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2 But in General Topology it is well known that endowing a set with a distanemapping is not the unique way to formalize the loseness in a set. We an easily�nd situations where the symmetry ondition is not veri�ed, as in problems ofnets based on ows or osts. In this ases Fr�ehet's onditions are not appropriateto formalize the notion of loseness.If our unique interest is to endow the set with a distane mapping with-out onsidering any relation between the elements, we an always onsider thedisrete distane dd(A;B) = �0 if A = B1 if A 6= Bwhih satis�es the Fr�ehet's onditions to be a distane, but it would hardlyhave a pratial usefulness.In general, if we onsider a non{symmetri relation on a set (as ows or osts)it will be very diÆult to �nd a distane mapping ompatible with that relation.In this paper we onsider the set of lauses C with the subsumption relationand show that the natural formalization of the idea of loseness is given by theAlexandrov topology1.Tehnially, this topology is the �nest topology T0 whose natural order (theso{alled speialization order) is equal to the order whih generates it, in thisase, the subsumption order, and it allows properties related to subsumption tobe translated into a purely topologial ontext.The main result is the ontinuity of the upward re�nement operators on thistopology. Roughly speaking, this means that if two lauses are lose, then theirre�ned lauses are lose as well. For that we not only need to say what meansloseness but also to give a strit formalization of the operator whih allows tohandle it as a mathematial objet.The operators will be formalized as mappings' : C R=�! C =�where C =� and C R=� are the quotients obtained from the set of lauses C andthe set of redued lauses C R via the equivalene relation based on subsumption.The paper is organized as follows: In setion 2 we give a brief exposition ofsome basi de�nitions about logi and tree theory. In setion 3, the speializationorder and the Alexandrov topology are studied and the narrow relation betweenpartial orders and the Alexandrov topology is shown. In setion 4 our main resultis stated and proved. First, we present a study of substitution and grafts andtaking it as base, we give a new formalization of the upward re�nement operatorsand prove our main result: these operators are ontinuous on the Alexandrovtopology. Setion 5 ompletes this result: the operator based on deleting a literalfrom a lause is ontinuous on that topology, as well. In setion 6 the onlusionsare presented and the paper is �nished with the bibliography and an appendixontaining several tehnial results used in the main theorems.1 A good introdution to General Topology an be found in [19℄.



3The prinipal referenes have been [1, 10℄ for the foundations of Logi Pro-gramming and the subsumption order, [4, 5℄ for the tree theory, [6, 17℄ for theAlexandrov topology and [19℄ for General Topology.2 PreliminariesFrom now on, we will onsider some �xed ountable �rst-order language L withat least one funtion symbol. V ar, Pred, Term and Lit are, respetively, thesets of variables, prediate symbols, terms and literals of L. A lause is a �niteset of literals and C is the set of all lauses. If A is a set, then jAj is the ardinalof A, PA its power set, and if f is a mapping, f �A is the restrition of f to A.Let S � V ar be a �nite set of variables. A substitution is a mapping � :S ! Term suh that (8x 2 S)[x 6= �(x)℄. We will use the usual notation� = fx=t : x 2 Sg, (where t = �(x) or x� = t) and Dom(�) for the set S. If Cis a lause and Dom(�) � V ar(C), then � is alled appliable to C. Obviously� �V ar(C) is appliable to C.A renaming is a 1{1 substitution � suh that (8x 2 Dom(�)) [x� 2 V ar℄. If �is a renaming and L is a literal, then L and L� are alled variants. Analogously,if C is a lause and � is a renaming, C and C� = fL� jL 2 Cg are variants.Let L1; L2 be literals. L1 is alled an instane of L2, and it is denoted byL1 � L2, if there exists a substitution � suh that L1 = L2�. Let L1; L2 beliterals, then L1 and L2 are variants i� L1 is an instane of L2 and L2 is aninstane of L1.We follow Gallier [4℄ and Huet [5℄ for the issues related to positions andgrafts. A position is a �nite sequene of n positive integers with n � 1. Let N+denote the set of all positions. Two positions u and v are independent if u is nota pre�x of v and v is not a pre�x of u. A set of positions P is independent if(8u; v 2 P )[u 6= v ) u and v are independent℄.Let Pos(L) denote the set of all positions in L. If u 2 Pos(L), L=u denotesthe term rooted at u in L. Pos(L; t) denotes the set of all positions of the termt in L. If t does not our in L, then Pos(L; t) = ;. Finally, if P � Pos(L), thenL=P = fL=u ju 2 Pg. Any other notation has the usual sense.We �nish this setion realling the de�nitions of a graft at a position and ata set of positions.De�nition 1. Let ft1; : : : ; tng be a set of terms, p a n{ary funtion symbol orprediate symbol, s 2 Term and u a position. The graft of s at position u inp(t1; : : : ; tn), denoted by p(t1; : : : ; tn)[u s℄, is de�ned as follows:{ If length(u) = 1, thenp(t1; : : : ; tn)[u s℄ = p(t1; : : : ; tu�1; s; tu+1; : : : ; tn){ If u = î v with i � 1 and v 2 N+ , thenp(t1; : : : ; tn)[u s℄ = p(t1; : : : ; ti�1; ti[v  s℄; ti+1; : : : ; tn)



