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Abstract. In this paper we present the certification of an algorithm in Acr2 for
translating formulas from Classical Propositional Logic (CPL) into polynomials over
a Boolean ring (Boolean polynomials). The main theorem states that this translation
is interpretation-preserving, i.e., that a CPL formula is equivalent to its associated
polynomial w.r.t. any given assignment of Boolean values to variables. CPL formulas
are represented in terms of just one Boolean function: the usual conditional construct
present in programming languages. The Boolean polynomial representation used is
also discussed. It is shown that the formalization chosen allows for a highly automated
proof development.

1 Introduction

As early as 1936, M. Stone noticed the strong relation existing between Boolean
algebras and Boolean rings. This was formally stated in Stone’s seminal paper [16],
but it probably dates back to 1927 by I. I. Zhegalkin [20]. This relation can be
extended naturally to transform CPL formulas into Boolean polynomials.

The importance of both works was not fully understood until many years later
with the development of Computer Science. Today, Stone’s work is the basis for the
“algebraic methods” of logical deduction. The algebraic approach began with the de-
velopment by J. Hsiang of a canonical term-rewriting system for Boolean algebras
with applications to first-order theorem proving [7,8]. Concurrently, D. Kapur and
P. Narendran used Grobner bases and Buchberger’s algorithm for the same purpose
[13]. See also [9,19]. This last method has been extended to many-valued proposi-
tional logics [5,18|. At the same time, Zhegalkin’s work has also become important
in logic circuit design.

In this paper we present the main results obtained through the development of an
automated proof of the fact that every CPL formula has an interpretation-preserving
translation into Boolean polynomials.

This proof has been carried up in AcL2 [10-12]. From a logic viewpoint, ACL2 is
a untyped quantifier-free first-order logic of total recursive functions with equality.
We will give a brief description of ACL2 in Sect. 2.

Representation issues are very important for the success of any certification work
and this case is not an exception. We have appreciated the elegance and simplicity
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of representing CPL formulas in terms of just one Boolean function symbol: the
three-place conditional present in most programming languages. This is discussed in
Sect. 3. Moreover, as it will be shown in Sect. 4, some considerations about Boolean
polynomials should be taken into account.

Section 5 presents the translation algorithm and includes an overview of the main
proof effort. As this algorithm is written in an applicative subset of COMMON LISP,
it is intrinsically executable. Some examples of execution are shown in Sect. 6.

Finally, we will discuss the degree of automation achieved and we will also ana-
lyze some possible extensions of this work, including a brief overview of the aspects
involved in the generalization of Boolean polynomials to obtain polynomials over
different algebraic structures.

2 A Brief Overview of AcL2

AcrL2 (A Computational Logic for Applicative Common Lisp) is the successor of
NQTuM [1, 3], the Boyer-Moore theorem prover. A concise description of ACL2 can
be found in [10]. In fact, it is necessary to approach AcCL2 from three different
perspectives to fully understand it.

2.1 AcL2 is a Computational Logic

AcL2 is a first-order quantifier-free logic with equality. Its syntaz is that of the Lisp
programming language. This means that a term in the logic is a constant, a variable
symbol or the application of a n-ary function symbol (or a A-expression) to n terms.

The set of azxioms includes those of propositional logic with equality and some
basic axioms that are needed to work with the usual data types. Inference rules are
the same as in propositional calculus with equality, adding variable instantiation,
induction and functional instantiation. The induction rule reduces theorem proofs
to finite sets of cases by a powerful form of mathematical induction on eg-ordinals.

The logic also includes two extension principles: the definitional principle and the
encapsulation principle. The former permits the introduction of new function symbols
with an axiomatic definition; the system only admits a function under this principle
if its termination can be guaranteed under certain conditions. The latter permits the
introduction of new function symbols constrained by axioms; to preserve consistence,
ACL2 requires “witnesses” of the existence of these functions to be exposed.

2.2 AcL2 is an Applicative Programming Language

Every AcL2 function admitted under the definitional principle is a Lisp function.
The converse does not hold. The execution of a function must only depend on their
arguments if we want to reason about it in ACL2.

Thus, we can think of ACL2 as an applicative programming language, that is, a
language in which the result of the application of a function is uniquely determined
by its arguments. More precisely, ACL2 can be regarded as a side-effect free subset
of COMMON LISP.
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2.3 AcL2 is an Automated Reasoning System

AcL2 uses several proof techniques when trying to prove a theorem. Each proof
technique can be viewed as a “process” receiving a formula as its input and producing
a set of formulas as its output. The input formula is a theorem if each of the output
formulas is a theorem.

