
Formalizing rewriting in the ACL2 theorem prover ?Jos�e-Luis Ruiz-Reina, Jos�e-Antonio Alonso, Mar��a-Jos�e Hidalgo andFran
is
o-Jes�us Mart��n-Mateosfjruiz,jalonso,mjoseh,fjesusg�
i
a.esDepartamento de Cien
ias de la Computa
i�on e Inteligen
ia Arti�
ial.Fa
ultad de Inform�ati
a y Estad��sti
a, Universidad de SevillaAvda. Reina Mer
edes, s/n. 41012 Sevilla, SpainAbstra
t. We present an appli
ation of the ACL2 theorem prover to formalizeand reason about rewrite systems theory. This
an be seen as a �rst approa
h toapply formal methods, using ACL2, to the design of symboli

omputation systems,sin
e the notion of rewriting or simpli�
ation is ubiquitous in su
h systems. We
on
entrate here in formalization and representation aspe
ts of the rewriting theoryusing the �rst-order, quanti�er-free ACL2 logi
 based on Common Lisp. The mainresult we me
hani
ally proved is Knuth-Bendix
riti
al-pair theorem.Keywords: Computer algebra systems and automated theorem provers. Integration of logi
alreasoning and
omputer algebra. Formal methods. Logi
 and symboli

omputing. ACL2 theoremprover. Abstra
t redu
tion systems. Term rewriting.1 Introdu
tionWe report in this paper the status of our work on the appli
ation of the ACL2theorem prover to reason about rewrite systems theory:
on
uen
e, lo
al
on
u-en
e, noetherianity, normal forms and other related
on
epts have been formalizedin the ACL2 logi
 and some results about abstra
t redu
tion relations and termrewriting systems have been me
hani
ally proved, in
luding Newman's lemma andKnuth-Bendix
riti
al pair theorem.ACL2 is both a logi
 and a me
hani
al theorem proving system supportingit. The ACL2 logi
 is a existentially quanti�er-free, �rst-order logi
 with equality.ACL2 is also a programming language, an appli
ative subset of Common Lisp.The system evolved from the Boyer Moore theorem prover, also known as Nqthm.Formal proofs using a theorem proving environment provides not only formalveri�
ation of mathemati
al theories, but allows to understand and examine theirtheorems with mu
h greater detail, rigor and
larity. On the other hand, the no-tion of rewriting or simpli�
ation is a
ru
ial
omponent in symboli

omputation:simpli�
ation pro
edures are needed to transform
omplex obje
ts obtaining equiv-alent but simpler obje
ts and to
ompute unique representations for equivalen
e
lasses (see, for example, [4℄ or [9℄).Sin
e ACL2 is also a programming language, this work
an be seen as a �rststep to obtain veri�ed exe
utable Common Lisp
ode for
omponents of symboli

omputation systems. Although a fully veri�ed implementation of su
h a systemis
urrently beyond our possibilities, several basi
 algorithms
an be me
hani
ally\
erti�ed" and integrated as part of the whole system.We also show here how a weak logi
 like the ACL2 logi
 (no quanti�
ation, noin�nite obje
ts, no higher order variables, et
.)
an be used to represent, formalize,and me
hani
ally prove non-trivial theorems. In this paper, we pla
e emphasis ondes
ribing the formalization and representation aspe
ts of our work. Due to the? This work has been supported by DGES/MEC: Proje
ts PB96-0098-C04-04 and PB96-1345

