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ABSTRACT
P systems with active membranes, in their classical definition, make use of non-
cooperative rules only. However, it is well known that in living cells, proteins in-
teract among them yielding new products. Inspired by this biological phenomenon,
the previous framework is reformulated in this paper, allowing cooperation in object
evolution rules, while removing electrical charges associated with membranes. More
precisely, minimal cooperation in object evolution rules is incorporated in polarization-
less P systems with active membranes. In this paper, the term “minimal” means that
the left-hand side of such rules consists of at most two symbols, and its length is greater
than or equal to the corresponding right-hand side. The computational efficiency of
this kind of P systems is studied by providing a uniform polynomial-time solution to
SAT problem in such manner that only division rules for elementary membranes are used
and dissolution rules are forbidden. Bearing in mind that only tractable problems can
be efficiently solved by families of polarizationless P systems with active membranes
and without dissolution rules, passing from non-cooperation to minimal cooperation in
object evolution rules amounts passing from non-efficiency to efficiency in this frame-
work. This frontier of efficiency provides, as any other borderline does, a possible way
to address the P versus NP problem.

Keywords: membrane computing, active membranes, minimal cooperation, mitosis,
computational complexity, the P versus NP problem

1. Introduction

A possible way of producing new membranes in living cells is based on the mitosis
process. Mitosis is a basic process of each cell life cycle in eukaryotic cells which
allows producing two or more cells from one cell that could be considered as the
“mother”. Several mechanisms based on cell division were introduced in Membrane
Computing [11], a distributed parallel computing paradigm inspired by the way the
living cells process chemical substances, energy and information. The processor units
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in the basic model are abstractions of biological membranes, selectively permeable
barriers which give cells their outer boundaries (plasma membranes) and their inner
compartments (organelles). They control the flow of information between cells, the
movement of substances into and out of cells, and they are also involved in the capture
and release of energy. Biological membranes play an active part in the life of the
cell. In fact, the passing of chemical substances through a biological membrane often
requires an interaction between the membrane itself and the protein channels present
within it. During this interaction, both the chemical substances and the membrane
itself can be modified at least locally.

P systems with active membranes [8] incorporate the mitosis based mechanisms by
means of membrane division rules. By applying this kind of rules, under the influence
of the object triggering it, the membrane is divided into two membranes and that ob-
ject is replaced in the two new ones by possibly different objects, being the remaining
objects duplicated in both the created membranes. These models are computation-
ally universal (they are equivalent in power to deterministic Turing machines) and
they have the ability to provide efficient solutions to computationally hard problems,
by making use of an exponential workspace created in a polynomial time (often, in
linear time). Moreover, PSPACE-complete problems can be efficiently solved by
families of P systems with active membranes which use division for elementary and
non-elementary membranes. Consequently, the usual framework of P systems with
active membranes and polarizations for solving decision problems seems to be too
powerful from the computational complexity point of view.

P systems with active membranes and without electrical charges were initially
studied in [1, 2]. However, this initial approach proposed to replace polarizations by
a somehow equivalent or even more powerful ingredient: the ability to change the label
of the membranes. Our approach is quite different, since we keep labels unchanged.
Bearing in mind that consideration, some computational complexity aspects of these
systems are studied when (minimal) cooperation in object evolution rules is allowed,
and a new frontier of the efficiency is provided.

The paper is organized as follows. Next section briefly describes some preliminaries
in order to make the work self-contained. In Section 3, polarizationless P systems with
active membranes are introduced, and minimal cooperation in object evolution rules is
considered. A uniform polynomial time solution to SAT problem by means of a family
of polarizationless P systems with active membranes, with minimal cooperation and
without dissolution rules, is presented in Section 4. The paper ends with some open
problems and concluding remarks.

2. Preliminaries

An alphabet Γ is a non-empty set and its elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ. The number n is called the length of the string u and it is
denoted by |u|, that is, the length of a string is the number of occurrences of symbols
it contains. The empty string (with length 0) is denoted by λ. The set of all strings
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over an alphabet Γ is denoted by Γ∗. A language over Γ is a subset of Γ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0 }. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty multiset
and we denote by Mf (Γ) the set of all finite multisets over Γ. If m1 = (Γ, f1) and
m2 = (Γ, f2) are multisets over Γ, then the union of m1 and m2, denoted by m1 +m2,
is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for each x ∈ Γ.

