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2 1 Introduction

Abstract

In the Semantic Web, knowledge is usually structured in the form of ontologies,

using the Web Ontology Language (OWL), which is based in part on the Description

Logics (DLs). DLs are a family of logical formalisms for representing and reasoning

about conceptual and terminological knowledge. Among these, the logic ALC is a

ground DL used in practical cases. Formal verification of reasoning algorithms in

these logics allows us to increase the reliability of the Semantic Web. In this work,

we present a generic and extensible framework to verifying reasoning services in the

logic ALC , formalized in the PVS system.
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1 Introduction

One of the main benefits of the envisioned Semantic Web [6] is the logic trust expected to

achieve with its adoption [5]. However, several problems may limit this aim, many of them

related to Ontological Engineering and Knowledge Representation issues [2]. For example,

the lack of ontology evaluation. Among other features, logical consistency of ontologies is a

critical feature [11]. Currently, several Automated Reasoning Systems (ARS), as FaCT++

[28], Pellet [26], or Racer [12], can decide such kind of consistency.

This paper concerns about other problem slightly different. In the design of systems

for semantic interoperability in critical systems, the trust problem lifts to another: the

trust in the ARS used, that is, its verification. This kind of problem can be attacked by
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means of the formal verification of the ARS using a (possibly) higher order verification

system.

This verification effort strongly depends on the logic behind the ontology language.

A family of logic–based KR formalisms for terminological reasoning are the Description

Logics (DLs) [4]. From the point of view of the classical logic, DLs are (usually) de-

cidable fragments of First Order Logic (FOL), inheriting thus the FOL style semantics.

Many of these logics have nice logical features (sound and complete inference mechanisms).

Likewise, computational complexity of standard inference problems are well–known. The

standard reasoning has been addressed using mainly tableau–like algorithms, and during

the last decade, a lot of work on DLs has been devoted to investigating the classical trade–

off between expressiveness and complexity [4, 9]. Nevertheless, from the point of view of

verification of the reasoning, the trade–off is between expressiveness and verified reasoning.

Actually, the verification can be focused on two aspects. The verification of self logic

[10, 8] and the verification of reasoning algorithms. Our team have developed several works

in both lines. In the first aspect, in order to facilitate the reuse of the results, we have

driven the research to design generic frameworks easily extendable to more complex logics.

Examples are [15], where a generic framework for propositional logic reasoning algorithms

is presented, and [2], where it is proposed an extension of OWL to allow to specify the

type of reasoning advisable with the ontology. Examples of works based of the second line

are the Knuth–Bendix based reasoning [24], the verification of Buchberger algorithm for

polynomial based logical reasoning [16, 17] and Conceptual processing in Formal Concept

Analysis [3].

With the present paper, we report our first approach to the verification of reasoning

algorithms in DLs. Specifically, we verify, using the PVS verification system, the most

common reasoning process in a basic DL, ALC [25], building a generic framework in the

same line than [15]. The formal proofs developed in PVS are mainly adapted from Chap.

2, 3 of [27] and Chap. 5 of [19]. As the whole development consists of many PVS theorems

and function definitions, we will only scratch its surface presenting the main results and

a sketch of how the pieces fit together. We will necessarily omit many details that, we

expect, can be inferred from the context. The whole PVS theory developed is avaliable athttp://www.s.us.es/~mjoseh/al/.

2 Overview of PVS

PVS (Prototype Verification System) [20] is a general–purpose environment for developing

specifications and proofs. In this section, we present a brief description of the PVS language

and prover, introducing some of the notions used in this paper.

The PVS specification language [22] is built on a classical typed higher–order logic with

the basic types bool, nat, int, in addition to the function type constructor [D -> R℄ and

the product type constructor [A, B℄. The type system is also augmented with dependent

http://www.cs.us.es/~mjoseh/alc/
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types and abstract data types. In PVS, a set A with elements of a type T is identified with

their characteristic predicates and thus, the expressions pred[T℄ and set[T℄ have the same

meaning. A feature of the PVS specification language are predicate subtypes: the subtype

{x:T | p(x)} consists of all the elements of type T verifying p. The notation (A) is used to

indicate the subtype {x:T | A(x)}. Predicate subtypes are used for constraining domains

and ranges of functions in a specification and, therefore, for defining partial functions.

