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t. In this paper, General Topology and ILP are brought to-gether. The 
loseness between 
lauses is formalized using a non-metri
topology whi
h 
an be seen as the topologi
al translation of the sub-sumption order: the Alexandrov topology. The de�nitions of the upwardre�nement operators in ILP are formalized as mappings ' : CR=�! C =�where C =� and CR=� are the quotients obtained from the set of 
lausesC and the set of redu
ed 
lauses CR via the equivalen
e relation basedon subsumption. Our main result is the proof of the 
ontinuity of theseoperators on the Alexandrov topology.1 Introdu
tionIn the last years a growing interest in the study of topologi
al properties of theLogi
 Programming operators has arisen ([2, 12{14℄). However, to the best ofour knowledge, no study of the Indu
tive Logi
 Programming (ILP) operatorsin the General Topology frame has been done.In this paper we present a �rst approximation in ILP to the 
on
ept of 
lose-ness among 
lauses when this 
loseness is settled by a non{metri
 topology.Usually, the intuition leads us to a notion of 
loseness based on a spatial rep-resentation. So, two points A and B in the plane are 
loser than A and C ifthe length of the segment whi
h joins A and B is lesser than the length of thesegment whi
h joins A and C. This idea of 
loseness is asso
iated to the 
on
eptof distan
e as a fun
tion mapping a pair of points on a real number.It was M. Fr�e
het in 1906 [3℄ who gave the 
onditions to 
onsider a mappingd : X �X ! R as a distan
e{ (8x 2 X) d(x; x) = 0{ (8x; y 2 X) d(x; y) = 0) x = y{ (8x; y 2 X) d(x; y) = d(y; x) (the 
ondition of symmetry){ (8x; y; z 2 X) d(x; z) � d(x; y) + d(y; z) (the triangle inequality)sin
e then, that de�nition has been the base to the development of the theoryof metri
 spa
es.? Work partially supported by DGES (Spain), proje
ts PB96{0098-C04{04 and PB96{1345



2 But in General Topology it is well known that endowing a set with a distan
emapping is not the unique way to formalize the 
loseness in a set. We 
an easily�nd situations where the symmetry 
ondition is not veri�ed, as in problems ofnets based on 
ows or 
osts. In this 
ases Fr�e
het's 
onditions are not appropriateto formalize the notion of 
loseness.If our unique interest is to endow the set with a distan
e mapping with-out 
onsidering any relation between the elements, we 
an always 
onsider thedis
rete distan
e dd(A;B) = �0 if A = B1 if A 6= Bwhi
h satis�es the Fr�e
het's 
onditions to be a distan
e, but it would hardlyhave a pra
ti
al usefulness.In general, if we 
onsider a non{symmetri
 relation on a set (as 
ows or 
osts)it will be very diÆ
ult to �nd a distan
e mapping 
ompatible with that relation.In this paper we 
onsider the set of 
lauses C with the subsumption relationand show that the natural formalization of the idea of 
loseness is given by theAlexandrov topology1.Te
hni
ally, this topology is the �nest topology T0 whose natural order (theso{
alled spe
ialization order) is equal to the order whi
h generates it, in this
ase, the subsumption order, and it allows properties related to subsumption tobe translated into a purely topologi
al 
ontext.The main result is the 
ontinuity of the upward re�nement operators on thistopology. Roughly speaking, this means that if two 
lauses are 
lose, then theirre�ned 
lauses are 
lose as well. For that we not only need to say what means
loseness but also to give a stri
t formalization of the operator whi
h allows tohandle it as a mathemati
al obje
t.The operators will be formalized as mappings' : C R=�! C =�where C =� and C R=� are the quotients obtained from the set of 
lauses C andthe set of redu
ed 
lauses C R via the equivalen
e relation based on subsumption.The paper is organized as follows: In se
tion 2 we give a brief exposition ofsome basi
 de�nitions about logi
 and tree theory. In se
tion 3, the spe
ializationorder and the Alexandrov topology are studied and the narrow relation betweenpartial orders and the Alexandrov topology is shown. In se
tion 4 our main resultis stated and proved. First, we present a study of substitution and grafts andtaking it as base, we give a new formalization of the upward re�nement operatorsand prove our main result: these operators are 
ontinuous on the Alexandrovtopology. Se
tion 5 
ompletes this result: the operator based on deleting a literalfrom a 
lause is 
ontinuous on that topology, as well. In se
tion 6 the 
on
lusionsare presented and the paper is �nished with the bibliography and an appendix
ontaining several te
hni
al results used in the main theorems.1 A good introdu
tion to General Topology 
an be found in [19℄.



