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Abstract. This paper is concerned with a formal verification of the Formal Concept Analysis frame-
work. We use the PVS system to represent and formally verify some algorithms of this theory. We also
develop a method to transform specifications of algorithms based on finite sets into other executable ones,
preserving its correctness. We illustrate this method by constructing an executable algorithm to compute
an implicational base of the system of implications between attributes of a finite formal context.

Verificación del Análisis formal de conceptos

Resumen. En este trabajo se realiza una verificaci´on formal de la teor´ıa del Análisis formal de concep-
tos. Usamos el sistema PVS para especificar y verificar formalmente los fundamentos matem´aticos de esta
teorı́a. Además, desarrollamos un m´etodo para transformar especificaciones de algoritmos basadas en el
uso de conjuntos finitos en otras evaluables, preservando la correcci´on. Ilustramos este m´etodo constru-
yendo un algoritmo evaluable para calcular una base de implicaciones del sistema de implicaciones entre
atributos de un contexto formal finito.

1. Introduction

Formal Concept Analysis (FCA) is a learning technique for discovering conceptual structures in a large
amount of data, developed since 1982 by R. Wille and B. Ganter [6]. Using FCA techniques several systems
have been created, making possible interactive exploration of large database [11].

This technique has been applied to a wide variety of issues related to knowledge representation and
database exploration: inheritance and interfaces relationships [1], integration of free–text and ontologies
[5], management conceptual of emails [3], knowledge and data discovery in medical texts [2], etc.

Our goal is to show an experience on formalization, validation and correct implementation of a mathe-
matical concept (FCA) in an automated reasoning system. For that purpose, we will follow the first chapters
of the book “Formal Concept Analysis” [6], in which the authors present the mathematical foundations of
this theory as well as some algorithms. So far the FCA has been studied in the Mizar system, where a
formalization and characterization of the lattice of concepts has been done [9]. In this paper, we show that
the PVS theorem prover [8] provides an adequate support for the formalization of FCA.

We have two main reasons to tackle this work. First, show that the PVS specification language, in
addition to its associated theorem prover, is adequate for achieving a suitable formal verification of the
foundations of FCA. The definitions and reasoning in PVS are close to the theory FCA due, mainly, to the
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use of the set theory included in PVS. In our work we have also done an extensive use of the available
library of finite sets.

Second, we explore how we can transform specifications constructed over finite sets, hence not exe-
cutable, in other executable ones. Although not every definitions in PVS are executable, there are a wide
fragment of PVS executable, by generating Common Lisp code [10]. In that sense, we formalize the no-
tions of data refinement and operation refinement used by Dold [4, 7] and we establish their main properties,
building thus a framework in which we could relate differents specifications of the same notion. Then, we
apply it to obtain executable specifications of the functions of the theory FCA.

2. The PVS system

The PVS system combines an expressive specification language with an interactive theorem prover [8]. In
this section, we present a brief description of the PVS language and prover, introducing some of the notions
used in this paper.

The PVS specification language is built on a classical typed higher–order logic with the basic types
bool , nat , int , in addition to the function type constructor[D -> R] and the product type construc-
tor [A, B] . The type system is also augmented withdependent types andabstract data types. In PVS,
a setA with elements of a typeT is identified with its characteristic predicates and thus, the expressions
pred[T] andset[T] have the same meaning. A feature of the PVS specification language ispredi-
cate subtypes: the subtype�x:T | p(x) � consists of elements of typeT satisfyingp. It uses(A) to
indicate the subtype�x:T | A(x) �. Predicate subtypes are used for constraining domains and ranges
of functions in a specification and, therefore, for defining partial functions. In general, type-checking with
predicate subtypes is undecidable. So, the type-checker generates proof obligations, calledtype correctness
conditions(TCCs). This TCCs are either discharged by specialized proof strategies or proved by the user.
In particular, for defining a recursive function, it must be ensured that the function terminates. For this
reason, in the definition of a recursive function, we have to provide ameasure function. This generates a
TCC which states that the measure function applied to the recursive arguments decreases with respect to a
well–founded ordering.