In general, type-checking with predicate subtypes is undecidable. Therefore, the type-

checker generates proof obligations, called type correctness conditions (TCCs). This TCCs

are either discharged by specialized proof strategies or proved by the user. In particular,

for defining a recursive function, it must be ensured that the function terminates. For

this purpose, in the definition of a recursive function, the user has to provide a measure

function. This generates a TCC stating that the measure function applied to the arguments

decreases with respect to a well–founded ordering in every recursive call.

A built-in prelude and loadable libraries provide standard specifications and proved

facts of a large number of theories. PVS specifications are packaged as theories that can

be parametrized with respect to types and constants. The definitions and theorems of a

theory can then be used by another theory by importing it. Proofs in PVS are presented in a

sequent calculus. The commands of PVS prover includes induction, quantifier instantiation,

rewriting and simplification.

3 Syntax and semantics of ALC in PVS

In this section, we present a brief introduction to ALC –logic, its syntax and its semantic,

along with the coresponding formalization in PVS.

Let NC be a set of concept names and NR be a set of role names. The set of ALC –

concepts is built inductively from these as described by the following grammar, where

A ∈ NC and R ∈ NR:

C ::= A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∀R.C | ∃R.C

We define the ALC –concepts in PVS as a recursive datatype, using the mechanism for

defining abstract datatypes [21], in which we specify the constructors, the accessors and

the recognizers.al_onept[NC: TYPE+, NR: TYPE℄: DATATYPEBEGINal_a(name: NC) : al_atomi?al_not(on: al_onept) : al_not?al_and(on1, on2: al_onept) : al_and?al_or(on1, on2: al_onept) : al_or?al_all(role: NR, on: al_onept) : al_all?al_some(role: NR, on: al_onept) : al_some?END al_onept
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When a datatype is typechecked in PVS, a new theory is created providing axioms and

inductions principles for this datatype. In particular, this theory contains the relationsubterm (specifying the notion of subconcept) and the wellfounded relation <<, that is

useful to make recursive definitions on concepts. For instance, |C| (the number of symbols

of C) can be defined recursively using << as justifying measure.

A general axiom is an expression of the form C ⊑ D or of the form C
.
= D, where

C and D are concepts. A TBox T is a finite set of general axioms. Let NI be a set of

individual names. Given individual names x, y ∈ NI, a concept C, and a role name R,

the expressions x: C, (x, y): R and x 6
.
= y are called assertional axioms. An ABox A is a

finite set of assertional axioms. A knowledge base K = (T ,A) consists of a TBox T and

an ABox A. We define in PVS the general axioms and assertional axioms as datatypes,

and the TBox, ABox and knowledge base as types:al_gtax: DATATYPEBEGINgi(anteedent, onsequent: al_onept) : gi?onept_eq(anteedent, onsequent: al_onept) : onept_eq?END al_gtaxassertional_ax: DATATYPEBEGINinstaneof(left:NI, right:al_onept) : instaneof?related(left:NI, role:NR, right:NI) : related?different_ni(left:NI, right:NI) : different_ni?END assertional_axTBox: TYPE = finite_set[al_gtax℄ABox: TYPE = finite_set[assertional_ax℄KnowledgeBase: TYPE = [TBox, ABox℄
An ALC –interpretation I is a pair I = (∆I , ·I), where ∆I is a non–empty set called

the domain, and ·I is an interpretation function that maps every concept name A to a

subset AI of ∆I , every role name R to a binary relation RI over ∆I and every individual

x to an element of ∆I . We represent an interpretation I as a structure that contains the

domain of I and the functions that define the interpretation of concept names, role names,

and the individuals:interpretation: NONEMPTY_TYPE =[# int_domain: (nonempty?[U℄),int_names_onept: [NC -> (powerset(int_domain))℄,int_names_roles: [NR -> PRED[[(int_domain),(int_domain)℄℄℄,int_names_ind: [NI -> (int_domain)℄ #℄
Note that in this specification we have used an universal type U to represent the elements
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of the domain. Also, we have taken advantage of the ability of PVS to deal with dependent

types.