The simplification process includes decision procedures for propositional logic,
equality, and linear arithmetic. It also deals with term rewriting and metafunctions
[2]. The destructor elimination process allows one to replace variables affected by
destructor operations with a term consisting of a constructor operation and fresh
variables.

The three following processes have a strong heuristic component. The cross fer-
tilization process decides when to use and discard equality hypothesis. The general-
ization process decides when to replace non-variable terms with fresh variables. The
irrelevance elimination process tries to discard those hypotheses not affecting the
validity of the conjecture.

The last process is induction. It tries to find a suitable induction scheme to prove
the conjecture.

3 Formulas

Next, we develop a formalization of CPL formulas in IF-form (IF-formulas) suitable
for our purposes. It is noteworthy that a normalized version of this kind of formulas
is in the heart of the OBDD family of algorithms [15], because a BDD is just a
graph-based representation for an IF-formula.

In fact, the NQTHM Boyer-Moore logic and its descendant ACL2 define the usual
propositional connectives after axiomatizing IF.

3.1 Representation

The underlying representation of IF-formulas is based on the notion of IF-cons.
IF-conses are weaker than IF-formulas in the sense that they may not represent well-
formed formulas. We use record structures, which come from CoMMON LISP and
have been formalized in AcL2 by B. Brock [4], to represent IF-conses. This provides
us with a weak recognizer predicate that we strengthen to develop a recognizer for
well-formed formulas.

Boolean constants, nil and t, are recognized by the ACL2 booleanp predicate.
The set of propositional variables could be then recognized by the following ex-
pression: (and (atom x) (not (booleanp x))), representing the set of atoms not
including the Boolean constants.

However, if we represent variables using natural numbers then it is easier to share
the same notion of variable in formulas and polynomials. Thus, we define our variable
recognizer, variablep, to recognize just natural numbers.

IF-conses. Our notion of IF-cons is captured by an ACL2 structure. An IF-cons
is just a collection of three objects or slots (the test, the then branch, and the else
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branch). We say that this notion is “weak” because no restrictions are imposed on
the types of the elements that can be stored in each slot.

The following invocation of defstructure defines a new constructor operation,
if-cons, and three destructor operations or readers: test, then and else. It also
creates an extensive theory for automated reasoning about specifications defined in
terms of this structure. The predicate if-consp will recognize terms constructed
with if-cons.

(defstructure if-cons test then else
(:options
(:conc-name nil)
(:weak-predicate if-consp)))

IF-formulas. Well-formed IF-formulas can be recognized by the following total
recursive ACL2 predicate:

(defun formulap (f)
(or (booleanp f) (variablep f)
(and (if-comsp f)
(formulap (test f))
(formulap (then f))
(formulap (else £)))))

3.2 Interpretation

An assignment of values to variables can be represented as a list of variables. Thus,
the value of a variable w.r.t. an assignment is t if the variable belongs to the list,
otherwise nil. The value of a formula w.r.t. an assignment is computed recursively:

1. A Boolean constant is assigned itself.
2. A variable is assigned its corresponding value in the assignment.
3. A well-formed non-atom formula is assigned:

(a) the value of its then branch, if the value of its test is t, or
(b) the value of its else branch, if the value of its test is nil.

To make the valuation function total, we assign an arbitrary meaning to non-
formulas. The value of a variable is computed by belongs.

(defun value (f a)
(cond ((booleanp f) f)
((variablep f) (belongs f a))
((if-consp f)
(if (value (test f) a)
(value (then f) a)
(value (else f) a)))
(t nil))) ; for completeness
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4 Polynomial Boolean Ring

Representation issues are especially important when dealing with multivariate poly-
nomials, due to the great variety of possibilities and to the differences between the
resultant algorithms.

Note that a dense representation would not be appropriate any more, because it
is tremendously space-inefficient (especially when the number of variables is high).
Consequently, we are assuming a sparse [6] representation. On the other hand, we
use a unnormalized representation [17], less efficient from the algorithmic point of
view, but which makes it easier to verify the properties.

It suffices with a polynomial Boolean ring for our current purposes, where mono-
mials do not need coefficients. However, we have implemented monomials with coef-
ficients and terms to reuse part of a major formalization effort on a polynomial ring
developed in a previous work [14].

We can use the ring (ZZ5,+, —,-,0, 1) as a coefficient ring for polynomials. How-
ever, an easier formalization is obtained by regarding the induced Boolean ring
(Z9,+,-,0,1), because the inverse of the first operation is not needed.

We have represented this induced Boolean ring as (z2p, +, *,null, identity) in an
AcL2 package named Z2. Internally, we have implemented it through the Boolean
ring (booleanp,xor,and,nil,t). The function xor is simply the logical exclusive
disjunction.

