
Formalizing rewriting in the ACL2 theorem prover ?Jos�e-Luis Ruiz-Reina, Jos�e-Antonio Alonso, Mar��a-Jos�e Hidalgo andFraniso-Jes�us Mart��n-Mateosfjruiz,jalonso,mjoseh,fjesusg�ia.esDepartamento de Cienias de la Computai�on e Inteligenia Arti�ial.Faultad de Inform�atia y Estad��stia, Universidad de SevillaAvda. Reina Meredes, s/n. 41012 Sevilla, SpainAbstrat. We present an appliation of the ACL2 theorem prover to formalizeand reason about rewrite systems theory. This an be seen as a �rst approah toapply formal methods, using ACL2, to the design of symboli omputation systems,sine the notion of rewriting or simpli�ation is ubiquitous in suh systems. Weonentrate here in formalization and representation aspets of the rewriting theoryusing the �rst-order, quanti�er-free ACL2 logi based on Common Lisp. The mainresult we mehanially proved is Knuth-Bendix ritial-pair theorem.Keywords: Computer algebra systems and automated theorem provers. Integration of logialreasoning and omputer algebra. Formal methods. Logi and symboli omputing. ACL2 theoremprover. Abstrat redution systems. Term rewriting.1 IntrodutionWe report in this paper the status of our work on the appliation of the ACL2theorem prover to reason about rewrite systems theory: onuene, loal onu-ene, noetherianity, normal forms and other related onepts have been formalizedin the ACL2 logi and some results about abstrat redution relations and termrewriting systems have been mehanially proved, inluding Newman's lemma andKnuth-Bendix ritial pair theorem.ACL2 is both a logi and a mehanial theorem proving system supportingit. The ACL2 logi is a existentially quanti�er-free, �rst-order logi with equality.ACL2 is also a programming language, an appliative subset of Common Lisp.The system evolved from the Boyer Moore theorem prover, also known as Nqthm.Formal proofs using a theorem proving environment provides not only formalveri�ation of mathematial theories, but allows to understand and examine theirtheorems with muh greater detail, rigor and larity. On the other hand, the no-tion of rewriting or simpli�ation is a ruial omponent in symboli omputation:simpli�ation proedures are needed to transform omplex objets obtaining equiv-alent but simpler objets and to ompute unique representations for equivalenelasses (see, for example, [4℄ or [9℄).Sine ACL2 is also a programming language, this work an be seen as a �rststep to obtain veri�ed exeutable Common Lisp ode for omponents of symboliomputation systems. Although a fully veri�ed implementation of suh a systemis urrently beyond our possibilities, several basi algorithms an be mehanially\erti�ed" and integrated as part of the whole system.We also show here how a weak logi like the ACL2 logi (no quanti�ation, noin�nite objets, no higher order variables, et.) an be used to represent, formalize,and mehanially prove non-trivial theorems. In this paper, we plae emphasis ondesribing the formalization and representation aspets of our work. Due to the? This work has been supported by DGES/MEC: Projets PB96-0098-C04-04 and PB96-1345



lak of spae, we will skip details of the mehanial proofs. The omplete booksare available on the web in http://www-s.us.es/~jruiz/al2-rewr/.1.1 The ACL2 systemWe briey desribe here the ACL2 theorem prover and its logi. For a good in-trodution written by the authors of the system, see [6℄. Readers wishing morebakground on ACL2 are urged to see the ACL2 user's manual in [7℄. A very gooddesription of the main proof tehniques used in Nqthm, that are also used inACL2, an be found in [3℄.ACL2 stands for A Computational Logi for Appliative Common Lisp. TheACL2 logi is a quanti�er-free, �rst-order logi with equality, desribing an ap-pliative subset of Common Lisp. The syntax of terms is that of Common Lisp[13℄ (we will assume the reader familiar with this language). The logi inludesaxioms for propositional logi and for a number of Lisp funtions and data types.Rules of inferene inlude those for propositional alulus, equality, and instanti-ation. By the priniple of de�nition, new funtion de�nitions (using defun) areadmitted as axioms only if there exists an ordinal measure in whih the argumentsof eah reursive all derease. This ensures that no inonsistenies are introduedby new de�nitions. The theory has a onstrutive de�nition of the ordinals up to"0, in terms of lists and natural numbers, given by the prediate e0-ordinalp andthe order e0-ord-<. One important rule of