The interpretation function is extended to non atomic concepts as follows:

(¬D)I = ∆I \ DI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(C1 ⊔ C2)
I = CI

1 ∪ CI
2

(∀R.D)I = {a ∈ ∆I : (∀b ∈ ∆I)[(a, b) ∈ RI → b ∈ DI ]}
(∃R.D)I = {a ∈ ∆I : (∃b ∈ ∆I)[(a, b) ∈ RI ∧ b ∈ DI ]}

We have specified this notion in PVS in a natural way, by recursion in Cint_onept(C,I): RECURSIVE set[U℄ =CASES C OFal_a(B): int_names_onept(I)(B),al_not(D): differene(int_domain(I), int_onept(D,I)),al_and(C1,C2): intersetion(int_onept(C1,I),int_onept(C2,I)),al_or(C1,C2): union(int_onept(C1,I),int_onept(C2,I)),al_all(R,D): {a:(int_domain(I)) |FORALL (b:(int_domain(I))):int_names_roles(I)(R)(a,b) IMPLIESint_onept(D,I)(b)},al_some(R,D): {a:(int_domain(I)) |EXISTS (b:(int_domain(I))):int_names_roles(I)(R)(a,b) ANDint_onept(D,I)(b)}ENDCASESMEASURE C BY <<
An interpretation I is a model of concept C if CI 6= ∅. C is called satisfiable if it has

a model.is_model_onept(I,C): bool = nonempty?(int_onept(C,I))onept_satisfiable?(C): bool = EXISTS I: is_model_onept(I,C)
An interpretation I satisfies a general axiom C ⊑ D (C

.
= D) if CI ⊆ DI (CI = DI).

It satisfies T iff it satisfies every axiom in T . In this case, T is called satisfiable, I is called

a model of T and we write I |= T .satisfies_gtax(I,Ax): bool =CASES Ax OFgi(C,D) : subset?(int_onept(C,I),int_onept(D,I)),onept_eq(C,D) : int_onept(C,I) = int_onept(D,I)ENDCASESis_model_TBox(I,T): bool =



3 Syntax and semantics of ALC in PVS 7FORALL Ax: member(Ax,T) IMPLIES satisfies_gtax(I,Ax)tbox_onsistent(T): bool = EXISTS I: is_model_TBox(I,T)
Similary, an interpretation I satisfies an assertional axiom x:C if xI ∈ CI , it satisfies

(x, y): R if (xI , yI) ∈ RI , and it satisfies x 6
.
= y if xI 6= yI . It satisfies A iff it satisfies

every axiom in A. In that case, A is called satisfiable, I is called a model of A and we

write I |= A.satisfies_aax(I,Aa): bool =CASES Aa OFinstaneof(ni,C) : member(int_names_ind(I)(ni),int_onept(C,I)),related(ni1,R,ni2) : int_names_roles(I)(R)(int_names_ind(I)(ni1),int_names_ind(I)(ni2)),different_ni(ni1,ni2): int_names_ind(I)(ni1) /= int_names_ind(I)(ni2)ENDCASESis_model_ABox(I,AB): bool =FORALL Aa: member(Aa,AB) IMPLIES satisfies_aax(I,Aa)abox_satisfiable(AB:ABox): bool = EXISTS I: is_model_ABox(I,AB)
Finally, an interpretation I satisfies a knowledge base K = (T ,A) if I |= T and

