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Verification of the Formal Concept Analysis
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Francisco Jesus Martin—Mateos and José Luis Ruiz—Reina

Abstract. This paper is concerned with a formal verification of the Formal Concept Analysis frame-
work. We use the PVS system to represent and formally verify some algorithms of this theory. We also
develop a method to transform specifications of algorithms based on finite sets into other executable ones,
preserving its correctness. We illustrate this method by constructing an executable algorithm to compute
an implicational base of the system of implications between attributes of a finite formal context.

Verificacion del Analisis formal de conceptos

Resumen. En este trabajo se realiza una verificacformal de la teod del Ardlisis formal de concep-

tos. Usamos el sistema PVS para especificar y verificar formalmente los fundamentoatinatede esta

teona. Adends, desarrollamos unetodo para transformar especificaciones de algoritmos basadas en el
uso de conjuntos finitos en otras evaluables, preservando la comrediciStramos este etédo constru-

yendo un algoritmo evaluable para calcular una base de implicaciones del sistema de implicaciones entre
atributos de un contexto formal finito.

1. Introduction

Formal Concept Analysis (FCA) is a learning technique for discovering conceptual structures in a large
amount of data, developed since 1982 by R. Wille and B. Ganter [6]. Using FCA techniques several systems
have been created, making possible interactive exploration of large database [11].

This technique has been applied to a wide variety of issues related to knowledge representation and
database exploration: inheritance and interfaces relationships [1], integration of free—text and ontologies
[5], management conceptual of emails [3], knowledge and data discovery in medical texts [2], etc.

Our goal is to show an experience on formalization, validation and correct implementation of a mathe-
matical concept (FCA) in an automated reasoning system. For that purpose, we will follow the first chapters
of the book “Formal Concept Analysis” [6], in which the authors present the mathematical foundations of
this theory as well as some algorithms. So far the FCA has been studied in the Mizar system, where a
formalization and characterization of the lattice of concepts has been done [9]. In this paper, we show that
the PVS theorem prover [8] provides an adequate support for the formalization of FCA.

We have two main reasons to tackle this work. First, show that the PVS specification language, in
addition to its associated theorem prover, is adequate for achieving a suitable formal verification of the
foundations of FCA. The definitions and reasoning in PVS are close to the theory FCA due, mainly, to the
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use of the set theory included in PVS. In our work we have also done an extensive use of the available
library of finite sets.

Second, we explore how we can transform specifications constructed over finite sets, hence not exe-
cutable, in other executable ones. Although not every definitions in PVS are executable, there are a wide
fragment of PVS executable, by generating Common Lisp code [10]. In that sense, we formalize the no-
tions of data refinement and operation refinement used by Dold [4, 7] and we establish their main properties,
building thus a framework in which we could relate differents specifications of the same notion. Then, we
apply it to obtain executable specifications of the functions of the theory FCA.

2. The PVS system

The PVS system combines an expressive specification language with an interactive theorem prover [8]. In
this section, we present a brief description of the PVS language and prover, introducing some of the notions
used in this paper.

The PVS specification language is built on a classical typed higher—order logic with the basic types
bool , nat , int , in addition to the function type construct@® -> R] and the product type construc-
tor[A, B] . The type system is also augmented wdtpendent types andabstract data types. In PVS,

a setA with elements of a typd is identified with its characteristic predicates and thus, the expressions
pred[T] andset[T] have the same meaning. A feature of the PVS specification languagedis

cate subtypes: the subtype{x:T | p(x) } consists of elements of type satisfyingp. It uses(A) to
indicate the subtypéx:T | A(x) }. Predicate subtypes are used for constraining domains and ranges
of functions in a specification and, therefore, for defining partial functions. In general, type-checking with
predicate subtypes is undecidable. So, the type-checker generates proof obligationtypesdtedectness
conditions(TCCs). This TCCs are either discharged by specialized proof strategies or proved by the user.
In particular, for defining a recursive function, it must be ensured that the function terminates. For this
reason, in the definition of a recursive function, we have to provideasure function. This generates a

TCC which states that the measure function applied to the recursive arguments decreases with respect to a
well-founded ordering.