inferene is the priniple of indution,that permits proofs by indution on "0.In addition to the de�nition priniple, the enapsulation mehanism (usingenapsulate) allows the user to introdue new funtion symbols by axioms on-straining them to have ertain properties (to ensure onsisteny, a witness loalfuntion having the same properties has to be exhibited). Inside an enapsulate,properties stated with defthm need to be proved for the loal witnesses, and out-side, those theorems work as assumed axioms. The funtions partially de�ned withenapsulate an be seen as seond order variables, representing funtions withthose properties. A derived rule of inferene, funtional instantiation, allows somekind of seond-order reasoning: theorems about onstrained funtions an be in-stantiated with funtion symbols known to have the same properties.The ACL2 theorem prover is inspired by Nqthm, but has been onsiderablyimproved. The main proof tehniques used by the prover are simpli�ation andindution. Simpli�ation is a ombination of deision proedures, mainly termrewriting, using the rules previously proved by the user. The ommand defthmstarts a proof attempt, and, if it sueeds, the theorem is stored as a rule. Thetheorem prover is automati in the sense that one defthm is invoked, the useran no longer interat with the system. However, the user an guide the prover byadding lemmas and de�nitions, used in the proofs as rules. The role of the user isimportant: a typial proof e�ort onsists in formalize the problem in the logi andhelp the prover to �nd a proof by means of a suitable set of rewrite rules.1.2 Abstrat redutions and term rewriting systemsThis setion provides a short introdution to basi onepts and de�nitions fromrewriting theory used in this paper. A omplete desription an be found in [1℄.An abstrat redution is simply a binary relation ! de�ned on a set A. Wewill denote as  , $, �! and �$ respetively the inverse relation, the symmetrilosure, the reexive-transitive losure and the equivalene losure. The following



onepts are de�ned with respet to a redution relation !. An element x is innormal form (or irreduible) if there is no z suh that x ! z. We say that x andy are joinable (denoted as x # y) if exists u suh that x �! u � y. We say that xand y are equivalent if x �$ y.An important property to study about redution relations is existene of uniquenormal forms for equivalent objets. A redution relation has the Churh-Rosserproperty if every two equivalent objets are joinable. An equivalent property isonuene: for all x; u; v suh that u � x �! v, then u # v. In every redutionrelation with the Churh-Rosser property there are not distint and equivalentnormal forms. If in addition the relation is normalizing (i.e. every element hasa normal form, noted as x #) then x �$ y i� x #= y #. Provided normal formsare omputable and identity in A is deidable, then the equivalene relation �$ isdeidable in this ase.Another important property is termination: a redution relation is terminating(or noetherian) if there is no in�nite redution sequene x0 ! x1 ! x2 ! : : :.Obviously, every noetherian redution is normalizing. The Churh-Rosser ondi-tion an be loalized when the redution is terminating. In that ase an equivalentproperty is loal onuene: for all x; u; v suh that u  x ! v, then u # v. Thisresult is known as Newman's lemma.One important type of redution relations is de�ned in the set T (�;X) of �rstorder terms in a given language, where � is a set of funtion symbols, and X is aset of variables. In this ontext, an equation is a pair of terms l = r. The redutionrelation de�ned by a set of equations E is de�ned as: s!E t if it exists l = r 2 Eand a substitution � of the variables in l (the mathing substitution) suh that�(l) is a subterm of l and t is obtained from s by replaing the subterm �(l)by �(r). This redution relation is of great interest in universal algebra beauseit an be proved that E j= s = t i� s �$E t. This implies deidability of everyequational theory de�ned by a set of axioms E suh that !E is terminating andloally onuent. To emphasize the use of the equation l = r from left to right asdesribed above, we write l ! r and talk about rewrite rules. A term rewritingsystem (TRS) is a set of rewrite rules. Unless noted otherwise, E is always a setof equations (equational axioms) and R is a TRS.Loal onuene is deidable for �nite TRSs: joinability has only to be hekedfor a �nite number of pair of terms, alled