Automatic Verification of Polynomial Rings Fundamental
Properties in ACL2

I. Medina-Bulof, J. A. Alonso-Jiménez*, F. Palomo-Lozano!
T

{inmaculada.medina, francisco.palomo}Quca.es

. . *
jalonso@cica.es

Department of Computing Sciences and Artificial Intelligence*
University of Sevilla
Department of Computer Languages and Systems?
University of Cadiz

Keywords: Computer Algebra, multivariate polynomial, Acr.2, NQTHM, automatic reason-
ing, applicative programming language

Abstract

In this paper we present a formalization of multivariate polynomials over a coefficient field
(initially, @) and of their main properties. This formalization is shown to be adequate for
the automatic verification, in an applicative logic like Acr2, of fundamental properties which
structure them as a ring, with its main goal being to provide a reusable book on polynomials
for the development of further work. As this work comes from a previous formalization
attempt in NQTHM, some of the advantages provided by Acr2 regarding this latter system
are analyzed in the conclusions.

1 Introduction

Many of the most important algorithms from Computer Algebra [7, 9, 19] work on multivariate
polynomials. Several symbolic computation systems have been built over the last fifty years with
the aim to automate the growing requirements for the resolution of mathematical problems in
Science and Engineering. At the same time, the popularity of these systems has favoured the
appearance of new algorithms.

Nevertheless, the kernel of each and every one of these systems develops a solution, usually
different, to the problem of representing (efficiently) the different mathematical entities and, par-
ticularly, multivariate polynomials and their operations.

In spite of its relevance, it seems that not enough effort has been devoted to computational
formalization of the polynomial concept, though there are some works in this direction [2, 14],
especially in the context of tools whose reasoning is more guided by the user [3, 18].

This paper tries to cover this lack by providing AcrL2 with a reusable book that facilitates
structuring further work in automatic verification of polynomial algorithms. Nevertheless, this is
not the only goal because it does not only aim at finding a proper formalization for proving, but
also for computing (efficiently, as much as possible).

*Facultad de Informatica y Estadistica. Avda. Reina Mercedes, s/n. 41012 Sevilla. Spain.
tEscuela Superior de Ingenieria de Cadiz. C/ Chile, s/n. 11003 Cadiz. Spain.

2 Code Organization

Our Ac1.2 code has been divided into several files that form three packages. A makefile is provided
with them to automate the process of separate certification. Modular decomposition is shown in
table 1.

PACKAGE | FILES DESCRIPTION
TER term.lisp Terms
lexicographical-ordering.lisp | Lexicographical ordering on terms
MON monomial.lisp Monomials
POL polynomial.lisp Polynomials
normal-form.lisp Polynomial normalization and equality
addition.lisp Polynomial addition
negation.lisp Polynomial negation
congruences-1.1lisp Congruences with polynomial construc-
tion, addition and negation
multiplication.lisp Polynomial multiplication
congruences-2.1isp Congruences with polynomial multipli-
cation

Table 1: Logical and physical packaging

These packages import symbols that are typical of AcL2 (those given by *acl2-exports* and
others), but they do not import arithmetical symbols, nor relational ones, as we have found it
more natural to use + to stand for addition, - for negation, * for multiplication, < for the ordering
relation and = for equality. Name resolution mechanism supplied by defpkg and in-package
assures that these names may be used homogeneously in all packages without conflict.

For the sake of brevity, we refrain from including every technical detail of the presented proofs.
Instead, we refer the interested reader to the corresponding AcCL2 code, available electronically at
www-cs.us.es/"imedina/polynomials.html.

3 Polynomial Representation

Representation of objects under study is a main concern for the success of any certification work.
This is especially important when dealing with polynomials, due to the great variety of represen-
tations allowed and to the differences between algorithms that operate them.

The degree of difficulty associated with the automatic proof of a given property depends on
the representation chosen to a great extent. Let us describe this in more detail by analyzing the
two main representation schemes explored during the development of this work.

3.1 Normalized Representation Problems

Initially we chose a sparse normalized representation for polynomials [7, 9, 19], in which a unique
representation is associated with each polynomial where neither null coefficient nor identical terms
monomials appear.

With this approach, also present in programming of symbolic computation systems, very effi-
cient algorithms may be obtained [10, 19] operating on normalized objects to produce normalized
results. To achieve this, it is necessary to define a total strict order on the terms building up
monomials, there being various possibilities on the subject that have been widely commented on
by many authors.

The main advantage of this method from the verification point of view stems from the fact
that semantic equivalence becomes syntactic equality, represented by AcCL2’s equal.

It is not difficult to formalize this representation so that it is admitted by the system. However,
problems really appear when trying to prove such elemental properties like associativity of addition.
Problems crop up too early with this representation!.

An exhaustive analysis of failed proofs shows how the most important drawback to this rep-
resentation is to complicate excessively operation definitions? causing a deep impact on proof
complexity.

Unfortunately, all this points to the existence of a trade-off between algorithmic efficiency and
verification simplicity. This leads us (at the moment) to use another representation, less efficient
from the algorithmic point of view, but which makes it easier to verify the properties.

Later, a certain kind of “compositional reasoning” could be used, and we could prove the
equivalence of the algorithms used with more efficient versions. In short, the problem is reduced
to finding an efficient function for each inefficient function of our representation and to prove that
they are equivalent. However, we do not treat this improvement in this work.

3.2 Unnormalized Representation

Using an unnormalized representation presents some drawbacks such as equality is semantic, that
is, it has to operate with the equivalence classes induced by the normalization process, and the
prover does not manage it directly®.

