
Automati
 Veri�
ation of Polynomial Rings FundamentalProperties in A
l2I. Medina-Buloy, J. A. Alonso-Jiménez�, F. Palomo-Lozanoyfinma
ulada.medina; fran
is
o.palomog�u
a.esyjalonso�
i
a.es�Department of Computing S
ien
es and Arti�
ial Intelligen
e�University of SevillaDepartment of Computer Languages and SystemsyUniversity of CádizKeywords: Computer Algebra, multivariate polynomial, A
l2, Nqthm, automati
 reason-ing, appli
ative programming language Abstra
tIn this paper we present a formalization of multivariate polynomials over a 
oe�
ient �eld(initially, Q) and of their main properties. This formalization is shown to be adequate forthe automati
 veri�
ation, in an appli
ative logi
 like A
l2, of fundamental properties whi
hstru
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2 Code OrganizationOur A
l2 
ode has been divided into several �les that form three pa
kages. A make�le is providedwith them to automate the pro
ess of separate 
erti�
ation. Modular de
omposition is shown intable 1.Pa
kage Files Des
riptionTER term.lisp Termslexi
ographi
al-ordering.lisp Lexi
ographi
al ordering on termsMON monomial.lisp MonomialsPOL polynomial.lisp Polynomialsnormal-form.lisp Polynomial normalization and equalityaddition.lisp Polynomial additionnegation.lisp Polynomial negation
ongruen
es-1.lisp Congruen
es with polynomial 
onstru
-tion, addition and negationmultipli
ation.lisp Polynomial multipli
ation
ongruen
es-2.lisp Congruen
es with polynomial multipli-
ationTable 1: Logi
al and physi
al pa
kagingThese pa
kages import symbols that are typi
al of A
l2 (those given by *a
l2-exports* andothers), but they do not import arithmeti
al symbols, nor relational ones, as we have found itmore natural to use + to stand for addition, - for negation, * for multipli
ation, < for the orderingrelation and = for equality. Name resolution me
hanism supplied by defpkg and in-pa
kageassures that these names may be used homogeneously in all pa
kages without 
on�i
t.For the sake of brevity, we refrain from in
luding every te
hni
al detail of the presented proofs.Instead, we refer the interested reader to the 
orresponding A
l2 
ode, available ele
troni
ally atwww-
s.us.es/~imedina/polynomials.html.3 Polynomial RepresentationRepresentation of obje
ts under study is a main 
on
ern for the su

ess of any 
erti�
ation work.This is espe
ially important when dealing with polynomials, due to the great variety of represen-tations allowed and to the di�eren
es between algorithms that operate them.The degree of di�
ulty asso
iated with the automati
 proof of a given property depends onthe representation 
hosen to a great extent. Let us des
ribe this in more detail by analyzing thetwo main representation s
hemes explored during the development of this work.3.1 Normalized Representation ProblemsInitially we 
hose a sparse normalized representation for polynomials [7, 9, 19℄, in whi
h a uniquerepresentation is asso
iated with ea
h polynomial where neither null 
oe�
ient nor identi
al termsmonomials appear.With this approa
h, also present in programming of symboli
 
omputation systems, very e�-
ient algorithms may be obtained [10, 19℄ operating on normalized obje
ts to produ
e normalizedresults. To a
hieve this, it is ne
essary to de�ne a total stri
t order on the terms building upmonomials, there being various possibilities on the subje
t that have been widely 
ommented onby many authors.The main advantage of this method from the veri�
ation point of view stems from the fa
tthat semanti
 equivalen
e be
omes synta
ti
 equality, represented by A
l2's equal.



It is not di�
ult to formalize this representation so that it is admitted by the system. However,problems really appear when trying to prove su
h elemental properties like asso
iativity of addition.Problems 
rop up too early with this representation1.An exhaustive analysis of failed proofs shows how the most important drawba
k to this rep-resentation is to 
ompli
ate ex
essively operation de�nitions2 
ausing a deep impa
t on proof
omplexity.Unfortunately, all this points to the existen
e of a trade-o� between algorithmi
 e�
ien
y andveri�
ation simpli
ity. This leads us (at the moment) to use another representation, less e�
ientfrom the algorithmi
 point of view, but whi
h makes it easier to verify the properties.Later, a 
ertain kind of �
ompositional reasoning� 
ould be used, and we 
ould prove theequivalen
e of the algorithms used with more e�
ient versions. In short, the problem is redu
edto �nding an e�
ient fun
tion for ea
h ine�
ient fun
tion of our representation and to prove thatthey are equivalent. However, we do not treat this improvement in this work.3.2 Unnormalized RepresentationUsing an unnormalized representation presents some drawba
ks su
h as equality is semanti
, thatis, it has to operate with the equivalen
e 
lasses indu
ed by the normalization pro
ess, and theprover does not manage it dire
tly3.Nevertheless, it also has many advantages, be
ause it spares the operations the need of workingwith normal forms and, therefore, their de�nitions be
ome greatly simpli�ed. Consequently, theautomati
 proof of their properties is also easier.When the 
omputation done by the algorithm is separated from the normalization pro
ess,the problem of normalization is 
on
entrated in just one lo
ation: the equality predi
ate. Of
ourse equality be
omes 
ompli
ated, but to a lesser extent than operations with the normalizedrepresentation do.Therefore, the 
hosen alternative has been one that uses a sparse and unnormalized represen-tation. Note that a dense representation is not appropriate any more, be
ause it does not solveany of the posed problems and it is tremendously spa
e-ine�
ient (espe
ially when the number ofvariables is high).To formalize the problem in A
l2, a polynomial will be represented as a list of monomialsand a semanti
 equality predi
ate will be de�ned showing itself as an equivalen
e relation. Next,main polynomial operations will be de�ned and we will try to prove the existen
e of a 
ongruen
ebetween ea
h of these operations (for ea
h of its arguments) and the given equivalen
e relation.Finally, it will be proved that polynomials with these operations have a ring stru
ture.Ea
h monomial will be represented as a pair (
oe�
ient and term) and a semanti
 equalitypredi
ate will be de�ned. As we will see later on, terms will be represented by exponent lists, anda multipli
ation operation and a total ordering relation will be de�ned on them.4 TermsLet X = fx1; : : : ; xng be a �nite set of variables, with an ordering relation <X = f(xi; xj) : 1 �i < j � ng among its elements.1Con
urrent with this work, the authors are developing a framework from whi
h they hope to make feasible thisrepresentation through an A
l2's formalization of typed �nite sets by introdu
ing 
anoni
al forms. It is interestingto remark that a re
ent report by J S. Moore on untyped �nite sets gives some analysis to this matter [13℄.2Ea
h operation has to deal with the normalization pro
ess and, in parti
ular, with keeping the monomials ofthe resultant polynomial ordered.3This problem may be mitigated in A
l2 by using 
ongruen
es. Other systems, like Nqthm [4, 5℄ and Coq [8℄,do not o�er this possibility and it is ne
essary to 
reate 
ompatibility theorems between operations and equivalen
erelations to get something similar (see how this problem in�uen
ed on [18℄).



