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Abstract. We present an application of the ACL2 theorem prover to formalize
and reason about rewrite systems theory. This can be seen as a first approach to
apply formal methods, using ACL2, to the design of symbolic computation systems,
since the notion of rewriting or simplification is ubiquitous in such systems. We
concentrate here in formalization and representation aspects of the rewriting theory
using the first-order, quantifier-free ACL2 logic based on Common Lisp. The main
result we mechanically proved is Knuth-Bendix critical-pair theorem.
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1 Introduction

We report in this paper the status of our work on the application of the ACL2
theorem prover to reason about rewrite systems theory: confluence, local conflu-
ence, noetherianity, normal forms and other related concepts have been formalized
in the ACL2 logic and some results about abstract reduction relations and term
rewriting systems have been mechanically proved, including Newman’s lemma and
Knuth-Bendix critical pair theorem.

ACL2 is both a logic and a mechanical theorem proving system supporting
it. The ACL2 logic is a existentially quantifier-free, first-order logic with equality.
ACL2 is also a programming language, an applicative subset of Common Lisp.
The system evolved from the Boyer Moore theorem prover, also known as Nqthm.

Formal proofs using a theorem proving environment provides not only formal
verification of mathematical theories, but allows to understand and examine their
theorems with much greater detail, rigor and clarity. On the other hand, the no-
tion of rewriting or simplification is a crucial component in symbolic computation:
simplification procedures are needed to transform complex objects obtaining equiv-
alent but simpler objects and to compute unique representations for equivalence
classes (see, for example, [4] or [9]).

Since ACL2 is also a programming language, this work can be seen as a first
step to obtain verified executable Common Lisp code for components of symbolic
computation systems. Although a fully verified implementation of such a system
is currently beyond our possibilities, several basic algorithms can be mechanically
“certified” and integrated as part of the whole system.

We also show here how a weak logic like the ACL2 logic (no quantification, no
infinite objects, no higher order variables, etc.) can be used to represent, formalize,
and mechanically prove non-trivial theorems. In this paper, we place emphasis on
describing the formalization and representation aspects of our work. Due to the
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lack of space, we will skip details of the mechanical proofs. The complete books
are available on the web in http://www-cs.us.es/~jruiz/acl2-rewr/.

1.1 The ACL2 system
We briefly describe here the ACL2 theorem prover and its logic. For a good in-
troduction written by the authors of the system, see [6]. Readers wishing more
background on ACL2 are urged to see the ACL2 user’s manual in [7]. A very good
description of the main proof techniques used in Nqthm, that are also used in
ACL2, can be found in [3].

ACL2 stands for A Computational Logic for Applicative Common Lisp. The
ACL2 logic is a quantifier-free, first-order logic with equality, describing an ap-
plicative subset of Common Lisp. The syntax of terms is that of Common Lisp
[13] (we will assume the reader familiar with this language). The logic includes
axioms for propositional logic and for a number of Lisp functions and data types.
Rules of inference include those for propositional calculus, equality, and instanti-
ation. By the principle of definition, new function definitions (using defun) are
admitted as axioms only if there exists an ordinal measure in which the arguments
of each recursive call decrease. This ensures that no inconsistencies are introduced
by new definitions. The theory has a constructive definition of the ordinals up to
€0, in terms of lists and natural numbers, given by the predicate e0-ordinalp and
the order e0-ord-<. One important rule of inference is the principle of induction,
that permits proofs by induction on &g.

In addition to the definition principle, the encapsulation mechanism (using
encapsulate) allows the user to introduce new function symbols by axioms con-
straining them to have certain properties (to ensure consistency, a witness local
function having the same properties has to be exhibited). Inside an encapsulate,
properties stated with defthm need to be proved for the local witnesses, and out-
side, those theorems work as assumed axioms. The functions partially defined with
encapsulate can be seen as second order variables, representing functions with
those properties. A derived rule of inference, functional instantiation, allows some
kind of second-order reasoning: theorems about constrained functions can be in-
stantiated with function symbols known to have the same properties.