Nevertheless, it also has many advantages, because it spares the operations the need of working
with normal forms and, therefore, their definitions become greatly simplified. Consequently, the
automatic proof of their properties is also easier.

When the computation done by the algorithm is separated from the normalization process,
the problem of normalization is concentrated in just one location: the equality predicate. Of
course equality becomes complicated, but to a lesser extent than operations with the normalized
representation do.

Therefore, the chosen alternative has been one that uses a sparse and unnormalized represen-
tation. Note that a dense representation is not appropriate any more, because it does not solve
any of the posed problems and it is tremendously space-inefficient (especially when the number of
variables is high).

To formalize the problem in AcrL2, a polynomial will be represented as a list of monomials
and a semantic equality predicate will be defined showing itself as an equivalence relation. Next,
main polynomial operations will be defined and we will try to prove the existence of a congruence
between each of these operations (for each of its arguments) and the given equivalence relation.
Finally, it will be proved that polynomials with these operations have a ring structure.

Each monomial will be represented as a pair (coefficient and term) and a semantic equality
predicate will be defined. As we will see later on, terms will be represented by exponent lists, and
a multiplication operation and a total ordering relation will be defined on them.

4 Terms

Let X = {z1,...,2,} be a finite set of variables, with an ordering relation <x = {(z;,z;) : 1 <
i < j < n} among its elements.

LConcurrent with this work, the authors are developing a framework from which they hope to make feasible this
representation through an AcrL2’s formalization of typed finite sets by introducing canonical forms. It is interesting
to remark that a recent report by J S. Moore on untyped finite sets gives some analysis to this matter [13].

2Fach operation has to deal with the normalization process and, in particular, with keeping the monomials of
the resultant polynomial ordered.

3This problem may be mitigated in Acr2 by using congruences. Other systems, like NoTuwm [4, 5] and Coq [8],
do not offer this possibility and it is necessary to create compatibility theorems between operations and equivalence
relations to get something similar (see how this problem influenced on [18]).

Definition. A term on X is a finite power product of the form:
xil...xZ":fo" Vie; €N,

and we will denote it briefly by X (€1:en),

As we can see later, the main results obtained from this formalization may be summed up in
the following points:

1. Terms form a commutative monoid with respect to the multiplication operation.
2. Lexicographical ordering on terms is well-founded and admissible.

A term on X may be represented in an easy way by a list of natural numbers. Its recognizer
is given by the following predicate:

(defmacro termp (a)
¢ (natural-listp ,a))

The function natural-listp, totally analogous to integer-1listp, simply checks whether its
argument is a true list of elements satisfying the naturalp predicate.

(defmacro naturalp (x)
‘(and (integerp ,x) (LISP::<= 0 ,x)))

(defun natural-listp (1)
(cond ((atom 1)
(equal 1 nil))
(t
(and (naturalp (first 1))
(natural-listp (rest 1))))))

We represent the null term with zero variables by a constant while defining a recognizer for
null terms with an arbitrary number of variables.

(defconst *null*
nil)

(defun nullp (a)
(cond ((atom a)
(equal a *nullx))
(t
(and (equal (first a) 0) (nullp (rest a))))))

Nevertheless, as we usually work with terms defined on the same set of variables, X, these
will be represented by lists of equal length. Therefore, it is appropriate to define a compatibility
relation on terms; thus, two terms are said to be compatible if they have equal length.

(defmacro compatiblep (a b)
‘(equal (len ,a) (len ,b)))

4.1 Equality

From the presented definitions it is clear that it is only necessary to define a merely syntactic
equality on terms. Nevertheless, for notational purposes, and to make future changes easier, we
define the equality symbol* as a synonym of equal.

(defmacro = (a b)
‘(equal ,a ,b))

4Recall that there is no conflict, because the symbol = that we are defining belongs to the package TER. This is
also applicable to the symbols and packages discussed in section 2.

4.2 Commutative Monoid Structure

Having chosen the set of variables, it suffices to add up their exponents variable by variable to
compute the multiplication of two compatible terms.

X<a17...,an> . X(bl,...,bn> — X(a1+b17...,an+bn)

The following function does this task. Nevertheless, this is somewhat general because the
requirement for compatibility inside the function would result in an unnecessary complication.

(defun * (a b)
(declare (xargs :guard (and (termp a) (termp b))))
(cond ((and (not (termp a)) (not (termp b)))

null)

((not (termp a))
b)

((not (termp b))
a)

((endp a)

b)

((endp b)

a)

(t

(cons (LISP::+ (first a) (first b)) (* (rest a) (rest b))))))

As shown, elements not being terms behave as if they correspond to the null term. In the case
of incompatible terms, the one with less variables is completed; this is the same as assuming that
the shorter list is filled with zeros to its right.

A proof of terms having commutative monoid structure with respect to the previous operation
is obtained by feeding the system with the following theorems. The generality of the function *
allows them to be proved while weakening their natural hypothesis.

(defthm *-identity-1
(implies (and (nullp a) (termp b) (compatiblep a b))
(= (*x ab) b))

(defthm *-identity-2
(implies (and (termp a) (nullp b) (compatiblep a b))
(= (x ab) a)))

(defthm commutativity-of-*
(= (* ab) (*x b a)))

(defthm associativity-of-*
(= (* (*xab) ¢c) (*x a (*bc))))

Note that it is only necessary to require term compatibility in the two first theorems. For
example, if we pay attention to the first one, we see that if a were not compatible with b, but it
had more variables, then the syntactic equality would not follow.

4.3 Well-Ordering

Next, we will show how to define a total and strict order on terms. In addition, this order is
proved to be well-founded and admissible.