A built-in prelude and loadablelibraries provide standard specifications and proved facts on a large
number of theories. PVS specifications are packaged astheories that can be parametrized in types and
constants. The definitions and theorems of a theory can be used by another theory byimporting it. Proofs
in PVS are presented in a sequent calculus. The commands of the PVS prover include induction, quantifier
instantiation, rewriting and simplification.

3. Formal Concept Analysis in PVS

In this section, we briefly describe the FCA foundations. At the same time, we show the formalization we
have developed in PVS. The framework in which concepts are placed is known as aformal context: a tuple
����� ��, where� is a set ofobjects, � is a set ofattributes and� � � � � is a relation such that
��� �� � � means “the object� has the attribute�”.

We illustrate this definition by means of an example from the theory of binary relations. The objects
of our example are six binary relations. The attributes are five well known properties of binary relations:
reflexive, symmetric, transitive, total and equivalence. A simple format for writing a finite formal context is
across table: one row for each object and one column for each attribute, marking a cross in the intersection
to show that an object has an attribute.
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Reflexive (R) Symetric (S) Transitive (Tr ) Total (To) Equivalence (E)
�� x x x x x
�� x x
�� x x x
�� x x
�� x x x
�� x x x

In the sequel, we will use this example.
In order to specify this notion in PVS, we consider two uninterpreted types,T1 andT2, denoting the

type of the objects and the type of the attributes, respectively. We define the typeFFCTfor representing the
general structures over which we will construct the type for representing a finite formal context:

FFCT: TYPE = [# obj: finite_set[T1],
attrib: non_empty_finite_set[T2],
relation: finite_set[[T1, T2]] #]

where�� �� � ��� � � � � �� � �� �� is the form for record types in the language of PVS. Then, the finite formal
contexts can be represented by the following subtype ofFFCT 1:

FFC:TYPE = �C:FFCT | LET Ob = obj(C), A = attrib(C), I = relation(C) IN
� pair �I: LET (ob, a) = pair IN ob �Ob � a�A�

In what follows,	 � ����� �� always denotes a finite formal context.

3.1. The lattice of concepts

FCA is based on the idea that a concept is an unit consisting of two parts: the extent, which covers all
the objects belonging to the concept; and the intent, which compresses all the attributes valid for all those
objects.

Thus, thederivation operators for a formal context	 can be defined as follows:

� Given a set
 of objects of	, theintent of 
 , denoted as
 �, is the set of their common attributes

intent(C)(X: finite_set[T1]): finite_set[T2] =
IF X = � THEN attrib(C) ELSE
�a: T2 | � (d:(X)): (d, a) � relation(C) � ENDIF

� Dually, given a set� of attributes of	, theextentof � , denoted by� � is the set of the objects having
all attributes from� .

extent(C)(Y: finite_set[T2]): finite_set[T1] =
IF Y = � THEN obj(C) ELSE
�d: T1 | � (a: (Y)): (d, a) � relation(C) � ENDIF

� A pair �
�� � is a formal conceptof 	 iff 
 � �� � � ��
 � � � and� � � 
 .

concept?(C)(pair: [finite_set[T1], finite_set[T2]]): bool =
LET (X, Y) = pair IN X � obj(C) � Y � attrib(C) �

intent(C)(X) = Y � extent(C)(Y) = X

1The syntax of PVS specifications has been modified to increase its readability with a more familiar mathematical notation.
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The set of all formal concepts of	 � ����� �� is denoted as������ ��. In PVS, we define the type
representing the concepts of a formal context	 and the corresponding accessor functions2 as follow:

concept(C): TYPE = (concept?(C))

extent_concept(C)(pair: concept(C)): finite_set[T1] = proj_1(pair)
intent_concept(C)(pair: concept(C)): finite_set[T2] = proj_2(pair)

Formal concepts can be partially ordered in a natural way: a concept�
 �� ��� is a subconceptof
�
�� ��� iff 
� � 
� or, equivalently,�� � ��.

subconcept?(C)(pair1, pair2: concept(C)): bool =
extent_concept(C)(pair1) � extent_concept(C)(pair2)

We can view the relationship among the concepts of our example by the following diagram. In it, the
nodes are the concepts, represented only by their intents, and the arcs represent the subconcept relation.

