Multiset relations: a tool for proving termination *

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Martin
{jruiz, jalonso,mjoseh,fjesus}@cica.es

Departamento de Ciencias de la Computacién e Inteligencia Artificial.
Facultad de Informdtica y Estadistica, Universidad de Sevilla
Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

Abstract. We present in this paper a formalization of multiset relations in ACL2,
and we show how multisets can be used to prove non-trivial termination properties.
Intuitively, multisets are “sets” that admit multiple occurrences of elements. Every
relation on a set A induces a relation on finite multisets over A and it can be shown
that the multiset relation induced by a well-founded relation is also well-founded. We
proved this property in the ACL2 logic, and used it by functional instantiation in order
to provide well-founded relations used in the admissibility test for recursive functions.
We also developed a macro defmul, to define well-founded multiset relations in an easy
way. Finally, we present three case studies where multisets are used to prove non-trivial
termination properties: a tail-recursive version of Ackermann’s function, a definition
of McCarthy’s 91 function and a proof of Newman’s lemma for abstract reduction
relations.

Introduction

We present in this paper a formalization of multiset relations in ACL2, and we show
how these relations can be used to prove non-trivial termination properties, providing
a tool for defining relations on finite multisets and showing that these relations are
well-founded. Such well-founded relations are used in the admissibility test for recur-
sive functions, allowing the user to provide a particular multiset measure in order to
prove termination of functions.

Multisets are usually defined in an informal way as “sets with repeated elements”.
It can be show [4] that every well-founded relation on a set A induces a well-founded
relation on the set of finite multisets of elements taken from A. We have formalized this
theorem using ACL2, and stated it in a very abstract way. This allows to instantiate
the theorem to show well-foundedness of concrete multiset relations.

We have also developed a macro defmul in order to make definitions of induced
multiset relations easily. Besides defining the multiset relation induced by a given re-
lation, this macro proves, by functional instantiation, well-foundedness of the defined
multiset relation, provided that the original relation is well-founded.

The first section of this paper presents how we have formalized and proved well-
-foundedness of a multiset relations induced by a well-founded relation. The second
section presents the macro defmul and it is shown how can be used to define multiset
well-founded relations. In the three sections after that, three case studies of increasing
complexity are presented, showing how multisets can be used to prove non-trivial
termination properties. The first one is a tail-recursive definition of Ackermann’s
function. The second one shows admissibility of an iterative version of McCarthy’s
91 function. The third one is a proof of Newman’s lemma about abstract reduction
relations: terminating and locally confluent reduction relations are confluent.

* This work has been supported by DGES/MEC: Projects PB96-0098-C04-04 and PB96-1345

We will assume the reader has a working knowledge of ACL2. Due to the lack of
space, we will skip some details of the mechanical proofs. The complete books are
available on the web in http://www-cs.us.es/”jruiz/acl2-mul/.

1 Formalization of multiset relations in ACL2

1.1 Multisets: definitions and properties

A multiset M over a set A is a function from A to the set of natural numbers. This is
a formal way to define “sets with repeated elements”. Intuitively, M (z) is the number
of copies of x € A in M. This multiset is finite if there are finitely many x such that
M (z) > 0. The set of all finite multisets over A is denoted as M(A).

We will use standard set notation to represent multisets. For example, if A =
{a,b,c}, an example of multiset over A is M = {a,b,b,b}, an abbreviation of the
function M(a) = 1, M(b) = 3 and M(c) = 0. Thus, {a,b,b,b} is identical to the
multiset {b, b, a,b}, but distinct from the multiset {a, b, b}.

Basic operations on multisets are defined to generalize the same operations on
sets, taking into account multiple occurrences of elements: 2 € M means M(x) > 0,
M C N means M(z) < N(x), forallz € A, M UN is the function M + N and M \ N
is the function M — N (where » — y is x — y if # > y and 0 otherwise). For example,
{a,b,b,a} U{c,c,a,b} is the multiset {a,a,a,b,b,b,c,c} and {a,b,b,a} \ {c, c,a,b} is
the multiset {a, b}.

Any ordering defined on a set A induces an ordering on multisets over A: given a
multiset, a smaller multiset can be obtained by removing a non-empty subset X and
adding elements which are smaller than some element in X. This construction can be
generalized to binary relations in general, not only for partial orderings. This is the
formal definition:

DEFINITION 1. Given a relation < on a set A, the multiset relation induced by < on
M(A), denoted as <y, is defined as N <,,,; M iff there exist X, Y € M(A) such
that) # X CM,N=(M\X)UY andVy € Y3z € X,y < .

For example, if A = {a,b,¢,d, e} and b < a,d < ¢, then {a,b,b,b,b,d,d,d,d,d, e} <pu
{a,a,b,c,d, e} by replacing X = {a,c} by Y = {b,b,b,d,d,d,d}. It can be easily shown
that if < is a strict ordering, then so is <,;. In such case we talk about multiset
orderings.

A relation < on a set A is terminating if there is no infinite decreasing! sequence
Tg > 1 > Ta.... An important property of multiset relations on finite multisets is
that they are terminating when the original relation is terminating, as stated by the
following theorem:

THEOREM 1. Let < be a terminating relation on a set A, and <,,,; the multiset
relation induced by < on M(A). Then <,,,; is terminating.

The above theorem provides a tool for showing termination of recursive function
definitions, by using multisets: show that some multiset measure decreases in each
recursive call comparing multisets with respect to the relation induced by a given
terminating relation. In the following subsection, we explain how we formalized this
theorem in the ACL2 logic.

