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Abstract. We describe the development in ACL2 of a library of results about first-order
terms. In particular, we present the formalization of some of the main properties of the
complete lattice of first-order terms with respect to the subsumption relation. As a by-
product, verified executable implementations are obtained for some basic operations on first-
order terms, including matching, renaming, unification and anti-unification. This work can
be seen as a basis for further studies about the formal properties of automated reasoning
and symbolic computation systems.

In [9, 11] we described a formal ACL2 theory about equational reasoning and term rewriting
systems. In that work we used a library of definitions and theorems formalizing the lattice theoretic
properties of the set of first-order terms with respect to the subsumption relation. Nevertheless,
the results of this library have not been documented yet, except the verification of a unification
algorithm [10] (in fact, a preliminary Nqthm version). We think that these results are interesting
for themselves, so our intention is to describe them in this paper.

Our purpose when developing these results about first-order terms is twofold. From a theoretical
point of view, we proved in ACL2 that the set of first-order terms in a given signature is a well-
founded lattice with respect to the subsumption relation. And from a practical point of view, we
implemented and formally verified several basic algorithms on terms, including matching, renaming,
unification and anti-unification; these algorithms can be executed in any compliant Common Lisp
(with the appropriate files loaded).

The usefulness of this library has already been demonstrated: as we said above, our formalization
of equational reasoning and rewriting relies heavily on the work presented here. For that reason,
we think that it can be seen as a basis for further studies about the formal properties of automated
reasoning and symbolic computation systems.

As far as we know, there is no other complete formalization of the lattice properties of terms,
but we can mention some related works done in mechanical verification of properties of terms,
especially for unification algorithms. Paulson [6] describes the verification of a unification algo-
rithm using LCF. Rouyer [8] does the same using Coq. For some related work in the Boyer-Moore
theorem prover, see [4], where Kaufmann presents a formal proof of a generalization algorithm
used in PC-Nqthm. In [5], McCune and Shumsky present the ACL2 verification of a checker for
resolution/paramodulation proofs generated by the Otter theorem prover; in this work, the needed
theory about first-order terms was also formalized.

Due to the lack of space, we do not present details of the proofs here, and some function
definitions will be omitted. We urge the interested reader to consult the books provided by the
supporting materials (see also [12]), where the proofs are extensively documented. In each section,
we will specify the name of the book that contains the definitions and theorems described.

1 Introduction

We present in this section an informal description of the definitions and results we are going to
formalize using ACL2.
? This work has been supported by MCyT project TIC2000–1368–C03–02.



1.1 The complete lattice of first-order terms

A signature Σ is a family of sets 〈Σn : n ∈ ω〉. If f ∈ Σn, we say that f is a function symbol of arity
n. Given a signature Σ and a denumerable set X of variable symbols, the set of (first-order) terms
T (Σ, X) in the signature Σ is the smallest set containing X such that f(t1, . . . , tn) ∈ T (Σ, X)
whenever each ti ∈ T (Σ, X) and f ∈ Σn. Note that functions with variable arity are permitted.
A function σ : X → T (Σ, X) is a substitution if only a finite set of variables (the domain of the
substitution) are not mapped to themselves. If {x1, . . . , xn} is the domain of a substitution σ, then
the substitution is usually denoted as {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}; the set {σ(x1), . . . , σ(xn)}
is called the codomain of the substitution. A substitution σ can be extended to a function from
terms to terms in such a way that σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). A term t matches a term
s if σ(s) = t for some substitution σ. In that case, we write s ≤ t and say that t is an instance
of (or is more specific than) s or that s subsumes (or is more general than) t. We also say that σ
is a matching substitution for s and t. Subsumption is a quasi-ordering (a reflexive and transitive
relation) on the set of terms. The associated equivalence relation is denoted as ≡. A variable
substitution is a substitution such that its codomain is a subset of X. A renaming substitution is
a variable substitution such that restricted to its domain is injective. It can be proved that s ≡ t
if and only if there exists a renaming substitution θ, such that s = θ(t) and the variables of t are
contained in the domain of θ.

Also, it can be defined a subsumption relation on substitutions: σ ≤ δ if there exists a substi-
tution γ such that δ = γ ◦ σ where ◦ stands for functional composition. An equation is a pair of
terms, t1 ≈ t2. A substitution σ is a matcher (solution) of t1 ≈ t2 if σ(t1) = t2 (σ(t1) = σ(t2)), and
is a matcher (solution) of a system of equations S if it is a matcher (solution) of every member
of S. A solution of S is a most general solution (mgs) if it subsumes every other solution of S. A
unifier of t1 and t2 is a solution of the system {t1 ≈ t2} and a most general unifier (mgu) of t1 and
t2 is a mgs of that system. If there exists a unifier of two terms we say that the terms are unifiable.

We say that a quasi-ordered set 〈A,≤〉 is a lattice if for every x, y ∈ A a least upper bound
(lub) and a greatest lower bound (glb) exist. If only the existence of a glb (lub) can be assured,
we call this a lower (upper) semi-lattice. We say that the lattice is complete if a glb and a lub
exist for every B ⊆ A. A quasi-ordering ≤ is well-founded if there is no infinite descending chain
x1 > x2 > x3 > · · ·, where < is its associated strict partial order. If 〈A,≤〉 is a well founded lower
semi-lattice, and we take > /∈ A an additional top element, it can be proved that 〈A ∪ {>},≤〉 is
a complete lattice.

The set of first order terms in a given signature, with an additional top element, is a well-
founded complete lattice with respect to the subsumption quasi-ordering (see, for example, [3] or
[7]). In the sequel, we describe the formalization of these properties in the ACL2 logic and a proof
of them using the theorem prover.

1.2 An overview of the paper

We now give a thorough top-level view of the ACL2 formalization and proofs described in the
following sections:

• In section 2 we discuss how we represent terms and substitutions, and the impact of this
representation on the mechanization of the proofs. We adopt the point of view of considering
every ACL2 object as the representation of a term, and the same is done for substitutions.
Emphasis is placed on the style of definitions by mutual recursion on terms and lists of terms,
which resembles standard definitions by recursion on the structure of terms, and suggests to
the prover induction schemes very close to induction on the structure of terms.

• Section 3 describes the formalization in ACL2 of the subsumption quasi-ordering. For that
purpose, we define and verify a matching algorithm. This algorithm is defined by a rule based
transformation system acting on systems of equations. Given this verified matching algorithm



we can easily define the subsumption relation between terms. We finally prove that this relation
is a well-founded quasi-ordering.

• In section 4, we define equivalence between terms (with respect to subsumption) and the
concept of renaming substitutions, proving that two terms are equivalent if and only if there
exists a renaming substitution transforming one term in the other. We also define and verify a
function that renames the variables of a term, that can be used for standardization apart.

• A proof of the existence of a greatest lower bound (with respect to subsumption) of every pair
of terms is described in section 5. This is done by means of the verification of an anti-unification
algorithm. Emphasis is done in compositional reasoning techniques used in this proof effort.

• Section 6 describes the verification of a unification algorithm. To state the properties of this
algorithm, we previously define and verify the subsumption relation between substitutions and
the concept of idempotent substitutions. The unification algorithm is defined and verified in a
similar style to the matching algorithm, following a rule-based transformation system. Having
verified the unification and renaming algorithms, we can define and verify a function obtaining
a least upper bound of every pair of unifiable terms.