{To}

{R, To}

{R, S, To}

{S, To}

{ R, Tr, To}

{Tr, To}

{R, S, Tr, E, To}

{S, Tr, To}

The main algebraic property of the set of concepts of a formal context	 is the following

Theorem 1 ������� ��, subconcept? � is a complete lattice, in which for every set of formal concepts,
��
�� ��� � � � 
�, the supremum and the infimum are given by

�
���
�� ��� � � � 
�� �

�
�
�
���


��
���
�
���

��

�

�
���
�� ��� � � � 
�� �

� �
���


�� �
�
���

���
��

�

where we have denotedintent(C)(extent(C)(Y)) by � �� andextent(C)(intent(C)(X))
by
 ��:

PROOF.

1. The relation is a partial order. We prove this property using the built in relationpartial order? ,
wherepartial order?[D](rel) is verified if rel is a partial order inD:

po_subconcept: LEMMA partial_order?[concept(C)](subconcept?(C))

2. We define in PVS the expressions to compute the supremumlub fca . For this purpose, we use the
Union and theIntersection of an arbitrary set of sets, and we define a function to obtain the set
of extents (resp. intents) of a set of concepts, using the built in functionimage(f)(S) , that applies
f to the elements of the setS.

2The built in selectorproj i(x) selects the i–th element of a tuple.
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Union(I:set[set[T]]): set[T] = � x: � (A: (I)): A(x)
Intersection(I:set[set[T]]):set[T] = � x: � (A:(I)):A(x)

extents_set_concepts(C)(S: set[concept(C)]): set[set[T1]] =
image(extent_concept(C))(S)

lub_fca(C)(S:set[concept(C)]): concept(C) =
(extent(C)(intent(C)(Union(extents_set_concepts(C)(S)))),

Intersection(intents_set_concepts(C)(S)))

In this specification, we have constrained both the domain and the range of the functionlub fca .
So, it generates the following TCC ensuring thatlub fca satisfies the range constraint given by the
predicate subtypeconcept(C) :

lub_fca_TCC1: OBLIGATION
FORALL (C: FFC, S: set[concept(C)]):
concept?(C)

(extent(C)(intent(C)(union(extents_set_concepts(C)(S)))),
intersection(intents_set_concepts(C)(S)))

This TCC is not automatically proved. In order to prove it, we establish that for an arbitrary set�
 � �
� � 
� of sets of objects,

�
��� 
 �

� � �
�
��� 
��

�. So,
�
��� �� �

�
��� 
 �

� � �
�
��� 
��

�.
Then, we have �

���
�� ��� � � � 
�� �
�
�
�
���


��
��� �
�
���


��
�

�

and we prove that this is a formal concept of	.

3. Finally, we prove the following result using the built–in predicateleast upper bound? , where
least upper bound?(rel)(x,S) is satisfied ifx is the least upper bound ofS:

lub_fca_is_lub: LEMMA
� (S:set[concept(C)]):

least_upper_bound?(subconcept?(C))(lub_fca(C)(S), S)

Hence, we have proved that each collection of formal concepts have a supremum, belonging to the
lattice. In the same way, we prove the results corresponding to the infimum.�

3.2. Implications between attributes

In those cases in which we have to classify a large number of objects with respect to a relative small number
of attributes, we could deal with rules or the implications between attributes, i.e, with statements of the
form: “every object with attributes�� �� � � � � also have attributes� �� ��� � � � ” . Then, we could characterize
the intents of concepts of a formal context by a set of rules. In this situation, we study the possible attribute
combinations, theattribute logic. Formally, animplication between attributes in 	 � ����� �� is a pair
of subsets of attributes���� ���, denoted as�� � ��. The set�� is thepremise or antecedentof the
implication and�� its conclusion.

