
A mehanial proof of Knuth-Bendix ritial pairtheorem (using ACL2) ?J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Mart��nfjruiz,jalonso,mjoseh,fjesusg�ia.esDepartamento de Cienias de la Computai�on e Inteligenia Arti�ial.Faultad de Inform�atia y Estad��stia, Universidad de SevillaAvda. Reina Meredes, s/n. 41012 Sevilla, Spain1 IntrodutionIn this paper, we desribe a mehanial proof of Knuth-Bendix ritial pair theorem,arried out using the ACL2 theorem prover. ACL2 is both a logi and a mehanialtheorem proving system supporting it, whih evolved from Nqthm. The ACL2 logiis an existentially quanti�er-free fragment of �rst-order logi with equality. ACL2 isalso a programming language, an appliative subset of Common Lisp.This work is a part of a larger projet attempting to formalize theories aboutequational reasoning in the ACL2 logi, inluding abstrat redution relations, �rst-order terms and term rewriting systems, as desribed in [11℄. ACL2 is used here as ametalanguage, in order to formalize properties of an objet proof system (equationallogi) in it.As far as we know, this is the �rst formal proof of Knuth-Bendix ritial pairtheorem performed with a theorem prover. We think the results presented here areimportant for two reasons: from a theoretial point of view, it is shown how a very weaklogi an be used to formalize and reason about non-trivial properties of equationalreasoning. From a pratial point of view, this is a �rst step to obtain mehaniallyveri�ed deision proedures for some equational theories. As a by-produt, \erti�ed"ompliant Common Lisp ode is obtained for some basi algorithms used in rewritingtheory (like subsumption, uni�ation and omputation of normal forms).Due to the lak of spae, we will skip details of the mehanial proofs. The ompletebooks are available on the web in http://www-s.us.es/~jruiz/al2-rewr/.2 The ACL2 systemWe briey desribe here the ACL2 theorem prover and its logi. The best intro-dution to ACL2 is [5℄. See also [6℄, for an overview of the system. To obtain morebakground on ACL2, see the ACL2 user's manual in [7℄. A desription of the mainproof tehniques used in Nqthm, that are also used in ACL2, an be found in [3℄.The ACL2 logi is a quanti�er-free, �rst-order logi with equality, desribing anappliative subset of Common Lisp. The syntax of terms is that of Common Lisp(we will assume the reader familiar with this language). The logi inludes axiomsfor propositional logi and for a number of Lisp funtions and data types. Rules ofinferene inlude those for propositional alulus, equality, and instantiation. By thepriniple of de�nition, new funtion de�nitions (using defun) are admitted as axioms? This work has been supported by DGES/MEC: Projets PB96-0098-C04-04 and PB96-1345

only if there exists an ordinal measure in whih the arguments of eah reursiveall derease, ensuring in this way that no inonsistenies are introdued by newde�nitions. The theory has a onstrutive de�nition of the ordinals up to "0, in termsof lists and natural numbers, given by the prediate e0-ordinalp and the ordere0-ord-<. One important rule of inferene is the priniple of indution, that permitsproofs by indution on "0.By the enapsulation mehanism (using the enapsulate ommand), the useran introdue new funtion symbols by axioms onstraining them to have ertainproperties (to ensure onsisteny, a witness loal funtion having the same propertieshas to be exhibited). Inside an enapsulate, properties stated with defthm needto be proved for the loal witnesses, and outside, those theorems work as assumedaxioms. The funtions partially de�ned with enapsulate an be seen as seond ordervariables, representing funtions with those properties. A derived rule of inferene,funtional instantiation, allows some kind of seond-order reasoning: theorems aboutonstrained funtions an be instantiated with funtion symbols known to have thesame properties.The ACL2 theorem prover is inspired by Nqthm, but has been onsiderably im-proved. The main proof tehniques used by the prover are simpli�ation and indution.Simpli�ation is a proess ombining term rewriting with some deision proedures(linear arithmeti, type set reasoner, et.). The ommand defthm starts a proof at-tempt, and, if it sueeds, the theorem is stored as a rule. The theorem prover isautomati in the sense that one defthm is invoked, the user an no longer interatwith the system. However, in a sense, the prover is interative: the system's behaviouris inuened by the database of stored rules. In a typial user interation, one guidesthe prover to a preoneived proof, by adding lemmas and de�nitions to be used insubsequent proofs.3 Formalization of the ritial pair theorem in ACL2In this setion we explain how we formalized the statement of the ritial pair theoremin the ACL2 logi. The reader is assumed familiar with term rewriting systems (TRS)theory. A good introdution to that �eld an be found in [1℄ (notations and de�nitionsused here are borrowed from that book). The ritial pair theorem is stated as follows:Theorem (Knuth and Bendix [8℄): Let R a term rewriting system suh that !Ris terminating. Then !R has the Churh-Rosser property i� for every ritial pair(s; t) of R the normal forms of s and t are equal.This theorem is a basi result in order to mehanize equational dedution and todevelop ompletion algorithms to obtain deision proedures for equational theories(see [1℄ for details). In the sequel, we desribe the formalization of this theorem in theACL2 logi. One of the impliations of the theorem is easy to prove: sine Churh-Rosser redutions provide unique normal forms for equivalent elements, ritial pairsof a Churh-Rosser TRS have ommon normal forms. Although we also proved thisresult in ACL2, we will fous in this paper on the reverse impliation, whih is thehard part of the theorem.3.1 Equational theoriesSine rewriting is a redution relation de�ned on �rst-order terms, we need to reasonabout them in ACL2. We represent �rst-order terms in pre�x notation using lists.