1 Although not explicitly, we will suppose that the relations given here represent some kind of
“smaller than” relation.

1.2 Formalization of well-founded multiset relations in ACL2

Let us deal with formalization of terminating relations in ACL2. A restricted notion of
terminating relations is built into ACL2 based on the following meta-theorem (axiom
of choice needed): a relation < on a set A is terminating iff there exists a function
F: A— Ord such that <y = F(z) < F(y), where Ord is the class of all ordinals.
In this case, we also say that the relation is well-founded. Note that we are denoting
the relation on A and the ordering between ordinals using the same symbol <. An
arbitrary well-founded relation rel defined on a set of objects satisfying a property
mp can be defined in ACL2 as shown below (dots are used to omit technical details,
as in the rest of the paper).

(encapsulate
((mp (%) booleanp) (rel (x y) booleanp) (fn (x) e0-ordinalp))

(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (e0-ordinalp (fn x)))
(implies (and (mp x) (mp y) (rel x y))
(e0-ord-< (fn x) (fn y))))
:rule-classes :well-founded-relation))

The predicate mp recognizes the kind of objects (called measures) that are ordered
in a well-founded way by rel. The embedding function fn is an order-preserving
function mapping every measure to an ordinal. Once a relation is proved to satisfy
these properties and the theorem is stored as a well-founded relation rule, it can
be used in the admissibility test for recursive functions. We call the theorem rel-
-well-founded-relation-on-mp above the well-foundedness theorem for rel, mp and
fn. In ACL2, every particular well-founded relation has to be given through three
functions (a binary relation, a measure predicate and an embedding function) and
the corresponding well-foundedness theorem for such functions. As a particular case,
when mp is t we can omit any reference to mp in the statement of the corresponding
well-foundedness theorem. See well-founded-relation in the ACL2 manual [5].

The above notion of termination is restricted: since only ordinals up to g are
formalized in the ACL2 logic, a limitation is imposed on the maximal order type of
well-founded relations that can be formalized. Consequently, our formalization suffers
from the same restriction (nevertheless, no particular properties of ¢y are used in our
proof, except well-foundedness).

Let us now deal with formalization of multisets relations. We represent multisets
in ACL2 as true lists. Given a predicate (mp x) describing a set A, finite multisets
over A are described by the following function:

(defun mp-true-listp (1)
(if (atom 1)
(equal 1 nil)
(and (mp (car 1)) (mp-true-listp (cdr 1)))))

Note that this function depends on the particular definition of the predicate mp.
With this representation, different true lists can represent the same multiset: two
true lists represent the same multiset iff one is a permutation of the other. Thus,

the order in which the elements appear in a list is not relevant, but the number of
occurrences of an element is important. This must be taken into account, for example,
when defining multiset difference in ACL2 (the function remove-one, omitted here,
deletes one occurrence of an element from a list, whenever possible):

(defun multiset-diff (m n)
(if (atom n) m (multiset-diff (remove-one (car n) m) (cdr n))))

The definition of <,,,; given in the preceding subsection is quite intuitive but,
due to its many quantifiers, difficult to implement. Instead, we will use an equivalent
definition, based on the following theorem:

THEOREM 2. Let < be a strict ordering on a set A, and M, N two finite multisets
over A. Then N <,y M iff M # N and Vn € N\ M,3m € M\ N, such that n < m.

It should be remarked that this equivalence is true only when < is a strict partial
ordering, but this is not a severe restriction. Moreover, well-foundedness of <,;,; holds
also when this equivalent definition is used, even if the relation < is not transitive, as
we will see. Thus, given a defined (or constrained) binary relation rel, we define the
induced relation on multisets based on this alternative definition:

(defun exists-rel-bigger (x 1)
(cond ((atom 1) nil)
((rel x (car 1)) t)
(t (exists-rel-bigger x (cdr 1)))))

(defun forall-exists-rel-bigger (1 m)
(if (atom 1)
t
(and (exists-rel-bigger (car 1) m)
(forall-exists-rel-bigger (cdr 1) m))))

(defun mul-rel (n m)
(let ((m-—n (multiset-diff m n))
(n-m (multiset-diff n m)))
(and (consp m-n) (forall-exists-rel-bigger n-m m-n))))

Finally, let us see how we can formalize in the ACL2 logic the theorem 1 above,
which states well-foundedness of the relation mul-rel. As said before, in order to
establish well-foundedness of a relation in ACL2, in addition to the relation (mul-rel
in this case), we have to give the measure predicate and the embedding function, and
then prove the corresponding well-foundedness theorem. Since mul-rel is intended to
be defined on multisets of elements satisfying mp, then mp-true-1listp is the measure
predicate in this case. Let us suppose we have defined a suitable embedding function
called map-fn-e0-ord. Then theorem 1 is formalized as follows:

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x)
(e0-ordinalp (map-fn-eO-ord x)))
(implies (and (mp-true-listp x)

(mp-true-listp y)
(mul-rel x y))
(e0-ord-< (map-fn-eO0-ord x) (map-fn-eO-ord y))))
:rule-classes :well-founded-relation)

In the next subsection we show a suitable definition of map-fn-e0-ord and de-
scribe some aspects of the ACL2 proof of this theorem.

1.3 A proof of well-foundedness of the multiset relation

In the literature, theorem 1 is usually proved using Konig’s lemma: every infinite
and finitely branched tree has an infinite path. Nevertheless, we have to find a differ-
ent proof in ACL2, defining an order-preserving embedding function map-fn-e0-ord
from mp-true-listp objects to e0-ordinalp objects. Thus, our proof is based on
the following result from ordinal theory: given an ordinal «a, the set M(«) of finite
multisets of elements of a (ordinals less than «), ordered by the multiset relation
induced by the order between ordinals, is order-isomorphic to the ordinal w® and the
isomorphism is given by the function H where H({B1,...,0n}) = w1 + ... + wPn.
This result can be proved using Cantor’s normal form of ordinals and its properties.