4Note that if u; v 2 N+ are independent and s 2 Term, then(L[u s℄)[v  s℄ = (L[v  s℄)[u s℄De�nition 2. Let L be a literal, s a term and P � Pos(L) an independent setof positions. The graft of s at P in L is de�ned as follows:{ if P = ;, then L[P  s℄ = L{ if u 2 P and P 0 = Pnfug, then L[P  s℄ = (L[P 0  s℄)[u s℄.3 The speialization order and the Alexandrov topologyThis setion gives a brief desription of the Alexandrov topology. This topologyappears in a natural way in other �elds of omputer siene ([15, 17℄) and, in aertain sense, it is the natural way to see a partial order as a topologial spae.We begin with some basi de�nitions from General Topology.A topology on a set X is a olletion T of subsets of X , alled the open sets,satisfying: (a) Any union of elements of T belongs to T (b) any �nite intersetionof elements of T belongs to T and () ; and X belong to T . If T is a topologyon X , the pair hX; T i is alled a topologial spae. If hX; T i is a topologialspae and x 2 X , a neighborhood of x is a set U whih ontains an open setontaining x.A topology on the set X is T0 i� whenever x and y are distint points in X ,there is an open set ontaining one and not the other.Let hX; TXi and hY; TY i be topologial spaes and let f : X ! Y . Then fis ontinuous at x0 2 X i� for eah neighborhood V of f(x0) in Y , there is aneighborhood U of x0 in X suh that f(U) � V . We say f is ontinuous i� f isontinuous at eah x0 2 X .De�nition 3. Let A and B be two sets and RA and RB two binary relationson A and B. The mapping f : hA;RAi ! hB;RBi is alled a morphism if(8x; y 2 A)[xRAy ! f(x)RBf(y)℄.The next equivalene is trivial. It will be used in the proof of Theorem 2.Lemma 1. Let f : X ! Y be a mapping between two partial orders. Then f isa morphism i� (8x 2 X)[f(" x) �" f(x)℄, where "  = fz j  � zg.De�nition 4. Let hX;Ri be a partial order. A set S � X is alled a �nalsegment if (8x; y)[x 2 S ^ xRy ! y 2 S℄.De�nition 5. Given a topologial spae hX; T i, the speialization order basedon the topology T is de�ned as(8x; y 2 X) [xRy , (8O 2 T )(x 2 O ! y 2 O)℄Proposition 1 (4.1.3.(1) in [17℄). A topologial spae hX; T i is T0 i� thespeialization order is a partial order.



5From the above it follows that every T0 topologial spae has assoiated a partialorder in a natural way: the speialization order. Next, the other way round isshown: Given a partial order we an �nd a topologial spae based on it.De�nition 6. Let hX;Ri be a partial order. The Alexandrov topology based onthis order is the set � (X;R) = fS � X jS is a �nal segment of hX;Rig.Note that the Alexandrov topology is atually a topology and it is T0.Some basi examples of this topology an be easily obtained by takingX = N,the set of natural numbers and R the natural order "�" or the partial order \bedivisible by".In order to see that the Alexandrov topology � (X;�) is the topologialtranslation of the partial order hX;�i, we have to prove that the speializationorder based on the topology � (X;�) is again2 the order �.Theorem 1. Let � (X;�) be the Alexandrov topology based on the partial orderhX;�i and let R be the speialization order based on that topology. Then (8x; y 2X)(xRy , x � y).Proof. ()) Sine " x is a �nal segment and x 2" x, by hypothesis y 2" x. Thenx � y. (() Suppose x � y and onsider G 2 � (X;�) suh that x 2 G. Then,by de�nition of �nal segment, y 2 G.The setion is �nished with a result whih shows the narrow relation betweenmorphisms and ontinuous mappings from a set on itself, viewed as partial orderor Alexandrov topology.Proposition 2 (4.2.4 in [17℄). Suppose that f : hX; TXi ! hY; TY i is a ontin-uous mapping between two topologial spaes. Then f is a morphism with respetto the speialization orders of TX and TY .Theorem 2. Let f : hX; TXi ! hY; TY i be a mapping between two topologialspaes. If f is a morphism with respet to the indued speialization orders RXy RY , � (X;RX) � TX and TY � � (Y;RY ), then f is ontinuous.Proof. Suppose x 2 X andM a neighborhood of f(x). Then there exists N 2 TYsuh that f(x) 2 N �M . Sine TY � � (Y;RY ), N is a �nal segment in hY;RY iand " f(x) � N . But " x 2 � (X;RX) � TX and x 2" x, hene " x is aneighborhood of x in X , and by Lemma 1 f(" x) �" f(x). Consequently, f isontinuous in x.Corollary 1. Let hX;�i be a partial order. Then f : X ! X is ontinuous onthe Alexandrov topology � (X;�) i� f is a morphism with respet to �.2 Atually, the Alexandrov topology is not the unique topology with this property,but it is the �nest one (see [6℄).