3The prin
ipal referen
es have been [1, 10℄ for the foundations of Logi
 Pro-gramming and the subsumption order, [4, 5℄ for the tree theory, [6, 17℄ for theAlexandrov topology and [19℄ for General Topology.2 PreliminariesFrom now on, we will 
onsider some �xed 
ountable �rst-order language L withat least one fun
tion symbol. V ar, Pred, Term and Lit are, respe
tively, thesets of variables, predi
ate symbols, terms and literals of L. A 
lause is a �niteset of literals and C is the set of all 
lauses. If A is a set, then jAj is the 
ardinalof A, PA its power set, and if f is a mapping, f �A is the restri
tion of f to A.Let S � V ar be a �nite set of variables. A substitution is a mapping � :S ! Term su
h that (8x 2 S)[x 6= �(x)℄. We will use the usual notation� = fx=t : x 2 Sg, (where t = �(x) or x� = t) and Dom(�) for the set S. If Cis a 
lause and Dom(�) � V ar(C), then � is 
alled appli
able to C. Obviously� �V ar(C) is appli
able to C.A renaming is a 1{1 substitution � su
h that (8x 2 Dom(�)) [x� 2 V ar℄. If �is a renaming and L is a literal, then L and L� are 
alled variants. Analogously,if C is a 
lause and � is a renaming, C and C� = fL� jL 2 Cg are variants.Let L1; L2 be literals. L1 is 
alled an instan
e of L2, and it is denoted byL1 � L2, if there exists a substitution � su
h that L1 = L2�. Let L1; L2 beliterals, then L1 and L2 are variants i� L1 is an instan
e of L2 and L2 is aninstan
e of L1.We follow Gallier [4℄ and Huet [5℄ for the issues related to positions andgrafts. A position is a �nite sequen
e of n positive integers with n � 1. Let N+denote the set of all positions. Two positions u and v are independent if u is nota pre�x of v and v is not a pre�x of u. A set of positions P is independent if(8u; v 2 P )[u 6= v ) u and v are independent℄.Let Pos(L) denote the set of all positions in L. If u 2 Pos(L), L=u denotesthe term rooted at u in L. Pos(L; t) denotes the set of all positions of the termt in L. If t does not o

ur in L, then Pos(L; t) = ;. Finally, if P � Pos(L), thenL=P = fL=u ju 2 Pg. Any other notation has the usual sense.We �nish this se
tion re
alling the de�nitions of a graft at a position and ata set of positions.De�nition 1. Let ft1; : : : ; tng be a set of terms, p a n{ary fun
tion symbol orpredi
ate symbol, s 2 Term and u a position. The graft of s at position u inp(t1; : : : ; tn), denoted by p(t1; : : : ; tn)[u s℄, is de�ned as follows:{ If length(u) = 1, thenp(t1; : : : ; tn)[u s℄ = p(t1; : : : ; tu�1; s; tu+1; : : : ; tn){ If u = î v with i � 1 and v 2 N+ , thenp(t1; : : : ; tn)[u s℄ = p(t1; : : : ; ti�1; ti[v  s℄; ti+1; : : : ; tn)



4Note that if u; v 2 N+ are independent and s 2 Term, then(L[u s℄)[v  s℄ = (L[v  s℄)[u s℄De�nition 2. Let L be a literal, s a term and P � Pos(L) an independent setof positions. The graft of s at P in L is de�ned as follows:{ if P = ;, then L[P  s℄ = L{ if u 2 P and P 0 = Pnfug, then L[P  s℄ = (L[P 0  s℄)[u s℄.3 The spe
ialization order and the Alexandrov topologyThis se
tion gives a brief des
ription of the Alexandrov topology. This topologyappears in a natural way in other �elds of 
omputer s
ien
e ([15, 17℄) and, in a
ertain sense, it is the natural way to see a partial order as a topologi
al spa
e.We begin with some basi
 de�nitions from General Topology.A topology on a set X is a 
olle
tion T of subsets of X , 
alled the open sets,satisfying: (a) Any union of elements of T belongs to T (b) any �nite interse
tionof elements of T belongs to T and (
) ; and X belong to T . If T is a topologyon X , the pair hX; T i is 
alled a topologi
al spa
e. If hX; T i is a topologi
alspa
e and x 2 X , a neighborhood of x is a set U whi
h 
ontains an open set
ontaining x.A topology on the set X is T0 i� whenever x and y are distin
t points in X ,there is an open set 
ontaining one and not the other.Let hX; TXi and hY; TY i be topologi
al spa
es and let f : X ! Y . Then fis 
ontinuous at x0 2 X i� for ea
h neighborhood V of f(x0) in Y , there is aneighborhood U of x0 in X su
h that f(U) � V . We say f is 
ontinuous i� f is
ontinuous at ea
h x0 2 X .De�nition 3. Let A and B be two sets and RA and RB two binary relationson A and B. The mapping f : hA;RAi ! hB;RBi is 
alled a morphism if(8x; y 2 A)[xRAy ! f(x)RBf(y)℄.The next equivalen
e is trivial. It will be used in the proof of Theorem 2.Lemma 1. Let f : X ! Y be a mapping between two partial orders. Then f isa morphism i� (8x 2 X)[f(" x) �" f(x)℄, where " 
 = fz j 
 � zg.De�nition 4. Let hX;Ri be a partial order. A set S � X is 
alled a �nalsegment if (8x; y)[x 2 S ^ xRy ! y 2 S℄.De�nition 5. Given a topologi
al spa
e hX; T i, the spe
ialization order basedon the topology T is de�ned as(8x; y 2 X) [xRy , (8O 2 T )(x 2 O ! y 2 O)℄Proposition 1 (4.1.3.(1) in [17℄). A topologi
al spa
e hX; T i is T0 i� thespe
ialization order is a partial order.