ritial pairs, aounting for the mostgeneral forms of loal divergene. The Knuth-Bendix ritial pair theoremstates that a TRS is loally onuent i� all its ritial pairs are joinable. Thus,Churh-Rosser property of terminating TRSs is a deidable property: it is enoughto hek if every ritial pair has a ommon normal form. If a TRS R has aritial pair with di�erent normal forms, there is still a hane to obtain a deisionproedure for the equational theory of R, adjoining that equation as a new rewriterule. This is the basis for the well-known ompletion algorithms. See [1℄ for details.In the sequel, we desribe the formalization of these properties in the ACL2logi and a proof of them using the theorem prover. For the rest of the paper,when we talk about \prove" we mean \mehanially prove using ACL2".2 Formalizing abstrat redutions in ACL2Our �rst attempt to represent abstrat redution relations in the ACL2 logi wassimply to de�ne them as binary boolean funtions, using enapsulate to state



their properties. Nevertheless, if x! y, more important than the relation betweenx and y is the fat that y is obtained from x by applying some kind of transfor-mation or operator. In its most abstrat formulation, we an view a redution asa binary funtion that, given an element and an operator returns another objet,performing a one-step redution. Think for example in equational redutions: ele-ments in that ase are �rst-order terms and operators are the objets onstitutedby a position (indiating the subterm replaed), an equation (the rule applied) anda substitution (the mathing substitution).Of ourse not any operator an be applied to any element. Thus, a seondomponent in this formalization is needed: a boolean binary funtion to test if it islegal to apply an operator to an element. Finally, a third omponent is introdued:sine omputation of normal forms requires searhing for legal operators to apply,we will need a unary funtion suh that when applied to an element, it returns alegal operator, whenever it exists, or nil otherwise (a reduibility test).The above onsiderations lead us to formalize the onept of abstrat redutionsin ACL2, using three partially de�ned funtions: redue-one-step, legal andreduible. This an be done with the following enapsulate (dots are used toomit tehnial details, as in the rest of the paper):(enapsulate((legal (x u) t) (redue-one-step (x u) t) (reduible (x) t))...(defthm legal-reduible-1(implies (reduible x) (legal x (reduible x))))(defthm legal-reduible-2(implies (not (reduible x)) (not (legal x o))))...)The �rst line of every enapsulate is a desription signature of the non-loalfuntions partially de�ned. The two theorems assumed above as axioms are mini-mal requirements for every redution we de�ned: if further properties (for example,loal onuene) are assumed, they must be stated inside the enapsulate. Thisis a very abstrat framework to formalize redutions in ACL2. We think that thesethree funtions apture the basi abstrat features every redution has. On the onehand, a proedural aspet: the omputation of normal forms, applying operatorsuntil irreduible objets are obtained. On the other hand, a delarative aspet:every redution relation desribes its equivalene losure. Representing redutionsin this way, we an de�ne onepts like Churh-Rosser property, loal onueneor noetherianity and even prove non-trivial theorems like Newman's lemma, as wewill see.To instantiate this general framework, onrete instanes of redue-one-step,legal and reduible have to be de�ned and the properties assumed here asaxioms must be proved for those onrete de�nitions. By funtional instantiation,results about abstrat redutions an then be easily exported to onrete ases(for example, to the equational ase).2.1 Equivalene and proofsDue to the onstrutive nature of the ACL2 logi, in order to de�ne x �$ y we haveto inlude an argument with a sequene of steps x = x0 $ x1 $ x2 : : :$ xn = y.This is done by the funtion equiv-p de�ned in �gure 1. (equiv-p x y p) is