64 The subsumption orderThe appliation of General Topology to ILP shown in this paper is the ontinuityof the upward re�nement operators on the Alexandrov topology seen as mappings' : C R=�! C =�where C =� and C R=� are the quotients obtained from the set of lauses C andthe set of redued lauses C R via the equivalene relation based on subsumption.In the generalization proess, when a program P is too spei�, we replaeit by P 0 with the hope that P 0 overs the examples better than P . The stepfrom P to P 0 is usually done applying a re�nement operator to some lause Cof P . These operators an be seen as mappings ' : C ! C where C is the set oflauses of the language.Our purpose is to onsider suh operators as mathematial mappings andstudy their ontinuity on the Alexandrov topology, whih, as we have shown,an be onsidered the natural way of formalizing the relation of loseness onpartial orders.Sine the subsumption relation between lauses is a quasi{order, but not apartial order, instead of dealing with C , we formalize our operators as map-pings between the partial orders3 hC R=�; �i and hC =�; �i endowed with theirrespetive Alexandrov topologies in the natural way.We begin our desription with the basi relations. The only point to benoted here is that, beause of tehnial reasons, � has to be appliable to C inthe de�nition of subsumption.De�nition 7. Let C and D be lauses. C subsumes D, C � D, i� there existsa substitution appliable to C suh that C� � D. If C � D and D � C thenC and D are equivalent and we will write it as C � D. A redued lause is alause C suh that there is no proper subset D of C verifying D � C. We willdenote by C R the set of all redued lauses.The next well{known result is due to Plotkin [11℄.Proposition 3. Let C and D be redued lauses. If C � D then C and D arevariants.Sine � is an equivalene relation, we will denote by C =� and C R=� the res-petive quotients. Moreover, if C 2 C , [C℄ = fD 2 C jC � Dg and if C 2 C R ,[C℄R = fD 2 C R jC � Dg. It is trivial to prove that the mapping i : C R=�!C =� de�ned by i([C℄R) = [C℄ is a bijetion.De�nition 8. The partial order �� on C =� is de�ned as follows:(8[C℄; [D℄ 2 C =�) ([C℄ �� [D℄, C � D)The order �� is well{de�ned and it will ause no onfusion if we use � insteadof ��.3 The use of CR to deal with re�nement operators is usual (see [18℄).



74.1 Upward re�nement operators (I)Downward re�nement operators were introdued by Shapiro in [16℄, later Lairddesribed in [7℄ a general framework for upward and downward re�nement ope-rators. In this paper, we follow Nienhuys-Cheng and de Wolf in [10℄.The reader is expeted to be familiar with these operators so we will leaveout their well-known desription. Instead of it, we split our formal de�nition inseveral steps.Consider the one{literal lause C1 = fLg with L = p(f(x); a; f(x)). In or-der to generalize4 it, we have to obtain a new lause C2 suh that there existsa substitution appliable to C2 verifying C2� � C1. For that, (a) we hoosea term t in L, say t = f(x), (b) we hoose several subsets of Pos(L; t), e.g.P1 = f1g; P2 = ;; P3 = f1; 3g, () we hoose a variable whih does not ourin L, say z1, and (d) we build the lause C2 = fL[Pi  z1℄ j i = 1; 2; 3g =fp(z1; a; f(x)); p(f(x); a; f(x)); p(z1; a; z1)g. Obviously � = fz1=f(x)g is applia-ble to C2 and C2� � C1.
C2 = f p(z1; a; f(x)); p(f(x); a; f(x)); p(z1; a; z1) gz1 z1P1 = f1g P2 = ; P3 = f1; 3gf(x)p(f(x); a; f(x)) gC1 = f

Fig. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .If the lause has several literals, for example, C1 = fL1; L2; L3g, with L1 =p(f(x)), L2 = q(b; f(x)) and L3 = r(f(x); h(f(x))), the operation is done withall literals simultaneously. First, the same term is hosen in every literal of C1,say t = f(x). Then, for eah literal L1 2 C1, some subsets of Pos(Li; t) arehosen, e.g., P �1 = f f1g g � PPos(L1; t)P �2 = f f2g; ; g � PPos(L2; t)P �3 = f f1; 2�1g; f1g g � PPos(L3; t)After taking a variable whih does not our in C1, say z1, the following sets arebuilt L1 P�1���������! fp(z1)gL2 P�2���������! fq(b; z1); q(b; f(x))gL3 P�3���������! fr(z1; h(z1)); r(z1; h(f(x)))gFinally, the lause C2 is the union of these setsC2 = fp(z1); q(b; z1); q(b; f(x)); r(z1; h(z1)); r(z1; h(f(x)))g4 The generalization based on deleting a literal from the lause will be onsidered insetion 5.