la
k of spa
e, we will skip details of the me
hani
al proofs. The
omplete booksare available on the web in http://www-
s.us.es/~jruiz/a
l2-rewr/.1.1 The ACL2 systemWe brie
y des
ribe here the ACL2 theorem prover and its logi
. For a good in-trodu
tion written by the authors of the system, see [6℄. Readers wishing moreba
kground on ACL2 are urged to see the ACL2 user's manual in [7℄. A very gooddes
ription of the main proof te
hniques used in Nqthm, that are also used inACL2,
an be found in [3℄.ACL2 stands for A Computational Logi
 for Appli
ative Common Lisp. TheACL2 logi
 is a quanti�er-free, �rst-order logi
 with equality, des
ribing an ap-pli
ative subset of Common Lisp. The syntax of terms is that of Common Lisp[13℄ (we will assume the reader familiar with this language). The logi
 in
ludesaxioms for propositional logi
 and for a number of Lisp fun
tions and data types.Rules of inferen
e in
lude those for propositional
al
ulus, equality, and instanti-ation. By the prin
iple of de�nition, new fun
tion de�nitions (using defun) areadmitted as axioms only if there exists an ordinal measure in whi
h the argumentsof ea
h re
ursive
all de
rease. This ensures that no in
onsisten
ies are introdu
edby new de�nitions. The theory has a
onstru
tive de�nition of the ordinals up to"0, in terms of lists and natural numbers, given by the predi
ate e0-ordinalp andthe order e0-ord-<. One important rule of inferen
e is the prin
iple of indu
tion,that permits proofs by indu
tion on "0.In addition to the de�nition prin
iple, the en
apsulation me
hanism (usingen
apsulate) allows the user to introdu
e new fun
tion symbols by axioms
on-straining them to have
ertain properties (to ensure
onsisten
y, a witness lo
alfun
tion having the same properties has to be exhibited). Inside an en
apsulate,properties stated with defthm need to be proved for the lo
al witnesses, and out-side, those theorems work as assumed axioms. The fun
tions partially de�ned withen
apsulate
an be seen as se
ond order variables, representing fun
tions withthose properties. A derived rule of inferen
e, fun
tional instantiation, allows somekind of se
ond-order reasoning: theorems about
onstrained fun
tions
an be in-stantiated with fun
tion symbols known to have the same properties.The ACL2 theorem prover is inspired by Nqthm, but has been
onsiderablyimproved. The main proof te
hniques used by the prover are simpli�
ation andindu
tion. Simpli�
ation is a
ombination of de
ision pro
edures, mainly termrewriting, using the rules previously proved by the user. The
ommand defthmstarts a proof attempt, and, if it su

eeds, the theorem is stored as a rule. Thetheorem prover is automati
 in the sense that on
e defthm is invoked, the user
an no longer intera
t with the system. However, the user
an guide the prover byadding lemmas and de�nitions, used in the proofs as rules. The role of the user isimportant: a typi
al proof e�ort
onsists in formalize the problem in the logi
 andhelp the prover to �nd a proof by means of a suitable set of rewrite rules.1.2 Abstra
t redu
tions and term rewriting systemsThis se
tion provides a short introdu
tion to basi

on
epts and de�nitions fromrewriting theory used in this paper. A
omplete des
ription
an be found in [1℄.An abstra
t redu
tion is simply a binary relation ! de�ned on a set A. Wewill denote as , $, �! and �$ respe
tively the inverse relation, the symmetri

losure, the re
exive-transitive
losure and the equivalen
e
losure. The following

on
epts are de�ned with respe
t to a redu
tion relation !. An element x is innormal form (or irredu
ible) if there is no z su
h that x ! z. We say that x andy are joinable (denoted as x # y) if exists u su
h that x �! u � y. We say that xand y are equivalent if x �$ y.An important property to study about redu
tion relations is existen
e of uniquenormal forms for equivalent obje
ts. A redu
tion relation has the Chur
h-Rosserproperty if every two equivalent obje
ts are joinable. An equivalent property is
on
uen
e: for all x; u; v su
h that u � x �! v, then u # v. In every redu
tionrelation with the Chur
h-Rosser property there are not distin
t and equivalentnormal forms. If in addition the relation is normalizing (i.e. every element hasa normal form, noted as x #) then x �$ y i� x #= y #. Provided normal formsare
omputable and identity in A is de
idable, then the equivalen
e relation �$ isde
idable in this
ase.Another important property is termination: a redu
tion relation is terminating(or noetherian) if there is no in�nite redu
tion sequen
e x0 ! x1 ! x2 ! : : :.Obviously, every noetherian redu
tion is normalizing. The Chur
h-Rosser
ondi-tion
an be lo
alized when the redu
tion is terminating. In that
ase an equivalentproperty is lo
al
on
uen
e: for all x; u; v su
h that u x ! v, then u # v. Thisresult is known as Newman's lemma.One important type of redu
tion relations is de�ned in the set T (�;X) of �rstorder terms in a given language, where � is a set of fun
tion symbols, and X is aset of variables. In this
ontext, an equation is a pair of terms l = r. The redu
tionrelation de�ned by a set of equations E is de�ned as: s!E t if it exists l = r 2 Eand a substitution � of the variables in l (the mat
hing substitution) su
h that�(l) is a subterm of l and t is obtained from s by repla
ing the subterm �(l)by �(r). This redu
tion relation is of great interest in universal algebra be
auseit
an be proved that E j= s = t i� s �$E t. This implies de
idability of everyequational theory de�ned by a set of axioms E su
h that !E is terminating andlo
ally
on
uent. To emphasize the use of the equation l = r from left to right asdes
ribed above, we write l ! r and talk about rewrite rules. A term rewritingsystem (TRS) is a set of rewrite rules. Unless noted otherwise, E is always a setof equations (equational axioms) and R is a TRS.Lo
al
on
uen
e is de
idable for �nite TRSs: joinability has only to be
he
kedfor a �nite number of pair of terms,
alled
riti
al pairs, a