t if p is a proof justifying that x �$y. A proof 1 is a sequene of legal steps andeah proof step is a struture r-step with four �elds: elt1, elt2 (the elementsonneted), diret (the diretion of the step) and operator. Two proofs justifyingthe same equivalene will be said to be equivalent. A proof step is legal (as de�nedby proof-step-p) if one of its elements is obtained applying the (legal) operatorto the other.(defstruture r-step diret operator elt1 elt2)(defun proof-step-p (s)(let ((e1 (elt1 s)) (e2 (elt2 s)) (op (operator s)) (dt (diret s)))(and (r-step-p s)(implies dt (and (legal elt1 op)(equal (redue-one-step elt1 op elt2) elt2)))(implies (not dt) (and (legal elt2 op)(equal (redue-one-step elt2 op) elt1))))))(defun equiv-p (x y p)(if (endp p) (equal x y)(and (proof-step-p (ar p)) (equal x (elt1 (ar p)))(equiv-p (elt2 (ar p)) y (dr p)))))Fig. 1. De�nition of proofs and equivaleneChurh-Rosser property and loal-onuene an be rede�ned with respet tothe form of a proof (subsetions 2.2 and 2.3). For that purpose, we de�ne (omit-ted here) funtions to reognize proofs with partiular shapes (valleys and loalpeaks): loal-peak-p reognizes proofs of the form v  x! u and steps-valleyreognizes proofs of the form v �! x � u2.2 Churh-Rosser property and deidabilityWe desribe how we formalized and proved the fat that every Churh-Rosser andnormalizing redution relation is deidable. Valley proofs an be used to reformu-late the de�nition of the Churh-Rosser property: a redution is Churh-Rosseri� for every proof there exists an equivalent valley proof. Sine the ACL2 logi isquanti�er-free, the existential quanti�er in this statement has to be replaed bya Skolem funtion, whih we alled transform-to-valley. The onept of beingnormalizing an also be reformulated in terms of proofs: a redution is normalizingif for every element there exists a proof to an equivalent irreduible element. Thisproof is given by the (Skolem) funtion proof-irreduible (note that we are notassuming noetherianity for the moment). Properties de�ning a Churh-Rosser andnormalizing redution are enapsulated as shown in �gure 2, item (a).The funtion equivalent tests if normal forms are equal. Note that in this on-text, the normal form of an element x is the last element of (proof-irreduible x):(defun normal-form (x) (last-of-proof x (proof-irreduible x)))(defun equivalent (x y) (equal (normal-form x) (normal-form y)))1 Do not onfuse with proofs done using the ACL2 system.



;;; (a) Definition of Churh-Rosser and normalizing redution:(enapsulate((legal (x u) t) (redue-one-step (x u) t) (reduible (x) t)(transform-to-valley (x) t) (proof-irreduible (x) t)).....(defthm Churh-Rosser-property(let ((valley (transform-to-valley p)))(implies (equiv-p x y p)(and (steps-valley valley) (equiv-p x y valley))))).....(defthm normalizing(let* ((p-x-y (proof-irreduible x))(y (last-of-proof x p-x-y)))(and (equiv-p x y p-x-y) (not (reduible y))))));;; (b) Main theorems proved:(defthm if-C-R--two-ireduible-onneted-are-equal(implies (and (equiv-p x y p) (not (reduible x)) (not (reduible y)))(equal x y)))(defthm equivalent-sound(implies (equivalent x y) (equiv-p x y (make-proof-ommon-n-f x y))))(defthm equivalent-omplete (implies (equiv-p x y p) (equivalent x y))Fig. 2. Churh-Rosser and normalizing implies deidabilityTo prove deidability of a Churh-Rosser and normalizing relation, it is enoughto prove that equivalent is a omplete and sound algorithm deiding the equiv-alene relation assoiated with the redution relation. See �gure 2, item (b). Wealso inlude the main lemma used, stating that there are no distint equivalentirreduible elements. Note also that soundness is expressed in terms of a Skolemfuntion make-proof-ommon-normal-form (de�nition omitted), whih onstrutsa proof justifying the equivalene. These theorems are proved easily, without muhguidane from the user. See the web page for details.2.3 Noetherianity, loal onuene and Newman's lemmaA relation is well founded in a set A if every non-empty subset has a minimalelement. A restrited notion of well-foundedness is built into ACL2, based in thefollowing meta-theorem: a relation in a set A is well-founded i� there exists afuntion F : A ! Ord suh that x < y ) F (x) < F (y), where Ord is the lassof all ordinals (axiom of hoie needed). In ACL2, one a relation is proved tosatisfy these requirements, it an be used in the admissibility test for reursivefuntions. An arbitrary well-founded partial order rel an be de�ned in ACL2 asshown in item (a) of �gure 3. Sine only ordinals up to "0 are formalized in theACL2 logi, a limitation is imposed in the maximal order type of well-foundedrelations that an be represented. Consequently, our formalization su�ers from thesame restrition. Nevertheless, no partiular properties of "0 are used in our proofs,exept well-foundedness, so we think the same formal proofs ould be arried outif higher ordinals were involved.