To order terms, once we have determined the set of variables, X, it is only necessary to take
into account exponent lists. The obvious choice is to set up a lexicographical ordering among these
sequences of natural numbers.

4.3.1 Lexicographical Ordering

In the case of compatible terms, the definition of lexicographical ordering is straightforward, since
the natural number sequences involved are of the same length.

(al,...,an><(b1,...,bn>53i (ai<bi/\‘v’j<iaj=bj)

The following boolean function defines the strict lexicographical order relation on terms in this
way, but similarly to what happens to *, it will be somewhat more general. Thus, if two terms are
not compatible, the one with less variables will be taken as the least if, and only if, it is a prefix
of the other.

(defun < (a b)
(declare (xargs :guard (and (termp a) (termp b))))
(cond ((or (endp a) (endp b))
(not (endp b)))
((equal (first a) (first b))
(< (rest a) (rest b)))
(t
(LISP::< (first a) (first b)))))

It is not difficult to make evident that the defined relation satisfies the properties of a strict
partial ordering (irreflexivity and transitivity).

(defthm irreflexivity-of-<
(not (< a a)))

(defthm transitivity-of-<
(implies (and (< a b) (< b c)) (< a c)))

It is also possible to prove trichotomy, though under somewhat stronger conditions.

(defthm trichotomy-of-<
(implies (and (termp a) (termp b))
(or (< ab) (<Kba) (=ab)))
:rule-classes nil)

However, this property is more useful when stated in the following way, for its corollary can
then be used as a rewrite rule.

(defthm trichotomy-of-<

(implies (and (termp a) (termp b))

(or (< ab) (Kb a) (=ahb)))
:rule-classes
((:rewrite :corollary
(implies (and (termp a) (termp b)
(not (= a b)) (not (< a b)))
(< b a)))))

4.3.2 Term embedding in gg-ordinals

To embed terms in gg-ordinals we will adopt the following criterion:

X<61""’6"> ww"+e1 +___+ww+en

This embedding presents the advantage of providing a straightforward translation from the
exponents list of the term, as it can be noticed in the examples shown below. On the other hand,
the obtained ordinal type makes this representation easy to handle.

T Wt

1) (1.1 .0
2
xS.yU — w® +8+ww
——— —————
(8 0) ((2.8) (1.0 .0

3 2

564 'y3'2’5 W +4 4 ¥ +3 +ww+5
N— ~ ~~ 4
(4 35) ((3.4) (2.3 1.5 .0

We proceed to embed terms in gg-ordinals by using the following function.

(defun term->e0-ordinal (a)
(declare (xargs :guard (termp a)))
(cond ((endp a)
0)
(t
(cons (cons (len a) (first a))
(term->e0-ordinal (rest a))))))

As we will see next, it is proved that term->e0-ordinal truly produces an gg-ordinal from a

term.

4.3.3 Well-Foundedness

To state that a relation is well-founded in AcCL2, it is first necessary to make available a function
to perform the embedding of the relation objects in gg-ordinals. However, it is very important to
prove the correctness of the embedding function, which is not always easy when its ordinal type
is high. In this case, it is not a hard task after proving a technical lemma;:

(encapsulate ()
(local
(defthm technical-lemma
(implies (and (termp a)
(e0-ordinalp (term->e0-ordinal (rest a))))
(e0-ordinalp (term->e0-ordinal a)))
totf-flg t))

(defthm e0-ordinalp-term->e0-ordinal
(implies (termp a)
(e0-ordinalp (term->e0-ordinal a)))

thints (("Goal"
:in-theory (disable e0-ordinalp term->e0O-ordinal)))))

Once the correction of the embedding function has been proved, it is enough to check that
it preserves the order, that is to say, that the gg-ordinals corresponding to each pair of related
elements remain related.

(defthm well-ordering-of-<
(and (implies (termp a)
(e0-ordinalp (term->e0-ordinal a)))
(implies (and (termp a) (termp b)
(< a b))
(e0-ord-< (term->e0-ordinal a) (term->e0-ordinal b))))

:rule-classes :well-founded-relation)

This procedure allows us in ACL2 to add the rule class :well-founded-relation to the well-
foundedness theorem, thus marking the defined ordering relation (which is Noetherian) to be used,
when necessary, to prove the strict decrease of a measure function in the domain of terms.

Unfortunately, when using the presented < function, this theorem cannot be proved, for it is
false. In fact, it suffices to consider terms with a different number of variables to understand the
problem; there are clearly two symmetric cases, depending on whether the first has less variables
than the second or vice versa:

a:4y22 <x a:6y4 568 {X 2133y2
3 2 2 2
w¥ —+4 +ww +2 _I_warl 7<60 w¥ +6 +ww+4 ww+8 <50 w¥ +3 +ww+2

When terms are compatible, the problem disappears. It could be thought that the adequate
completion of the term with less variables could avoid the problem. However, the solution is not
as simple, because when embedding a term nothing is known about which other terms it could be
compared to. A feasible solution is to deal especially with both cases:

(defun < (a b)
(declare (xargs :guard (and (termp a) (termp b))))
(cond ((LISP::< (len a) (len b))
t)
((LISP::> (len a) (len b))
nil)
...

Now, we can prove that this relation is well-founded.

4.3.4 Admissibility

Finally, it is stated that the order is admissible on the set of compatible terms. For that, the
existence of a first element is proved (in fact, it is proved that every null term acts as the first
element) and that it is compatible with the operations, in this case, just the multiplication.