The ACL2 theorem prover is inspired by Ngthm, but has been considerably
improved. The main proof techniques used by the prover are simplification and
induction. Simplification is a combination of decision procedures, mainly term
rewriting, using the rules previously proved by the user. The command defthm
starts a proof attempt, and, if it succeeds, the theorem is stored as a rule. The
theorem prover is automatic in the sense that once defthm is invoked, the user
can no longer interact with the system. However, the user can guide the prover by
adding lemmas and definitions, used in the proofs as rules. The role of the user is
important: a typical proof effort consists in formalize the problem in the logic and
help the prover to find a proof by means of a suitable set of rewrite rules.

1.2 Abstract reductions and term rewriting systems

This section provides a short introduction to basic concepts and definitions from

rewriting theory used in this paper. A complete description can be found in [1].
An abstract reduction is simply a binary relation — defined on a set A. We

will denote as «, <, = and & respectively the inverse relation, the symmetric

closure, the reflexive-transitive closure and the equivalence closure. The following



concepts are defined with respect to a reduction relation —. An element z is in
normal form (or irreducible) if there is no z such that x — z. We say that = and
y are joinable (denoted as z | y) if exists u such that z = u < y. We say that =
and y are equivalent if z & .

An important property to study about reduction relations is existence of unique
normal forms for equivalent objects. A reduction relation has the Church-Rosser
property if every two equivalent objects are joinable. An equivalent property is
confluence: for all z,u,v such that u <& z = v, then u | v. In every reduction
relation with the Church-Rosser property there are not distinct and equivalent
normal forms. If in addition the relation is normalizing (i.e. every element has
a normal form, noted as z |) then z & y iff z |= y |. Provided normal forms
are computable and identity in A is decidable, then the equivalence relation < is
decidable in this case.

Another important property is termination: a reduction relation is terminating
(or noetherian) if there is no infinite reduction sequence oy — 1 — 9 — .. ..
Obviously, every noetherian reduction is normalizing. The Church-Rosser condi-
tion can be localized when the reduction is terminating. In that case an equivalent
property is local confluence: for all z,u,v such that v < x — v, then v | v. This
result is known as Newman’s lemma.

One important type of reduction relations is defined in the set T'(X, X) of first
order terms in a given language, where X is a set of function symbols, and X is a
set of variables. In this context, an equation is a pair of terms [ = r. The reduction
relation defined by a set of equations F is defined as: s g tif it exists | =r € E
and a substitution o of the variables in [ (the matching substitution) such that
o(l) is a subterm of [ and ¢ is obtained from s by replacing the subterm o()
by o(r). This reduction relation is of great interest in universal algebra because
it can be proved that E |= s = t iff s < t. This implies decidability of every
equational theory defined by a set of axioms E such that — g is terminating and
locally confluent. To emphasize the use of the equation [ = r from left to right as
described above, we write [ — r and talk about rewrite rules. A term rewriting
system (TRS) is a set of rewrite rules. Unless noted otherwise, E is always a set
of equations (equational axioms) and R is a TRS.

Local confluence is decidable for finite TRSs: joinability has only to be checked
for a finite number of pair of terms, called critical pairs, accounting for the most
general forms of local divergence. The Knuth-Bendix critical pair theorem
states that a TRS is locally confluent iff all its critical pairs are joinable. Thus,
Church-Rosser property of terminating TRSs is a decidable property: it is enough
to check if every critical pair has a common normal form. If a TRS R has a
critical pair with different normal forms, there is still a chance to obtain a decision
procedure for the equational theory of R, adjoining that equation as a new rewrite
rule. This is the basis for the well-known completion algorithms. See [1] for details.

In the sequel, we describe the formalization of these properties in the ACL2
logic and a proof of them using the theorem prover. For the rest of the paper,
when we talk about “prove” we mean “mechanically prove using ACL2”.

2 Formalizing abstract reductions in ACL2

Our first attempt to represent abstract reduction relations in the ACL2 logic was
simply to define them as binary boolean functions, using encapsulate to state



their properties. Nevertheless, if £ — y, more important than the relation between
z and y is the fact that y is obtained from z by applying some kind of transfor-
mation or operator. In its most abstract formulation, we can view a reduction as
a binary function that, given an element and an operator returns another object,
performing a one-step reduction. Think for example in equational reductions: ele-
ments in that case are first-order terms and operators are the objects constituted
by a position (indicating the subterm replaced), an equation (the rule applied) and
a substitution (the matching substitution).