De�nition. A term on X is a �nite power produ
t of the form:xe11 : : : xenn = nYi=1xeii 8i ei 2 N;and we will denote it brie�y by Xhe1;:::;eni.As we 
an see later, the main results obtained from this formalization may be summed up inthe following points:1. Terms form a 
ommutative monoid with respe
t to the multipli
ation operation.2. Lexi
ographi
al ordering on terms is well-founded and admissible.A term on X may be represented in an easy way by a list of natural numbers. Its re
ognizeris given by the following predi
ate:(defma
ro termp (a)`(natural-listp ,a))The fun
tion natural-listp, totally analogous to integer-listp, simply 
he
ks whether itsargument is a true list of elements satisfying the naturalp predi
ate.(defma
ro naturalp (x)`(and (integerp ,x) (LISP::<= 0 ,x)))(defun natural-listp (l)(
ond ((atom l)(equal l nil))(t(and (naturalp (first l))(natural-listp (rest l))))))We represent the null term with zero variables by a 
onstant while de�ning a re
ognizer fornull terms with an arbitrary number of variables.(def
onst *null*nil)(defun nullp (a)(
ond ((atom a)(equal a *null*))(t(and (equal (first a) 0) (nullp (rest a))))))Nevertheless, as we usually work with terms de�ned on the same set of variables, X , thesewill be represented by lists of equal length. Therefore, it is appropriate to de�ne a 
ompatibilityrelation on terms; thus, two terms are said to be 
ompatible if they have equal length.(defma
ro 
ompatiblep (a b)`(equal (len ,a) (len ,b)))4.1 EqualityFrom the presented de�nitions it is 
lear that it is only ne
essary to de�ne a merely synta
ti
equality on terms. Nevertheless, for notational purposes, and to make future 
hanges easier, wede�ne the equality symbol4 as a synonym of equal.(defma
ro = (a b)`(equal ,a ,b))4Re
all that there is no 
on�i
t, be
ause the symbol = that we are de�ning belongs to the pa
kage TER. This isalso appli
able to the symbols and pa
kages dis
ussed in se
tion 2.



4.2 Commutative Monoid Stru
tureHaving 
hosen the set of variables, it su�
es to add up their exponents variable by variable to
ompute the multipli
ation of two 
ompatible terms.Xha1;:::;ani �Xhb1;:::;bni = Xha1+b1;:::;an+bniThe following fun
tion does this task. Nevertheless, this is somewhat general be
ause therequirement for 
ompatibility inside the fun
tion would result in an unne
essary 
ompli
ation.(defun * (a b)(de
lare (xargs :guard (and (termp a) (termp b))))(
ond ((and (not (termp a)) (not (termp b)))*null*)((not (termp a))b)((not (termp b))a)((endp a)b)((endp b)a)(t(
ons (LISP::+ (first a) (first b)) (* (rest a) (rest b))))))As shown, elements not being terms behave as if they 
orrespond to the null term. In the 
aseof in
ompatible terms, the one with less variables is 
ompleted; this is the same as assuming thatthe shorter list is �lled with zeros to its right.A proof of terms having 
ommutative monoid stru
ture with respe
t to the previous operationis obtained by feeding the system with the following theorems. The generality of the fun
tion *allows them to be proved while weakening their natural hypothesis.(defthm *-identity-1(implies (and (nullp a) (termp b) (
ompatiblep a b))(= (* a b) b)))(defthm *-identity-2(implies (and (termp a) (nullp b) (
ompatiblep a b))(= (* a b) a)))(defthm 
ommutativity-of-*(= (* a b) (* b a)))(defthm asso
iativity-of-*(= (* (* a b) 
) (* a (* b 
))))Note that it is only ne
essary to require term 
ompatibility in the two �rst theorems. Forexample, if we pay attention to the �rst one, we see that if a were not 
ompatible with b, but ithad more variables, then the synta
ti
 equality would not follow.4.3 Well-OrderingNext, we will show how to de�ne a total and stri
t order on terms. In addition, this order isproved to be well-founded and admissible.To order terms, on
e we have determined the set of variables, X , it is only ne
essary to takeinto a

ount exponent lists. The obvious 
hoi
e is to set up a lexi
ographi
al ordering among thesesequen
es of natural numbers.