For example, the term f(x; g(y); h(x)) is represented as '(f x (g y) (h x)). Everyonsp objet an be seen as a term with its ar as its top funtion symbol and itsdr as the list of its arguments. Variables are represented by atom objets. In orderto make easy variable renamings, we onsider an exeption to this rule: onsp ob-jets with the symbol var in its ar are also onsidered as variables (for example,'(var x 1)). The funtion variable-p reognizes variables. Substitutions are rep-resented as assoiation lists and equations and rules as dotted pairs of terms. Thefuntion instane implements the appliation of a substitution to a term. A numberof funtions ating on �rst-order terms were de�ned and theorems about them wereproved. Espeially important in this ontext are the funtions dealing with the treestruture of terms: positionp tests if a sequene of integers is a position of a term,ourrene returns the subtree at a given position and replae-term performs areplaement of a subterm at a given position (see [1℄ for details).Given a set of equations E, in order to formalize the relation �$E in ACL2, we�rst onentrate on the one-step redution relation noted as !E . Our �rst attemptwas to formalize the relation !E as a binary boolean funtion de�ned on �rst-orderterms. Nevertheless, if t1 !E t2, more important than the relation between t1 andt2 is the fat that t2 an be obtained by applying a transformation (or operator) tot1. Thus !E an be seen as a binary funtion that given a term and an equationaloperator, returns another term, performing a one-step redution. Equational operatorsare represented by strutures with three �elds ontaining the rewriting rule (equation)to apply, the position of the subterm to be rewritten and the mathing substitution:(defstruture eq-operator rule pos mathing)Of ourse, not every equational operator an be applied to every term: the lefthand side (lhs) of the rule has to subsume the ourrene at the given position. Thefuntion eq-legal tests if a given operator an be applied to a term:(defun eq-legal (term op E)(let ((pos (pos op)) (rule (rule op)) (sigma (mathing op)))(and (eq-operator-p op) (member rule E) (positionp pos term)(equal (instane (lhs rule) sigma) (ourrene term pos)))))The funtion eq-redue-one-step applies an equational operator (whih mustbe legal) to a term (replaing the indiated subterm by the orresponding instane ofthe right hand side (rhs) of the equation):(defun eq-redue-one-step (term op)(replae-termterm (pos op) (instane (rhs (rule op)) (mathing op))))These two funtions allow us to de�ne the relation s �$E t. Due to the on-strutive nature of the ACL2 logi, we have to inlude an argument with a sequeneof steps s = t0 $E t1 $E t2 : : : $E tn = t. In �gure 1, we de�ne the funtion(eq-equiv-p t1 t2 p E). This funtion returns t if p is a proof justifying thatt1 �$E t2 and nil otherwise. A proof 1 is a sequene of legal proof steps and eahproof step is a struture r-step with four �elds: elt1, elt2 (the terms onneted),diret (the diretion of the step) and operator. A proof step is legal (as de�ned byeq-proof-step-p) if one of its elements is obtained applying the (legal) operator1 Do not onfuse with proofs done using the ACL2 system.