Of course not any operator can be applied to any element. Thus, a second
component in this formalization is needed: a boolean binary function to test if it is
legal to apply an operator to an element. Finally, a third component is introduced:
since computation of normal forms requires searching for legal operators to apply,
we will need a unary function such that when applied to an element, it returns a
legal operator, whenever it exists, or nil otherwise (a reducibility test).

The above considerations lead us to formalize the concept of abstract reductions
in ACL2, using three partially defined functions: reduce-one-step, legal and
reducible. This can be done with the following encapsulate (dots are used to
omit technical details, as in the rest of the paper):

(encapsulate
((legal (x u) t) (reduce-one-step (x u) t) (reducible (x) t))

(defthm legal-reducible-1

(implies (reducible x) (legal x (reducible x))))
(defthm legal-reducible-2

(implies (not (reducible x)) (not (legal x 0))))

)

The first line of every encapsulate is a description signature of the non-local
functions partially defined. The two theorems assumed above as axioms are mini-
mal requirements for every reduction we defined: if further properties (for example,
local confluence) are assumed, they must be stated inside the encapsulate. This
is a very abstract framework to formalize reductions in ACL2. We think that these
three functions capture the basic abstract features every reduction has. On the one
hand, a procedural aspect: the computation of normal forms, applying operators
until irreducible objects are obtained. On the other hand, a declarative aspect:
every reduction relation describes its equivalence closure. Representing reductions
in this way, we can define concepts like Church-Rosser property, local confluence
or noetherianity and even prove non-trivial theorems like Newman’s lemma, as we
will see.

To instantiate this general framework, concrete instances of reduce-one-step,
legal and reducible have to be defined and the properties assumed here as
axioms must be proved for those concrete definitions. By functional instantiation,
results about abstract reductions can then be easily exported to concrete cases
(for example, to the equational case).

2.1 Equivalence and proofs

Due to the constructive nature of the ACL2 logic, in order to define 2 < y we have
to include an argument with a sequence of steps £ = 29 <> 21 € 22... <& Ty = Y.
This is done by the function equiv-p defined in figure 1. (equiv-p x y p) is



t if p is a proof justifying that x<y. A proof ! is a sequence of legal steps and
each proof step is a structure r-step with four fields: elt1, elt2 (the elements
connected), direct (the direction of the step) and operator. Two proofs justifying
the same equivalence will be said to be equivalent. A proof step is legal (as defined
by proof-step-p) if one of its elements is obtained applying the (legal) operator
to the other.

(defstructure r-step direct operator eltl elt2)

(defun proof-step-p (s)
(let ((el (eltl s)) (e2 (elt2 s)) (op (operator s)) (dt (direct s)))
(and (r-step-p s)
(implies dt (and (legal eltl op)
(equal (reduce-one-step eltl op elt2) elt2)))
(implies (not dt) (and (legal elt2 op)
(equal (reduce-one-step elt2 op) eltl))))))

(defun equiv-p (x y p)
(if (endp p) (equal x y)
(and (proof-step-p (car p)) (equal x (eltl (car p)))
(equiv-p (elt2 (car p)) y (cdr p)))))

Fig. 1. Definition of proofs and equivalence

Church-Rosser property and local-confluence can be redefined with respect to
the form of a proof (subsections 2.2 and 2.3). For that purpose, we define (omit-
ted here) functions to recognize proofs with particular shapes (valleys and local
peaks): Llocal-peak-p recognizes proofs of the form v + z — v and steps-valley
recognizes proofs of the form v = & & u

2.2 Church-Rosser property and decidability
We describe how we formalized and proved the fact that every Church-Rosser and
normalizing reduction relation is decidable. Valley proofs can be used to reformu-
late the definition of the Church-Rosser property: a reduction is Church-Rosser
iff for every proof there exists an equivalent valley proof. Since the ACL2 logic is
quantifier-free, the existential quantifier in this statement has to be replaced by
a Skolem function, which we called transform-to-valley. The concept of being
normalizing can also be reformulated in terms of proofs: a reduction is normalizing
if for every element there exists a proof to an equivalent irreducible element. This
proof is given by the (Skolem) function proof-irreducible (note that we are not
assuming noetherianity for the moment). Properties defining a Church-Rosser and
normalizing reduction are encapsulated as shown in figure 2, item (a).