4.3.1 Lexi
ographi
al OrderingIn the 
ase of 
ompatible terms, the de�nition of lexi
ographi
al ordering is straightforward, sin
ethe natural number sequen
es involved are of the same length.ha1; : : : ; ani < hb1; : : : ; bni � 9i (ai < bi ^ 8j < i aj = bj)The following boolean fun
tion de�nes the stri
t lexi
ographi
al order relation on terms in thisway, but similarly to what happens to *, it will be somewhat more general. Thus, if two terms arenot 
ompatible, the one with less variables will be taken as the least if, and only if, it is a pre�xof the other.(defun < (a b)(de
lare (xargs :guard (and (termp a) (termp b))))(
ond ((or (endp a) (endp b))(not (endp b)))((equal (first a) (first b))(< (rest a) (rest b)))(t(LISP::< (first a) (first b)))))It is not di�
ult to make evident that the de�ned relation satis�es the properties of a stri
tpartial ordering (irre�exivity and transitivity).(defthm irreflexivity-of-<(not (< a a)))(defthm transitivity-of-<(implies (and (< a b) (< b 
)) (< a 
)))It is also possible to prove tri
hotomy, though under somewhat stronger 
onditions.(defthm tri
hotomy-of-<(implies (and (termp a) (termp b))(or (< a b) (< b a) (= a b))):rule-
lasses nil)However, this property is more useful when stated in the following way, for its 
orollary 
anthen be used as a rewrite rule.(defthm tri
hotomy-of-<(implies (and (termp a) (termp b))(or (< a b) (< b a) (= a b))):rule-
lasses((:rewrite :
orollary(implies (and (termp a) (termp b)(not (= a b)) (not (< a b)))(< b a)))))4.3.2 Term embedding in "0"0"0-ordinalsTo embed terms in "0-ordinals we will adopt the following 
riterion:Xhe1;:::;eni 7�! !!n+e1 + � � �+ !!+enThis embedding presents the advantage of providing a straightforward translation from theexponents list of the term, as it 
an be noti
ed in the examples shown below. On the other hand,the obtained ordinal type makes this representation easy to handle.



x|{z}(1) 7�! !!+1| {z }((1 . 1) . 0)x8 � y0| {z }(8 0) 7�! !!2+8 + !!| {z }((2 . 8) (1 . 0) . 0)x4 � y3 � z5| {z }(4 3 5) 7�! !!3+4 + !!2+3 + !!+5| {z }((3 . 4) (2 . 3) (1 . 5) . 0)We pro
eed to embed terms in "0-ordinals by using the following fun
tion.(defun term->e0-ordinal (a)(de
lare (xargs :guard (termp a)))(
ond ((endp a)0)(t(
ons (
ons (len a) (first a))(term->e0-ordinal (rest a))))))As we will see next, it is proved that term->e0-ordinal truly produ
es an "0-ordinal from aterm.4.3.3 Well-FoundednessTo state that a relation is well-founded in A
l2, it is �rst ne
essary to make available a fun
tionto perform the embedding of the relation obje
ts in "0-ordinals. However, it is very important toprove the 
orre
tness of the embedding fun
tion, whi
h is not always easy when its ordinal typeis high. In this 
ase, it is not a hard task after proving a te
hni
al lemma:(en
apsulate ()(lo
al(defthm te
hni
al-lemma(implies (and (termp a)(e0-ordinalp (term->e0-ordinal (rest a))))(e0-ordinalp (term->e0-ordinal a))):otf-flg t))(defthm e0-ordinalp-term->e0-ordinal(implies (termp a)(e0-ordinalp (term->e0-ordinal a))):hints (("Goal":in-theory (disable e0-ordinalp term->e0-ordinal)))))On
e the 
orre
tion of the embedding fun
tion has been proved, it is enough to 
he
k thatit preserves the order, that is to say, that the "0-ordinals 
orresponding to ea
h pair of relatedelements remain related.(defthm well-ordering-of-<(and (implies (termp a)(e0-ordinalp (term->e0-ordinal a)))(implies (and (termp a) (termp b)(< a b))(e0-ord-< (term->e0-ordinal a) (term->e0-ordinal b)))):rule-
lasses :well-founded-relation)This pro
edure allows us in A
l2 to add the rule 
lass :well-founded-relation to the well-foundedness theorem, thus marking the de�ned ordering relation (whi
h is Noetherian) to be used,when ne
essary, to prove the stri
t de
rease of a measure fun
tion in the domain of terms.