5From the above it follows that every T0 topologi
al spa
e has asso
iated a partialorder in a natural way: the spe
ialization order. Next, the other way round isshown: Given a partial order we 
an �nd a topologi
al spa
e based on it.De�nition 6. Let hX;Ri be a partial order. The Alexandrov topology based onthis order is the set � (X;R) = fS � X jS is a �nal segment of hX;Rig.Note that the Alexandrov topology is a
tually a topology and it is T0.Some basi
 examples of this topology 
an be easily obtained by takingX = N,the set of natural numbers and R the natural order "�" or the partial order \bedivisible by".In order to see that the Alexandrov topology � (X;�) is the topologi
altranslation of the partial order hX;�i, we have to prove that the spe
ializationorder based on the topology � (X;�) is again2 the order �.Theorem 1. Let � (X;�) be the Alexandrov topology based on the partial orderhX;�i and let R be the spe
ialization order based on that topology. Then (8x; y 2X)(xRy , x � y).Proof. ()) Sin
e " x is a �nal segment and x 2" x, by hypothesis y 2" x. Thenx � y. (() Suppose x � y and 
onsider G 2 � (X;�) su
h that x 2 G. Then,by de�nition of �nal segment, y 2 G.The se
tion is �nished with a result whi
h shows the narrow relation betweenmorphisms and 
ontinuous mappings from a set on itself, viewed as partial orderor Alexandrov topology.Proposition 2 (4.2.4 in [17℄). Suppose that f : hX; TXi ! hY; TY i is a 
ontin-uous mapping between two topologi
al spa
es. Then f is a morphism with respe
tto the spe
ialization orders of TX and TY .Theorem 2. Let f : hX; TXi ! hY; TY i be a mapping between two topologi
alspa
es. If f is a morphism with respe
t to the indu
ed spe
ialization orders RXy RY , � (X;RX) � TX and TY � � (Y;RY ), then f is 
ontinuous.Proof. Suppose x 2 X andM a neighborhood of f(x). Then there exists N 2 TYsu
h that f(x) 2 N �M . Sin
e TY � � (Y;RY ), N is a �nal segment in hY;RY iand " f(x) � N . But " x 2 � (X;RX) � TX and x 2" x, hen
e " x is aneighborhood of x in X , and by Lemma 1 f(" x) �" f(x). Consequently, f is
ontinuous in x.Corollary 1. Let hX;�i be a partial order. Then f : X ! X is 
ontinuous onthe Alexandrov topology � (X;�) i� f is a morphism with respe
t to �.2 A
tually, the Alexandrov topology is not the unique topology with this property,but it is the �nest one (see [6℄).



64 The subsumption orderThe appli
ation of General Topology to ILP shown in this paper is the 
ontinuityof the upward re�nement operators on the Alexandrov topology seen as mappings' : C R=�! C =�where C =� and C R=� are the quotients obtained from the set of 
lauses C andthe set of redu
ed 
lauses C R via the equivalen
e relation based on subsumption.In the generalization pro
ess, when a program P is too spe
i�
, we repla
eit by P 0 with the hope that P 0 
overs the examples better than P . The stepfrom P to P 0 is usually done applying a re�nement operator to some 
lause Cof P . These operators 
an be seen as mappings ' : C ! C where C is the set of
lauses of the language.Our purpose is to 
onsider su
h operators as mathemati
al mappings andstudy their 
ontinuity on the Alexandrov topology, whi
h, as we have shown,
an be 
onsidered the natural way of formalizing the relation of 
loseness onpartial orders.Sin
e the subsumption relation between 
lauses is a quasi{order, but not apartial order, instead of dealing with C , we formalize our operators as map-pings between the partial orders3 hC R=�; �i and hC =�; �i endowed with theirrespe
tive Alexandrov topologies in the natural way.We begin our des
ription with the basi
 relations. The only point to benoted here is that, be
ause of te
hni
al reasons, � has to be appli
able to C inthe de�nition of subsumption.De�nition 7. Let C and D be 
lauses. C subsumes D, C � D, i� there existsa substitution appli
able to C su
h that C� � D. If C � D and D � C thenC and D are equivalent and we will write it as C � D. A redu
ed 
lause is a
lause C su
h that there is no proper subset D of C verifying D � C. We willdenote by C R the set of all redu
ed 
lauses.The next well{known result is due to Plotkin [11℄.Proposition 3. Let C and D be redu
ed 
lauses. If C � D then C and D arevariants.Sin
e � is an equivalen
e relation, we will denote by C =� and C R=� the res-pe
tive quotients. Moreover, if C 2 C , [C℄ = fD 2 C jC � Dg and if C 2 C R ,[C℄R = fD 2 C R jC � Dg. It is trivial to prove that the mapping i : C R=�!C =� de�ned by i([C℄R) = [C℄ is a bije
tion.De�nition 8. The partial order �� on C =� is de�ned as follows:(8[C℄; [D℄ 2 C =�) ([C℄ �� [D℄, C � D)The order �� is well{de�ned and it will 
ause no 
onfusion if we use � insteadof ��.3 The use of CR to deal with re�nement operators is usual (see [18℄).