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the tree)
is distinguished from the others. In a rooted tree the concepts of ascendants and
descendants are defined in a usual way. Given a node x (different from the root), if
the last edge on the (unique) path from the root of the tree to the node x is (y, x) (in
this case, x 6= y), then y is the parent of node x and x is a child of node y. The root
is the only node in the tree with no parent. A node with no children is called a leaf
(see [4] for details).

Finally, let us recall that a decision problem X is a pair (IX ,ΘX) where IX is a
language over a finite alphabet and ΘX is a Boolean formula over the set IX (called
the set of instances of X).

3. Polarizationless P Systems with Active Membranes

Let us briefly recall some definitions of P systems models that will be used in the
paper (see [11] for details). The reader is supposed to be familiar with basic elements
of membrane computing.

A basic transition P system is a membrane system whose rules are of the following
forms: evolution, communication, and dissolution. In these systems the size of the
membrane structure does not increase, but an exponential workspace (in terms of
number of objects) can be constructed in linear time, e. g. via evolution rules of the
type [ a → a2 ]h. Nevertheless, this capability is not enough to efficiently solve NP–
complete problems, unless P = NP (see [7] for details).

Replication is one of the most important functions of a cell and, in ideal circum-
stances, a cell produces two identical copies by division. Bearing in mind that the
reactions which take place in a cell are related to membranes, division rules for elemen-
tary and non-elementary membranes are considered in the so-called P systems with
active membranes. This variant was first introduced by Gh. Păun [9] and it has elec-
trical charges associated with membranes, but the rules are non-cooperative and there
are not priorities. Nevertheless, the class of all problems solvable in polynomial time
in a uniform way by means of families of P systems with active membranes which use
division for elementary and non-elementary membranes coincides with PSPACE [15].
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3.1. Polarizationless P systems with active membranes: Syntax

In this paper, electrical charges are removed, so we deal with polarizationless P sys-
tems with active membranes.

Definition 1. A polarizationless P system with active membranes of degree q is a
tuple Π = (Γ, H, µ,M1, . . . ,Mq,R, iout), where
• Γ is a finite alphabet whose elements are called objects;
• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels;
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labeled by elements of H;
• M1, . . . ,Mq are multisets over Γ;
• R is a finite set of rules, of the following forms:

(a0) [ a→ u ]h for h ∈ H, a ∈ Γ, u ∈Mf (Γ) (object evolution rules).
(b0) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ and h is not the label of the root of µ

(send–in communication rules).
(c0) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ (send–out communication rules).
(d0) [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ and h is not the label of the root of

µ (dissolution rules).
(e0) [ a ]h → [ b ]h [ c ]h for h ∈ H \ {iout}, a, b, c ∈ Γ and h is the label of an ele-

mentary membrane different of the root of µ (division rules for elementary
membranes).

(f0) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 ∈ H and h0 is not the
label of the root of µ (division rules for for non–elementary membranes).

• iout ∈ H ∪ {env} (if iout ∈ H then iout is the label of a leaf of µ).

A polarizationless P system with active membranes of degree q,

Π = (Γ, H, µ,M1, . . . ,Mq,R, iout),

can be viewed as a set of q membranes, labelled by elements of H, arranged in a
hierarchical structure µ given by a rooted tree, whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed in
the q membranes of the system; (b) R is a finite set of rules over Γ associated with
the labels; (c) iout ∈ H ∪{env} indicates the output region. We use the term region i
to refer to membrane i in the case i ∈ H and to refer to the “environment” of the
system in the case i = env. The leaves of µ are called elementary membranes; any
other membrane is said to be non-elementary.

3.2. Polarizationless P systems with active membranes: Semantics

An instantaneous description or a configuration Ct at an instant t of a polarizationless
P system with active membranes is described by the following elements: (a) the
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membrane structure at instant t, and (b) all multisets of objects over Γ associated
with all the membranes present in the system at that moment.

An object evolution rule

[ a→ u ]h

for h ∈ H, a ∈ Γ, u ∈ Mf (Γ), is applicable to a configuration Ct at an instant t, if
there exists a membrane labelled by h in Ct which contains object a. When applying
such a rule, object a is consumed and objects from multiset u are produced in that
membrane.