8In our general desription, we will begin with a study of the relations betweensubstitutions and grafts.4.2 Substitution vs. graftThe next de�nitions show how a term an be settled in a lause by a set ofpositions. This onstrution will be useful to de�ne the operator on C R=�. IfC1; C2 2 C R and they are variants, then we an think about both simultaneouslyby making abstration of the terms and only handling sets of positions.An equivalene lass [C℄ 2 C R=� is the set of all variants of the redued lauseC. Thus, we annot refer diretly to a term in [C℄ beause eah representativewill have distint variables, but we an do abstration from the terms and settlethem by their sets of positions.The idea of abstrating term ourrenes also appears in [9℄, but we studyit in a di�erent way, sine we onsider lauses as sets, not as sequenes. This isslightly more general, sine in sets the order of the elements is not importantand in sequenes it is.De�nition 9. Let L be a literal. The set of positions P is alled ompatiblewith L if P � Pos(L) and all terms rooted at positions of P are the same.For example, if L = p(f(x); a; f(x)), then P1 = f2g, P2 = ; and P3 = f1; 3g areompatible with L and P4 = f1�1; 2g and P5 = f1; 4�3g are not. Moreover, notethat (a) if P is ompatible with L, then P is independent, (b) if P � Pos(L),then jL=P j = 0, P = ; and () P = ; is ompatible with any literal L.It is not neessary that whih term is ourring at positions of P be knownto study its ompatibility with L, sine we an refer to it in an abstrat way, byusing L and P .De�nition 10. Let P 2 PN+ be ompatible with the literal L. If u 2 P , thenComp(L; P ) = L=u. If P = ;, we de�ne Comp(L; P ) = ;.Note that if P 6= ; is ompatible with L, P settles a term in L.The next de�nition extends the ompatibility to sets of sets of positions.De�nition 11. Let P � 2 PPN+ be �nite and not empty. P � is alled ompati-ble with the literal L if{ (8P 2 P �)[P is ompatible with L℄ and{ (8P; P 0 2 P �) [u 2 P ^ v 2 P 0 ) L=u = L=v℄.When this holds, we de�neComp(L; P �) = �;; if P � = f;gComp(L; P ); if P 2 P � and P 6= ;For example, if L = p(f(x); a; f(x)), onsider P1 = f1; 3g, P2 = f1g, P3 = ; andP4 = f2g. Suppose P �1 = fP1; P2; P3g and P �2 = fP2; P4g. Then P �1 is ompatiblewith L and P �2 is not. Moreover, Comp(L; P �1 ) = Comp(L; P1) = f(x).The next de�nition is basi in our formalization of the upward re�nementoperators. Given L 2 Lit and P � 2 PPN+ ompatible with L, for eah P 0 2 P �a literal L is generated by grafting a term t in every position of P .



9De�nition 12. Consider a literal L, t 2 Term and P � 2 PPN+ ompatiblewith L. We will de�ne L[P �  t℄ = fL[P  t℄ jP 2 P �g.For example, if L = p(f(x); a; f(x)), t 2 Term and P �1 is taken from the lastexample, L[P �1  t℄ = fL[P  t℄ jP 2 P �1 g= fp(t; a; t); p(t; a; f(x)); p(f(x); a; f(x))gNote that if P � = f;g, then L[P �  t℄ = fL[;  t℄g = fLg.Notie that if L is a literal, x a variable whih ours in L, � a substitutionsuh that x� = t, P be a set of positions ompatible with L and x = Comp(L; P ),then P is ompatible with L� and t = Comp(L�; P ).In the Appendix we prove several tehnial lemmas dealing with grafts andsubstitutions whih will be used in the proof of the main results.4.3 Some previous mappingsAbove we have seen how a term an be hosen from a literal with the help of aompatible set of positions P . In this way, if a literal L1 is replaed by a variantL2, the analogous term is hosen, beause this hoie only depends on P .Therefore, a re�nement operator an be de�ned on [C℄ 2 C R=�, sine theset of positions P will be whih settles the term to be replaed in eah variantof C.In next steps, we will de�ne two mappings � : Lit! PPN+ and �� : C !PPPN+ and some onstraints will be imposed to make them ompatible. Theidea behind this formalization is to guarantee that the same term is hosen inevery literal of the lause.De�nition 13. A mapping � : Lit ! PPN+ will be alled an assignment ofpositions for literals (L{assignment, for short). An L{assignment is alled{ ompatible with the literal L i� �(L) is ompatible with L.{ ompatible in Lit i� (8L 2 Lit) [� is ompatible with L℄.{ a ompatible morphism i� � is ompatible in Lit and� : hLit;�i ! hPPN+ ;�iis a morphism.For example, if a is a onstant, then � : Lit ! PPN+ suh that �(L) =PPos(L; a) is a ompatible morphism. The next Lemma is immediate.Lemma 2. Let � : hLit;�i ! hPPN+ ;�i be a morphism and L1; L2 2 Lit. IfL1 and L2 are variants, then �(L1) = �(L2).The next funtion �� an be seen as a preliminary version of the operator whihwill be de�ned below. Given a lause C, ��(C) an be seen as a sheme ofhow the generalization of C will be. Notie that �� is independent not onlyof the term replaed in C, but also of the term whih will be grafted in thegeneralization.