In item (b) of �gure 3, a general de�nition of a noetherian and loally onu-ent redution relation is presented. Loal onuene is easily expressed in termsof the shape of proofs involved: a relation is loally onuent i� for every loalpeak proof there is an equivalent valley proof. This valley proof is given by thefuntion transform-loal-peak. As for noetherianity, our formalization relies onthe following meta-theorem: a redution is noetherian if and only if it is ontainedin a well-founded partial ordering (AC). Thus, the general well-founded relationrel previously de�ned is used to justify noetherianity of the general redutionrelation de�ned: for every element x suh that a legal operator u an be applied,then redue-one-step obtains an element less than x with respet to rel.;;; (a) A well-founded partial order:(enapsulate((rel (x y) t) (fn (x) t))...(defthm rel-well-founded-relation(and (e0-ordinalp (fn x))(implies (rel x y) (e0-ord-< (fn x) (fn y)))):rule-lasses (:well-founded-relation :rewrite))(defthm rel-transitive(implies (and (rel x y) (rel y z)) (rel x z))));;; (b) A noetherian and loally onfluent redution relation:(enapsulate((legal (x u) boolean) (redue-one-step (x u) element)(reduible (x) boolean) (transform-loal-peak (x) proof))....(defthm loally-onfluent(let ((valley (transform-loal-peak p)))(implies (and (equiv-p x y p) (loal-peak-p p))(and (steps-valley valley) (equiv-p x y valley)))))(defthm noetherian(implies (legal x u) (rel (redue-one-step x u) x))));;; () Definition of transform to valley:(defun transform-to-valley (p)(delare (xargs :measure (proof-measure p) :well-founded-relation mul-rel))(if (not (exists-loal-peak p)) p(transform-to-valley (replae-loal-peak p))));;; (d) Main theorems proved:(defthm transform-to-valley-admission(implies (exists-loal-peak p)(mul-rel (proof-measure (replae-loal-peak p))(proof-measure p))))(defthm newman-lemma(let ((valley (transform-to-valley p)))(implies (equiv-p x y p)(and (steps-valley valley) (equiv-p x y valley)))))Fig. 3. Newman's lemma



The standard proof of Newman's lemma found in the literature (see [1℄) showsonuene by noetherian indution based on the redution relation. The proof weobtained in ACL2 di�ers from the standard one and it is based on the proof givenin [8℄. In our formalization, we have to show that the redution relation has theChurh-Rosser property by de�ning a funtion transform-to-valley and provingthat for every proof p, (transform-to-valley p) is an equivalent valley proof.This funtion an be de�ned to iteratively apply replae-loal-peak (whihreplaes loal peak subproofs by the equivalent proof given by transform-loal--peak) until there are no loal peaks. See de�nition in item () of �gure 3.Indution used in the standard proof is hidden here by the termination proof oftransform-to-valley, needed for admission. The main proof e�ort was to showthat in eah iteration, some measure on the proof, proof-measure, dereases withrespet to a well-founded relation, mul-rel. This an be seen as a normalizationproess ating on proofs. The measure proof-measure is the list of elements in-volved in the proof and the relation mul-rel is de�ned to be the multiset extensionof rel. We needed to prove in ACL2 that the multiset extension of a well-foundedrelation is also well-founded, a result interesting in its own (see the web page fordetails). One transform-to-valley is admitted, it is relatively easy to show thatit always returns an equivalent valley proof. See item (d) of �gure 3.Note that we gave here a partiular \implementation" of transform-to-valleyand proved as theorems the properties assumed as axioms in the previous subse-tion. The same was done with proof-irreduible. Deidability of noetherianand loally onuent redution relations an now be easily dedued by funtionalinstantiation from the general results proved in the previous subsetion, allowingsome kind of seond-order reasoning. Name onits are avoided using CommonLisp pakages.3 Formalizing rewriting in ACL2We de�ned in the previous setion a very general formalization of redutions rela-tions. The results proved an be reused for every instane of the general framework.As an example, we desribe in this setion how we formalized and reasoned aboutterm rewriting in ACL2.Sine rewriting is a redution relation de�ned on the