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Abstract. In this paper we present a formalization and proof of Hig-
man’s Lemma in ACL2. We formalize the constructive proof described
in [10] where the result is proved using a termination argument justified
by the multiset extension of a well-founded relation. To our knowledge,
this is the first mechanization of this proof.

1 Introduction

In [8] we presented a formal proof of Dickson’s Lemma in ACL2 [6]. This re-
sult was needed to prove the termination of a Common Lisp implementation of
Buchberger’s algorithm for computing Gröbner basis of polynomial ideals [9].
After finishing this work our attention was addressed to similar results already
present in the literature [12,15,10].The last one presents a constructive proof of
Higman’s Lemma similar to the one presented in [8]. Thus, the interest to au-
tomatize this proof of Higman’s Lemma in ACL2 is multiple: first, the proof has
a similar structure to the proof of Dickson’s Lemma developed by the authors,
and similar techniques are used; second, it is the first (to our knowledge) autom-
atization of this proof, complementing thus the work presented in [10]; third,
Dickson’s Lemma could be proved in ACL2 as a consequence of this theorem;
and finally it could give some advice about how to prove Kruskal’s Theorem
in ACL2, which is a fundamental theorem in the proof of termination of some
well-known term orderings [1].

The ACL2 logic is a subset of first-order logic with a principle of proof by
induction. The proof we present here is based on the constructive proof presented
in [10], where the result is proved using a termination argument justified by
the multiset extension of a well-founded relation. In the mechanization of this
proof, we use a tool for defining multiset well-founded relations in ACL2 in an
automated way, a tool that we used previously in other formalizations [13] and
that can now be reused.
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Higman’s Lemma is a property about embeddings of strings. Previously to
present the result we introduce some notation. Let Σ be a set, and let Σ∗ denote
the set of finite strings over Σ.

Definition 1. Let � be a binary relation on Σ. The induced embedding relation
�∗ on Σ∗ is defined as follows: s1s2 · · · sm �∗ t1t2 · · · tn if there exists indices
j1 < j2 < . . . < jm ≤ n such that si � tji , ∀i.

If s � t (u �∗ w) we usually say that s (u) is less than t (w) or t (w) is bigger
than s (u). The relation with respect to which an element is less or bigger than
other is usually obvious in the context.

Definition 2. We say that a relation on Σ is a quasi-order if it is reflexive and
transitive. Given a quasi-order � defined on Σ, we say that � is a well-quasi-
order if for every infinite sequence1 {sk : k ∈ N} of elements of Σ there exist
indices i < j such that si � sj.

Higman’s Lemma establishes a sufficient condition for well-quasi-orders on
strings.

Theorem 1. (Higman’s Lemma). If � is a well-quasi-order on Σ then �∗

is also a well-quasi-order on Σ∗.

Given the well-quasi-order � on Σ, it is not difficult to prove that �∗ is a
quasi-order on Σ∗. Thus, we will center our attention on the well-quasi-order
property: for every infinite sequence of strings {wk : k ∈ N} there exists indices
i < j such that wi �∗ wj .

As we said above, the proof presented here is based on [10], and it essentially
builds a well-founded measure that can be associated to the initial segments of
a sequence of strings and that decreases whenever a string in the sequence is not
bigger than any of the previous strings.

2 Formalizing the Proof in ACL2

The ACL2 logic is a first-order logic with equality, describing an applicative sub-
set of Common Lisp. The syntax of terms is that of Common Lisp and the logic
includes axioms for propositional logic and for a number of Lisp functions and
data types. Rules of inference of the logic include those for propositional calcu-
lus, equality and instantiation. One important rule of inference is the principle
of induction, that permits proofs by well-founded induction on the ordinal ε0.
The theory has a constructive definition of the ordinals up to ε0, in terms of
lists and natural numbers, given by the predicate o-p (o ∈ ε0 ≡ o-p(o)) and the
order (o1 <ε0 o2 ≡ o<(o1,o2).) Although this is the only built-in well-founded
relation, the user may define new well-founded relations from that.
1 An infinite sequence of elements of Σ is a function s : N → Σ. As usual, we write

sk instead of s(k) and by abuse of notation, we often identify the sequence with its
range {sk : k ∈ N}.
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By the principle of definition, new function definitions are admitted as axioms
only if there exists a measure in which the arguments of each recursive call
decrease with respect to a well-founded relation, ensuring in this way that no
inconsistencies are introduced by new definitions. Usually, the system can prove
automatically this property using a predefined ordinal measure on Lisp objects
and the relation o<. Nevertheless, if the termination proof is not trivial, the user
has to explicitly provide a measure on the arguments and a well-founded relation
ensuring termination.