A built-in prelude and loadabldibraries provide standard specifications and proved facts on a large
number of theories. PVS specifications are packagetieasies that can be parametrized in types and
constants. The definitions and theorems of a theory can be used by another thaopgriyg it. Proofs
in PVS are presented in a sequent calculus. The commands of the PVS prover include induction, quantifier
instantiation, rewriting and simplification.

3. Formal Concept Analysis in PVS

In this section, we briefly describe the FCA foundations. At the same time, we show the formalization we
have developed in PVS. The framework in which concepts are placed is knoviorasahcontext: a tuple

(0, A,I), whereO is a set ofobjects A is a set ofattributes andI C O x A is arelation such that

(d,a) € I means “the objecf hasthe attributez”.

We illustrate this definition by means of an example from the theory of binary relations. The objects
of our example are six binary relations. The attributes are five well known properties of binary relations:
reflexive, symmetric, transitive, total and equivalence. A simple format for writing a finite formal context is
across table one row for each object and one column for each attribute, marking a cross in the intersection
to show that an object has an attribute.



Verification of FCA

Reflexive R) | Symetric §) | Transitive {r) | Total (To) | Equivalencelf)
S1 X X X X X
So X X
S3 X X X
Sy X X
Sy X X X
S6 X X X

In the sequel, we will use this example.

In order to specify this notion in PVS, we consider two uninterpreted typesndT2, denoting the
type of the objects and the type of the attributes, respectively. We define theRgIEor representing the
general structures over which we will construct the type for representing a finite formal context:

FFCT: TYPE = [# obj: finite_set[T1],
attrib: non_empty_finite_set[T2],
relation: finite_set[[T1, T2]] #]

where[# a1 : t1,...,a, : t, #] is the form for record types in the language of PVS. Then, the finite formal
contexts can be represented by the following subtyger@ T *:

FFC:TYPE = {C:FFCT | LET Ob = obj(C), A = attrib(C), | = relation(C) IN
YV pair €l: LET (ob, a) = pair IN ob €Ob A acA}

In what follows,C' = (O, A, I) always denotes a finite formal context.

3.1. The lattice of concepts

FCA is based on the idea that a concept is an unit consisting of two parts: the extent, which covers all
the objects belonging to the concept; and the intent, which compresses all the attributes valid for all those
objects.

Thus, thederivation operators for a formal contextC' can be defined as follows:

e Given a setX of objects ofC, theintent of X, denoted as(’, is the set of their common attributes

intent(C)(X: finite_set[T1]): finite_set[T2] =
IF X = @ THEN attrib(C) ELSE
{a: T2 | V (d:(X)): (d, &) € relation(C) } ENDIF

e Dually, given a set” of attributes of”, theextentof Y, denoted by’ is the set of the objects having
all attributes fromy’".

extent(C)(Y: finite_set[T2]): finite_set[T1] =
IF Y = 0 THEN obj(C) ELSE
{d: T1 | V (a: (Y)): (d, a) € relation(C) } ENDIF

e Apair(X,Y) is aformal conceptof C'iff X C O,Y C A, X' =Y andY' = X.

concept?(C)(pair: [finite_set[T1], finite_set[T2]]): bool =
LET (X, Y) = pair IN X C obj(C) A Y C attrib(C) A
intent(C)(X) = Y A extent(C)(Y) = X

1The syntax of PVS specifications has been modified to increase its readability with a more familiar mathematical notation.
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The set of all formal concepts @f = (O, A, 1) is denoted a$3(0, A, I). In PVS, we define the type
representing the concepts of a formal contéxnd the corresponding accessor functiéras follow:

concept(C): TYPE = (concept?(C))

extent_concept(C)(pair: concept(C)): finite_set[T1] = proj_1(pair)
intent_concept(C)(pair: concept(C)): finite_set[T2] = proj_2(pair)

Formal concepts can be partially ordered in a natural way: a coriééptY;) is a subconceptof
(X2, Ys)iff Xy C X, or, equivalentlyY, C Y.

subconcept?(C)(pairl, pair2: concept(C)): bool =
extent_concept(C)(pairl) C extent_concept(C)(pair2)

We can view the relationship among the concepts of our example by the following diagram. In it, the
nodes are the concepts, represented only by their intents, and the arcs represent the subconcept relation.

