A topological study of the upward refinement
operators in ILP

M.A. Gutiérrez-Naranjo, J.A. Alonso-Jiménez *, and J. Borrego-Diaz *

Dpto. Ciencias de la Computacién e Inteligencia Artificial — Universidad de Sevilla
{magutier,jalonso, jborrego}@cica.es
WWW home page: http://www-cs.us.es/{~naranjo, ~jalonso, ~jborrego}

Abstract. In this paper, General Topology and ILP are brought to-
gether. The closeness between clauses is formalized using a non-metric
topology which can be seen as the topological translation of the sub-
sumption order: the Alexandrov topology. The definitions of the upward
refinement operators in ILP are formalized as mappings ¢ : Cr /~ = C/~
where C/~ and Cg /~ are the quotients obtained from the set of clauses
C and the set of reduced clauses Cr via the equivalence relation based
on subsumption. Our main result is the proof of the continuity of these
operators on the Alexandrov topology.

1 Introduction

In the last years a growing interest in the study of topological properties of the
Logic Programming operators has arisen ([2,12-14]). However, to the best of
our knowledge, no study of the Inductive Logic Programming (ILP) operators
in the General Topology frame has been done.

In this paper we present a first approximation in ILP to the concept of close-
ness among clauses when this closeness is settled by a non—metric topology.
Usually, the intuition leads us to a notion of closeness based on a spatial rep-
resentation. So, two points A and B in the plane are closer than A and C if
the length of the segment which joins A and B is lesser than the length of the
segment which joins A and C'. This idea of closeness is associated to the concept
of distance as a function mapping a pair of points on a real number.

It was M. Fréchet in 1906 [3] who gave the conditions to consider a mapping
d: X x X — R as a distance

(Ve e X)d(z,z) =0

(Ve, yeX)d(:U,y) =0=>z=y

— (Vz,y € X)d(z,y) = d(y,z) (the condition of symmetry)
(Vz,y,z € X)d(z,2z) < d(z,y) + d(y,z) (the triangle inequality)

since then, that definition has been the base to the development of the theory
of metric spaces.

* Work partially supported by DGES (Spain), projects PB96-0098-C04-04 and PB96-1345

But in General Topology it is well known that endowing a set with a distance
mapping is not the unique way to formalize the closeness in a set. We can easily
find situations where the symmetry condition is not verified, as in problems of
nets based on flows or costs. In this cases Fréchet’s conditions are not appropriate
to formalize the notion of closeness.

If our unique interest is to endow the set with a distance mapping with-
out considering any relation between the elements, we can always consider the

discrete distance
0 ifA=B
dd(A’B)—{1 if A+ B

which satisfies the Fréchet’s conditions to be a distance, but it would hardly
have a practical usefulness.

In general, if we consider a non-symmetric relation on a set (as flows or costs)
it will be very difficult to find a distance mapping compatible with that relation.
In this paper we consider the set of clauses C with the subsumption relation
and show that the natural formalization of the idea of closeness is given by the
Alexandrov topology!.

Technically, this topology is the finest topology Tp whose natural order (the
so—called specialization order) is equal to the order which generates it, in this
case, the subsumption order, and it allows properties related to subsumption to
be translated into a purely topological context.

The main result is the continuity of the upward refinement operators on this
topology. Roughly speaking, this means that if two clauses are close, then their
refined clauses are close as well. For that we not only need to say what means
closeness but also to give a strict formalization of the operator which allows to
handle it as a mathematical object.

The operators will be formalized as mappings

p:Cr/~— C/~

where C/~ and Cg/~ are the quotients obtained from the set of clauses C and
the set of reduced clauses Cg via the equivalence relation based on subsumption.

The paper is organized as follows: In section 2 we give a brief exposition of
some basic definitions about logic and tree theory. In section 3, the specialization
order and the Alexandrov topology are studied and the narrow relation between
partial orders and the Alexandrov topology is shown. In section 4 our main result
is stated and proved. First, we present a study of substitution and grafts and
taking it as base, we give a new formalization of the upward refinement operators
and prove our main result: these operators are continuous on the Alexandrov
topology. Section 5 completes this result: the operator based on deleting a literal
from a clause is continuous on that topology, as well. In section 6 the conclusions
are presented and the paper is finished with the bibliography and an appendix
containing several technical results used in the main theorems.

1A good introduction to General Topology can be found in [19].

The principal references have been [1,10] for the foundations of Logic Pro-
gramming and the subsumption order, [4,5] for the tree theory, [6,17] for the
Alexandrov topology and [19] for General Topology.

2 Preliminaries

From now on, we will consider some fixed countable first-order language £ with
at least one function symbol. Var, Pred, Term and Lit are, respectively, the
sets of variables, predicate symbols, terms and literals of £. A clause is a finite
set, of literals and C is the set of all clauses. If A is a set, then |A] is the cardinal
of A, PA its power set, and if f is a mapping, f [4 is the restriction of f to A.

Let S C Var be a finite set of variables. A substitution is a mapping 6 :
S — Term such that (Vz € S)[z # 6(z)]. We will use the usual notation
0 ={x/t:x € S}, (where t = f(x) or 20 = t) and Dom(0) for the set S. If C
is a clause and Dom/(6) C Var(C), then 6 is called applicable to C. Obviously
 Ivar(c) is applicable to C.