74.1 Upward re�nement operators (I)Downward re�nement operators were introdu
ed by Shapiro in [16℄, later Lairddes
ribed in [7℄ a general framework for upward and downward re�nement ope-rators. In this paper, we follow Nienhuys-Cheng and de Wolf in [10℄.The reader is expe
ted to be familiar with these operators so we will leaveout their well-known des
ription. Instead of it, we split our formal de�nition inseveral steps.Consider the one{literal 
lause C1 = fLg with L = p(f(x); a; f(x)). In or-der to generalize4 it, we have to obtain a new 
lause C2 su
h that there existsa substitution appli
able to C2 verifying C2� � C1. For that, (a) we 
hoosea term t in L, say t = f(x), (b) we 
hoose several subsets of Pos(L; t), e.g.P1 = f1g; P2 = ;; P3 = f1; 3g, (
) we 
hoose a variable whi
h does not o

urin L, say z1, and (d) we build the 
lause C2 = fL[Pi  z1℄ j i = 1; 2; 3g =fp(z1; a; f(x)); p(f(x); a; f(x)); p(z1; a; z1)g. Obviously � = fz1=f(x)g is appli
a-ble to C2 and C2� � C1.
C2 = f p(z1; a; f(x)); p(f(x); a; f(x)); p(z1; a; z1) gz1 z1P1 = f1g P2 = ; P3 = f1; 3gf(x)p(f(x); a; f(x)) gC1 = f

Fig. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .If the 
lause has several literals, for example, C1 = fL1; L2; L3g, with L1 =p(f(x)), L2 = q(b; f(x)) and L3 = r(f(x); h(f(x))), the operation is done withall literals simultaneously. First, the same term is 
hosen in every literal of C1,say t = f(x). Then, for ea
h literal L1 2 C1, some subsets of Pos(Li; t) are
hosen, e.g., P �1 = f f1g g � PPos(L1; t)P �2 = f f2g; ; g � PPos(L2; t)P �3 = f f1; 2�1g; f1g g � PPos(L3; t)After taking a variable whi
h does not o

ur in C1, say z1, the following sets arebuilt L1 P�1���������! fp(z1)gL2 P�2���������! fq(b; z1); q(b; f(x))gL3 P�3���������! fr(z1; h(z1)); r(z1; h(f(x)))gFinally, the 
lause C2 is the union of these setsC2 = fp(z1); q(b; z1); q(b; f(x)); r(z1; h(z1)); r(z1; h(f(x)))g4 The generalization based on deleting a literal from the 
lause will be 
onsidered inse
tion 5.



8In our general des
ription, we will begin with a study of the relations betweensubstitutions and grafts.4.2 Substitution vs. graftThe next de�nitions show how a term 
an be settled in a 
lause by a set ofpositions. This 
onstru
tion will be useful to de�ne the operator on C R=�. IfC1; C2 2 C R and they are variants, then we 
an think about both simultaneouslyby making abstra
tion of the terms and only handling sets of positions.An equivalen
e 
lass [C℄ 2 C R=� is the set of all variants of the redu
ed 
lauseC. Thus, we 
annot refer dire
tly to a term in [C℄ be
ause ea
h representativewill have distin
t variables, but we 
an do abstra
tion from the terms and settlethem by their sets of positions.The idea of abstra
ting term o

urren
es also appears in [9℄, but we studyit in a di�erent way, sin
e we 
onsider 
lauses as sets, not as sequen
es. This isslightly more general, sin
e in sets the order of the elements is not importantand in sequen
es it is.De�nition 9. Let L be a literal. The set of positions P is 
alled 
ompatiblewith L if P � Pos(L) and all terms rooted at positions of P are the same.For example, if L = p(f(x); a; f(x)), then P1 = f2g, P2 = ; and P3 = f1; 3g are
ompatible with L and P4 = f1�1; 2g and P5 = f1; 4�3g are not. Moreover, notethat (a) if P is 
ompatible with L, then P is independent, (b) if P � Pos(L),then jL=P j = 0, P = ; and (
) P = ; is 
ompatible with any literal L.It is not ne
essary that whi
h term is o

urring at positions of P be knownto study its 
ompatibility with L, sin
e we 
an refer to it in an abstra
t way, byusing L and P .De�nition 10. Let P 2 PN+ be 
ompatible with the literal L. If u 2 P , thenComp(L; P ) = L=u. If P = ;, we de�ne Comp(L; P ) = ;.Note that if P 6= ; is 
ompatible with L, P settles a term in L.The next de�nition extends the 
ompatibility to sets of sets of positions.De�nition 11. Let P � 2 PPN+ be �nite and not empty. P � is 
alled 
ompati-ble with the literal L if{ (8P 2 P �)[P is 
ompatible with L℄ and{ (8P; P 0 2 P �) [u 2 P ^ v 2 P 0 ) L=u = L=v℄.When this holds, we de�neComp(L; P �) = �;; if P � = f;gComp(L; P ); if P 2 P � and P 6= ;For example, if L = p(f(x); a; f(x)), 
onsider P1 = f1; 3g, P2 = f1g, P3 = ; andP4 = f2g. Suppose P �1 = fP1; P2; P3g and P �2 = fP2; P4g. Then P �1 is 
ompatiblewith L and P �2 is not. Moreover, Comp(L; P �1 ) = Comp(L; P1) = f(x).The next de�nition is basi
 in our formalization of the upward re�nementoperators. Given L 2 Lit and P � 2 PPN+ 
ompatible with L, for ea
h P 0 2 P �a literal L is generated by grafting a term t in every position of P .