{To}

BN
{S, Tr, Tgt

{R.S.Tr. E. To}
The main algebraic property of the set of concepts of a formal cottéxthe following

Theorem 1 (B(O, A,I), subconcept? )isacompletelattice, inwhich for every set of formal concepts,
{(Xk,Y%) : k € K}, the supremum and the infimum are given by

\/({(Xe, Y2) : k€ K}) = (( U x0" N yk)

keK keK
NG Y ke K1) = () X, (U )"
keK keK
where we have denotedtent(C)(extent(C)(Y)) by Y andextent(C)(intent(C)(X))
by X'
PROOF

1. The relation is a partial order. We prove this property using the built in relpicial ~ order?
wherepartial ~ _order?[D](rel) is verified ifrel is a partial order irD:

po_subconcept: LEMMA partial_order?[concept(C)](subconcept?(C))

2. We define in PVS the expressions to compute the suprdoturdfca . For this purpose, we use the
Union and thentersection of an arbitrary set of sets, and we define a function to obtain the set
of extents (resp. intents) of a set of concepts, using the built in funictiage(f)(S)  , that applies
f to the elements of the s&t

2The built in selectoproj _i(x) selects the i-th element of a tuple.



Verification of FCA

Union(l:set[set[T]]): set[T] = A xs 3 (A D) AKX
Intersection(l:set[set[T]]):set[T] = A XV O(A(D):AX)

extents_set_concepts(C)(S: set[concept(C)]): set[set[T1]] =
image(extent_concept(C))(S)

lub_fca(C)(S:set[concept(C)]): concept(C) =
(extent(C)(intent(C)(Union(extents_set_concepts(C)(S)))),
Intersection(intents_set_concepts(C)(S)))

In this specification, we have constrained both the domain and the range of the fuabtidoa .
So, it generates the following TCC ensuring thdt fca satisfies the range constraint given by the
predicate subtypeoncept(C)

lub_fca_TCC1: OBLIGATION
FORALL (C: FFC, S: set[concept(C)]):
concept?(C)
(extent(C)(intent(C)(union(extents_set_concepts(C)(S)))),
intersection(intents_set_concepts(C)(S)))

This TCC is not automatically proved. In order to prove it, we establish that for an arbitrgr set
k € K} of sets of objects), . jc X;. = (Uper X&) SO ke Ye = Miex Xi = (Urex Xr)"-

Then, we have
V{x v ke K = (U x0", (U X0
keK keK
and we prove that this is a formal conceptaf

3. Finally, we prove the following result using the built—in predidatest upper bound? , where
least _upper _bound?(rel)(x,S) is satisfied ifx is the least upper bound &f

lub_fca_is_lub: LEMMA
v (S:set[concept(C)]):
least_upper_bound?(subconcept?(C))(lub_fca(C)(S), S)

Hence, we have proved that each collection of formal concepts have a supremum, belonging to the
lattice. In the same way, we prove the results corresponding to the infimuiih.

3.2. Implications between attributes

In those cases in which we have to classify a large number of objects with respect to a relative small number
of attributes, we could deal with rules or the implications between attributes, i.e, with statements of the
form: “every object with attributes, b, c. .. also have attributes’, b’,..." . Then, we could characterize
the intents of concepts of a formal context by a set of rules. In this situation, we study the possible attribute
combinations, thattribute logic. Formally, animplication between attributesin C = (0, A, I) is a pair
of subsets of attribute@l;, Y>), denoted ag; — Y,. The setY] is thepremise or antecedentof the
implication andY> its conclusion

In PVS, we use a structure for representing a generalized type of implications

implication_gen: TYPE = [# premise: finite_set[T2],
conclusion: finite_set[T2] #]