We obtain a quite simple representation of a Boolean term on a given set of vari-
ables by using the Boolean list of the exponents of the variables. Then it is proved
that Boolean terms form a commutative monoid w.r.t. a suitable multiplication op-
eration and that the lexicographical ordering on terms is well-founded.

Having chosen the set of variables, it suffices to “or” their exponents element by
element to compute the product of two compatible terms. A proof of terms having
a commutative monoid structure w.r.t. this operation is easily obtained.

To order terms it is only necessary to take into account their exponent lists. The
obvious choice is to set up a lexicographical ordering among them. It is not difficult
to prove that this relation satisfies the properties of a strict partial ordering (irreflex-
ivity and transitivity properties hold). Trichotomy is proved too. Well-foundedness is
considerably more difficult to prove: it is done by a proper embedding in £gp-ordinals.

A Boolean monomial is the product of a Boolean coefficient and a Boolean term.
Clearly, to represent a monomial it suffices to use a list whose first element is its
coefficient and whose rest is the accompanying term. A multiplication operation is
defined and then it is proved that monomials have a monoid commutative structure
w.r.t. it.

A Boolean polynomial is a finite sum of monomials. Therefore, a polynomial is
simply represented by a list of monomials. In order to decide whether two polynomials
are semantically equivalent, we must check that they belong to the same equivalence
class. This is done by computing their normal forms and examining whether they
are syntactically equal. A polynomial is said to be in normal form if their monomials
are strictly ordered by the decreasing term order and none of them is null.
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Then operations on polynomials are defined. To ensure that these operations and
the selected representation satisfy the fundamental properties everybody expects
from them, the existence of a Boolean ring structure is proved.

5 Translation of IF-Formulas into Boolean Polynomials

Next, we present the relation between Boolean rings and Boolean algebras and we
use it to derive the translation algorithm.

Theorem 1 (Stone). Let (B,V,A,—,0,1) a Boolean algebra, a,b € B and +, -
operators defined by a +b = (a A=b)V (—aAb) and a-b=aAb, then (B,+,-,0,1)
is a Boolean ring with identity. Conversely, let (B,+,-,0,1) be a Boolean ring with
identity, a,b € B and V, A\, — operators defined by avVb=a-b+a+b,aNb=a-b
and ~a = a+ 1, then (B,V,A\,—,0,1) is a Boolean algebra.

Now, let us consider a Boolean algebra and the following three place Boolean
function if, defined on it:

Va,b,c € B if(a,b,c) =(aANb)V (maAc) . (1)

This is the conditional construct found in almost every programming language.
By restricting a to 0 and 1, we have:

Vb,c € B if(1,b,c) =b and Vb,c€ B if(0,b,c)=c . (2)

We can build an associated if function in the domain of the corresponding
Boolean ring by applying Th. 1 to (1).

if(a,b,c)=a-b-(a+1)-c+a-b+(a+1)-c=a-b+a-c+c . (3)

The following ACL2 function uses this fact to compute the polynomial associated
to a formula (Stone polynomial). The function variable->polynomial transforms a
propositional variable into a suitable polynomial. The underlying polynomial Boolean
ring is represented by (polynomialp,+,*,null, identity).

(defun stone (f)
(stone-aux f (max-variable f)))

(defun stone-aux (f n)

(cond ((booleanp f) (if f (identity) (null)))
((variablep f) (variable->polynomial f n))
((if-consp f)

(let ((s-test (stone-aux (test f) n))
(s-then (stone-aux (then f) n))
(s-else (stone-aux (else f) n)))
(+ (* s-test (+ s-then s-else)) s-else)))
(t (null)))) ; for completeness

Of course, ACL2 proves that the Stone polynomial associated to a formula is
a polynomial. This result holds even if the formula is not well-formed, due to the
completion of the function stone-aux.
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(defthm polynomialp-stone
(polynomialp (stone f£)))

Next, we define the evaluation of a polynomial. This is a three-step process.
Note that we have to adapt the assignment to a suitable form before evaluating the
polynomial.

(defun ev (p v)
(ev-polynomial p (assignment->valuation v)))

We evaluate a polynomial by evaluating each of its monomials and adding the
results together. Each monomial is evaluated by multiplying its coefficient by the
evaluation of its term. In order to make the evaluation total, the following functions
are completed for non-polynomials and non-valuations.