9De�nition 12. Consider a literal L, t 2 Term and P � 2 PPN+ 
ompatiblewith L. We will de�ne L[P �  t℄ = fL[P  t℄ jP 2 P �g.For example, if L = p(f(x); a; f(x)), t 2 Term and P �1 is taken from the lastexample, L[P �1  t℄ = fL[P  t℄ jP 2 P �1 g= fp(t; a; t); p(t; a; f(x)); p(f(x); a; f(x))gNote that if P � = f;g, then L[P �  t℄ = fL[;  t℄g = fLg.Noti
e that if L is a literal, x a variable whi
h o

urs in L, � a substitutionsu
h that x� = t, P be a set of positions 
ompatible with L and x = Comp(L; P ),then P is 
ompatible with L� and t = Comp(L�; P ).In the Appendix we prove several te
hni
al lemmas dealing with grafts andsubstitutions whi
h will be used in the proof of the main results.4.3 Some previous mappingsAbove we have seen how a term 
an be 
hosen from a literal with the help of a
ompatible set of positions P . In this way, if a literal L1 is repla
ed by a variantL2, the analogous term is 
hosen, be
ause this 
hoi
e only depends on P .Therefore, a re�nement operator 
an be de�ned on [C℄ 2 C R=�, sin
e theset of positions P will be whi
h settles the term to be repla
ed in ea
h variantof C.In next steps, we will de�ne two mappings � : Lit! PPN+ and �� : C !PPPN+ and some 
onstraints will be imposed to make them 
ompatible. Theidea behind this formalization is to guarantee that the same term is 
hosen inevery literal of the 
lause.De�nition 13. A mapping � : Lit ! PPN+ will be 
alled an assignment ofpositions for literals (L{assignment, for short). An L{assignment is 
alled{ 
ompatible with the literal L i� �(L) is 
ompatible with L.{ 
ompatible in Lit i� (8L 2 Lit) [� is 
ompatible with L℄.{ a 
ompatible morphism i� � is 
ompatible in Lit and� : hLit;�i ! hPPN+ ;�iis a morphism.For example, if a is a 
onstant, then � : Lit ! PPN+ su
h that �(L) =PPos(L; a) is a 
ompatible morphism. The next Lemma is immediate.Lemma 2. Let � : hLit;�i ! hPPN+ ;�i be a morphism and L1; L2 2 Lit. IfL1 and L2 are variants, then �(L1) = �(L2).The next fun
tion �� 
an be seen as a preliminary version of the operator whi
hwill be de�ned below. Given a 
lause C, ��(C) 
an be seen as a s
heme ofhow the generalization of C will be. Noti
e that �� is independent not onlyof the term repla
ed in C, but also of the term whi
h will be grafted in thegeneralization.



10De�nition 14. Let � : Lit ! PPN+ be an L{assignment. The assignment ofpositions for 
lauses (C-assignment, for short) based on �, whi
h will be denotedby ��, is the mapping�� : C �! PPPN+C 7! ��(C) = f�(L) jL 2 CgInformally, �� maps a 
lause fL1; : : : ; Lng into the set f�(L1); : : : ; �(Ln)g,where �(Li) settles the positions of Li at whi
h a term will be grafted.De�nition 15. Let � be a 
ompatible morphism and C a 
lause. The C{assign-ment �� is 
ompatible with C if for all L;L0 2 C su
h that Comp(L;�(L)) 6= ;and Comp(L0; �(L0)) 6= ; we have Comp(L;�(L)) = Comp(L0; �(L0)). Whenthis holds, we will de�neComp(C;�) = �;; if C = ;Comp(L;�(L)); if L 2 CFormally, Comp(C;�) = SfComp(L;�(L)) jL 2 Cg. The C{assignment �� is
alled 
ompatible with C if for all C 2 C , �� is 
ompatible with C.The following one is a key transformation. In De�nition 12 we have seen how toget a set of literals from one of them by grafting a term. If the 
ompatibility of�� is linked to the former, a new 
lause 
an be built by putting together everyset of literals obtained from their individual transformations.De�nition 16. Let �� be a C{assignment 
ompatible with C and t 2 Term.We de�ne C[� t℄ =[fL[�(L) t℄ jL 2 CgNote that if C is the empty 
lause then C[� t℄ = ;.In this step C[�  t℄ is the 
lause obtained by grafting the term t in ea
hliteral L of C in a

ordan
e with �(L). Turning ba
k to a previous example, ifC1 = fL1; L2; L3g, with L1 = p(f(x)), L2 = q(b; f(x)), L3 = r(f(x); h(f(x))),and �(L1) = P �1 = f f1g g�(L2) = P �2 = f f2g; ; g�(L3) = P �3 = f f1; 2�1g; f1g gand 
onsidering the 
onstant a as the term to be grafted, thenC[� a℄ = fp(a); q(b; a); q(b; f(x)); r(a; h(a)); r(a; h(f(x)))gNoti
e that if �� is a C{assignment 
ompatible with C , C1 and C2 are twoequivalent redu
ed 
lauses and a is a 
onstant, then the 
lauses C1[� a℄ andC2[�  a℄ are equivalent as well. This is a key point in our de�nition of theoperator. Next we see the details.