10De�nition 14. Let � : Lit ! PPN+ be an L{assignment. The assignment ofpositions for lauses (C-assignment, for short) based on �, whih will be denotedby ��, is the mapping�� : C �! PPPN+C 7! ��(C) = f�(L) jL 2 CgInformally, �� maps a lause fL1; : : : ; Lng into the set f�(L1); : : : ; �(Ln)g,where �(Li) settles the positions of Li at whih a term will be grafted.De�nition 15. Let � be a ompatible morphism and C a lause. The C{assign-ment �� is ompatible with C if for all L;L0 2 C suh that Comp(L;�(L)) 6= ;and Comp(L0; �(L0)) 6= ; we have Comp(L;�(L)) = Comp(L0; �(L0)). Whenthis holds, we will de�neComp(C;�) = �;; if C = ;Comp(L;�(L)); if L 2 CFormally, Comp(C;�) = SfComp(L;�(L)) jL 2 Cg. The C{assignment �� isalled ompatible with C if for all C 2 C , �� is ompatible with C.The following one is a key transformation. In De�nition 12 we have seen how toget a set of literals from one of them by grafting a term. If the ompatibility of�� is linked to the former, a new lause an be built by putting together everyset of literals obtained from their individual transformations.De�nition 16. Let �� be a C{assignment ompatible with C and t 2 Term.We de�ne C[� t℄ =[fL[�(L) t℄ jL 2 CgNote that if C is the empty lause then C[� t℄ = ;.In this step C[�  t℄ is the lause obtained by grafting the term t in eahliteral L of C in aordane with �(L). Turning bak to a previous example, ifC1 = fL1; L2; L3g, with L1 = p(f(x)), L2 = q(b; f(x)), L3 = r(f(x); h(f(x))),and �(L1) = P �1 = f f1g g�(L2) = P �2 = f f2g; ; g�(L3) = P �3 = f f1; 2�1g; f1g gand onsidering the onstant a as the term to be grafted, thenC[� a℄ = fp(a); q(b; a); q(b; f(x)); r(a; h(a)); r(a; h(f(x)))gNotie that if �� is a C{assignment ompatible with C , C1 and C2 are twoequivalent redued lauses and a is a onstant, then the lauses C1[� a℄ andC2[�  a℄ are equivalent as well. This is a key point in our de�nition of theoperator. Next we see the details.



114.4 The operatorsThe last de�nition allows us to get C2 from C1 grafting a term t at a set ofpositions of some literals. The graft only depends on the set of positions �xedby � and its ompatibility guarantees that the same term is replaed in eahliteral.Our aim is de�ning the upward re�nement operators as mappings' : C R=�! C =�In the last subsetion we have shown how the lause C[� t℄ an be obtainedby grafting the term t at the positions settled by �. The step to the quotientneeds more attention. On the one hand, in the domain C R , there is no problemsine two lauses are equivalent if and only if they are variants, and by Lemma2, if two literals are variant, � hooses the same P � 2 PPN+ for both. On theother hand, the problem arises if the term grafted ontains any variable z, sinein every [C℄ = fC 0 2 C jC 0 � Cg there exist lauses ontaining z.We split the solution into several steps. Firstly, we study the grafts of ons-tants. The next Proposition shows that grafts of onstants and renamings areommutative for C{assignments ompatible with C .Proposition 4. Let a be a onstant, � a renaming and �� a C{assignmentompatible with C . Then (C[� a℄)� = C�[� a℄Proof. If C = ; the result holds trivially. Consider C1 = fL11; : : : ; L1ng andC2 = fL21; : : : ; L2ng suh that there exists a renaming � with L2i = L1i � for alli 2 f1; : : : ; ng. We have the followingC2[� a℄ = [fL2i [�(L2i ) a℄ j i 2 f1; : : : ; ngg= [fL1i �[�(L1i ) a℄ j i 2 f1; : : : ; ngg by Lemma 2= [f(L1i [�(L1i ) a℄)� j i 2 f1; : : : ; ngg by Corollary 3= ([fL1i [�(L1i ) a℄ j i 2 f1; : : : ; ngg)�= (C1[� a℄)�From last Proposition we have that if a onstant is grafted in two equivalentredued lauses, two variants are obtained. So, we an use this result to graft inC a variable whih does not our in C with help of a new onstant and a hoiefuntion.The next steps are: (a) the seleted term in C is replaed by a new onstantat positions �xed by �� and (b) all ourrenes of that onstant are replaed bya variable whih does not our in C. That variable is determined by a hoiefuntion.De�nition 17. A mapping f : C ! V ar is alled a hoie funtion if f(C) isa variable whih does not our in C. Let f : C ! V ar be a hoie funtion anda a onstant. We will de�ne:�af : C R �! CC 7! �af (C) = fL[Pos(L; a) f(C)℄ : L 2 Cg