to the other. Two proofs justifying the same equivalene will be said to be equiva-lent. Note that the funtion eq-equiv-p implements a proof heker for equationaltheories, sine E j= s = t i� s �$E t, thus formalizing equational dedution in ACL2.(defstruture r-step diret operator elt1 elt2)(defun eq-proof-step-p (s E)(let ((t1 (elt1 s)) (t2 (elt2 s)) (op (operator s)) (dt (diret s)))(and (r-step-p s)(implies dt (and (eq-legal t1 op E)(equal (eq-redue-one-step t1 op) t2)))(implies (not dt) (and (eq-legal t2 op E)(equal (eq-redue-one-step t2 op) t1))))))(defun eq-equiv-p (t1 t2 p E)(if (endp p) (equal t1 t2)(and (eq-proof-step-p (ar p) E) (equal t1 (elt1 (ar p)))(eq-equiv-p (elt2 (ar p)) t2 (dr p) E))))Fig. 1. De�nition of proofs and equational theoriesChurh-Rosser property and loal onuene an be rede�ned with respet tothe form of a proof . For that purpose, we de�ne (omitted here) funtions to reog-nize proofs with partiular shapes (valleys and loal peaks): loal-peak-p reognizesproofs of the form s E u !E t and steps-valley reognizes proofs of the forms �!E u � E t.Term rewriting systems, as de�ned in [1℄, are a speial ase of sets of equations:the left hand side of the equations annot be variables and must ontain the variablesof the right-hand side. We de�ne the funtion rewrite-system (omitted here) toimplement this onept. Nevertheless, the formalization given in this subsetion doesnot assume the set of equational axioms to be term rewriting systems.3.2 Termination and redution orderingsIn order to formalize termination properties of term rewriting systems we rely on theonept of redution orderings, i.e., well-founded orderings being stable (losed underinstantiation) and ompatible (losed under replaement of subterms). We used thefollowing haraterization: a term rewriting systems R terminates i� there exists aredution order � that satis�es l � r for all l! r 2 R.A restrited notion of well-foundedness is built into ACL2, based on the followingmeta-theorem: a relation on a set A is well-founded i� there exists a measure fun-tion F : A ! Ord suh that x < y) F (x) < F (y), where Ord is the lass of allordinals (axiom of hoie needed). In ACL2, one a relation is proved to satisfy theserequirements, it an be used in the admissibility test for reursive funtions. Sineonly ordinals up to "0 are formalized in the ACL2 logi, a limitation is imposed in themaximal order type of well-founded relations that an be represented. Consequently,our formalization su�ers from the same restrition. Nevertheless, no partiular prop-erties of "0 are used in our proofs, exept well-foundedness, so we think the sameformal proofs ould be arried out if higher ordinals were involved.

In �gure 2, the enapsulate mehanism is used to (partially) de�ne a funtionred<, assumed to be a redution order (dots are used to omit tehnial details,as in the rest of the paper). The funtion (noetherian-red< TRS) is de�ned totest if red< justi�es termination of TRS. Note that an ordinal measure fn-red< isused to justify well-foundedness of red<. This property is stored by the system asa :well-founded-relation rule, whih allows to use it in the admissibility test forreursive funtions. In our ase, a funtion that omputes normal forms with respetto a terminating TRS will be admitted using that rule (setion 4). Well-foundednessof red< will be also ruial to instantiate Newman's lemma.(enapsulate((red< (t1 t2) booleanp) (fn-red< (term) e0-ordinalp))....(defthm red<-well-founded-relation(and (e0-ordinalp (fn-red< t1))(implies (red< t1 t2) (e0-ord-< (fn-red< t1) (fn-red< t2)))):rule-lasses :well-founded-relation)(defthm red<-stable(implies (red< t1 t2) (red< (instane t1 sigma) (instane t2 sigma))))(defthm red<-ompatible(implies (and (positionp pos term) (red< t1 t2))(red< (replae-term term pos t1) (replae-term term pos t2))))(defthm red<-transitive(implies (and (red< x y) (red< y z)) (red< x z))));;; --------(defun noetherian-red< (TRS)(if (endp TRS) t(let ((rule (ar TRS)))(and (red< (rhs rule) (lhs rule)) (noetherian-red< (dr TRS)))))Fig. 2. A redution order3.3 The ritial pair theoremUsing enapsulate we (partially) de�ne a term rewriting systems (RC) assumingto have the properties in the hypothesis of the ritial pair theorem: (RC) is termi-nating (justi�ed by red<) and every ritial pair obtained from rules in (RC) havea ommon normal form. See �gure 3. In this formalization, the onepts of normalforms and ritial pairs are implemented by the funtions RC-normal-form and p-r,respetively.The funtion RC-normal-form is de�ned to ompute normal forms with respetto the term rewriting system (RC). It iteratively applies the funtion r-redue untila normal form is found. The funtion (r-redue term TRS), whose de�nition weomit here, performs one step of rewriting, whenever it is possible. It traverses termto �nd a subterm subsumed by the left-hand side of a rule in TRS. When suh asubterm is found, it is replaed by the orresponding instane of the right-hand sideof the rule. If it is not found, then r-redue returns nil (and therefore term is in