114.4 The operatorsThe last de�nition allows us to get C2 from C1 grafting a term t at a set ofpositions of some literals. The graft only depends on the set of positions �xedby � and its 
ompatibility guarantees that the same term is repla
ed in ea
hliteral.Our aim is de�ning the upward re�nement operators as mappings' : C R=�! C =�In the last subse
tion we have shown how the 
lause C[� t℄ 
an be obtainedby grafting the term t at the positions settled by �. The step to the quotientneeds more attention. On the one hand, in the domain C R , there is no problemsin
e two 
lauses are equivalent if and only if they are variants, and by Lemma2, if two literals are variant, � 
hooses the same P � 2 PPN+ for both. On theother hand, the problem arises if the term grafted 
ontains any variable z, sin
ein every [C℄ = fC 0 2 C jC 0 � Cg there exist 
lauses 
ontaining z.We split the solution into several steps. Firstly, we study the grafts of 
ons-tants. The next Proposition shows that grafts of 
onstants and renamings are
ommutative for C{assignments 
ompatible with C .Proposition 4. Let a be a 
onstant, � a renaming and �� a C{assignment
ompatible with C . Then (C[� a℄)� = C�[� a℄Proof. If C = ; the result holds trivially. Consider C1 = fL11; : : : ; L1ng andC2 = fL21; : : : ; L2ng su
h that there exists a renaming � with L2i = L1i � for alli 2 f1; : : : ; ng. We have the followingC2[� a℄ = [fL2i [�(L2i ) a℄ j i 2 f1; : : : ; ngg= [fL1i �[�(L1i ) a℄ j i 2 f1; : : : ; ngg by Lemma 2= [f(L1i [�(L1i ) a℄)� j i 2 f1; : : : ; ngg by Corollary 3= ([fL1i [�(L1i ) a℄ j i 2 f1; : : : ; ngg)�= (C1[� a℄)�From last Proposition we have that if a 
onstant is grafted in two equivalentredu
ed 
lauses, two variants are obtained. So, we 
an use this result to graft inC a variable whi
h does not o

ur in C with help of a new 
onstant and a 
hoi
efun
tion.The next steps are: (a) the sele
ted term in C is repla
ed by a new 
onstantat positions �xed by �� and (b) all o

urren
es of that 
onstant are repla
ed bya variable whi
h does not o

ur in C. That variable is determined by a 
hoi
efun
tion.De�nition 17. A mapping f : C ! V ar is 
alled a 
hoi
e fun
tion if f(C) isa variable whi
h does not o

ur in C. Let f : C ! V ar be a 
hoi
e fun
tion anda a 
onstant. We will de�ne:�af : C R �! CC 7! �af (C) = fL[Pos(L; a) f(C)℄ : L 2 Cg



12Informally, if f(C) = z 2 V ar, �af (C) is the 
lause obtained by repla
ing in Cevery o

urren
e of the 
onstant a by the variable z.Lemma 3. Let f : C ! V ar be a 
hoi
e fun
tion and a a 
onstant. If C1; C2 2C R are variants, then �af (C1) and �af (C2) are also variants.Proof. The result holds trivially for the empty 
lause. If C1 = fL11; : : : ; L1ng andC2 = fL21; : : : ; L2ng are variants, by Corollary 2, L1i [Pos(L1i ; a)  f(C1)℄ andL2i [Pos(L2i ; a) f(C2)℄ are instan
es of ea
h other.Next, we give our formal de�nition of upward re�nement operator.De�nition 18. Let �� be a C{assignment 
ompatible with C . Let a be a 
ons-tant whi
h does not belong to the language L and let C a be the set of all 
lausesof L [ fag. Let f : C a ! V ar be a 
hoi
e fun
tion. We will de�ne the mappinge��;f : C R �! CC 7! e��;f (C) = �af (C[� a℄)The upward re�nement operator is de�ned as��;f : C R=� �! C =�[C℄ 7! [ e��;f (C)℄From Proposition 4 and Lemma 3, we have that ��;f does not depend on therepresentative. Furthermore, sin
e ��;f does not depend on f or a, (only on �),we will write �� instead of ��;f . Next we see an example.Consider C1 = fp(x; f(b)); q(x)g and C2 = fp(y; f(b)); q(y)g. They are tworedu
ed 
lauses and [C1℄ � [C2℄. Let �� be a C{assignment 
ompatible with Csu
h that �(p(x; f(b))) = �(p(y; f(b))) = f f2g g�(q(x)) = �(q(y)) = f;gLet a be a 
onstant whi
h does not belong to the language. ThenC1[� a℄ = fp(x; a); q(x)gC2[� a℄ = fp(y; a); q(y)ggiven the 
hoi
e fun
tion f , f(C1[� a℄) is a variable whi
h does not o

ur inC1[�  a℄, say f(C1[�  a℄) = y. Analogously, say f(C2[�  a℄) = z. Thenwe have e��;f (C1) = �af (C1[� a℄) = fp(x; y); q(x)ge��;f (C2) = �af (C2[� a℄) = fp(y; z); q(y)ghen
e, ��([C1℄) = ��([C2℄) = [fp(x; y); q(x)g℄ = [fp(y; z); q(y)g℄.As the example shows, these operators are not elementary (in the sense of[10℄), sin
e there are no 
onstraints on the nature of the terms settled by �.