12Informally, if f(C) = z 2 V ar, �af (C) is the lause obtained by replaing in Cevery ourrene of the onstant a by the variable z.Lemma 3. Let f : C ! V ar be a hoie funtion and a a onstant. If C1; C2 2C R are variants, then �af (C1) and �af (C2) are also variants.Proof. The result holds trivially for the empty lause. If C1 = fL11; : : : ; L1ng andC2 = fL21; : : : ; L2ng are variants, by Corollary 2, L1i [Pos(L1i ; a)  f(C1)℄ andL2i [Pos(L2i ; a) f(C2)℄ are instanes of eah other.Next, we give our formal de�nition of upward re�nement operator.De�nition 18. Let �� be a C{assignment ompatible with C . Let a be a ons-tant whih does not belong to the language L and let C a be the set of all lausesof L [ fag. Let f : C a ! V ar be a hoie funtion. We will de�ne the mappinge��;f : C R �! CC 7! e��;f (C) = �af (C[� a℄)The upward re�nement operator is de�ned as��;f : C R=� �! C =�[C℄ 7! [ e��;f (C)℄From Proposition 4 and Lemma 3, we have that ��;f does not depend on therepresentative. Furthermore, sine ��;f does not depend on f or a, (only on �),we will write �� instead of ��;f . Next we see an example.Consider C1 = fp(x; f(b)); q(x)g and C2 = fp(y; f(b)); q(y)g. They are tworedued lauses and [C1℄ � [C2℄. Let �� be a C{assignment ompatible with Csuh that �(p(x; f(b))) = �(p(y; f(b))) = f f2g g�(q(x)) = �(q(y)) = f;gLet a be a onstant whih does not belong to the language. ThenC1[� a℄ = fp(x; a); q(x)gC2[� a℄ = fp(y; a); q(y)ggiven the hoie funtion f , f(C1[� a℄) is a variable whih does not our inC1[�  a℄, say f(C1[�  a℄) = y. Analogously, say f(C2[�  a℄) = z. Thenwe have e��;f (C1) = �af (C1[� a℄) = fp(x; y); q(x)ge��;f (C2) = �af (C2[� a℄) = fp(y; z); q(y)ghene, ��([C1℄) = ��([C2℄) = [fp(x; y); q(x)g℄ = [fp(y; z); q(y)g℄.As the example shows, these operators are not elementary (in the sense of[10℄), sine there are no onstraints on the nature of the terms settled by �.



134.5 ContinuityNext, the appliation of General Topology to ILP we present in this paper isproved. Till now, we have the sets CR=� and C =� and, for eah C-assignmentompatible with C , we have a mapping �� between them.The natural struture of C R=� and C =� is the partial order of subsumptionbut, as we have seen in setion 3, these sets an be seen as topologial spaeswith help of the Alexandrov topology. We prove now that these operators areontinuous on that topology.Theorem 3. The mapping �� is ontinuous on the Alexandrov topology.Proof. Let f be a funtion hoie and a a onstant whih does not belong to L.By Corollary 1, it is suÆient to prove that if C1; C2 2 C R and � is a substitutionappliable to C1 suh that C1� � C2 then there exists a substitution �0 appliableto e��;f (C1) verifying e��;f (C1)�0 � e��;f (C2).Let C1; C2 and � suh lauses and substitution and onsider L 2 e��;f (C1) =�af (C1[�  a℄). Then there exists L0 2 C1 and P0 2 �(L0) suh that L0[P0  a℄ 2 C1[�  a℄ and L = L0[P0  f(C1)℄. On the other hand, L0� 2 C2 andsine � : hLit;�i ! hPPN+ ;�i is a morphism, P0 2 �(L0�), hene L0�[P0  a℄ 2 C2[� a℄ and L0�[P0  f(C2)℄ 2 e��;f (C2).Let �0 = � �V ar(C1[� a℄) [ff(C1)=f(C2)g. Sine �0 is appliable to e��;f (C1), itonly remains to prove that e��;f (C1)�0 � e��;f (C2), but (L0[P0  f(C1)℄)�0 =(L0[P0  f(C1)℄)(� �V ar(L0[P0 a℄) [ff(C1)=f(C2)g), therefore, by Lemma 7,we have (L0[P0  f(C1)℄)�0 = L0�[P0  f(C2)℄ and L�0 2 e��;f (C2).5 Deleting a literalAll lassi re�nement operators an be seen as partiular ases of the mapping�� : C R=�! C =�, exept one. The fourth lassi re�nement operator allows usto generalize a lause C deleting a most general literal (De�nition 19). In thissetion, this operator is formalized and its ontinuity is proved.De�nition 19 (17.12 in [10℄). A literal p(x1; : : : ; xn) or :p(x1; : : : ; xn) ismost general with respet to a lause C if x1; : : : ; xn are distint variables notappearing in C.De�nition 20. Given C 2 C , max(C) � Lit is the set of literals L suh that Lis a most general literal with respet to C � fLg.Note that a most general literal with respet to a lause is settled by its prediatesymbol and its sign: \+" for the positive ones and \�"for the negative ones.De�nition 21. Given L 2 Lit we will de�ne pair(L) 2 Pred � f+;�g by thepair hp; si where p is the prediate symbol of L and s is its sign. For example,pair(:p(x; f(a))) = hp=2;�i.