The encapsulate mechanism [7] allows the user to introduce new function
symbols by axioms constraining them to have certain properties (to ensure con-
sistency, a witness local function having the same properties has to be exhibited).
Inside an encapsulate, the properties stated need to be proved for the local wit-
nesses, and outside, they work as assumed axioms. This mechanism behaves like
a universal quantifier over a set of functions abstractly defined with it.

A derived rule of inference, called functional instantiation, provides a higher-
order-like mechanism by allowing to instantiate the function symbols of a pre-
viously proved theorem, replacing them with other function symbols or lambda
expressions, provided it can be proved that the new functions satisfy the con-
straints of the old ones.

The ACL2 theorem prover mechanizes the ACL2 logic, being particularly well
suited for obtaining automatized proofs based on simplification and induction.
For a detailed description of ACL2, we refer the reader to the ACL2 book [5].

For the sake of readability, the ACL2 expressions in this paper are presented
using a notation closer to the usual mathematical notation than its original
Common Lisp syntax; when it is necessary we show the correspondence between
the ACL2 and the mathematical notation. Some of the functions are also used
in infix notation.

2.1 Formulation of Higman’s Lemma

First we formalize in the ACL2 logic the context in which Higman’s Lemma will
be established. We consider a unary predicate sigma-p to check the membership
to Σ (s ∈ Σ ≡ sigma-p(s)) and a binary predicate sigma-<= representing the
well-quasi-order � on the set Σ (s � t ≡ sigma-<=(s,t)). These functions are
abstractly defined by means of the encapsulate mechanism. In this case the
assumed properties about sigma-p and sigma-<= are the following2:

Assumption: sigma-<=-reflexive
s ∈ Σ → s � s

Assumption: sigma-<=-transitive
s1, s2, s3 ∈ Σ ∧ s1 � s2 ∧ s2 � s3 → s1 � s3

In the following we use Σ to denote the set of finite sequences of elements of
Σ and we use the overline notation to identify the elements of Σ. We characterize
2 The local witnesses are irrelevant to our description of the proof.
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the well-quasi-order property of � in the following way: there exists an ordinal
measure on Σ such that the measure of any element of Σ is bigger than the
measure of any extension of this sequence with an element s such that there is
no elements in the sequence less than s. As it is pointed out in [10]: “Classically,
this is easily gotten from the well-quasi-order-ness of �, but constructively we
must have this as an assumption (. . . ) After a moment’s reflection, it should
be obvious to the reader that this is the constructive equivalent to the classical
notion of well-quasi-order.”

The embedding is introduced in the previous encapsulate by means of
the function sigma-seq-measure. To state the properties assumed about this
function we also need two concepts whose definitions are based on sigma-p
and sigma-<= functions: the membership to Σ (s ∈ Σ ≡ sigma-seq-p(s))
and the presence of an element in a finite sequence s less than an element t
(exists-sigma-<=(s,t)). The assumed properties are the following:

Assumption: sigma-seq-measure-o-p
s ∈ Σ → sigma-seq-measure(s) ∈ Ord

Assumption: sigma-seq-measure-neq-0
s ∈ Σ → sigma-seq-measure(s) �= 0

Assumption: sigma-<=-well-quasi-order-characterization
s ∈ Σ ∧ t ∈ Σ ∧ ¬exists-sigma-<=(s,t)

→ sigma-seq-measure(cons(t,s)) <ε0 sigma-seq-measure(s)

The first property ensures that the function sigma-seq-measure returns an
ACL2 ordinal when its argument is a string, and the second property ensures
that this ordinal is not 03. The last property is the constructive characterization
of the well-quasi-order-ness of �. It must be noticed that the elements of Σ
are represented in ACL2 by means of lists of elements of Σ in reverse order;
that is, the ACL2 representation of the finite sequence {s1, . . . , sn} is the list
(sn ... s1). This is because an element t is more easily added in front of a
sequence s using cons.

The elements of Σ∗ are also represented in ACL2 by means of lists, but
in this case the order of the elements is preserved. So, the representation of
the string s1s2 . . . sm is the list (s1 s2 ... sm). The membership to Σ∗ is
checked by the function sigma-*-p (w ∈ Σ∗ ≡ sigma-*-p(w)). We use a differ-
ent function name, but its definition is equal to the definition of sigma-seq-p.
The relation �∗ in Σ∗ is formalized with the following function (w1 �∗ w2 ≡
sigma-*-<=(w1,w2)):

Definition:
sigma-*-<=(w1,w2) ⇔

if endp(w1) then t

3 This is a technical detail that could have been avoided adding 1 to the finite ordinals
returned by sigma-seq-measure.
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elseif endp(w2) then nil
elseif car(w1) ∈ Σ ∧ car(w1) ∈ Σ

then if car(w1) � car(w2)
then sigma-*-<=(cdr(w1),cdr(w2))
else sigma-*-<=(w1,cdr(w2))

else nil

It should be noted that this definition is algorithmic and different from the
non-deterministic declarative Definition 1; but it is not difficult to prove that
both definitions are equivalent. This function checks the property w1 �∗ w2 look-
ing for the first elements, from the left side of w2, bigger than the elements of w1.