(defthm <-has-first
(implies (and (termp a) (termp b)
(compatiblep a b)
(nullp a) (mot (nullp b)))
(< a b))

(defthm <-compatible-*-1
(implies (and (termp a) (termp b) (termp c)
(compatiblep a c) (compatiblep b c)
(< a b))
(< (* ac) (*xDbc))))

(defthm <-compatible-*-2
(implies (and (termp a) (termp b) (termp c)
(compatiblep a c) (compatiblep b c)
(< a b))
(< (x ca) (*x cb))))

To demand term compatibility is essential, due to the change made in the original definition
of the < function.

5 Monomials

Definition. A monomial on X is a product of the form ¢ - X{€1¢n) where ¢ is called the
coefficient and e; are called the exponents. The - operation is defined from the set of coefficients
to the set of values that the elements in X can take.

Note that, for our purposes, it is not necessary to define the set on which the elements in
X take their values; these elements may be regarded as formal symbols with an indeterminate
meaning. We will use the field Q for the coefficients, although other algebraic systems could have
been used®.

Clearly, to represent a monomial it suffices to use a list whose first element is its coefficient
and whose rest is the accompanying term.

A very simple formalization in ACL2 is got by using macros, because, in fact, the concept
of monomial merely exists for notational easiness. The constructor and accessor operations are
defined in the following way:

(defmacro monomial (c e)
‘(cons ,c ,e))

(defmacro coefficient (a)
‘(first ,a))

(defmacro term (a)
‘(rest ,a))

It is also necessary to define a recognizer that allows us to discern which AcL2 objects are
monomials and which are not:

(defmacro monomialp (a)
‘(and (consp ,a)
(rationalp (first ,a))
(termp (rest ,a))))

Multiplicative identity monomial with null term is defined by a constant. To define a recognizer
for multiplicative identity monomials it suffices to create a macro that checks if the coefficient is
1 and the accompanying term is null.

(defconst *one*
(monomial 1 TER::*nullx))

(defmacro onep (a)
‘(and (equal (coefficient ,a) 1)
(TER: :nullp (term ,a))))

Also, it is handy to define a constant to represent the null monomial and a recognizer for null
monomials. Any monomial whose coefficient is null will be recognized as such.

(defconst *null*
(monomial O TER: :*nullx))

(defmacro nullp (a)
‘(equal (coefficient ,a) 0))

In the same way as with terms, it is suitable to define a compatibility relation on monomials.
Two monomials are compatible if, and only if, their underlying terms are compatible. It is obvious
that the relation defined in this way is an equivalence.

(defun compatiblep (a b)
(declare (xargs :guard (and (monomialp a) (monomialp b))))

(TER: :compatiblep (term a) (term b)))

(defequiv compatiblep)

5The book may be certified without any problem after replacing rationalp with integerp, thus obtaining integer
coefficient polynomials, or with ac12-numberp, in which case the coefficients become complex rationals.

5.1 Monoid commutative structure

To compute the multiplication of two monomials it suffices to multiply their coefficients and their
terms.

(defun * (a b)
(declare (xargs :guard (and (monomialp a) (monomialp b))))
(monomial (LISP::* (coefficient a) (coefficient b))
(TER::* (term a) (term b))))

Monomials inherit trivially a commutative monoid structure from terms and from properties
of the coefficient field multiplication operation.

(defthm *-identity-1
(implies (and (onep a) (monomialp b) (compatiblep a b))
(= (* ab) b))

(defthm *-identity-2
(implies (and (monomialp a) (onep b) (compatiblep a b))
(= (x ab) a)))

(defthm associativity-of-*
(= (x (xab) c) (*xa (xbc)))
thints (("Goal"
:in-theory (disable ACL2::commutativity-of-*))))

(defthm commutativity-of-*
(= (*x ab) (* b a)))

The cancellation properties of monomial multiplication are proved without any difficulty.

(defthm *-cancellative-1
(implies (and (nullp a) (compatiblep a b))
(nullp (% a b))))

(defthm *-cancellative-2
(implies (and (nullp b) (compatiblep a b))
(nullp (* a b))))

5.2 Semantic Equality and Congruence

Two monomials are equal if they are both null, or if their coefficients and terms are respectively
equal. This relation is proved to be an equivalence and a congruence with the multiplication
operation in both arguments.

(defun = (a b)
(declare (xargs :guard (and (monomialp a) (monomialp b))))
(or (and (nullp a) (nullp b))
(and (LISP::= (coefficient a) (coefficient b))
(TER::= (term a) (term b)))))

(defequiv =)

(defcong = = (x a b) 1)
(defcong = = (x a b) 2)

6 Polynomials

Definition. A polynomial on X is a finite sum of monomials:

m

1 CXlernen) oLy Cm c X (Emisemn) Zci . X (€itsen€in)

i=1

We begin by defining the recognizer for polynomials. A polynomial is simply represented by a
list of monomials.

((e1,{e11y s etn)), s (Cmy {€m1y -+ €mn)))

(defun monomial-listp (1)
(cond ((atom 1)
(equal 1 nil))
(t
(and (monomialp (first 1))
(monomial-listp (rest 1))))))

(defmacro polynomialp (p)
¢ (monomial-listp ,p))

The null polynomial with no monomials is defined as a constant and it is recognized by a macro
that is adequate for its use in base cases of recursion.

(defconst *null*
nil)

(defmacro nullp (p)
‘(endp ,p))

The constructor simply adds a monomial to a polynomial, although this is defined in such a
way that anomalous cases are dealt with in a reasonable way. This is essential to enable a later
definition of congruences with it.

