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Abstract. There exist a number of non-trivial termination proofs of
functions (or algorithms) which are carried out more naturally and sim-
pler using well-founded multiset orderings. We present in this paper a
methodology to organize and simplify these kind of termination proofs
in the PVS speci�cation and veri�cation system. This methodology uses
a well�known result due to Dershowitz and Manna, which states that
every well�founded relation on a set T can be extended to a relation
on �nite multisets over T which is also well-founded. Therefore, we also
present a formalization of this theorem in PVS. We think this methodol-
ogy can be very useful to develop non-trivial termination proofs in PVS.
To illustrate this, we have applied our methodology to formalize in PVS
some termination proofs, like an iterative version of the Ackermann's
function, the McCarthy's 91 function and also a tail-recursive de�nition
of a schema of functions de�ned by double recursion.

1 Introduction

The use of well�founded orders for proving termination of recursive functions
was suggested by Floyd in [5]. The idea is to �nd a set T , with a well�founded
order < and a measure function m mapping the arguments of the function into
the elements of T , such that the measure of the arguments is reduced in each
recursive call. Due the well�foundedness of <, this measure can not decrease
inde�nitely and hence, the termination of the function is assured.

The most used well�founded order is the usual order on natural numbers and
the lexicographic order on n�tuples of natural numbers. However, Dershowitz and
Manna [4] showed that every well�founded relation on a set T can be extended to
a well�founded relation on the �nite multisets over T . They also proved that the
use of multiset orderings allows to construct simple and intuitive measure func-
tions to carry out non�trivial proofs of termination. In particular, they showed
that the multiset ordering can be used to prove the termination of Ackermann's
function, McCarthy's 91 function and production systems, programs de�ned in
term of rewriting rules.
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On the other hand, in the �eld of formal veri�cation, we often have to tackle
the problem of proving termination of of programs, logic reasoning systems or
rewriting systems by using one of the current systems like ACL2, COQ, HOL, Is-
abelle, PVS,. . . . These proofs of termination are non�trivial and, in many cases,
the use of multiset orderings can be very useful. Thus, in order to mechanize
proofs of termination in a formal system by using multiset orderings, it would
be appropriated to formalize these orderings in the corresponding system. In [16]
we developed a formalization in ACL2 of the well�foundedness of multiset orders.
We have used this result in several works of formalization in ACL2: Newman's
lemma [15], tableaux algorithms [10, 2, 6], Dickson's lemma [9] and Higmann's
lemma [11]. We have developed other works of formalization in other formal sys-
tems more appropriated to the new problems, due mainly to its expresiveness.
In some of these works it has been necessary to carry out di�cult proofs of ter-
mination, in which we have used multiset orderings. In fact, when we formalized
in PVS a tableaux algorithm for the ALC description logic [2], multisets were a
key tool for proving its termination. Thus, we think it is useful to hold in PVS
a theory of wellfoundeness of multiset orderings, in order to be able to carry out
this kind of termination proofs in this system.

In this paper we present the PVS theory about the well-foundedness of the
multiset order induced by a well-founded order over a set T . To do this, we have
extended the multiset library of PVS in order to include well�foundedness of the
multiset order relation. We have proved the Dershowitz and Manna theorem [4]
in an abstract way, allowing its instantiation to prove the well�foundedness of
particular multiset relations. We also present a methodology to systematize the
proofs of termination of recursive functions using multiset orderings. Finally,
we show three case studies where we have used this methodology for proving
termination of di�erent tail recursive functions.

The paper is structured as follows. The second section presents how we have
proved the well�foundedness of multiset relations induced by well�founded rela-
tions, reusing the PVS multiset library. In the third section, we show a detailed
outline of the methodology suggested for proving termination properties. The
fourth section shows the application of this methodology to prove, in PVS, ter-
mination of several recursive functions: a tail�recursive de�nition of Ackermann's
function, an iterative de�nition of McCarthy's 91 function and an iterative func-
tion to compute a generic schema for double recursion. Finally, in the last section
we show some conclusions and outline future lines of work.