A send-in communication rule

a [ ]h → [ b ]h

for h ∈ H, a, b ∈ Γ, is applicable to a configuration Ct at an instant t, if there exists a
membrane labelled by h in Ct such that h is not the label of the root of µ and its parent
membrane contains object a. When applying such a rule, object a is consumed from
the parent membrane and object b is produced in the corresponding membrane h.

A send-out communication rule

[ a ]h → b [ ]h

for h ∈ H, a, b ∈ Γ, is applicable to a configuration Ct at an instant t, if there exists
a membrane labelled by h in Ct such that it contains object a. When applying such
a rule, object a is consumed from such membrane h and object b is produced in the
parent of such membrane.

A dissolution rule

[ a ]h → b

for h ∈ H, a, b ∈ Γ, is applicable to a configuration Ct at an instant t, if there exists
a membrane labelled by h in Ct, different from the skin membrane and from the
output region, such that it contains object a. When applying such a rule, object a is
consumed, membrane h is dissolved and its objects are sent to the parent (or the first
ancestor that has not been dissolved at the same instant t).

A division rule

[ a ]h → [ b ]h[ c ]h

is applicable to a configuration Ct at an instant t, if there exists an elementary mem-
brane labelled by h in Ct, different from the skin membrane and from the output
region, such that it contains object a. When applying a division rule [a]h → [ b ]h [ c ]h
to a membrane labelled by h in a configuration Ct, under the influence of object a,
the membrane with label h is divided into two membranes with the same label; in the
first copy, object a is replaced by object b, in the second one, object a is replaced by
object c; all the other objects are replicated and copies of them are placed in the two
new membranes.
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A division rule

[ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0

is applicable to a configuration Ct at an instant t, if there exists a membrane labelled
by h0 in Ct, different from the skin membrane and from the output region, which
contains two membranes labelled by h1 and h2, respectively. When applying such a
division rule to a membrane labelled by h0 in a configuration Ct, the membrane with
label h0 is divided into two membranes with the same label containing, respectively,
membrane h1 and membrane h2 with their contents. Besides, if the membrane la-
belled by h0 contains other membranes than those with the labels h1, h2, then these
membranes are duplicated and are part of the contents of both new copies of the
membrane h0.

In polarizationless P systems with active membranes, the rules are applied accord-
ing to the following principles:

• The rules associated with membranes labelled with h are used for all copies of
this membrane.

• At one transition step, one object of a membrane can be used by only one rule
(chosen in a non–deterministic way).

• At one transition step, a membrane can be subject of at most one rule of types
(b0)–(f0). Rules of these types can be applied at most once on each membrane
at each step.

• Object evolution rules can be simultaneously applied to a membrane joint with
one rule of types (b0)–(f0). In that case, object evolution rules are applied in a
maximally parallel manner.

• If at the same time a membrane labelled with h is divided by a rule of type (e0)
or (f0) and there are objects in this membrane which evolve by means of rules
of type (a0), then we suppose that first the evolution rules of type (a0) are used,
changing the objects, and then the division is produced. Of course, this process
takes only one transition step.

• The skin membrane and the output membrane can never divide or dissolve.

3.3. Polarizationless P systems with active membranes and minimal cooperation in
object evolution rules

Next, minimal cooperation in objects evolution rules is introduced in the framework
of polarizationless P system with active membranes. The term “minimal cooperation”
is used in the following sense: the left-hand side of such rules consists of at most two
symbols and its length is greater than or equal to the right-hand side.

Definition 2. A polarizationless P system with active membranes and minimal
cooperation in object evolution rules is a polarizationless P system with active mem-
branes such that the object evolution rules are of the following forms:

[ a→ c ]h, [ a b→ c ]h, [ a b→ c d ]h
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for h ∈ H and a, b, c, d ∈ Γ.

Let us notice that in these systems, send-in communication rules, send-out commu-
nication rules, dissolution rules and division rules are non-cooperative rules.

In polarizationless P system with active membranes and minimal cooperation, the
rules are applied according to the same principles described in Subsection 3.2.

3.4. Recognizer membrane systems

In this section, a membrane system designates a P system of one of the different
variants considered in the paper.