• Although the theorems and definitions in sections from 2 to 6 are proved considering that
every ACL2 object represents a first-order term, in section 7 we define well-formed terms in a
given signature and prove that the above operations are closed with respect to the terms in a
signature. We also discuss guard verification of the functions defined.

• In section 8 we compile all the theorems proved, showing that the set of first-order terms in
a given signature (plus an additional top term) is a well-founded lattice w.r.t. subsumption.
Finally, in section 9 we discuss some conclusions and further work.

2 Representation of first-order terms and substitutions

The definitions and results described in this section appear in the books basic.lisp and terms.-
lisp of the supporting materials. We will represent first-order terms in ACL2 using lists, in prefix
notation. We could define a predicate in ACL2 recognizing those objects that represent first-order
terms in a given signature. In fact, this is done in section 7, when we talk about guard verification
of the functions presented here. But for the moment we will assume, instead, that every ACL2
object represents a term. We only distinguish between variable and non-variable terms:

(defun variable-p (x) (atom x))

Every consp object can be seen as a non-variable term with its car as its top function symbol
and its cdr as the list of its arguments. In this way, every first order term for a given signature
can be represented. For example, the term f(x, g(y), h(x)) is represented as (f x (g y) (h x)).
“Non-proper” terms have to be considered with this wider representation, because the list of its
arguments can be non-proper. For example, the term (f x (g y . 1) (h x) . 3) has the same
structure than the above term, but it is a different (non-proper) term.

As we will see, the theorems we proved do not need hypothesis regarding the type of the
objects involved; this means that our results are also valid for these non-proper terms, and that
we are formalizing a theory that strictly contains first-order terms. Our definitions deal with these
non-proper terms in a natural way, although they are not in the intended domain of the functions.

Of course, to ensure that our formalization is correct, we also have to prove “closure” properties
for the main operations acting on terms. For example, we proved that the most general instance
of two objects representing terms in a given signature is an object representing a term in the same
signature. A discussion about this closure properties will be done in section 7.

Substitutions are represented as association lists, binding variables to terms. The following
function val returns the term that a substitution associates to a variable:



(defun val (x sigma)
(if (endp sigma)

x
(if (eql x (caar sigma)) (cdar sigma) (val x (cdr sigma)))))

Note that val is different from the primitive function assoc, because the variables that are
not in the domain of a substitution are mapped to themselves. As with terms, we will assume that
any ACL2 object represents a substitution (whose functional behavior is described by this function
val) although we can also define a predicate recognizing those objects that represent substitutions
in a given signature, as we will do in section 7. But unlike terms, different ACL2 objects may
represent the same substitution, from a functional point of view. Thus, we cannot use equal to
state the equality of two substitutions; instead, we have to state that they behave in the same way
as functions.

The function apply-subst defines the application of a substitution to a term (or list of terms)
by mutual recursion, using a standard trick. If flg is not nil, (apply-subst flg sigma term)
is the term obtained by applying the substitution sigma to term. The value of (apply-subst nil
sigma term) is the list of terms obtained by applying sigma to the list of terms term. We also
define the macro instance to abbreviate applications of substitution to terms (i.e. with flg=t):

(defun apply-subst (flg sigma term)
(if flg

(if (variable-p term)
(val term sigma)

(cons (car term)
(apply-subst nil sigma (cdr term))))

(if (endp term)
term

(cons (apply-subst t sigma (car term))
(apply-subst nil sigma (cdr term))))))

(defmacro instance (term sigma) ‘(apply-subst t ,sigma ,term))

The definition of apply-subst is a typical definition by recursion on the structure of terms and
this style of definitions is extensively used in our development. The function is defined for terms
and for lists of terms, using a flag flg to implement mutual recursion; then, the intended definition
on terms is a particular case, when flg=t. As a consequence, most of our results about terms are
also proved for lists of terms. The reason is that this kind of definitions suggests to the prover an
induction scheme very close to induction on the structure of terms1.

Let us illustrate all these questions, describing how we state a theorem verifying the definition of
a function implementing the composition of two substitutions. We define the function composition
as follows:

(defun composition (sigma1 sigma2)
(if (endp sigma2)

sigma1
(cons (cons (caar sigma2) (instance (cdar sigma2) sigma1))

(composition sigma1 (cdr sigma2)))))

Given two substitutions sigma1 and sigma2, this function returns an association list represent-
ing the functional composition of sigma1 and sigma2. If we want to prove that this definition of
1 This style of definitions is taken from [4]. An alternative approach, followed in [5], could be to define a

main function that operates on lists and an auxiliary function that operates on a single term.



composition meets the property (σ ◦ δ)(t) = σ(δ(t)), for every term t and substitutions σ and δ,
we generalize the property taking into account terms and lists of terms, establishing the following
theorem:

(defthm composition-of-substitutions-apply
(equal (apply-subst flg (composition sigma1 sigma2) term)

(apply-subst flg sigma1 (apply-subst flg sigma2 term))))

Two remarks are worth pointing here, regarding the statement of this theorem. First, note that
the theorem is true for all ACL2 objects term, sigma1 and sigma2, and no additional hypothesis
about them are needed. Thus, the definitions of apply-subst and composition are “consistent”
with non-proper terms and substitutions. Second, since the theorem is stated generalizing the
result for terms and for lists of terms, the heuristics of the prover lead to a proof attempt with the
induction scheme suggested by apply-subst. This induction scheme is, in essence, an induction on
the structure of term (the kind of proof a mathematician would do by hand). With this induction
scheme, the theorem is proved without assistance from the user.

3 The subsumption relation

Having defined the notion of instantiation of a term by a substitution, we can define the subsump-
tion relation between terms, and even prove that subsumption is a well-founded quasi-ordering.

3.1 A matching algorithm

Recall that the subsumption relation is defined as “s ≤ t if and only if there exists a substitution
σ such that σ(s) = t”. Because of our quantifier-free logic, we need to define the subsumption
relation between terms in a more constructive way. That is, we define a matching algorithm, that
given two terms, finds, if it exists, a substitution that applied to the first term gives the second
(i.e., a matching substitution). The algorithm we verify is described by the following set of trans-
formation rules, a modified version of the transformation rules given by Martelli and Montanari
for a unification algorithm (section 6):

Bind: {x ≈ t} ∪R; T ⇒s R; {x 7→ t} ∪ T if x ∈ X and x /∈ dom(T )
Fail-Bind: {x ≈ t} ∪R; T ⇒s nil if x ∈ dom(T ) and T (x) 6= t
Delete: {x ≈ t} ∪R; T ⇒s R; T if x ∈ dom(T ) and T (x) = t
Fail-Var: {f(s1, . . . , sn) ≈ x} ∪R; T ⇒s nil if x ∈ X
Decompose: {f(s1, . . . , sn) ≈ f(t1, . . . , tn)} ∪R; T ⇒s {s1 ≈ t1, . . . , sn ≈ tn} ∪R; T
Conflict: {f(s1, . . . , sn) ≈ g(t1, . . . , tm)} ∪R; T ⇒s nil if n 6= m or f 6= g

These rules act on two systems of equations: the first one with the equations to be matched and
the second one with the matcher partially computed. To obtain a matcher of a system S, one starts
with the pair of systems S; ∅ and apply the rules (non-deterministically) until nil is detected or
until the first system is empty. In the first case, there is no matcher for S. In the latter case, the
second system is a matcher of S. We implemented this rule-based matching algorithm in ACL2,
by means of a function match-mv, whose definition appears in figure 1.