Unfortunately, when using the presented < fun
tion, this theorem 
annot be proved, for it isfalse. In fa
t, it su�
es to 
onsider terms with a di�erent number of variables to understand theproblem; there are 
learly two symmetri
 
ases, depending on whether the �rst has less variablesthan the se
ond or vi
e versa:x4y2z <X x6y47�! 7�!!!3+4 + !!2+2 + !!+1 �"0 !!2+6 + !!+4 x8 �X x3y27�! 7�!!!+8 <"0 !!2+3 + !!+2When terms are 
ompatible, the problem disappears. It 
ould be thought that the adequate
ompletion of the term with less variables 
ould avoid the problem. However, the solution is notas simple, be
ause when embedding a term nothing is known about whi
h other terms it 
ould be
ompared to. A feasible solution is to deal espe
ially with both 
ases:(defun < (a b)(de
lare (xargs :guard (and (termp a) (termp b))))(
ond ((LISP::< (len a) (len b))t)((LISP::> (len a) (len b))nil)( : : :Now, we 
an prove that this relation is well-founded.4.3.4 AdmissibilityFinally, it is stated that the order is admissible on the set of 
ompatible terms. For that, theexisten
e of a �rst element is proved (in fa
t, it is proved that every null term a
ts as the �rstelement) and that it is 
ompatible with the operations, in this 
ase, just the multipli
ation.(defthm <-has-first(implies (and (termp a) (termp b)(
ompatiblep a b)(nullp a) (not (nullp b)))(< a b)))(defthm <-
ompatible-*-1(implies (and (termp a) (termp b) (termp 
)(
ompatiblep a 
) (
ompatiblep b 
)(< a b))(< (* a 
) (* b 
))))(defthm <-
ompatible-*-2(implies (and (termp a) (termp b) (termp 
)(
ompatiblep a 
) (
ompatiblep b 
)(< a b))(< (* 
 a) (* 
 b))))To demand term 
ompatibility is essential, due to the 
hange made in the original de�nitionof the < fun
tion.5 MonomialsDe�nition. A monomial on X is a produ
t of the form 
 � Xhe1;:::;eni, where 
 is 
alled the
oe�
ient and ei are 
alled the exponents. The � operation is de�ned from the set of 
oe�
ientsto the set of values that the elements in X 
an take.



Note that, for our purposes, it is not ne
essary to de�ne the set on whi
h the elements inX take their values; these elements may be regarded as formal symbols with an indeterminatemeaning. We will use the �eld Q for the 
oe�
ients, although other algebrai
 systems 
ould havebeen used5.Clearly, to represent a monomial it su�
es to use a list whose �rst element is its 
oe�
ientand whose rest is the a

ompanying term.A very simple formalization in A
l2 is got by using ma
ros, be
ause, in fa
t, the 
on
eptof monomial merely exists for notational easiness. The 
onstru
tor and a

essor operations arede�ned in the following way:(defma
ro monomial (
 e)`(
ons ,
 ,e))(defma
ro 
oeffi
ient (a)`(first ,a))(defma
ro term (a)`(rest ,a))It is also ne
essary to de�ne a re
ognizer that allows us to dis
ern whi
h A
l2 obje
ts aremonomials and whi
h are not:(defma
ro monomialp (a)`(and (
onsp ,a)(rationalp (first ,a))(termp (rest ,a))))Multipli
ative identity monomial with null term is de�ned by a 
onstant. To de�ne a re
ognizerfor multipli
ative identity monomials it su�
es to 
reate a ma
ro that 
he
ks if the 
oe�
ient is1 and the a

ompanying term is null.(def
onst *one*(monomial 1 TER::*null*))(defma
ro onep (a)`(and (equal (
oeffi
ient ,a) 1)(TER::nullp (term ,a))))Also, it is handy to de�ne a 
onstant to represent the null monomial and a re
ognizer for nullmonomials. Any monomial whose 
oe�
ient is null will be re
ognized as su
h.(def
onst *null*(monomial 0 TER::*null*))(defma
ro nullp (a)`(equal (
oeffi
ient ,a) 0))In the same way as with terms, it is suitable to de�ne a 
ompatibility relation on monomials.Two monomials are 
ompatible if, and only if, their underlying terms are 
ompatible. It is obviousthat the relation de�ned in this way is an equivalen
e.(defun 
ompatiblep (a b)(de
lare (xargs :guard (and (monomialp a) (monomialp b))))(TER::
ompatiblep (term a) (term b)))(defequiv 
ompatiblep)5The book may be 
erti�ed without any problem after repla
ing rationalp with integerp, thus obtaining integer
oe�
ient polynomials, or with a
l2-numberp, in whi
h 
ase the 
oe�
ients be
ome 
omplex rationals.



5.1 Monoid 
ommutative stru
tureTo 
ompute the multipli
ation of two monomials it su�
es to multiply their 
oe�
ients and theirterms.(defun * (a b)(de
lare (xargs :guard (and (monomialp a) (monomialp b))))(monomial (LISP::* (
oeffi
ient a) (
oeffi
ient b))(TER::* (term a) (term b))))Monomials inherit trivially a 
ommutative monoid stru
ture from terms and from propertiesof the 
oe�
ient �eld multipli
ation operation.(defthm *-identity-1(implies (and (onep a) (monomialp b) (
ompatiblep a b))(= (* a b) b)))(defthm *-identity-2(implies (and (monomialp a) (onep b) (
ompatiblep a b))(= (* a b) a)))(defthm asso
iativity-of-*(= (* (* a b) 
) (* a (* b 
))):hints (("Goal":in-theory (disable ACL2::
ommutativity-of-*))))(defthm 
ommutativity-of-*(= (* a b) (* b a)))The 
an
ellation properties of monomial multipli
ation are proved without any di�
ulty.(defthm *-
an
ellative-1(implies (and (nullp a) (
ompatiblep a b))(nullp (* a b))))(defthm *-
an
ellative-2(implies (and (nullp b) (
ompatiblep a b))(nullp (* a b))))5.2 Semanti
 Equality and Congruen
eTwo monomials are equal if they are both null, or if their 
oe�
ients and terms are respe
tivelyequal. This relation is proved to be an equivalen
e and a 
ongruen
e with the multipli
ationoperation in both arguments.(defun = (a b)(de
lare (xargs :guard (and (monomialp a) (monomialp b))))(or (and (nullp a) (nullp b))(and (LISP::= (
oeffi
ient a) (
oeffi
ient b))(TER::= (term a) (term b)))))(defequiv =)(def
ong = = (* a b) 1)(def
ong = = (* a b) 2)