To formalize Higman’s Lemma in the ACL2 logic we consider a unary
function f, representing an infinite sequence of strings. We use again the
encapsulate mechanism to abstractly define this function. In this case, the
assumed property about f is the following:

Assumption: f-returns-strings
i ∈ N → f(i) ∈ Σ∗

Here, the encapsulate mechanism behaves like a universal quantifier over
the function abstractly defined with it. So, any theorem proved about this func-
tion is true for any function with the above property, by means of functional
instantiation (see [5] for details). This is the case for the ACL2 formalization
of Higman’s Lemma: as the infinite sequence of strings is abstractly defined via
encapsulate, the properties that we will prove about it are valid for any infinite
sequence of strings.

Let us now define the functions needed to state Higman’s Lemma. The func-
tion get-sigma-*-<=-f has two arguments, a natural number j and a string w,
and it returns the biggest index i such that i < j and f(i) �∗ w whenever such
index exists (nil otherwise):

Definition:
get-sigma-*-<=-f(j,w) =

if j ∈ N then if j = 0 then nil
elseif f(j − 1) �∗ w then j − 1
else get-sigma-*-<=-f(j − 1,w)

else nil

Finally, the following function higman-indices receives as input an index k
and uses get-sigma-*-<=-f to recursively search a pair of indices i < j such
that j ≥ k and f(i) �∗ f(j):

Definition:
higman-indices(k) =

if k ∈ N then let i be get-sigma-*-<=-f(k,f(k))
in if i �= nil then 〈i, k〉

else higman-indices(k + 1)
else nil
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Let us assume for the moment that we have proved that the function
higman-indices terminates and that this definition has been admitted by the
system. Then the following property is easily proved as a direct consequence of
the definitions of the functions involved:

Theorem: higman-lemma
[k ∈ N ∧ higman-indices(k) = 〈i, j〉] → [i < j ∧ f(i) �∗ f(j)]

This theorem ensures that for any infinite sequence of strings {f(k) : k ∈ N},
there exists i < j such that f(i) �∗ f(j) (and the function higman-indices
explicitly provides those indices). Thus, it is a formal statement of Higman’s
Lemma in ACL2.

The hard part is the termination proof of the function higman-indices. For
that purpose, we have to explicitly provide to the system a measure on the
input argument and prove that the measure decreases with respect to a given
well-founded relation in every recursive call. We present the details in the next
subsections.

2.2 A Well-Founded Measure

Before giving a formal definition of the termination measure, we give some in-
tuition by means of an example. Let us consider the set of natural numbers, N,
and the reflexive transitive closure of the following relation: n � n + 2 for all
n. In this relation the even numbers are ordered as usual, as well as the odd
numbers, but there is no relation between even and odd numbers. It is easy to
prove that this relation is a well-quasi-order.

An embedding from N in ordinals characterizing the well-quasi-order-ness
of � could be the following: given a finite sequence of natural numbers s, the
ordinal associated is ω ·2 if s is empty; ω+n if n is the last even (odd) number in
s and there is no odd (even) numbers in s; and n+m if n and m are respectively
the last even number and the last odd number in s.

Let {fk : k ∈ N} be an infinite sequence of strings over N with f0 = 3 ·2. Note
that any string bigger than f0 is of the form x1...xixy1...yjyz1...zk with 3 � x
and 2 � y. Thus, the strings w such that f0 ��∗ w could be described as follows:

– Any string x1...xn with 3 �� xi, ∀i. We represent this set of strings by Π1 =
〈−, 3〉.

– Any string x1...xnxy1...ym with 3 �� xi, ∀i, 3 � x and 2 �� yj, ∀j. There are
three components in these strings: x1...xn with 3 �� xi, that we represent by
π1 = 〈−, 3〉; x with 3 � x, that we represent by π2 = 〈3〉; and y1...ym with
2 �� yj , that we represent by π3 = 〈−, 2〉. So the representation of this set of
strings is Π2 = π1π2π3 = 〈−, 3〉〈3〉〈−, 2〉.

