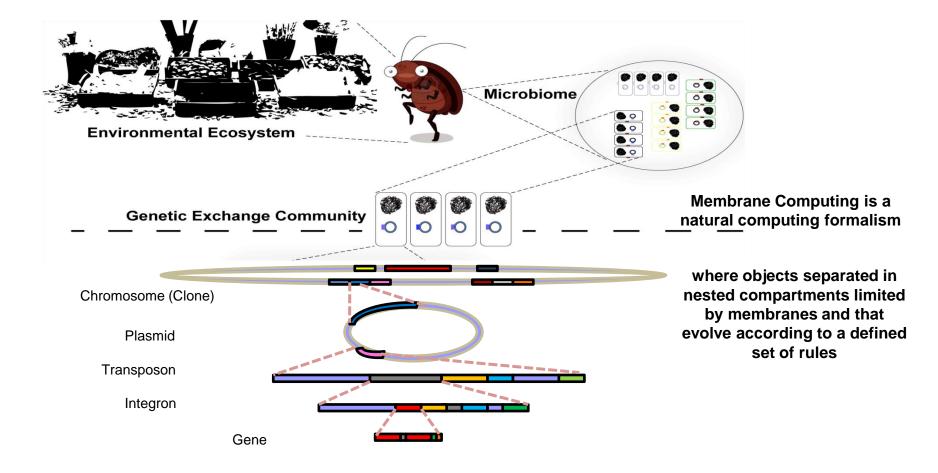

MEMBRANE NG SIMUL MS RES A

WP-7

Membrane computing **EVOTAR** approach http://www.evotar.eu

Marcelino Campos (EvoTAR) Carlos Llorens (Biotechvana) Jose-María Sempere (DSIC) Teresa Coque (EvoTAR) Fernando Baquero (EvoTAR)

Biotechvana



INFORMÁTICOS Y COMPUTACIÓN

Membrane Computing Antibiotic Resistance and P systems

$\prod = (V, \mu, W_1, ..., W_n, (R_1, \rho_1), ..., (R_n, \rho_n))$

TO KNOWN MORE

http://ppage.psystems.eu

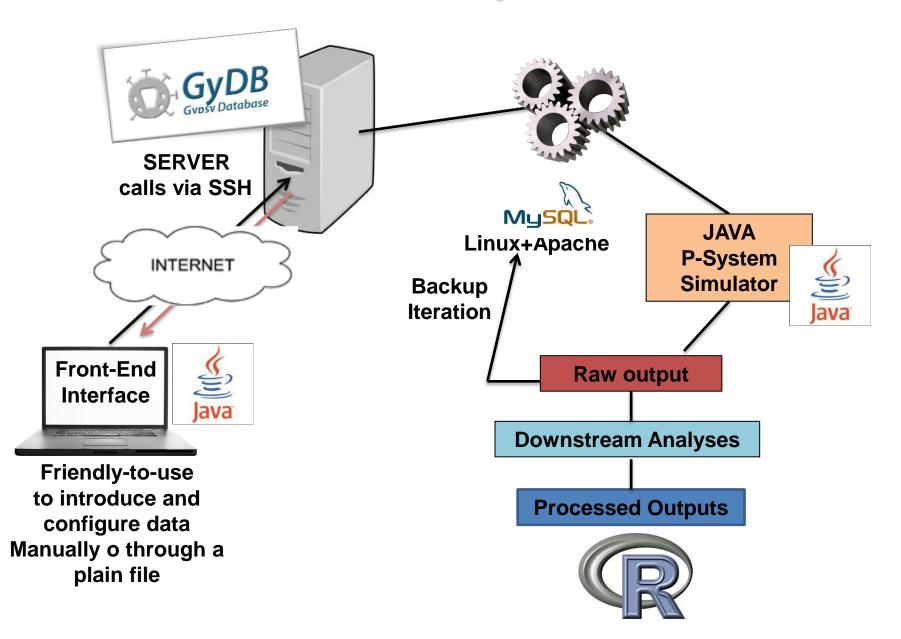
http://www.p-lingua.org/wiki/index.php/Main_Page