14Note that for any substitution �, pair(L) = pair(L�). Next lemmas are straight-forward from de�nitions.Lemma 4. Let C [ fLg be a redued lause where L is a most general literalwith respet to C and let � be a renaming . Then C� [ fL�g is a redued lauseand L� is most general with respet to C�.Lemma 5. Given C 2 C R and L 2 max(C), if L0 2 C and pair(L0) = pair(L),then L0 and L are variants.De�nition 22. Consider hp; si 2 Pred� f+;�g. We de�nee�hp;si(C) = �C � fLg; if pair(L) = hp; si ^ L 2 max(C)C otherwiseOur formal de�nition of the fourth upward re�nement operator is�hp;si : C R=� �! C =�[C℄ 7! [e�hp;si(C)℄From Lemmas 4 and 5 we have that �hp;si does not depend on the representative.Finally, we prove the ontinuity of the operators on the Alexandrov topology.Theorem 4. The mapping �hp;si is ontinuous on the Alexandrov topology.Proof. Consider hp; si 2 Pred� f+;�g. By Corollary 1, it is suÆient to provethat if C;D 2 C R and � is a substitution appliable to C suh that C� � D thenthere exists a substitution �0 appliable to e�hp;si(C) suh that e�hp;si(C)�0 �e�hp;si(D).Let C;D 2 C R and � be suh lauses and substitution and onsider �0 =� �V ar(e�hp;si(C)). Obviously �0 is appliable to e�hp;si(C). Sine C� � D, in orderto prove e�hp;si(C)�0 � e�hp;si(D) we need only to onsider the ase when thereexists L 2 C suh that [L 2 max(C) ^ pair(L) = hp; si℄.{ if L� 62 max(D), then e�hp;si(C)�0 � C� � D = e�hp;si(D){ if L� 2 max(D), then e�hp;si(C)�0 � C� � fL�g � D � fL�g = e�hp;si(D).6 Conlusions and future workIn this paper General Topology and ILP, separated up till now, are broughttogether. In the �rst part of the paper, we have shown that the Alexandrovtopology is the natural translation of partial orders into General Topology. Withthis topology, we lose metri properties but it allows us to handle the subsump-tion order in a natural way and, in ertain sense, it settles down the notion ofloseness based on subsumption.The appliation that we present of General Topology to ILP is the ontinuityof the upward re�nement operators on the Alexandrov topology. For that we have



15developed a study about the relation between substitution and grafts, interestingby itself, and given a new formalization of the operators.In this formalization we apply the operator to a set of equivalent lauses in-stead of a unique lause. This serves our purpose, as the domain of the operatorsis a partial order, but it is also interesting by itself sine it avoids the problemof taking a representative. In many papers, renamings are sorned and variantlauses are onsidered idential. After that, a representative is taken from theset of equivalent under the assumption of that any representative would play thesame role when the operators were applied.This point is ritial by dealing with upward re�nement operators, sine thegrafted variable has to be new for the hosen lause and taking a new variablefor all lauses (i.e. a variable out of the language L) has no logial sense. Byde�ning the operator on C R=� instead of C R , the problem is avoided.As main result, the ontinuity of these operators on the Alexandrov topologyhas been proved.This paper is a �rst approximation between ILP and General Topology. Wethink that the formal foundation of basi properties of the operators used in ILP,as ontinuity or onvergene, needs to larify and formalize the idea of losenessamong lauses. Our aim is going on with a deeper study of topologial propertiesof ILP tehniques.Referenes1. K.R. Apt: From Logi Programming to Prolog. Prentie Hall, 19972. A. Batarekh and V.S. Subrahmanian: Topologial Model Set Deformations in LogiProgramming. Fundamenta Informatiae XII, 3, 357{400, 19893. M. Fr�ehet: Sur quelques points du alul fontionnel. Reudiont del CiruloMatematio di Palermo, vol 22, 1906.4. J.H. Gallier: Logi for Computer Siene Foundations of Automati Theorem Prov-ing. Harper & Row, Publishers, New York, 19865. G. Huet: Conuent Redutions: Abstrat Properties and Appliations to TermRewriting Systems. Journal of the Assoiation for Computing Mahinery, Vol 27,No 4, pp 797{821, Otober 19806. P.T. Johnstone: Stone spaes. Cambridge University Press, 19827. P.D. Laird: Learning from Good and Bad Data. Kluwer Aademi Publishers, 19888. L. Nahbin: Topology and order. D. van Nostrand Company, In., 1965.9. S-H. Nienhuys-Cheng: Term partitions and minimal generalizations of lauses.Tehnial Report EUR{FEW{CS{91{01. Department of Computer Siene, Eras-mus University, the Netherlands, 1991. http://www.few.eur.nl/few/researh/pubs/s/1991/eur-few-s-91-01.pdf10. S-H. Nienhuys-Cheng and R. de Wolf: Foundations of Indutive Logi Program-ming. LNCS 1228. Springer, 199711. G.D. Plotkin: A Note on Indutive Generalization. In Mahine Intelligene 5, pp.:153{163. Edinburgh University Press, Edinburgh, 1970.12. A.K. Seda: Some Appliations of General Topology to the Semantis of LogiPrograms. Bull. European Assoiation for Theoretial Computer Siene 52 279-292 1994.