The function equivalent tests if normal forms are equal. Note that in this con-
text, the normal form of an element x is the last element of (proof-irreducible x):

(defun normal-form (x) (last-of-proof x (proof-irreducible x)))

(defun equivalent (x y) (equal (normal-form x) (normal-form y)))

! Do not confuse with proofs done using the ACL2 system.



;55 (a) Definition of Church-Rosser and normalizing reduction:
(encapsulate
((legal (x u) t) (reduce-one-step (x u) t) (reducible (x) t)
(transform-to-valley (x) t) (proof-irreducible (x) t))
(defthm Church-Rosser-property
(let ((valley (transform-to-valley p)))
(implies (equiv-p x y p)
(and (steps-valley valley) (equiv-p x y valley)))))
(defthm normalizing
(let* ((p-x-y (proof-irreducible x))
(y (last-of-proof x p-x-y)))
(and (equiv-p x y p-x-y) (not (reducible y))))))

;33 (b) Main theorems proved:
(defthm if-C-R--two-ireducible-connected-are-equal
(implies (and (equiv-p x y p) (not (reducible x)) (mot (reducible y)))
(equal x y)))

(defthm equivalent-sound
(implies (equivalent x y) (equiv-p x y (make-proof-common-n-f x y))))

(defthm equivalent-complete (implies (equiv-p x y p) (equivalent x y))

Fig. 2. Church-Rosser and normalizing implies decidability

To prove decidability of a Church-Rosser and normalizing relation, it is enough
to prove that equivalent is a complete and sound algorithm deciding the equiv-
alence relation associated with the reduction relation. See figure 2, item (b). We
also include the main lemma used, stating that there are no distinct equivalent
irreducible elements. Note also that soundness is expressed in terms of a Skolem
function make-proof-common-normal-form (definition omitted), which constructs
a proof justifying the equivalence. These theorems are proved easily, without much
guidance from the user. See the web page for details.

2.3 Noetherianity, local confluence and Newman’s lemma

A relation is well founded in a set A if every non-empty subset has a minimal
element. A restricted notion of well-foundedness is built into ACL2, based in the
following meta-theorem: a relation in a set A is well-founded iff there exists a
function F' : A — Ord such that z < y = F(z) < F(y), where Ord is the class
of all ordinals (axiom of choice needed). In ACL2, once a relation is proved to
satisfy these requirements, it can be used in the admissibility test for recursive
functions. An arbitrary well-founded partial order rel can be defined in ACL2 as
shown in item (a) of figure 3. Since only ordinals up to g¢ are formalized in the
ACL2 logic, a limitation is imposed in the maximal order type of well-founded
relations that can be represented. Consequently, our formalization suffers from the
same restriction. Nevertheless, no particular properties of £y are used in our proofs,
except well-foundedness, so we think the same formal proofs could be carried out
if higher ordinals were involved.



In item (b) of figure 3, a general definition of a noetherian and locally conflu-
ent reduction relation is presented. Local confluence is easily expressed in terms
of the shape of proofs involved: a relation is locally confluent iff for every local
peak proof there is an equivalent valley proof. This valley proof is given by the
function transform-local-peak. As for noetherianity, our formalization relies on
the following meta-theorem: a reduction is noetherian if and only if it is contained
in a well-founded partial ordering (AC). Thus, the general well-founded relation
rel previously defined is used to justify noetherianity of the general reduction
relation defined: for every element x such that a legal operator u can be applied,
then reduce-one-step obtains an element less than x with respect to rel.