The auxiliary function pair-args is used to implement the rules Decompose and Conflict.
Given two lists (l1 . . . ln) and (m1 . . . mk), this function returns the list ((l1 . m1) . . . (ln .
mk)) if n = k, failure otherwise2. The function transform-subs applies one step of transformation
(with respect to ⇒s) to a pair of systems of equations. The function subs-system iterates the
2 For efficiency reasons, the function returns a multi–value with two elements, the first one returning the

list of pairs and the second one returning a boolean denoting success or failure.



(defun transform-subs (S match)
(let* ((equ (sel-match S)) (R (eliminate equ S))

(t1 (car equ)) (t2 (cdr equ)))
(cond ((variable-p t1)

(let ((bound (assoc t1 match)))
(if bound

(if (equal (cdr bound) t2)
(mv R match t) ;;; DELETE

(mv nil nil nil)) ;;; FAIL-BIND
(mv R (cons (cons t1 t2) match) t)))) ;;; BIND

((variable-p t2) (mv nil nil nil)) ;;; FAIL-VAR
((eql (car t1) (car t2))
(mv-let (pairs bool)

(pair-args (cdr t1) (cdr t2))
(if bool

(mv (append empareja R) match t) ;;; DECOMPOSE
(mv nil nil nil)))) ;;; CONFLICT1

(t (mv nil nil nil))))) ;;; CONFLICT2

(defun subs-system (S match bool)
(declare (xargs :measure (length-system S)))
(if (or (not bool) (not (consp S)))

(mv S match bool)
(mv-let (S1 match1 bool1)

(transform-subs S match)
(subs-system S1 match1 bool1))))

(defun match-mv (S)
(mv-let (S1 sol1 bool1) (subs-system S nil t) (mv sol1 bool1)))

Fig. 1. A matching algorithm

application of these transformation steps, starting with a given pair of systems, until failure is
detected or the first system is empty. The function match-mv applies subs-system starting with
an empty system of initial bindings.

Note that (match-mv S) returns a multi-value consisting of two values: the second is a boolean
indicating success or failure of matching. In case of success, the first value is a matcher of S3. The
following theorems verify that this is indeed the behavior of match-mv:

(defthm match-mv-soundness
(implies (second (match-mv S))

(matcher (first (match-mv S)) S)))

(defthm match-mv-completeness
(implies (matcher sigma S)

(second (match-mv S))))
3 Note the use of a multi–value to indicate success or failure in a separated value, in order to distinguish
nil as failure from the empty substitution nil. This is often used in our formalization, sometimes for
this reason and sometimes to distinguish nil as failure from the term nil (which represents a variable).



The proof of these theorems is clearly separated in two parts. First, we show that there are
invariants that are preserved in each step of transformation: in this case, these invariants are the
set of matchers of the pair of systems and the fact that the second system is a matcher of itself.
Second, transformations are terminating: the number of symbols in the first system decreases in
every transformation step. Thus if match-mv terminates with failure, the initial system of equations
has no matchers; otherwise, the substitution obtained is a matcher of itself, and consequently it is
a matcher of the initial system.

In a preliminary version of this work, a more classical subsumption algorithm defined recursively
on the terms structure was verified, having the same properties as above. Nevertheless, when
we verified a rule-based unification algorithm (section 6), we decided to design a a rule-based
subsumption algorithm and apply the same techniques to its verification. We think that this rule-
based approach turns out to be more suitable for mechanical verification, since the proof effort was
reduced by the following facts4 (see [2]):

– Termination aspects of the algorithm are clearly separated. We can reason about the algorithm
before proving its termination.

– Properties of the algorithm are identified as invariants that are preserved in each step of
transformation.

– A family of algorithms can be verified with the same effort, getting a clean separation of logic
and control.

Let us explain more about the last point. In our definition of transform-subs, we use a function
sel-match to select an equation from the system of equations to be matched. The selected equation
determines the transformation rule to apply. In this particular case, sel-match tries to detect as
soon as possible a failure in the matching process, because we intend to use this matching algorithm
in contexts where matching fails most of times (e.g. in term rewriting). But any other selection
function would be sound. In fact, we verified the algorithm with a partial definition of the selection
function (only assuming, via encapsulate, that it selects an element from every non-empty list).
The properties of a particular matching algorithm with a particular selection function are then
easily proved by functional instantiation.

In the book matching.lisp we prove the properties of the general matching algorithm, and in
subsumption.lisp we define match-mv and prove its properties by functional instantiation.

3.2 The subsumption quasi-ordering

As a particular case of match-mv, we can define a matching algorithm for pairs of terms t1 and
t2, named subs-mv, applying match-mv to (list (cons t1 t2)). For the sake of readability, we
define the function subs to return the second value of subs-mv and the function matching to
return the first value of subs-mv. Then we prove the following theorems, easy consequences of the
properties of match-mv:

(defthm subs-soundness
(implies (subs t1 t2)

(equal (instance t1 (matching t1 t2)) t2)))

(defthm subs-completeness
(implies (equal (instance t1 sigma) t2)

(subs t1 t2)))

4 Nevertheless, having said the advantages of a rule-based specification, it is also true that some operations
acting on terms, like renaming variables or anti-unification of two terms are more naturally implemented
by recursive definitions on the structure of the terms.



These two theorems state that subs defines the subsumption relation between terms: (subs
t1 t2) if and only if there exists a substitution (given by (matching t1 t2)) such that applied
to t1 gives t2. In order to develop a theory independent from a particular implementation of a
matching algorithm, it is remarkable that the theory we develop about the subsumption relation
will be deduced exclusively from these two properties5.

3.3 A well-founded quasi-ordering

The first basic fact that we can prove about the subsumption relation is that subsumption is a
quasi-ordering:

(defthm subsumption-reflexive (subs t1 t1))

(defthm subsumption-transitive
(implies (and (subs t1 t2) (subs t2 t3)) (subs t1 t3)))

Both properties are easily proved using a suitable instance of the theorem subs-complete-
ness. For example, for the transitive property, we can prove (subs t1 t3) by giving the matching
substitution (composition (matching t2 t3) (matching t1 t2)). This is a typical use of the
completeness property of subs in our formalization.

We can also prove that (strict) subsumption is a well-founded ordering. The intuitive idea is
that if t1 strictly subsumes t2, then the size (number of symbols) of t1 is less or equal than the
size of t2. In case of equal sizes, the number of distinct variables is greater in t1 than in t2, and
this number is bounded by the number of variable positions of t1 (or t2). The following function
defines a lexicographic ordinal measure on terms reflecting this idea:

(defun subsumption-measure (term)
(cons (1+ (size t term))

(- (len (variables t term)) (len (make-set (variables t term))))))

The functions size and variables compute the size and the list of variables of a term, respec-
tively, and they are defined recursively on the term structure (for terms and for lists of terms). The
function make-set eliminate duplicates from a list. If we define (strict-subs t1 t2) as (and
(subs t1 t2) (not (subs t2 t1))), we can prove the following theorem:

(defthm subsumption-well-founded
(and (e0-ordinalp (subsumption-measure t1))

(implies (strict-subs t1 t2)
(e0-ord-< (subsumption-measure t1)

(subsumption-measure t2)))))

In the meta-logic, this means that the subsumption relation is well-founded. This result, for
example, can be used to prove properties of terms by induction based on subsumption. The proof
of this theorem is somewhat elaborated and depends on our particular representation of terms as
lists. See the book subsumption-well-founded.lisp for a detailed description of the proof.