134.5 ContinuityNext, the appli
ation of General Topology to ILP we present in this paper isproved. Till now, we have the sets CR=� and C =� and, for ea
h C-assignment
ompatible with C , we have a mapping �� between them.The natural stru
ture of C R=� and C =� is the partial order of subsumptionbut, as we have seen in se
tion 3, these sets 
an be seen as topologi
al spa
eswith help of the Alexandrov topology. We prove now that these operators are
ontinuous on that topology.Theorem 3. The mapping �� is 
ontinuous on the Alexandrov topology.Proof. Let f be a fun
tion 
hoi
e and a a 
onstant whi
h does not belong to L.By Corollary 1, it is suÆ
ient to prove that if C1; C2 2 C R and � is a substitutionappli
able to C1 su
h that C1� � C2 then there exists a substitution �0 appli
ableto e��;f (C1) verifying e��;f (C1)�0 � e��;f (C2).Let C1; C2 and � su
h 
lauses and substitution and 
onsider L 2 e��;f (C1) =�af (C1[�  a℄). Then there exists L0 2 C1 and P0 2 �(L0) su
h that L0[P0  a℄ 2 C1[�  a℄ and L = L0[P0  f(C1)℄. On the other hand, L0� 2 C2 andsin
e � : hLit;�i ! hPPN+ ;�i is a morphism, P0 2 �(L0�), hen
e L0�[P0  a℄ 2 C2[� a℄ and L0�[P0  f(C2)℄ 2 e��;f (C2).Let �0 = � �V ar(C1[� a℄) [ff(C1)=f(C2)g. Sin
e �0 is appli
able to e��;f (C1), itonly remains to prove that e��;f (C1)�0 � e��;f (C2), but (L0[P0  f(C1)℄)�0 =(L0[P0  f(C1)℄)(� �V ar(L0[P0 a℄) [ff(C1)=f(C2)g), therefore, by Lemma 7,we have (L0[P0  f(C1)℄)�0 = L0�[P0  f(C2)℄ and L�0 2 e��;f (C2).5 Deleting a literalAll 
lassi
 re�nement operators 
an be seen as parti
ular 
ases of the mapping�� : C R=�! C =�, ex
ept one. The fourth 
lassi
 re�nement operator allows usto generalize a 
lause C deleting a most general literal (De�nition 19). In thisse
tion, this operator is formalized and its 
ontinuity is proved.De�nition 19 (17.12 in [10℄). A literal p(x1; : : : ; xn) or :p(x1; : : : ; xn) ismost general with respe
t to a 
lause C if x1; : : : ; xn are distin
t variables notappearing in C.De�nition 20. Given C 2 C , max(C) � Lit is the set of literals L su
h that Lis a most general literal with respe
t to C � fLg.Note that a most general literal with respe
t to a 
lause is settled by its predi
atesymbol and its sign: \+" for the positive ones and \�"for the negative ones.De�nition 21. Given L 2 Lit we will de�ne pair(L) 2 Pred � f+;�g by thepair hp; si where p is the predi
ate symbol of L and s is its sign. For example,pair(:p(x; f(a))) = hp=2;�i.



14Note that for any substitution �, pair(L) = pair(L�). Next lemmas are straight-forward from de�nitions.Lemma 4. Let C [ fLg be a redu
ed 
lause where L is a most general literalwith respe
t to C and let � be a renaming . Then C� [ fL�g is a redu
ed 
lauseand L� is most general with respe
t to C�.Lemma 5. Given C 2 C R and L 2 max(C), if L0 2 C and pair(L0) = pair(L),then L0 and L are variants.De�nition 22. Consider hp; si 2 Pred� f+;�g. We de�nee�hp;si(C) = �C � fLg; if pair(L) = hp; si ^ L 2 max(C)C otherwiseOur formal de�nition of the fourth upward re�nement operator is�hp;si : C R=� �! C =�[C℄ 7! [e�hp;si(C)℄From Lemmas 4 and 5 we have that �hp;si does not depend on the representative.Finally, we prove the 
ontinuity of the operators on the Alexandrov topology.Theorem 4. The mapping �hp;si is 
ontinuous on the Alexandrov topology.Proof. Consider hp; si 2 Pred� f+;�g. By Corollary 1, it is suÆ
ient to provethat if C;D 2 C R and � is a substitution appli
able to C su
h that C� � D thenthere exists a substitution �0 appli
able to e�hp;si(C) su
h that e�hp;si(C)�0 �e�hp;si(D).Let C;D 2 C R and � be su
h 
lauses and substitution and 
onsider �0 =� �V ar(e�hp;si(C)). Obviously �0 is appli
able to e�hp;si(C). Sin
e C� � D, in orderto prove e�hp;si(C)�0 � e�hp;si(D) we need only to 
onsider the 
ase when thereexists L 2 C su
h that [L 2 max(C) ^ pair(L) = hp; si℄.{ if L� 62 max(D), then e�hp;si(C)�0 � C� � D = e�hp;si(D){ if L� 2 max(D), then e�hp;si(C)�0 � C� � fL�g � D � fL�g = e�hp;si(D).6 Con
lusions and future workIn this paper General Topology and ILP, separated up till now, are broughttogether. In the �rst part of the paper, we have shown that the Alexandrovtopology is the natural translation of partial orders into General Topology. Withthis topology, we lose metri
 properties but it allows us to handle the subsump-tion order in a natural way and, in 
ertain sense, it settles down the notion of
loseness based on subsumption.The appli
ation that we present of General Topology to ILP is the 
ontinuityof the upward re�nement operators on the Alexandrov topology. For that we have