J.A. Alonso, J. Borrego, M.J. Hidalgo, F.J. MartMateos and J.L. Ruiz—Reina

and we specify the type of implications between attributes of a co6text the subtype:

implication(C): TYPE =
{imp:implication_gen | premise(imp) Cattrib(C) & conclusion(imp) Cattrib(C) }

Let us now see the semantic of implications between attributes, specifying it in PVS. A set of attributes
Z respectsor is amodel of the implicationY; — Y2 if Y1 € ZvY, C Z (i.e.,.Y1 C Z = Y, C 7).

respects(C)(Z: finite_set[T2], imp: implication(C)): bool =
premise(imp) ¢ Z v conclusion(imp) cz

A set of attributesZ respects a sebf implications. if Z respects each implication if

respects(C)(Z: finite_set[T2], L:set[implication(C)]): bool =
YV (imp: (L)): respects(C)(Z, imp)

An implicationY; — Y5 holdsin a set of sets of attributes if each of its elements respécts Y-.

holds(C)(imp: implication(C), S:set[finite_set[T2]]): bool =
VY (Z:(S)): respects(C)(Z, imp)

An implicationY; — Y> holds in a contextC, orY; — Y5 is an implication of C, if the intent of
every object ofC respects; — Y5. Thatis, whenever each object having all the attributes,imlso has
all the attributes irt5.

holds(C)(imp: implication(C)): bool =
vV (ob: T1): ob € 0bj(C) => respects(C)(intent(C)( {ob}), imp)

Then, for each formal context, we define the set of concepts@f concepts(C) , the set of impli-
cations that holds id’, holds(C) , and the set of models of the implications holdiinmodels(C) .

concepts(C) = {pair: [finite_set[T1], finite_set[T2]]] concept?(C)(pair) }
holds(C) =  {imp: implication(C)| holds(C)(imp) }
models(C)(S) = {Z: finite_set[T2] | Z C attrib(C) A respects(C)(Z,S) }

And we prove the relationship between the models of the implications that héldaimd the concepts of
C:

Theorem 2 The set of models of the implicationsthat hold in C is the set of the intents of concepts of C.

models_holds: THEOREM models(C)(holds(C))=intents_set_concepts(C)(concepts(C))

Let us note that to specify this resultin PVS we have used the expréstgats  set concepts(C)(S)
that obtains the set of intents of the concepts§ of

Using this property, we can to obtain the concepts of a finite formal coteikom the models of
the implications that hold i/, and vice versa. Nevertheless, the number of implications that hold in a
context can be very large and contain many trivial implications. Therefore, it is natural to look for a small
set of implications from which everything else could be derivedirgslicational base. Specifically, an
implicationY; — Y5 follows (semantically)from a set of implicationg in C' if each subset of attributes
of C respectingC also respect¥; — Y.

So, given formal context’, we look for a set of implicationg having the following properties:
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e sound each implication inC holds inC

‘sound(C)(L): bool =  W(imp:(L)): holds(C)(imp) ‘

e complete each implication that holds i@ follows from £

‘ complete(C)(L):bool= V(imp:implication(C)):holds(C)(imp) =-follows(C)(imp,L) I|

e non redundant: no implication in£ follows from other implications inC

‘non_redundant(C)(L):booI: V(imp:(L)): NOT follows(C)(imp, remove(imp, L)) ‘

Guigess and Duquenne [6] have proved that for every context with a finite set of attrbutesre is
a sound, complete and non redundant set of implications, cstibed baseor Duquenne—Guigues—Basis
For this purpose, it definesgseudo intentas a set of attributeS which is not an intent§” # S), but
contains the closure@{"’) of every proper subset that is also pseudo intent.
In our example:

e ()is a pseudo intent, sind®’ = {To} # ()

e {R} is not a pseudo intent, sindeR}" = {51,S55,5} = {R,To} # {R}, but the only proper
subset ofR that is a pseudo intent & and(” = {To} Z {R}

We specify this definition in PVS, providing the cardinal®fs measure function to prove its termina-
tion:

pseudo_intent?(C)(S: finite_set[T2]): RECURSIVE bool =

S # intent(C)(extent(C)(S)) A

v (P: finite_set[T2]): P C S A pseudo_intent?(C)(P) =>
intent(C)(extent(C)(P) csS

MEASURE card(S)

Then, we establish the following theorem:

Theorem 3 For every finite formal context C, the set of implications
L£={S— S":Sispseudointent of C'}

is sound, non redundant and complete (£ is called stem base).

