$. Demostrar:
 - 1. $\omega^{\alpha} + \omega^{\beta} = \omega^{\beta}$.
 - 2. Si m > 0, entonces $\omega^{\alpha} n + \omega^{\beta} m = \omega^{\beta} m$.
- 8.5.8 Simplificar:
 - 1. $\omega + (\omega^2 + 1)$
 - 2. $(\omega^2 + \omega . 2 + 2) + (\omega + 1)$
 - 3. $(\omega^7 + \omega^5 + \omega^3.2 + \omega.10 + 3) + (\omega^4 + \omega^2.2 + 2)$
- **8.5.9** Determinar una permutación de los ordinales ω , $\omega.2+1$, $\omega.5$ y ω^2 tal que su suma sea:
 - 1. $\omega^2 + \omega.5$
 - 2. $\omega^2 + \omega . 10 + 1$
 - 3. $\omega^2 + \omega.5 + 1$
 - 4. $\omega^2 + \omega . 11 + 1$
 - 5. $\omega^2 + \omega.9$
 - 6. $\omega^2 + \omega.11$
- **8.5.10** Calcular todas las sumas $\alpha+\beta+\gamma+\delta$, siendo $\{\alpha,\beta,\gamma,\delta\}=\{\omega+2,\omega.2+1,\omega.4,\omega^2\}$
- **8.5.11** Probar que:
 - 1. Si n > 0, entonces $(\omega^3 + \omega)n = \omega^3 n + \omega$
 - $2. \ (\omega^3 + \omega)\omega = \omega^4$
- **8.5.12** Encontrar:

- 1. el menor α tal que $\omega + \alpha = \alpha$;
- 2. el menor $\alpha > \omega$ tal que $(\forall \beta < \alpha)[\beta + \alpha = \alpha]$
- **8.5.13** Dadas las funciones

$$F: \mathbf{Ord} \to \mathbf{Ord}$$
 tal que $F(\alpha) = \alpha^2$
 $G: \mathbf{Ord} \to \mathbf{Ord}$ tal que $G(\alpha) = 2^{\alpha}$

- 1. Determinar si son continuas, crecientes o normales.
- 2. Calcular el menor punto fijo de cada una.

8.6 Forma normal de Cantor

- **8.6.1** Sean $k \in \omega$, $\gamma_o, \ldots, \gamma_k \in \mathbf{Ord} \ y \ n_0, \ldots, n_k \in \omega$ tales que $\gamma_0 > \ldots > \gamma_k$ y $(\forall i \leq k)[n_i > 0]$. Demostrar:
 - 1. Si n > 0, entonces $(\omega^{\gamma_0} n_0 + \cdots + \omega^{\gamma_k} n_k) n = \omega^{\gamma_0} n_0 n + \omega^{\gamma_1} n_1 n \cdots + \omega^{\gamma_k} n_k$
 - 2. Si $\gamma > 0$, entonces $(\omega^{\gamma_0} n_0 + \cdots + \omega^{\gamma_k} n_k) \omega^{\gamma} = \omega^{\gamma_0 + \gamma}$
- **8.6.2** Hallar tres ordinales tales que al formar los productos de todas sus permutaciones se obtengan 6 valores distintos.
- **8.6.3** Expresar los siguientes ordinales en la forma normal de Cantor:
 - 1. $(\omega + 1)^2$
 - 2. $(\omega + 1)(\omega^2 + 1)$
 - 3. $(\omega^2 + 1)(\omega + 1)$
 - 4. $(\omega^3 + \omega)^5$
 - 5. $(\omega^5 + \omega^3)^3$
 - 6. $(\omega^3.4 + \omega^2.5 + 2)^2 + \omega^5 + 3$
- **8.6.4** Demostrar o refutar:
 - 1. $(\forall \alpha)[\alpha < \omega^2 \to \alpha + \omega^2 = \omega^2]$.
 - 2. $(\forall \alpha)[\alpha < \omega^2 + 1 \rightarrow \alpha + \omega^2 + 1 = \omega^2 + 1].$

