
Rete Algorithm Applied to Robotic Soccer

M. Palomo1, F.J. Mart́ın-Mateos2, and J.A. Alonso2

1 Department of Computer Languages and Systems, University of Cádiz,
Escuela Superior de Ingenieŕıa, C/ Chile, s/n. 11003 Cádiz, Spain

manuel.palomo@uca.es
2 Computational Logic Group,

Dept. of Computer Science and Artificial Intelligence, University of Seville,
E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

{fmartin, jalonso}@cs.us.es

Abstract. This article is a first approach to the use of Rete algorithm
to design a team of robotic soccer playing agents for Robocup Soccer
Server. Rete algorithm is widely used to design rule-based expert sys-
tems. Robocup Soccer Server is a system that simulates 2D robotic soccer
matches. The paper presents an architecture based on CM United team
architecture for Robocup Soccer Server simulation system. It generalizes
the low-level information received by the agent as high-level soccer con-
cepts. This way it can take advantage of expert system design techniques.

1 Introduction

Robotic soccer is one of the most interesting examples of multi-agent systems.
In this environment, agents must be able to perform as a team to get a com-
mon long-term goal. They have to manage themselves in a real-time, non-
deterministic, partially-known world. All this facing a team whose goal is the
opposite (both teams can’t fulfil their goals at the same time.) These features
are common to other problems like hospital or factory maintenance, search and
rescue missions, multi-spacecraft space missions, etc.

This paper is focused on simulated robotic soccer. The simulation system
allows to deal with high-level problems instead of spending time with low-level
details. Scientists can apply automated reasoning techniques (off-line and on-
line.) It also offers the advantages of software utilities: recording matches (as
video or log files) and replaying them later, playing matches in any moment just
with a computer (if the implementations of the teams are available), building
teams with exactly the same resources, etc. Anyway, under some constraints,
direct implementation of simulated soccer algorithms in real robots is possible [2].

2 Foundations

This paper is a first approach that shows how expert system design techniques
(in particular, Rete algorithm) can be used to design a soccer playing agent for
Robocup Soccer Server.

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 571–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

572 M. Palomo, F.J. Mart́ın-Mateos, and J.A. Alonso

2.1 Expert Systems

Our proposal is based on the use of Rete algorithm [1] to design a rule-based
expert system. Expert systems design is a branch of artificial intelligence spe-
cialized in the development of systems simulating expert human decision skills.
In particular, rule-based expert systems are composed of a set of facts (knowl-
edge base) and a set of if-then statements (rules.) Facts represent information
known (or believed) about the world. And rules describe how that information
could change. The set of rules are fixed during all the execution of an expert
system, but facts usually change. Every rule has two parts: the antecedent (a set
of conditions about facts) and the consequent (a set of actions that modify the
knowledge base adding or deleting facts.) One of the key features of rule-based
expert systems is the possibility of increasing the knowledge (adding new rules)
without losing the information in the knowledge base.

Expert systems work in an infinite loop. In each cycle they check the an-
tecedent of every rule. If all the conditions of one of them are true then the rule
is activated and placed in the agenda. The agenda is the list of all rules which
have their conditions satisfied and have not been executed yet. After checking
all the rules, one of the activated ones (that are in the agenda) is selected to
be triggered. The selection method is called conflict resolution strategy, and de-
pends on the implementation of the system. There are several conflict resolution
strategies, such as assigning a priority to every rule, choosing the most recent
activated, the least frequently triggered, etc. Each one of these strategies has
both advantages and drawbacks.

In every cycle of simulation the system checks the rules seeking for new
activations, as the triggered rule could have changed the facts in the knowledge
base. A direct implementation of an algorithm checking all the conditions of
every rules would be too inefficient (O(R · FP) being R the number of rules,
F the number of rules in the knowledge base and P the average of conditions
per rule.)