We will remark the main features of the PVS system according as we will
use them and we will explain both the de�nitions and the PVS proofs in a form
that can be understood without being an expert in PVS. However, a detailed
description of this system can be seen in [13]. Moreover, due to the lack of
space, we will skip details of the proofs. Nevertheless, the whole formalization is
available at http://www.cs.us.es/~mjoseh/PROTEMO/



2 Well�founded ordering of multisets

A multiset M over a set T is a function from T to the set of natural numbers.
If M(x) > 0 for only �nitely many x ∈ T , then we say that the multiset is
�nite. The set of all �nite multisets over T is denoted asM(T ). Multisets are a
formalization of the intuitive idea of �sets with repeated elements�, being M(x)
the number of occurrences of x in the multiset M . In [4], Dershowitz and Manna
proved that every well-founded relation on a set T induces a well-founded relation
on M(T ). In this section we present how we have extended the PVS multiset
library to include the formalization of thi result.

In the literature there are di�erent equivalent de�nitions of well�founded re-
lation (see [14] for a formalization of these de�nitions in MIZAR). Speci�cally, if
< is a binary relation on T , the following assertions have been proved equivalent:

� Every non�empty subset of T has a <�minimal element.

� Well founded induction holds for (T, <).
� For every set V , there exist recursively de�ned functions from T into V .

� Recursively de�ned functions on T are unique.

� There are no descending w chains in (T, <).

The �rst of these characterizations is just the de�nition of well�founded re-
lation included in the prelude of PVS. However, the characterization of well�
foundedness that we will use is not exactly any of the above. We will use a
characterization, provided in [1], based on the concept of well founded part of
a relation <. Given a binary relation < on a set T , the well-founded part of
< is the set of elements a ∈ T such that there is no in�nite descending se-
quence ...a1 < a0 < a. Following [1], a relation < is well-founded if and only if
its well-founded part is T . In [12], T. Nipkow shows an inductive proof of the
well�foundedness of the multiset reduced relation, due to Wilfried Buchholz. He
de�nes the well founded part of a binary relation W (<) inductively by the rule

∀y < x.y ∈W (<)

x ∈W (<)

We have used this de�nition in PVS due to the system's ability to de�ne sets
inductively. The sketch of our PVS formalization of the Dershowitz and Manna
theorem is the following:

1. We have de�ned inductively the well�founded part of a binary relation (T, <)
and we have proved that (T, <) is well�founded if and only if W (T ) = T .

2. We have proved that well�foundedness is preserved by transitive closure.

3. We have proved that the multiset reduced relation <1 (where N <1 M if N
is obtained by replacing an element a of M by a �nite multiset K of elements
less than a) induced by a well�founded relation is well�founded. The proof
formalized in PVS is based on the proof described by T. Nipkow [12].



4. Finally, we have proved that the multiset relation <mult (where N <mult M
if N is obtained by replacing a multiset K1 of elements of M by a multiset
K2 of elements less than any of K1) is the transitive closure of <1 if the
relation < is transitive. So, we proved that the multiset relation <mult of a
well�founded relation < is well�founded.

In the subsequent subsections we will explain with more detail these four points.

2.1 A characterization of well�foundedness

The de�nition of well�foundedness included in the PVS prelude is the usual one:
a relation < on T is well�founded if every non-empty subset of T has a <�minimal
element. Let us start by describing the PVS proof of the equivalence between
this de�nition and the alternative de�nition of well�foundedness presented in [1].

De�nition 1. Given a binary relation < de�ned on a set T , the well-founded

part of T with respect to <, denoted as W (T, <), is the smallest subset of T
closed under the set of rules (∀a ∈ T )[(∀y < a)[y ∈W (T, <)]→ a ∈W (T, <)].