In PVS, we use a structure for representing a generalized type of implications

implication_gen: TYPE = [# premise: finite_set[T2],
conclusion: finite_set[T2] #]
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and we specify the type of implications between attributes of a context	 as the subtype:

implication(C): TYPE =
�imp:implication_gen | premise(imp) �attrib(C) � conclusion(imp) �attrib(C) �

Let us now see the semantic of implications between attributes, specifying it in PVS. A set of attributes
� respectsor is amodelof the implication�� � �� if �� �� � 	 �� � � (i.e.,�� � � 
 �� � �).

respects(C)(Z: finite_set[T2], imp: implication(C)): bool =
premise(imp) �� Z 	 conclusion(imp) � Z

A set of attributes� respects a setof implications� if � respects each implication in�.

respects(C)(Z: finite_set[T2], L:set[implication(C)]): bool =
� (imp: (L)): respects(C)(Z, imp)

An implication�� � �� holds in a set of sets of attributes if each of its elements respects�� � ��.

holds(C)(imp: implication(C), S:set[finite_set[T2]]): bool =
� (Z:(S)): respects(C)(Z, imp)

An implication�� � �� holds in a context	, or �� � �� is an implication of 	, if the intent of
every object of	 respects�� � ��. That is, whenever each object having all the attributes in�� also has
all the attributes in��.

holds(C)(imp: implication(C)): bool =
� (ob: T1): ob � obj(C) => respects(C)(intent(C)( �ob�), imp)

Then, for each formal context	, we define the set of concepts of	, concepts(C) , the set of impli-
cations that holds in	, holds(C) , and the set of models of the implications hold in	, models(C) .

concepts(C) = �pair: [finite_set[T1], finite_set[T2]]| concept?(C)(pair) �
holds(C) = �imp: implication(C)| holds(C)(imp) �
models(C)(S) = �Z: finite_set[T2] | Z � attrib(C) � respects(C)(Z,S) �

And we prove the relationship between the models of the implications that hold in	 and the concepts of
	:

Theorem 2 The set of models of the implications that hold in C is the set of the intents of concepts of C.

models_holds: THEOREM models(C)(holds(C))=intents_set_concepts(C)(concepts(C))

Let us note that to specify this result in PVS we have used the expressionintents set concepts(C)(S) ,
that obtains the set of intents of the concepts of�.

Using this property, we can to obtain the concepts of a finite formal context	 from the models of
the implications that hold in	, and vice versa. Nevertheless, the number of implications that hold in a
context can be very large and contain many trivial implications. Therefore, it is natural to look for a small
set of implications from which everything else could be derived: animplicational base. Specifically, an
implication�� � �� follows (semantically)from a set of implications� in 	 if each subset of attributes
of 	 respecting� also respects�� � ��.

So, given formal context	, we look for a set of implications� having the following properties:
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� sound: each implication in� holds in	

sound(C)(L): bool = �(imp:(L)): holds(C)(imp)

� complete: each implication that holds in	 follows from�

complete(C)(L):bool= �(imp:implication(C)):holds(C)(imp) 
follows(C)(imp,L)

� non redundant: no implication in� follows from other implications in�

non_redundant(C)(L):bool= �(imp:(L)): NOT follows(C)(imp, remove(imp, L))

Guigess and Duquenne [6] have proved that for every context with a finite set of attributes�, there is
a sound, complete and non redundant set of implications, calledstem baseor Duquenne–Guigues–Basis.
For this purpose, it defines apseudo intentas a set of attributes� which is not an intent (� �� �� �), but
contains the closure (� ��) of every proper subset that is also pseudo intent.
In our example:

� � is a pseudo intent, since��� � ���� �� �

� ��� is not a pseudo intent, since����� � ���� ��� ���
� � ��� ��� �� ���, but the only proper

subset of� that is a pseudo intent is�, and��� � ���� �� ���

We specify this definition in PVS, providing the cardinal of� as measure function to prove its termina-
tion:

pseudo_intent?(C)(S: finite_set[T2]): RECURSIVE bool =
S �� intent(C)(extent(C)(S)) �
� (P: finite_set[T2]): P � S � pseudo_intent?(C)(P) =>

intent(C)(extent(C)(P) � S
MEASURE card(S)

Then, we establish the following theorem:

Theorem 3 For every finite formal context 	, the set of implications

� � �� � ��� � � is pseudo intent of 	�

is sound, non redundant and complete (� is called stem base).