set of �rst order terms,we needed to use a library of de�nitions and theorems formalizing the lattietheoreti properties of �rst-order terms: in partiular, subsumption and uni�ationalgorithms are de�ned and proved orret. See [11℄ for details of this work. Somefuntions of this library will be used in the following. Although de�nitions are notgiven here, their names suggest what they do.The very general onept of operator an be onreted for term rewriting redu-tions. Equational operators are strutures with three �elds, ontaining the rewrit-ing rule to apply, the position of the subterm to be replaed and the mathingsubstitution:(defstruture eq-operator rule pos mathing)As we said in setion 2 every redution relation is given by onrete versionsof legal, redue-one-step and reduible. In the equational ase:



{ (eq-legal term op R) tests if the rule of the operator op is in R, and an beapplied to term at the position indiated by the operator (using the mathingin op).{ (eq-redue-one-step term op) replaes the subterm indiated by the positi-on of the operator op by the orresponding instane (using mathing) of theright-hand side of the rule of the operator.{ (eq-reduible term R) returns a legal equational operator to apply, when-ever it exists, or nil otherwise.Note that for every �xed term rewriting system R a di�erent redution relationis de�ned. The rewriting ounterpart of the abstrat equivalene equiv-p an bede�ned in an analogue way: (eq-equiv-p t1 t2 p R) tests if p is a proof of theequivalene of t1 and t2 in the equational theory of R. Due to the lak of spae,we do not give the de�nitions here. Reall also from setion 2 that two theorems(assumed as axioms in the general framework) have to be proved to state therelationship between eq-legal and eq-reduible. We proved them:(defthm eq-reduible-legal-1(implies (eq-reduible term R)(eq-legal term (eq-reduible term R) R)))(defthm eq-reduible-legal-2(implies (not (eq-reduible term R) (not (eq-legal term op R))))Formalizing term rewriting in this way, we proved a number of results aboutterm rewriting systems. In the following subsetions, two relevant examples areskethed.3.1 Equational theories and an algebra of proofsAn equivalene relation on �rst-order terms is a ongruene if it is stable (losedunder instantiation) and ompatible (losed under inlusion in ontexts). Equa-tional onsequene, E j= s = t, an be alternatively de�ned as the least ongruenerelation ontaining E. In order to justify that the above desribed representationis appropriate, it would be onvenient to prove that, �xed E, the relation given by(eq-equiv-p t1 t2 p E)2, is the least ongruene ontaining E.We proved it in ACL2. In �gure 4 we sketh part of our formalization showingthat eq-equiv-p is a ongruene. The ACL2 proof obtained is a good example ofthe bene�ts gained onsidering proofs as objets that an be transformed to obtainnew proofs. Following Bahmair [2℄, we an de�ne an \algebra" of proofs, a set ofoperations ating on proofs: proof-onat to onatenate proofs, inverse-proofto obtain the reverse proof, eq-proof-instane, to instantiate the elements in-volved in the proof and eq-proof-ontext to inlude the elements of the proof assubterms of a ommon term. The empty proof nil an be seen as a proof onstant.Eah of these operations orresponds with one of the properties needed to showthat eq-equiv-p is a ongruene. The theorems are proved easily by ACL2, withminor help from the user.3.2 A mehanial proof of Knuth-Bendix ritial pair theoremThe main result we have proved is the ritial pair theorem: a rewrite systemR is loally onuent i� every ritial pair obtained with rules in R is joinable.2 Formally speaking, p have to be understood as existentially quanti�ed