In order to formalize this de�nition in PVS, we introduce T and < as theory
parameters and we use the support that PVS provides for constructing inductive
de�nitions of sets or predicates to make the following de�nition:

wf_cs[T: TYPE+, <: pred[[T,T]]]: THEORY

well_founded_part(x): INDUCTIVE bool =

FORALL y: y < x IMPLIES well_founded_part(y)

It is important to note that the above inductive de�nition of the well�founded
part generates, automatically, two induction axioms, which allow us to prove
properties by induction on the de�ned set:

� Weak induction axiom for the well�founded part:

(∀x)[(∀y)[y < x→ P (y)]→ P (x)]

(∀x)[x ∈W (T, <)→ P (x)]

� Induction axiom for the well�founded part:

(∀x)[(∀y)[y < x→ y ∈W (T, <) ∧ P (y)]→ P (x)]

(∀x)[x ∈W (T, <)→ P (x)]

The following theorem, that characterizes the well�foundedness of a relation
by means of its well�founded part is proved by using these schemes.

Theorem 1. (T, <) is well�founded if and only if W (T, <) = T .

well_founded_part_nsc: THEOREM

well_founded?[T](<) IFF (FORALL x: well_founded_part(x))

The PVS proof of the necessary condition is carried out by induction on (T, <)
applied to the predicate x ∈W (T, <). On the other hand, the su�cient condition
is proved using the weak induction axiom for the well�founded part of T with
respect to <.



2.2 Well�foundedness of the transitive closure

In order to prove that well�foundedness is preserved by transitive closure, it
would be noted that the transitive closure of a relation can be also speci�ed in
PVS as an inductive relation. Thus, the induction axioms associated to <+ will
be automatically generated.

De�nition 2. The transitive closure of a binary relation < on T , is the smallest

relation <+ such that (∀x, y ∈ T )[(x < y ∨ (∃z)[x <+ z ∧ z < y])→ x <+ y]

tr_cl(<)(x,y): INDUCTIVE bool =

x < y OR EXISTS z: tr_cl(<)(x,z) AND z < y

The main result about well�foundedness and transitive closure is the following:

Theorem 2. If (T, <) is well�founded, then (T, <+) is well�founded.

well_founded_cl_tr: THEOREM

well_founded?[T](<) IMPLIES well_founded?[T](tr_cl(<))

Using Theorem 1, this property is a consequence of the following property
about the well-founded parts: W (T, <) ⊆W (T, <+). We prove this last stament
in PVS using the weak induction axiom generated by the de�nition of W (T, <)
applied to the predicate P (x) ≡ x ∈W (T, <+).

2.3 Well�founded multiset relations in PVS

In order to specify in PVS the multiset relations, we have reused the PVS library
about bags1. In this library, a multiset (bag) of elements in T is represented by
means of a function with domain T and range the set of natural numbers. Let
us start showing the speci�cation of the bag and finite_bag types, and also
the basic operations insert and plus (in the following denoted both as U+)
included in the PVS library.

bag: TYPE = [T -> nat]

insert(x,b): bag = (LAMBDA t: IF x = t THEN b(t) + 1 ELSE b(t) ENDIF)

plus(a,b) : bag = (LAMBDA t: a(t) + b(t))

bag_to_set(b): set[T] = {t: T | b(t) > 0}

is_finite(b): bool = is_finite(bag_to_set(b))

finite_bag: TYPE = {b: bag | is_finite(b)}

Given a relation < in T , it induces two relations in the set of �nite multisets
over T ,M(T ):
� The multiset reduction relation denoted as <1: N <1 M if there exists mul-
tisets M0, K2 and b ∈ M such that M = M0 ] {b}, N = M0 ] K2 and
(∀a)[a ∈ K2 → a < b].

1 Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.

html



� The multiset relation denoted as <mult: N <mult M if there exist multisets
M0, K1, K2 ∈ M(T ) such that K1 6= ∅, M = M0 ]K1, N = M0 ]K2 and
(∀a)[a ∈ K2 → (∃b)[b ∈ K1 ∧a < b]]. It can be proved that if < is transitive,
then <mult is the transitive closure of <1.