;33 (a) A well-founded partial order:
(encapsulate
((rel (x y) t) (fn (x) t))

(defthm rel-well-founded-relation
(and (e0-ordinalp (fn x))
(implies (rel x y) (e0-ord-< (fn x) (fn y))))
:rule-classes (:well-founded-relation :rewrite))

(defthm rel-transitive
(implies (and (rel x y) (rel y z)) (rel x z))))

;55 (b) A noetherian and locally confluent reduction relation:

(encapsulate

((legal (x u) boolean) (reduce-one-step (x u) element)
(reducible (x) boolean) (transform-local-peak (x) proof))

(defthm locally-confluent
(let ((valley (transform-local-peak p)))
(implies (and (equiv-p x y p) (local-peak-p p))
(and (steps-valley valley) (equiv-p x y valley)))))

(defthm noetherian
(implies (legal x u) (rel (reduce-one-step x u) x))))

;33 (c) Definition of transform to valley:
(defun transform-to-valley (p)
(declare (xargs :measure (proof-measure p) :well-founded-relation mul-rel))
(if (not (exists-local-peak p)) p
(transform-to-valley (replace-local-peak p))))

;33 (d) Main theorems proved:
(defthm transform-to-valley-admission
(implies (exists-local-peak p)
(mul-rel (proof-measure (replace-local-peak p))
(proof-measure p))))

(defthm newman-lemma
(let ((valley (transform-to-valley p)))
(implies (equiv-p x y p)
(and (steps-valley valley) (equiv-p x y valley)))))

Fig. 3. Newman’s lemma



The standard proof of Newman’s lemma found in the literature (see [1]) shows
confluence by noetherian induction based on the reduction relation. The proof we
obtained in ACL2 differs from the standard one and it is based on the proof given
in [8]. In our formalization, we have to show that the reduction relation has the
Church-Rosser property by defining a function transform-to-valley and proving
that for every proof p, (transform-to-valley p) is an equivalent valley proof.

This function can be defined to iteratively apply replace-local-peak (which
replaces local peak subproofs by the equivalent proof given by transform-local-
-peak) until there are no local peaks. See definition in item (c) of figure 3.

Induction used in the standard proof is hidden here by the termination proof of
transform-to-valley, needed for admission. The main proof effort was to show
that in each iteration, some measure on the proof, proof-measure, decreases with
respect to a well-founded relation, mul-rel. This can be seen as a normalization
process acting on proofs. The measure proof-measure is the list of elements in-
volved in the proof and the relation mul-rel is defined to be the multiset extension
of rel. We needed to prove in ACL2 that the multiset extension of a well-founded
relation is also well-founded, a result interesting in its own (see the web page for
details). Once transform-to-valley is admitted, it is relatively easy to show that
it always returns an equivalent valley proof. See item (d) of figure 3.

Note that we gave here a particular “implementation” of transform-to-valley
and proved as theorems the properties assumed as axioms in the previous subsec-
tion. The same was done with proof-irreducible. Decidability of noetherian
and locally confluent reduction relations can now be easily deduced by functional
instantiation from the general results proved in the previous subsection, allowing
some kind of second-order reasoning. Name conflicts are avoided using Common
Lisp packages.

3 Formalizing rewriting in ACL2

We defined in the previous section a very general formalization of reductions rela-
tions. The results proved can be reused for every instance of the general framework.
As an example, we describe in this section how we formalized and reasoned about
term rewriting in ACL2.

Since rewriting is a reduction relation defined on the set of first order terms,
we needed to use a library of definitions and theorems formalizing the lattice
theoretic properties of first-order terms: in particular, subsumption and unification
algorithms are defined and proved correct. See [11] for details of this work. Some
functions of this library will be used in the following. Although definitions are not
given here, their names suggest what they do.

The very general concept of operator can be concreted for term rewriting reduc-
tions. Equational operators are structures with three fields, containing the rewrit-
ing rule to apply, the position of the subterm to be replaced and the matching
substitution:

(defstructure eq-operator rule pos matching)

As we said in section 2 every reduction relation is given by concrete versions
of legal, reduce-one-step and reducible. In the equational case:



— (eq-legal term op R) tests if the rule of the operator op is in R, and can be
applied to term at the position indicated by the operator (using the matching
in op).

— (eq-reduce-one-step term op) replaces the subterm indicated by the positi-
on of the operator op by the corresponding instance (using matching) of the
right-hand side of the rule of the operator.

— (eg-reducible term R) returns a legal equational operator to apply, when-
ever it exists, or nil otherwise.