4 Equivalent terms and renamings

We study in this section the equivalence relation induced by the subsumption quasi-ordering and
we describe the verification of a function that renames the variables of a term.
5 We also used a closure property about subs and matching. See section 7.



4.1 Renamings and renamed terms

The function renamed defines the relation ≡ on first-order terms6:

(defun renamed (t1 t2)
(if (subs t1 t2) (if (subs t2 t1) t nil) nil))

One interesting property of the function renamed is that (renamed t1 t2) holds if and only
if there exists a renaming substitution (with its domain containing the variables of t1) such that
applied to t1 obtains t2. We describe now the formalization of this theorem. First, the function
renaming defines the notion of renaming substitution:

(defun renaming (sigma)
(and (variable-substitution sigma)

(no-duplicatesp (co-domain sigma))))

Here variable-substitution defines variable substitutions; note also that we use no-dupli-
catesp to implement the notion of injective substitution on its domain. The following theorems
prove the relation between renaming and renamed:

(defthm renaming-implies-renamed
(implies (and (renaming sigma)

(subsetp (variables t term) (domain sigma)))
(renamed (instance term sigma) term)))

(defthm renamed-implies-renaming
(let ((ren (normal-form-subst t (matching t1 t2) t1)))

(implies (renamed t1 t2)
(and (renaming ren)

(equal (instance t1 ren) t2)))))

The first theorem states that if we apply a renaming sigma to a term term whose variables are
contained in its domain, we obtain an equivalent term w.r.t. subsumption. This theorem is easily
proved showing that the inverse substitution of sigma is a matching substitution for (instance
term sigma) and term.

The second theorem has a more complicated proof. It establishes that for every two equivalent
terms t1 and t2 there exists renaming substitution such that applied to t1 obtains t2. Note that in
this case we cannot deduce that (matching t1 t2) is a renaming substitution (at least using only
the soundness and completeness theorems about subs). But we can transform this substitution in
order to obtain a renaming substitution that acts in the same way on t1. This transformation is
done by (normal-form-subst t (matching t1 t2) t1) and, in essence, restricts the substitution
to the variables of t1, considered without repetitions. See the details of this proof in the book
renamings.lisp.

Another interesting point about renamed is that we can define it as an equivalence relation in
ACL2, allowing congruence rewriting with respect to subsumption:

(defequiv renamed)

(defcong renamed iff (subs t1 t2) 1)

(defcong renamed iff (subs t1 t2) 2)
6 Recall that we are only assuming the soundness and completeness properties of subs. We define the

function renamed in this way (instead of the more natural (and (subs t1 t2) (subs t2 t1))) in order
to force a boolean value, needed later to prove (defequiv renamed).



From the theorem prover point of view, these three events allows rewriting of equivalent terms,
in contexts where the subsumption relation appears. This congruence-based rewriting turns out
to be very useful to mechanize the proof of some theorems, as we will describe in the following
subsection.

4.2 Renaming the variables of a term

Later, when we define the most general instance of two terms, we will need to rename the variables of
the terms, obtaining equivalent terms with separated variables (this is usually called standardization
apart). In general, renaming variables of a term is an operation often used in automated reasoning.
For that purpose, we define a function that renames the variable of a term to numeric variables
(recall that variables are atomic objects). This function, called number-rename is presented in
figure 2.

(defun number-rename-aux (flg term sigma x y)
(if flg

(if (variable-p term)
(let ((find-term (assoc term sigma)))

(if find-term
(mv (cdr find-term) sigma)

(let ((z (if (endp sigma) x (+ y (cdar sigma)))))
(mv z (cons (cons term z) sigma)))))

(mv-let (renamed-args renaming-args)
(number-rename-aux nil (cdr term) sigma x y)
(mv (cons (car term) renamed-args) renaming-args)))

(if (endp term)
(mv term sigma)

(mv-let (renamed-car renaming-car)
(number-rename-aux t (car term) sigma x y)
(mv-let (renamed-cdr renaming-cdr)

(number-rename-aux nil (cdr term) renaming-car x y)
(mv (cons renamed-car renamed-cdr)

renaming-cdr))))))

(defun number-rename (term x y)
(mv-let (renamed renaming)

(number-rename-aux t term nil x y)
renamed))

Fig. 2. A renaming algorithm

The expression (number-rename term x y) is the term obtained from term by replacing its
variables by numbers, starting with the number x. Every time a new variable is found when travers-
ing term, it is replaced by a new variable obtained adding y to the last numeric variable assigned.
The function number-rename-aux implements this recursive process, for terms and for lists of
terms; to take into account previous bindings, an extra parameter sigma is used. This function
number-rename-aux returns as a multi–value the renamed term and the renaming substitution
finally computed.



The main property of number-rename is that (when its third argument is not 0) it obtains a
renamed version of the original term. This is established in the following theorem:

(defthm number-renamed-term-renamed-term
(implies (and (acl2-numberp x) (acl2-numberp y) (not (= y 0)))

(renamed (number-rename term x y) term)))

In the book renaming.lisp it is described in detail the proof of this theorem, done by recursion
on the term structure. It is remarkable that, since renamed is declared to be an equivalence relation,
this theorem is stored as a rule to rewrite renamed terms to the original term, if this renamed term
appears as an argument of the subsumption relation. This is very useful from the reasoning point
of view, and makes easy to manage renamed terms in the proofs of the theorems.

Finally, we state a property that will be useful to reason about the process of standardization
apart:

(defthm number-rename-standardization-apart
(implies (and (acl2-numberp x1) (acl2-numberp x2)

(< x1 x2) (< y1 0) (< 0 y2))
(disjointp (variables t (number-rename t1 x1 y1))

(variables t (number-rename t2 x2 y2))))

Given two terms t1 and t2, this theorem provides a way to obtain two respective equivalent
terms with separated variables: rename t1 starting in the number x1, using a negative increment,
and rename t2 starting in a greater number x2, using a positive increment. Later we will use this
procedure to standardize apart two terms.

5 Anti-unification: most specific generalizations

In this section we show that the set of first-order terms is a lower semi-lattice with respect to
subsumption. For that purpose we define and verify an algorithm that, given two terms, finds a
most specific term that subsumes both of them (i.e., a greatest lower bound w.r.t. subsumption).
This is what is usually called an anti-unification algorithm (because it can be seen as the converse
of unification), an important process in machine learning theory.

We can describe anti-unification as follows. Let φ an injective function from T (Σ,X)×T (Σ, X)
to X. We define the binary operation ∧φ in T (Σ, X) such that s ∧φ t = f(s1 ∧φ t1, . . . , sn ∧φ tn),
if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) or s ∧φ t = φ(s, t) otherwise. It can be proved, as we will
show, that s ∧φ t is a most specific generalization of s and t.