ounting for the mostgeneral forms of lo
al divergen
e. The Knuth-Bendix
riti
al pair theoremstates that a TRS is lo
ally
on
uent i� all its
riti
al pairs are joinable. Thus,Chur
h-Rosser property of terminating TRSs is a de
idable property: it is enoughto
he
k if every
riti
al pair has a
ommon normal form. If a TRS R has a
riti
al pair with di�erent normal forms, there is still a
han
e to obtain a de
isionpro
edure for the equational theory of R, adjoining that equation as a new rewriterule. This is the basis for the well-known
ompletion algorithms. See [1℄ for details.In the sequel, we des
ribe the formalization of these properties in the ACL2logi
 and a proof of them using the theorem prover. For the rest of the paper,when we talk about \prove" we mean \me
hani
ally prove using ACL2".2 Formalizing abstra
t redu
tions in ACL2Our �rst attempt to represent abstra
t redu
tion relations in the ACL2 logi
 wassimply to de�ne them as binary boolean fun
tions, using en
apsulate to state

their properties. Nevertheless, if x! y, more important than the relation betweenx and y is the fa
t that y is obtained from x by applying some kind of transfor-mation or operator. In its most abstra
t formulation, we
an view a redu
tion asa binary fun
tion that, given an element and an operator returns another obje
t,performing a one-step redu
tion. Think for example in equational redu
tions: ele-ments in that
ase are �rst-order terms and operators are the obje
ts
onstitutedby a position (indi
ating the subterm repla
ed), an equation (the rule applied) anda substitution (the mat
hing substitution).Of
ourse not any operator
an be applied to any element. Thus, a se
ond
omponent in this formalization is needed: a boolean binary fun
tion to test if it islegal to apply an operator to an element. Finally, a third
omponent is introdu
ed:sin
e
omputation of normal forms requires sear
hing for legal operators to apply,we will need a unary fun
tion su
h that when applied to an element, it returns alegal operator, whenever it exists, or nil otherwise (a redu
ibility test).The above
onsiderations lead us to formalize the
on
ept of abstra
t redu
tionsin ACL2, using three partially de�ned fun
tions: redu
e-one-step, legal andredu
ible. This
an be done with the following en
apsulate (dots are used toomit te
hni
al details, as in the rest of the paper):(en
apsulate((legal (x u) t) (redu
e-one-step (x u) t) (redu
ible (x) t))...(defthm legal-redu
ible-1(implies (redu
ible x) (legal x (redu
ible x))))(defthm legal-redu
ible-2(implies (not (redu
ible x)) (not (legal x o))))...)The �rst line of every en
apsulate is a des
ription signature of the non-lo
alfun
tions partially de�ned. The two theorems assumed above as axioms are mini-mal requirements for every redu
tion we de�ned: if further properties (for example,lo
al
on
uen
e) are assumed, they must be stated inside the en
apsulate. Thisis a very abstra
t framework to formalize redu
tions in ACL2. We think that thesethree fun
tions
apture the basi
 abstra
t features every redu
tion has. On the onehand, a pro
edural aspe
t: the
omputation of normal forms, applying operatorsuntil irredu
ible obje
ts are obtained. On the other hand, a de
larative aspe
t:every redu
tion relation des
ribes its equivalen
e
losure. Representing redu
tionsin this way, we
an de�ne
on
epts like Chur
h-Rosser property, lo
al
on
uen
eor noetherianity and even prove non-trivial theorems like Newman's lemma, as wewill see.To instantiate this general framework,
on
rete instan
es of redu
e-one-step,legal and redu
ible have to be de�ned and the properties assumed here asaxioms must be proved for those
on
rete de�nitions. By fun
tional instantiation,results about abstra
t redu
tions
an then be easily exported to
on
rete
ases(for example, to the equational
ase).2.1 Equivalen
e and proofsDue to the
onstru
tive nature of the ACL2 logi
, in order to de�ne x �$ y we haveto in
lude an argument with a sequen
e of steps x = x0 $ x1 $ x2 : : :$ xn = y.This is done by the fun
tion equiv-p de�ned in �gure 1. (equiv-p x y p) is

