
Reasoning about Matrix Arithmeti in Al2F. Palomo-Lozanoy, J. A. Alonso-Jiménez�, I. Medina-Buloyffraniso.palomo; inmaulada.medinag�ua.esyjalonso�ia.es�Department of Computing Sienes and Arti�ial Intelligene�University of SevillaDepartment of Computer Languages and SystemsyUniversity of CádizAbstratIn this paper we present a formalization of matrix arithmeti in Al2 adequate for automativeri�ation, with a high degree of automation, of the fundamental properties of matriesthat struture them as a ring. Without loss of generality, we restrit our attention here tosquare matries whose dimension is a power of two. The matrix set of elements used inludesarbitrary preision omplex rational numbers. We also disuss how the nature of the indutionshemes involved makes it di�ult for an automati theorem prover to �nd them.1 IntrodutionIn this paper we present a formalization of matrix arithmeti. We restrit our attention here tosquare matries over an element �eld whose dimension is a power of two sine this allows us touse a reursive representation for them and it an be done without loss of generality.On the other hand, this hoie is justi�ed by the fat that this representation is in the heartof some important algorithms, like the Strassen-Pan-Coppersmith-Winograd family of sub-ubimatrix multipliation algorithms [12, 11, 5℄.The formalism used to reason about matrix arithmeti is that of Al2 [7, 8℄. From a logi view-point, Al2 is an untyped quanti�er-free �rst-order logi of total reursive funtions with equality.It only ontains two extension priniples. These extension priniples allow the introdution of newfuntion symbols and axioms to the logi while preserving its onsisteny.The main aim of this work is to provide Al2 with a reusable book of basi matrix operationsand theorems about them. These operations are not mere operational abstrations. They arewritten in an appliative subset of Common Lisp and, therefore, exeutable.We present a formalization that is shown to be adequate for automati veri�ation, with a highdegree of automation, of the fundamental properties of matries that struture them as a ring.The main di�ulty that has been overome here is the development of appropriate indutionshemes and the ompleting of some Al2 properties of number arithmeti. It is worthwhile tonote that the nature of the indution shemes involved makes it di�ult for an automati theoremprover to �nd them.Sine Al2 is a rule-driven theorem prover, theorems are operationally interpreted as rewriterules. Therefore, some supplementary theorems that are useful as rewriting rules have also beenidenti�ed and proved in addition to the basi properties.Finally, we disuss the development e�ort and the degree of automation ahieved and alsoanalyze some possible extensions of this work, inluding a brief overview of the problems involved�Faultad de Informátia y Estadístia. Avda. Reina Meredes, s/n. 41012 Sevilla. Spain.yEsuela Superior de Ingeniería de Cádiz. C/ Chile, s/n. 11003 Cádiz. Spain.

in the generalization of the element �eld to obtain matrix rings over di�erent algebrai struturesand possible ways to overome them.2 An Overview of Al2Al2 (A Computational Logi for Appliative Common Lisp) is the suessor of Nqthm [1, 3℄,the Boyer-Moore theorem prover. A onise desription of Al2 an be found in [6℄. In fat, it isneessary to approah Al2 from three di�erent perspetives to fully understand it.1. From a logi point of view.2. From the perspetive of programming languages.3. From the standpoint of automati reasoning systems.2.1 Al2 is a Computational LogiAl2 is a �rst-order quanti�er-free logi with equality. Its syntax is that of the Lisp programminglanguage. This means that a term in the logi is a onstant, a variable symbol or the appliationof a n-ary funtion symbol (or a �-expression) to n terms. Formally speaking, prediate symbolsin Al2 do not exist, though Boolean funtions play this role.In Al2, the set of axioms inlude those of propositional logi with equality and some basiaxioms that are needed to work with the usual data types: numbers (integers, rationals andomplex rationals)1, haraters, strings, symbols and lists.On the other hand, inferene rules are the same that in propositional alulus with equality,adding variable instantiation, indution and funtional instantiation. The indution rule reduestheorem proofs to �nite sets of