(defun polynomial (m p)
(declare (xargs :guard (and (monomialp m) (polynomialp p))))
(cond ((and (not (monomialp m)) (not (polynomialp p)))
*nullx)
((not (monomialp m))
p)
((not (polynomialp p))
(list m))
(t
(cons m p))))

Compatibility of monomials must be extended to polynomials. To achieve this we begin by
defining the concept of uniform polynomial. A polynomial is said to be uniform if all of its
monomials are compatible with each other.

(defun uniformp (p)
(declare (xargs :guard (polynomialp p)))
(or (nullp p)
(nullp (rest p))
(and (MON::compatiblep (first p) (first (rest p)))
(uniformp (rest p)))))

Another related concept is that of a complete polynomial. A polynomial is complete with n
variables, if all of its monomials have got terms with n variables.

(defun completep (p n)
(declare (xargs :guard (and (polynomialp p) (maturalp n))))
(or (nullp p)
(and (equal (len (term (first p))) n)
(completep (rest p) n))))

As a consequence of these definitions we conclude that a polynomial is uniform if, and only if,
it is complete.

(defthm uniformp-iff-completep
(iff (uniformp p) (completep p (len (term (first p)))))
:rule-classes nil)

Thus the definition of compatibility between polynomials now arises in a natural way. Two
polynomials are compatible if they are uniform and their two first monomials are compatible too.

(defmacro compatiblep (pl p2)
‘(and (uniformp ,pl) (uniformp ,p2)
(MON: :compatiblep (first ,pl) (first ,p2))))

Let us remark that the operations we will define on polynomials will be generalized to properly
handle any AcCL2 object, even non-polynomials. A non-polynomial object will be regarded as
being a null polynomial, rendering the logic on polynomials total. Thanks to this, it is possible
to state most of congruence theorems with operations, because defcong does not allow for any
restrictive hypothesis over the involved objects.

It must not be forgotten that this in no way prevents the specification of guards adequate to
the character of each function, because these lack logical significance. Thus, executable versions
of functions may be more efficient, for they are allowed to assume that they receive polynomial
objectsS.

6.1 Semantic Equality

To decide whether two polynomials are semantically equivalent, we must check that both belong
to the same class of equivalence. This is done by computing their normal forms (that is, the
canonical representatives of their respective equivalence classes) and examining whether they are
syntactically equal. A uniform polynomial is said to be in normal form if it satisfies the following
conditions:

1. Its monomials are strictly ordered by a decreasing term order.

2. It contains no null monomial.

Note that the first condition implies the non-existence of monomials with identical terms in a
normalized uniform polynomial.

Initially, a function capable of adding a monomial to a polynomial is defined. This function
will be such that, if the polynomial is a normalized one, its result will also be a normalized one.
For this function to be total we need to complete, taking the utmost care, the values it must return
outside the domain set by its guard.

(defun +-monomial (m p)
(declare (xargs :guard (and (monomialp m) (polynomialp p))))
(cond ((and (not (monomialp m)) (not (polynomialp p)))
*nullx)
((not (monomialp m))
p)
6Tn general, if an operation is executed outside its domain in a Common Lisp system without run-time guard-
checking, its behavior is, in the best case, system dependent.

((and (not (polynomialp p)) (MON::nullp m))
*nullx)
((not (polynomialp p))
(polynomial m *null%*))
((MON: :nullp m)
p)
((nullp p)
(polynomial m *nullx))
((TER::= (term m) (term (first p)))
(let ((c (LISP::+ (coefficient m) (coefficient (first p)))))
(if (equal c 0)
(rest p)
(polynomial (monomial c¢ (term m)) (rest p)))))
((TER::< (term (first p)) (term m))
(polynomial m p))
(t
(polynomial (first p) (+-monomial m (rest p))))))

From this function, the computation of normal forms can be defined. If the polynomial is null,
it is already in normal form; therefore it suffices to normalize the rest of the polynomial if it is not
a null one and to add its first monomial to the result by using the previous function.

(defun nf (p)
(declare (xargs :guard (polynomialp p)))
(cond ((or (not (polynomialp p)) (nullp p))
*nullx)
(t
(+-monomial (first p) (nf (rest p))))))

Having done this, it is easy to prove that the equality relation defined on polynomials is an
equivalence.

(defun = (p1 p2)
(declare (xargs :guard (and (polynomialp pl) (polynomialp p2))))
(equal (nf pl) (nf p2)))

(defequiv =)

Other important properties have been proved, such as that the normalization function devel-
oped meets its specification and that uniformity and completeness of a polynomial are preserved
after transforming it into a normal form. The reader is referred to the corresponding code.

6.2 Commutative Ring Structure

Next, operations allowing us to add, multiply and negate polynomials will be defined. To ensure
that these operations satisfy the fundamental properties everybody expects from them, with the
representation chosen for polynomials, the existence of a commutative ring structure must be
proved.

Therefore, it is necessary to check that polynomials with addition and negation form an Abelian
group, while forming a commutative monoid with multiplication; besides that, multiplication must
distribute over addition.

6.2.1 Commutative Group with Addition and Negation

To add two polynomials it suffices to append their monomial lists. In fact, this is the easiest way
of defining this operation and it presents the advantage of simplifying the associative property
proof a lot. If getting the reduced result is what is desired, it is sufficient to compute its normal
form.

(defun + (p1 p2)
(declare (xargs :guard (and (polynomialp pl) (polynomialp p2))))
(cond ((and (not (polynomialp pl)) (not (polynomialp p2)))
*nullx)
((not (polynomialp p1))
p2)
((not (polynomialp p2))
pl)
(t
(append p1 p2))))

To compute the negative of a polynomial you only need to replace the coefficient in each
monomial with its negative.