A renaming is a 1-1 substitution 6 such that (V& € Dom(6)) [x8 € Var]. If §
is a renaming and L is a literal, then L and L are called variants. Analogously,
if C' is a clause and 6 is a renaming, C' and C8 = {LO| L € C} are variants.

Let L, L> be literals. Ly is called an instance of Lo, and it is denoted by
L1 > Lo, if there exists a substitution 6 such that Ly = Ls6. Let Li, Ls be
literals, then L; and L, are variants iff L, is an instance of L, and Ly is an
instance of L.

We follow Gallier [4] and Huet [5] for the issues related to positions and
grafts. A position is a finite sequence of n positive integers with n > 1. Let N*
denote the set of all positions. Two positions u and v are independent if u is not
a prefix of v and v is not a prefix of u. A set of positions P is independent if
(Vu,v € P)[u # v = u and v are independent)].

Let Pos(L) denote the set of all positions in L. If u € Pos(L), L/u denotes
the term rooted at u in L. Pos(L,t) denotes the set of all positions of the term
tin L. If t does not occur in L, then Pos(L,t) = @. Finally, if P C Pos(L), then
L/P ={L/u|u € P}. Any other notation has the usual sense.

We finish this section recalling the definitions of a graft at a position and at
a set of positions.

Definition 1. Let {t1,...,t,} be a set of terms, p a n—ary function symbol or
predicate symbol, s € Term and u a position. The graft of s at position u in
p(t1, ... tn), denoted by p(t1,...,t,)[u < s|, is defined as follows:

— Iflength(u) = 1, then
plt1, . stn)[u s =p(t1,. . tu—1, 8 tus1y- -, tn)
— Ifu=1iv withi > 1 and v € Nt, then

p(tl,...,tn)[u «— S] Zp(tl,...,ti_l,ti[’l) — S],tH_l,...,tn)

Note that if u,v € Nt are independent and s € Term, then
(Lu s])[v < s] = (L[v + s])[u + $]

Definition 2. Let L be a literal, s a term and P C Pos(L) an independent set
of positions. The graft of s at P in L is defined as follows:

— if P=10, then L[P + s] =L
— ifu € P and P' = P\{u}, then L[P < s] = (L[P' + s])[u « s].

3 The specialization order and the Alexandrov topology

This section gives a brief description of the Alexandrov topology. This topology
appears in a natural way in other fields of computer science ([15,17]) and, in a
certain sense, it is the natural way to see a partial order as a topological space.
We begin with some basic definitions from General Topology.

A topology on a set X is a collection 7 of subsets of X, called the open sets,
satisfying: (a) Any union of elements of 7 belongs to 7 (b) any finite intersection
of elements of 7 belongs to 7 and (c) # and X belong to 7. If T is a topology
on X, the pair (X,7) is called a topological space. If (X, 7T) is a topological
space and = € X, a neighborhood of z is a set U which contains an open set
containing x.

A topology on the set X is Ty iff whenever z and y are distinct points in X,
there is an open set containing one and not the other.

Let (X,Tx) and (Y, Ty) be topological spaces and let f : X — Y. Then f
is continuous at zg € X iff for each neighborhood V of f(zo) in Y, there is a
neighborhood U of z in X such that f(U) C V. We say f is continuous iff f is
continuous at each zg € X.

Definition 3. Let A and B be two sets and Ra and Rp two binary relations
on A and B. The mapping f : (A,Ra) — (B,Rg) is called a morphism if
(Vz,y € A)[xRay — f(z)RBf(y)].

The next equivalence is trivial. It will be used in the proof of Theorem 2.

Lemma 1. Let f : X — Y be a mapping between two partial orders. Then f is
a morphism iff (Vz € X)[f(1 z) C1 f(x)], where T ¢ ={z]c < z}.

Definition 4. Let (X, R) be a partial order. A set S C X is called a final
segment if (Vz,y)[z € SAzRy — y € S].

Definition 5. Given a topological space (X, T), the specialization order based
on the topology T is defined as

(Vz,y € X)[zRy & (VO € T)(z € O = y € O)]

Proposition 1 (4.1.3.(1) in [17]). A topological space (X, T) is To iff the
specialization order is a partial order.

From the above it follows that every Ty topological space has associated a partial
order in a natural way: the specialization order. Next, the other way round is
shown: Given a partial order we can find a topological space based on it.

Definition 6. Let (X, R) be a partial order. The Alexandrov topology based on
this order is the set T(X,R) = {S C X | S is a final segment of (X, R)}.

Note that the Alexandrov topology is actually a topology and it is Tp.

Some basic examples of this topology can be easily obtained by taking X = N,
the set of natural numbers and R the natural order ”<” or the partial order “be
divisible by”.

In order to see that the Alexandrov topology 7' (X, <) is the topological
translation of the partial order (X, <), we have to prove that the specialization
order based on the topology 7'(X, <) is again? the order <.

Theorem 1. Let 1V (X, <) be the Alexzandrov topology based on the partial order
(X, <) and let R be the specialization order based on that topology. Then (Vx,y €
X)(zRy &z < y).

Proof. (=) Since 1 z is a final segment and z €71 z, by hypothesis y €1 z. Then
x < y. (<) Suppose z < y and consider G € T(X, <) such that € G. Then,
by definition of final segment, y € G.