Definition 3. We say that a membrane system Π is a recognizer membrane system
if the following holds:
(I) The working alphabet Γ of Π has two distinguished objects yes and no.
(II) There exists an (input) alphabet Σ strictly contained in Γ.
(III) The initial multisetsM1, . . . ,Mq of Π are multisets over Γ \ Σ.
(IV) There exists a distinguished membrane called the input membrane.
(V) The output region iout is the environment.
(VI) All computations halt.
(VII) If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

In recognizer membrane systems any computation is either an accepting computation
(when object yes is released into the environment at the last step) or a rejecting
computation (when object no is released into the environment at the last step)

For each finite multiset m over the input alphabet Σ, the computation of the sys-
tem Π with input m starts from the configuration obtained by adding the input mul-
tiset m to the contents of the input membrane, in the initial configuration of Π.
Therefore, in this kind of systems we have an initial configuration associated with
each input multiset m (over the input alphabet Σ) . We denote by Π +m the mem-
brane system Π with input multiset m.

We also use the following notations:

• AM0(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recognizer
polarizationless P systems with active membranes.

• AM0
mc(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recognizer

polarizationless P systems with active membranes with minimal cooperation in
object evolution rules.

The meaning of parameters γ and δ is the following:

• if γ = +d then dissolution rules are permitted,
• if γ = −d then dissolution rules are forbbiden,
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• if δ = +n then division rules for elementary and non–elementary membranes
are permitted,

• if δ = −n then only division rules for elementary membranes are permitted.

3.5. Polynomial complexity classes of recognizer membrane systems

Next, let us recall the concept of efficient solvability by means of a family of recognizer
membrane systems (see [12] for more details).

Definition 4. A decision problem X = (IX ,ΘX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N } of recognizer membrane systems, in a uniform way,
denoted by X ∈ PMCR, if the following statements hold:
• the family Π is polynomially uniform by Turing machines, that is, there exists

a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over the
set IX such that:
∗ for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
∗ for each n ∈ N, s−1(n) is a finite set;
∗ the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) + cod(u) is halting and it performs at most p(|u|)
steps;

∗ the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u))+cod(u), then θX(u) = 1;

∗ the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

The polynomial complexity class PMCR is closed under polynomial-time reduction
and under complement [13].

At the beginning of 2005, Gh. Păun proposed a problem (problem F from [10])
which can be formally formulated as follows:

“Is the complexity class PMCAM0(+d,−n) equal to P?”
That is, in order to provide polynomial time solutions to computationally hard prob-
lems by means of families of P systems with active membranes (using only division
rules for elementary membranes), can the polarizations be completely avoided? Gh.
Păun wrote “my feeling is that this is not possible”, that is, his guess is that

PMCAM0(+d,−n) = P.

By using the dependency graph technique it has been shown that if dissolution
rules are forbidden, then only tractable problems can be solved in an efficient way
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by families of polarizationless P systems with active membranes even using division
rules for elementary and non-elementary membranes, that is,

PMCAM0(−d,+n) = P

(see [6] for details). In some sense, a partial affirmative answer to Păun’s conjecture
is obtained in the case that dissolution rules are forbidden.

On the other hand, a family of recognizer polarizationless P systems with active
membranes using dissolution rules and division for non–elementary membranes solving
QBF-SAT in a uniform way and in a linear time, has been provided (see [3] for details),
and thus

PSPACE ⊆ PMCAM0 (+d,+n).

In this manner, assuming that P 6= NP, we have a partial negative answer to Păun’s
conjecture: computationally hard problems can be efficiently solved avoiding polar-
izations, but the answer is partial in the sense that division rules for non–elementary
membranes have been considered.

From the previous result we deduce that when dealing with polarizationless P
systems with active membranes including non–elementary membranes division, dis-
solution rules constitute a key ingredient to solve hard problems efficiently.

4. On efficiency of membrane systems from AM0
mc(−d,−n)

In this section, we show that the syntactical ingredient of minimal cooperation in
polarizationless P systems with active membranes (without dissolution and allowing
only division for elementary membranes) is enough to solve computationally hard
problems in an efficient way.

4.1. A uniform polynomial time solution to SAT problem in AM0
mc(−d,−n)

Next, a polynomial time solution to SAT problem, a well known NP-complete prob-
lem [5], by a family

Π = {Π(t) | t ∈ N }

of recognizer P systems from AM0
mc(−d,−n) is provided. Each system Π(t) will

process any Boolean formula ϕ in conjunctive normal form with n variables and p
clauses, where t = 〈n, p〉, provided that the appropriate input multiset cod(ϕ) is
supplied to the system (through the corresponding input membrane).