We will refer to these representations of set of strings as patterns. As it can
be seen in the previous example, a pattern could have components that we will
call simple patterns. Π1 is a pattern with only one simple pattern 〈−, 3〉; and Π2

is a pattern with three simple patterns π1, π2 and π3. We will use the capital
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Greek letter Π (possibly with subscripts) to represent patterns, and the small
Greek letter π (possibly with subscripts) to represent simple patterns. The set of
strings represented by a pattern Π or a simple pattern π will be denoted S(Π)
and S(π) respectively.

Let us suppose that f1 = 1 ·2. Note that f1 ∈ S(Π1) since every element of f1

is not bigger than 3. Let us see now how we can obtain from Π1 a set of patterns
describing the set of strings w such that f0 ��∗ w and f1 ��∗ w (we will call
this operation the reduction of Π1 with respect to f1). The pattern Π1 should
be replaced in such a way that any string bigger than f1 is removed from the
set represented by the pattern. Since the strings bigger than f1 are of the form
x1...xixy1...yjyz1...zk with 1 � x and 2 � y, then the set of strings w ∈ S(Π1)
such that f1 ��∗ w could be described as follows:

– Any string x1...xn with 3 �� xi, ∀i (the string is in S(Π1)) and 1 �� xi, ∀i.
We represent this set of strings by 〈−, 3, 1〉.

– Any string x1...xnxy1...ym with 3 �� xi, x, yj , ∀i, j (the string is in S(Π1)),
1 �� xi, ∀i, 1 � x and 2 �� yj, ∀j. There are three components in these strings:
x1...xn with 3, 1 �� xi, ∀i, represented by 〈−, 3, 1〉; x with 3 �� x and 1 � x,
represented by 〈1, 3〉; and y1...ym with 3, 2 �� yj , ∀j, represented by 〈−, 3, 2〉.
So the representation of this set of strings is 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉.
Now, let us see how to deal with a more complicated pattern: let suppose that

f2 = 1 · 5 · 3; this string is in S(Π2) since 1 ∈ S(π1), 5 ∈ S(π2) and 3 ∈ S(π3).
The pattern Π2 should be reduced in such a way that any string bigger than f2

is removed. In this case if w = w1w2w3 ∈ S(Π2) with wi ∈ S(πi) and 1 �∗ w1,
5 �∗ w2 and 3 �∗ w3, then f2 �∗ w. Thus, if we ensure that some component
wi is not bigger than the correspondent component in f2, then f2 ��∗ w. Taking
this into account, the strings w ∈ S(Π2) such that f2 ��∗ w are described as
follows:

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 1 ��∗ w1. The set of strings in
S(π1) whose elements are not bigger than 1 is represented by the pattern
〈−, 3, 1〉. So the representation of this set of strings is 〈−, 3, 1〉〈3〉〈−, 2〉.

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 5 ��∗ w2. The set of strings in
S(π2) whose elements are not bigger than 5 is represented by the pattern
〈3, 5〉. So the representation of this set of strings is 〈−, 3〉〈3, 5〉〈−, 2〉.

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 3 ��∗ w3. The set of strings in
S(π3) whose elements are not bigger than 3 is represented by the pattern
〈−, 2, 3〉. So the representation of this set of strings is 〈−, 3〉〈3〉〈−, 2, 3〉.
We now explain how we formalize these constructions in ACL2. There are

two types of simple patterns: the first one is 〈−, s1, . . . , sn〉((nil sn ... s1) in
ACL2), representing any string t1 . . . tm such that si �� tj , ∀i, j; the second one is
〈s, s1, . . . , sn〉 (((s) sn ... s1) in ACL2), representing any string t such that
s � t and si �� t, ∀i (π is a simple pattern ≡ simple-pattern-p(π)). In both
cases we say that s1, . . . , sn is the sequence with respect to which the simple pat-
tern is defined. Note that this sequence is represented in ACL2 in reverse order.
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The following function checks the membership of a 1-length string s to the
set of strings described by a simple pattern π:

Definition:
member-simple-pattern(s,π) =

if consp(car(π)) then caar(π) � s ∧ ¬exists-sigma-<=(cdr(π),s)
else ¬exists-sigma-<=(cdr(π),s)

Simple patterns represent the components in which a new string could be split
ensuring that it is not bigger than any previous string in the sequence. Thus, a
pattern is a string of simple patterns (Π is a pattern ≡ pattern-p(Π)). Given
Π = π1 . . . πn, a string w is in the set of strings described by Π (w ∈ S(Π)) if
there exist strings w1, . . . , wn, such that w = w1 . . . wn and wi ∈ S(πi), ∀i. The
function member-pattern(w,Π) returns a pair (res val) where res indicates
if w ∈ S(Π) and, if it is the case, val is the list of components (w1 ... wn)
justifying this.