In our example, the stem base is

{0 = {T'0},{E, To} - {R,S,Tr,To, E},{S,R,Tr,To} — {S,R, Tr,To, E}}
and a slightly modified version of the stem base is
{0 — {To},{E,To} - {R,S,Tr},{S,R,Tr,To} — {E}}

obtained by{S — S" \ S : Sis pseudo intent of '}

Let us note that the specification in PVS of the notion of pseudo intent is more general than the definition
itself. Therefore, in order to describe the stem base, we only consider the subsets of the attributes that verify
the PVS—definition of pseudo intent:



J.A. Alonso, J. Borrego, M.J. Hidalgo, F.J. MartMateos and J.L. Ruiz—Reina

pseudointents(C): set[finite_set[T2]] =
{S: finite_set[T2] | S C attrib(C) A pseudo_intent?(C)(S) }

stem_base(C): set[implication(C)] =
LET fun = X\(S:finite_set[T2]):
(# premise:= S,
conclusion:= intent(C)(extent(C)(S)) #)
IN image(fun)(pseudointents(C))

We have proved the stem base properties in PVS in a similar way as they are stated in [6]:

stem_base_sound: LEMMA sound(C)(stem_base(C))
stem_base_non_redundant: LEMMA non_redundant(C)(stem_base(C))
stem_base_complete: LEMMA complete(C)(stem_base(C))

The stem base is not the only implicational base, but it plays a special role. Among other reasons, there
is not other implicational base with less elements and it can be algorithmically obtained. Moreover, to built
the stem base we only need an algorithm to compute the pseudo intéht§\ef are going to specify such
an algorithm, based on the recursive definition of pseudo intent. Here, we are interested in constructing an
abstract and correct specification of this algorithm and later, we will transform it into another executable
specification, preserving its correctness.

Hence, ifgen _pseudo _intents(C) computes the set of pseudo intentsgfwe can compute the
stem base, as follows:

gen_stem_base(C): set[implication_gen] =
LET fun = X (Y: finite_set[T2]):
(# premise:= Y,
conclusion:= intent(C)(extent(C)(Y)) #)
IN image(fun)(gen_pseudo_intents(C))

Let us describe the generation of the pseudo interdsef(O, A, I) stepwise, according to its cardinal:

e Step0: generate the pseudo intents of carditialS, = {0} if § is pseudo intent and, = 0,
otherwise.

e Stepk + 1: generate the pseudo intents of cardinal ug te 1, Sy41, from the pseudo intents of
cardinal up tck, Sy.. For this, we introduce a restricted notion of pseudo intent. Th&tis,apseudo
intent restricted to a set of setsS if P # P" and for everyX € S, if X C P thenX"” C P. Now,
the setS,1 can be defined as follows:

Skt1 =S U{P C A: |P| =k + 1A Pis apseudo intent restricted & }.

Thus, ifsubsets _card(R,k) isthese{B: B C RA|B| = k}andpseudo _restricts(C)(G,S)
is{P € G : P is pseudo intent restricted td She specification of this algorithm in PVS is the following:

gen_pseudo_intents(C): set[finite_set[T2]] =
gen_pseudo_intents_aux(C)(attrib(C), O, 0)

gen_pseudo_intents_aux(C)(A: finite_set[T2], k:upto(card(A)),
S: finite_set[finite_set[T2]]):
RECURSIVE set[finite_set[T2]] =
LET NS = pseudo_restricts(C)(subsets_card(A,k), S) IN
IF k = card(A) THEN S U NS ELSE
gen_pseudo_intents_aux(C)(A, k+1, S U NS) ENDIF
MEASURE card(A)-k

10
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Finally, we prove the correctness of this specification in PVS, thgeis, pseudo _intents(C) builds
the set of pseudo intents Of.