t if p is a proof justifying that x �$y. A proof 1 is a sequen
e of legal steps andea
h proof step is a stru
ture r-step with four �elds: elt1, elt2 (the elements
onne
ted), dire
t (the dire
tion of the step) and operator. Two proofs justifyingthe same equivalen
e will be said to be equivalent. A proof step is legal (as de�nedby proof-step-p) if one of its elements is obtained applying the (legal) operatorto the other.(defstru
ture r-step dire
t operator elt1 elt2)(defun proof-step-p (s)(let ((e1 (elt1 s)) (e2 (elt2 s)) (op (operator s)) (dt (dire
t s)))(and (r-step-p s)(implies dt (and (legal elt1 op)(equal (redu
e-one-step elt1 op elt2) elt2)))(implies (not dt) (and (legal elt2 op)(equal (redu
e-one-step elt2 op) elt1))))))(defun equiv-p (x y p)(if (endp p) (equal x y)(and (proof-step-p (
ar p)) (equal x (elt1 (
ar p)))(equiv-p (elt2 (
ar p)) y (
dr p)))))Fig. 1. De�nition of proofs and equivalen
eChur
h-Rosser property and lo
al-
on
uen
e
an be rede�ned with respe
t tothe form of a proof (subse
tions 2.2 and 2.3). For that purpose, we de�ne (omit-ted here) fun
tions to re
ognize proofs with parti
ular shapes (valleys and lo
alpeaks): lo
al-peak-p re
ognizes proofs of the form v x! u and steps-valleyre
ognizes proofs of the form v �! x � u2.2 Chur
h-Rosser property and de
idabilityWe des
ribe how we formalized and proved the fa
t that every Chur
h-Rosser andnormalizing redu
tion relation is de
idable. Valley proofs
an be used to reformu-late the de�nition of the Chur
h-Rosser property: a redu
tion is Chur
h-Rosseri� for every proof there exists an equivalent valley proof. Sin
e the ACL2 logi
 isquanti�er-free, the existential quanti�er in this statement has to be repla
ed bya Skolem fun
tion, whi
h we
alled transform-to-valley. The
on
ept of beingnormalizing
an also be reformulated in terms of proofs: a redu
tion is normalizingif for every element there exists a proof to an equivalent irredu
ible element. Thisproof is given by the (Skolem) fun
tion proof-irredu
ible (note that we are notassuming noetherianity for the moment). Properties de�ning a Chur
h-Rosser andnormalizing redu
tion are en
apsulated as shown in �gure 2, item (a).The fun
tion equivalent tests if normal forms are equal. Note that in this
on-text, the normal form of an element x is the last element of (proof-irredu
ible x):(defun normal-form (x) (last-of-proof x (proof-irredu
ible x)))(defun equivalent (x y) (equal (normal-form x) (normal-form y)))1 Do not
onfuse with proofs done using the ACL2 system.

;;; (a) Definition of Chur
h-Rosser and normalizing redu
tion:(en
apsulate((legal (x u) t) (redu
e-one-step (x u) t) (redu
ible (x) t)(transform-to-valley (x) t) (proof-irredu
ible (x) t)).....(defthm Chur
h-Rosser-property(let ((valley (transform-to-valley p)))(implies (equiv-p x y p)(and (steps-valley valley) (equiv-p x y valley))))).....(defthm normalizing(let* ((p-x-y (proof-irredu
ible x))(y (last-of-proof x p-x-y)))(and (equiv-p x y p-x-y) (not (redu
ible y))))));;; (b) Main theorems proved:(defthm if-C-R--two-iredu
ible-
onne
ted-are-equal(implies (and (equiv-p x y p) (not (redu
ible x)) (not (redu
ible y)))(equal x y)))(defthm equivalent-sound(implies (equivalent x y) (equiv-p x y (make-proof-
ommon-n-f x y))))(defthm equivalent-
omplete (implies (equiv-p x y p) (equivalent x y))Fig. 2. Chur
h-Rosser and normalizing implies de
idabilityTo prove de
idability of a Chur
h-Rosser and normalizing relation, it is enoughto prove that equivalent is a
omplete and sound algorithm de
iding the equiv-alen
e relation asso
iated with the redu
tion relation. See �gure 2, item (b). Wealso in
lude the main lemma used, stating that there are no distin
t equivalentirredu
ible elements. Note also that soundness is expressed in terms of a Skolemfun
tion make-proof-
ommon-normal-form (de�nition omitted), whi
h
onstru
tsa proof justifying the equivalen
e. These theorems are proved easily, without mu
hguidan
e from the user. See the web page for details.2.3 Noetherianity, lo
al
on
uen
e and Newman's lemmaA relation is well founded in a set A if every non-empty subset has a minimalelement. A restri
ted notion of well-foundedness is built into ACL2, based in thefollowing meta-theorem: a relation in a set A is well-founded i� there exists afun
tion F : A ! Ord su
h that x < y) F (x) < F (y), where Ord is the
lassof all ordinals (axiom of
hoi
e needed). In ACL2, on
e a relation is proved tosatisfy these requirements, it
an be used in the admissibility test for re
ursivefun
tions. An arbitrary well-founded partial order rel
an be de�ned in ACL2 asshown in item (a) of �gure 3. Sin
e only ordinals up to "0 are formalized in theACL2 logi
, a limitation is imposed in the maximal order type of well-foundedrelations that
an be represented. Consequently, our formalization su�ers from thesame restri
tion. Nevertheless, no parti
ular properties of "0 are used in our proofs,ex
ept well-foundedness, so we think the same formal proofs
ould be
arried outif higher ordinals were involved.