As a by-product, an interesting property about multiset well-founded relations
can be deduced. Since a < gy implies w® < w® = ¢g, this means that one can always
prove, in the ACL2 logic, well-foundedness of the multiset relation induced by a given
well-founded ACL2 relation (i.e., using embeddings in ordinals less than £g). This
is not the case, for example, of lexicographic products, since the ordinal type of a
lexicographic product of two ACL2 well-founded relations can be greater than gg.

The isomorphism H above suggests the following definition of the embedding
function map-fn-e0-ord: given a multiset of elements satisfying mp, apply fn to every
element to obtain a multiset of ordinals. Then apply H to obtain an ordinal less
than gqg. If ordinals are represented in ACL2 notation, then the function H can be
easily defined, provided that the function fn returns always a non-zero ordinal: the
function H simply has to sort the ordinals in the multiset and add 0 as the final
cdr. This considerations lead us to the following definition of the embedding function
map-fn-e0-ord. Note that the non-zero restriction on fn is easily overcome, defining
(the macro) £nl equal to fn except for integers, where 1 is added. In this way fn1
returns non-zero ordinals for every measure object and it is order-preserving if and
only if fn is.

(defun insert-eO-ord-< (x 1)
(cond ((atom 1) (cons x 1))
((not (e0-ord-< x (car 1))) (cons x 1))
(t (cons (car 1) (insert-e0-ord-< x (cdr 1))))))

(defun addl-if-integer (x) (if (integerp x) (1+ x) x))
(defmacro fnl (x) ‘(addl-if-integer (fn ,x)))

(defun map-fn-eO-ord (1)
(if (consp 1)

(insert-e0-ord-< (fnl (car 1)) (map-fn-eO-ord (cdr 1)))
0))

Once map-fn-e0-ord has been defined, let us now deal with the ACL2 me-
chanical proof of the well-foundedness theorem for mul-rel, mp-true-listp and
map-fn-e0-ord as stated at the end of subsection 1.2 by multiset-extension-of-
-rel-well-founded. The first part of the theorem, which establishes that (map-fn-
-e0-ord x) is an ordinal when (mp-true-listp x), it is not difficult, and can be
proved in ACL2 with minor help form the user. The hard part of the theorem is to
show that map-fn-e0-ord is order-preserving. Here is an informal proof sketch:

Proof sketch: Let us denote, for simplicity, the functions fn and map-fn-e0-ord,
as f and f,,. and the relation rel, mul-rel and e0-ord-< as <,¢, <mu and <,
respectively. Let M and N be two multisets of mp elements such that N <,y M. We
have to prove that fi,ui(N) < fimu(M). We can apply induction on the number of
elements of V. Note that M can not be empty, and if N is empty the result trivially
holds. So let us suppose that M and N are not empty. Let f(x), f(y) be the biggest
elements of f[N] and f[M], respectively. Note that f(x) and f(y) are the car elements
of fru(N) and f, (M), respectively. Since f(z) and f(y) are ordinals, three cases
may arise:

1. f(z) < f(y). Then, by definition of <, we have f,,/(N) < fru(M).

2. f(z) > f(y). This is not possible: in that case x is in N \ M and by the multiset
relation definition, exists z in M \ N such that z <, z. Consequently f(z) >
f(z) > f(y). This contradicts the fact that f(y) is the biggest element of f[M].

3. f(z) = f(y). In that case, € M, since otherwise it would exist z € M \ N such
that © <, 2z and the same contradiction as in the previous case appears. Let
M' = M\ {z} and N' = N\ {z}. We have N’ <,y M" and, in addition, f,,;(N")
and fp(M') are the cdr of fp(N) and fp (M), respectively. Induction hy-
pothesis can be applied here to conclude that f,,,;(N') < fpu(M') and therefore

fmul(N) < fmul(M) U

To lead ACL2 to the above informal proof sketch, an induction scheme must be
supplied as hint. This is a function suggesting such induction scheme (the function
max-fn-1list, omitted here, returns the element of a given list with the greatest value
of fn).

(defun induction-multiset (n m)
(declare (xargs :measure (len n)))
(cond ((atom n) (if (atom m) 1 2))
((atom m) 3)
(t (Qet* ((max-n (max-fn-list n)) (max-m (max-fn-list m))
(fn-max-n (fn max-n)) (fn-max-m (fn max-m)))
(cond ((equal fn-max-n fn-max-m)
(if (member max-n m)
(induction-multiset (remove-one max-n n)
(remove-one max-n m))

5))
((e0-ord-< fn-max-n fn-max-m) 6)
((e0-ord-< fn-max-m fn-max-n) 7)

(t 8)))))))

Using this induction scheme we proved the following theorem, which is the hard
part of the theorem multiset-extension-of-rel-well-founded.

(defthm map-fn-eO-ord-order-preserving
(implies (and (mp-true-listp n) (mp-true-listp m)
(mul-rel n m))
(e0-ord-< (map-fn-e0-ord n) (map-fn-eO-ord m)))
thints (("Goal" :induct (induction-multiset n m)))))

Well-foundedness of mul-rel has been proved in an abstract framework, without
assuming any particular properties of rel, mp and map-fn-e0O-ord, except those de-
scribing well-foundedness. This allows us to functionally instantiate the theorem in
order to establish well-foundedness of the multiset relation induced by any given well-
founded ACL2 relation. We developed a macro named defmul in order to mechanize
this process of functional instantiation. The following section describes the macro.

2 The defmul macro and the multiset book

We defined a macro defmul in order to provide a convenient way to define the multiset
relation induced by a well-founded relation, and to declare the corresponding well-
founded relation rule. We show now how defmul is called.