Note that for every fixed term rewriting system R a different reduction relation
is defined. The rewriting counterpart of the abstract equivalence equiv-p can be
defined in an analogue way: (eq-equiv-p t1 t2 p R) tests if p is a proof of the
equivalence of t1 and t2 in the equational theory of R. Due to the lack of space,
we do not give the definitions here. Recall also from section 2 that two theorems
(assumed as axioms in the general framework) have to be proved to state the
relationship between eq-legal and eq-reducible. We proved them:

(defthm eq-reducible-legal-1
(implies (eq-reducible term R)
(eq-legal term (eq-reducible term R) R)))

(defthm eq-reducible-legal-2
(implies (not (eq-reducible term R) (not (eg-legal term op R))))

Formalizing term rewriting in this way, we proved a number of results about
term rewriting systems. In the following subsections, two relevant examples are

sketched.

3.1 Equational theories and an algebra of proofs

An equivalence relation on first-order terms is a congruence if it is stable (closed
under instantiation) and compatible (closed under inclusion in contexts). Equa-
tional consequence, F |= s = t, can be alternatively defined as the least congruence
relation containing E. In order to justify that the above described representation
is appropriate, it would be convenient to prove that, fixed E, the relation given by
(eq-equiv-p t1 t2 p E)?, is the least congruence containing E.

We proved it in ACL2. In figure 4 we sketch part of our formalization showing
that eq-equiv-p is a congruence. The ACL2 proof obtained is a good example of
the benefits gained considering proofs as objects that can be transformed to obtain
new proofs. Following Bachmair [2], we can define an “algebra” of proofs, a set of
operations acting on proofs: proof-concat to concatenate proofs, inverse-proof
to obtain the reverse proof, eq-proof-instance, to instantiate the elements in-
volved in the proof and eq-proof-context to include the elements of the proof as
subterms of a common term. The empty proof nil can be seen as a proof constant.
Each of these operations corresponds with one of the properties needed to show
that eq-equiv-p is a congruence. The theorems are proved easily by ACL2, with
minor help from the user.

3.2 A mechanical proof of Knuth-Bendix critical pair theorem
The main result we have proved is the critical pair theorem: a rewrite system
R is locally confluent iff every critical pair obtained with rules in R is joinable.

2 Formally speaking, p have to be understood as existentially quantified



(defthm eq-equiv-p-reflexive (eq-equiv-p term term nil E))

(defthm eq-equiv-p-symmetric
(implies (eq-equiv-p tl t2 p E) (eq-equiv-p t2 tl1 (inverse-proof p) E))

(defthm eq-equiv-p-transitive
(implies (and (eq-equiv-p tl t2 p E) (eq-equiv-p t2 t3 q E))
(eq-equiv-p t1 t3 (proof-concat p q) E))

(defthm eq-equiv-p-stable
(implies (eq-equiv-p t1 t2 p E)
(eq-equiv-p (instance tl sigma) (instance t2 sigma)
(eq-proof-instance p sigma) E)))

(defthm eq-equiv-p-compatible
(implies (and (eq-equiv-p tl t2 p E) (positionp pos term))
(eq-equiv-p (replace-term term pos tl) (replace-term term pos t2)
(eq-proof-context p term pos) E))

Fig. 4. Congruence: an algebra of proofs

This result is formalized in our framework and proved guiding the system to the
classical proof given in the literature (see [1] for example).

In item (a) of figure 5, a term rewriting system (RLC) is partially defined
assuming the property of joinability of its critical pairs. The partially defined
function (transform-critical-peak 11 rl pos 12 r2) is assumed to obtain a
valley proof for the critical pair determined by the rules (11 . r1) and (12 . r2)
at the non-variable position pos of 11. The function (cp-r 11 rl pos 12 r2)
computes such critical pair, whenever it exists (previously renaming the variables
of the rules, in order to get them standardized apart).

In our formalization, to prove the critical pair theorem we have to to define a
function transform-eq-local-peak and prove that transforms every equational
local peak proof to an equivalent valley proof. The final theorem is shown in item
(b) of figure 5. It was not easy at all to perform the proof. The definition of
transform-eq-local-peak (omitted) is a very long case distinction: five cases
(some of them symmetric) has to be handled, according to the positions where the
two rewritings of the equational local peak take place. The main proof effort was
done to handle non-critical (or variable) overlaps. It is interesting to point that in
most of textbooks and surveys this case is proved pictorially. Nevertheless, in our
proof turned out to be the most difficult part. The complete proof needed more
than one hundred lemmas and fifty auxiliary definitions and an extensive use of
definitions and results of the library of first order terms, especially properties of
the unification algorithm. The interested reader is urged to see the web page.