Definition:
member-pattern(w,Π) =

if endp(w) then if endp(Π) then 〈t,nil〉
elseif consp(caar(Π)) then 〈nil,nil〉
else let 〈res, val〉 be member-pattern(w,cdr(Π))

in if res then 〈t, cons(nil, val)〉
else 〈nil,nil〉

elseif endp(Π) then 〈nil,nil〉
elseif consp(caar(Π))

let res1 be member-simple-pattern(car(w),car(Π))
〈res2, val2〉 be member-pattern(cdr(w),cdr(Π))

in if res1 ∧ res2 then 〈t, cons(list(car(w)), val2)〉
else 〈nil,nil〉

else let 〈res1, val1〉 be member-pattern(w,cdr(Π))
in if res1 then 〈t, cons(nil, val1)〉

else let res2 be member-simple-pattern(car(w),car(Π))
〈res3, val3〉 be member-pattern(cdr(w),Π)

in if res2 ∧ res3
then 〈t, cons(cons(car(w), car(val3)), cdr(val3))〉

else 〈nil,nil〉
As we said above, given a string w and a pattern Π such that w ∈ S(Π),

we define the reduction of Π with respect to w as a set of patterns representing
the strings in S(Π) not bigger than w. Let us describe the reduction process
beginning with the reductions of a simple pattern π:

– If π = 〈s, s1, . . . , sn〉 then w ∈ Σ, s � w and si �� w, ∀i. In this case
the pattern 〈s, s1, . . . , sn, w〉 represents the set of strings t such that s � t,
si �� t, ∀i and w �� t, that is, the strings in S(π) that are not bigger than w.

– If π = 〈−, s1, . . . , sn〉 then w = t1 . . . tm such that si �� tj , ∀i, j. In this case
we obtain the following patterns after reducing π:
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• 〈−, s1, . . . , sn, t1〉: This pattern represents any string w whose elements
are not bigger than si, ∀i and t1.

• 〈−, s1, ..., sn, t1〉〈t1, s1, ..., sn〉〈−, s1, ..., sn, t2〉: This pattern represents
any string w1tw2 such that, the elements of w1 are not bigger than si, ∀i
and t1; t is an element of Σ bigger than t1 and not bigger than si, ∀i;
and the elements of w2 are not bigger than si, ∀i and t2.

• 〈−, s1, ..., sn, t1〉〈t1, s1, ..., sn〉〈−, s1, ..., sn, t2〉〈t2, s1, ..., sn〉〈−, s1, ..., sn, t3〉
• And so on.

The patterns obtained in the second case are all disjoint because the first
one represents strings whose elements are not bigger than t1, the second one
represents strings with an element bigger than t1 followed by elements not bigger
than t2, the third one represents strings with an element bigger than t1 followed
by an element bigger than t2 and this followed by elements not bigger than t3,
and so on. This disjointness property is preserved by the reduction process of
general patterns.

The function reduce-simple-pattern(w,π) computes the reductions of the
simple pattern π with respect to the string w (assuming that w ∈ S(π)). Let us
recall that the sequence with respect to which a simple pattern is defined is rep-
resented in ACL2 in reverse order, allowing easy additions of new elements to it:

Definition:
reduce-simple-pattern(w,π) =

if endp(w) then nil
elseif consp(car(π))

then list(list(cons(car(π),cons(car(w),cdr(π))))))
else cons(list(cons(nil,cons(car(w),cdr(π)))),

cons2-list-cdr(cons(nil,cons(car(w),cdr(π))),
cons(list(car(w)),cdr(π)),
reduce-simple-pattern(cdr(w),π)))

where the function cons2-list-cdr behaves schematically in the following way:

(cons2-list-cdr ’x ’y ’(l1 ... ln)) = ’((x y . l1) ... (x y . ln))

As we have discussed in the example, the reduction of a pattern depends on
its components. Given a pattern Π = π1 . . . πn and a string w ∈ S(Π), there exist
strings w1 . . . wn such that w = w1 . . . wn and wi ∈ S(πi), ∀i. The reduction of Π
with respect to w is the set of patterns π1 . . . πi−1π

′
1 . . . π′

mπi+1 . . . πn for every
index i and every pattern π′

1 . . . π′
m obtained by reducing the simple pattern πi

with respect to wi. The function reduce-simple-pattern-list computes the
reduction of a list of simple patterns (the components of Π) with respect to a
list of strings (the components of w).