In item (b) of �gure 3, a general de�nition of a noetherian and lo
ally
on
u-ent redu
tion relation is presented. Lo
al
on
uen
e is easily expressed in termsof the shape of proofs involved: a relation is lo
ally
on
uent i� for every lo
alpeak proof there is an equivalent valley proof. This valley proof is given by thefun
tion transform-lo
al-peak. As for noetherianity, our formalization relies onthe following meta-theorem: a redu
tion is noetherian if and only if it is
ontainedin a well-founded partial ordering (AC). Thus, the general well-founded relationrel previously de�ned is used to justify noetherianity of the general redu
tionrelation de�ned: for every element x su
h that a legal operator u
an be applied,then redu
e-one-step obtains an element less than x with respe
t to rel.;;; (a) A well-founded partial order:(en
apsulate((rel (x y) t) (fn (x) t))...(defthm rel-well-founded-relation(and (e0-ordinalp (fn x))(implies (rel x y) (e0-ord-< (fn x) (fn y)))):rule-
lasses (:well-founded-relation :rewrite))(defthm rel-transitive(implies (and (rel x y) (rel y z)) (rel x z))));;; (b) A noetherian and lo
ally
onfluent redu
tion relation:(en
apsulate((legal (x u) boolean) (redu
e-one-step (x u) element)(redu
ible (x) boolean) (transform-lo
al-peak (x) proof))....(defthm lo
ally-
onfluent(let ((valley (transform-lo
al-peak p)))(implies (and (equiv-p x y p) (lo
al-peak-p p))(and (steps-valley valley) (equiv-p x y valley)))))(defthm noetherian(implies (legal x u) (rel (redu
e-one-step x u) x))));;; (
) Definition of transform to valley:(defun transform-to-valley (p)(de
lare (xargs :measure (proof-measure p) :well-founded-relation mul-rel))(if (not (exists-lo
al-peak p)) p(transform-to-valley (repla
e-lo
al-peak p))));;; (d) Main theorems proved:(defthm transform-to-valley-admission(implies (exists-lo
al-peak p)(mul-rel (proof-measure (repla
e-lo
al-peak p))(proof-measure p))))(defthm newman-lemma(let ((valley (transform-to-valley p)))(implies (equiv-p x y p)(and (steps-valley valley) (equiv-p x y valley)))))Fig. 3. Newman's lemma