(defun - (p)
(cond ((or (not (polynomialp p)) (nullp p))
*nullx)
(t

(polynomial (monomial (LISP::- (coefficient (first p)))
(term (first p)))
(- (rest p))N))

It is not hard to prove that this operation distributes over the addition of polynomials.

(defthm --distributes-+
(= (- (+ p1 p2)) (+ (- p1) (- p2))))

The following theorems prove that polynomials with the aforesaid operations have a group
structure.

(defthm +-identity-1
(= (+ p *null*) p))

(defthm +-identity-2
(= (+ *null* p) p))

(defthm associativity-of-+
(= (+ (+ p1 p2) p3) (+ p1 (+ p2 p3))))

(defthm +--
(= (+ p (- pP)) *nullx)))

It is much more complex to prove group commutativity than the other properties.

(defthm commutativity-of-+
(= (+ p1 p2) (+ p2 p1))
thints (("Goal"
:in-theory (disable =))))

6.2.2 Commutative Monoid with Multiplication

The multiplicative identity polynomial in normal form is defined as a constant. Elements in its
equivalence class can be recognized by a simple macro.

(defconst *one*
(polynomial MON::*one* *nullx*))

(defmacro onep (p)
‘(= ,p *onex*))

Before defining the internal multiplication operation between polynomials it is feasible to define
a helper function to represent the external multiplication between monomials and polynomials.
The procedure consists of replacing each monomial from the original polynomial with its multi-
plication by the given monomial.

(defun *-monomial (m p)
(declare (xargs :guard (and (monomialp m) (polynomialp p))))
(cond ((or (nullp p) (not (monomialp m)) (not (polynomialp p)))
null)
(t
(polynomial (MON::* m (first p)) (*-monomial m (rest p))))))

It is proved that this auxiliary operation has an identity and a cancellative element and that it
is distributive over the addition of monomial and polynomial, as well as over polynomial addition.
Then, to compute the multiplication of two polynomials it is enough to use the following definition:

(defun * (p1 p2)
(declare (xargs :guard (and (polynomialp pl) (polynomialp p2))))
(cond ((or (nullp pl) (not (polynomialp pl)))
*nullx)
(t
(+ (*#-monomial (first pl) p2) (* (rest pl) p2)))))

The fact that polynomials with this multiplication operation have monoid structure is deduced
from the following theorems.

(defthm *-identity-1
(= (* *onex p) p))

(defthm *-identity-2
(= (% p *onex) p))

(defthm associativity-of-*
(= (* p1 (*x p2 p3)) (* (* pl p2) p3))
thints (("Goal"
:in-theory (disable = +))))

It is more complex to prove monoid commutativity. Its proof is an example of the usefulness of
congruences defined between equality and the addition operation. The proof requires the definition
of a suitable induction scheme, a previously proved technical lemma, and several properties.

(defthm commutativity-of-#
(= (x p1 p2) (* p2 p1))
thints (("Goal"
rinduct (induction-scheme pl p2)
:do-not ’(eliminate-destructors)
:in-theory (disable = + polynomial))))

Properties stating the existence of cancellative elements in both arguments do not present any
difficulty for the prover.

(defthm *-cancellative-1
(= (* *nullx p) #*nullx*))

(defthm *-cancellative-2
(= (x p *null*) #*nullx*))

6.2.3 Distributivity of Multiplication over Addition

Finally, we are capable to prove that polynomial multiplication is distributive over addition.

(defthm *-distributes-+-1
(= (x p1 (+ p2 p3)) (+ (* pl p2) (* pl p3)))
thints (("Goal"
:in-theory (disable = +))))

(defthm *-distributes-+-2
(= (x (+ p1 p2) p3) (+ (x pl p3) (* p2 p3)))
thints (("Goal"
:in-theory (disable nf + *)))))

6.3 Congruences

One of the most interesting aspects of the formalization chosen here is that it allows the definition,
in most cases, of congruences between the equivalence relation given by polynomial equality under
normal form and their operations. This feature noticeably increases chances of reusing the book
as a tool for proving higher level properties.

The first operation, with which congruences can be set up, is the constructor of polynomial
objects. In this case, two equivalence relations intervene: those defined on monomials and on
polynomials. Both congruences are stated without difficulties.

(defcong MON::= = (polynomial m p) 1)
(defcong = = (polynomial m p) 2)

A bit more complex is the congruence with negation, where a technical lemma is necessary to
allow the normalization process to be “pushed” into the operation.

(encapsulate ()
(local
(defthm technical-lemma
(equal (nf (- p)) (- (nf p)))))

(defcong = = (- p) 1))

The technique used is similar in the case of the addition, with the exception that the normal-
ization process cannot be eliminated not even if it is also introduced into the argument. This leads
to the requirement of some little hints to carry out the proofs.

(encapsulate ()
(local
(defthm technical-lemma-1
(= (+ p1 (nf p2)) (+ pl p2))))

(defcong = = (+ pl p2) 2
thints (("Goal"
tin-theory (disable technical-lemma-1)
:use ((:instance technical-lemma-1 (p2 ACL2::p2-equiv))
technical-lemma-1))))

(local
(defthm technical-lemma-2
(= (+ (nf p1) p2) (+ pl p2))
:hints (("Goal"
:in-theory (disable =)))))

(defcong = = (+ pl1 p2) 1
thints (("Goal"
:in-theory (disable technical-lemma-2)
tuse ((:instance technical-lemma-2 (pl ACL2::pl-equiv))
technical-lemma-2)))))

Proving that the multiplication of monomial and polynomial is congruent with respect to the
equality in the first argument is direct.