The section is finished with a result which shows the narrow relation between
morphisms and continuous mappings from a set on itself, viewed as partial order
or Alexandrov topology.

Proposition 2 (4.2.4 in [17]). Suppose that f : (X, Tx) = (Y, Ty) is a contin-
wous mapping between two topological spaces. Then f is a morphism with respect
to the specialization orders of Tx and Ty .

Theorem 2. Let f : (X, Tx) — (Y, Ty) be a mapping between two topological
spaces. If f is a morphism with respect to the induced specialization orders Rx
y Ry, T(X,Rx) C Tx and Ty CY (Y, Ry), then [is continuous.

Proof. Suppose ¢ € X and M a neighborhood of f(z). Then there exists N € Ty
such that f(z) € N C M. Since Ty C T (Y, Ry), N is a final segment in (Y, Ry)
and T f(z) € N. But 1 =z € Y(X,Rx) C Tx and = €71 z, hence 1 z is a
neighborhood of z in X, and by Lemma 1 f(1 z) C1 f(x). Consequently, f is
continuous in z.

Corollary 1. Let (X, <) be a partial order. Then f: X — X is continuous on
the Alexandrov topology V(X, <) iff f is a morphism with respect to <.

2 Actually, the Alexandrov topology is not the unique topology with this property,
but it is the finest one (see [6]).

4 The subsumption order

The application of General Topology to ILP shown in this paper is the continuity
of the upward refinement operators on the Alexandrov topology seen as mappings

p:Cr/~— C/~

where C/~ and Cg /~ are the quotients obtained from the set of clauses C and
the set of reduced clauses Cg via the equivalence relation based on subsumption.

In the generalization process, when a program P is too specific, we replace
it by P’ with the hope that P’ covers the examples better than P. The step
from P to P’ is usually done applying a refinement operator to some clause C
of P. These operators can be seen as mappings ¢ : C — C where C is the set of
clauses of the language.

Our purpose is to consider such operators as mathematical mappings and
study their continuity on the Alexandrov topology, which, as we have shown,
can be considered the natural way of formalizing the relation of closeness on
partial orders.

Since the subsumption relation between clauses is a quasi—order, but not a
partial order, instead of dealing with C, we formalize our operators as map-
pings between the partial orders® (Cg/~, =) and (C/~, =) endowed with their
respective Alexandrov topologies in the natural way.

We begin our description with the basic relations. The only point to be
noted here is that, because of technical reasons, 6 has to be applicable to C in
the definition of subsumption.

Definition 7. Let C and D be clauses. C subsumes D, C' = D, iff there exists
a substitution applicable to C' such that CO C D. If C = D and D » C then
C and D are equivalent and we will write it as C ~ D. A reduced clause is a
clause C' such that there is no proper subset D of C verifying D ~ C. We will
denote by Cg the set of all reduced clauses.

The next well-known result is due to Plotkin [11].

Proposition 3. Let C and D be reduced clauses. If C ~ D then C and D are
variants.

Since ~ is an equivalence relation, we will denote by C/~ and Cg/~ the res-
pective quotients. Moreover, if C' € C, [C] = {D € C|C ~ D} and if C € Cg,
[Clg = {D € Cr |C ~ D}. It is trivial to prove that the mapping i : Cgp/~—
C/~ defined by i([C]r) = [C] is a bijection.

Definition 8. The partial order =* on C/~ is defined as follows:
(V[C],[D] € C/~)([C] =" [D] & C = D)

The order >* is well-defined and it will cause no confusion if we use > instead
of »*.

® The use of Cr to deal with refinement operators is usual (see [18]).

4.1 Upward refinement operators (I)

Downward refinement operators were introduced by Shapiro in [16], later Laird
described in [7] a general framework for upward and downward refinement ope-
rators. In this paper, we follow Nienhuys-Cheng and de Wolf in [10].

The reader is expected to be familiar with these operators so we will leave
out their well-known description. Instead of it, we split our formal definition in
several steps.

Consider the one-literal clause Cy = {L} with L = p(f(z),a, f(z)). In or-
der to generalize* it, we have to obtain a new clause C5 such that there exists
a substitution applicable to Cy verifying C26 C Cy. For that, (a) we choose
a term ¢t in L, say t = f(z), (b) we choose several subsets of Pos(L,t), e.g.
P ={1},P, = 0,P; = {1,3}, (c) we choose a variable which does not occur
in L, say z1, and (d) we build the clause Cy = {L[P; + z]|i = 1,2,3} =
{p(z1,a, f(2)),p(f(x),a, f(x)),p(z1,a,z1)}. Obviously § = {z1/f(x)} is applica-
ble to CQ and 029 g 01.