In our example, the stem base is

�� � ����� ��� ��� � ����� � �� ��� ��� ����� � �� ���� ����� � �� ��� ���

and a slightly modified version of the stem base is

�� � ����� ��� ��� � ����� � ��� ����� � �� ���� ����

obtained by�� � � �� 
 � � � is pseudo intent of	�
Let us note that the specification in PVS of the notion of pseudo intent is more general than the definition

itself. Therefore, in order to describe the stem base, we only consider the subsets of the attributes that verify
the PVS–definition of pseudo intent:
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pseudointents(C): set[finite_set[T2]] =
�S: finite_set[T2] | S � attrib(C) � pseudo_intent?(C)(S) �

stem_base(C): set[implication(C)] =
LET fun = �(S:finite_set[T2]):

(# premise:= S,
conclusion:= intent(C)(extent(C)(S)) #)

IN image(fun)(pseudointents(C))

We have proved the stem base properties in PVS in a similar way as they are stated in [6]:

stem_base_sound: LEMMA sound(C)(stem_base(C))
stem_base_non_redundant: LEMMA non_redundant(C)(stem_base(C))
stem_base_complete: LEMMA complete(C)(stem_base(C))

The stem base is not the only implicational base, but it plays a special role. Among other reasons, there
is not other implicational base with less elements and it can be algorithmically obtained. Moreover, to built
the stem base we only need an algorithm to compute the pseudo intents of	. We are going to specify such
an algorithm, based on the recursive definition of pseudo intent. Here, we are interested in constructing an
abstract and correct specification of this algorithm and later, we will transform it into another executable
specification, preserving its correctness.

Hence, ifgen pseudo intents(C) computes the set of pseudo intents of	, we can compute the
stem base, as follows:

gen_stem_base(C): set[implication_gen] =
LET fun = � (Y: finite_set[T2]):

(# premise:= Y,
conclusion:= intent(C)(extent(C)(Y)) #)

IN image(fun)(gen_pseudo_intents(C))

Let us describe the generation of the pseudo intents of	 � ����� �� stepwise, according to its cardinal:

� Step�: generate the pseudo intents of cardinal�: �� � ��� if � is pseudo intent and�� � �,
otherwise.

� Step� � 	: generate the pseudo intents of cardinal up to� � 	, ����, from the pseudo intents of
cardinal up to����. For this, we introduce a restricted notion of pseudo intent. That is,� is apseudo
intent restricted to a set of sets� if � �� � �� and for every
 � �, if 
 � � then
 �� � � . Now,
the set���� can be defined as follows:

���� � �� � �� � � � �� � � � � 	 � � is a pseudo intent restricted to���.

Thus, ifsubsets card(R,k) is the set�� � � � ����� � �� andpseudo restricts(C)(G,S)
is �� � � � � is pseudo intent restricted to S�, the specification of this algorithm in PVS is the following:

gen_pseudo_intents(C): set[finite_set[T2]] =
gen_pseudo_intents_aux(C)(attrib(C), 0, �)

gen_pseudo_intents_aux(C)(A: finite_set[T2], k:upto(card(A)),
S: finite_set[finite_set[T2]]):
RECURSIVE set[finite_set[T2]] =

LET NS = pseudo_restricts(C)(subsets_card(A,k), S) IN
IF k = card(A) THEN S � NS ELSE
gen_pseudo_intents_aux(C)(A, k+1, S � NS) ENDIF
MEASURE card(A)-k
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Finally, we prove the correctness of this specification in PVS, that is,gen pseudo intents(C) builds
the set of pseudo intents of	.

correct_gen_pseudo_intents: THEOREM
gen_pseudo_intents(C) = pseudointents(C)