We specify the relations <1 and <mult in PVS by less_1 and less_mult, re-
spectively, as follows

less(K,a): bool = FORALL b: member(b,K) IMPLIES b < a

less_1(N,M): bool =

EXISTS M_0,a,K: M = insert(a,M_0) AND N = plus(M_0,K) AND less(K,a)

less_mult(N,M): bool =

EXISTS M_0,K1,K2: nonempty_bag?(K1) AND M = plus(M_0, K1) AND

N = plus(M_0, K2) AND

FORALL a: member(a,K2) IMPLIES

EXISTS b: member(b,K1) AND a < b

In order to prove that <mult is a well�founded relation, we prove �rst that
if < is transitive, then <mult is the transitive closure of <1 (<mult=<+

1 ).

less_bag: PRED[[finite_bag[T],finite_bag[T]]] = tr_cl(less_1)

less_mult_equiv_less_bag: THEOREM

transitive?[T](<) IMPLIES (less_mult(N,M) IFF less_bag(N,M))

Therefore, by the Theorem 2, it is enough to prove that the relation <1 is
well�founded. So, this is the main lemma we have stablished in PVS.

Lemma 1. Let < be a well�founded relation on T . Then <1 is a well�founded

relation onM(T ).

wf_less_1: THEOREM well_founded?[finite_bag[T]](less_1)

We would like to note that to prove this lemma, we do an extensive use of
di�erent induction schemes. First, using Theorem 1, it is su�cient to prove that
M(T ) ⊆ W (M(T ), <1). The PVS proof is carried out by induction on �nite
multisets, according to the following scheme:

P (∅) ∧ (∀a)(∀M)[P (M)→ P (M ] {a})]

(∀M)P (M)

where the predicate P (M) stands for M ∈ W (M(T ), <1). Therefore, we have
to prove:

1. ∅ ∈W (M(T ), <1) (which is true by de�nition).
2. (∀a)[(∀M)[M ∈W (M(T ), <1)→M ] {a} ∈W (M(T ), <1)]].

This result is proved by well�founded induction on <, with the following
predicate P (a):

(∀M)[M ∈W (M(T ), <1)→M ] {a} ∈W (M(T ), <1)]



With this, the proof is reduced to prove (∀b)[b < a→ P (b)]→ P (a),
or equivalently, to prove that if

(∀b)[b < a→ (∀M)[M ∈W (M(T ), <1)→M ] {b} ∈W (M(T ), <1)]]

then
(∀M)[M ∈W (M(T ), <1)→M ] {a} ∈W (M(T ), <1)] (1)

Finally, we prove (1) by using the weak induction axiom for the well�founded
part W (M(T ), <1), applied to the predicate Q(M):

M ] {a} ∈W (M(T ), <1) ∨M /∈W (M(T ), <1).

Then, as consequence of Lemma 1 and Theorem 2, we obtain the main theorem
of this section:

Theorem 3 (Dershowitz and Manna). Let < be a transitive and well�founded

relation on T . Then the relation <mult is a well�founded relation onM(T ).

less_mult_is_wf: THEOREM

transitive?[T](<) IMPLIES well_founded?[finite_bag[T]](less_mult)

A sketch of the proof is as follows. First, we show that the relation <mult

is contained in <+
1 . Furthermore, if the relation < is transitive, then <mult is

transitive and contains the relation <+
1 . Therefore, if < is transitive, <+

1 =<mult

and by Lemma 1 and Theorem 2, we conclude that <mult is well�founded.

3 Methodology for proving termination with multiset

orderings

In order to de�ne a recursive function in PVS with domain D and range R, a
measure function must be provided, along with an optional well-founded relation.
The measure should be a function whose signature matches that of the recursive
function, but with range type the domain of the order, which defaults to < on
N or on the ordinals. If an ordering <D is provided, then it must be a binary
well-founded relation. Thus, when a recursive function is de�ned in PVS by

f(x:D): RECURSIVE R =

...

MEASURE x BY less

several proof obligations (called TCCs) are generated to prove that <D is well-
founded and to prove that the arguments of f decrease with respect to <D in
each recursive call.