ases by a powerful form of mathematial indution on "0-ordinals.We an replae funtion symbols in a theorem with other funtion symbols by using the funtionalinstantiation rule.The logi also inludes two extension priniples : the de�nitional priniple and the enapsula-tion priniple. The former is essential beause it permits the introdution of new funtion symbolswith an axiomati de�nition; to preserve onsisteny, the system only admits a funtion underthis priniple if its termination an be guaranteed under ertain onditions.2 The latter permitsthe introdution of new funtion symbols onstrained by axioms; to preserve onsistene, Al2requires �witnesses� of the existene of these funtions to be exposed. Funtional instantiation isan inferene rule derived from this extension priniple.The lak of quanti�ation renders Al2 a onstrutive logi. Instead of stating the fat that aertain objet exists, a funtion omputing an objet with the desired properties must be shown.Another remarkable point is the lak of types3 and of partial funtions. Funtions admitted underthe de�nitional priniple must be total reursive funtions (however, see [9℄.)2.2 Al2 is an Appliative Programming LanguageEvery Al2 funtion admitted under the de�nitional priniple is a Lisp funtion. The reiproaldoes not hold beause the exeution of a funtion must only depend on their arguments if we wantto reason about it in Al2. On the other hand, funtions written in onventional programminglanguages (Lisp not being an exeption) are not guaranteed to terminate.Thus, we an think of Al2 as an appliative programming language, that is, a language inwhih the result of the appliation of a funtion is uniquely determined by its arguments. Morepreisely, Al2 an be regarded as a side-e�et free subset of Common Lisp.1Reently, an extension to Al2 has been developed to ope with real number formalization problems.2This guarantees the existene of one, and only one, mathematial funtion holding the de�nitional axiom.3However, a primitive type inferene system is build into Al2. The user an help the system to infer types bysupplying type presription rules. Types are just used to simplify formulas.2

2.3 Al2 is an Automati Reasoning SystemWhen you supply a potential theorem to Al2, or when you extend the logi by using one of theextension priniples, it is neessary to hek that several onditions hold. Then, Al2 behaves asa theorem prover.Al2 uses several proof tehniques when trying to prove a theorem. Eah proof tehnique anbe viewed as a �proess� reeiving a formula as its input and produing a set of formulas as itsoutput. The input formula is a theorem if eah of the output formulas is a theorem.Of ourse, a partiular proess may not apply to a formula. In this ase, the output set of theproess only onsists of that partiular formula. On the other hand, if a proess proves that agiven formula is a theorem then it returns an empty set.When the user inputs a onjeture into the system, the formula beomes the proof goal and itgoes sequentially through every proess until one of them applies or some termination onditionsare met. When a proess is applied, it produes a set of subgoals that replaes the original goal.This proedure is then iterated while there are subgoals pending to be proved.The simpli�ation proess inludes deision proedures for propositional logi, equality, andlinear arithmeti. It also deals with term rewriting and metafuntions [2℄. This is the only proessthat may return an empty set of formulas, thus proving that its input formula is a theorem. Theterm rewriting system plays a fundamental role: axioms, de�nitions and theorems are stored andused as rewrite rules.The destrutor elimination proess allows to replae variables a�eted by destrutor operationswith a term onsisting of a onstrutor operation and fresh variables. Thus, this eliminatesdestrutor operations to obtain simpler formulas.The three following proesses have a strong heuristi omponent. The rossed fertilizationproess deides when to use and disard equality hypothesis. The generalization proess deideswhen to replae non-variable terms with fresh variables. The irrelevane elimination proess triesto disard those hypothesis not a�eting the validity of the onjeture. All of them are �dangerous�proesses, in the sense that a more general onjeture is obtained when disarding an hypothesisor generalizing a term. The