The standard proof of Newman's lemma found in the literature (see [1℄) shows
on
uen
e by noetherian indu
tion based on the redu
tion relation. The proof weobtained in ACL2 di�ers from the standard one and it is based on the proof givenin [8℄. In our formalization, we have to show that the redu
tion relation has theChur
h-Rosser property by de�ning a fun
tion transform-to-valley and provingthat for every proof p, (transform-to-valley p) is an equivalent valley proof.This fun
tion
an be de�ned to iteratively apply repla
e-lo
al-peak (whi
hrepla
es lo
al peak subproofs by the equivalent proof given by transform-lo
al--peak) until there are no lo
al peaks. See de�nition in item (
) of �gure 3.Indu
tion used in the standard proof is hidden here by the termination proof oftransform-to-valley, needed for admission. The main proof e�ort was to showthat in ea
h iteration, some measure on the proof, proof-measure, de
reases withrespe
t to a well-founded relation, mul-rel. This
an be seen as a normalizationpro
ess a
ting on proofs. The measure proof-measure is the list of elements in-volved in the proof and the relation mul-rel is de�ned to be the multiset extensionof rel. We needed to prove in ACL2 that the multiset extension of a well-foundedrelation is also well-founded, a result interesting in its own (see the web page fordetails). On
e transform-to-valley is admitted, it is relatively easy to show thatit always returns an equivalent valley proof. See item (d) of �gure 3.Note that we gave here a parti
ular \implementation" of transform-to-valleyand proved as theorems the properties assumed as axioms in the previous subse
-tion. The same was done with proof-irredu
ible. De
idability of noetherianand lo
ally
on
uent redu
tion relations
an now be easily dedu
ed by fun
tionalinstantiation from the general results proved in the previous subse
tion, allowingsome kind of se
ond-order reasoning. Name
on
i
ts are avoided using CommonLisp pa
kages.3 Formalizing rewriting in ACL2We de�ned in the previous se
tion a very general formalization of redu
tions rela-tions. The results proved
an be reused for every instan
e of the general framework.As an example, we des
ribe in this se
tion how we formalized and reasoned aboutterm rewriting in ACL2.Sin
e rewriting is a redu
tion relation de�ned on the set of �rst order terms,we needed to use a library of de�nitions and theorems formalizing the latti
etheoreti
 properties of �rst-order terms: in parti
ular, subsumption and uni�
ationalgorithms are de�ned and proved
orre
t. See [11℄ for details of this work. Somefun
tions of this library will be used in the following. Although de�nitions are notgiven here, their names suggest what they do.The very general
on
ept of operator
an be
on
reted for term rewriting redu
-tions. Equational operators are stru
tures with three �elds,
ontaining the rewrit-ing rule to apply, the position of the subterm to be repla
ed and the mat
hingsubstitution:(defstru
ture eq-operator rule pos mat
hing)As we said in se
tion 2 every redu
tion relation is given by
on
rete versionsof legal, redu
e-one-step and redu
ible. In the equational
ase:

{ (eq-legal term op R) tests if the rule of the operator op is in R, and
an beapplied to term at the position indi
ated by the operator (using the mat
hingin op).{ (eq-redu
e-one-step term op) repla
es the subterm indi
ated by the positi-on of the operator op by the
orresponding instan
e (using mat
hing) of theright-hand side of the rule of the operator.{ (eq-redu
ible term R) returns a legal equational operator to apply, when-ever it exists, or nil otherwise.Note that for every �xed term rewriting system R a di�erent redu
tion relationis de�ned. The rewriting
ounterpart of the abstra
t equivalen
e equiv-p
an bede�ned in an analogue way: (eq-equiv-p t1 t2 p R) tests if p is a proof of theequivalen
e of t1 and t2 in the equational theory of R. Due to the la
k of spa
e,we do not give the de�nitions here. Re
all also from se
tion 2 that two theorems(assumed as axioms in the general framework) have to be proved to state therelationship between eq-legal and eq-redu
ible. We proved them:(defthm eq-redu
ible-legal-1(implies (eq-redu
ible term R)(eq-legal term (eq-redu
ible term R) R)))(defthm eq-redu
ible-legal-2(implies (not (eq-redu
ible term R) (not (eq-legal term op R))))Formalizing term rewriting in this way, we proved a number of results aboutterm rewriting systems. In the following subse
tions, two relevant examples aresket
hed.3.1 Equational theories and an algebra of proofsAn equivalen
e relation on �rst-order terms is a
ongruen
e if it is stable (
losedunder instantiation) and
ompatible (
losed under in
lusion in
ontexts). Equa-tional
onsequen
e, E j= s = t,
an be alternatively de�ned as the least
ongruen
erelation
ontaining E. In order to justify that the above des
ribed representationis appropriate, it would be
onvenient to prove that, �xed E, the relation given by(eq-equiv-p t1 t2 p E)2, is the least
ongruen
e
ontaining E.We proved it in ACL2. In �gure 4 we sket
h part of our formalization showingthat eq-equiv-p is a
ongruen
e. The ACL2 proof obtained is a good example ofthe bene�ts gained
onsidering proofs as obje
ts that
an be transformed to obtainnew proofs. Following Ba
hmair [2℄, we
an de�ne an \algebra" of proofs, a set ofoperations a
ting on proofs: proof-
on
at to
on
atenate proofs, inverse-proofto obtain the reverse proof, eq-proof-instan
e, to instantiate the elements in-volved in the proof and eq-proof-
ontext to in
lude the elements of the proof assubterms of a
ommon term. The empty proof nil
an be seen as a proof
onstant.Ea
h of these operations
orresponds with one of the properties needed to showthat eq-equiv-p is a
ongruen
e. The theorems are proved easily by ACL2, withminor help from the user.3.2 A me
hani
al proof of Knuth-Bendix
riti
al pair theoremThe main result we have proved is the
riti
al pair theorem: a rewrite systemR is lo
ally
on
uent i� every
riti
al pair obtained with rules in R is joinable.2 Formally speaking, p have to be understood as existentially quanti�ed