I |= A. In this case, K is called satisfiable and I is called a model of K.is_model_kb(I,KB): bool =LET (T,AB) = KB IN is_model_TBox(I,T) AND is_model_ABox(I,AB)kb_onsistent(KB): bool = EXISTS I: is_model_kb(I,KB)
The previous definitions naturally pose some standard inference problems for DL sys-

tems, such as concept satisfiability, concept subsumption, knowledge base satisfiability or

instance checking, which are all related. For example, it can be proved (and we have

done it in PVS) that concept satisfiability can be reduced to ABox satisfiability (i.e., C is

satisfiable iff for all x ∈ NI, {x:C} is satisfiable):onept_satisfiable_equiv_abox_satisfiable_all: LEMMAonept_satisfiable?(C) IFFFORALL x: abox_satisfiable(singleton(instaneof(x,C)))
We have also proved in PVS a number of similar reduction results for ALC .
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4 Tableau Reasoning for ALC –satisfiability

A tableau algorithm for ALC tries to prove satisfiability of a concept C by attempting to

explicitly construct a model of C. This is done considering an individual name x0 and

manipulating the initial ABox {x0:C}, applying a set of completion rules. In this process,

we consider concepts in negation normal form (NNF), a form in which negations appear

only in front of concept names.

4.1 Deciding concept satisfiability for ALC

An ABox A contains a clash if, for an individual name x ∈ NI and a concept name A ∈ NC,

{x:A, x:¬A} ⊆ A. Otherwise, A is called clash–free.ontains_lash(AB): bool =EXISTS x,A: member(instaneof(x,al_a(A)), AB) ANDmember(instaneof(x,al_not(al_a(A))), AB)
To test the satisfiability of an ALC –concept C in NNF, the ALC –algorithm works as

follows. Starting from the initial ABox {x0:C} it applies the completion rules from Figure

1 which modify the ABox. It stops when a clash has been generated or when no rule is

→⊓: if x:C ⊓ D ∈ A and {x:C, x:D} 6⊆ A
then A →⊓ A ∪ {x:C, x:D}

→⊔: if x:C ⊔ D ∈ A and {x:C, x:D} ∩ A = ∅
then A →⊔ A ∪ {x:E} for some E ∈ {C, D}

→∃: if x:∃R.D ∈ A and there is no y with {(x, y):R, y:D} ⊆ A
then A →∃ A ∪ {(x, y):R, y:D} for a fresh individual y

→∀: if x:∀R.D ∈ A and there is a y with (x, y):R ∈ A and y:D 6∈ A
then A →∀ A ∪ {y:D}

Figure 1: The completions rules for ALC

applicable. In the latter case, the ABox is complete and a model can be derived of it. The

algorithm answers “C is satisfiable” if a complete and clash–free ABox has been generated.

We have formalized the completions rules in PVS as relations between ABoxes. For

example, the specification of A1 →∃ A2 issome_step(AB1,AB2): bool =EXISTS Aa: member(Aa,AB1) ANDinstaneof?(Aa) ANDal_some?(right(Aa)) ANDLET R = role(right(Aa)), D = on(right(Aa)) INempty?(set_ni(R,D,AB1,left(Aa))) ANDLET y = hoose(omplement_ni(AB1)) IN
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where empty?(set_ni(R,D,AB1,left(Aa))) means that there is no y with {(x, y): R, y:

D} ⊆ A1 and, by the function hoose of PVS, we pick an individual that not occurs in

A1. In order to guarantee the existence of such individual, we have included the following

assumption on the type that represents the individuals in the parameters of the PVS theory.ax1: ASSUMPTION FORALL (S:finite_set[NI℄): EXISTS (x:NI): NOT member(x,S)
Once the rules have been specified in this way, we define the successor relation on the

type of ABoxes: A1 → A2 if A1 not contains clash and A2 is obtained from A1 by the

application of one completion rule.suessor(AB2,AB1): bool =(NOT ontains_lash(AB1)) AND(and_step(AB1,AB2) OR or_step_1(AB1,AB2) OR or_step_2(AB1,AB2) ORsome_step(AB1,AB2) OR all_step(AB1,AB2))
The completion process can be seen as a closure process. The ABox A2 is an expansion

of the ABox A1 if A1

∗
→ A2, where

∗
→ is the reflexive and transitive closure of →. In PVS,

we define the relation
∗
→ asis_expansion: pred[[ABox,ABox℄℄ = rtr_l(suessor)

where rtr_l(r) specifies the reflexive and transitive closure of a relation r. In order to

define rtr_l, we have developed a PVS theory about closures of binary relations, using

inductive sets.