(defun ev-polynomial (p v)
(cond ((or (not (polynomialp p)) (mot (valuationp v)))
(Z2::null)) ; for completeness
((nullp p) (Z2::null))
(t (Z2::+ (Z2::*% (coefficient (first p))
(ev-term (term (first p)) v))
(ev-polynomial (rest p) v)))))

(defun ev-term (te v)
(cond ((or (mot (TER::termp te)) (not (valuationp v)))
(Z2::null)) ; for completeness
((TER::nullp te) (Z2::identity))
((equal v nil) (Z2::null))
(t (and (or (not (first te)) (first v))
(ev-term (rest te) (rest v))))))

The hard part of the work is dealing with the following properties about the eval-
uation function and the polynomial operations. These theorems establish a morphism
between the Boolean ring (polynomialp,+,*,null,identity) and the Boolean ring
(booleanp, xor, and, nil, t) through the evaluation function.

(defthm ev-null
(equal (ev (null) x) nil))

(defthm ev-identity
(equal (ev (identity) x) t))

(defthm ev-+
(implies (and (polynomialp p) (polynomialp q) (assignmentp x))
(equal (ev (+ p q) x) (xor (ev p x) (ev q x)))))

(defthm ev-*
(implies (and (polynomialp p) (polynomialp q) (assignmentp x))
(equal (ev (* p q) x) (and (ev p x) (ev q x)))))

We also need to prove a similar property about the function that transforms a
propositional variable into a polynomial.

(defthm ev-variable->polynomial
(implies (and (variablep v) (assignmentp x) (variablep n) (<= v n)
(equal (ev (variable->polynomial v n) x) (belongs v x)))))
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Finally, we achieve the main result. It states that the translation of formulas into
polynomials preserves interpretation:

(defthm interpretation-preserving-translation
(implies (and (formulap f) (assignmentp v))
(iff (value f v) (ev (stone f) v))))

The proof found by ACL2 is done by induction, using the intermediate theorems
that we have presented. The induction scheme is derived from the recursion structure
of stone-aux. ACL2 devised this scheme and the whole subsequent proof on its own.

6 Execution Examples

We provide here some examples of execution under ACL2 of the translation algorithm,
stone, and the normalization function, nf. In order to make them more readable,
we are assuming in this section the following macro definitions.

(defmacro not (a) ’(if-cons ,a nil t))
(defmacro and (a b) ’(if-cons ,a (if-cons ,b t nil) nil))
(defmacro or (a b) ’(if-cons ,a t (if-cons ,b t nil)))

Due to the convention of using natural numbers as variables, we can think of 0
and 1 as the representations of the variables a and b, respectively.

For example, we can write (stone (or O (not 0))) to obtain the polynomial
associated to the tautology formula a V —a.

STONE !> (stone (or O (mot 0)))
(T (T)) (T () (T NIL))

The result stands for the polynomial a + a + 1 whose normal form is the identity
polynomial, as we can easily check:

STONE !> (nf (stone (or O (mot 0))))
((T NIL))

Next, the polynomial associated to the contradiction formula a A (b A —a) is
computed:

STONE !> (stone (and 0 (and 1 (not 0))))
(T (T ) (T (T D))

In this case, the result is the polynomial a-b+ a-b. We can also obtain its normal
form which is the null polynomial.

STONE !> (nf (stone (and 0 (and 1 (not 0)))))
NIL
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7 Conclusions and Further Work

An automated certification of an algorithm for translating CPL formulas to Boolean
polynomials has been presented. This algorithm is based on the strong relation ex-
isting between Boolean algebras and Boolean rings.

This work requires the formalization of polynomial Boolean rings. This includes
a lexicographical ordering on monomials, a normalization function and an induced
equivalence relation on which congruences can be defined.

This formalization of polynomials shares a common structure with [14], where
basic polynomial arithmetic on rationals is presented. The interested reader should
read this paper for many details that we have omitted here. Nevertheless, this work
had to be completed with the formalization of an evaluation function for Boolean
polynomials. Both works include arithmetic operations, ring properties, normaliza-
tion functions and some useful congruences.

The degree of automation achieved is acceptable, though some technical and
intermediate lemmas were required along the proofs. In addition, sometimes it has
been necessary to devise some induction schemes.

Although a portion of our previous polynomial formalization has been reused in
this work, we are working in abstracting the coefficient ring to obtain polynomials
over arbitrary rings. This presents several advantages, but the most important thing
is that it would allow the replacement of coefficients without affecting subsequent
proofs.

This can be achieved by using the encapsulation principle of the AcL2 logic to
constrain coefficient operations to the desired properties. Later, functional instanti-
ation can be used to obtain concrete implementations (e.g., polynomials over ZZ)).

Eventually, our current aim is to obtain a certified SAT decision procedure
through normalization using the basic results provided by this work. Counterexample
extraction capabilities would be also desirable.
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