According to the work of Dershowitz and Manna [4], multiset orders can be
used to prove the termination of a recursive function f in the following way:
a measure function should be de�ned mapping each element of the domain D
to a �nite multiset over a well-founded set (T, <T ), and a relation on D should



be considered such that two elements are related if and only if their measures
are related with respect to the multiset relation induced on M(T ) by <T . The
well-founded set (T, <T ) will depend on each speci�c function f .

For the purpose of formalizing this kind of proofs in PVS, we have proved (as
it is shown in section 2) the well-foundedness of the multiset relation induced by a
well-founded relation, in a way that we can easily use it for any relation, simply
by instantiating the parameters of the PVS theory. Previously, and using the
de�nition of well-foundedness based on the notion of minimal element, we have
proved in PVS the well-foundedness of every relation which can be embedded in
a well-founded relation by a monotonic function.

Lemma 2. If f : (T, <) → (T ′, <′) is monotone and (T ′, <′) is well�founded,

then (T, <) is well�founded.

Thus, the idea presented above can be clari�ed in the following methodology:
given a recursive function f : D → R

Step 1 Consider an appropiate set T and build a well-founded relation on it. If
T is the set of natural numbers or the set of ordinals, then the relation could
be the usual order <, whose well-foundedness property is ensured by the
prelude of PVS. In other cases, we can prove that (T, <T ) is well-founded by
building a monotonic function over a known well-founded set (T ′, <T ′) and
applying Lemma 2.

Step 2 Apply the Dershowitz�Manna theorem, assuring that (M(T ), <mult) is
well�founded. To do this in PVS, it is enough to instantiate the parameters
of the PVS theory finite_bags_order with T and <T . Then, the corre-
sponding theorem less_mult_is_wf is automatically proved.

Step 3 De�ne an adequate measure function f_measure : D →M(T ).
Step 4 De�ne in D the relation <D induced by the measure function:

x <D y ⇔ f_measure(x) <mult f_measure(x)

It should be noted that, in this way, the measure function is monotone.
Therefore, Lemma 2 proof automatiically that <D is a well�founded relation.

Step 5 Use the relation <D as the well�founded relation needed to prove the
termination of function f .

It should be noted that steps 2 and 4 can be considered totally mechanized, since
it is only necessary to instantiate the parameters of a PVS theory. Nevertheless,
steps 1, 3 and 5 are speci�c to each function.

4 Case studies

In this section, we present some examples in which the suggested methodology
has been used in PVS to prove non�trivial termination properties.



4.1 Ackermann's function

Ackermann's function is de�ned recursively in PVS as follows

A(m,n): RECURSIVE nat =

IF m = 0 THEN n+1 ELSIF n = 0 THEN A(m-1,1)

ELSE A(m-1, A(m,n-1))

ENDIF MEASURE lex2

Termination of this function is assured by the lexicographic order in N×N. On
the other hand, a tail recursive function which computes Ackermann's function
is A_it(m, n) = A_it_aux((m), n), where

A_it_aux(S, z) =


z if S = ()
A_it_aux((s2, . . . , sk), z + 1) if S = (0, s2, . . . , sk)
A_it_aux((s1 − 1, s2, . . . , sk), 1) if s1 6= 0 ∧ z = 0
A_it_aux((s1, s1 − 1, s2, . . . , sk), z) in other case

where S = (s1, . . . , sk) is a stack such that in every step

A_it_aux(S, z) = A(sk, A(sk−1, . . . , A(s1, z)))

The PVS speci�cation of this function is the following

A_it_aux (p): RECURSIVE nat =

LET S = proj_1(p), z = proj_2(p) IN

IF null?(S) THEN z

ELSE LET s1 = car(S), S2 = cdr(S) IN

IF s1 = 0 THEN A_it_aux ((S2,z+1))

ELSIF z = 0 THEN A_it_aux ((cons (s1-1,S2),1))

ELSE A_it_aux ((cons(s1,cons(s1-1,S2)),z-1))

ENDIF

ENDIF MEASURE p BY less_measure

A_it(m,n): nat = A_it_aux(((: m :), n))

Let us note that, in this speci�cation, the relation less_measure is not yet de-
termined. In [4], a proof of termination of this function using a multiset measure
has been shown. In this case, the measure function maps a pair ((s1, . . . , sk), z)
into the multiset of pairs of natural numbers {̇(s1, z), (s2 +1, 0), . . . , (sk +1, 0)}̇.
Note that in each case of the conditional, one or two pairs of the multiset are
removed, and they are replaced by smaller pairs with respect to the lexicographic
order in N× N.