Example 4.1 Let C be the concept ∀R.D ⊓ (∃R.(D ⊔ E) ⊓ ∃R.(D ⊔ F )). Then,

A0 := {x0:∀R.D ⊓ (∃R.(D ⊔ E) ⊓ ∃R.(D ⊔ F ))
∗
→ A1 := A0 ∪ {x0:∀R.D, x0:∃R.(D ⊔ E), x0:∃R.(D ⊔ F )}
→ A2 := A1 ∪ {(x0, x1):R, x1:D ⊔ E}
→ A3 := A2 ∪ {x1:D}

An ABox A is complete if there is no A′ such that A → A′, and it is consistent if it

has a complete and clash–free expansion.omplete(AB): bool = FORALL AB1: NOT suessor(AB1,AB)omplete_lash_free(AB): bool = omplete(AB) AND NOT ontains_lash(AB)is_onsistent_abox(AB): bool =EXISTS AB1: is_expansion(AB)(AB1) AND omplete_lash_free(AB1)
Finally, a concept C is consistent if the initial ABox {x0:C} is consistent.
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This definition is the PVS specification of the ALC –algorithm for deciding satisfia-

bility of ALC –concepts. To prove that the algorithm is correct, we have to establish its

termination, soundness and completeness. The following subsections describe the PVS

proofs of these three properties.

4.2 Soundness

We have proved in PVS that the ALC –algorithm is sound, that is:al_soundness: THEOREMis_onsistent_onept(C) IMPLIES onept_satisfiable?(C)
The proof is based on the following lemmas.

Lemma 4.2 If A is a complete and clash-free expansion of an initial ABox A0, then A is

satisfiable.al_soundness_L1: LEMMAFORALL (AB:expansion_abox(ABI)):omplete(AB) AND NOT ontains_lash(AB) IMPLIES abox_satisfiable(AB)
We have proved this lemma by specifying in PVS the canonical interpretation IA associated

with A, and proving that IA is a model of A.

Lemma 4.3 If A1 → A2 and A2 is satisfiable, then A1 is satisfiable too.abox_satisfiable_suessor: LEMMAsuessor(AB2,AB1) AND abox_satisfiable(AB2) IMPLIES abox_satisfiable(AB1)
To prove the final soundness theorem, note that the fact of defining the expansion

relation by means of the inductive definitions of closure suggests the following induction

scheme:expansion_abox_indut: THEOREMFORALL (P: pred[expansion_abox(ABI)℄):(P(ABI) ANDFORALL (AB1,AB2: expansion_abox(ABI)):suessor(AB2,AB1) AND P(AB1) IMPLIES P(AB2))IMPLIES FORALL (AB: expansion_abox(ABI)): P(AB)
This induction scheme (very useful for proving results about expansions), together with

the above lemma allows us to deduce the satisfiability of the {x0:C} from the satisfiability

of any of its expansions and, so, the satisfiability of C.



4 Tableau Reasoning for ALC –satisfiability 11

4.3 Termination

To verify the termination of the ALC –algorithm it suffices to prove that the successor

relation, defined on the inductive set E(C) of the expansions of the initial ABox, is well

founded:well_founded_suesor: THEOREMwell_founded?[expansion_abox_onept(C)℄(suessor)
The proof is based on the existence of a type T , a relation < well founded in T and a

function

µC : E(C) → T (1)

such that

(∀A1,A2)[A1 → A2 ⇒ µC(A2) < µC(A1)] (2)