PROOF. The proof ofgen pseudo intents(C) � pseudointents(C) is obtained by estab-
lishing that if� � gen pseudo intents aux(A,k, �) , (i.e, � has been introduced in the step�),
then� � � and� is pseudo intent. We prove it usingcard(A)-k as measure–induction. In order
to provepseudointents(C) � gen pseudo intents(C) , we establish by induction to, that if
� � � � �� � � � and� has not been introduced in the step�, then� is not a pseudo intent. �

4. Executable specifications in FCA

The PVS specification language is designed to be expressive rather than executable, since it allows quantifi-
cation over infinite domains and higher order equalities. However, a wide fragment of PVS is executable,
by generating Common Lisp code from PVS, that can be evaluated in the PVS–ground–evaluator [10].
Specifically, the executable expressions are those that do not contain free variables, uninterpreted functions
or constants, quantification over infinite domains and equality between higher–order terms. The specifica-
tions we have constructed in the previous section use operations over finite sets, which are not executable.
Our main goal in this section is to show how to transform the specifications of FCA built so far into their
respective executable specifications.

Based on the notion of refinement of data types used for Dold [4] and Jones [7] we have done the
following:

� We have built a theory,REF, establishing the general notions of refinements and its main properties.

� We have established a refinement of the theory of finite sets,FS, by the theory of lists,FS-REF.

� We have used both theories to refine the theoryFCA from the previous section by the theoryFCA-
REF, in which the specifications of the functions are executables.

� Finally, we have instantiated the parameters of the theoryFCA-REF and we have evaluated some
examples, included in the theoryFCA-EXAMPLE.

We can see the relationship between these theories in the following diagram:

FS

FCA−REFFS−REF

FCA−EXAMPLE

REF FCA

4.1. Refinement of data types.

Given the types� and�, we say that adata refinementof type� by the type� is a surjective application
� � �� � .
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f: VAR [R->T]
refinement?(f): bool = � (t:T): � (r:R): f(r) = t

Intuitively, this function provides the relationship between abstract values and their representations. It
is clear that there is at least one representation, non necessarily unique, for any abstract value.

It is easy to see that a type can be refined stepwise by sequential composition of refinements. We have
proved that, if� � � � � is a data refinement of� by� and� � � � � is a data refinenemt of� by�,
then� Æ � � �� � is a data refinement of� by�.

On the other hand, let us consider a function�� � �� � �� and let us suppose that we have the data
refinements given by the functions�� � �� � �� and�� � �� � ��. Then, we say that the function
����� � �� � �� is arefinementof �� if the following diagram commutes:

��
��
�� ��

� �
��� ���� �

��
�����
�� ��

op: VAR [T1 -> T2] op_ref: VAR [R1 -> R2]
refinement_op?(op,op_ref): bool = � (r1:R1): op(f1(r1)) = f2(op_ref(r1))

In essence, we require that����� has the same behaviour as��. Being more precise, let us suppose that
we have established a correctness theorem for��, in terms of pre and post conditions. That is, a theorem
like

��� � ��������
 ���� �������

where� is the precondition and� is the postcondition. Then, if�� ��� � ���� and���� are refinements of
��� � and�, respectively, we have proved that

�� � �������� � �
 ���� � � ����� � ���

which is just the correctness theorem corresponding to����� .
Moreover, a specification of an algorithm is normally built combining some other specifications of

functions. Hence, we hope that for constructing a refinement of a specification of an algorithm it is enough
to construct a refinement of each function used in it, and to replace it. In that sense, we have proved that
if ��	��� and��
��� are refinements of��	 y ��
, respectively, then��
��� Æ ��	��� is a refinement of
��
 Æ ��	:

��
���
�� ��

���
�� ��

� � �
��� ��� ���� � �

��

������
�� ��

������
�� ��

4.2. Executable refinements of operations over finite sets

A natural way to represent finite sets is by means of lists. First, we can think in representing a finite set�

by a list with the same elements of�, although with possibly repeated elements. However, the elements
of � could also be finite sets, or another type that was necessary to refine to. Hence, let us consider