Rete algorithm takes advantage of two facts (as pointed in [5]). First, most
of the facts in an expert system don’t change from one cycle to another. Thus, it
doesn’t check all the rules every cycle, but it remembers past facts test results,
so only new facts are tested. And second, as several rules can share part of their
antecedents a network is created to minimize the number of tests to be made
in each cycle. Figure 1 shows an example of optimization of two rules. These
advantages produce a more efficient algorithm on the average O(R · F · P).

2.2 Robocup Soccer Server

Robocup Soccer Server [3] is a system that simulates robotic soccer matches
in a 2D field. It’s supported by the Robocup Federation [4] and used in all its
competitions.

The code is distributed under the GNU GPL license, and it works with a
client-server architecture. In each match there is one server simulating everything
concerning the match, and 22 clients (11 for each team), each one controlling

Rete Algorithm Applied to Robotic Soccer 573

Trigger rule 2

?X ?Y

Trigger rule 1

?Y

+

?X ?Y

+

Trigger rule 1

?Z

+

?Z

+

+

?X

Trigger rule 2

Fig. 1. Rule optimization creating a network sharing facts and an inner condition

one player. Clients are autonomous, and they can only communicate with mates
through the server, sending messages in a standard language through an UDP
socket. So clients can be programmed in any hardware, any operating system
and any programming language as long as it implements UDP socket support.
The server implements a low bandwidth, unreliable, communication channel.

The server simulates the world in steps of 100ms. It accepts one action (like
kick or turn) from each client every step, and simulates them all (applying real
physics and soccer rules like decay, off-side rule, etc.) The simulation is non-
deterministic and all the actions are affected by some noise.

Part of the result of this simulation is sent to every client in each cycle. That
information is of three kinds: aural (what a player hears), visual (what a player
sees) and physical (what a player knows about himself, like stamina, speed and
so.) Every player only receives the information it senses: messages heard, objects
seen and physical information.

3 Proposed Architecture

Our proposal is based on the architecture presented by Peter Stone in [2] for
CM United team. It, basically, uses some static information common to all the
players in a team (called locker-room agreements) and the information received
from the world (partial information) to update the internal state of the agent
(Fig. 2.) With those internal beliefs a directed acyclic graph (known as external
behaviors) selects the action to be made (an example is shown in Fig. 3.)

We propose two modifications to this model:

3.1 Generalization of the Information

In the CM United architecture all the information received from the world is
stored as low-level facts (like positions of players, speed of the ball, etc.) But
it can be generalized as high-level information relative to objects in the field,
in such a way that small changes in the world won’t lead to changes in the

574 M. Palomo, F.J. Mart́ın-Mateos, and J.A. Alonso

TEAM MEMBER AGENT ARCHITECTURE

Agreements

World state

Real world

External
behaviors

Internal
state

ActionsInformation

Fig. 2. Simplified internal architecture of an agent

high-level perception of it. Of course, this generalization must be according to
soccer concepts: for example, a set of positions of players can be generalized in
an “off-side” fact.

This generalization allows the agent to focus on soccer concepts instead of
coordinates in a field. And these concepts will only change when an important
event (from a soccer point of view) happens.

3.2 Use of a Rule-Based Expert System

The second modification proposed consists in replacing the directed acyclic graph
that chooses the action to be performed in the CM United architecture by a set
of rules managed with Rete algorithm. In this case the antecedents of the rules
must only check high-level properties (so the algorithm won’t have to be re-
testing a lot of rules every cycle), and the consequent (that indicates the action
to be made) uses low-level facts in order to calculate the best action according to
accurate information. According to the off-side example, if “off-side” fact exists
in the knowledge base, rules as “pass forward” can’t be activated. And a slight
movement of the player to another off-side position won’t lead to the activation
of any of those rules. But if the movement avoids off-side, the rules could be
activated.