Cr=A{ p(f(fﬂ),la,f(r)) }

P1:‘{1} P2|= Py = {1,3}
02 - { p(zl aaf(x))a p(f(f) a, (‘r))a p(21 aazl) }
Fig. 1

If the clause has several literals, for example, C; = {Ly, Lo, L3}, with L; =
p(f(z)), Ly = q(b, f(x)) and Ls = r(f(z), h(f(z))), the operation is done with
all literals simultaneously. First, the same term is chosen in every literal of C,
say t = f(z). Then, for each literal Ly € C4, some subsets of Pos(L;,t) are
chosen, e.g.,

Pt = {{1}} C PPos(L,1
PQ* = {{2}7 @} c PPOS(L2=t)
PS* = {{172'1}7 {1}} - PPOS(L37t)

After taking a variable which does not occur in C, say 21, the following sets are
built

L —— {p(an))
Ly ———— {q(b,21),a(b. (@)}
Ly ———— {r(z1,h(1)), r(z1, h(f(x)))}

Finally, the clause C is the union of these sets

Cy = {p(21), 4(b; 21), (b, £ (2)), 7 (21, 1(21)), 7 (21, h(f (%))}

* The generalization based on deleting a literal from the clause will be considered in
section 5.

In our general description, we will begin with a study of the relations between
substitutions and grafts.

4.2 Substitution vs. graft

The next definitions show how a term can be settled in a clause by a set of
positions. This construction will be useful to define the operator on Cg/~. If
C1,Cs € Cg and they are variants, then we can think about both simultaneously
by making abstraction of the terms and only handling sets of positions.

An equivalence class [C] € Cg /~ is the set of all variants of the reduced clause
C. Thus, we cannot refer directly to a term in [C] because each representative
will have distinct variables, but we can do abstraction from the terms and settle
them by their sets of positions.

The idea of abstracting term occurrences also appears in [9], but we study
it in a different way, since we consider clauses as sets, not as sequences. This is
slightly more general, since in sets the order of the elements is not important
and in sequences it is.

Definition 9. Let L be a literal. The set of positions P is called compatible
with L if P C Pos(L) and all terms rooted at positions of P are the same.
For example, if L = p(f(z),a, f(z)), then P, = {2}, P, = and P; = {1,3} are
compatible with L and P, = {1-1,2} and P5 = {1,4-3} are not. Moreover, note
that (a) if P is compatible with L, then P is independent, (b) if P C Pos(L),
then |[L/P| =0« P = and (c) P = {) is compatible with any literal L.

It is not necessary that which term is occurring at positions of P be known
to study its compatibility with L, since we can refer to it in an abstract way, by
using L and P.

Definition 10. Let P € PNt be compatible with the literal L. If u € P, then
Comp(L, P) = L/u. If P =0, we define Comp(L, P) = 0.
Note that if P #) is compatible with L, P settles a term in L.

The next definition extends the compatibility to sets of sets of positions.

Definition 11. Let P* € PPNT be finite and not empty. P* is called compati-
ble with the literal L if

— (VP € P*)[P is compatible with L] and
- (VP,P'€e P*)lue PAv€e P = L/u=L/v].

When this holds, we define

0, if P* = {0}
Comp(L,P), if P€ P* and P #)

For example, if L = p(f(z),a, f(z)), consider P, = {1,3}, P, = {1}, P3 = § and
P, = {2}. Suppose P = {Py, P5, P;} and Py = {P,, P,}. Then Pf is compatible
with L and Py is not. Moreover, Comp(L, P}') = Comp(L, Py) = f(x).

The next definition is basic in our formalization of the upward refinement
operators. Given L € Lit and P* € PPN*' compatible with L, for each P’ € P*
a literal L is generated by grafting a term ¢ in every position of P.

Comp(L, P*) = {

Definition 12. Consider o literal L, t € Term and P* € PPNt compatible
with L. We will define L[P* < t] = {L[P < t]| P € P*}.

For example, if L = p(f(z),a, f(z)), t € Term and Pj is taken from the last
example,
L[Pf < t]={L[P « t]| P € P}}
= {p(t,a,1), p(t,a, f(z)), p(f(z),a, f(2))}

Note that if P* = {(}, then L[P* + t] = {L[} «+ ¢]} = {L}.

Notice that if L is a literal, a variable which occurs in L, 8 a substitution
such that 6 = ¢, P be a set of positions compatible with L and & = Comp(L, P),
then P is compatible with L6 and ¢t = Comp(L#, P).

In the Appendix we prove several technical lemmas dealing with grafts and
substitutions which will be used in the proof of the main results.

4.3 Some previous mappings

Above we have seen how a term can be chosen from a literal with the help of a
compatible set of positions P. In this way, if a literal L is replaced by a variant
Lo, the analogous term is chosen, because this choice only depends on P.

Therefore, a refinement operator can be defined on [C] € Cg/~, since the
set of positions P will be which settles the term to be replaced in each variant
of C.

In next steps, we will define two mappings A : Lit — PPNt and A* : C —
PPPN' and some constraints will be imposed to make them compatible. The
idea behind this formalization is to guarantee that the same term is chosen in
every literal of the clause.

Definition 13. A mapping A : Lit — PPN' will be called an assignment of
positions for literals (L—assignment, for short). An L—assignment is called

— compatible with the literal L iff A(L) is compatible with L.
— compatible in Lit iff (VL € Lit) [A is compatible with L].
— a compatible morphism iff A is compatible in Lit and

A (Lit,>) = (PPN', C)
s a morphism.

For example, if a is a constant, then A : Lit — PPNT such that A(L) =
PPos(L,a) is a compatible morphism. The next Lemma is immediate.

Lemma 2. Let A : (Lit,>) — (PPN*,C) be a morphism and Ly, Ly € Lit. If
Ly and Ly are variants, then A(Ly) = A(Ls).