12
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a data refinement given by� � � � � . From this, we can establish a data refinement of type “finite
sets with elements in� ” by the type “lists with elements in�”, by the functionc(f):list[R] �
finite set[T] , defined as follows:

c(f)(l: list[R]): RECURSIVE finite_set[T] =
CASES l OF

null: �,
cons(x, l1): add(f(x), c(f)(l1))

ENDCASES
MEASURE length(l)

We are interested in building refinements corresponding to the operations over finite sets specified in
the theoryFCA, developed in section 3. For this, we have used operations on lists such that “simulate” the
behaviour of analogous operations on finite sets. We have proved that the built–in operationsnull? , cons
andappend are refinements ofempty? , add andunion , respectively. As for the membership relation,
we have to notice that if� is injective, the operationmember from lists is a refinement of the operation
member of finite sets. Otherwise, that is not true. Thus, we have defined a new membership relation, with
respect to an equivalent relation, and we have proved that, if� � is the equivalence relation induced in� by
� (�� �� �� � ����� � �����), member(�� ) is a refinement ofmember. The specification in PVS is
the following:

member(rel:(equivalence?[R]))(x:R, l:list[R]): RECURSIVE bool =
CASES l OF

null: false,
cons(a, l2): rel(a, x) 	 member(rel)(x, l2)

ENDCASES
MEASURE length(l)

Note that if the relation����� � ����� is executable, then the operationmember(�� ) is also executable.
We have followed the same process for the refinements ofinter , subset? , remove , rest and

card . Without going into more details, we show a table with the names of operations over lists which are
refinements of the corresponding operations over finite sets:

finite sets lists finite sets lists

empty? null? add cons
member member(��) union append
intersection inter(�� ) remove removel(�� )
choose car rest rest l(�� )
subset? subset?l(�� ) card card l(�� )
image map Union Append
powerset powersetref subsetscard subsetscard !

In case that we have finite sets which elements are also finite sets, the data refinement is given by

c(c(f)):list[list[R]] � finite set[finite set[T]]

and the relationmember(����	) is not executable because the expressionc(f)(l1) = c(f)(l2) . In
order to solve this problem we have defined an equivalence relationequal l?(f) in list[R] , whose
evaluability only depends on evaluability of� . This relation also verifyequal l?(f)(l1, l2) �
c(f)(l1) = c(f)(l2) .

Thus, we could consider that given a data refinement� � � � � , for each operation over finite sets
with elements in� , we have an operation over lists in� which it is its refinement. Now, we are going to
use them to construct in PVS a refinement of data and operations of the theory FCA specified in section�.

13
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4.3. Executable specifications in FCA

In order to construct an executable “refinement” of the theoryFCA, we have to build a data refinement for
each type or data type inFCA, and an executable refinement of each function specified inFCA. Next, we
show a scheme of this process, applied to the function that computes the stem base of a finite formal context.

1. The typesFFCTandFFCare refined by the types

FFCT_ref: TYPE = [# obj_ref: list[T1],
attrib_ref: (cons?[T2]),
relation_ref: list[[T1, T2]] #]

FFC_ref: TYPE =
�R: FFCT_ref | LET Ob_ref = obj_ref(R), A_ref = attrib_ref(R),

Re_ref=relation_ref(R)
IN every( � (pair): proj_1(pair) � obj_ref(R) &

proj_2(pair) � attrib_ref(R))(Re_ref) �

by the data refinement

trans(R: FFCT_ref): FFCT[T1,T2] =
(# obj:= c(id[T1])(obj_ref(R)),

attrib:= c(id[T2])(attrib_ref(R)),
relation:= c(id[[T1,T2]])(relation_ref(R)) #)