Let us suppose we have a previously defined (or constrained) relation my-rel,
which is known to be well-founded on a set of objects satisfying the measure property
my-mp and justified by the embedding function my-fn. That is to say, the following
theorem has been proved (and stored as a well-founded relation rule):

(defthm theorem-name
(and (implies (my-mp z) (eO-ordinalp (my-fn z)))
(implies (and (my-mp z) (my-mp z) (my-rel z y))
(e0-ord-< (my-fn z) (my-fn y))))
:rule-classes :well-founded-relation))

In order to define the (well-founded) multiset relation induced by my-rel, we write
the following macro call:

(defmul (my-rel theorem-name my-mp my-fn z y))

The expansion of this macro generates a number of ACL2 forms. You may use the
ACL2 transl command in order to view the translated form of a defmul call. The
main non-local events generated by this macro call are:

— the definitions needed for the multiset relation induced by my-rel: functions exists--
my-rel-bigger, forall-exists-my-rel-bigger, and mul-my-rel analogous to the
functions given in subsection 1.2.

— the definition of the multiset measure property, my-mp-true-listp.

— the definition of map-my-fn-e0-ord, the embedding function from multisets to
ordinals.

— the well-foundedness theorem for mul-my-rel, my-mp-true-listp and map-my-fn-
-e0-ord. This theorem is proved by functional instantiation from multiset-ex-
tension-of-rel-well-founded and is named multiset-extension-of-my-rel--
well-founded

We expect defmul to work without assistance from the user. After the above call to
defmul, the function mul-my-rel is defined as a well-founded relation on multisets of
elements satisfying the property my-mp, induced by the well-founded relation my-rel.
From this moment on, mul-my-rel can be used in the admissibility test for recursive
functions to show that the recursion terminates.

To know the list of names we need to supply in a defmul call, we have developed a
tool to extract the information from the ACL2 world and print that list. This macro
is simply called in this way:

(defmul-components rel)

This is only an informative tool, not a event. This macro looks up the ACL2 world,
and returns the list of names that are needed in the defmul call.

The book multiset.lisp contains the definition of these tools, together with the
proof of the theorem multiset-extension-of-rel-well-founded shown in subsec-
tion 1.3. We have also included some non-local rules which helped us to prove the
three examples presented in this paper, and we think they can assist in other cases.
Two relevant examples of these additional results and tools we included are:

— Definition of the function equal-set as an equivalence relation. This function
implements equality from sets point of view, and not from multisets, but it turned
out useful in our case studies because it can be proved to be a congruence with
respect both arguments of forall-exists-my-rel-bigger:

(defun equal-set (x y) (and (subsetp x y) (subsetp y x)))
(defequiv equal-set)

(defcong equal-set iff forall-exists-my-rel-bigger 1 m 1)
(defcong equal-set equal forall-exists-my-rel-bigger 1 m 2)

Since these two congruence rules depend on the particular definition of my-rel,
these rules are generated in every particular call to defmul.

— We also define a meta rule to deal with difference of multisets represented by lists
with final common suffix. This rule rewrites expressions of the form

(multiset-diff (list* x7 xo...xy, 1) (list* y1 yo...yr 1))
to the following equivalent expression (with respect to equal-set):
(multiset-diff (list x1 Z2...xyp) (Qist y1 yY2...Yx))

This meta rule is very useful’> when proving that a particular multiset measure
decreases in every recursive call of a function: it is “usual” that the multiset

2 Due to a bug in our meta rule fails to be applied when using ACL2 Version 2.5. We used a patch
that will be included in Version 2.6. Thanks to Matt Kaufmann for the patch.

obtained measuring the arguments of a recursive call is a list with the same final
part than the multiset obtained measuring the argument in the original call.

3 Case studies using multiset relations

In the next subsections, we show three examples where well-founded multiset relations
play an important role in the ACL2 proof of non-trivial termination properties. The
first example is taken from [4]. We use a multiset ordering to show termination of
a tail-recursive version of Ackermann’s function. In the second example, also taken
from [4], we use a multiset relation to admit an iterative version of McCarthy’s 91
function. The third example is a proof of Newman’s lemma for abstract reduction
systems: every terminating and locally confluent reduction relation has the Church-
Rosser property. This last example is part of a larger project developed by the authors
in order to formalize some aspects of equational reasoning using ACL2 [7, 8].

All the examples show one function whose termination is proved using a well-
founded multiset relation and a multiset measure function. When the function is
presented for the first time, its code is commented (using semicolons), to emphasize
that a suitable measure has still to be given in order to pass the admissibility test.

3.1 A tail-recursive version of Ackermann’s function

The following is the standard definition of Ackermann’s function in ACL2:

(defun ack (m n)
(declare (xargs :measure (cons (+ (nfix m) 1) (nfix n))))
(cond ((zp m) (+ n 1))
((zp n) (ack (- m 1) 1))
(t (ack (- m 1) (ackm (- n 1))))))

We now try to define the following iterative program to compute Ackerman’s
function:

; (defun ack-it-aux (S z)

; (declare (xargs ...))
; (if (endp S)
; z

; (let ((head (first S))

; (tail (rest S)))

; (cond ((zp head) (ack-it-aux tail (+ z 1)))

; ((zp z) (ack-it-aux (cons (- head 1) tail) 1))

; (t (ack-it-aux (cons head (cons (- head 1) tail))
; (- z 1))

; (defun ack-it (m n) (ack-it-aux (list m) n))

The intended behavior of the function ack-it-aux is that in every iterative
step (ack-it-aux S z) = (ack s; (ack sp_1 ... (ack s; 2))), where S is astack
with & elements, (s1...sy). Therefore, it can be proved (and we did) that (ack m n)
is equal to (ack-it m n).