In figure 5, we present the definition of a function anti-unify implementing an anti-unification
algorithm, inspired on the definition of ∧φ. Given two terms, this function traverses them, collecting
their common structure. The main function is anti-unify-aux, defined recursively on the structure
of terms (and lists of terms). This function has an extra argument phi, an association list binding
pairs of terms to numeric variables. The main difference with ∧φ is that this association list is built
incrementally: if during the anti-unification process we need to assign a new variable to a pair of
terms, the association list is extended by the new binding (new variables are obtained sequentially
from the natural numbers); if the same pair of terms is found later, the same variable has to be
assigned7. The function anti-unify-aux returns three values: the first is the term computed, the
second is the association list with all the bindings needed during the process, and the third is a
boolean value indicating whether the anti-unification was successful or not. Note that, although
7 Given a pair of terms p and an association list phi, the function anti-unify-injection (in figure 3)

implements this process. It returns a multi–value with the numeric variable assigned to p and the
association list (possibly extended with a new binding). For coherence with the ACL2 signature of
anti-unify-aux, it also returns the boolean value t.



(defun anti-unify-injection (p phi)

(let ((found (assoc-equal p phi)))

(if found

(mv (cdr found) phi t)

(let ((y (if (endp phi) 1 (+ 1 (cdar phi)))))

(mv y (cons (cons p y) phi) t)))))

(defun anti-unify-aux (flg t1 t2 phi)

(if flg

(cond ((or (variable-p t1) (variable-p t2))

(anti-unify-injection (cons t1 t2) phi))

((eql (car t1) (car t2))

(mv-let (anti-unify-args phi1 bool)

(anti-unify-aux nil (cdr t1) (cdr t2) phi)

(if bool

(mv (cons (car t1) anti-unify-args) phi1 t)

(anti-unify-injection (cons t1 t2) phi))))

(t (anti-unify-injection (cons t1 t2) phi)))

(cond ((endp t1) (if (eql t1 t2) (mv t1 phi t) (mv nil nil nil)))

((endp t2) (mv nil nil nil))

(t (mv-let (anti-unify-cdr phi1 bool1)

(anti-unify-aux nil (cdr t1) (cdr t2) phi)

(if bool1

(mv-let (anti-unify-car phi2 bool2)

(anti-unify-aux t (car t1) (car t2) phi1)

(if bool2

(mv (cons anti-unify-car anti-unify-cdr)

phi2

t)

(mv nil nil nil)))

(mv nil nil nil)))))))

(defun anti-unify (t1 t2)

(mv-let (anti-unify phi bool)

(anti-unify-aux t t1 t2 nil)

anti-unify))

Fig. 3. Anti–unification algorithm

anti-unification never fails for terms, it may fail for lists of terms (for example, if the lists of terms
have distinct lengths). Finally, anti-unify calls anti-unify-aux with flg=t, and using nil as
the initial association list. Here are several examples of anti-unifications:

ACL2 !>(anti-unify ’(f (h y) x (h y)) ’(f (g z) (g z) (g z)))
(F 1 2 1)
ACL2 !>(anti-unify ’(f (h y) x (h y)) ’(g (g z) (g z) (g z)))
1
ACL2 !>(anti-unify ’(f (h (k u)) x (h y)) ’(f (h u) (g z) (h z)))
(F (H 3) 2 (H 1))

The following two theorems establish that anti-unify computes a greatest lower bound (i.e.,
a most specific generalization) of two terms, with respect to the subsumption relation:



(defthm anti-unify-lower-bound
(and (subs (anti-unify t1 t2) t1)

(subs (anti-unify t1 t2) t2)))

(defthm anti-unify-greatest-lower-bound
(implies (and (subs term t1)

(subs term t2))
(subs term (anti-unify t1 t2))))

In a first attempt, we tried to prove these two theorems reasoning directly about the definition
in figure 3. Nevertheless, it turned out surprisingly difficult (in fact, we were not able to prove
the theorem anti-unify-greatest-lower-bound). The main problem was to deal with the in-
cremental construction of the association list phi. Thus, we tried a different approach, applying a
technique that we think constitutes an interesting example of compositional reasoning: we prove
properties of a simplified version of the algorithm, translating later the proved properties. We now
sketch the main points of the proof strategy we followed:

• Instead of reasoning directly about (anti-unify-aux flg t1 t2 phi), we define the ex-
pression (pre-anti-unify-aux flg t1 t2 phi). We omit here the definition of pre-anti-
-unify-aux (see the supporting materials), but it is enough to say that is defined in the same
way as anti-unify-aux, except that the association list phi is considered to be fixed during all
the recursive process. That is, every time a variable has to be assigned to a pair of terms, it is
supposed that this pair is already bound in phi.

• It is considerably easier to reason about pre-anti-unify-aux than to reason about anti-
-unify-aux. Nevertheless, these two functions are not equal: in general, they do not compute
the same values. But, under some restrictions on phi, we can prove that pre-anti-unify-aux
computes the most specific generalization of two terms (or lists of terms). These restrictions
have to ensure that phi represents an injective function (with finite domain) from pairs of terms
to variables, and that the domain of phi contains all the pairs of terms that are encountered
during the anti-unification process. The function injection-p formalizes this idea:

(defun injection-p (phi flg t1 t2)
(and (alistp phi)

(no-duplicatesp (co-domain phi))
(list-of-variables-p (co-domain phi))
(mv-let (term phi1 bool)

(anti-unify-aux flg t1 t2 nil)
(subsetp (domain phi1) (domain phi))))))

Note that we use the second value returned by anti-unify-aux to obtain all the pairs of terms
that are assigned a variable during the unification process. Assuming the condition given by
injection-p, we can prove that pre-anti-unify-aux computes a most specific generalization
of t1 and t2. This proof is done without too much effort (see the supporting materials).

• Now we can translate the properties about pre-anti-unify-aux, obtaining analogous prop-
erties about anti-unify-aux. First, we prove that if pre-anti-unify-aux uses a specific
association list (the one computed by anti-unify-aux), it computes the same term than
anti-unify-aux:

(defthm anti-unify-aux-pre-anti-unify-aux
(equal (first (anti-unify-aux flg t1 t2 phi))

(first (pre-anti-unify-aux
flg t1 t2 (second (anti-unify-aux flg t1 t2 phi)))))



Second, we prove that the association list computed by anti-unify-aux verifies the property
injection-p:

(defthm anti-unify-aux-injection-injection-p
(implies (and (alistp phi)

(acl2-numberp-increasing-list (co-domain phi)))
(injection-p
(second (anti-unify-aux flg t1 t2 phi)) flg t1 t2))))

Independently of the meaning of the hypothesis of this theorem, the main point here is that
these conditions are trivially satisfied by nil, which is the initial association list used in the
definition of anti-unify.
Finally, the argument is closed: (anti-unify t1 t2) is equal to the term computed by (pre-
-anti-unify-aux t t1 t2 (second (anti-unify-aux t t1 t2 nil))). But this term has
been proved to be a most specific generalization of t1 and t2 (since the association list used
verifies injection-p).

All the events shown in this section are in the book anti-unification.lisp. We urge the
reader to complete the details of the proof, reading the documentation of the book.

6 Unification and most general instances

Up to now, we have proved that the relation subs provides to the set of first-order terms a structure
of well-founded lower semi-lattice. In the meta-logic, using properties of well-founded lattices, this
implies that every pair of terms that have a common instance, have a least upper bound (i.e., a
most general common instance). Nevertheless, we are going to prove this fact in a constructive
way, defining a function that returns a most general common instance of two given unifiable terms,
and to verify its properties.