8.6.5 Encontrar:

- 1. el menor α tal que $\omega \alpha = \alpha$;
- 2. el menor $\alpha > \omega$ tal que $(\forall \beta < \alpha)[\beta \alpha = \alpha]$
- **8.6.6** Demostrar que dados tres ordinales cualesquiera, el número de sumas de todas sus permutaciones es menor que 6.
- **8.6.7** Determinar todos los ordinales α tales que $\omega \leq \alpha < \omega^3$ y $\alpha = \beta^2$ para algún β .
- **8.6.8** Sea $\langle A, < \rangle$ una clase bien ordenada. Una función inyectiva $F: A \times A \to A$ es monótona sobre A si:

$$a < a' \to (\forall b \in A)[(F(a, b) < F(a', b)]$$

$$b < b' \to (\forall a \in A)[(F(a, b) < F(a, b')]$$

1. Sea $f: \omega \times \omega \to \omega$ la aplicación definida por:

$$f(n,m) = \binom{n+m+1}{2} + n$$

Probar que:

- (a) f es biyectiva.
- (b) f es monótona sobre ω .
- 2. Probar que no existe ninguna aplicación monótona sobre ω .2.
- 3. Definir una aplicación monótona sobre ω^2 . (Usar la aplicación del apartado (1)).
- 4. Sea F una función monótona sobre **Ord**. Diremos que \gg es un punto crítico para F si $F[\gamma \times \gamma] \subseteq \gamma$. Probar que si γ es un punto crítico para F, entonces existe ξ tal que $\gamma = \omega^{\xi}$.
- 5. Probar que existe una función monótona sobre **Ord** tal que todo ordinal de la forma ω^{ξ} es un punto crítico.
- **8.6.9** Sea $f: \omega \times \omega \to \omega$ la aplicación definida por:

$$f(n,m) = \begin{cases} 0, & \text{si } (n,m) = (0,0); \\ \binom{n+m+1}{2} + n, & \text{si } (n,m) \neq (0,0). \end{cases}$$

- 1. Probar que f es biyectiva.
- 2. Probar que existen aplicaciones suprayectivas $g, h : \omega \to \omega$ tales que:
 - (a) f(g(n), h(n)) = n.
 - (b) $g(n) \leq n$.
 - (c) $h(n) \leq n$.
- 3. Sea $\omega^{<\omega} = \bigcup \{\omega^n : n \in \omega\}$. Definimos por recursión $F : \omega \to \omega^{<\omega}$

$$\begin{split} F(0) &= id_{\omega} \\ F(n+1) &: \omega^{n+2} \to \omega \text{ es la aplicación definida por} \\ F(n+1)(g) &= \left\{ \begin{array}{ll} f(F(n)(g \upharpoonright (n+1), g(n+1)), & \text{si } F(n) : \omega^{n+1} \to \omega \\ 0, & \text{en caso contrario} \end{array} \right. \end{split}$$

Probar que para todo $n>0,\,F(n)$ es una aplicación biyectiva de ω^{n+1} en $\omega.$

4. Definimos $F': \omega^{n+1} \times \omega^{n+1} \to \omega^{n+1}$ como sigue: Si $g, h \in \omega^{n+1}$, entonces F'(g, h) es la aplicación de n+1 en ω definida por

$$F'(g,h)(m) = f(g(m),h(m)).$$

Probar que F' es biyectiva.

5. Definimos $F^*: \omega^\omega \times \omega^\omega \to \omega^\omega$ como sigue: Si $g,h \in \omega^\omega$, $F^*(g,h)$ es la aplicación de ω en ω definida por:

$$F^*(g,h)(m) = f(g(m),h(m)).$$

Probar que F^* es biyectiva.

6. Definimos $G: \omega^{<\omega} - \{0\} \to \omega$ como sigue: Si $g \in \omega^{<\omega} - \{0\}$ (por tanto, $(g \in \omega^{n+1})$ para algún $n \in \omega$), entonces

$$G(g) = f(n, F(n)(g)).$$

Probar que G es biyectiva.