generalized onjeture may well not be a theorem even if the originalonjeture is a theorem. Its main aim is to prepare the formula for a later indution sine, in orderto prove a formula by indution, it is not unusual that a generalization of it may be needed.The last proess is indution. It tries to �nd a suitable indution sheme to prove the onjeture.Conjeture terms may suggest several indution shemes, but system heuristis selet a uniquesheme (perhaps, after merging some of them). If this proess does not �nd a suitable indutionsheme, it fails, and Al2 reports that the onjeture has not been proved.3 Matrix RepresentationThe underlying representation of matries is based on the notion of weak matrix. We use reordstrutures for this purpose, whih ome from Common Lisp and have been formalized in Al2by Brok [4℄. This provides us with a weak reognizer prediate that we strengthen to develop areognizer for properly formed matries.The set of elements used to de�ne matries is reognized by an Al2 prediate that inludesarbitrary preision omplex rational numbers. Sine Al2 is an untyped programming language,this implies that integers and rationals may well replae omplex rationals, without needing asingle hange.3.1 Weak matriesA struture is just a onvenient way to group and aess related data. The defstruture failityis a general purpose tool for reating and reasoning about struture spei�ations.Our notion of weak matrix is aptured by an Al2 struture. A weak matrix is just a olle-tion of four objets or slots alled �submatries�. We say that this notion is �weak� beause norestritions are imposed on the types of the elements that an be stored in eah submatrix.3

The following invoation of defstruture de�nes a onstrutor operation, matrix, and fourdestrutor operations or readers, sub-11, sub-12, sub-21 and sub-22. It also reates an extensivetheory for automated reasoning about spei�ations de�ned in terms of this struture.(defstruture matrixsub-11sub-12sub-21sub-22(:options(:on-name nil)(:representation :tree)(:weak-prediate weak-matrixp)(:do-not :tag :read-write :write-write)))))By default, strutures are represented as true lists tagged with the struture name. The option(:representation :tree) fores a balaned ons tree representation of struture terms. This allows�(logm) aess time, where m is the number of slots. The option (:do-not :tag) eliminates thename tag from struture terms. The prediate weak-matrixp will reognize terms onstruted withmatrix.3.2 MatriesA onsequene of the weakness of the previous de�nition is the lak of a uniform representationeven if we restrit ourselves to use only weak matries and numbers in every slot.We formalize true matries by de�ning a reognizer funtion for square matries whose dimen-sion is a power of two. At �rst sight, this may be seen as a restrition, but an arbitrary matrixan always be �ompleted�, at most doubling its size, so that its dimension is a power of two. Thisis a ommon hoie for several of the most e�ient algorithms for dense matrix arithmeti known.Therefore, we represent a matrix with dimension n = 2k as a weak matrix of matries withdimension n = 2k�1 if n 6= 1, otherwise as a number. As a onsequene of the tree struture ofweak matrix terms, this de�nition implies that our matries have a omplete tetrary tree strutureof matrix operations. The following Boolean funtion reognizes suh a matrix.(defun matrixp (a k)(if (zp k)(al2-numberp a)(let ((k-1 (- k 1)))(and (weak-matrixp a)(matrixp (sub-11 a) k-1)(matrixp (sub-12 a) k-1)(matrixp (sub-21 a) k-1)(matrixp (sub-22 a) k-1)))))This reognizer funtion is admitted by Al2 without any user assistane. It is a remarkablefat that its admissibility proof an be shortened by speifying the following measure hint:(delare (xargs :measure (al2-ount k)))However, this impats other subsequent proofs by hanging their indution shemes. Thiswould ompel us to supply unneessary indution hints.We an also prove the following theorems without any e�ort. They state that the submatries ofa true matrix whose dimension is greater than one are also true matries (with half the dimension).These theorems are stored as type presription rules.(defthm matrixp-sub-11(implies (and (matrixp a k) (not (zp k)))4