For that purpose, we will need to define and verify a unification algorithm. This algorithm
returns a most general unifier of two given terms, whenever it exists. Unification is a central
process in many applications of automated reasoning. In order to establish the properties of a
unification algorithm, we also have to define subsumption between substitutions and idempotency.
In the following we develop all these questions.

6.1 Subsumption between substitutions.

Recall that the subsumption relation between substitutions is defined as σ ≤ δ ⇐⇒ ∃γ(γ ◦σ = δ).
Our problem now is to give a constructive definition of this concept. Let V = {v1, . . . , vn} be a
set of variables containing the domain of σ, the domain of δ and the variables of the codomain
of σ (the important variables of σ and δ). It can be proved that σ ≤ δ if and only if there exists
a matcher of the system S = {σ(v1) ≈ δ(v1), . . . , σ(vn) ≈ δ(vn)}. With this idea, we can use
our matching algorithm match-mv to define a function subs-subst implementing the subsumption
relation between substitutions:

(defun subs-subst (sigma delta)
(let ((V (important-variables sigma delta)))

(mv-let (system bool1)
(pair-args (apply-subst nil sigma V) (apply-subst nil delta V))
(mv-let (match bool2) (match-mv system) bool2))))

The main property of subs-subst is stated by the following theorem:



(defthm subs-subst-soundness
(implies (subs-subst sigma delta)

(equal (instance
term
(composition (matching-subst-r sigma delta) sigma))

(instance term delta))))

There are two remarkable points in this theorem. First, the matching substitution for sigma
and delta is given by the expression (matching-subst-r sigma delta), which plays the role of
the existentially quantified substitution γ in the definition above. This substitution is a matcher
of the system S above, restricted to the variables of V . Second, equality of the substitutions γ ◦ σ
and δ is stated from a functional point of view.

We also proved the converse of this theorem, thus proving that subs-subst implements the
notion of subsumption between substitutions. See the book subsumption-subst.lisp for details
of both proofs.

6.2 Idempotent substitutions.

Note that substitutions may also be seen as system of equations. In fact, in our formalization they
are represented in the same way. Recall that a solution of a system of equations is a unifier of all its
equations. The following is the main lemma for expressing the relationship between subsumption
and solution of systems, and exploits that substitutions may also be seen as systems:

(defthm substitutions-solution-system
(implies (solution sigma delta)

(equal (apply-subst flg sigma (apply-subst flg delta term))
(apply-subst flg sigma term))))

In other words, if σ is a solution of δ, then σ = σ ◦ δ, and, consequently δ ≤ σ. This means that
if δ is a solution of itself, it is the least such solution with respect to subsumption.

A crucial point in the verification of the unification algorithm below is that the substitution
returned is idempotent. Usually, a substitution σ is defined to be idempotent if σ ◦ σ = σ. We
will adopt an equivalent definition, considering that a substitution is idempotent if its domain is
disjoint with the variables of its codomain. Using this alternative formulation, we defined a function
idempotent. The main property of idempotent substitutions is the following:

(defthm idempotence
(implies (idempotent sigma) (solution sigma sigma))))

Thus, with this theorem and the theorem substitutions-solution-system above, we can
conclude that every idempotent substitution is a most general unifier of itself. This is an important
property that will be exploited in the verification of the unification algorithm.

6.3 Mechanical verification of a rule-based unification algorithm

We define a rule-based unification algorithm based on the well-known transformation system of
Martelli-Montanari [1].

Delete: {t ≈ t} ∪R; T ⇒u R; T
Decompose: {f(s1, . . . , sn) ≈ f(t1, . . . , tn)} ∪R; T ⇒u {s1 ≈ t1, . . . , sn ≈ tn} ∪R; T
Conflict: {f(s1, . . . , sn) ≈ g(t1, . . . , tm)} ∪R; T ⇒u nil if f 6= g or n 6= m
Orient: {t ≈ x} ∪R; T ⇒u {x ≈ t} ∪R; T if x ∈ X and t /∈ X
Check: {x ≈ t} ∪R; T ⇒u nil if x ∈ V(t) and x 6= t
Eliminate: {x ≈ t} ∪R; T ⇒u {x 7→ t}R; {x ≈ t} ∪ {x 7→ t}T

if x ∈ X and x /∈ V(t)



These rules act on two systems of equations: the first one with the equations to be solved and
the second one with the unifier partially computed. As with the matching algorithm described in
section 3, to compute a most general solution of a system S, we start with the pair of systems
S; ∅ and apply the rules (non-deterministically) until nil is found or the first system is empty. In
the first case, the system S is unsolvable. In the latter case, the second system is a most general
solution of S. To obtain a most general unifier of two terms t1 and t2, we start with the pair of
systems {t1 ≈ t2}; ∅.

In a similar way as we implemented the matching algorithm match-mv, we define this rule-based
unification algorithm, by means of a function mgu-mv, whose definition appears in figure 4.

(defun transform-mm (S sol)
(let* ((ecu (sel-unif S)) (R (eliminate ecu S))

(t1 (car ecu)) (t2 (cdr ecu)))
(cond ((equal t1 t2) (mv R sol t)) ;;; DELETE

((variable-p t1)
(if (member t1 (variables t t2))

(mv nil nil nil) ;;; OCCUR-CHECK
(mv (substitute-syst t1 t2 R) ;;; ELIMINATE

(cons ecu (substitute-range t1 t2 sol))
t)))

((variable-p t2)
(mv (cons (cons t2 t1) R) sol t)) ;;; ORIENT

((not (eql (car t1) (car t2)))
(mv nil nil nil)) ;;; CONFLICT1

(t (mv-let (pairs bool)
(pair-args (cdr t1) (cdr t2))
(if bool

(mv (append pairs R) sol t) ;;; DECOMPOSE
(mv nil nil nil))))))) ;;; CONFLICT2

(defun solve-system (S sol bool)
(declare (xargs :measure (unification-measure (cons S sol))))
(if (or (not bool) (not (consp S)))

(mv S sol bool)
(mv-let (S1 sol1 bool1)

(transform-mm S sol)
(solve-system S1 sol1 bool1))))

(defun mgs-mv (S)
(mv-let (S1 sol1 bool1) (solve-system S nil t) (mv sol1 bool1)))

(defun mgu-mv (t1 t2) (mgs-mv (list (cons t1 t2))))

Fig. 4. A unification algorithm

Note that mgu-mv returns two values: the second is a boolean value denoting success or failure.
In case of success, the first value is a most general and idempotent unifier of the input terms, as



established by the following theorems, proving the correctness of the unification algorithm defined
by mgu-mv. To improve readability, we define the function mgu as the first value of mgu-mv and
unifiable as the second value of mgu-mv:

(defthm mgu-completeness
(implies (equal (instance t1 sigma) (instance t2 sigma))

(unifiable t1 t2)))

(defthm mgu-soundness
(implies (unifiable t1 t2)

(equal (instance t1 (mgu t1 t2)) (instance t2 (mgu t1 t2)))))

(defthm mgu-idempotent
(idempotent (mgu t1 t2)))

(defthm mgu-most-general-unifier
(implies (equal (instance t1 sigma) (instance t2 sigma))

(subs-subst (mgu t1 t2) sigma)))

Although the proofs are considerably larger than those of properties of subsumption, it benefits
from the same rule-based approach advantages:

– An abstract non-deterministic unification algorithm is verified first, without defining a concrete
selection strategy.