(defthm eq-equiv-p-reflexive (eq-equiv-p term term nil E))(defthm eq-equiv-p-symmetri
(implies (eq-equiv-p t1 t2 p E) (eq-equiv-p t2 t1 (inverse-proof p) E))(defthm eq-equiv-p-transitive(implies (and (eq-equiv-p t1 t2 p E) (eq-equiv-p t2 t3 q E))(eq-equiv-p t1 t3 (proof-
on
at p q) E))(defthm eq-equiv-p-stable(implies (eq-equiv-p t1 t2 p E)(eq-equiv-p (instan
e t1 sigma) (instan
e t2 sigma)(eq-proof-instan
e p sigma) E)))(defthm eq-equiv-p-
ompatible(implies (and (eq-equiv-p t1 t2 p E) (positionp pos term))(eq-equiv-p (repla
e-term term pos t1) (repla
e-term term pos t2)(eq-proof-
ontext p term pos) E))Fig. 4. Congruen
e: an algebra of proofsThis result is formalized in our framework and proved guiding the system to the
lassi
al proof given in the literature (see [1℄ for example).In item (a) of �gure 5, a term rewriting system (RLC) is partially de�nedassuming the property of joinability of its
riti
al pairs. The partially de�nedfun
tion (transform-
riti
al-peak l1 r1 pos l2 r2) is assumed to obtain avalley proof for the
riti
al pair determined by the rules (l1 . r1) and (l2 . r2)at the non-variable position pos of l1. The fun
tion (
p-r l1 r1 pos l2 r2)
omputes su
h
riti
al pair, whenever it exists (previously renaming the variablesof the rules, in order to get them standardized apart).In our formalization, to prove the
riti
al pair theorem we have to to de�ne afun
tion transform-eq-lo
al-peak and prove that transforms every equationallo
al peak proof to an equivalent valley proof. The �nal theorem is shown in item(b) of �gure 5. It was not easy at all to perform the proof. The de�nition oftransform-eq-lo
al-peak (omitted) is a very long
ase distin
tion: �ve
ases(some of them symmetri
) has to be handled, a

ording to the positions where thetwo rewritings of the equational lo
al peak take pla
e. The main proof e�ort wasdone to handle non-
riti
al (or variable) overlaps. It is interesting to point that inmost of textbooks and surveys this
ase is proved pi
torially. Nevertheless, in ourproof turned out to be the most diÆ
ult part. The
omplete proof needed morethan one hundred lemmas and �fty auxiliary de�nitions and an extensive use ofde�nitions and results of the library of �rst order terms, espe
ially properties ofthe uni�
ation algorithm. The interested reader is urged to see the web page.This theorem and the theorems des
ribed in Se
tion 2 for abstra
t redu
tionrelations were used to prove that equational theories des
ribed by a terminatingTRS su
h that every
riti
al pair has a
ommon normal form are de
idable. Thisresult (whi
h some authors
all the Knuth-Bendix's theorem) is easily obtainedby fun
tional instantiation from the abstra
t
ase, taking advantage from the fa
tthat the whole formalization is done in the same framework. Note how this last

;;; (a) A TRS with joinable
riti
al pairs(en
apsulate((RLC () t) (transform-
riti
al-peak (l1 r1 pos l2 r2) t))...(defthm RLC-rewrite-system (rewrite-system (RLC)))(defthm RLC-joinable-
riti
al-pairs(implies(and (member (
ons l1 r1) (RLC)) (member (
ons l2 r2) (RLC))(positionp pos l1) (not (variable-p (o