We name the functions with these properties as measure functions. In order to formalize

the existence of measure functions, we have included T and < in the parameters, and (1)

and (2) in the body of the PVS theory.[..., T: TYPE+, <: (well_founded?[T℄)℄: THEORYmeasure_onept(C): [expansion_abox_onept(C) -> T℄measure_onept_derease_suessor: AXIOMFORALL (AB1,AB2: expansion_abox_onept(C)):suessor(AB2,AB1)IMPLIES measure_onept(C)(AB2) < measure_onept(C)(AB1)
We initially assume as an axiom the intended properties of such measure function

called measure-onept(C) and we will later show the existence of a function with these

properties. For that purpose, we have made use of the so-called multiset extension of a

well-founded relation, which can be proved to be also well-founded. The definition of such

measure function is quite complex. For that reason (and also because the PVS proof of

the well-foundedness of the multiset extension is interesting in its own) we postpone its

explanation in more detail to section 5.

4.4 Completeness

We have proved in PVS that the ALC –algorithm is complete, that is:al_ompleteness: THEOREMonept_satisfiable?(C) IMPLIES is_onsistent_onept(C)
The proof is based on the following lemmas.
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Lemma 4.4 If A is a satisfiable ABox, then A is clash–free.al_ompleteness_L1: LEMMAabox_satisfiable(AB) IMPLIES NOT ontains_lash(AB)
Lemma 4.5 If A1 is a satisfiable and not complete ABox, then there exists a satisfiable

ABox A2, successor of A1.al_ompleteness_L2: LEMMAabox_satisfiable(AB1) AND NOT omplete(AB1)IMPLIES EXISTS AB2: suessor(AB2,AB1) AND abox_satisfiable(AB2)
Lemma 4.6 If A ∈ E(C) is satisfiable, then there exists in E(C) a complete and clash–free

expansion of A.al_ompleteness_L3: LEMMAFORALL (AB: expansion_abox_onept(C)):abox_satisfiable(AB)IMPLIES EXISTS (AB2: expansion_abox_onept(C)):is_expansion(AB)(AB2) AND omplete_lash_free(AB2)
This is the main lemma for the proof of the completeness theorem. We have proved it by

well founded induction on the successor relation.

5 Measure on ALC–expansion of C
In this section we show a measure function on E(C) verifying the monotonicity condition

of section 4.3. For this, we have considered T as the type of the finite multisets of pairs of

natural numbers M(N×N), and the well-founded order as the extension to M(N×N) of

the lexicographic order of N × N, that we denote by <mult. We have extracted the idea of

this function from [19].

5.1 Wellfounded ordering of multisets

Let < be a relation in T . We define the relation between finite multisets of T , N <1 M ,

if N can be obtained replacing an element a of M by a multiset K of elements less than

a. Also, we said that N <mult M if there exists multisets M0, K1, K2 such that K1 6= ∅,

M = M0 ⊎ K1, N = M0 ⊎ K2 and (∀a)[a ∈ K2 → (∃b)[b ∈ K1 ∧ a < b]].

In order to guarantee that <mult is a well founded order in M(N×N) we have extended

the multisets library of PVS to include the wellfoundedness of the multiset order. The proof

we have formalized in PVS is based in the proof made by W. Buchholz [18].

In the prelude of PVS, it is defined that < is a well founded relation in T if every non

empty subset of T has a <–minimal element. Nevertheless, to extend the PVS library we
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have used the characterization of wellfoundedness given by P. Aczel in [1]. This character-

ization uses the well–founded part of a relation, defined inductively as the smallest set of

T , W (T, <), such that

(∀x)[(∀y < x)[y ∈ W (T, <)] → x ∈ W (T, <)]

The scheme of the PVS formalization is the following:

1. We define inductively the well–founded part of T with respect to <, and we prove

that < is well founded in T if and only if W (T, <) = T .

2. We define inductively the transitive closure, <+, of a binary relation < and we prove

that if < is well founded, then <+ is well founded too, using the above characteriza-

tion.

3. We prove that if < is well founded in T , then <1 is well founded in the finite multisets

of T , M(T ). So, <+

1 is well founded too.

4. Finally, we prove that if the binary relation < is transitive, then <+

1 and <mult are

the same. So, we have that <mult is well founded in M(T ).