1613. A.K.Seda: A Topologial View of the Kowalski-van Emden Theorem. Bull. Euro-pean Assoiation for Theoretial Computer Siene 53, 256-263, 199414. A.K. Seda: Topology and the Semantis of Logi Programs. Fundamenta Informat-iae 24 (4) 359-386 199515. S. Vikers: Topology via Logi. Cambridge University Press, 198916. E.Y. Shapiro: Indutive Inferene of Theories from Fats. Tehnial Report 624,Department of Computer Siene, Yale University, New Haven, CT, 198117. M.B. Smyth: Topology. In Handbook of Logi in Computer Siene Vol 1 Bak-ground: Mathematial Strutures. Edited by: S. Abramsky, Dov M. Gabbay andT.S.E. Maibaum. Oxford Siene Publiations, 1992. pp.: 641{761.18. P.R.J. van der Laag, S.-H. Nienhuys-Cheng: Subsumption and re�nement inmodel inferene. Tehnial Report EUR{FEW{CS{92{07. Department of Com-puter Siene, Erasmus University, the Netherlands, 1992. http://www.few.eur.nl/few/researh/pubs/s/1997/eur-few-s-92-07.pdf19. S. Willard: General Topology. Addison Wesley Publishing Company, 19707 AppendixThe following ones are several tehnial lemmas dealing with grafts and substi-tutions. The Lemma 7 will be used in the Theorem 3.Lemma 6. Let L be a literal, x a variable whih does not our in L, � a sub-stitution, u 2 Pos(L),  a onstant, t a term and V ar� = V ar(L[u ℄). ThenL[u x℄((�dV ar�) [ fx=tg) = L�[u t℄Proof. The proof is by indution on the length of u, but notie before thatV ar(L[u x℄) = V ar� [ fxg and x 62 V ar�. Consider L = p(t1; : : : ; tn).Case 1: Suppose long(u) = 1.p(t1; : : : ; tn)[u x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; tu�1; x; tu+1; : : : ; tn)((�dV ar�) [ fx=tg)= p(t1�; : : : ; tu�1�; t; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; tu�; tu+1�; : : : ; tn�)[u t℄= p(t1; : : : ; tn)�[u x℄Case 2: Suppose the result holds for all positions of length m and let u be aposition of length m+ 1, u = î v with i � 1 and v 2 N+ with long(v) = m.p(t1; : : : ; tn)[u x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; tn)[î v  x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; ti1 ; ti[v  x℄; ti+1; : : : ; tn)((�dV ar�) [ fx=tg)= p(t1�; : : : ; ti1�; ti[v  x℄((�dV ar�) [ fx=tg); ti+1�; : : : ; tn�)i:h:= p(t1�; : : : ; ti1�; ti�[v  t℄�; ti+1�; : : : ; tn�)= p(t1�; : : : ; ti1�; ti�; ti+1�; : : : ; tn�)[î v  t℄= p(t1; : : : ; tn)�[u t℄



17Lemma 7. Let L be a literal, x a variable whih does not our in L, � a subs-titution, P 2 PN+ ompatible with L,  a onstant, t 2 Term and V ar� =V ar(L[P  ℄). ThenL[P  x℄((� �V ar�) [ fx=tg) = L�[P  t℄Proof. The result holds from Lemma 6 and the fat of being P an independentset of positions.Lemma 8. Let L be a literal, u 2 Pos(L), s1; s2 2 Term and � a substitutionsuh that s1� = s2. Then L[u s1℄� = L�[u s2℄Proof. By indution on the length of u.{ Suppose long(u) = 1. Thenp(t1; : : : ; tn)[u s1℄�= p(t1; : : : ; tu�1; s1; tu+1; : : : ; tn)�= p(t1�; : : : ; tu�1�; s1�; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; s2; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; tu�; tu+1�; : : : ; tn�)[u s2℄= p(t1; : : : ; tn)�[u s2℄�{ Suppose the result holds for all positions of length m and let u be a positionof length m+ 1, u = î v with i � 1 and v 2 N+ with long(v) = m.p(t1; : : : ; tn)[u s1℄�= p(t1; : : : ; tn)[î v  s1℄�= p(t1; : : : ; ti1 ; ti[v  s1℄; ti+1; : : : ; tn)�= p(t1�; : : : ; ti1�; ti[v  s1℄�; ti+1�; : : : ; tn�)i:h:= p(t1�; : : : ; ti1�; ti�[v  s2℄�; ti+1�; : : : ; tn�)= p(t1�; : : : ; ti1�; ti�; ti+1�; : : : ; tn�)[î v  s2℄= p(t1; : : : ; tn)�[u s2℄Lemma 9. Let L be a literal, P 2 PN+ ompatible with L, � a substitution andlet t1 and t2 two terms suh that t1� = t2. Then(L[P  t1℄)� = L�[P  t2℄Proof. By indution on the ardinal of P .{ If P = ;, then (L[P  t1℄)� = L� = L�[P  t2℄{ If P = fug [ P 0 and u 62 P 0, then(L[P  t1℄)�= (L[fug [ P 0  t1℄)�= (L[P 0  t1℄)[u t1℄�= (L[P 0  t1℄)�[u t2℄ by Lemma 8i:h:= (L�[P 0  t2℄)[u t2℄= L�[P  t2℄



18In partiular, the last Lemma holds if t1 is a onstant. The next results are twostraightforward orollaries from Lemma 9.Corollary 2. If L is a literal, x a variable whih does not our in L, � asubstitution suh that x 62 Dom(�) and t 2 Term, then (L[P  x℄)(�[fx=tg) =L�[P  t℄.Proof. Immediate from Lemma 9 sine L� = L(� [ fx=tg) and x(� [ fx=tg) = t.Corollary 3. Let L be a literal, P � 2 PPN+ ompatible with L, � a substitutionand t1; t2 2 Term suh that t1� = t2. Then (L[P �  t1℄)� = L�[P �  t2℄.Proof. It holds from 9 and the de�nition of ompatibility of P � (De�nition 11).