6 PolynomialsDe�nition. A polynomial on X is a �nite sum of monomials:
1 �Xhe11;:::;e1ni + � � �+ 
m �Xhem1;:::;emni = mXi=1 
i �Xhei1;:::;einiWe begin by de�ning the re
ognizer for polynomials. A polynomial is simply represented by alist of monomials. h(
1; he11; : : : ; e1ni); : : : ; (
m; hem1; : : : ; emni)i(defun monomial-listp (l)(
ond ((atom l)(equal l nil))(t(and (monomialp (first l))(monomial-listp (rest l))))))(defma
ro polynomialp (p)`(monomial-listp ,p))The null polynomial with no monomials is de�ned as a 
onstant and it is re
ognized by a ma
rothat is adequate for its use in base 
ases of re
ursion.(def
onst *null*nil)(defma
ro nullp (p)`(endp ,p))The 
onstru
tor simply adds a monomial to a polynomial, although this is de�ned in su
h away that anomalous 
ases are dealt with in a reasonable way. This is essential to enable a laterde�nition of 
ongruen
es with it.(defun polynomial (m p)(de
lare (xargs :guard (and (monomialp m) (polynomialp p))))(
ond ((and (not (monomialp m)) (not (polynomialp p)))*null*)((not (monomialp m))p)((not (polynomialp p))(list m))(t(
ons m p))))Compatibility of monomials must be extended to polynomials. To a
hieve this we begin byde�ning the 
on
ept of uniform polynomial. A polynomial is said to be uniform if all of itsmonomials are 
ompatible with ea
h other.(defun uniformp (p)(de
lare (xargs :guard (polynomialp p)))(or (nullp p)(nullp (rest p))(and (MON::
ompatiblep (first p) (first (rest p)))(uniformp (rest p)))))Another related 
on
ept is that of a 
omplete polynomial. A polynomial is 
omplete with nvariables, if all of its monomials have got terms with n variables.



(defun 
ompletep (p n)(de
lare (xargs :guard (and (polynomialp p) (naturalp n))))(or (nullp p)(and (equal (len (term (first p))) n)(
ompletep (rest p) n))))As a 
onsequen
e of these de�nitions we 
on
lude that a polynomial is uniform if, and only if,it is 
omplete.(defthm uniformp-iff-
ompletep(iff (uniformp p) (
ompletep p (len (term (first p))))):rule-
lasses nil)Thus the de�nition of 
ompatibility between polynomials now arises in a natural way. Twopolynomials are 
ompatible if they are uniform and their two �rst monomials are 
ompatible too.(defma
ro 
ompatiblep (p1 p2)`(and (uniformp ,p1) (uniformp ,p2)(MON::
ompatiblep (first ,p1) (first ,p2))))Let us remark that the operations we will de�ne on polynomials will be generalized to properlyhandle any A
l2 obje
t, even non-polynomials. A non-polynomial obje
t will be regarded asbeing a null polynomial, rendering the logi
 on polynomials total. Thanks to this, it is possibleto state most of 
ongruen
e theorems with operations, be
ause def
ong does not allow for anyrestri
tive hypothesis over the involved obje
ts.It must not be forgotten that this in no way prevents the spe
i�
ation of guards adequate tothe 
hara
ter of ea
h fun
tion, be
ause these la
k logi
al signi�
an
e. Thus, exe
utable versionsof fun
tions may be more e�
ient, for they are allowed to assume that they re
eive polynomialobje
ts6.6.1 Semanti
 EqualityTo de
ide whether two polynomials are semanti
ally equivalent, we must 
he
k that both belongto the same 
lass of equivalen
e. This is done by 
omputing their normal forms (that is, the
anoni
al representatives of their respe
tive equivalen
e 
lasses) and examining whether they aresynta
ti
ally equal. A uniform polynomial is said to be in normal form if it satis�es the following
onditions:1. Its monomials are stri
tly ordered by a de
reasing term order.2. It 
ontains no null monomial.Note that the �rst 
ondition implies the non-existen
e of monomials with identi
al terms in anormalized uniform polynomial.Initially, a fun
tion 
apable of adding a monomial to a polynomial is de�ned. This fun
tionwill be su
h that, if the polynomial is a normalized one, its result will also be a normalized one.For this fun
tion to be total we need to 
omplete, taking the utmost 
are, the values it must returnoutside the domain set by its guard.(defun +-monomial (m p)(de
lare (xargs :guard (and (monomialp m) (polynomialp p))))(
ond ((and (not (monomialp m)) (not (polynomialp p)))*null*)((not (monomialp m))p)6In general, if an operation is exe
uted outside its domain in a Common Lisp system without run-time guard-
he
king, its behavior is, in the best 
ase, system dependent.