5.2 Definition of a Measure on ALC–expansion

The idea to define the measure function µC is to map each expansion A ∈ E(C) to a

multiset of pairs, in such way that those pairs represent all possibles rules that can be

applied to A.

The first step is to define the notions of level and colevel. For this, we have used the

library of graphs of PVS [7]. We define the associated graph to an ABox A, G(A), as the

graph whose vertices are the individuals that occur in A, and whose edges are the subsets

{x, y}, such that (x, y):R ∈ A for some role R.graph_asso_abox(AB: ABox): graph[NI℄ =(# vert:= our_ni(AB), edges:= dbl_asso_abox(AB) #)
We have proved that if A ∈ E(C), then G(A) is a tree with root x0. This fact allows us to

define the level of x in A as the length of the path from x0 to x (minus 1), and the colevel

of x in A, |x|A, as the difference of |C| and the level of x in A.level(AB)(x:(our_ni(AB))): nat = l(path_from_root(AB)(x)) - 1olevel(AB)(x:(our_ni(AB))): nat = size(C) - level(AB)(x)
We have proved that the relation → preserves the colevel of individuals, and we have also

proved that if y is successor of x in A (i.e., (x, y): R ∈ A), then |y|A = |x|A − 1. Both

properties are essential to prove the monotonicity of µC.
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As we have already said, the elements of the multiset associated to an expansion A

should represent all possibles applicables rules to A. In some cases, the applicability of a

rule is completely determined by an instance axiom of A, but that is not the case for the

→∀ rule. Thus, in order to capture the notion of applicability of a rule, we have introduced

the type activation (ativ), whose elements are structures consisting in an instance axiom

and an individual, that made it applicable. Then, we have specified when an activation is

applicable in A and we have defined the agenda of A, agenda(A), as the set of applicable

activations in A.ativ: TYPE = [# ax: (instaneof?), witness: NI #℄appliable_ativ(A,AB): bool =LET Aa = ax(A),y = witness(A),x = left(Aa),D = right(Aa) INmember(Aa,AB) ANDCASES D OFal_a(A) : false,al_not(D1) : false,al_and(C1,C2) : x = y AND (NOT member(instaneof(x,C1),AB) ORNOT member(instaneof(x,C2),AB)),al_or(C1,C2) : x = y AND NOT member(instaneof(x,C1),AB) ANDNOT member(instaneof(x,C2),AB),al_all(R,D1) : x /= y AND member(related(x,R,y),AB) ANDNOT member(instaneof(y,D1),AB),al_some(R,D1) : x = y AND NOT (EXISTS y: member(related(x,R,y),AB) ANDmember(instaneof(y,D1),AB))ENDCASESagenda(AB): finite_set[ativ℄ = {A | appliable_ativ(A, AB)}
To specify the function µC we have found the following difficulty: we can not define

a multiset in PVS in a declarative way, as with sets. Thus, the measure of the expansion

A, µC(A), is constructed by recursion in the agenda of A, adding for each applicable

activation, [x:D, y], the element (|y|A, |D|).bag_asso_ativ(A, AB): finite_bag[[nat, nat℄℄ =IF NOT appliable_ativ(A, AB) THEN emptybagELSE LET Aa = ax(A), y = witness(A), D = right(Aa) IN



5 Measure on ALC–expansion of C 15singleton_bag((olevel(AB)(y), size(D)))ENDIFexpansion_measure_aux(AB,(AB1: finite_set[ativ℄)):RECURSIVE finite_bag[[nat, nat℄℄ =IF empty?(AB1) THEN emptybagELSE plus(bag_asso_ativ(hoose(AB1), AB),expansion_measure_aux(AB, rest(AB1)))ENDIFMEASURE ard(AB1)expansion_measure(AB): finite_bag[[nat, nat℄℄ =expansion_measure_aux(AB, agenda(AB))
Example 5.1 The agendas and measures of the ABoxes of Example 4.1 are:

agenda measure

A0 {(x0:∀R.D ⊓ (∃R.(D ⊔ E) ⊓ ∃R.(D ⊔ F )), x0)} {̇(15, 15)}̇

A1 {(x0:∃R.(D ⊔ E), x0), (x0:∃R.(D ⊔ F ), x0)} {̇(15, 5), (15, 5)}̇

A2 {(x0:∃R.(D ⊔ F ), x0), (x0:∀R.D, x1), (x1:D ⊔ E, x1)} {̇(14, 3), (14, 3), (15, 5)}̇