(defcong MON::= = (*#-monomial m p) 1)

However, problems with .defcong. crop up while trying to create congruences in the second
argument of this operation. With the foregoing definitions it is necessary to keep the compatibility
hypothesis, and this prevents :congruence from being accepted as a legal rule class, for it does
not have the proper form. Moreover, the proof is noticeably more elaborate.

(defthm =-implies-=-*-monomial-2
(implies (and (monomialp m) (polynomialp pl) (polynomialp pl-equiv)
(MON: : compatiblep m (first pl)) (compatiblep pl pl-equiv)
(= p1 pl-equiv))
(= (*#-monomial m pl) (*-monomial m pl-equiv)))
thints (("Goal"
:cases ((MON::nullp m) (not (MON::nullp m))))
("Subgoal 2"
:in-theory (disable =)))))

Then, this defect is extended to the polynomial multiplication operation, because this latter
is derived from it. Proofs are still more intricate, and need several technical lemmas along with
some hints to be performed.

(defthm =-implies-=-%-2
(implies (and (polynomialp pl) (polynomialp p2) (polynomialp p2-equiv)
(compatiblep pl p2) (compatiblep pl p2-equiv)
(= p2 p2-equiv))
(= (* p1 p2) (% pl p2-equiv)))
thints (("Goal"
:in-theory (disable nf-*-1)
:use (nf-*-1
(:instance nf-*-1 (p2 p2-equiv))))))

(defthm =-implies-=-*-1
(implies (and (polynomialp pl) (polynomialp pl-equiv) (polynomialp p2)
(compatiblep pl p2) (compatiblep pl-equiv p2)
(= p1 pl-equiv))
(= (* p1 p2) (* pl-equiv p2)))
thints (("Goal"
rin-theory (disable commutativity-of-*)
:use (commutativity-of-*
(:instance commutativity-of-* (pl pl-equiv))
(:instance =-implies-=-%-2 (pl p2) (p2 pl) (p2-equiv pl-equiv))))))

6.4 Examples

As an example of some of the elemental properties that can be automatically proved by using the
book on polynomials developed here, without the need of providing the prover with any hint, we
present the following, that state how the polynomial semantic equality is preserved under several
conditions.

(defthm polynomial-first-null
(implies (MON::nullp m)
(= (polynomial m p) p)))

(defthm +-polynomial
(= (+ pl (polynomial m p2)) (polynomial m (+ pl p2))))

(defthm polynomial-polynomial-monomial-=-term
(implies (and (monomialp ml) (monomialp m2) (polynomialp p)
(TER::= (term ml) (term m2)))
(= (polynomial ml (polynomial m2 p))
(polynomial (monomial (LISP::+ (coefficient ml) (coefficient m2))
(term m1))
p))))

7 Conclusions and Future Work

A formalization of multivariate polynomials rings with rational coefficients in AcCL2 has been
presented. This includes a lexicographical ordering on terms along with its proofs of admissibility
and well-foundedness, besides a normalization function and an induced equivalence relation on
which congruences suitable for attacking harder problems are stated.

It must be noted that some of the obtained theorems have rather complex proofs helped by
technical lemmas and additional and by no means easy properties. Table 2 shows, for the sake
of comparison, the number of lines of code in each file, those generated by the system during its
certification and the proportion of time measured” with respect to the one in which execution
takes less.

FILE LINES OF CODE | LINES OF PROOF | PROP. OF TIME
term.lisp 147 2019 9.8
lexicographical-ordering.lisp 135 4996 43.0
monomial.lisp 151 738 1.5
polynomial.lisp 115 852 1.0
normal-form.lisp 164 12970 169.0
addition.lisp 94 1467 15.7
negation.lisp 52 1454 15.5
congruences-1.1lisp 55 1160 28.3
multiplication.lisp 213 12619 268.8
congruences-2.lisp 170 3337 106.0

Table 2: Certification statistics

This work comes from an unfinished previous one [12], in which the Boyer-Moore theorem
prover, NQTHM, was used. It is interesting to note some of the advantages exposed by AcCL2 in
comparison with NQTHM that influenced our decision of translating the problem into the former
(in spite of certain initial reticences due to the disappearance of shells, for we used them profusely).

The main inconvenience that cropped up when formalizing polynomials stemmed from the cho-
sen coefficient field. NQTHM contains only natural numbers, so we had to formalize and implement
a coefficient field from scratch.

In short, since Acr2 already incorporates a proper formalization of Q, the prerequisite to our
efforts for yielding a suitable representation of polynomials has been satisfied.

"Version 2.4 of Acr.2 was used. Times are measured and divided by the smallest one to get a ratio more or less
independent of the system in which the certification is done.

Problems derived from the absence of shells were solved by a more careful formalization and
proper choice of type prescription rules.

On the other hand, NQTHM’s absence of congruences implied the continuous need for proving
trivial lemmas, which, at first sight, had little or no relation to the theorems we really wanted to
prove. In the subsequent development under ACL2, congruences played their role, either shortening
the length and time of several proofs, or eliminating unnecessary hints which reduced their degree
of automation. The commutativity of polynomial multiplication proof is a true example of this.

Unfortunately, the introduction of the concept of term compatibility, arising from the need
of proving the well-foundedness of lexicographical ordering on terms, prevented us from entirely
achieving this goal by avoiding the elimination of compatibility hypothesis in the case of multipli-
cation.