((and (not (polynomialp p)) (MON::nullp m))*null*)((not (polynomialp p))(polynomial m *null*))((MON::nullp m)p)((nullp p)(polynomial m *null*))((TER::= (term m) (term (first p)))(let ((
 (LISP::+ (
oeffi
ient m) (
oeffi
ient (first p)))))(if (equal 
 0)(rest p)(polynomial (monomial 
 (term m)) (rest p)))))((TER::< (term (first p)) (term m))(polynomial m p))(t(polynomial (first p) (+-monomial m (rest p))))))From this fun
tion, the 
omputation of normal forms 
an be de�ned. If the polynomial is null,it is already in normal form; therefore it su�
es to normalize the rest of the polynomial if it is nota null one and to add its �rst monomial to the result by using the previous fun
tion.(defun nf (p)(de
lare (xargs :guard (polynomialp p)))(
ond ((or (not (polynomialp p)) (nullp p))*null*)(t(+-monomial (first p) (nf (rest p))))))Having done this, it is easy to prove that the equality relation de�ned on polynomials is anequivalen
e.(defun = (p1 p2)(de
lare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(equal (nf p1) (nf p2)))(defequiv =)Other important properties have been proved, su
h as that the normalization fun
tion devel-oped meets its spe
i�
ation and that uniformity and 
ompleteness of a polynomial are preservedafter transforming it into a normal form. The reader is referred to the 
orresponding 
ode.6.2 Commutative Ring Stru
tureNext, operations allowing us to add, multiply and negate polynomials will be de�ned. To ensurethat these operations satisfy the fundamental properties everybody expe
ts from them, with therepresentation 
hosen for polynomials, the existen
e of a 
ommutative ring stru
ture must beproved.Therefore, it is ne
essary to 
he
k that polynomials with addition and negation form an Abeliangroup, while forming a 
ommutative monoid with multipli
ation; besides that, multipli
ation mustdistribute over addition.6.2.1 Commutative Group with Addition and NegationTo add two polynomials it su�
es to append their monomial lists. In fa
t, this is the easiest wayof de�ning this operation and it presents the advantage of simplifying the asso
iative propertyproof a lot. If getting the redu
ed result is what is desired, it is su�
ient to 
ompute its normalform.



(defun + (p1 p2)(de
lare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(
ond ((and (not (polynomialp p1)) (not (polynomialp p2)))*null*)((not (polynomialp p1))p2)((not (polynomialp p2))p1)(t(append p1 p2))))To 
ompute the negative of a polynomial you only need to repla
e the 
oe�
ient in ea
hmonomial with its negative.(defun - (p)(
ond ((or (not (polynomialp p)) (nullp p))*null*)(t(polynomial (monomial (LISP::- (
oeffi
ient (first p)))(term (first p)))(- (rest p))))))It is not hard to prove that this operation distributes over the addition of polynomials.(defthm --distributes-+(= (- (+ p1 p2)) (+ (- p1) (- p2))))The following theorems prove that polynomials with the aforesaid operations have a groupstru
ture.(defthm +-identity-1(= (+ p *null*) p))(defthm +-identity-2(= (+ *null* p) p))(defthm asso
iativity-of-+(= (+ (+ p1 p2) p3) (+ p1 (+ p2 p3))))(defthm +--(= (+ p (- p)) *null*)))It is mu
h more 
omplex to prove group 
ommutativity than the other properties.(defthm 
ommutativity-of-+(= (+ p1 p2) (+ p2 p1)):hints (("Goal":in-theory (disable =))))6.2.2 Commutative Monoid with Multipli
ationThe multipli
ative identity polynomial in normal form is de�ned as a 
onstant. Elements in itsequivalen
e 
lass 
an be re
ognized by a simple ma
ro.(def
onst *one*(polynomial MON::*one* *null*))(defma
ro onep (p)`(= ,p *one*))



Before de�ning the internal multipli
ation operation between polynomials it is feasible to de�nea helper fun
tion to represent the external multipli
ation between monomials and polynomials.The pro
edure 
onsists of repla
ing ea
h monomial from the original polynomial with its multi-pli
ation by the given monomial.(defun *-monomial (m p)(de
lare (xargs :guard (and (monomialp m) (polynomialp p))))(
ond ((or (nullp p) (not (monomialp m)) (not (polynomialp p)))*null*)(t(polynomial (MON::* m (first p)) (*-monomial m (rest p))))))It is proved that this auxiliary operation has an identity and a 
an
ellative element and that itis distributive over the addition of monomial and polynomial, as well as over polynomial addition.Then, to 
ompute the multipli
ation of two polynomials it is enough to use the following de�nition:(defun * (p1 p2)(de
lare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(
ond ((or (nullp p1) (not (polynomialp p1)))*null*)(t(+ (*-monomial (first p1) p2) (* (rest p1) p2)))))The fa
t that polynomials with this multipli
ation operation have monoid stru
ture is dedu
edfrom the following theorems.(defthm *-identity-1(= (* *one* p) p))(defthm *-identity-2(= (* p *one*) p))(defthm asso
iativity-of-*(= (* p1 (* p2 p3)) (* (* p1 p2) p3)):hints (("Goal":in-theory (disable = +))))It is more 
omplex to prove monoid 
ommutativity. Its proof is an example of the usefulness of
ongruen
es de�ned between equality and the addition operation. The proof requires the de�nitionof a suitable indu
tion s
heme, a previously proved te
hni
al lemma, and several properties.(defthm 
ommutativity-of-*(= (* p1 p2) (* p2 p1)):hints (("Goal":indu
t (indu
tion-s
heme p1 p2):do-not '(eliminate-destru
tors):in-theory (disable = + polynomial))))Properties stating the existen
e of 
an
ellative elements in both arguments do not present anydi�
ulty for the prover.(defthm *-
an
ellative-1(= (* *null* p) *null*))(defthm *-
an
ellative-2(= (* p *null*) *null*))