Let us recall that the polynomial–time computable function (the pair function)

〈n, p〉 = ((n+ p)(n+ p+ 1)/2) + n

is a primitive recursive and bijective function from N×N to N. Then, for each n, p ∈ N,
we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ, H, µ,M1,M2,R, iin, iout)

from AM0
mc(−d,−n), defined as follows:
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(1) Working alphabet:

Γ = Σ ∪ {yes , no , α , β′ , β′′ , γ , γ′ , γ′′ , #}
∪ { ai,k | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ i }
∪ {βk | 0 ≤ k ≤ n+ 2p }
∪ { ti,k, fi,k | 1 ≤ i ≤ n− 1 ∧ i ≤ k ≤ n− 1 }
∪ {Ti,j , Fi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p }
∪ { cj,k | 1 ≤ j ≤ p− 1 ∧ j ≤ k ≤ p− 1 }
∪ { cj | 1 ≤ j ≤ p } ∪ { dj | 2 ≤ j ≤ p }

where the input alphabet is Σ = {xi,j , xi,j , x
∗
i,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p };

(2) H = {1, 2};

(3) membrane structure: µ = [ [ ]2 ]1, that is, µ = (V,E) where V = {1, 2} and
E = {(1, 2)};

(4) initial multisets: M1 = {α , β0 } andM2 = { a1,1, . . . an,1 }

(5) the set of rules R = R1 ∪R2 consists of the following rules:

Rules in R1 :

1.1
[ α γ −→ γ′ ]1
[ γ′ −→ γ′′ ]1
[ γ′′ ]1 −→ yes [ ]1

1.2

[ βk −→ βk+1 ]1 , for 0 ≤ k ≤ n+ 2p− 1
[ βn+2p −→ β′ ]1
[ α β′ −→ β′′ ]1
[ β′′ ]1 −→ no [ ]1

Rules in R2 :

2.1
[ ai,i ]2 −→ [ ti,i ]2 [ fi,i ]2 , for 1 ≤ i ≤ n− 1

[ai,k −→ ai,k+1 ]2 , for 2 ≤ i ≤ n ∧ 1 ≤ k ≤ i− 1

[ an,n ]2 −→ [ Tn,1 ]2 [ Fn,1 ]2
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2.2
[ti,k −→ ti,k+1 ]2
[fi,k −→ fi,k+1 ]2

}
1 ≤ i ≤ n− 2 ∧ i ≤ k ≤ n− 2

[ti,n−1 −→ Ti,1 ]2
[fi,n−1 −→ Fi,1 ]2

}
1 ≤ i ≤ n− 1

2.3
[Ti,j xi,j −→ Ti,j+1 cj,j ]2
[Ti,j xi,j −→ Ti,j+1 ]2
[Ti,j x

∗
i,j −→ Ti,j+1 ]2

[Fi,j xi,j −→ Fi,j+1 ]2
[Fi,j xi,j −→ Fi,j+1 cj,j ]2
[Fi,j x

∗
i,j −→ Fi,j+1 ]2


1 ≤ i ≤ n ∧ 1 ≤ j ≤ p− 1

[Ti,p xi,p −→ cp ]2
[Ti,p xi,p −→ # ]2
[Ti,p x

∗
i,p −→ # ]2

[Fi,p xi,p −→ # ]2
[Fi,p xi,p −→ cp ]2
[Fi,p x

∗
i,p −→ # ]2


1 ≤ i ≤ n

2.4
[cj,k −→ cj,k+1 ]2, for 1 ≤ j ≤ p− 2, j ≤ k ≤ p− 2
[cj,p−1 −→ cj ]2, for 1 ≤ j ≤ p− 1

2.5
[c1 c2 −→ d2 ]2
[dj cj+1 −→ dj+1 ]2 , for 2 ≤ j ≤ p− 1

2.6
[ dp ]2 −→ γ [ ]2

(6) the input membrane is the membrane labelled by 2 (iin = 2) and the output
region is the environment (iout = env).

4.2. An overview of the computations

Let ϕ = C1 ∧ · · · ∧ Cp be an instance of the SAT problem consisting of p clauses

Cj = lj,1 ∨ · · · ∨ lj,rj
, 1 ≤ j ≤ p,

where V ar(ϕ) = {x1, · · · , xn}, and

lj,k ∈ {xi,¬xi | 1 ≤ i ≤ n }, 1 ≤ j ≤ p, 1 ≤ k ≤ rj .
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Let us assume that the number of variables, n, and the number of clauses, p, of ϕ,
are greater than or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows: for
each Boolean formula ϕ in conjunctive normal form with n variables and p clauses,
s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j | xi ∈ Cj } ∪ {xi,j | ¬xi ∈ Cj } ∪ {x∗i,j | xi /∈ Cj∧¬xi /∈ Cj }.