This theorem and the theorems described in Section 2 for abstract reduction
relations were used to prove that equational theories described by a terminating
TRS such that every critical pair has a common normal form are decidable. This
result (which some authors call the Knuth-Bendix’s theorem) is easily obtained
by functional instantiation from the abstract case, taking advantage from the fact
that the whole formalization is done in the same framework. Note how this last



;5 (@) A TRS with joinable critical pairs
(encapsulate
((RLC () t) (transform-critical-peak (11 rl pos 12 r2) t))

(defthm RLC-rewrite-system (rewrite-system (RLC)))

(defthm RLC-joinable-critical-pairs
(implies
(and (member (cons 11 r1) (RLC)) (member (cons 12 r2) (RLC))
(positionp pos 11) (not (variable-p (occurence 11 pos))))

(let* ((cp-r (cp-r 11 rl pos 12 r2)))
(implies cp-r
(and (eq-equiv-p (lhs cp-r) (rhs cp-r)

(transform-critical-peak 11 rl pos 12 r2) (RLC))
(steps-valley (transform-critical-peak 11 rl pos 12 r2))))))))

;33 (b) Theorem proved:
(defun transform-eq-local-peak (p) ...)

(defthm K-B-critical-pair-theorem
(let ((valley (transform-eq-local-peak p)))
(implies (and (equiv-p t1 t2 p (RLC)) (local-peak-p p))
(and (steps-valley valley) (equiv-p t1 t2 valley (RLC))))))

Fig. 5. Knuth-Bendix critical pair theorem

result can be used to “certify” decisions procedures for equational theories defined
by confluent and terminating TRSs.

4 Conclusions and further work

We have presented in this paper a case study of using the ACL2 theorem prover
to formalize some basic results concerning reductions relations and term rewriting
systems. Our formalization has the following main features:

— Reduction relations and their properties are stated in a very general framework,
as explained in section 2.

— The concept of proof is a key notion in our formalization. Proofs are treated
as manipulable objects that can be transformed to obtain new proofs.

— Functional instantiation is extensively used as a way of exporting results from
the abstract case to the concrete case of term rewriting systems.

Some related work has been done in the formalization of abstract reduction
relations in other theorem proving systems, mostly as part of formalizations on
the A-calculus. For example, Huet [5] in the Coq system or Nipkow [10] in Is-
abelle/HOL. A comparison is difficult because our goal was different and, more
important, the logics involved are significantly different: ACL2 logic is a much
weaker logic than those of Coq or HOL. A more related work is Shankar [12], using
Ngthm. Although his work is on concrete reduction relations from the A-calculus
and he does not deal with the abstract case, some of his ideas are reflected in our
work.



To our knowledge, no formalization of term rewriting systems has been done
yet and consequently the formal proof of Knuth-Bendix critical pair theorem is
the first one we know performed in a theorem prover.

We think the results presented here are important for two reasons. From a
theoretical point of view, it is shown a very weak logic can be used to formalize
properties of TRSs. From a practical point of view, this is an example on how
formal methods can help in the design of symbolic computation systems. Usually,
algebraic techniques are applied to the design of proof procedures in automated
deduction. We show how benefits can be obtained in the reverse direction: auto-
mated deduction used as a tool to “certify” components of symbolic computation
systems. Although a fully verified computer algebra system is currently beyond our
possibilities, future work will be done to obtain verified Lisp code (executable in
any compliant Common Lisp) for some basic procedures of term rewriting systems:

— To obtain certified decision procedures for some equational theories (or for
the word problem of some finitely presented algebras) work has to be done
to formalize in ACL2 well-known termination term orderings (recursive path
orderings, Knuth-Bendix orderings, etc.). Maybe some problems will arise due
to the restricted notion of noetherianity supported by ACL2.

— Our goal in the long term is to obtain a certified completion procedure written
in Common Lisp. Although for the moment this may be far from the current
status of our development, we think the work presented here is a good starting
point.
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