6.2.3 Distributivity of Multipli
ation over AdditionFinally, we are 
apable to prove that polynomial multipli
ation is distributive over addition.(defthm *-distributes-+-1(= (* p1 (+ p2 p3)) (+ (* p1 p2) (* p1 p3))):hints (("Goal":in-theory (disable = +))))(defthm *-distributes-+-2(= (* (+ p1 p2) p3) (+ (* p1 p3) (* p2 p3))):hints (("Goal":in-theory (disable nf + *)))))6.3 Congruen
esOne of the most interesting aspe
ts of the formalization 
hosen here is that it allows the de�nition,in most 
ases, of 
ongruen
es between the equivalen
e relation given by polynomial equality undernormal form and their operations. This feature noti
eably in
reases 
han
es of reusing the bookas a tool for proving higher level properties.The �rst operation, with whi
h 
ongruen
es 
an be set up, is the 
onstru
tor of polynomialobje
ts. In this 
ase, two equivalen
e relations intervene: those de�ned on monomials and onpolynomials. Both 
ongruen
es are stated without di�
ulties.(def
ong MON::= = (polynomial m p) 1)(def
ong = = (polynomial m p) 2)A bit more 
omplex is the 
ongruen
e with negation, where a te
hni
al lemma is ne
essary toallow the normalization pro
ess to be �pushed� into the operation.(en
apsulate ()(lo
al(defthm te
hni
al-lemma(equal (nf (- p)) (- (nf p)))))(def
ong = = (- p) 1))The te
hnique used is similar in the 
ase of the addition, with the ex
eption that the normal-ization pro
ess 
annot be eliminated not even if it is also introdu
ed into the argument. This leadsto the requirement of some little hints to 
arry out the proofs.(en
apsulate ()(lo
al(defthm te
hni
al-lemma-1(= (+ p1 (nf p2)) (+ p1 p2))))(def
ong = = (+ p1 p2) 2:hints (("Goal":in-theory (disable te
hni
al-lemma-1):use ((:instan
e te
hni
al-lemma-1 (p2 ACL2::p2-equiv))te
hni
al-lemma-1))))(lo
al(defthm te
hni
al-lemma-2(= (+ (nf p1) p2) (+ p1 p2)):hints (("Goal":in-theory (disable =)))))



(def
ong = = (+ p1 p2) 1:hints (("Goal":in-theory (disable te
hni
al-lemma-2):use ((:instan
e te
hni
al-lemma-2 (p1 ACL2::p1-equiv))te
hni
al-lemma-2)))))Proving that the multipli
ation of monomial and polynomial is 
ongruent with respe
t to theequality in the �rst argument is dire
t.(def
ong MON::= = (*-monomial m p) 1)However, problems with .def
ong. 
rop up while trying to 
reate 
ongruen
es in the se
ondargument of this operation. With the foregoing de�nitions it is ne
essary to keep the 
ompatibilityhypothesis, and this prevents :
ongruen
e from being a

epted as a legal rule 
lass, for it doesnot have the proper form. Moreover, the proof is noti
eably more elaborate.(defthm =-implies-=-*-monomial-2(implies (and (monomialp m) (polynomialp p1) (polynomialp p1-equiv)(MON::
ompatiblep m (first p1)) (
ompatiblep p1 p1-equiv)(= p1 p1-equiv))(= (*-monomial m p1) (*-monomial m p1-equiv))):hints (("Goal":
ases ((MON::nullp m) (not (MON::nullp m))))("Subgoal 2":in-theory (disable =)))))Then, this defe
t is extended to the polynomial multipli
ation operation, be
ause this latteris derived from it. Proofs are still more intri
ate, and need several te
hni
al lemmas along withsome hints to be performed.(defthm =-implies-=-*-2(implies (and (polynomialp p1) (polynomialp p2) (polynomialp p2-equiv)(
ompatiblep p1 p2) (
ompatiblep p1 p2-equiv)(= p2 p2-equiv))(= (* p1 p2) (* p1 p2-equiv))):hints (("Goal":in-theory (disable nf-*-1):use (nf-*-1(:instan
e nf-*-1 (p2 p2-equiv))))))(defthm =-implies-=-*-1(implies (and (polynomialp p1) (polynomialp p1-equiv) (polynomialp p2)(
ompatiblep p1 p2) (
ompatiblep p1-equiv p2)(= p1 p1-equiv))(= (* p1 p2) (* p1-equiv p2))):hints (("Goal":in-theory (disable 
ommutativity-of-*):use (
ommutativity-of-*(:instan
e 
ommutativity-of-* (p1 p1-equiv))(:instan
e =-implies-=-*-2 (p1 p2) (p2 p1) (p2-equiv p1-equiv))))))6.4 ExamplesAs an example of some of the elemental properties that 
an be automati
ally proved by using thebook on polynomials developed here, without the need of providing the prover with any hint, wepresent the following, that state how the polynomial semanti
 equality is preserved under several
onditions.