normal form). Those properties of r-redue were mehanially veri�ed. Note thata veri�ed subsumption algorithm is needed for that purpose. An additional theoremabout r-redue was also needed, in order to prove termination of RC-normal-form:if (r-redue term (RC)) does not return nil, it returns a term less than term withrespet to the well founded relation red< (see setion 4).It is worth pointing that we an not de�ne in the ACL2 logi a funtion like(normal-form term R), omputing the normal form of a term term with respet toa TRS R, sine termination is not assured in general. Instead, we assume (RC) to beterminating and we de�ne normal form alulation with respet to (RC).The funtion (p-r l1 r1 pos l2 r2) omputes the ritial pair (if it exists)determined by the rules l1!r1 and l2!r2 at position pos of l1. Before omputingthe ritial pair, the rules are renamed to get their variables standardized apart. Toreason properly about this funtion we needed to develop some results about variablerenamings. And, more important, a veri�ed uni�ation algorithm was required.(enapsulate((RC () terminating-rewrite-system-with-ommon-n-f-ritial-pairs))...(defthm RC-rewrite-system (rewrite-system (RC)))(defthm RC-noetherian-red< (noetherian-red< (RC)))(defun RC-normal-form (term)(delare (xargs :measure term :well-founded-relation red<))(let ((red (r-redue term (RC))))(if red (RC-normal-form (unpak red)) term)))(defthm RC-ommon-n-f-ritial-pairs(implies (and (member (make-rule l1 r1) (RC)) (member (make-rule l2 r2)(RC))(positionp pos l1) (not (variable-p (ourrene l1 pos))))(let ((p-r (p-r l1 r1 pos l2 r2)))(implies p-r(equal (RC-normal-form (lhs p-r))(RC-normal-form (rhs p-r))))))))Fig. 3. A terminating TRS with ommon normal form ritial pairsHaving assumed the properties of �gures 2 and 3, in order to prove Knuth-Bendixritial pair theorem we have to show that (RC) is a term rewriting system with theChurh-Rosser property: in the terminology of proofs, this means that for every proofin (RC) there exists an equivalent valley proof. Due to the absene of existential quan-ti�ation in the ACL2 logi, we have to de�ne a funtion RC-transform-eq-proof andprove that, given a proof p justifying t1 �$(RC) t2, then (RC-transform-eq-proof p)returns an equivalent valley proof. This is the main theorem we proved:(defthm kb-ritial-pair-theorem(implies (eq-equiv-p t1 t2 p (RC))(and (eq-equiv-p t1 t2 (RC-transform-eq-proof p) (RC))(steps-valley (RC-transform-eq-proof p)))))The de�nition of RC-transform-eq-proof is omitted here due to the lak ofspae (see the web page for details). It has an important omponent: a funtion

RC-transform-eq-peak transforming every equational loal peak proof to an equiv-alent valley proof, thus showing loal onuene of (RC) (see setion 4). The funtionRC-transform-eq-proof is de�ned to apply iteratively RC-transform-eq-peak un-til the proof obtained has no loal peaks (i.e., it is a valley proof). Showing thatthis de�nition of RC-transform-eq-proof terminates is diÆult. Note that one thede�nition is admitted, this an be seen almost as a proof of Newman's lemma:terminating and loally onuent redution relations have the Churh-Rosser prop-erty. In fat, we used a previously developed ACL2 library of results about abstratredutions relations inluding Newman's lemma, applied here as a partiular ase.4 Some omments about the proofFirst-order terms: Previous to the work presented here, we developed a library ofde�nitions and theorems (books in ACL2 terminology) about �rst-order terms. Thesebooks were translated from a previous formalization done using Nqthm, where thelattie-theoreti properties of terms were proved (see [10℄ for details).Sine ACL2 mehanizes a logi of total funtions, our funtions ating on �rst-order terms are extended in a \natural" way to deal also with Lisp objets not repre-senting terms, although they are not in the intended domain of the funtions. This isnot a problem: every funtion de�ned returns well-formed terms when its argumentsare well-formed terms. Furthermore, the guard veri�ation mehanism of ACL2 anbe used to ensure that every exeution