7. Sea $G': \omega^{<\omega} \to \omega$ la aplicación definida por:

$$G'(g) = \begin{cases} 0, & \text{si } g = \emptyset \\ G(g) + 1, & \text{si } g \neq \emptyset \end{cases}$$

Probar que G' es biyectiva.

8. Definimos $F'': \omega^{\omega} \to (\omega^{\omega})^{\omega}$ como sigue: Si $g \in \omega^{\omega}$, entonces $F''(g): \omega \to \omega^{\omega}$ está definida por:

$$F''(g)(n)(m) = g(f(n,m))$$

Probar que F'' es biyectiva.

8.6.10 Sea $F: \mathbf{Ord} \to \mathbf{Ord}$ la aplicación definida por $F(\alpha) = \omega.\alpha$ y $A = \{\alpha : F(\alpha) = \alpha\}.$

- 1. Calcular $\bigcup A$ y demostrar que A es una clase propia.
- 2. Demostrar que existe un único isomorfismo $G: \langle \mathbf{Ord}, \in \rangle \cong \langle A, \in \rangle$.
- 3. Calcular G(0), G(1), G(2) y $G(\omega)$.

8.7 Aritmética ordinal y conjuntos bien ordenados

8.7.1 Sean $\alpha, \beta \in \mathbf{Ord}$. Consideremos el conjunto

$$a = (\alpha \times \{0\}) \cup (\beta \times \{1\})$$

y la relación R en a definida por

$$\langle \gamma_1, \delta_1 \rangle R \langle \gamma_2, \delta_2 \rangle \leftrightarrow \delta_1 < \delta_2 \vee (\delta_1 = \delta_2 \wedge \gamma_1 < \gamma_2)$$

Demostrar:

- 1. $\langle a, R \rangle$ es un conjunto bien ordenado.
- 2. $t.o.(\langle a, R \rangle) = \alpha + \beta$.

8.7.2 Sean $\alpha, \beta \in \mathbf{Ord}$. Consideremos el conjunto

$$a = \alpha \times \beta$$

y la relación R en a definida por

$$\langle \gamma_1, \delta_1 \rangle R \langle \gamma_2, \delta_2 \rangle \leftrightarrow \delta_1 < \delta_2 \vee (\delta_1 = \delta_2 \wedge \gamma_1 < \gamma_2)$$

Demostrar:

- 1. $\langle a, R \rangle$ es un conjunto bien ordenado.
- 2. $t.o.(\langle a, R \rangle) = \alpha \beta$.

8.7.3 Sea

$$a = \{f : (f : \omega \to \omega) \land (\{n \in \omega : f(n) \neq 0\} \text{ es finito})\}$$

y la relación R en a definida por

$$fRg \leftrightarrow f \neq g \land f(n) < g(n),$$

donde $n = \sup\{m : f(m) \neq g(m)\}$. Demostrar:

- 1. $\langle \omega, R \rangle$ es un conjunto bien ordenado.
- 2. Sea $f \in a$ la aplicación definida por

$$f(n) = \begin{cases} 1, & \text{si } n = 2; \\ 0, & \text{si } n \neq 2. \end{cases}$$

Calcular el tipo de orden de la sección determinada por f.

- 3. Calcular el tipo de orden de $\langle a, R \rangle$.
- **8.7.4** Sean $\alpha, \beta \in \mathbf{Ord}$. Consideremos el conjunto

$$a = \{f : (f : \beta \to \alpha) \land (\{\delta \in \beta : f(\delta) \neq 0\} \text{ es finito})\}$$

y la relación R en a definida por

$$fRg \leftrightarrow (\exists \gamma)[\gamma = \sup\{\delta \in \beta : f(\delta) \neq g(\delta)\} \land f(\gamma) < g(\gamma)]$$

Demostrar:

- 1. $\langle a, R \rangle$ es un conjunto bien ordenado.
- 2. $t.o.(\langle a, R \rangle) = \alpha^{\beta}$.