The next function A* can be seen as a preliminary version of the operator which
will be defined below. Given a clause C, A*(C) can be seen as a scheme of
how the generalization of C' will be. Notice that A* is independent not only
of the term replaced in C, but also of the term which will be grafted in the
generalization.

10

Definition 14. Let A : Lit — PPNT be an L-assignment. The assignment of
positions for clauses (C-assignment, for short) based on A, which will be denoted
by A*, is the mapping

A*:C — PPPN*
C = A*(C)={AL)|LeC}

Informally, A* maps a clause {Ly,..., L,} into the set {A(Ly),...,A(Ln)},

3 3 3

where A(L;) settles the positions of L; at which a term will be grafted.

Definition 15. Let A be a compatible morphism and C' a clause. The C'—assign-
ment A* is compatible with C if for all L, L' € C such that Comp(L, A(L)) #0
and Comp(L', A(L")) # 0 we have Comp(L, A(L)) = Comp(L', A(L")). When
this holds, we will define

_ 0, ifC=10
Comp(C, A) = {Comp(L, A(L), ifLeC
Formally, Comp(C, A) = J{Comp(L, A(L)) | L € C}. The C-assignment A* is
called compatible with C if for all C € C, A* is compatible with C.

The following one is a key transformation. In Definition 12 we have seen how to
get a set of literals from one of them by grafting a term. If the compatibility of
A* ig linked to the former, a new clause can be built by putting together every
set of literals obtained from their individual transformations.

Definition 16. Let A* be a C-assignment compatible with C and t € Term.
We define

ClA «] = | JILIA(L) « t]| L e C}

Note that if C is the empty clause then C[A « ¢] = (.
In this step C[A <«] is the clause obtained by grafting the term ¢ in each
literal L of C in accordance with A(L). Turning back to a previous example, if

Cy = {L1, Ly, L}, with Ly = p(f(z)), L2 = q(b, f(2)), Ls = r(f(x), h(f(2))),

and
A(Ly) =Py ={{1}}
A(L:) =Py ={{2},0}
A(Ls) = Py = {{1,2-1}, {1} }

and considering the constant a as the term to be grafted, then

ClA « a] = {p(a), q(b,a), q(b, f(2)),r(a, h(a)),r(a, h(f(z)))}

Notice that if A* is a C—assignment compatible with C, C; and Cy are two
equivalent reduced clauses and a is a constant, then the clauses Cy[A + a] and
C1[A «+ a] are equivalent as well. This is a key point in our definition of the
operator. Next we see the details.

11

4.4 The operators

The last definition allows us to get Cs from C; grafting a term ¢ at a set of
positions of some literals. The graft only depends on the set of positions fixed
by A and its compatibility guarantees that the same term is replaced in each
literal.

Our aim is defining the upward refinement operators as mappings

¢:Cr/~— C/~

In the last subsection we have shown how the clause C[A « #] can be obtained
by grafting the term ¢ at the positions settled by A. The step to the quotient
needs more attention. On the one hand, in the domain Cg, there is no problem
since two clauses are equivalent if and only if they are variants, and by Lemma
2, if two literals are variant, A chooses the same P* € PPNT for both. On the
other hand, the problem arises if the term grafted contains any variable z, since
in every [C] = {C" € C|C' ~ C} there exist clauses containing z.

We split the solution into several steps. Firstly, we study the grafts of cons-
tants. The next Proposition shows that grafts of constants and renamings are
commutative for C—assignments compatible with C.

Proposition 4. Let a be a constant, 8 a renaming and A* o C—-assignment
compatible with C. Then (C[A + a])f = CH[A + a]

Proof. If C =) the result holds trivially. Consider C; = {Li,...,LL} and
Cy = {L},...,L2} such that there exists a renaming 6 with L? = L} for all
i €{1,...,n}. We have the following

ColA © a] = UIIAIM(E?) « dl|i € {1,...,n}}
= U{L[A(L}) +a]|i e {1,...,n}} by Lemma, 2
= U{(L}A(L}) + a])0|i € {1,...,n}} by Corollary 3
= (U{LHA(L}) < a]|i € {1,...,n}})f
= (C1[A « a))0

From last Proposition we have that if a constant is grafted in two equivalent
reduced clauses, two variants are obtained. So, we can use this result to graft in
C' a variable which does not occur in C with help of a new constant and a choice
function.

The next steps are: (a) the selected term in C is replaced by a new constant
at positions fixed by A* and (b) all occurrences of that constant are replaced by
a variable which does not occur in C. That variable is determined by a choice
function.

Definition 17. A mapping f : C — Var is called a choice function if f(C) is
a variable which does not occur in C. Let f : C — Var be a choice function and
a a constant. We will define:

gf)? :Cpr — C
C = ¢%(C)={L[Pos(L,a) « f(C)] : L € C}

12

Informally, if f(C) = 2z € Var, $3(C) is the clause obtained by replacing in C
every occurrence of the constant a by the variable z.

Lemma 3. Let f : C — Var be a choice function and a a constant. If C1,Cy €
Cr are variants, then $$(C1) and ¢$(C2) are also variants.