correct_gen_pseudo_intents: THEOREM
gen_pseudo_intents(C) = pseudointents(C)

PrROOFE The proof ofgen pseudo _intents(C) C pseudointents(C) is obtained by estab-
lishing that if Y’ € gen_pseudo _intents _aux(A,k, §), (i.e,Y has been introduced in the stép
thenY C A andY is pseudo intent. We prove it usirard(A)-k  as measure—induction. In order
to provepseudointents(C) C gen _pseudo _intents(C) , we establish by induction to, that if
Y C AAJY| < kandY has not been introduced in the stepthenY” is not a pseudo intent. W

4. Executable specifications in FCA

The PVS specification language is designed to be expressive rather than executable, since it allows quantifi-
cation over infinite domains and higher order equalities. However, a wide fragment of PVS is executable,
by generating Common Lisp code from PVS, that can be evaluated in the PVS—ground—evaluator [10].
Specifically, the executable expressions are those that do not contain free variables, uninterpreted functions
or constants, quantification over infinite domains and equality between higher—order terms. The specifica-
tions we have constructed in the previous section use operations over finite sets, which are not executable.
Our main goal in this section is to show how to transform the specifications of FCA built so far into their
respective executable specifications.

Based on the notion of refinement of data types used for Dold [4] and Jones [7] we have done the
following:

e We have built a theonREF, establishing the general notions of refinements and its main properties.
e We have established a refinement of the theory of finite B&shy the theory of listskFS-REF.

e \We have used both theories to refine the thde®Afrom the previous section by the thedfC A-
REF in which the specifications of the functions are executables.

e Finally, we have instantiated the parameters of the thE@s-REF and we have evaluated some
examples, included in the theodRCA-EXAMPLE

We can see the relationship between these theories in the following diagram:

FS-REF _————> FCA-REF

FCA

FCA-EXAMPLE

II

4.1. Refinement of data types.

Given the typeqd” and R, we say that alata refinementof typeT" by the typeR is a surjective application
fiR—>T.

11
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f. VAR [R->T]
refinement?(f): bool = v (tT): 3 (rR): f(r) =t

Intuitively, this function provides the relationship between abstract values and their representations. It
is clear that there is at least one representation, hon necessarily unique, for any abstract value.

It is easy to see that a type can be refined stepwise by sequential composition of refinements. We have
proved that, iff : R — T is a data refinement & by R andg : () — R is a data refinenemt @t by @,
thenfog: @ — T is a data refinement & by Q.

On the other hand, let us consider a functign: 7'y, — T, and let us suppose that we have the data
refinements given by the functiorfy : Ry — Ty and fy : Ry — T5. Then, we say that the function
opres : R1 — R» is arefinementof op if the following diagram commutes:

w2

] 7

R Y R,
op: VAR [T1 -> T2] op_ref: VAR [R1 -> R2]
refinement_op?(op,op_ref): bool = vV (r1:R1): op(fli(rl)) = f2(op_ref(rl))

In essence, we require tha,.; has the same behaviour@s Being more precise, let us suppose that
we have established a correctness theoremyipm terms of pre and post conditions. That is, a theorem
like

(Vy € T1)[(y) = ply, op(y))]

where¢ is the precondition ang is the postcondition. Then, dp .¢, ¢rer andp,.; are refinements of
op, ¢ andp, respectively, we have proved that

(Vz € R)[¢res () = pres(2; 0pres(2))]

which is just the correctness theorem correspondirg ;.

Moreover, a specification of an algorithm is normally built combining some other specifications of
functions. Hence, we hope that for constructing a refinement of a specification of an algorithm it is enough
to construct a refinement of each function used in it, and to replace it. In that sense, we have proved that
if opl,.; andop2,.; are refinements apl y op2, respectively, thewp2,. o opl,.r is a refinement of
op2 o opl:

n = 1, 2B 7

7] | |

Oplref Opzref
kRR — Ry — R

4.2. Executable refinements of operations over finite sets

A natural way to represent finite sets is by means of lists. First, we can think in representing a fidite set
by a list with the same elements df although with possibly repeated elements. However, the elements
of A could also be finite sets, or another type that was necessary to refine to. Hence, let us consider