Definition:
reduce-simple-pattern-list(w-lst,Π) =

if endp(Π) then nil
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else append-list-car(reduce-simple-pattern(car(w-lst),car(Π)),
cdr(Π)) @

cons-list-cdr(car(Π),
reduce-simple-pattern-list(cdr(w-lst),cdr(Π)))

where the symbol @ is the “append” operation between lists, and the functions
append-list-car and cons-list-cdr behave schematically as follows:

(append-list-car ’(l1 ... ln) ’l = ’(l1 @ l ... ln @ l)
(cons-list-cdr ’x ’(l1 ... ln)) = ’((x . l1) ... (x . ln))

The function reduce-pattern(w,Π) computes the reduction of the pattern
Π with respect to the string w, whenever w ∈ S(Π). If this is not the case, the
function returns the initial pattern Π :

Definition:
reduce-pattern(w,Π) =

let 〈res, val〉 be member-pattern(w,Π)
in if res then reduce-simple-pattern-list(val,Π)

else Π

Now we deal with set of patterns. In the following let be denote P a set
of patterns and S(P) the set of strings represented by the patterns in P (P is
a set of patterns ≡ pattern-list-p(P)). The function reduce-pattern-list
describes how the set of patterns P is reduced with respect to a string w:4

Definition:
reduce-pattern-list(w,P) =

if endp(P) then P
else let 〈res, val〉 be member-pattern(w,car(P))

in if res then reduce-pattern(w,car(P)) @ cdr(P)
else cons(car(P),reduce-pattern-list(w,cdr(P)))

The function reduce-pattern-sequence-list iterates the reduction pro-
cess over a finite sequence of strings. It must be noticed that the sequence of
strings is provided in reverse order:

Definition:
reduce-pattern-sequence-list(w,P) =

if endp(w) then P
else reduce-pattern-list(

car(w),reduce-pattern-sequence-list(cdr(w),P))

4 Since the reduction process produces patterns representing disjoint sets of strings,
it is enough to make the reduction with respect to the first pattern matched by
member-pattern. It must be noticed that it would be sufficient to make one reduction
even in the case in which P contains patterns representing non-disjoint sets of strings.
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Recall that our goal is to assign a well-founded measure to every initial subse-
quence of f, in such a way that every time a new element appears in the sequence
such that it is not bigger than any of the previous elements, then the correspond-
ing measure of the extended subsequence is strictly smaller. Intuitively, we will
measure the “size” of the set of elements that can be the next in the sequence
without affecting the well-quasi-order-ness property. Since we have seen that this
set of strings can be represented by a set of patterns, we will measure sets of
patterns.

First, we assign an ordinal measure to simple patterns, based on the
ordinal measure provided by sigma-seq-measure: if o is the measure of
the sequence s, then the measure of the simple pattern 〈−, s〉 is ωo + 1,
and the measure of the simple pattern 〈t, s〉 is ωo. The measure of a pattern
is the multiset of the measures of the simple patterns in it. Finally, the
measure of a set of patterns is the multiset of measures of the patterns in it.
The ACL2 functions simple-pattern-measure(π), pattern-measure(Π) and
pattern-list-measure(P) compute respectively the measure of the simple pat-
tern π, of the pattern Π and of the set of patterns P . We use this last function
to associate a measure to every index k:5

Definition:
higman-indices-measure(k) =

pattern-list-measure(
reduce-pattern-sequence-list(initial-segment-f(k− 1),

list(initial-pattern())))

where the function initial-pattern() builds the initial pattern 〈−〉 and the
function initial-segment-f(k) builds the list of strings (fk ... f1 f0). Note
that this measure is a finite multiset of finite multisets of ordinals.

The following table summarizes the measures in the given example:

Initial subsequence Set of patterns Measure
{} {〈−〉} {{{{ωω·2 + 1}}}}
{3 · 2} {〈−, 3〉, {{{{ωω+3 + 1}},

〈−, 3〉〈3〉〈−, 2〉} {{ωω+3 + 1, ωω·2, ωω+2 + 1}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ωω+1 + 1}},
1 · 2} 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{ωω+1 + 1, ωω+3, ω3+2 + 1}},

〈−, 3〉〈3〉〈−, 2〉} {{ωω+3 + 1, ωω·2, ωω+2 + 1}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ωω+1 + 1}},
1 · 2, 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{ωω+1 + 1, ωω+3, ω3+2 + 1}},
1 · 5 · 3} 〈−, 3, 1〉〈3〉〈−, 2〉, {{ωω+1 + 1, ωω·2, ωω+2 + 1}},

〈−, 3〉〈3, 5〉〈−, 2〉, {{ωω+3 + 1, ωω+5, ωω+2 + 1}},
〈−, 3〉〈3〉〈−, 2, 3〉} {{ωω+3 + 1, ωω·2, ω3+2 + 1}}}}

5 Note that since f is fixed, then k is sufficient to represent the initial subsequence
{f0 . . . fk−1}.
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2.3 Termination Proof of higman-indices

The last step in this formal proof is to define a well-founded relation and prove
that the given measure decreases with respect to it in every recursive call of the
function higman-indices. We will define it as the relation on finite multisets
induced by a well-founded relation. Intuitively, this relation is defined in such a
way that a smaller multiset can be obtained by removing a non-empty subset
of elements, and adding elements which are smaller than some of the removed
elements. In [4], Dershowitz and Manna show that if the base relation is well-
founded, then the relation induced on finite multisets is also well-founded.