15developed a study about the relation between substitution and grafts, interestingby itself, and given a new formalization of the operators.In this formalization we apply the operator to a set of equivalent 
lauses in-stead of a unique 
lause. This serves our purpose, as the domain of the operatorsis a partial order, but it is also interesting by itself sin
e it avoids the problemof taking a representative. In many papers, renamings are s
orned and variant
lauses are 
onsidered identi
al. After that, a representative is taken from theset of equivalent under the assumption of that any representative would play thesame role when the operators were applied.This point is 
riti
al by dealing with upward re�nement operators, sin
e thegrafted variable has to be new for the 
hosen 
lause and taking a new variablefor all 
lauses (i.e. a variable out of the language L) has no logi
al sense. Byde�ning the operator on C R=� instead of C R , the problem is avoided.As main result, the 
ontinuity of these operators on the Alexandrov topologyhas been proved.This paper is a �rst approximation between ILP and General Topology. Wethink that the formal foundation of basi
 properties of the operators used in ILP,as 
ontinuity or 
onvergen
e, needs to 
larify and formalize the idea of 
losenessamong 
lauses. Our aim is going on with a deeper study of topologi
al propertiesof ILP te
hniques.Referen
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hni
al lemmas dealing with grafts and substi-tutions. The Lemma 7 will be used in the Theorem 3.Lemma 6. Let L be a literal, x a variable whi
h does not o

ur in L, � a sub-stitution, u 2 Pos(L), 
 a 
onstant, t a term and V ar� = V ar(L[u 
℄). ThenL[u x℄((�dV ar�) [ fx=tg) = L�[u t℄Proof. The proof is by indu
tion on the length of u, but noti
e before thatV ar(L[u x℄) = V ar� [ fxg and x 62 V ar�. Consider L = p(t1; : : : ; tn).Case 1: Suppose long(u) = 1.p(t1; : : : ; tn)[u x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; tu�1; x; tu+1; : : : ; tn)((�dV ar�) [ fx=tg)= p(t1�; : : : ; tu�1�; t; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; tu�; tu+1�; : : : ; tn�)[u t℄= p(t1; : : : ; tn)�[u x℄Case 2: Suppose the result holds for all positions of length m and let u be aposition of length m+ 1, u = î v with i � 1 and v 2 N+ with long(v) = m.p(t1; : : : ; tn)[u x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; tn)[î v  x℄((�dV ar�) [ fx=tg)= p(t1; : : : ; ti1 ; ti[v  x℄; ti+1; : : : ; tn)((�dV ar�) [ fx=tg)= p(t1�; : : : ; ti1�; ti[v  x℄((�dV ar�) [ fx=tg); ti+1�; : : : ; tn�)i:h:= p(t1�; : : : ; ti1�; ti�[v  t℄�; ti+1�; : : : ; tn�)= p(t1�; : : : ; ti1�; ti�; ti+1�; : : : ; tn�)[î v  t℄= p(t1; : : : ; tn)�[u t℄



17Lemma 7. Let L be a literal, x a variable whi
h does not o

ur in L, � a subs-titution, P 2 PN+ 
ompatible with L, 
 a 
onstant, t 2 Term and V ar� =V ar(L[P  
℄). ThenL[P  x℄((� �V ar�) [ fx=tg) = L�[P  t℄Proof. The result holds from Lemma 6 and the fa
t of being P an independentset of positions.Lemma 8. Let L be a literal, u 2 Pos(L), s1; s2 2 Term and � a substitutionsu
h that s1� = s2. Then L[u s1℄� = L�[u s2℄Proof. By indu
tion on the length of u.{ Suppose long(u) = 1. Thenp(t1; : : : ; tn)[u s1℄�= p(t1; : : : ; tu�1; s1; tu+1; : : : ; tn)�= p(t1�; : : : ; tu�1�; s1�; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; s2; tu+1�; : : : ; tn�)= p(t1�; : : : ; tu�1�; tu�; tu+1�; : : : ; tn�)[u s2℄= p(t1; : : : ; tn)�[u s2℄�{ Suppose the result holds for all positions of length m and let u be a positionof length m+ 1, u = î v with i � 1 and v 2 N+ with long(v) = m.p(t1; : : : ; tn)[u s1℄�= p(t1; : : : ; tn)[î v  s1℄�= p(t1; : : : ; ti1 ; ti[v  s1℄; ti+1; : : : ; tn)�= p(t1�; : : : ; ti1�; ti[v  s1℄�; ti+1�; : : : ; tn�)i:h:= p(t1�; : : : ; ti1�; ti�[v  s2℄�; ti+1�; : : : ; tn�)= p(t1�; : : : ; ti1�; ti�; ti+1�; : : : ; tn�)[î v  s2℄= p(t1; : : : ; tn)�[u s2℄Lemma 9. Let L be a literal, P 2 PN+ 
ompatible with L, � a substitution andlet t1 and t2 two terms su
h that t1� = t2. Then(L[P  t1℄)� = L�[P  t2℄Proof. By indu
tion on the 
ardinal of P .{ If P = ;, then (L[P  t1℄)� = L� = L�[P  t2℄{ If P = fug [ P 0 and u 62 P 0, then(L[P  t1℄)�= (L[fug [ P 0  t1℄)�= (L[P 0  t1℄)[u t1℄�= (L[P 0  t1℄)�[u t2℄ by Lemma 8i:h:= (L�[P 0  t2℄)[u t2℄= L�[P  t2℄



18In parti
ular, the last Lemma holds if t1 is a 
onstant. The next results are twostraightforward 
orollaries from Lemma 9.Corollary 2. If L is a literal, x a variable whi
h does not o

ur in L, � asubstitution su
h that x 62 Dom(�) and t 2 Term, then (L[P  x℄)(�[fx=tg) =L�[P  t℄.Proof. Immediate from Lemma 9 sin
e L� = L(� [ fx=tg) and x(� [ fx=tg) = t.Corollary 3. Let L be a literal, P � 2 PPN+ 
ompatible with L, � a substitutionand t1; t2 2 Term su
h that t1� = t2. Then (L[P �  t1℄)� = L�[P �  t2℄.Proof. It holds from 9 and the de�nition of 
ompatibility of P � (De�nition 11).