Proof. The result holds trivially for the empty clause. If C; = {L},..., L.} and
Cy = {L%,..., L%} are variants, by Corollary 2, L}[Pos(L},a) + f(C1)] and
L?[Pos(L%,a) + f(Cs)] are instances of each other.

Next, we give our formal definition of upward refinement operator.

Definition 18. Let A* be a C-assignment compatible with C. Let a be a cons-
tant which does not belong to the language £ and let C, be the set of all clauses
of LU {a}. Let f : C, — Var be a choice function. We will define the mapping

f‘AJ : (CR — (g
C = I'ag(C) =3(C[A « a])

The upward refinement operator is defined as

FA’f : (CR/N — (C~/~
[C] = [Tas(C)]

From Proposition 4 and Lemma 3, we have that I's s does not depend on the
representative. Furthermore, since I'4 ; does not depend on f or a, (only on A),
we will write I'4 instead of I'a . Next we see an example.

Consider C; = {p(z, f(b)),q(z)} and Co = {p(y, (b)), q(y)}. They are two
reduced clauses and [Cy] ~ [Ca]. Let A* be a C—assignment compatible with C

such that
A(p(z, £(b))) = Alp(y, £(b))) = {{2} }
A(g(z)) = Aq(y)) = {0}

Let a be a constant which does not belong to the language. Then

Ci[A « a) = {p(z,a),q(z)}
Co[A « a] = {p(y,a),a(y)}

given the choice function f, f(C1[A « a]) is a variable which does not occur in
Ci[A + a], say f(C1[A « a]) = y. Analogously, say f(Ca[A + a]) = z. Then

we have _
Ia1(C1) = ¢3(C1[A a]) (z,9),q(x)}
I'a1(C2) = ¢3(C2[A « a]) (y,2),q(y)}

hence, I'A([C1]) = Fa([C2)) = [{p(2,y), a(x)}] = [{p(y, 2), a(v)}]-
As the example shows, these operators are not elementary (in the sense of
[10]), since there are no constraints on the nature of the terms settled by A.

={p
={p

13

4.5 Continuity

Next, the application of General Topology to ILP we present in this paper is
proved. Till now, we have the sets Cr /~ and C/~ and, for each C-assignment
compatible with C, we have a mapping I'A between them.

The natural structure of Cg /~ and C/~ is the partial order of subsumption
but, as we have seen in section 3, these sets can be seen as topological spaces
with help of the Alexandrov topology. We prove now that these operators are
continuous on that topology.

Theorem 3. The mapping 'a is continuous on the Alexandrov topology.

Proof. Let f be a function choice and a a constant which does not belong to L.
By Corollary 1, it is sufficient to prove that if C';, Cy € Cg and 6 is a substitution
applicable to C; such that C16 C C5 then there exists a substitution 6y applicable
to FA,f(Cl) verifying FA,f(Cl)QO - FA’f(Cz).

Let C1,Cs and 8 such clauses and substitution and consider L € fA7f(Cl) =
¢$(C1[A « a]). Then there exists Lo € C1 and Py € A(Lg) such that Lo[Py «
al] € C1[A + a] and L = Lo[Py < f(Ci)]. On the other hand, Lyf € Cy and
since A : (Lit,>) — (PPN',C) is a morphism, Py € A(Lgf), hence LoA[Py
a) € Cy[A a] and Lof[Py < f(Cs)] € T'a#(Cs).

Let 6o = 6 [var(cijaca]) U{f(C1)/f(Ca)}. Since 6y is applicable to fA7f(Cl), it
only remains to prove that fA’f(Cl)e() C fA,f(Cg), but (Lo[Po + f(C1)])bo =
(Lo[Po = F(CONE Ivar(Loiprea) U{F(C1)/f(C2)}), therefore, by Lemma 7,
we have (L(][P() «— f(C’l)])HO = Loe[P(] «— f(CQ)] and Le(] S FAJ(CE).

5 Deleting a literal

All classic refinement operators can be seen as particular cases of the mapping
I'y:Cg/~— C/~, except one. The fourth classic refinement operator allows us
to generalize a clause C' deleting a most general literal (Definition 19). In this
section, this operator is formalized and its continuity is proved.

Definition 19 (17.12 in [10]). A literal p(x1,...,2,) or —p(z1,...,2yn) is
most general with respect to a clause C' if x1,...,x, are distinct variables not
appearing in C.

Definition 20. Given C € C, maz(C) C Lit is the set of literals L such that L
is a most general literal with respect to C — {L}.

Note that a most general literal with respect to a clause is settled by its predicate
symbol and its sign: “4” for the positive ones and “—”for the negative ones.

Definition 21. Given L € Lit we will define pair(L) € Pred x {+,—} by the
pair (p,s) where p is the predicate symbol of L and s is its sign. For example,

pair(=p(z, f(a))) = (p/2,-).

14

Note that for any substitution 6, pair(L) = pair(L#). Next lemmas are straight-
forward from definitions.

Lemma 4. Let C U {L} be a reduced clause where L is a most general literal
with respect to C and let 6 be a renaming . Then CO U {LO} is a reduced clause
and LB is most general with respect to C9.

Lemma 5. Given C € Cg and L € max(C), if L' € C and pair(L') = pair(L),
then L' and L are variants.