Proving termination of ack-it-aux may be difficult. Note that in the third re-
cursive call the stack increases its number of elements while the second argument
decreases. Nevertheless in the first and the second recursive calls, the second argu-
ment increases, although the stack does not increase its number of elements.

As shown in [4], a multiset measure can be used to prove termination of ack-it-aux.
In this case, we use multisets of pairs of natural numbers, where pairs are sup-
posed to be ordered by the lexicographic product of the usual order between nat-
urals. The measure associated to arguments S = (s1...s;) and z is the multiset
{(s1,2),(s2 +1,0)...,(sx +1,0)}.

Using defmul, we can easily replay in ACL2 the proof given in [4]. First of all,
we define the well-founded relation on pairs of natural numbers, called here rel-ack.
This can be done by the following sequence of events:

(defun rel-ack (pl p2)
(cond ((< (car pl) (car p2)) t)
((= (car p1) (car p2)) (< (cdr pl) (cdr p2)))))

(defun mp-ack (p)
(and (consp p) (integerp (car p)) (>= (car p) 0)
(integerp (cdr p)) (>= (cdr p) 0)))

(defun fn-ack (p) (cons (+ 1 (car p)) (cdr p)))

(defthm rel-ack-well-founded
(and (implies (mp-ack x)
(e0-ordinalp (fn-ack x)))
(implies (and (mp-ack x) (mp-ack y) (rel-ack x y))
(e0-ord-< (fn-ack x) (fn-ack y))))
:rule-classes :well-founded-relation)

We define the well-founded multiset relation induced by rel-ack on multisets of
pairs of natural numbers, using the following defmul macro call:

(defmul (rel-ack rel-ack-well-founded mp-ack fn-ack x y))

Now we have defined the function mul-rel-ack as a well-founded relation with
measure property mp-ack-true-listp and embedding function map-fn-ack-e0-ord.
The relation mul-rel-ack can be used as a well-founded relation in the the admissibil-
ity test for the function ack-it-aux, with a suitable measure function. The function
measure-ack-it-aux implements the multiset measure sketched above, using the
auxiliary function get-pairs-add1-0:

(defun get-pairs-addi-0 (S)
(if (endp S)
nil
(cons (cons (+ (nfix (car S)) 1) 0) (get-pairs-addi-0 (cdr S)))))

(defun measure-ack-it-aux (S z)
(if (endp S)

nil
(cons (cons (nfix (car S)) (nfix z))
(get-pairs-add1-0 (cdr s)))))

We can now prove termination of ack-it-aux, giving mul-rel-ack as well-founded
relation and measure-ack-it-aux as measure function:

(defun ack-it-aux (s z)
(declare (xargs :measure (measure-ack-it-aux s z)
:well-founded-relation mul-rel-ack
:hints))
(if (endp s)
V4
(let ((head (first s))
(tail (rest s)))
(cond ((zp head) (ack-it-aux tail (+ z 1)))
((zp z) (ack-it-aux (cons (- head 1) tail) 1))
(t (ack-it-aux (cons head (cons (- head 1) tail)) (- z 1)))))))

Given the measure and the well-founded relation in the definition of ack-it-aux,
the proof of its termination is not difficult, and only a very few previous lemmas are
needed, to prove the multiset measure given decreases in each recursive call. See the
book ackermann.lisp in the web page for details. Moreover, after the admission of
the definition we can define the function ack-it as shown above, and finally prove in
ACL2 the following equivalence theorem:

(defthm ack-it-equal-ack
(equal (ack-it m n) (ack m n)))

3.2 McCarthy’s 91 function

This example is taken from [4] and shows admissibility of an iterative version of the
recursive definition of McCarthy’s 91 function. For a detailed treatment (in ACL2) of
McCarthy’s 91 function and its generalization given by Knuth, we urge the interested
reader to read the work of Cowles [3], where proofs are done over arbitrary archi-
median fields. Our intention here is only to show how multisets can help to prove a
non-trivial termination property.

The “91 function” is a function acting on integers, originally given by McCarthy
by the following recursive scheme:

(defun mc (x)
(declare (xargs :mode :program))
(if (> x 100) (- x 10) (mc (mc (+ x 11)))))

We try to define the following iterative version of that recursive scheme in ACL2,
as given by the following functions:

; (defun mc-aux (n z)
; (declare (xargs ...))

; (cond ((or (zp n) (not (integerp z))) z)
; ((> z 100) (mc-aux (- n 1) (- z 10)))
; (t (mc-aux (+ n 1) (+ z 11)))))

; (defun mc-it (x) (mc-aux 1 x))

As we will show, the recursive algorithm given by mc-it and mc-aux is a somewhat
complicated way to compute the following function:

(defun f91 (x)
(cond ((not (integerp x)) x)
((> x 100) (- x 10))
(t 91)))

The intended behavior of the function mc-aux is that in every iterative step
(mc-aux n z)= (£91 (£91 .7.(f91 z))) and, consequently, (mc-it x)=(£f91 x)
Proving termination of mc-aux may be difficult: note the different behavior of the
two recursive calls. In [4], a multiset measure is given to justify termination of the
function: every recursive call of (mc-aux n z) is measured with the following mul-
tiset: {z, (£91 z), (£91 (£91 z)),..., (£91 (£91 "71(f91 z)))}, and multisets
are compared with respect to the multiset relation induced by the “greater-than”
relation defined for integers equal ® or less than 111. In the sequel, we describe how
ACL2 is guided to this termination argument.