(defthm eq-equiv-p-reflexive (eq-equiv-p term term nil E))(defthm eq-equiv-p-symmetri(implies (eq-equiv-p t1 t2 p E) (eq-equiv-p t2 t1 (inverse-proof p) E))(defthm eq-equiv-p-transitive(implies (and (eq-equiv-p t1 t2 p E) (eq-equiv-p t2 t3 q E))(eq-equiv-p t1 t3 (proof-onat p q) E))(defthm eq-equiv-p-stable(implies (eq-equiv-p t1 t2 p E)(eq-equiv-p (instane t1 sigma) (instane t2 sigma)(eq-proof-instane p sigma) E)))(defthm eq-equiv-p-ompatible(implies (and (eq-equiv-p t1 t2 p E) (positionp pos term))(eq-equiv-p (replae-term term pos t1) (replae-term term pos t2)(eq-proof-ontext p term pos) E))Fig. 4. Congruene: an algebra of proofsThis result is formalized in our framework and proved guiding the system to thelassial proof given in the literature (see [1℄ for example).In item (a) of �gure 5, a term rewriting system (RLC) is partially de�nedassuming the property of joinability of its ritial pairs. The partially de�nedfuntion (transform-ritial-peak l1 r1 pos l2 r2) is assumed to obtain avalley proof for the ritial pair determined by the rules (l1 . r1) and (l2 . r2)at the non-variable position pos of l1. The funtion (p-r l1 r1 pos l2 r2)omputes suh ritial pair, whenever it exists (previously renaming the variablesof the rules, in order to get them standardized apart).In our formalization, to prove the ritial pair theorem we have to to de�ne afuntion transform-eq-loal-peak and prove that transforms every equationalloal peak proof to an equivalent valley proof. The �nal theorem is shown in item(b) of �gure 5. It was not easy at all to perform the proof. The de�nition oftransform-eq-loal-peak (omitted) is a very long ase distintion: �ve ases(some of them symmetri) has to be handled, aording to the positions where thetwo rewritings of the equational loal peak take plae. The main proof e�ort wasdone to handle non-ritial (or variable) overlaps. It is interesting to point that inmost of textbooks and surveys this ase is proved pitorially. Nevertheless, in ourproof turned out to be the most diÆult part. The omplete proof needed morethan one hundred lemmas and �fty auxiliary de�nitions and an extensive use ofde�nitions and results of the library of �rst order terms, espeially properties ofthe uni�ation algorithm. The interested reader is urged to see the web page.This theorem and the theorems desribed in Setion 2 for abstrat redutionrelations were used to prove that equational theories desribed by a terminatingTRS suh that every ritial pair has a ommon normal form are deidable. Thisresult (whih some authors all the Knuth-Bendix's theorem) is easily obtainedby funtional instantiation from the abstrat ase, taking advantage from the fatthat the whole formalization is done in the same framework. Note how this last



;;; (a) A TRS with joinable ritial pairs(enapsulate((RLC () t) (transform-ritial-peak (l1 r1 pos l2 r2) t))...(defthm RLC-rewrite-system (rewrite-system (RLC)))(defthm RLC-joinable-ritial-pairs(implies(and (member (ons l1 r1) (RLC)) (member (ons l2 r2) (RLC))(positionp pos l1) (not (variable-p (ourene l1 pos))))(let* ((p-r (p-r l1 r1 pos l2 r2)))(implies p-r(and (eq-equiv-p (lhs p-r) (rhs p-r)(transform-ritial-peak l1 r1 pos l2 r2) (RLC))(steps-valley (transform-ritial-peak l1 r1 pos l2 r2))))))));;; (b) Theorem proved:(defun transform-eq-loal-peak (p) ...)(defthm K-B-ritial-pair-theorem(let ((valley (transform-eq-loal-peak p)))(implies (and (equiv-p t1 t2 p (RLC)) (loal-peak-p p))(and (steps-valley valley) (equiv-p t1 t2 valley (RLC))))))Fig. 5. Knuth-Bendix ritial pair theoremresult an be used to \ertify" deisions proedures for equational theories de�nedby onuent and terminating TRSs.4 Conlusions and further workWe have presented in this paper a ase study of using the ACL2 theorem proverto formalize some basi results onerning redutions relations and term rewritingsystems. Our formalization has the following main features:{ Redution relations and their properties are stated in a very general framework,as explained in setion 2.{ The onept of proof is a key notion in our formalization. Proofs are treatedas manipulable objets that an be transformed to obtain new proofs.{ Funtional instantiation is extensively used as a way of exporting results fromthe abstrat ase to the onrete ase of term rewriting systems.Some related work has been done in the formalization of abstrat redutionrelations in other theorem proving systems, mostly as part of formalizations onthe �-alulus. For example, Huet [5℄ in the Coq system or Nipkow [10℄ in Is-abelle/HOL. A omparison is diÆult beause our goal was di�erent and, moreimportant, the logis involved are signi�antly di�erent: ACL2 logi is a muhweaker logi than those of Coq or HOL. A more related work is Shankar [12℄, usingNqthm. Although his work is on onrete redution relations from the �-alulusand he does not deal with the abstrat ase, some of his ideas are reeted in ourwork.