uren
e l1 pos))))(let* ((
p-r (
p-r l1 r1 pos l2 r2)))(implies
p-r(and (eq-equiv-p (lhs
p-r) (rhs
p-r)(transform-
riti
al-peak l1 r1 pos l2 r2) (RLC))(steps-valley (transform-
riti
al-peak l1 r1 pos l2 r2))))))));;; (b) Theorem proved:(defun transform-eq-lo
al-peak (p) ...)(defthm K-B-
riti
al-pair-theorem(let ((valley (transform-eq-lo
al-peak p)))(implies (and (equiv-p t1 t2 p (RLC)) (lo
al-peak-p p))(and (steps-valley valley) (equiv-p t1 t2 valley (RLC))))))Fig. 5. Knuth-Bendix
riti
al pair theoremresult
an be used to \
ertify" de
isions pro
edures for equational theories de�nedby
on
uent and terminating TRSs.4 Con
lusions and further workWe have presented in this paper a
ase study of using the ACL2 theorem proverto formalize some basi
 results
on
erning redu
tions relations and term rewritingsystems. Our formalization has the following main features:{ Redu
tion relations and their properties are stated in a very general framework,as explained in se
tion 2.{ The
on
ept of proof is a key notion in our formalization. Proofs are treatedas manipulable obje
ts that
an be transformed to obtain new proofs.{ Fun
tional instantiation is extensively used as a way of exporting results fromthe abstra
t
ase to the
on
rete
ase of term rewriting systems.Some related work has been done in the formalization of abstra
t redu
tionrelations in other theorem proving systems, mostly as part of formalizations onthe �-
al
ulus. For example, Huet [5℄ in the Coq system or Nipkow [10℄ in Is-abelle/HOL. A
omparison is diÆ
ult be
ause our goal was di�erent and, moreimportant, the logi
s involved are signi�
antly di�erent: ACL2 logi
 is a mu
hweaker logi
 than those of Coq or HOL. A more related work is Shankar [12℄, usingNqthm. Although his work is on
on
rete redu
tion relations from the �-
al
ulusand he does not deal with the abstra
t
ase, some of his ideas are re
e
ted in ourwork.

To our knowledge, no formalization of term rewriting systems has been doneyet and
onsequently the formal proof of Knuth-Bendix
riti
al pair theorem isthe �rst one we know performed in a theorem prover.We think the results presented here are important for two reasons. From atheoreti
al point of view, it is shown a very weak logi

an be used to formalizeproperties of TRSs. From a pra
ti
al point of view, this is an example on howformal methods
an help in the design of symboli

omputation systems. Usually,algebrai
 te
hniques are applied to the design of proof pro
edures in automateddedu
tion. We show how bene�ts
an be obtained in the reverse dire
tion: auto-mated dedu
tion used as a tool to \
ertify"
omponents of symboli

omputationsystems. Although a fully veri�ed
omputer algebra system is
urrently beyond ourpossibilities, future work will be done to obtain veri�ed Lisp
ode (exe
utable inany
ompliant Common Lisp) for some basi
 pro
edures of term rewriting systems:{ To obtain
erti�ed de
ision pro
edures for some equational theories (or forthe word problem of some �nitely presented algebras) work has to be doneto formalize in ACL2 well-known termination term orderings (re
ursive pathorderings, Knuth-Bendix orderings, et
.). Maybe some problems will arise dueto the restri
ted notion of noetherianity supported by ACL2.{ Our goal in the long term is to obtain a
erti�ed
ompletion pro
edure writtenin Common Lisp. Although for the moment this may be far from the
urrentstatus of our development, we think the work presented here is a good startingpoint.Referen
es1. Baader, F., and Nipkow, T. Term rewriting and all that. Cambridge University Press,1998.2. Ba
hmair, L. Canoni
al equational proofs. Birkh�auser, 1991.3. Boyer, R., and Moore, J. A Computational Logi
 Handbook, 2nd ed. A
ademi
 Press,1998.4. Bu
hberger, B., and Loos, R. Algebrai
 simpli�
ation. In Computer Algebra, Symboli
and Algebrai
 Computation. Computing Supplementum 4. SV, 1982.5. Huet, G. Residual theory in �-
al
ulus: a formal development. Journal of Fun
tional Pro-gramming, 4 (1994), 475{522.6. Kaufmann, M., and Moore, J. An industrial strength theorem prover for a logi
 based onCommon Lisp. IEEE Transa
tions on Software Engineering 23, 4 (1997), 203{213.7. Kaufmann, M., and Moore, J. http://www.
s.utexas.edu/users/moore/a
l2/a
l2-do
.html. ACL2 Version 2.4, 1999.8. Klop, J. Term rewriting systems. Handbook of Logi
 in Computer S
ien
e (1992).9. Le Chenade
, P. Canoni
al forms in �nitely presented algebras. Pitman-Wiley, London,1985.10. Nipkow, T. More Chur
h-Rosser proofs (in Isabelle/HOL). In 13th International Conferen
eon Automated Dedu
tion (1996), LNAI 1104, Springer-Verlag, pp. 733{747.11. Ruiz-Reina, J., Alonso, J., Hidalgo, M., and Mart��n, F. Me
hani
al veri�
ation ofa rule based uni�
ation algorithm in the Boyer-Moore theorem prover. In AGP'99 JointConferen
e on De
larative Programming (1999), pp. 289{304.12. Shankar, N. A me
hani
al proof of the Chur
h-Rosser theorem. Journal of the ACM 35, 3(1988), 475{522.13. Steele, G. Common Lisp the Language, 2nd edition. Digital Press, 1990.