(matrixp (sub-11 a) (- k 1))):rule-lasses :type-presription)(defthm matrixp-sub-12(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-12 a) (- k 1))):rule-lasses :type-presription)(defthm matrixp-sub-21(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-21 a) (- k 1))):rule-lasses :type-presription)(defthm matrixp-sub-22(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-22 a) (- k 1))):rule-lasses :type-presription)4 Ring StrutureHaving seleted a representation for matries, we should show now that it is suitable for devisingthe usual operations and proving their properties.The symbols +m, -m, *m will stand for matrix addition, negation and multipliation operations.On the other hand, null and identity will represent the null and identity matries, respetively.In order to prevent name on�its4, matrix operations and properties are supposed to be de�nedin a new pakage, MATRIX.4.1 OperationsThe reursive representation hosen produes elegant reursive formulations of ommon matrixoperations. To begin with, the addition of two matries is aomplished by reursively addingtheir submatries pairwise.(defun +m (a b k)(if (zp k)(+ a b)(let ((k-1 (- k 1)))(matrix (+m (sub-11 a) (sub-11 b) k-1)(+m (sub-12 a) (sub-12 b) k-1)(+m (sub-21 a) (sub-21 b) k-1)(+m (sub-22 a) (sub-22 b) k-1)))))Al2 admits this funtion and also proves that it is a losed operation. Although it is notneessary to supply the indution sheme, it shortens the proof.(defthm matrixp-+m(implies (and (matrixp a k) (matrixp b k))(matrixp (+m a b k) k)):rule-lasses :type-presription:hints (("Goal" :indut (+m a b k))))The de�nition and admission of matrix negation are straightforward. So is the proof of itslosure property.4Al2 de�nes null and identity with a di�erent meaning.5

(defun -m (a k)(if (zp k)(- a)(let ((k-1 (- k 1)))(matrix (-m (sub-11 a) k-1) (-m (sub-12 a) k-1)(-m (sub-21 a) k-1) (-m (sub-22 a) k-1)))))(defthm matrixp--m(matrixp (-m a k) k):rule-lasses :type-presription)Following this, we an de�ne matrix multipliation in a way that resembles the lassi de�nitionof multipliation of two 2�2matries. The fat that this is also a losed operation is easily stated.(defun *m (a b k)(if (zp k)(* a b)(let ((k-1 (- k 1))(a11 (sub-11 a)) (a12 (sub-12 a))(a21 (sub-21 a)) (a22 (sub-22 a))(b11 (sub-11 b)) (b12 (sub-12 b))(b21 (sub-21 b)) (b22 (sub-22 b)))(matrix (+m (*m a11 b11 k-1) (*m a12 b21 k-1) k-1)(+m (*m a11 b12 k-1) (*m a12 b22 k-1) k-1)(+m (*m a21 b11 k-1) (*m a22 b21 k-1) k-1)(+m (*m a21 b12 k-1) (*m a22 b22 k-1) k-1)))))(defthm matrixp-*m(implies (and (matrixp a k) (matrixp b k))(matrixp (*m a b k) k)):rule-lasses :type-presription)The null matrix of a given dimension is omputed from four null submatries.(defun null (k)(if (zp k)0(let ((null (null (- k 1))))(matrix null null null null))))(defthm matrixp-null(matrixp (null k) k):rule-lasses :type-presription)The identity matrix is omputed from two identity submatries and two null submatries.(defun identity (k)(if (zp k)1(let ((null (null (- k 1)))(identity (identity (- k 1))))(matrix identity null null identity))))(defthm matrixp-identity(matrixp (identity k) k):rule-lasses :type-presription)
6

4.2 PropertiesHaving found a proper representation for our notion of matrix and its basi operations, it is timeto formally prove that it satis�es the properties that everyone expets from matries.Some of these properties require indution hints. The most omplex of them are de�nedseparately as funtions representing indution shemes and they are disussed in 6.4.2.1 Ring propertiesAssoiativity of matrix addition requires an indution sheme. On the other hand, ommutativityof matrix addition an be stated without any user guidane.(defthm assoiativity-of-+m(equal (+m (+m a b k) k) (+m a (+m b k) k)):hints (("Goal" :indut (sheme-1 a b k))))(defthm ommutativity-of-+m(equal (+m a b k) (+m b a k)))The null matrix is an identity element of matrix addition. The order in whih the theoremsare proved allows the seond theorem to be redued to the �rst one, by using the ommutativitytheorem previously proved.(defthm null-identity-of-+m-2(implies (matrixp a k)(equal (+m a (null k) k) a)):hints (("Goal" :indut (+m a _ k))))(defthm null-identity-of-+m-1(implies (matrixp a k)(equal (+m (null k) a k) a)))The hypothesis (matrixp a) is required in both theorems. However, it is not neessary to supplythe indution sheme, though it shortens the proof. The sheme suggested by :indut (+m a _ k)is based on +m, but it does not take into aount the seond argument (_ does not appear as avariable in the theorem body).We an also automatially prove that matrix negation is an inverse of matrix addition.