– The proof is separated in two stages:
• Prove that certain properties are preserved in each step of transformation: the set of solu-

tions of the systems and the fact that the second system is idempotent.
• Prove that the transformation rules terminate: we show that a certain lexicographic mea-

sure decreases in each step.
Thus, when nil is detected, the initial system of equations is unsolvable. Otherwise, the algo-
rithm finds a idempotent system which is equivalent to the initial one (i.e. it has the same set
of solutions). By the properties about idempotent substitutions described in subsection 6.2,
this system is a most general solution of itself, and therefore a most general solution of the
initial system.

– The function mgu-mv and its properties can be obtained by functional instantiation from the
abstract non-deterministic algorithm, simply defining a concrete selection strategy (given by
the function sel-unif, whose definition we omit here), making a clear distinction between
logic and control.

Due to the lack of space, we do not comment more about the proof here. For a more complete
description of a preliminary proof in Nqthm, see [10]. The book unification-pattern.lisp con-
tains the proof of the correctness of the generic non-deterministic unification algorithm, and in the
book unification.lisp is the proof (by functional instantiation) of the properties about mgu-mv
given above.

6.4 Most general instance of two terms.

Now we define a function that finds, whenever it exists, a least upper bound (with respect to
subsumption) of two given terms. We prove that a most general instance of two terms s and t, if it
exists, it is σ(s′), where s′ and t′ are two renamed terms, respectively, of s and t, with no variables
in common, and σ is a most general unifier of s′ and t′. This idea is implemented by the function
mg-instance:



(defun mg-instance-mv (t1 t2)
(let ((rename-t1 (number-rename t1 0 -1))

(rename-t2 (number-rename t2 1 1)))
(mv-let (mgu unifiable)

(mgu-mv rename-t1 rename-t2)
(if unifiable (mv (instance rename-t1 mgu) t) (mv nil nil)))))

(defun mg-instance (t1 t2)
(mv-let (mg-instance bool)

(mg-instance-mv t1 t2)
(if bool (number-rename mg-instance 1 1) nil)))

Note that the terms t1 and t2 are standardized apart, by means of (number-rename t1 0 -1)
and (number-rename t2 1 1). As it was shown in section 4.2, equivalent terms with no variables
in common are obtained in this way. The function mg-instance-mv applies the procedure described
above and it returns two values. The second is a boolean value indicating failure or success. In
case of success, the first value contains the term computed. For the sake of readability, we define
mg-instance, a function that in case of success of mg-instance-mv renames the term with numeric
variables; in case of failure it returns nil otherwise. Note that in this case there are no confusion
between nil as term and nil as failure (since a renamed term cannot be nil). Here there are some
examples of most general instances:

ACL2 !>(mg-instance ’(f x (h y)) ’(f (k u) u))
(F (K (H 1)) (H 1))
ACL2 !>(mg-instance ’(f x (h x)) ’(f (k u) u))
NIL
ACL2 !>(mg-instance ’(f u v u v u) ’(f x y x x y))
(F 1 1 1 1 1)
ACL2 !>(mg-instance ’(f u v u v u) ’(f x y x x y z))
NIL

The following theorems establishes that mg-instance returns a most general common instance
of two terms if and only if they have an upper bound. The theorems were easily proved from the
properties of the unification and renaming algorithms.

(defthm common-instance-implies-mg-instance
(implies (and (subs t1 term) (subs t2 term))

(mg-instance t1 t2)))

(defthm mg-instance-upper-bound
(implies (mg-instance t1 t2)

(and (subs t1 (mg-instance t1 t2))
(subs t2 (mg-instance t1 t2)))))

(defthm mg-instance-least-upper-bound
(implies (and (subs t1 term) (subs t2 term))

(subs (mg-instance t1 t2) term)))

The mechanical proofs of these theorems constitutes a typical example of the use of congruence-
rewriting with respect to the renamed equivalence relation. Renamed terms are used to separate
variables, but the theorem prover rewrites these renamed terms to the original terms, when these
terms appear as arguments of subs. This turns out to be very useful in the mechanization of the
proofs. See the book mg-instance.lisp for details.



7 Closure properties and guard verification

The theorems presented in the previous sections show that the functions anti-unify and mg-ins-
tance computes, respectively, a greatest lower bound and a least upper bound (whenever it exists)
of two given terms. Our goal is to show that the set of first-order terms in a given signature (plus
an additional top element) is a well-founded lattice with respect to subsumption. Recall that our
theorems do not need hypothesis regarding the “type” of the variables involved. But for “theoretical
completeness”, we have to prove that those lattice operations are closed in the set of terms in a
given signature.

For that purpose, we define a predicate describing those ACL2 objects that represent first-order
terms in a signature. The first question is how we represent signatures. To be as general as possible,
we define a signature as a general binary function signat:

(defstub signat (* *) => *)

A signature is defined to be a generic function of two arguments. The intended meaning is that
receiving as input a function symbol f and a natural number n, it is returned t if the arity of the
symbol f is n, and nil otherwise. This allows even to represent infinite signatures and variadic
function symbols.

We now define the macro terms-s-p, describing ACL2 objects that represent “proper” first-
order terms in the general signature described by signat. Note that we also require that the
variables of a proper term are eqlablep objects. Also, the list of arguments of a non-variable
proper term has to be a true list.

(defun term-s-p-aux (flg x)
(if flg

(if (atom x)
(eqlablep x)

(if (signat (car x) (len (cdr x)))
(term-s-p-aux nil (cdr x))

nil))
(if (atom x)

(equal x nil)
(and (term-s-p-aux t (car x))

(term-s-p-aux nil (cdr x))))))

(defmacro term-s-p (x) ‘(term-s-p-aux t ,x))

Similarly, substitution-s-p can be defined to describe the objects that represent substitutions
in a given signature (see terms.lisp). Having defined term-s-p, we prove that the operations on
terms defined in the previous sections are closed in the domain described by term-s-p. For example:

(defthm number-rename-term-s-p
(implies (and (term-s-p term) (acl2-numberp x))

(term-s-p (number-rename term x y))))

We proved analogous closure properties for all the operation on terms and substitutions de-
scribed in this paper. In particular, for the functions anti-unify and mg-instance, thus showing
that the lattice operations are closed in the set of terms in a given signature.

Let us now see how these closure properties turn out to be useful for guard verification. Recall
that a function with a verified guard can be executed in any compliant Common Lisp (with the
appropriate files loaded) on any arguments the satisfy its guard. The guard of a function is a
formula specifying the intended domain of the function. In our functions acting on terms, the
intended domain is defined by term-p:



(defun term-p-aux (flg x)
(declare (xargs :guard t))
(if flg

(if (atom x)
(eqlablep x)

(and (eqlablep (car x))
(term-p-aux nil (cdr x))))

(if (atom x)
(equal x nil)

(and (term-p-aux t (car x))
(term-p-aux nil (cdr x))))))

(defmacro term-p (x) ‘(term-p-aux t ,x))

Since variables are forced to be eqlablep, we can use the more efficient eql, instead of equal.
Since lists of arguments are true lists, we can use endp instead of atom. Similarly, substitution-p
is defined to specify those ACL2 objects expected by the functions that deal with substitutions
(see terms.lisp). We verified the guards of all the executable functions presented in this paper
(except those that define concepts).