El teorema del buen orden y el axioma de elección

9.0.5 Demostrar que son equivalentes:

- 1. El axioma de elección.
- 2. Para cada familia $(a_i)_{i\in I}$ de conjuntos no vacíos, el producto cartesiano $\prod_{i\in I} a_i$ es no vacío.

9.0.6 Demostrar que son equivalentes:

- 1. El axioma de elección.
- 2. Para cada conjunto a de conjuntos no vacíos disjuntos dos a dos, existe un conjunto b que tiene uno y sólo un elemento en común con cada elemento de a.

9.0.7 Demostrar que son equivalentes:

- 1. El axioma de elección.
- 2. Toda relación binaria contiene una aplicación con el mismo dominio.

9.0.8 Demostrar que son equivalentes:

1. El axioma de elección.

2. (Lema de Zorn) Si $\langle x, < \rangle$ es un conjunto parcialmente ordenado tal que

 $(\forall y \subseteq x)[\langle y, < \rangle \text{ totalmente ordenado} \implies y \text{ tiene cota superior}]$ entonces x tiene un elemento maximal.

Conjuntos finitos y numerables

10.1 Conjuntos finitos

- **10.1.1** Demostrar que si $x \sim y$, entonces $\mathbf{P}(x) \sim \mathbf{P}(y)$.
- 10.1.2 Demostrar o refutar

$$y \subseteq x \land z \subseteq x \land y \sim z \rightarrow x - y \sim x - z$$
.

10.1.3 Demostrar que si a es un conjunto finito, entonces existe una función de elección sobre a.

10.2 Conjuntos numerables

10.2.1 Demostrar que la aplicación $f: \omega \times \omega \to \omega$ definida por

$$f(m,n) = \frac{(m+n)(m+n+1)}{2} + n$$

es biyectiva y, por tanto, $\omega \times \omega$ es numerable.

10.2.2 Demostrar, usando el AE, que la unión de un conjunto numerable cuyos elementos son conjuntos numerables es un conjunto numerable.

10.3 Conjuntos no–numerables

10.3.1 Demostrar, definiendo una biyección, que son equipotentes:

- 1. [0,1] y (0,1).
- 2. [0,1] y [0,1).
- 3. [0,1) y (0,1].
- **10.3.2** Demostrar que los intervalos [0,1], (0,1), [0,1) y (0,1] son equipotentes.
- **10.3.3** Sean $a, b \in \mathbb{R}$ tales que a < b. Demostrar que los intervalos [a, b], (a, b), [a, b) y (a, b] son equipotentes.
- **10.3.4** Sean $a, b, c, d \in \mathbb{R}$ tales que a < b y c < d. Demostrar que $[a, b] \sim [c, d]$.
- **10.3.5** Demostrar, definiendo biyecciones que transformen racionales en racionales e irracionales en irracionales, que:
 - 1. $[0,1) \sim [0,+\infty)$.
 - 2. $(-1,0] \sim (-\infty,0]$.
 - 3. $(-1,1) \sim \mathbb{R}$.
- **10.3.6** Sean $a, b \in \mathbb{R}$ tales que a < b. Demostrar que $[a, b] \sim \mathbb{R}$.
- **10.3.7** Demostrar que $(0,1) \sim {}^{\omega}2$.
- **10.3.8** Definir una aplicación biyectiva de $[0,1)^2$ en [0,1).
- **10.3.9** Demostrar que $\mathbb{R}^2 \sim \mathbb{R}$.
- 10.3.10 Sea $a \subseteq \mathbb{R}^2$. Demostrar que si a es numerable, entonces $\mathbb{R}^2 a \sim \mathbb{R}$.
- **10.3.11** Sea $a \subseteq \mathbb{R}$. Demostrar que si a es numerable, entonces $\mathbb{R} a \sim \mathbb{R}$.