(defthm polynomial-first-null(implies (MON::nullp m)(= (polynomial m p) p)))(defthm +-polynomial(= (+ p1 (polynomial m p2)) (polynomial m (+ p1 p2))))(defthm polynomial-polynomial-monomial-=-term(implies (and (monomialp m1) (monomialp m2) (polynomialp p)(TER::= (term m1) (term m2)))(= (polynomial m1 (polynomial m2 p))(polynomial (monomial (LISP::+ (
oeffi
ient m1) (
oeffi
ient m2))(term m1))p))))7 Con
lusions and Future WorkA formalization of multivariate polynomials rings with rational 
oe�
ients in A
l2 has beenpresented. This in
ludes a lexi
ographi
al ordering on terms along with its proofs of admissibilityand well-foundedness, besides a normalization fun
tion and an indu
ed equivalen
e relation onwhi
h 
ongruen
es suitable for atta
king harder problems are stated.It must be noted that some of the obtained theorems have rather 
omplex proofs helped byte
hni
al lemmas and additional and by no means easy properties. Table 2 shows, for the sakeof 
omparison, the number of lines of 
ode in ea
h �le, those generated by the system during its
erti�
ation and the proportion of time measured7 with respe
t to the one in whi
h exe
utiontakes less.File Lines of 
ode Lines of proof Prop. of timeterm.lisp 147 2019 9.8lexi
ographi
al-ordering.lisp 135 4996 43.0monomial.lisp 151 738 1.5polynomial.lisp 115 852 1.0normal-form.lisp 164 12970 169.0addition.lisp 94 1467 15.7negation.lisp 52 1454 15.5
ongruen
es-1.lisp 55 1160 28.3multipli
ation.lisp 213 12619 268.8
ongruen
es-2.lisp 170 3337 106.0Table 2: Certi�
ation statisti
sThis work 
omes from an un�nished previous one [12℄, in whi
h the Boyer-Moore theoremprover, Nqthm, was used. It is interesting to note some of the advantages exposed by A
l2 in
omparison with Nqthm that in�uen
ed our de
ision of translating the problem into the former(in spite of 
ertain initial reti
en
es due to the disappearan
e of shells, for we used them profusely).The main in
onvenien
e that 
ropped up when formalizing polynomials stemmed from the 
ho-sen 
oe�
ient �eld. Nqthm 
ontains only natural numbers, so we had to formalize and implementa 
oe�
ient �eld from s
rat
h.In short, sin
e A
l2 already in
orporates a proper formalization of Q, the prerequisite to oure�orts for yielding a suitable representation of polynomials has been satis�ed.7Version 2.4 of A
l2 was used. Times are measured and divided by the smallest one to get a ratio more or lessindependent of the system in whi
h the 
erti�
ation is done.



Problems derived from the absen
e of shells were solved by a more 
areful formalization andproper 
hoi
e of type pres
ription rules.On the other hand, Nqthm's absen
e of 
ongruen
es implied the 
ontinuous need for provingtrivial lemmas, whi
h, at �rst sight, had little or no relation to the theorems we really wanted toprove. In the subsequent development underA
l2, 
ongruen
es played their role, either shorteningthe length and time of several proofs, or eliminating unne
essary hints whi
h redu
ed their degreeof automation. The 
ommutativity of polynomial multipli
ation proof is a true example of this.Unfortunately, the introdu
tion of the 
on
ept of term 
ompatibility, arising from the needof proving the well-foundedness of lexi
ographi
al ordering on terms, prevented us from entirelya
hieving this goal by avoiding the elimination of 
ompatibility hypothesis in the 
ase of multipli-
ation.A possible solution is to de�ne the operations so that they work the usual way only on 
ompati-ble polynomials, while assigning an arbitrary meaning in 
ases involving in
ompatible polynomials(in analogy to what now happens when dealing with non-polynomial obje
ts). Another possibleavenue would be to �nd a suitable formalization of terms and of their embedding in "0-ordinalsthat would totally eliminate the need to bring up the 
on
ept of term 
ompatibility.It is worthwhile to note A
l2's support for guards to indi
ate fun
tion pre
onditions and,espe
ially, its automati
 veri�
ation that guarantees that the Common Lisp 
ode 
an be exe
utede�
iently, and with the same results, on any platform.Last but not least, we would like to remark that this work is related to others developedat Sevilla University Computational Logi
 Group on me
hanized proving of several algorithmsand theorems from Rewrite Theory (see [1℄ for a pre
ise and modern des
ription of this theory).Parti
ularly, algorithms for subsumption, uni�
ation and anti-uni�
ation have been 
erti�ed [15,16℄, and Knuth-Bendix 
riti
al pair theorem has been me
hani
ally proved [17℄.As a matter of fa
t, this is only part of a rather more ambitious ongoing proje
t, whose aimis to obtain an automati
 veri�
ation of Bu
hberger's algorithm for Gröbner bases 
omputationin A
l2. Works from [3, 18℄, 
ertainly 
omplementary, a
hieve this goal in Coq. Nevertheless,A
l2 and Coq logi
s di�er in many aspe
ts and automation degree a
hievable in A
l2 is, at �rstsight, superior to Coq.The redu
tion relation on polynomials de�ned for Bu
hberger's algorithm is a subset of the or-dering on polynomials indu
ed by lexi
ographi
al ordering stated on terms. Consequently, de�ninga term order is only the �rst step in de�ning the 
on
epts asso
iated with Bu
hberger's algorithmand, parti
ularly, to its proof of termination.There are many appli
ations of Gröbner bases, but we are mainly 
on
erned with one that isdire
tly related to Propositional Logi
. In Classi
al Propositional Logi
, a polynomial is asso
iatedwith ea
h formula by Stone isomorphism. Then, tautology and dedu
tion problems 
an be solvedafter 
omputing a given Gröbner basis. This �algebrai
 method� has been extended to �niteMulti-Valued Propositional Logi
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