In order to build in PVS the appropriate relation less_measure and prove its
properties, we carry out the following steps, according to the explained method-
ology.

Step 1 In this case, T = N×N and <T is the lexicographic order. We prove that
it is a well�founded relation by de�ning a monotone function into ordinals.



well_founded_lex: LEMMA well_founded?[[nat,nat]](lex)

Step 2 We prove that the extension toM(N×N) of the lexicographic order on
N×N is a well�founded ordering, by instantiting the parameters of the main
theory by N× N and lex.

IMPORTING finite_bags_order[[nat,nat], lex]

well_founded_bags_pair_mult: COROLLARY

well_founded?[finite_bag[[nat,nat]]](less_mult)

Step 3 We de�ne the measure function from the pairs (S, z) inM(N× N)
a_measure(p): finite_bag[[nat,nat]] =

IF null?(S) THEN emptybag

ELSIF length(S)=1 THEN insert((car(S),z), emptybag)

ELSE insert((car(S),z), list_mult(cdr(S)))

ENDIF

WHERE S = proj_1(p), z = proj_2(p)

Step 4 From it, we have directly proved, by Lemma 2, that the ordering between
the arguments of the function induced by this function, is well�founded
a_less(p1,p2): bool = less_mult(a_measure(p1),a_measure(p2))

a_less_wf: COROLLARY well_founded?[[list[nat],nat]](a_less)

Step 5 So, this is the function we need as well-founded order in the de�nition of
A_it_aux. We prove the proof obligations automatically generated by PVS
to ensure that the arguments of the function decrease in each recursive call:

A_it_aux_TCC2: a_less(((s2, . . . , sk), z + 1), ((s1, . . . , sk), z))
A_it_aux_TCC4: a_less(((s1 − 1, s2, . . . , sk), 1), ((s1, . . . , sk), z))
A_it_aux_TCC6: a_less(((s1, s1−1, s2, . . . , sk), z−1), ((s1, . . . , sk), z))

Finally, we prove in PVS that both functions are the same

a_it_eq_a: THEOREM A_it(m,n) = A(m,n)

4.2 McCarthy's 91 function

McCarthy's 91 function is a recursive function de�ned by John McCarthy in [7]
as

M(n) =
{

n− 10, if n > 100
M(M(n + 11)), if n ≤ 100

This function returns 91 for all n ≤ 101 and n− 10 for n > 101. There are some
papers [4, 3, 8] that address termination proofs of this function. Our goal here
is to show how we use the methodology of multiset orderings in PVS to prove
termination of an iterative version of McCarthy's 91 function. We follow the
same steps as for Ackermann's function. First, we specify the function in PVS
in three ways



mc (x): nat = IF x > 100 THEN x - 10 ELSE 91 ENDIF

mc_original (x): RECURSIVE nat =

IF x > 100 THEN x - 10 ELSE mc(mc(x+11)) ENDIF

MEASURE x

mc_it_aux(p): RECURSIVE nat =

LET n = proj_1(p), z = proj_2(p) IN

IF n = 0 THEN z

ELSIF z > 100 THEN mc_it_aux(n-1,z-10)

ELSE mc_it_aux(n+1,z+11)

ENDIF MEASURE p BY less_measure

mc_it (x) :nat = mc_it_aux((1, x))

We will consider the termination problem of the function mc_it_aux. This
task is not trivial due to the behavior of the second recursive call. In [4] a
multiset measure is given to ensure termination of this function: every pair (n, z)
is measured by the �nite multiset {̇z, mc(z), mc2(z), . . . ,mcn−1(z)}̇. Let us note
that mc_it_aux(n, z) = mcn(z), and that the relation to compare multisets is
the multiset relation induced by the following well�founded relation in N:

m <mc n⇔ n < m ≤ 111

In the sequel, we describe how to prove termination of this function in PVS
following the proposed methodology:

Step 1 We de�ne in N the relation m <mc n = n < m ∧ m <= 111 and we
prove that (N, <mc) is well�founded, using Lemma 2.

mc_less (m,n): bool = n < m & m <= 111

f_mc_less(n): nat = IF n <= 111 THEN 111-n ELSE 0 ENDIF

f_mc_less_monotone: LEMMA

mc_less(m,n) IMPLIES f_mc_less(m) < f_mc_less(n)

mc_less_well_founded: LEMMA well_founded?(mc_less)

Step 2 We prove that the multiset relation induced in M(N) by <mc is well-
founded, by instantiating the parameters of the PVS theory finite_bags_order
with N and <mc

IMPORTING finite_bags_order[nat, mc_less]

less_mult_mc_less_is_wf: COROLLARY

well_founded?[finite_bag[nat]](less_mult)

Step 3 We de�ne the measure function from N× N toM(N)
mc_it_measure(p): RECURSIVE finite_bag[nat] =

LET n = proj_1(p), z = proj_2(p) IN



IF n = 0 THEN emptybag

ELSIF n = 1

THEN insert(z, emptybag)

ELSE insert(iterate(mc,n-1)(z), mc_it_measure((n-1,z)))

ENDIF MEASURE proj_1(p)

Step 4 We de�ne in N× N the order induced by this measure function. Then,
we have automatically proved that it is a well�founded relation
mc_it_less(p1,p2): bool = less_mult(mc_it_measure(p1),mc_it_measure(p2))

mc_it_less_wf: THEOREM well_founded?[[nat,nat]](mc_it_less)

Step 5 We use the relation mc_it_less as the well-founded relation needed to
ensure the termination of the function mc_it_aux and we prove the proofs
obligations generated to ensure that the arguments of the function decrease
in each recursive call.

Finally, we can prove in PVS the equivalence between both de�nitions

mc_it_equal_mc: THEOREM mc_it(n) = mc(n)

4.3 Program schema for double recursion

Let us consider the following schema for functions which are de�ned by double
recursion. Let T a set and < a well�founded relation in T . Let p be a predicate
on T , g, k, l : T → T functions and h a binary operation with the associative,
commutative properties, and an identity element (e ∈ T ). We also assume that
the property

∀x(¬p(x)⇒ k(x) < x ∧ l(x) < x) (1)
is satis�ed. Then, we de�ne the following schema of functions:

F (x) =
{

g(x) if p(x)
h(F (k(x)), F (l(x))) if ¬p(x)

It should be noted that by instantiating the predicate variable p and the
variables g, k, l, h and e, we obtain an instance of this schema that de�ne some
particular function. Termination of F is assured by the property (1).

We specify in PVS the function F and a tail�recursive function de�ned in [4]
to compute F in a more e�cient way, and we will follow the suggested method-
ology for proving its termination. We introduce the variables over functions and
relations as parameters of the theory and we specify its properties by means of
PVS assumptions.

double_rec[T: TYPE+, <:(well_founded?[T]),p:pred[T], g,k,l:[T->T],

h:[[T,T]->T], e:T]: THEORY

BEGIN

ASSUMING

h_ax_1: ASSUMPTION commutative?(h)

h_ax_2: ASSUMPTION associative?(h)

h_ax_3: ASSUMPTION identity?(h)(e)



p_ax_1: ASSUMPTION FORALL (x:T): not p(x) IMPLIES k(x) < x AND l(x) < x

ax_4: ASSUMPTION transitive?[T](<)

ENDASSUMING

f(x) : RECURSIVE T =

IF p(x) THEN g(x) ELSE h(f(k(x)), f(l(x))) ENDIF

MEASURE x BY <

f_it_aux(p1): RECURSIVE T =

LET z = proj_1(p1), l = proj_2(p1) IN

IF null?(l) THEN z

ELSE LET s1 = car(l), ls = cdr(l) IN

IF p(s1) THEN f_it_aux ((h(g(s1),z),ls))