in Common Lisp of the funtions veri�ed doesnot evaluate on arguments outside the intended domain (see [5℄ for details).Most of the funtions are de�ned, using mutual reursion, for terms and for listsof terms at the same time. This kind of de�nitions suggest to the prover an indu-tion sheme very similar to indution on the struture of terms, whih, in most ofases, turns out to be the right indution sheme. This good behaviour of the sys-tem's heuristis when hoosing indution shemes for a onjeture is ruial in theautomation of our proofs.Abstrat redutions and Newman's lemma: An abstrat redution [1℄ is simply abinary relation, and equational redutions are a partiular ase of abstrat redutions.As part of our projet to formalize properties of equational reasoning, we developedbooks proving results about abstrat redution relations. Conepts like Churh-Rosserproperty, loal onuene or noetherianity were de�ned in an abstrat framework.One of the main theorems in this library is Newman's lemma. We use this result inour proof of the ritial pair theorem. This previous work about abstrat redutionsappears in [11℄, where we desribe the formalization of abstrat redution relationsin the ACL2 logi, a proof of Newman's lemma (among other results) and how theenapsulate mehanism is used to export these results from the abstrat ase to theequational ase. See also the web page.Reduibility and one-step rewriting: To instantiate our results from the abstratase to the equational ase, we need to de�ne a funtion eq-reduible suh that(eq-reduible term R) returns a legal equational operator, whenever it exists, andnil otherwise [11℄. We omit the de�nition of eq-reduible here, but these are thetheorems we proved stating its main property:

(defthm eq-reduible-implies-legal(implies (eq-reduible term R)(eq-legal term (eq-reduible term R) R)))(defthm not-eq-reduible-nothing-legal(implies (not (eq-reduible term R))(not (eq-legal term op R)))Having de�ned eq-reduible and eq-redue-one-step, this provides a way toperform one step of rewriting, whenever it is possible: given a term and a TRS,apply eq-reduible to obtain an equational operator and, if non-nil, apply thisoperator to the term using eq-redue-one-step. If the TRS is terminating, thenthis method an be applied iteratively until a normal form is obtained. Indeed, thisis the de�nition of normal form we used for reasoning. However, this de�nition isonly useful for theoretial purposes: obviously, the normal form alulation an beoptimized in several ways. For example, a funtion omputing normal forms neitherneed to build an equational operator in every rewriting step nor traversing the termstwie, searhing a legal equational operator, and then applying the redution step.We de�ned a more eÆient (although not optimal) version of one-step rewriting,named r-redue, as we said in subsetion 3.3. The main point here is that we usedthe more theoretial version to reason about normal form alulation, whih turnedout to be simpler. Later on, we proved equivalene with the improved version, andthen we stated the �nal version of the theorem with it.Redution orderings: One red< has been assumed to be a redution ordering andfuntion noetherian-red< has been de�ned (�gure 2), we proved that the redutionrelation !R is terminating, whenever R is a TRS suh that (noetherian-red< R):(defthm R-noetherian-if-subsetp-of-red<(implies (and (noetherian-red< R) (eq-legal term op R))(red< (eq-redue-one-step term op) term)))This lemma is essential to prove termination of the funtion RC-normal-formde�ned in �gure 3. The proof is almost automati, using stability and ompatibilityof red<. The lemma is also needed to export Newman's lemma to the equational ase.Although the (partial) de�nition of the redution ordering red< given in �gure 2works well from a theoretial point of view, we think that the main drawbak inthis formalization of redution orderings is that it an be diÆult to prove that apartiular ordering (for example, a path ordering or a Knuth-Bendix ordering [1℄) isa redution ordering, sine an ordinal measure fn-red< has to be given expliitly.Future work will be done in this diretion.Loal onuene: Having the properties about subsumption and uni�ation ver-i�ed and Newman's lemma as a result in libraries previously developed, the mainproof e�ort was done to prove loal onuene of the term rewriting system (RC).As outlined in subsetion 3.3, in order to prove loal onuene is enough to de-�ne a funtion RC-transform-eq-peak ating on proofs, and prove that it obtain anequivalent valley proof for every equational loal peak proof.