(defthm -m-inverse-of-+m-2(equal (+m a (-m a k) k) (null k)))(defthm -m-inverse-of-+m-1(equal (+m (-m a k) a k) (null k)))The order in whih the theorems are proved allows the seond theorem to be redued to the�rst one, by using the ommutativity theorem previously proved.Distributivity of matrix multipliation over matrix addition is proved by using two separateindution shemes. Sine matrix multipliation is not ommutative, we an not redue one of thetheorems to the other.(defthm distributivity-of-*m-over-+m-1(equal (*m a (+m b k) k)(+m (*m a b k) (*m a k) k)):hints (("Goal" :indut (sheme-2 a b k))))(defthm distributivity-of-*m-over-+m-2(equal (*m (+m a b k) k)(+m (*m a k) (*m b k) k)):hints (("Goal" :indut (sheme-3 a b k))))7

The proof of the assoiativity of matrix multipliation uses a omplex indution sheme. Italso requires several of the previous theorems (notably, the distributivity of the multipliation overthe addition) and a pair of tehnial lemmas.(defthm assoiativity-of-*m(equal (*m (*m a b k) k) (*m a (*m b k) k)):hints (("Goal":indut (sheme-4 a b k):in-theory (disable ommutativity-of-*assoiativity-of-+mommutativity-of-+m)))))Finally, we must prove that the identity matrix is an identity element of the matrix mul-tipliation operation. The tehnial lemma arithmeti-1 ats as a onvenient replaement foruniity-of-0 and uniity-of-1 axioms in these proofs.(loal(defthm arithmeti-1(implies (al2-numberp x)(and (equal (+ 0 x) x)(equal (* 1 x) x)(equal (* 0 x) 0)))))(defthm identity-identity-of-*m-1(implies (matrixp a k)(equal (*m (identity k) a k) a)):hints (("Goal":indut (+m a _ k):in-theory (disable uniity-of-0 uniity-of-1))))(defthm identity-identity-of-*m-2(implies (matrixp a k)(equal (*m a (identity k) k) a)):hints (("Goal":indut (+m a _ k):in-theory (disable uniity-of-0 uniity-of-1))))The hypothesis (matrixp a k) is also neessary here. However, it is not neessary to supplythe indution shemes, though they shorten the proofs.4.2.2 Additional propertiesAn elemental property that we an prove automatially states that matrix negation of a nullmatrix is also a null matrix.(defthm -m-null-is-null(equal (-m (null k) k) (null k)))The following theorems are interesting. They prove that the null matrix is a anellativeelement of matrix multipliation.(defthm null-anellative-of-*m-1(equal (*m (null k) a k) (null k)):hints (("Goal" :indut (+m a _ k))))(defthm null-anellative-of-*m-2(equal (*m a (null k) k) (null k)):hints (("Goal" :indut (+m a _ k))))As in many other theorems, the indution shemes are not required. However, they slightlyshorten the proofs, though, in this partiular ase, the indution sheme seleted by Al2 is verylose to our indution hint. 8

5 Useful Rewrite RulesIn addition to the usual interpretation of theorems, eah theorem an be understood as a (possiblyonditional) rewrite rule5. This dual harater leads to an operational view of theorems as rules.Sometimes, it is useful to prove a theorem just due to its adequay as a rewrite rule. For example,the following theorem shows that matrix negation is idempotent:(defthm idempoteny-of--m(implies (matrixp a k)(equal (-m (-m a k) k) a)):hints (("Goal" :indut (-m a k))))But, in fat, the theorem is stored as a (left to right) rewrite rule one it has been proved.This allows the prover to eliminate onseutive appliations of the negation operator during thedevelopment of a proof on matries. In this ase, the hypothesis is stritly neessary, that is, thisis a onditional rewrite rule. However, it is not neessary to supply the indution sheme, thoughit shortens the proof.The distributivity of matrix negation over matrix addition is a fat that the prover stateswithout problems. As a rewrite rule, this allows pushing the negation operator into the additionoperator.(defthm distributivity-of--m-over-+m(equal (-m (+m a b k) k)(+m (-m a k) (-m b k) k)))Another interesting rewrite rule introdue matrix negation inside matrix multipliation. Atehnial lemma is required to prove the assoiated theorem. This lemma uses an instane ofthe distributivity of the multipliation over the addition of numbers6 and the linear arithmetideision proedure.