ELSE f_it_aux ((z, cons(k(s1),cons(l(s1),ls))))

ENDIF

ENDIF MEASURE p1 by f_it_less

f_it(x): T = f_it_aux((e, (: x :)))

where the relation f_it_lessmust be a well�founded relation and the arguments
of f_it_aux must decrease according to f_it_less in every recursive call. For
constructing this relation and proving its properties in PVS we have followed the
steps of the propossed methodology. In this case, the measure of the arguments
(z, (s1, . . . , sk)) is just the multiset {̇s1, . . . , sk}̇. Note that, in each recursive call,
the element s1 is deleted or replaced by the minor elements k(s1), l(s1).

Step 1 In this case, it su�ces to consider (T, <).

Step 2 We prove that the extension toM(T ) of < is a well�founded ordering,
by instantiating the parameters of the theory finite_bags_order by T and
<.

IMPORTING finite_bags_order[T,<]

less_mult_wf: COROLLARY well_founded?[finite_bag[T]](less_mult)

Step 3 We de�ne the measure function from the pairs (z, S) intoM(T )
p1, p2: VAR [T,list[T]]

list2bag(l) : RECURSIVE finite_bag[T] =

IF null?(l) THEN emptybag ELSE insert(car(l), list2bag(cdr(l)))

ENDIF MEASURE length(l)

f_it_measure(p1): finite_bag[T] = list2bag(proj_2(p1))

Step 4 We de�ne in T × list[T ] the relation induced by the measure function.
Then, by Lemma 2, we have proved that it is well�founded
f_it_less(p1,p2): bool = less_mult(f_it_measure(p1),f_it_measure(p2))

f_it_less_wf: THEOREM well_founded?(f_it_less)



Step 5 We use the f_it_less as the termination measure of function f_it_aux

and we prove the obligation proofs automatically generated by PVS to assure
that the arguments of the function decrease in each recursive call.

Finally, we prove that both functions are the same

f_it_eq_f: THEOREM f(x) = f_it(x)

Note that the Fibonacci function can be de�ned as a particular case of this
schema. We show here this speci�cation and some results of computing it through
the PVSio

Fib(n):nat = f_it[nat,<,p,g,k,l,+,0](n)

<PVSio> Fib(20); ==> 6765 ; cpu time 10 msec user, 0 msec system

<PVSio> Fib(30); ==> 832040 ; cpu time 520 msec user, 0 msec system

where p(x) ≡ x ≤ 1, g(x) = x, k(x) = max(0, x− 1) y k(x) = max(0, x− 2).

5 Conclusions and future work

We have presented a formalization of multiset relations in the PVS system and
a methodology for proving non�trivial termination properties of recursive func-
tions using multiset orderings in PVS. First, we have proved that the de�nition
of well�foundedness based on the well�founded part of a relation is equivalent
to this one based on the minimal element. Then, we have de�ned the multiset
relation induced by a given relation and proved the theorem which establishes
well�foundedness of the multiset relation that extends a well�founded relation.

We have also presented a methodology to organize and simplify termina-
tion proofs which use well�founded multiset orderings. The main utility of this
methodology is given by the easy way to prove the well�foundedness of a multiset
relation. It is enough to instantiate the parameters of a PVS theory and, auto-
matically, a corollary with the expected result is obtained. The non�mechanized
part is to de�ne the measure function, that it is speci�c for each function, and
to prove that the arguments of the function decrease in each recursive call. In
[2] we have used this methodology to prove in PVS the termination of a tableau
algorithm for the ALC logic. This measure function is more complex than the
previous ones, since in this case, when a kind of rule (universal rules) is applied,
this one is not disabled forever, but it can be reapplied due to the introduction
of new individuals by subsequent applications of another kind of rule (existential
rules).

Finally, we would like to point out two lines for future work. First, in order to
make the methodology more automatic, we would like to develop PVS strategies
to increase the mechanization of the process. Second, we would like to apply this
methodology to prove termination of rewriting systems or tableau algorithms,
in which a measure in multisets was required.
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