12
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a data refinement given by : R — T. From this, we can establish a data refinement of type “finite
sets with elements ifi"™” by the type “lists with elements iR", by the functionc(f):list[R] —
finite  _set[T] , defined as follows:

c(f)(I: list[R]): RECURSIVE finite_set[T] =
CASES | OF

null: 0,

cons(x, 11): add(f(x), c(f)(11))
ENDCASES

MEASURE length(l)

We are interested in building refinements corresponding to the operations over finite sets specified in
the theoryFCA developed in section 3. For this, we have used operations on lists such that “simulate” the
behaviour of analogous operations on finite sets. We have proved that the built—in openaitidbns cons
andappend are refinements afmpty? , add andunion , respectively. As for the membership relation,
we have to notice that if is injective, the operatiomember from lists is a refinement of the operation
member of finite sets. Otherwise, that is not true. Thus, we have defined a new membership relation, with
respect to an equivalent relation, and we have proved that; ifs the equivalence relation inducedihoy
f(ri =5 re & f(r1) = f(r2)), member(=;) is a refinement omember. The specification in PVS is
the following:

member(rel:(equivalence?[R]))(x:R, Llist[R]): RECURSIVE bool =
CASES | OF

null: false,

cons(a, 12): rel(a, x) VvV member(rel)(x, 12)
ENDCASES

MEASURE length(l)

Note that if the relatiorf (r1) = f(r2) is executable, then the operatiorember( =) is also executable.

We have followed the same process for the refinemenistef , subset? , remove, rest and
card . Without going into more details, we show a table with the names of operations over lists which are
refinements of the corresponding operations over finite sets:

| finite sets | lists | finite sets | lists |
empty? null? add cons
member member&,) | union append
intersection| inter(=y) remove removel(=y)
choose car rest restl(=y)
subset? subsetd(=y) | card cardl(=y)
image map Union Append
powerset powersefref | subsetscard | subsetscardl

In case that we have finite sets which elements are also finite sets, the data refinement is given by

c(c(f):list[list[R]] — finite  _set[finite _set[T]]
and the relatiomember(=.(y)) is not executable because the express(fil1) = c(f)(I2) .In
order to solve this problem we have defined an equivalence relatjoal 1?(f) inlistfR] , whose
evaluability only depends on evaluability gf This relation also verifyequal 1?(f)(11, 12) &

c(H(1) = c(h(2)

Thus, we could consider that given a data refinenfentR — T, for each operation over finite sets
with elements iril’, we have an operation over lists Riwhich it is its refinement. Now, we are going to
use them to construct in PVS a refinement of data and operations of the theory FCA specified irBsection
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4.3. Executable specifications in FCA

In order to construct an executable “refinement” of the thé®@®¥ we have to build a data refinement for
each type or data type IRCA and an executable refinement of each function specifi€Lia Next, we
show a scheme of this process, applied to the function that computes the stem base of a finite formal context.

1. The typedFCTandFFCare refined by the types

FFCT_ref: TYPE = [# obj_ref: list[T1],
attrib_ref: (cons?[T2]),
relation_ref: list[[T1, T2]] #]

FFC_ref: TYPE =

{R: FFCT_ref | LET Ob_ref = obj_ref(R), A_ref = attrib_ref(R),
Re_ref=relation_ref(R)

IN every( A (pair): proj_1(pair) € obj_ref(R) &
proj_2(pair) € attrib_ref(R))(Re_ref) }

by the data refinement

trans(R: FFCT_ref): FFCT[T1,T2] =
(# obj:= c(id[T1])(obj_ref(R)),
attrib:= c(id[T2])(attrib_ref(R)),
relation:= c(id[[T1,T2]])(relation_ref(R)) #)