To our knowledge, no formalization of term rewriting systems has been doneyet and onsequently the formal proof of Knuth-Bendix ritial pair theorem isthe �rst one we know performed in a theorem prover.We think the results presented here are important for two reasons. From atheoretial point of view, it is shown a very weak logi an be used to formalizeproperties of TRSs. From a pratial point of view, this is an example on howformal methods an help in the design of symboli omputation systems. Usually,algebrai tehniques are applied to the design of proof proedures in automateddedution. We show how bene�ts an be obtained in the reverse diretion: auto-mated dedution used as a tool to \ertify" omponents of symboli omputationsystems. Although a fully veri�ed omputer algebra system is urrently beyond ourpossibilities, future work will be done to obtain veri�ed Lisp ode (exeutable inany ompliant Common Lisp) for some basi proedures of term rewriting systems:{ To obtain erti�ed deision proedures for some equational theories (or forthe word problem of some �nitely presented algebras) work has to be doneto formalize in ACL2 well-known termination term orderings (reursive pathorderings, Knuth-Bendix orderings, et.). Maybe some problems will arise dueto the restrited notion of noetherianity supported by ACL2.{ Our goal in the long term is to obtain a erti�ed ompletion proedure writtenin Common Lisp. Although for the moment this may be far from the urrentstatus of our development, we think the work presented here is a good startingpoint.Referenes1. Baader, F., and Nipkow, T. Term rewriting and all that. Cambridge University Press,1998.2. Bahmair, L. Canonial equational proofs. Birkh�auser, 1991.3. Boyer, R., and Moore, J. A Computational Logi Handbook, 2nd ed. Aademi Press,1998.4. Buhberger, B., and Loos, R. Algebrai simpli�ation. In Computer Algebra, Symboliand Algebrai Computation. Computing Supplementum 4. SV, 1982.5. Huet, G. Residual theory in �-alulus: a formal development. Journal of Funtional Pro-gramming, 4 (1994), 475{522.6. Kaufmann, M., and Moore, J. An industrial strength theorem prover for a logi based onCommon Lisp. IEEE Transations on Software Engineering 23, 4 (1997), 203{213.7. Kaufmann, M., and Moore, J. http://www.s.utexas.edu/users/moore/al2/al2-do.html. ACL2 Version 2.4, 1999.8. Klop, J. Term rewriting systems. Handbook of Logi in Computer Siene (1992).9. Le Chenade, P. Canonial forms in �nitely presented algebras. Pitman-Wiley, London,1985.10. Nipkow, T. More Churh-Rosser proofs (in Isabelle/HOL). In 13th International Confereneon Automated Dedution (1996), LNAI 1104, Springer-Verlag, pp. 733{747.11. Ruiz-Reina, J., Alonso, J., Hidalgo, M., and Mart��n, F. Mehanial veri�ation ofa rule based uni�ation algorithm in the Boyer-Moore theorem prover. In AGP'99 JointConferene on Delarative Programming (1999), pp. 289{304.12. Shankar, N. A mehanial proof of the Churh-Rosser theorem. Journal of the ACM 35, 3(1988), 475{522.13. Steele, G. Common Lisp the Language, 2nd edition. Digital Press, 1990.