(defthm arithmeti-2(equal (- (* x y)) (* x (- y))):hints (("Goal":use (:instane distributivity (z (- y))))))(defthm introdue--m-inside-*m(equal (-m (*m a b k) k)(*m a (-m b k) k)))Finally, the following rule prevents top-most ourrenes of negation operators in the �rstparameter of a multipliation operator during a proof. It shifts-right matrix negation insidematrix multipliation. Similarly to the previous rule, it uses a simple arithmeti property thatrequires some trikery to be proved. The indution hint is neessary to omplete the proof.(defthm arithmeti-3(equal (* (- x) y) (* x (- y))):hints (("Goal":use((:instane distributivity (z (- y)))(:instane distributivity (x y) (y x) (z (- x)))))))(defthm shift--m-inside-*m(equal (*m (-m a k) b k)(*m a (-m b k) k)):hints (("Goal" :indut (*m a b k))))5In fat, a theorem may generate several rewrite rules.6Al2 inludes the following distributivity axiom: (equal (* x (+ y z)) (+ (* x y) (* x z))).9

The ombination of these rewrite rules is useful in a ertain sense: it allows a kind of �normal-ization� of the negation operator ourrenes in a matrix expression. For example, let us onsiderthree matries a, b y and the matrix expression (-m (+m a (*m (-m b k) k) k) k):(-m (+m a (*m (-m b k) k) k) k)redues by shift--m-inside-*m to:(-m (+m a (*m b (-m k) k) k) k)redues by distributivity-of--m-over-+m to:(+m (-m a k) (-m (*m b (-m k) k) k) k)redues by introdue--m-inside-*m to:(+m (-m a k) (*m b (-m (-m k) k) k) k)redues by idempoteny-of--m to:(+m (-m a k) (*m b k) k)Therefore, the term rewriting system has been able to redue (-m (+m a (*m (-m b k) k) k) k)to (+m (-m a k) (*m b k) k) by pushing the negation operation deep inside its argument.6 Indution ShemesOne of the highlights of Al2 is its ability to guess suitable indution shemes during the devel-opment of a proof. Surprisingly, we have found that some of the matrix ring properties presentedresist Al2 heuristi e�orts. For example, let us onsider the following indution sheme:(defun sheme-1 (a b k)(if (zp k)(+ a b)(+ (sheme-1 (sub-11 a) (sub-11 b) (sub-11) (- k 1))(sheme-1 (sub-12 a) (sub-12 b) (sub-12) (- k 1))(sheme-1 (sub-21 a) (sub-21 b) (sub-21) (- k 1))(sheme-1 (sub-22 a) (sub-22 b) (sub-22) (- k 1)))))This sheme is used as an indution hint to prove assoiativity-of-+m. The hint suggeststhat the indutive proof may onsist of a base ase and an indutive step with four indutionhypothesis. It an be interpreted in the following way:�Given a property stated on three matries, we must prove it for matries havingdimension n = 20 and, in order to prove the property for matries whose dimension isn = 2k, where k 6= 0, we may use the fat that the property holds for ertain tripletsof submatries with dimension n2 = 2k�1.�As we an see here, this is a sort of multiple strutural indution on the arguments. The basease is just a property on numbers sine we reognize 1 � 1 matries using al2-numberp. Butthe point is that we need to speify whih partiular triplets of submatries are involved in theindutive step.It is worthwhile to note that Al2 guarantees the orretion of this indution sheme sinethe funtion sheme-1 has to be admitted under the de�nitional priniple before it an be used asa hint. This implies the existene of a stritly dereasing measure in the well-founded domain of"0-ordinals.A similar problem appears when proving distributivity-of-*m-over-+m-1. In this ase, theindution sheme is more omplex: 10

(defun sheme-2 (a b k)(if (zp k)(+ a b)(+ (sheme-2 (sub-11 a) (sub-11 b) (sub-11) (- k 1))(sheme-2 (sub-12 a) (sub-21 b) (sub-21) (- k 1))(sheme-2 (sub-11 a) (sub-12 b) (sub-12) (- k 1))(sheme-2 (sub-12 a) (sub-22 b) (sub-22) (- k 1))(sheme-2 (sub-21 a) (sub-11 b) (sub-11) (- k 1))(sheme-2 (sub-22 a) (sub-21 b) (sub-21) (- k 1))(sheme-2 (sub-21 a) (sub-12 b) (sub-12) (- k 1))(sheme-2 (sub-22 a) (sub-22 b) (sub-22) (- k 1)))))Notie that the number of indution hypothesis has inreased to 8. A similar sheme (sheme-3)is used to prove distributivity-of-*m-over-+m-2. The proof of assoiativity-of-*m is the mostomplex obtained proof: it requires a sheme (sheme-4) with 16 indution hypothesis. For thesake of brevity, we omit these two shemes.In fat, we an generalize all these indution shemes to obtain a single indution sheme thatis valid to prove all these properties. Nevertheless, this is a rather omplex sheme7 onsisting of26 indution hypothesis.7 Conlusions and Further WorkThere are many