A3 {(x0:∃R.(D ⊔ F ), x0)} {̇(15, 5)}̇

Finally, we prove the theorem that assures the monotony of µC.expansion_measure_derease_suessor: THEOREMsuessor(AB2, AB1)IMPLIES less_mult(expansion_measure(AB2), expansion_measure(AB1))
The formalization of the proof of this theorem in PVS has turned out to be more

difficult than the hand proof presented in [19]. Firstly, we can observe (in Example 5.1)

that if A1,A2 ∈ E(C) are such that A1 → A2, then there exists an activation A1 =

[x : D, y] ∈ agenda(A1), that matches with the applied rule. In addition, we have that

A1 6∈ agenda(A2) and, for each activation A2 introduced in the agenda(A2) as result of the

rule application, its associated pair is smaller (lexicographically) than (|y|A, |D|). Indeed,

one of the following cases may occur:

1. A2 = [x : E, z], being z successor of y in A2. Then, |z|A2
< |y|A2

= |y|A1
. So,

(|z|A2
, |E|) <lex (|y|A1

, |D|).

2. A2 = [x: E, y], being E subconcept of D. Then, |y|A2
= |y|A1

and |E| < |D|. So,

(|y|A2
, |E|) <lex (|y|A1

, |D|).

Secondly, we should note that the application of a rule can disable some activations

of the agenda and, so, it can eliminate its associated pairs of the multiset. We have
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defined in PVS the multiset K1 = µaux(A1, agenda(A1) \ agenda(A2)), whose elements

are the pairs associated to disabled activations. On the other hand, the multiset K2 =

µaux(A2, agenda(A2)\agenda(A1)) contains the pairs associated to new enabled activations.

Finally, M0 = µaux(A1, agenda(A1) ∩ agenda(A2)) is the multiset whose elements are the

pairs associated to the activations that remains enabled after the application of the rule.

Regarding these multisets, we prove the following properties: (1) K1 6= ∅, (2) µC(A2) =

M0 ⊎ K2, (3) µC(A1) = M0 ⊎ K1 y (4) (∀a ∈ K2)(∃b ∈ K1)[a <lex b]. Thus, we conclude

that µC(A2) <mult µC(A1).

Once the measure function has been constructed, the parameters T and <, and the

signature measure-onept(C) will be interpretated by the appropriated mechanism of

PVS.

6 Conclusions and future work

We have formalized the ALC logic and proved the correctness (soundness, completeness

and termination) of a tableau-based algorithm for deciding satisfiability of ALC –concepts.

To our knowledge, this is the first work on formalizing DL reasoning, although related

works (see, for example [15, 13, 23]) have been done for other logics.

For this task, it has been essential the use of some available PVS libraries, and others

specifically developed for this formalization. In particular, we have developed a library

about the reflexive and transitive closure of a relation and we have extended the multisets

library, including the multiset extension relation and its well–foundedness. Furthermore,

the work has been benefited by the use of PVS inductive definitions, which provide suitable

induction schemes for most of the proofs.

The hard part of the formal proof presented has been the termination of the algorithm.

In order to be able to formalize the proof given in [19] we needed to introduce new concepts

that, in some sense, are implicit in the standard hand proofs. This issue is common in the

formalization of mathematical knowledge.

We are considering two lines of possible future work: (1) carry out our formalization

to other DLs that extends the ALC logic, and (2) optimize tableaux decision procedures

for DL. As for (1), we intend to formalize OWL DL using the correspondence established

in [14]. In summary, we think that our approach provides a good basis to the verification

of reasoning in Semantic Web.
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