First, we define the well-founded relation rel-mc that will be extended later to
a multiset relation. Note that in this case, the measure property is t, although only
integers under 111 are comparable with respect to rel-mc. One could think that
integerp-<=-111 should be the measure property of the well-founded relation, in-
stead of t. But there is a subtle difference: the multiset measure we will define can
contain elements greater than 111, although those elements are not comparable w.r.t.
rel-mc. The following sequence of events defines rel-mc and stores as a well founded
relation:

(defun integerp-<=-111 (x)
(and (integerp x) (<= x 111)))

(defun rel-mc (x y)
(and (integerp-<=-111 x) (integerp-<=-111y) (<K y x)))

(defun fn-mc (x)
(if (integerp-<=-111 x) (- 111 x) 0))

(defthm rel-mc-well-founded
(and (e0-ordinalp (fn-mc x))
(implies (rel-mc x y)
(e0-ord-< (fn-mc x) (fn-mc y))))
:rule-classes :well-founded-relation)

Performing the ACL2 proof, we discovered a minor bug in the proof given in [4]: it is necessary to
consider integers equal or less than 111, and not only strictly less than 111.

We define the well-founded multiset relation induced by rel-mc on multisets
true-listp objects in this case), using the following defmul call:
p g g

(defmul (rel-mc rel-mc-well-founded t fn-mc x y))

Through this macro call, we have defined the well-founded relation mul-rel-mc
(with measure property true-listp and embedding function map-fn-mc-e0-ord),
allowing us to use it in the admissibility test for the function mc-aux, with the measure
function given above, as implemented by the function measure-mc-aux:

(defun measure-mc-aux (n z)
(if (zp n) nil (cons z (measure-mc-aux (- n 1) (£91 z)))))

We can now define the function mc-aux, giving mul-rel-mc and measure-mc-aux
as the well-founded relation and measure function to be used, respectively:

(defun mc-aux (n z)

(declare (xargs :measure (measure-mc-aux n z)
:well-founded-relation mul-rel-mc
thints ...))

(cond ((or (zp n) (not (integerp z))) z)

((> z 100) (mc-aux (- n 1) (- z 10)))
(t (mc-aux (+ n 1) (+ z 11)))))

The function is admitted with a minor help from the user. See the book mccar-
thy.1lisp in the web page for details. After this definition we can define the function
mc-it as above, and show that verifies the original recursion scheme given by Mc-
Carthy. Moreover, we can even prove very easily that mc-it is equal to £91 (previously
proving a suitable generalization, as sketched above):

(defthm mc-it-equal-f91
(equal (mc-it x) (£f91 x)))

(defthm mc-it-recursive-schema
(equal (mc-it x)
(cond ((not (integerp x)) x)
((> x 100) (- x 10))
(t (mc-it (mc-it (+ x 11)))))))

3.3 Newman’s lemma

Abstract reduction systems: Newman’s lemma is a result about abstract reduc-
tion systems, which plays an important role in the study of decidability of certain
equational theories. We give a short introduction to basic concepts and definitions
from abstract reductions. See [1] for more details.

Reductions system are simply an abstract formalization of step by step activities,
such as the execution of a computation, the gradual transformation of an object
until some normal form is reached, or the traversal of some directed graph. The term
“reduction” gives the intuition that an element of less complexity is obtained in every

step. Formally speaking, an abstract reduction is simply a binary relation — defined
on a set A. We will denote as <, <+, = and < respectively the inverse relation, the
symmetric closure, the reflexive-transitive closure and the equivalence closure. The
following concepts are defined with respect to a reduction relation —. We say that x
and y are equivalent if © & y. We say that and y are joinable (denoted as x | y) if
it exists u such that = = u & y. An element x is in normal form (or irreducible) if
there is no z such that x — 2.

A reduction relation has the Church-Rosser property if every two equivalent el-
ements are joinable. An equivalent property is confluence: for all x,u,v such that
u & x5 v, then u | v. Reduction relations with the Church-Rosser property has
no distinct and equivalent normal forms. A reduction relation is normalizing if every
element has an equivalent normal form (denoted as x |). Obviously, every terminating
(as defined in subsection 1.1) reduction is normalizing. Church-Rosser and normaliz-
ing reduction relations have a nice property: provided normal forms are computable
and identity in A is decidable, then the equivalence relation < is decidable. This is
due to the fact that, in that case, z <& y iff z =y |, for all z,y € A.

Confluence can be localized when the reduction is terminating. In that case, an
equivalent property is local confluence: for all x, u, v such that u < z — v, then u | v:

THEOREM 3 (Newman’s lemma). Let — be a terminating and locally confluent
reduction relation. Then — is confluent.

This result allows to make easier the study of confluence (or equivalently, Church-
Rosser property) for terminating reduction relations. One has only to deal with join-
ability of local divergences. This is crucial in the development of completion algorithms
for term rewriting systems in order to obtain decision procedures for equational the-
ories [1].

Formalization of Newman’s lemma in ACL2: FEvery reduction relation has
two important aspects. On the one hand, a declarative aspect, since every reduction
relation describes its equivalence closure. On the other hand, a computational aspect,
describing a stepwise activity, a gradual transformation of objects until (eventually) a
normal form is reached. Thus, if x — y, the point here is that y is obtained from z by
applying some kind of transformation or operator. In its most abstract formulation,
we can view a reduction as a binary function that, given an element and an operator,
returns another element, performing a one-step reduction. Of course not any operator
can be applied to any element: we need a boolean binary function to test if it is legal
to apply an operator to an element.

The discussion above leads us to formalize a general abstract reduction relation us-
ing two partially defined functions: reduce-one-step and legal; (reduce-one-step x op)
performs a one-step reduction applying operator op to x, and (legal x op) tests if
the operator op may be applied to x*. It should be remarked that no predicates are
used to recognize neither operators nor elements, thus ensuring abstractness.