appliations of matrix and polynomial arithmeti ranging from DSP to omputergraphis and CAD. Therefore, it is important that basi libraries of algorithms and theorems onthese strutures are available. In this sense, our work is omplementary to [10℄, where a formaliza-tion of basi polynomial arithmeti is presented. Both works inlude arithmeti operations, ringproperties and some useful operational rules.We think that the representation issues are the key to obtain lear statements of the propertiesto be proved. The formalization that we have shown is suitable for operating with dense matriesand the degree of automation ahieved is aeptable. We had to devise several indution shemes,but eventually we realized that four of them ould be merged into one sheme. Some tehniallemmas on basi arithmeti properties of numbers were also required during the proofs.Although it is di�ult to give a preise measure of the development e�ort, we estimate it in0.5 man-month. This is still far away from typial programming e�orts for similar projets. Byusing formal erti�ation, we an assure orretness in exhange for this e�ort. This is learly abene�t when developing algorithms for ritial systems.All the events (funtions and theorems) have been olleted in an Al2 book to inrease theirreusability. Nevertheless, we are working in abstrating the set of elements to obtain matries overarbitrary (non-ommutative) rings. This an be ahieved by using the enapsulation priniple toonstrain element operations to the desired properties. Later, funtional instantiation an beused to obtain onrete implementations. However, there is a potential problem: one the setof elements has been abstrated, we an not use the linear arithmeti deision proedure in ourproofs any more. Thus, linear arithmeti must be replaed with ad ho properties.This work does not inlude guard veri�ation, though it is an interesting extension. Al2'ssupport for guards allows us to indiate funtion preonditions and verify that the orrespondingCommon Lisp ode an be exeuted with the same results on any platform.It is also neessary in many appliations to inlude e�ient algorithms in order to manipulatehigh dimension matries. Fast multipliation and exponentiation algorithms are our two maingoals. �Divide and onquer� provides the neessary algorithmi tehniques.A well-known fast exponentiation algorithm an be obtained by binary redution. On the otherhand, Strassen-Pan-Coppersmith-Winograd family of sub-ubi matrix multipliation algorithmsinludes the asymptotially most e�ient multipliation algorithms known. It is true that even7We have notied a onsiderable inrease of the proof time.11

the original Strassen's algorithm is of limited pratial interest due to an important inrease ofhidden onstants. Nevertheless, its mehanial veri�ation is a hallenging problem.AknowledgmentsB. Brok developed the defstruture faility for Al2. We have found this tool speially well-doumented and reusable.Referenes[1℄ Boyer, R. S. & Moore, J S. A Computational Logi. Aademi Press. 1978.[2℄ Boyer, R. S. & Moore, J S. Metafuntions: Proving Them Corret and Using Them E�-iently as New Proof Proedures. In The Corretness Problem in Computer Siene. (R. S.Boyer and J S. Moore eds.) Aademi Press. 1981.[3℄ Boyer, R. S. &Moore, J S. A Computational Logi Handbook. Aademi Press. 2nd ed. 1998.[4℄ Brok, B. defstruture for ACL2 Version 2.0. Computational Logi, In. 1997.[5℄ Coppersmith, D. &Winograd, S. Matrix Multipliation via Arithmeti Progressions. Journalof Symboli Computation. Vol. 9. 1990.[6℄ Kaufmann, M. & Moore, J S. An Industrial Strength Theorem Prover for a Logi Based onCommon Lisp. IEEE Transations on Software Engineering. 1997.[7℄ Kaufmann, M.; Manolios, P. & Moore, J S. Computer-Aided Reasoning: An Approah.Kluwer Aademi Publishers. 2000.[8℄ Kaufmann, M.; Manolios, P. & Moore, J S. (eds.) Computer-Aided Reasoning: ACL2 CaseStudies. Kluwer Aademi Publishers. 2000.[9℄ Manolios, P. & Moore J S. Partial Funtions in ACL2. ACL2 Workshop 2000.[10℄ Medina-Bulo, I.; Alonso-Jiménez, J. A. & Palomo-Lozano, F. Automati Veri�ation ofPolynomial Rings Fundamental Properties in ACL2. ACL2 Workshop 2000.[11℄ Pan, V. Strassen's Algorithm is not Optimal. 19th Annual IEEE Symposium on the Foun-dations of Computer Siene. 1978.[12℄ Strassen, V. Gaussian Elimination is not Optimal. Numerishe Mathematik. Vol. 13. 1969.

12