As we said above, the only predefined well-founded relation in ACL2 is o<,
implementing the usual order between ordinals less than ε0. The function o-p
recognizes those ACL2 objects representing such ordinals. If we want to define
a new well-founded relation in ACL2, we have to explicitly provide a monotone
ordinal function, and prove the corresponding order-preserving theorem (see [5]
for details). Fortunately, we do not have to do this: we use the defmul tool. This
tool, previously implemented and used by the authors in [13], automatically
generates the definitions and proves the theorems needed to introduce in ACL2
the multiset relation induced by a given well-founded relation.

In our case, we need two defmul calls. The first one automatically gener-
ates the definition of the function mul-o<, implementing the multiset relation
on finite multisets of ordinals (the measure of a pattern) induced by the relation
o<; and the second one automatically generates the definition of mul-mul-o<,
implementing the multiset relation of finite multisets of finite multisets of or-
dinals (the measure of a pattern list) induced by the relation mul-o<. These
calls also automatically prove the theorems needed to introduce these relations
as well-founded relations in ACL2. See details about the defmul syntax in [13].
For simplicity, in the following we denote mul-o< as <ε0,M and mul-mul-o< as
<ε0,MM .

We finally prove that the measure decreases with respect to <ε0,MM in the
recursive call of the function higman-indices, hence justifying its termination.
We now explain the main lemmas needed to prove this result. We start with the
ones related to simple patterns. We have two cases:

– If the simple pattern is π = 〈s, s1, . . . , sn〉 and a string w ∈ S(π), then
w ∈ Σ, s � w and si �� w, ∀i. In this case the reduction of π
with respect to w is the simple pattern π′ = 〈s, s1, . . . , sn, w〉. Then
¬exists-sigma-<=(s,w) where s = 〈s1, . . . , sn〉. Thus the well-quasi-order
characterization of � ensures that sigma-seq-measure(cons(w,s)) is less
than sigma-seq-measure(s). Therefore, the measure of π′ is less than the
measure of π.

– If the simple pattern is π = 〈−, s1, . . . , sn〉 and a string w ∈ S(π), then
w = t1 . . . tm such that si �� tj , ∀i, j. In this case the reduction of π with
respect to w is a set of patterns whose components are of one of two kinds:
• Simple patterns as π′ = 〈−, s1, . . . , sn, tj〉. Then, if s = 〈s1, . . . , sn〉,

we have ¬exists-sigma-<=(s,tj). Thus the well-quasi-order character-
ization of � ensures that sigma-seq-measure(cons(tj,s)) is less than
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sigma-seq-measure(s). Therefore, the measure of π′ is less than the
measure of π.

• Simple patterns as π′ = 〈tj , s1, . . . , sn〉. Then, if s = 〈s1, . . . , sn〉 and
o =sigma-seq-measure(s), the measure of π′ is ωo and the measure of
π is ωo + 1. Therefore, the measure of π′ is less than the measure of π.

The following ACL2 lemma summarizes these considerations:

Lemma: reduce-simple-pattern-property
( simple-pattern-p(π) ∧ w ∈ Σ∗ ∧ w ∈ S(π)

∧ Π ∈ reduce-simple-pattern(w,π) ∧ π′ ∈ Π )
→ measure-simple-pattern(π′) <ε0 measure-simple-pattern(π)

where π′ ∈ Π indicates that the simple pattern π′ is a component of the pat-
tern Π .