Definition 22. Consider (p,s) € Pred x {+,—}. We define

Fip.s [C—AL}, if pair(L) = (p,s) N L € max(C)
B(0) = {C otherwise

Our formal definition of the fourth upward refinement operator is

BPs) . Cp)~ — QN
[C] = [BP(0)]

From Lemmas 4 and 5 we have that 3% does not depend on the representative.
Finally, we prove the continuity of the operators on the Alexandrov topology.

Theorem 4. The mapping 5P is continuous on the Alezandrov topology.

Proof. Consider (p, s) € Pred x {4+, —}. By Corollary 1, it is sufficient to prove
that if C, D € Cg and 6 is a substitution applicable to C' such that C'# C D then
there exists a substitution 8, applicable to 3(7*)(C) such that "% (C)8, C
309 (D).

Let C,D € Cg and 6 be such clauses and substitution and consider 8y =
0 [VM(E(},M(C)). Obviously 6y is applicable to 57*)(C). Since C# C D, in order

to prove 3P5)(C)8, C B7)(D) we need only to consider the case when there
exists L € C such that [L € maz(C) A pair(L) = (p, s)].

— if Lo € maz(D), then @p’S)(C)eo C CfC D =pBw)(D) _
— if LO € maz (D), then %) (C)8y C CO — {LO} C D — {LO} = B¢rs) (D).

6 Conclusions and future work

In this paper General Topology and ILP, separated up till now, are brought
together. In the first part of the paper, we have shown that the Alexandrov
topology is the natural translation of partial orders into General Topology. With
this topology, we lose metric properties but it allows us to handle the subsump-
tion order in a natural way and, in certain sense, it settles down the notion of
closeness based on subsumption.

The application that we present of General Topology to ILP is the continuity
of the upward refinement operators on the Alexandrov topology. For that we have

15

developed a study about the relation between substitution and grafts, interesting
by itself, and given a new formalization of the operators.

In this formalization we apply the operator to a set of equivalent clauses in-
stead of a unique clause. This serves our purpose, as the domain of the operators
is a partial order, but it is also interesting by itself since it avoids the problem
of taking a representative. In many papers, renamings are scorned and variant
clauses are considered identical. After that, a representative is taken from the
set, of equivalent under the assumption of that any representative would play the
same role when the operators were applied.

This point is critical by dealing with upward refinement operators, since the
grafted variable has to be new for the chosen clause and taking a new variable
for all clauses (i.e. a variable out of the language £) has no logical sense. By
defining the operator on Cg /~ instead of Cg, the problem is avoided.

As main result, the continuity of these operators on the Alexandrov topology
has been proved.

This paper is a first approximation between ILP and General Topology. We
think that the formal foundation of basic properties of the operators used in ILP,
as continuity or convergence, needs to clarify and formalize the idea of closeness
among clauses. Our aim is going on with a deeper study of topological properties
of ILP techniques.

References

1. K.R. Apt: From Logic Programming to Prolog. Prentice Hall, 1997

2. A. Batarekh and V.S. Subrahmanian: Topological Model Set Deformations in Logic
Programming. Fundamenta Informaticae XII, 3, 357-400, 1989

3. M. Fréchet: Sur quelques points du calcul fonctionnel. Reudicont del Circulo
Matematico di Palermo, vol 22, 1906.

4. J.H. Gallier: Logic for Computer Science Foundations of Automatic Theorem Prov-
ing. Harper & Row, Publishers, New York, 1986

5. G. Huet: Confluent Reductions: Abstract Properties and Applications to Term

Rewriting Systems. Journal of the Association for Computing Machinery, Vol 27,

No 4, pp 797-821, October 1980

P.T. Johnstone: Stone spaces. Cambridge University Press, 1982

P.D. Laird: Learning from Good and Bad Data. Kluwer Academic Publishers, 1988

L. Nachbin: Topology and order. D. van Nostrand Company, Inc., 1965.

S-H. Nienhuys-Cheng: Term partitions and minimal generalizations of clauses.

Technical Report EUR-FEW-CS-91-01. Department of Computer Science, Eras-

mus University, the Netherlands, 1991. http://www.few.eur.nl/few/research/

pubs/cs/1991/eur-few-cs-91-01.pdf

10. S-H. Nienhuys-Cheng and R. de Wolf: Foundations of Inductive Logic Program-
ming. LNCS 1228. Springer, 1997

11. G.D. Plotkin: A Note on Inductive Generalization. In Machine Intelligence 5, pp.:
153-163. Edinburgh University Press, Edinburgh, 1970.

12. AK. Seda: Some Applications of General Topology to the Semantics of Logic
Programs. Bull. European Association for Theoretical Computer Science 52 279-
292 1994.

© NS

16

13.

14.

15.
16.

17.

18.

19

7

A K.Seda: A Topological View of the Kowalski-van Emden Theorem. Bull. Euro-
pean Association for Theoretical Computer Science 53, 256-263, 1994

A K. Seda: Topology and the Semantics of Logic Programs. Fundamenta Informat-
icae 24 (4) 359-386 1995

S. Vickers: Topology via Logic. Cambridge University Press, 1989

E.Y. Shapiro: Inductive Inference of Theories from Facts. Technical Report 624,
Department of Computer Science, Yale University, New Haven, CT, 1981

M.B. Smyth: Topology. In Handbook of Logic in Computer Science Vol 1 Back-
ground: Mathematical Structures. Edited by: S. Abramsky, Dov M. Gabbay and
T.S.E. Maibaum. Oxford Science Publications, 1992. pp.: 641-761.