These two functions are introduced using encapsulate. In order to formalize
Newman’s lemma, additional properties are included to assume termination and local
confluence of the reduction relation, encoding in this way the assumptions of the

* In [8] a third function reducible is introduced, in order to formalize computation of normal forms.
Nevertheless, in the proof of Newman’s lemma we don’t need to deal with normal forms.

theorem we want to prove. This is shown in figure 1. In the following, we describe in
detail the functions involved.

;35 (a) A well-founded partial order:
(encapsulate
((rel (x y) t) (£fn (x) t))

(defthm rel-well-founded-relation
(and (e0-ordinalp (fn x))
(implies (rel x y) (e0-ord-< (fn x) (fn y))))
:rule-classes (:well-founded-relation :rewrite))

(defthm rel-transitive
(implies (and (rel x y) (rel y z)) (rel x z))))

;53 (b) A noetherian and locally confluent reduction relation:

(encapsulate

((legal (x u) boolean) (reduce-one-step (x u) element)
(reducible (x) boolean) (transform-local-peak (x) proof))

(defun proof-step-p (s)
(let ((eltl (eltl s)) (elt2 (elt2 s))
(operator (operator s)) (direct (direct s)))
(and (r-step-p s)
(implies direct (and (legal eltl operator)
(equal (reduce-one-step eltl operator)
elt2)))
(implies (not direct) (and (legal elt2 operator)
(equal (reduce-one-step elt2 operator)

elt1))))))

(defun equiv-p (x y p)
(if (endp p)
(equal x y)
(and (proof-step-p (car p)) (equal x (eltl (car p)))
(equiv-p (elt2 (car p)) y (cdr p)))))

(defthm locally-confluent
(let ((valley (transform-local-peak p)))
(implies (and (equiv-p x y p) (local-peak-p p))
(and (steps-valley valley) (equiv-p x y valley)))))

(defthm noetherian
(implies (legal x u) (rel (reduce-one-step x u) x))))

Fig. 1. Assumptions of Newman’s lemma

Before describing how we formalized termination and local confluence, we show
how we can define the equivalence closure of a reduction relation.

In order to define z <& y, we have to include an argument with a sequence of steps
T =120 T & XTa... & 1y =Y. An abstract proof (or simply, a proof) is a sequence

of legal steps and each proof step is a structure® r-step with four fields: elt1, elt2
(the elements connected), direct (a boolean value indicating if the step is direct or
inverse) and operator:

(defstructure r-step direct operator eltl elt2)

A proof step is legal if one of its elements is obtained applying the (legal) operator
to the other, in the sense indicated. The function proof-step-p implements this
concept. The function equiv-p implements the equivalence closure of our abstract
reduction relation: (equiv-p x y p) is t if p is a proof justifying that x<>y. See the
definitions of proof-step-p and eq-equiv-p in item (b) of figure 1.

Two proofs justifying the same equivalence will be said to be equivalent. We hope
it will be clear from the context when we talk about abstarct proofs objects and proofs
in the ACL2 system.

Let us now see how can we formalize termination. Our formalization is based on
the following meta-theorem: a reduction is noetherian if and only if it is contained in
a well-founded partial ordering (AC). Thus, let re1® be a given general well-founded
partial order, as defined in item (a) of figure 1.

This well-founded partial order rel will be used to state noetherianity of the
general reduction relation defined, by assuming that every legal reduction step returns
a smaller object, with respect to rel. See item (b) in figure 1 for a statement of this
assumed property.

Church-Rosser property and local confluence can be redefined with respect to
the form of a proof. We define (omitted here) functions to recognize proofs with
particular shapes (valleys and local peaks): local-peak-p recognizes proofs of the
form v < & — u and steps-valley recognizes proofs of the form v = z <& u.

To deal with the statement of local confluence, note that a reduction is locally
confluent iff for every local peak proof there is an equivalent valley proof. Therefore,
in order to state local confluence of the general reduction relation defined, we assume
the existence of a function transform-local-peak which returns a valley proof for
every local peak proof. See again item (b) in figure 1 for a statement of this assumed
property.

Having established the assumptions, in order to prove Newman’s lemma we must
show confluence of the general reduction relation assumed to be terminating and
locally confluent. Instead of confluence, we prove the Church-Rosser property, which
is equivalent. Therefore, we must prove that for every proof there exists an equivalent
valley proof, i.e., we have to define a function transform-to-valley and prove that
(transform-to-valley p) is a valley proof equivalent to p. This is the statement of
Newman’s lemma:

(defthm Newman-lemma
(let ((valley (transform-to-valley p)))
(implies (equiv-p x y p)
(and (steps-valley valley) (equiv-p x y valley)))))

A suitable definition of transform-to-valley and a proof of this theorem in
ACL2 is shown in the following subsection. The hard part of the proof is to show

® We used the defstructure tool developed by Bishop Brock [2].
6 Name conflicts with names used in the multiset.book are avoided using packages.

termination of transform-to-valley. This will be done with the help of a well-
founded multiset relation.

An ACL2 proof of Newman’s lemma: The proof commonly found in the liter-
ature [1], is done by well-founded induction on the terminating reduction relation.
Our approach is more constructive and is based on a proof given in [6]. We have
to find a function transform-to-valley which transforms every proof in a equiva-
lent valley proof. For that purpose, we can use a function transform-local-peak,
which transforms every local peak proof in a equivalent valley proof. Thus, the func-
tion we need is defined to iteratively apply replace-local-peak, (which replaces
local peak subproofs by the equivalent subproof given by transform-local-peak)
until there are no local peaks (checked by exists-local-peak). This the definition
of transform to valley (we omit here the definition of replace-local-peak and
exists-local-peak):

; (defun transform-to-valley (p)

; (if (not (exists-local-peak p))

; p

; (transform-to-valley (replace-local-peak p))))

This function is not admitted without help from the user. The reason is that when
a local peak in a proof is replaced by an equivalent valley subproof, the length of the
proof obtained may be larger than the original proof. The key point here is that every
element of the new subproof is smaller (w.r.t. the well-founded relation rel) than
the greatest element of the local peak. If we measure a proof as the multiset of the
elements involved in it, then replacing a local peak subproof by an equivalent valley
subproof, we obtain a proof with smaller measure with respect to the well-founded
multiset relation induced by rel.