The most suitable conflict resolution strategy is priority-based: assigning a
priority value to every rule and selected the activated rule with the highest
priority. In the case that several activated rules have the highest priority value,
a random selection is performed. This way the agents will be able to take good

Rete Algorithm Applied to Robotic Soccer 575

Face Ball()

Handle Ball(args1)

Passive Offensive(args2)

Communicate()

Behavior Face Ball()

Behavior Handle Ball(args)

Behavior Passive Offensive(args)

Behavior Communicate()

...

...

...

...

If (Communicate Flag Set)

If (Ball known AND Not Chasing)

Behavior Play Soccer()

If (Ball Lost)

If (Ball known AND Chasing)

Fig. 3. Example of external behaviors as implemented in [2]

actions (as they have higher priority.) But they won’t behave always the same, as
in the same circumstances they could take different rules with the same priority.

3.3 Advantages

The modified architecture provides some very interesting advantages:

1. The team can be easily debugged. With a log file of a match (and some help
from an engineer) a human expert could check if the concepts generalized
in each moment and the actions taken are right, and improve the team.
This task is not something obvious in other mathematical approaches to the
design of playing agents.

2. Increasing or modifying the system knowledge is as simple as adding or
editing rules.

3. Rete algorithm is widely used (there are several free implementations avail-
able) and has proved to be very efficient.

4. As Rete minimizes the number of tests to be made in each cycle, the number
of rules could be high.

5. Our proposal defines an architecture, not a team. Different concept general-
ization and different rules design absolutely different teams with absolutely
different behavior.

4 Conclusions and Future Work

Robocup Soccer Server is a very interesting test-bed for soccer playing multi-
agent systems. This paper is a first approach that shows how expert system
design techniques can be applied to design a soccer playing agent for Robocup
Soccer Server. One of the main contributions is the generalization of the low-
level information received as soccer concepts. With those soccer concepts an

576 M. Palomo, F.J. Mart́ın-Mateos, and J.A. Alonso

expert human could program the agent with simple if-then rules. The second
contribution is the introduction of Rete algorithm in the architecture used by
the CM United team. That way the rules could be easily processed by the agent.

Anyway there are several details that have to be precised to finish this work:
The use of communication protocols is very important for two reasons. First

agents can help each other sharing information known about the world, and
second, they need to synchronize periodically (in case they dynamically change
the tactic of the team or the roles played by each agent in the tactic.) So the
communication protocol should be defined carefully. There are three possibilities
to do it: agents can use it on their own automatically (without human control),
it can be controlled only by rules, or an hybrid method could be implemented.

The inclusion of set-plays can be very interesting. A set-play is a multi-
agent plan fired by some condition. Their main advantage is that during their
execution agents know where mates must be, so they can act faster and more
accurately. An interface to define set-plays would consist of three parts: definition
of the activation conditions, specification of the actions to be taken during its
execution and definition of the conditions to cease it.

Robocup Soccer Server allows the use of an on-line coach in each team during
the match to assist players. It’s a privileged agent that receives all the informa-
tion of the environment and can send messages to players periodically. It works
as a soccer coach: analyzing the game and the opponent, and sending informa-
tion to players. It could be implemented in lots of different ways, as long as it
send the players interesting facts for them to play better.

Finally we are developing a batch file to test teams. It will be used to test our
final architecture (implementing different sets of rules and generalizations). The
batch file will program as many matches as desired versus some of the top-level
teams in previous Robocup World Championships and will collect the results.

References

1. Forgy, C. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. The Journal of Artificial Intelligence, Vol. 19, 1982, pp. 17-37.

2. Stone, P. Layered Learning in Multi-agent Systems. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1998.

3. Robocup team. Soccer Server System. http://sserver.sourceforge.net.
4. Robocup Federation home page. http://www.robocup.org.
5. Giarratano, J. & Riley, G. Expert systems: principles and programming, third edi-

tion. PWS Publishing Company, 1998.

	Introduction
	Foundations
	Expert Systems
	Robocup Soccer Server

	Proposed Architecture
	Generalization of the Information
	Use of a Rule-Based Expert System
	Advantages

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