A possible solution is to define the operations so that they work the usual way only on compati-
ble polynomials, while assigning an arbitrary meaning in cases involving incompatible polynomials
(in analogy to what now happens when dealing with non-polynomial objects). Another possible
avenue would be to find a suitable formalization of terms and of their embedding in eg-ordinals
that would totally eliminate the need to bring up the concept of term compatibility.

It is worthwhile to note AcL2’s support for guards to indicate function preconditions and,
especially, its automatic verification that guarantees that the CoMMON LisP code can be executed
efficiently, and with the same results, on any platform.

Last but not least, we would like to remark that this work is related to others developed
at Sevilla University Computational Logic Group on mechanized proving of several algorithms
and theorems from Rewrite Theory (see [1] for a precise and modern description of this theory).
Particularly, algorithms for subsumption, unification and anti-unification have been certified [15,
16], and Knuth-Bendix critical pair theorem has been mechanically proved [17].

As a matter of fact, this is only part of a rather more ambitious ongoing project, whose aim
is to obtain an automatic verification of Buchberger’s algorithm for Grébner bases computation
in Acr2. Works from [3, 18], certainly complementary, achieve this goal in CoQ. Nevertheless,
Ac12 and CoqQ logics differ in many aspects and automation degree achievable in AC1.2 is, at first
sight, superior to C0Q.

The reduction relation on polynomials defined for Buchberger’s algorithm is a subset of the or-
dering on polynomials induced by lexicographical ordering stated on terms. Consequently, defining
a term order is only the first step in defining the concepts associated with Buchberger’s algorithm
and, particularly, to its proof of termination.

There are many applications of Grébner bases, but we are mainly concerned with one that is
directly related to Propositional Logic. In Classical Propositional Logic, a polynomial is associated
with each formula by Stone isomorphism. Then, tautology and deduction problems can be solved
after computing a given Grébner basis. This “algebraic method” has been extended to finite
Multi-Valued Propositional Logic [6, 20].

References

[1] Baader, F. & Nipkow, T. Term Rewriting and All That. Cambridge University Press. 1998.

[2] Ballarin, C. Computer Algebra and Theorem Proving. Technical Report, 473. University of
Cambridge Computer Laboratory. 1999.
iaks-www.ira.uka.de/iaks-calmet/ballarin

[3] Barja-Pérez, J. M. & Pérez-Vega, G. Demostracion en Implementaciones Concretas de
Anillos de Polinomios. RSMAE. 1999.

[4] Boyer, R. S. & Moore, J S. A Computational Logic. Academic Press. 1978.
[5] Boyer, R. S. & Moore, J S. A Computational Logic Handbook. Academic Press. 2" ed. 1998.

(6]

7]

8]

9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

Chazarain, J.; Riscos, A.; Alonso, J. A. & Briales, E.. Multi-Valued Logic and Grébner
Bases with Applications to Modal Logic. Journal of Symbolic Computation. Vol. 11. 1991.

Davenport, J. H.; Siret, Y. & Tournier, E. Computer Algebra. Systems and Algorithms for
Algebraic Computation. Academic Press. 1988.

Dowek, G; Felty, A.; Herbelin, H.; Huet, G.; Murty, C; Parent, C; Paulin-Mohring, C. &
Werner, B. The CoQ Proof Assistant Reference Manual. Rapport Technique, 0203. INRIA.
1999.

Geddes, K. O.; Czapor, S. R. & Labahn, G. Algorithms for Computer Algebra. Kluwer.
1992.

Johnson, S. C. Sparse Polynomial Arithmetic. SIGSAM Bulletin 8. 1974.

Kaufmann, M. & Moore, J S. An Industrial Strength Theorem Prover for a Logic Based on
ComMmoN Lisp. IEEE Transactions on Software Engineering. 1997.

Medina-Bulo, 1. Verificacion de Propiedades de Algoritmos Polindmicos. Informe Técnico.
CCIA. Universidad de Sevilla. 2000.

Moore, J S. Finite Set Theory in Acr2. Technical Report. Department of Computer
Sciences. University of Texas.
WWw.cs.utexas.edu/users/moore/publications/finite-set-theory

Persson, H. Certified Computer Algebra. Lecture Notes. Types Summer School 99. 1999.

Ruiz-Reina, J. L.; Alonso-Jiménez, J. A.; Hidalgo-Doblado, M. J. & Martin-Mateos F. J.
Mechanical Verification of a Rule-Based Unification Algorithm in the Boyer-Moore Theorem
Prover. AGP’99 Joint Conference on Declarative Programming. 1999.

Ruiz-Reina, J. L.; Alonso-Jiménez, J. A.; Hidalgo-Doblado, M. J. & Martin-Mateos F. J.
Mechanical Verification of Knuth-Bendix Critical Pair Theorem (using ACL2). FTP 2000
Third International Workshop on First-Order Theorem Proving. Research Report 5/2000,
Universitat Koblenz-Landau.

Ruiz-Reina, J. L.; Alonso-Jiménez, J. A.; Hidalgo-Doblado, M. J. & Martin-Mateos F. J.
Formalizing Rewriting in the ACL2 Theorem Prover. Fifth International Conference on
Artificial Intelligence and Symbolic Computation, 2000. LNCS, Springer-Verlag (to appear).

Théry, L. A Certified Version of Buchberger’s Algorithm. LNAI, 1421. Springer-Verlag.
1998.

Winkler, F. Polynomial Algorithms in Computer Algebra. Springer-Verlag. 1996.

Wu, J. First-Order Polynomial based Theorem Proving. In Mathematics Mechanization and
Applications. (X-S. Gao and D. Wang, eds.) Academic Press. 1999.