Guard verification theorems are very similar to the theorems about closure properties. For
example, since mgu-mv has guard (and (term-p t1) (term-p t2)), in order to verify the same
guard for mg-instance, we have to prove:

(defthm number-rename-term-p
(implies (and (term-p term) (acl2-numberp x))

(term-p (number-rename term x y))))

A remarkable point is that we can easily obtain this guard verification theorems from the anal-
ogous closure properties, by functional instantiation. Note that term-p can be seen as a function
defining the terms in a specific signature. Namely, the signature described by the function (lambda
(x n) (eqlablep x)). Thus, closure properties and guard verification theorems are proved with
the same effort.

8 The subsumption lattice of first order terms.

As a mathematical recreation, we compile in this section the previous properties and prove that,
〈T (Σ,X)∪ {>},≤〉 is a well-founded lattice (where > is an additional top element). See the book
lattice-of-terms.lisp for details.

We distinguish the ACL2 object ’the-top-term, representing an additional top element. The
following are some of our previous definitions reformulated to take into account this new object:

(defmacro the-top-term () ’’the-top-term)
(defmacro is-the-top-term (term) ‘(equal ,term (the-top-term)))

(defun ext-term-s-p (term)
(or (term-s-p term) (is-the-top-term term)))

(defun s<= (t1 t2)
(cond ((is-the-top-term t2) t)

((is-the-top-term t1) nil)
(t (subs t1 t2))))



(defun glb-s<= (t1 t2)
(cond ((is-the-top-term t1) t2)

((is-the-top-term t2) t1)
(t (fix-term (anti-unify t1 t2)))))

(defun lub-s<= (t1 t2)
(cond ((or (is-the-top-term t1) (is-the-top-term t2)) (the-top-term))

((mg-instance t1 t2) (fix-term (mg-instance t1 t2)))
(t (the-top-term))))

The function ext-term-s-p defines the set T (Σ, X) ∪ {>} and the function s<= defines the
subsumption relation in that set. The functions glb-s<= and lub-s<=, are respectively the greatest
lower bound and least upper bound operations in T (Σ, X) ∪ {>}8.

Finally, the following properties are a compilation of the work presented in this paper and
prove that the set of first-order terms in a given signature (plus an additional top element) is a
well-founded-lattice with respect to s<=9.

(defthm s<=-quasi-ordering
(and (s<= term term)

(implies (and (s<= t1 t2) (s<= t2 t3)) (s<= t1 t3))))

(defun measure-s< (term)
(if (is-the-top-term term)

’((1 . 0) . 0)
(subsumption-measure term)))

(defthm s<-well-founded
(and (e0-ordinalp (measure-s< term))

(implies (and (s<= t1 t2) (not (s<= t2 t1)))
(e0-ord-< (measure-s< t1) (measure-s< t2)))))

(defthm glb-s<=-is-a-glb
(and (s<= (glb-s<= t1 t2) t1) (s<= (glb-s<= t1 t2) t2)

(implies (and (s<= term t1) (s<= term t2))
(s<= term (glb-s<= t1 t2)))))

(defthm lub-s<=-is-a-lub
(and (s<= t1 (lub-s<= t1 t2)) (s<= t2 (lub-s<= t1 t2))

(implies (and (s<= t1 term) (s<= t2 term))
(s<= (lub-s<= t1 t2) term))))

(defthm glb-<=-lub-<=-closure-properties
(implies (and (ext-term-s-p t1) (ext-term-s-p t2))

(and (ext-term-s-p (glb-s<= t1 t2))
(ext-term-s-p (lub-s<= t1 t2)))))

In fact, the theorems above establishes that the set of all ACL2 objects (seen as first-order
terms in a wide sense) is a well-founded lattice with respect to subsumption. And that the set
8 When (anti-unify t1 t2) is a variable, we need to prove that it is different from ’the-top-term. To

avoid problems, the function fix-term forces it to be 0, which is an equivalent term and is obviously
distinct from ’the-top-term. Analogously for mg-instance.

9 Note that the definition of measure-s< is the same as subsumption-measure, but a higher ordinal (for
example, ωω) is assigned to ’the-top-term.



of those ACL2 objects representing first-order terms in a given signature is a sublattice of it. It
is remarkable that the proof is constructive, and that, more important from a practical point of
view, all the functions defined in this section are executable in any compliant Common Lisp. See
the book lattice-of-terms for details.

9 Conclusion and future work

We have seen a formalization in ACL2 of the lattice-theoretic properties of first-order terms with
respect to subsumption. It has been defined the subsumption relation between terms, and showed
that subsumption is a well-founded quasi-ordering. We also showed that every pair of terms has
a most specific generalization and that every pair of unifiable terms has a most general instance.
Thus, we have proved in ACL2 that the set of first-order terms in a given signature (plus an
additional top term) is a well-founded lattice with respect to subsumption.

From a practical point of view, as a by-product we obtained verified implementations of some
basic functions acting on terms, including matching, renaming of variables, unification and anti-
unification. These functions can be executed in any compliant Common Lisp.

Note that we have used a definition of lattice based on a quasi-ordering (subsumption in this
case). An alternative equivalent equational definition of lattice could have been used, but we
preferred this formulation because the properties proved are more used in the context of automated
deduction and rewriting. It would be interesting to know if this alternative definition of lattice
would simplify the proof.

Table 1 gives some quantitative information on the proofs. The first column contains the name
of the books. The next three columns show the number of lines, the number of definitions and the
number of theorems in each book. These numbers can give an idea of the granularity of our proofs.
We also included a fifth column with the number of theorems that needed hints from the user.
Together with the number of theorems, this can give an idea of the degree of automation of the
proofs. It is clear from the table that the main proof effort was done to prove the properties of the
unification algorithm.

Book Lines Definitions Theorems Hints

basic 378 22 79 2
terms 770 53 76 12
matching 325 7 48 8
subsumption 295 13 29 18
subsumption-subst 327 16 38 13
renamings 578 9 64 25
subsumption-well-founded 216 3 30 7
anti-unification 434 10 37 6
unification-pattern 808 7 105 33
unification 277 12 24 8
mg-instance 159 3 17 11
lattice-of-terms 148 17 20 5

Total 4715 172 567 148

Table 1. Quantitative information

As usual in a typical ACL2 formalization, most of the hints given are for enabling or disabling
rules and for using instances of previous lemmas. It is remarkable the good behavior of the theorem
prover in the automatization of proofs by induction, especially when an induction on the structure



of terms is needed. The induction scheme guessed by ACL2 turns out to be suitable in most cases:
as we said in section 2, this scheme is suggested by the functions we defined in a mutual recursive
style, for terms and for lists of terms.

This library has already been used in a formalization of equational reasoning and term rewriting
system [11], and that was our purpose when we developed it. But we believe that it can help in
other verification projects to formalize properties of reasoning systems dealing with first-order logic
(automated deduction, logic programming, machine learning,. . . ).

This work provides a good example of how computing and proving tasks can be intermixed,
and we think that this library can be seen as a basis to build prototypes of reasoning systems that
can be (at least partially) verified. Another direction for future work could be the development of
more efficient data structures for dealing with term structures. Single-threaded objects in ACL2
seem to be a promising option for that purpose.
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