As a basis for our formal proof of loal onuene of (RC), we follow Huet's proofgiven in [4℄. The proof is obtained as a typial (but very long) interation with theACL2 theorem prover: the user guides the prover by adding lemmas and de�nitionsused later as rewriting rules. Most of lemmas are proved using only simpli�ation andindution.An important feature of our formalization is to onsider the objet proofs (equa-tional proofs) as elements that an be transformed to obtain new proofs. FollowingBahmair [2℄, we an de�ne an \algebra" of equational proofs, a set of operations at-ing on proofs: onatenation of proofs, reverse proofs, instantiation of the elementsinvolved in a proof and inlusion of the elements of a proof as subterms of a ommonterm (inlusion in a ontext). The empty proof nil an be seen as a proof onstant.Eah of these operations orresponds with one of the properties needed to show thateq-equiv-p is a ongruene. See [11℄ for a desription of this issue.This \algebra" of equational proofs allows us to ontrol the omplexity of ourACL2 proofs: for example, one �rst deals with the ase in whih one of the tworewritings in the equational loal peak is performed at the top the term; later on, thisresult an be translated to a more general ase by inlusion in a ontext.As in [4℄, the proof is mainly strutured to deal with three ases, aording to therelatives positions of the subterms where the two rewriting steps (in a loal peak)may our:{ Disjoint rewriting. This is the easiest ase to prove, although an indution hinthas to be given to the prover in order to reason properly about replaement indisjoint positions of a term.{ Non-ritial overlap. The main proof e�ort was done to handle non-ritial (orvariable) overlaps. It is interesting to point that in most of textbooks and surveysthis ase is proved pitorially. Nevertheless, in our mehanial proof turned out tobe the most diÆult part. For example, proving Proposition 3.6 of [4℄ was hard.It was even needed to design an indution sheme not disovered by the heuristisof the prover.{ Critial overlap: The ritial overlap ase was easier to prove than the previousase, but we must not forget that this ase relies heavily on previously veri�edproperties of a uni�ation algorithm.About the proof e�ort: It is diÆult to give a measure of our proof e�ort, sinedi�erent olletions of books were used, and not every of them were developed exlu-sively for the work presented here. We think that our formalization of the ritial pairtheorem is a good example of integration of di�erent theories: books about lists, arith-meti, �rst-order terms, abstrat redutions, equational theories and term rewritingwere developed separately and ombined together to prove the theorem. Althoughbooks about �rst-order terms [10℄ and abstrat redutions [11℄ are important ontri-butions to prove the ritial pair theorem, we onentrate here on that part of thework mainly devoted to the proof of the theorem.The proof desribed here has been strutured in four books, hronologially de-veloped in the following order (every book needs results from its predeessor):1. De�nition and main properties of the equational theory given by a set of equationalaxioms: equational-theories.lisp (this book also ontains some results notneeded for the proof of the ritial pair).

2. De�nitions and basi properties of term rewriting systems: rewriting.lisp. Thenotions of reduibility, redution orderings and one-step rewriting are formalizedin this book.3. The proof of the ritial pair lemma: ritial-pairs.lisp. Loal onuene ofevery TRS with joinable ritial pair is proved.4. The proof of Knuth-Bendix ritial pair theorem: knuth-bendix.lisp. This �-nal part of the development uses Newman's lemma by funtional instantiation,besides the theorems in the previous book, to obtain the theorem as stated insubsetion 3.3.Book Lines De�nitions Theorems Hintsequational-theories 543 11 29 8rewriting 720 13 38 9ritial-pairs 2129 43 112 26knuth-bendix 614 23 24 10Total 4006 90 203 53Fig. 4. Quantitative information on the proofFigure 4 gives some quantitative information on the proof. The �rst olumn on-tains the name of the book. The next three olumns show the number of lines, thenumber of de�nitions and the number of theorems in eah book. These numbers angive an idea of the granularity of our proof. We should say that these sizes an beredued, but sometimes we preferred to split