Given a pattern Π = π1 . . . πn and w ∈ S(Π), to compute the patterns in
the reduction of Π with respect to w, we consider w = w1 . . . wn such that
wi ∈ S(πi), ∀i, and π′

1 . . . π′
m obtained by reducing the simple pattern πi with

respect to wi. Then, the pattern Π ′ = π1 . . . πi−1π
′
1 . . . π′

mπi+1 . . . πn is in the
reduction of Π with respect to w. The previous lemma ensures that the measure
of π′

j is less than the measure of πi, ∀i, j, therefore, the measure of Π ′ is obtained
from the measure of Π , replacing the measure of πi with the smaller measures
of π′

1, . . . , π
′
m. Then, the measure of Π ′ is a multiset less than the measure of Π :

Lemma: reduce-pattern-property
pattern-p(Π2) ∧ w ∈ Σ∗ ∧ w ∈ S(Π2) ∧ Π1 ∈ reduce-pattern(w,Π2)

→ measure-pattern(Π1) <ε0,M measure-pattern(Π2)

Finally, as a direct consequence of the previous lemma, if w ∈ S(P), then the
measure of reduce-pattern-list(w,P) is smaller than the measure of P with
respect to <ε0,MM :

Lemma: reduce-pattern-list-property
w ∈ Σ∗∧ pattern-list-p(P) ∧ w ∈ S(P)

→ pattern-list-measure(reduce-pattern-list(w,P))
<ε0,MM pattern-list-measure(P)

Now, we prove that the reduction process only removes strings bigger than
some string in the sequence with respect to which the reduction is made. The
following lemma establishes this property. If u ∈ S(P) then u is still in the set of
strings represented by the set of patterns obtained after reducing P with respect
to a given finite sequence of strings w (w ∈ Σ∗ ≡ sigma-*-seq-p(w)), provided
that u is not bigger than any of the strings of w (this condition is checked by
the function exists-sigma-*-<=, whose definition we omit here):

Lemma: exists-pattern-reduce-pattern-sequence-list
( u ∈ Σ∗ ∧ sigma-*-seq-p(w) ∧ pattern-list-p(P)

∧ u ∈ S(P) ∧ ¬exists-sigma-*-<=(w,u) )
→ u ∈ S(reduce-pattern-sequence-list(w,P))
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In addition, every string is in the initial set of patterns {〈−〉}:

Lemma: initial-pattern-exists-pattern
w ∈ Σ∗ → w ∈ S(list(initial-pattern()))

As a consequence of the above two lemmas, if fk is not bigger than any of f0

. . . fk−1 (that is, the recursive case in the definition of higman-indices), then
if P is the set of patterns generated in the k-th step, w ∈ S(P). So we can use
the lemma reduce-pattern-list-property to conclude that the measure of
the argument in the recursive call in higman-indices decreases with respect to
<ε0,MM . That is, we have the following theorem:

Theorem: higman-indices-termination-property
k ∈ N ∧ ¬get-sigma-*-<=-f(k,f(k))
→ higman-indices-measure(k + 1)<ε0,MM higman-indices-measure(k)

This is exactly the proof obligation generated to show the termination of the
function higman-indices. Thus, its definition is admitted in ACL2 and then
the theorem higman-lemma presented in subsection 2 is easily proved.

3 Concluding Remarks

The complete ACL2 files with definitions and theorems are available on the
Web at http://www.cs.us.es/~fmartin/acl2/higman/. To quantify the proof
effort, it was done in about 3 weeks of partial time work and only 43 definitions
and 76 lemmas (with 17 non trivial proof hints explicitly given) were needed,
which gives an idea of the degree of automation of the proof. The development
benefits from the previously developed multiset book, which provides a proof
of well-foundedness of the multiset relation induced by a well-founded relation.
It is worth emphasizing the reuse of the defmul tool for generating multiset
well-founded relations in ACL2 (see [13] for more uses of this tool).

Our proof is slightly different from the one presented in [10]. For example, our
construction of the order used to prove the termination of higman-indices is
more concise. Another important point is the level of detail that we must have in
the formalization; this reveals important properties needed in the development
of the proof that are not mentioned in [10]. For example, to prove the lemma
exists-pattern-reduce-pattern-sequence-listwe need a stability property
about �∗: w1 �∗ w2 ∧ w3 �∗ w4 → w1w3 �∗ w2w4. The proof of this property
is not trivial in our formalization.

There are several constructive mechanizations of Higman’s lemma in the
literature, for example [2] in the Isabelle system (the author also has the same
work done in the COQ system), based on Coquand’s constructivization [3] of
Nash-William classical proof [11]; and [14] in the MINLOG system. These works
are related to program extraction from proofs, whereas our work starts with a
program solving the problem and then we prove its properties. This different
approach results in a more concise code: our program has 18 lines of LISP code
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whereas in [2] the program has 70 lines of ML code; and a more simple result: our
program returns the first elements in the sequence such that wi �∗ wj , but this
is not the case in [2,14]. On the other hand these works are more restricted than
the presented here: in [2] the set Σ has only two values and the well-quasi-order
relation is equality; this is not the case in [14] where the proof developed is more
general, but the MINLOG formalization is restricted to a finite alphabet.
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