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).
For instance, the formula ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4) is

encoded as follows1:

cod(ϕ) =

x1,1 x2,1 x3,1 x
∗
4,1

x∗1,2 x2,2 x
∗
3,2 x4,2

x1,3 x2,3 x
∗
3,3 x4,3


That is, each four elements represent a clause of ϕ.

The proposed solution follows a brute force algorithm implemented in the frame-
work of recognizer polarizationless P systems with active membranes and minimal
cooperation. The solution consists of the following stages:

• Generation stage: using division rules, all truth assignments for the variables
{x1, . . . , xn} associated with ϕ are produced. Specifically, 2n membranes la-
belled by 2 are generated, each of them encoding a truth assignment. This
stage takes exactly n computation steps, where n is the number of variables
of ϕ.

• First Checking stage: checking whether or not each clause of the input formula ϕ
is satisfied by the truth assignment generated in the previous stage, encoded by
a membrane labelled by 2. This stage takes exactly p steps, where p is the
number of clauses of ϕ.

• Second Checking stage: checking whether or not all clauses of the input for-
mula ϕ are satisfied by some truth assignment encoded by a membrane labelled
by 2. This stage takes exactly p− 1 steps.

• Output stage: the system sends to the environment the right answer according
to the results of the previous stage. The output stage takes 4 steps.

4.3. Generation stage

Here, the goal is to generate all truth assignments for the variables associated with
the Boolean formula ϕ(x1, . . . , xn), by applying division rules from 2.1 in membranes
labelled by 2. In the i–th step (1 ≤ i ≤ n − 1) of this stage, division rule associated
with object ai,i is triggered and objects ti,i, fi,i are produced in the new created

1We display the multiset cod(ϕ) in matrix form to highlight the correspondence between objects
and clauses.
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membranes labelled by 2. In the last step of this stage, the objects produced are Tn,1
and Fn,1.

We use the rules

[ai,k → ai,k+1]2, 2 ≤ i ≤ n ∧ 1 ≤ k ≤ i− 1

in order to produce the next aj,j , where j = k + 1, and in the following step, we can
apply the j-th division rule. We do it n− 1 times. Beside this, we use rules from 2.2
to have, in the (n − 1)-th step, objects ti,n−1, fi,n−1, 1 ≤ i ≤ n − 1, depending on
the truth assignment associated with each membrane. At the end of this stage, the
objects produced in membranes labelled by 2 in configuration Cn are Ti,1 and Fi,1,
with 1 ≤ i ≤ n, respectively.

4.4. First Checking stage

At this stage, we try to determine which clauses are satisfied for the truth assignment
encoded by each membrane labelled by 2. For that, rules from 2.3 will be applied in
such manner that in the j-th step (1 ≤ j ≤ p) of this stage, clause j is checked and
an object cj is produced only if the clause Cj is satisfied.

If there is an object Ti,j (resp., Fi,j), it means that in the truth assignment of this
membrane the value of xi is true (resp., false), and that the clause j is being checked.
If there is an object xi,j (resp., xi,j), then clause j is satisfied by variable i, and an
object cj is generated to witness it. At the end of this stage, at configuration Cn+p, an
object cj is in a membrane labelled by 2 if and only if the truth assignment encoded
by that membrane makes true clause Cj .

4.5. Second Checking stage

At this stage, we try to determine if some truth assignment encoded by a membrane
labelled by 2 satified all clauses of the input formula. For that, rules from 2.4 will
be applied in such manner that object dj (2 ≤ j ≤ p) is produced in the case clauses
c1, . . . , cj are satisfied. Therefore, at the end of this stage, at configuration Cn+2p−1,
an object dp appears in a membrane labelled by 2 if and only if the truth assignment
encoded by that membrane makes true the input formula ϕ.

4.6. Output stage

The output stage takes 4 steps and the answer of the system is encoded in the envi-
ronment associated with configuration Cn+2p+3.