The typesmplication _gen andimplication are refined by the types

R: VAR FFC_ref[T1, T2]
implication_gen_ref: TYPE = [# premise_ref: list[T2],
conclusion_ref: list[T2] #]
implication_ref(R): TYPE =
{imp_r: implication_gen_ref |
subset?_|(premise_ref(imp_r), attrib_ref(R)) A
subset?_I(conclusion_ref(imp_r), attrib_ref(R)) }

by the data refinement

transf_imp_gen(imp_g_r:implication_gen_ref):implication_gen[T1, T2]=
# premise:= c(id[T2])(premise_ref(imp_g_r)),
conclusion:= c(id[T2])(conclusion_ref(imp_g_r)) #)

2. Arefinement of the specification to compute the set of pseudo intents is built replacing each function
by its refinement:

gen_pseudo_intents_aux_ref(R)(Is: list[T2],
k:upto(cardinal_I[T2, T2](Is)),
S: list[list[T2]]):
RECURSIVE list[list[T2]] =
LET NSL=pseudo_restricts_ref(R)(subsets_card_I(Is,k),S)
IN IF k = cardinal_I(Is) THEN append(S, NSL) ELSE
gen_pseudo_intents_aux_ref(R)(Is, k+1, append(S, NSL)) ENDIF
MEASURE cardinal_I(Is)-k

gen_pseudo_intents_ref(R): list[list[T2]] =
gen_pseudo_intents_aux_ref(R)(attrib_ref(R), 0, null)

Let us remark the similarity of this specification with the specification showed inage
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Verification of FCA

3. The corresponding correctness theorem is proved using that a refinement preserves the correctness

correct_gen_pseudo_intents_ref: THEOREM
pseudo_intents_set_ref?(R, gen_pseudo_intents_ref(R))

pseudo_intents_set_ref?(R, LL): bool =
vV (I1:ist[T2]): pseudo_intent_ref?(R)(I1) &
3(12:1ist[T2]): 12 € LL A equal_I?(11, 12)

4. Finally, a refinement of the specification to compute the stem base is:

gen_stem_base_ref(R): listfimplication_gen_ref[T1, T2]] =
LET fun = X( Y: list[T2]):
(# premise_ref:= Y,
conclusion_ref:= intent_ref(R)(extent_ref(R)(Y)) #)
IN map(fun)(gen_pseudo_intents_ref(R))

In order to show a computation of the stem base, we represent in PVS the formal context&f page

IMPORTING FCA_REF[string, string]
obj: list[string] = (- "S1", "S2", "S3", "S4", "S5", "S6" :)
atr: list[string] = (: "R", "S", "Tr", "To","E" )
rel: list[[string, string]] =

¢ ('s1", "R"), ("S1", "S"), ("S1", "Tr"),..., ("S6", "Tao") )
C: FFC_ref[string, string] =

(# obj_ref:= obj, attrib_ref:= atr, relation_ref:= rel #)

and executing the functiagen stem base ref inthe pvs—ground—evaluator, we obtain:

<GndEval> "gen_stem_base_ref(C)" ==>
(: (# premise_ref := (: :), conclusion_ref := (: "To" :) #),
(# premise_ref := (: "E", "To" ?),
conclusion_ref := (: "R", "S", "Tr", "To", "E" :) #),
(# premise_ref := (- "To", "Tr", "S", "R" ),
conclusion_ref := (: "R", "S", "Tr", "To", "E" :) #) 2)

Let us remark that the base obtained is the same of the stem base cited &t page

{0 = {To},{E,To} - {R,S,Tr,To,E},{S,R,Tr,To} — {S,R,Tr,To, E}}

5. Conclusions

We have presented in this paper an experience on formalization, validation and correct implementation

of a mathematical concept (FCA) using PVS, introducing the basic concepts and results that allows us to
verify related algorithms in the theory. As a first step, we have developed the theory using finite sets. The

advantage of using finite sets is that the formalization is more natural in the sense that definitions, theorems
and their proofs are very close to the ones of the “source theory”.

Since one of our goals is to obtain formally verified executable algorithms, we have developed a method-
ology that allows us to obtain executable specifications (using lists) from specifications done using finite
sets. For that purpose, we have formalized the notions of type refinement and operation refinement. Thisis a
generic methodology which we have applied successfully to obtain executable specifications of algorithms
of other theories.
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