The typesimplication gen andimplication are refined by the types

R: VAR FFC_ref[T1, T2]
implication_gen_ref: TYPE = [# premise_ref: list[T2],

conclusion_ref: list[T2] #]
implication_ref(R): TYPE =
�imp_r: implication_gen_ref |

subset?_l(premise_ref(imp_r), attrib_ref(R)) �
subset?_l(conclusion_ref(imp_r), attrib_ref(R)) �

by the data refinement

transf_imp_gen(imp_g_r:implication_gen_ref):implication_gen[T1, T2]=
(# premise:= c(id[T2])(premise_ref(imp_g_r)),

conclusion:= c(id[T2])(conclusion_ref(imp_g_r)) #)

2. A refinement of the specification to compute the set of pseudo intents is built replacing each function
by its refinement:

gen_pseudo_intents_aux_ref(R)(ls: list[T2],
k:upto(cardinal_l[T2, T2](ls)),
S: list[list[T2]]):
RECURSIVE list[list[T2]] =

LET NSL=pseudo_restricts_ref(R)(subsets_card_l(ls,k),S)
IN IF k = cardinal_l(ls) THEN append(S, NSL) ELSE

gen_pseudo_intents_aux_ref(R)(ls, k+1, append(S, NSL)) ENDIF
MEASURE cardinal_l(ls)-k

gen_pseudo_intents_ref(R): list[list[T2]] =
gen_pseudo_intents_aux_ref(R)(attrib_ref(R), 0, null)

Let us remark the similarity of this specification with the specification showed in page�.

14
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3. The corresponding correctness theorem is proved using that a refinement preserves the correctness

correct_gen_pseudo_intents_ref: THEOREM
pseudo_intents_set_ref?(R, gen_pseudo_intents_ref(R))

pseudo_intents_set_ref?(R, LL): bool =
� (l1:list[T2]): pseudo_intent_ref?(R)(l1) 


�(l2:list[T2]): l2 � LL � equal_l?(l1, l2)

4. Finally, a refinement of the specification to compute the stem base is:

gen_stem_base_ref(R): list[implication_gen_ref[T1, T2]] =
LET fun = �( Y: list[T2]):

(# premise_ref:= Y,
conclusion_ref:= intent_ref(R)(extent_ref(R)(Y)) #)

IN map(fun)(gen_pseudo_intents_ref(R))

In order to show a computation of the stem base, we represent in PVS the formal context of page�:

IMPORTING FCA_REF[string, string]
obj: list[string] = (: "S1", "S2", "S3", "S4", "S5", "S6" :)
atr: list[string] = (: "R", "S", "Tr", "To",’’E’’ :)
rel: list[[string, string]] =

(: ("S1", "R"), ("S1", "S"), ("S1", "Tr"),..., ("S6", "To") :)
C: FFC_ref[string, string] =

(# obj_ref:= obj, attrib_ref:= atr, relation_ref:= rel #)

and executing the functiongen stem base ref in the pvs–ground–evaluator, we obtain:

<GndEval> "gen_stem_base_ref(C)" ==>
(: (# premise_ref := (: :), conclusion_ref := (: "To" :) #),

(# premise_ref := (: "E", "To" :),
conclusion_ref := (: "R", "S", "Tr", "To", "E" :) #),

(# premise_ref := (: "To", "Tr", "S", "R" :),
conclusion_ref := (: "R", "S", "Tr", "To", "E" :) #) :)

Let us remark that the base obtained is the same of the stem base cited at page
:

�� � ����� ��� ��� � ����� � �� ��� ��� ����� � �� ���� ����� � �� ��� ���

5. Conclusions

We have presented in this paper an experience on formalization, validation and correct implementation
of a mathematical concept (FCA) using PVS, introducing the basic concepts and results that allows us to
verify related algorithms in the theory. As a first step, we have developed the theory using finite sets. The
advantage of using finite sets is that the formalization is more natural in the sense that definitions, theorems
and their proofs are very close to the ones of the “source theory”.

Since one of our goals is to obtain formally verified executable algorithms, we have developed a method-
ology that allows us to obtain executable specifications (using lists) from specifications done using finite
sets. For that purpose, we have formalized the notions of type refinement and operation refinement. This is a
generic methodology which we have applied successfully to obtain executable specifications of algorithms
of other theories.
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