de�nitions and theorems for the sakeof larity. We also inluded a �fth olumn with the number of theorems that neededhints from the user: the rest of the theorems were proved automatially by the sys-tem. Together with the number of theorems, this an give an idea of the degree ofautomation of the proofs. Most of the hints given are for disabling or enabling rulesor for using instanes of previous theorems.It is lear from the table that the main proof e�ort was done to prove loal on-uene of (RC) (the book ritial-pair.lisp). This is, up to now, even the largestbook we developed in our urrent projet (for example, de�nition and veri�ation ofuni�ation needed 8 de�nitions and 96 theorems, and the proof of Newman's lemmaneeded 22 de�nitions and 73 theorems).5 Conlusions and further workWe have presented a formalization and a mehanial proof of the Knuth-Bendix rit-ial pair theorem, developed in the ACL2 system. This is an example (one more)of how a restrited logi like the ACL2 logi (a quanti�er-free �rst-order logi withequality) an be used to formalize and prove non-trivial theorems. Related work hadbeen done by Shankar [12℄, where the Boyer-More logi is used as a metalanguageto formalize G�odel's inompleteness theorem and Churh-Rosser theorem for lambda-alulus, and Nqthm is used to prove those results. To our knowledge, no other formalproof of Knuth-Bendix ritial pair theorem had been performed by a theorem prover.Although a fully veri�ed equational theorem prover is urrently beyond our pos-sibilities, this an be seen as an approah to \ertify" some of its omponents. For

example, the guard veri�ation mehanism in ACL2, an be used to obtain veri�edompliant Common Lisp ode for some basi proedures in term rewriting: subsump-tion, uni�ation, normal form omputation and ritial pairs. A reent work usingACL2 [9℄, opens another possible appliation: ACL2 funtions an be ombined withnon-ACL2 programs to hek properties of their outputs.Sine equational theories desribed by a terminating and Churh-Rosser TRS aredeidable, this work opens a possibility to obtain mehanially veri�ed deision pro-edures (exeutable in Common Lisp) for some equational theories. An open problemis to prove termination (in the ACL2 logi) of onrete TRSs. Work has to be done toformalize in ACL2 well-known termination term orderings (RPO, KBO, et.). Maybesome problems will arise due to the restrited notion of well-foundedness (ordinaltypes below "0) supported by ACL2.Our goal in the long term is to obtain a erti�ed ompletion proedure written inCommon Lisp. Although for the moment this may be far from the urrent status ofour development, we think the work presented here is a good starting point.Referenes1. Baader, F., and Nipkow, T. Term rewriting and all that. Cambridge University Press, 1998.2. Bahmair, L. Canonial equational proofs. Birkh�auser, 1991.3. Boyer, R., and Moore, J S. A Computational Logi Handbook, 2nd ed. Aademi Press, 1998.4. Huet, G. Conuent redutions: Abstrat properties and appliations to term rewriting systems.Journal of the ACM (1980).5. Kaufmann, M., Manolios, P., and Moore, J S. Computer-Aided Reasoning: An Approah.Kluwer Aademi Publishers, 2000.6. Kaufmann, M., and Moore, J S. An industrial strength theorem prover for a logi based onCommon Lisp. IEEE Transations on Software Engineering 23, 4 (1997), 203{213.7. Kaufmann, M., and Moore, J S. http://www.s.utexas.edu/users/moore/al2/al2-do.html.ACL2 Version 2.4, 1999.8. Knuth, D., and Bendix, P. Simple word problems in universal algebras. In Computationalproblems in abstrat algebras, J Leeh, Ed. Pergamon Press, 1970, pp. 263{297.9. MCune, W., and Shumsky, O. Ivy: A preproessor and proof heker for �rst-order logi. InComputer-Aided Reasoning: ACL2 Case Studies, M. Kaufmann, P. Manolios, and J S. Moore,Eds. Kluwer Aademi Publishers, 2000, h. 16.10. Ruiz-Reina, J.-L., Alonso, J.-A., Hidalgo, M.-J., and Mart��n, F.-J. Mehanial veri�a-tion of a rule based uni�ation algorithm in the Boyer-Moore theorem prover. In AGP'99 JointConferene on Delarative Programming (1999), pp. 289{304.11. Ruiz-Reina, J.-L., Alonso, J.-A., Hidalgo, M.-J., and Mart��n, F.-J. Formalizing rewritingin the ACL2 theorem prover. To be presented at AISC'2000 (Fifth International ConfereneArti�ial Intelligene and Symboli Computation), 2000.12. Shankar, N. Metamathematis, Mahines, and Godel's Proof. Cambridge University Press,1994.