The function proof-measure returns a measure for a given proof: it collects the
eltl elements of every proof step in a proof.

(defun proof-measure (p)
(if (endp p)
nil
(cons (eltl (car p)) (proof-measure (cdr p)))))

Using defmul, we define the well-founded relation mul-rel, induced by the well-
founded relation rel introduced in the previous subsection:

(defmul (rel rel-well-founded-relation-on-mp t fn x y))

The main result we proved states that the proof measure decreases (with respect
to the well-founded relation mul-rel) if a local-peak is replaced by an equivalent
valley subproof:

(defthm transform-to-valley-admission
(implies (exists-local-peak p)
(mul-rel (proof-measure (replace-local-peak p))
(proof-measure p)))
:rule-classes nil)

With these theorem, admission of the function transform-to-valley is now pos-
sible, giving a suitable hint:

(defun transform-to-valley (p)
(declare (xargs :measure (proof-measure p)
:well-founded-relation mul-rel
:hints (("Goal" :use
(:instance transform-to-valley-admission)))))
(if (not (exists-local-peak p))

p
(transform-to-valley (replace-local-peak p))))

Once transform-to-valley is admitted (which is the hard part of the theorem),
the following two theorems are proved, which trivially implies Newman’s lemma as
stated at the end of subsection 3.3.

(defthm equiv-p-x-y-transform-to-valley
(implies (equiv-p x y p)
(equiv-p x y (transform-to-valley p))))

(defthm valley-transform-to-valley
(implies (equiv-p x y p)
(steps-valley (transform-to-valley p))))

4 Conclusions

We have presented a formalization of multiset relations in ACL2, showing how can
be used as a tool for proving non-trivial termination properties of recursive function.
We defined the multiset relation induced by a given relation and proved a theorem
stating well-foundedness of the multiset relation induced by a well-founded relation.
This theorem is formulated in a very abstract way, so that functional instantiation
can be used to prove well-foundedness of concrete multiset relations.

We presented also a macro named defmul, implemented in order to provide a
convenient tool to define well-founded multiset relations induced by well-founded
relations. This macro allows the definition of these multiset relations in a single step.

Three case studies are presented, to show how this tool can be useful in obtaining
a proof of non-trivial termination properties of functions defined in ACL2. The first
case study is the definition of a tail-recursive version of Ackermann’s function. The
second is the admissibility of a definition of McCarthy’s 91 function, and a study of its
properties. The third is a proof of Newman’s lemma for abstract reduction relations.

This work arose as part of a larger project, trying to formalize properties of ab-
stract reduction relations, equational theories and abstract reduction relations [7, 8].
In that work, ACL2 is used as a meta-logic to study properties of a formal proof
system, namely equational logic. Newman’s lemma is a key result needed to prove de-
cidability of equational theories given by complete term rewriting systems [1]. Once
formalized multiset relations and used in the proof of Newman’s lemma, we decided
to make a tool (defmul) which allowed to export the results on multisets to other
contexts. To test this implementation, we applied to two examples described in [4]:
Ackermann’s function and McCarthy’s 91 function.

Further work has to be done to provide a good library of lemmas to handle multi-
sets and operations between them. We plan also to improve the use of defmul, in order
to provide only the name of the well-founded relation, avoiding to give the functions,
variables and event associated with it.

The examples presented here are of a theoretical nature. Nevertheless, a remark
given at the end of section III in [4], giving an heuristic procedure for proving termi-
nation of loops using multisets, suggests that this kind of orderings could be applied
to a wider class of termination problems and that the search for a suitable multiset
measure could be mechanized to some extent. Also, multisets orderings provide the
basis for some proofs of termination of term rewriting systems [1]. We intend to make
further research following this line.

References

1. BAADER, F., AND Nipkow, T. Term rewriting and all that. Cambridge University Press, 1998.

2. BROCK, B. defstructure for ACL2 version 2.0. Technical Report, 1997.

3. CowLEs. Knuth’s generalization of McCarthy’s 91 function. In Computer-Aided Reasoning: ACL2
Case Studies, M. Kaufmann, P. Manolios, and J. S. Moore, Eds. Kluwer Academic Publishers,
2000, ch. 17.

4. DERSHOWITZ, N., AND MANNA, Z. Proving termination with multiset orderings. In Annual
International Colloquium on Automata, Languages and Programming (1979), H. Maurer, Ed.,
no. 71 in LNCS, Springer-Verlag, pp. 188-202.

5. KAUFMANN, M., AND MOORE, J. S. http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.
ACL2 Version 2.5, 2000.

6. Krop, J. Term rewriting systems. Handbook of Logic in Computer Science (1992).

7. Ruiz-REINA, J., Aronso, J., HIDaLGo, M., AND MARTIN, F. http://www-cs.us.es/ ~jruiz/acl2-
rewr. Formalizing equational reasoning in the ACL2 theorem prover, 2000.

8. Ruiz-REINA, J., ALonso, J., HIDALGO, M., AND MARTIN, F. Formalizing rewriting in the
ACL2 theorem prover. In Proceedings of AISC’2000 (Fifth International Conference Artificial
Intelligence and Symbolic Computation) (to appear), LNCS, Springer Verlag.