P.R.J. van der Laag, S.-H. Nienhuys-Cheng: Subsumption and refinement in
model inference. Technical Report EUR-FEW-CS-92-07. Department of Com-
puter Science, Erasmus University, the Netherlands, 1992. http://www.few.
eur.nl/few/research/pubs/cs/1997/eur-few-cs-92-07.pdf

. S. Willard: General Topology. Addison Wesley Publishing Company, 1970

Appendix

The following ones are several technical lemmas dealing with grafts and substi-
tutions. The Lemma 7 will be used in the Theorem 3.

Lemma 6. Let L be a literal, x a variable which does not occur in L, 6 a sub-
stitution, u € Pos(L), ¢ a constant, t a term and Var* = Var(L[u + c|). Then

Llu < z]((0]var) U{z/t}) = LOlu «+ t]

Proof. The proof is by induction on the length of u, but notice before that
Var(Llu « z]) = Var* U {z} and « € Var*. Consider L = p(ty,...,tp).
Case 1: Suppose long(u) = 1.

pty, - t)[u < 2]((0var) U{z/t})
= p(t17 R tu—lawatu-l—l: s :tn)((a[Var*) U {m/t})
= p(t10, ce. ,tu_lﬂ, t,tu+19, ce. ,tna)
= p(t10, R ,tu_lﬂ, tué,tu+10, C ,tnﬁ)[u — t]
= p(tla tes tn)a[u « $]

Case 2: Suppose the result holds for all positions of length m and let u be a
position of length m + 1, u = i"v with i > 1 and v € N* with long(v) = m.

s ..,tilé,tié,tiﬂé, Ces ,tne)[z“v — t]
toe o t)0lu 1]

Pt tn)[u & 2]((0]var-) U {z/t})
= p(tr,...,tn)[i"0 < 2]((Ovar) U {z/t})
= p(tl, ,til,ti[’l) — CU],tH_l, R ,tn)((a(var*) U {a:/t})
= p(t10, .. ,tilé,ti[v — ZE]((G |-Var*) U {w/t}),ti+19, - tné)
(16, 1, 0,100 < 10, ti516, . . ., 1,0)
(t,6
(

17

Lemma 7. Let L be a literal, x a variable which does not occur in L, 6 a subs-
titution, P € PNt compatible with L, ¢ a constant, t € Term and Var* =
Var(L[P « c|). Then

LIP + z]((0 [var) U{z/t}) = LOIP «]
Proof. The result holds from Lemma 6 and the fact of being P an independent

set of positions.

Lemma 8. Let L be a literal, u € Pos(L), s1,s2 € Term and 6 a substitution
such that s160 = so. Then

Liu < 1] = LO[u < s2]
Proof. By induction on the length of w.
— Suppose long(u) = 1. Then

p(tla tes tn)[u « 81]0
Pty tu 1,81, tugts 5 tn)f
p(tlﬂ, e ,tu,lﬂ, 819, tu+19, e ,tnG)
= p(t10, ce. ,tu_lﬂ, Sg,tu+10, ceey tné)
p(9, R ,tu_lﬂ, tué,tu+10, R ,tnﬁ)[u — 82]
p(t1, ..., tn)0u < s2]6

— Suppose the result holds for all positions of length m and let u be a position
of length m + 1, uw = i"v with ¢ > 1 and v € Nt with long(v) = m.

p(tla s 7tn)[u <« 51]0
= p(t1,...,tn)[i"v < 51]6
= p(tl, R ,til,ti[’l) — 81],ti+1, R ,tn)ﬁ
= p(t16, R ,tilﬁ, ti[’l) — 81]9, ti+19, R ,tné)
(116, . 1,0,V < 5210, 1110, ..., tn0)
= p(t197 cee :ti107 tiey ti+19: cee :tna)[lmv « 52]

= p(t1,...,tn)0u s2]

Lemma 9. Let L be a literal, P € PN compatible with L, 6 a substitution and
let t; and ty two terms such that t;0 = t5. Then

(L[P « #1])8 = LO[P + ts]
Proof. By induction on the cardinal of P.
— If P = (), then
(L[P + t1]))0 = L6 = LO[P + t9]
— If P={u}U P and u € P, then
(L[P — tl])é
(L[{u} U P" « t1])0
= (L[Pl — tl])[u — t1]0
(L[P' + t1])0]u + to] by Lemma 8
(

(LA ta))[u < to]

18

In particular, the last Lemma holds if ¢; is a constant. The next results are two
straightforward corollaries from Lemma 9.

Corollary 2. If L is a literal, x a variable which does not occur in L, § a
substitution such that x ¢ Dom(0) and t € Term, then (L[P < z])(fU{z/t}) =
LO[P + t].

Proof. Immediate from Lemma 9 since L = L(AU {z/t}) and z(U {z/t}) = t.

Corollary 3. Let L be a literal, P* € PPNt compatible with L, 0 a substitution
and t1,ta € Term such that t10 = ty. Then (L[P* < t1])0 = LO[P* < t5].

Proof. Tt holds from 9 and the definition of compatibility of P* (Definition 11).