– Affirmative answer : if the truth assignment encoded by any membrane with
label 2 makes true all clauses, then an object dp will appear in that membrane
at configuration Cn+2p−1. In this case, by applying rule from 2.5 an object γ is
produced in the skin membrane and, simultaneously, by applying rules in 1.2,
we have βn+2p ∈ Cn+2p(1), where Cj(i) denotes the multiset contained in mem-
brane i at configuration Cj .
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At step n + 2p + 1, objects γ′ and β′ are simultaneously produced in the
skin membrane. At the next step, object γ′ evolves into object γ′′ in the skin
membrane at configuration Cn+2p+2. Finally, object γ′′ sends out object yes to
the environment, resulting in the configuration Cn+2p+3, and the computation
halts.

– Negative answer : if none of the truth assignments encoded by membranes with
label 2 makes the formula ϕ true, then object dp does not appear in any mem-
brane with label 2. Thus, only a rule from 1.2 is applicable to configuration
Cn+2p−1 and we have Cn+2p(1) = {α , βn+2p }. At the next step, by applying
rule [ βn+2p −→ β′ ]1 we have Cn+2p+1(1) = {α , β′ }. Then, by applying rule
[ α β′ −→ β′′ ]1 an object β′′ is produced in the skin membrane at configuration
Cn+2p+2. Finally, object β′′ sends out object no to the environment, resulting
in the configuration Cn+2p+3, and the computation halts.

4.7. Polynomial Uniformity of the Family

In this subsection, we show that the family Π = {Π(t) | t ∈ N } defined above is
polynomially uniform by Turing machines. To this aim we prove that Π(〈n, p〉) is
built in polynomial time with respect to the size parameters n and p of SAT problem
instances.

It is easy to check that the rules of a system Π(〈n, p〉) of the family are recursively
defined from the values n and p. The amount of resources to build an element of
the family is of a polynomial order in the number of variables n and the number of
clauses p, as shown below:

(I) Size of the alphabet:

5np+ 3n2 + p2 + n+ 7p
2 + 9 ∈ Θ((max{n, p})2).

(II) Initial number of cells:

2 ∈ Θ(1).

(III) Initial number of objects in cells:

n+ 2 ∈ Θ(n).

(IV) Number of rules:

6np+ 3n2 + p2 + n+ 5p
2 + 6 ∈ Θ((max{n, p})2).

(V) Maximal number of objects involved in any rule:

4 ∈ Θ(1).
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Let us recall that the total number of literals in a formula in conjunctive normal
form is of the order O(n · p). Therefore, there exists a deterministic Turing machine
that builds the system Π(〈n, p〉) in a polynomial time with respect to n and p.

From this, we conclude:

Theorem 5. SAT ∈ PMCAM0
mc(−d,−n).

Consequently, and having in mind that the complexity class PMCAM0
mc(−d,−n)

is closed under polynomial-time reduction and complement, we have the following
result.

Corollary 6. NP ∪ co−NP ⊆ PMCAM0
mc(−d,−n).

5. Conclusions

The classical definition of polarizationless P systems with active membranes makes
use of non-cooperative rules and their object evolution rules are of the form [ a → u ]h,
where a is an object and u is a finite multiset of objects. It is well known [6] that
only tractable problems can be solved in an efficient way by families of such kind of P
systems when division for elementary and non-elementary membranes are permitted
but dissolution rules are forbidden, that is,

P = PMCAM0(−d,+n).

In this paper, polarizationless P systems with active membranes and minimal co-
operation in object evolution rules are introduced. This kind of rules are of the forms

[a→ c]h, [ab→ c]h or [ab→ cd]h.

The computational efficiency of this model is studied, and a uniform polynomial-time
solution to SAT problem by a family of polarizationless P systems with active mem-
branes, without dissolution rules and minimal cooperation in object evolution rules,
using only division for elementary membranes, is provided. Consequently, in the
framework of polarizationless P systems with active membranes, without dissolution
rules and using only division for elementary membranes, a frontier between efficiency
and non-efficiency is obtained when passing from non-cooperation to minimal coop-
eration in object evolution rules.

As future work, we propose to study the capability of the new framework to pro-
vide uniform polynomial-time solution to PSPACE-complete problems as well as to
analyse these membrane systems when separation rules are considered instead of di-
vision rules, that is, when distribution of objects between the two created membranes
(according to a partition of the working alphabet) is considered instead of replication
of objects.
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