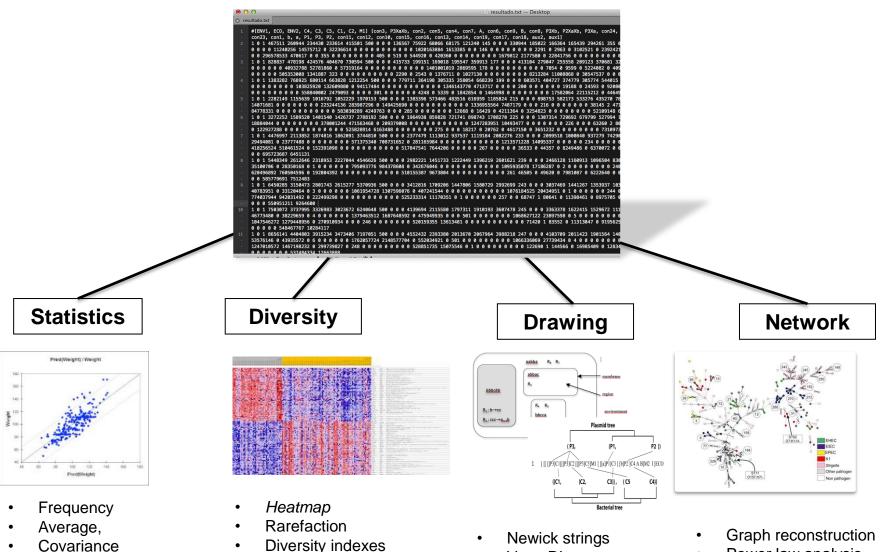
ARES: Front-End Interface

Ev

WP

A.R.E Antibi Evolu

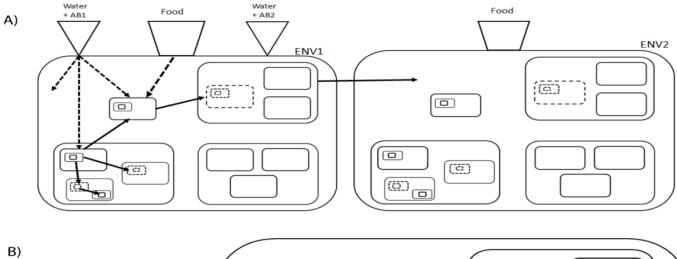

	New membrane	
esistance imulator	ID:	M1
	Parent Type:	MEM •
	Parent ID:	
	Multiplicity:	100
	Capacity:	16000
	Fitness:	0.01
		Add
	Delete membrane	
	ID:	•
		Delete
	Preview	
	<pre><?xml version="1.0" encoding="UTF-8"?><config><mem capacity="1000000" fitness="1.0" id="ECO" multiplicity="1" parent-id="" parent-type="" type="MEM"><mem fitness="1.0" id="ECO" multiplicity="1" parent-id="ECO" parent-type="MEM" type="MEM"></mem></mem></config> </pre>	
		<pre></pre>
ne XN	/L is automatically	<pre></pre>
enera		<pre><b0 <="" multiplicity="20" object="PlXa" p3"="" pre=""></b0></pre>
		<pre></pre>


Easy to use

Avanced informatics Skill not required

ARES: Server Pipeline

ARES output and tools for Downstream Analysis


Fitness Lanscapes

Venn Diagrams

Power law analysis

- Covariance
- **Price Equation**
- Distribution

Case Study: Cockroach Farm

Aims

- Comparing Scenarios for Testing Null hypotheses under diverse interventions
- Make predictions under changing parameters
- Modeling the spatiotemporal dynamics of resistance genes, or any other units of selection
- Experimental validation

•

• Debugging of ARES

Rules for movement and/or transference of objects

$[[]_{Mn}]_{ENV1}[]_{ENV2} \rightarrow []_{ENV1} [[]_{Mn}]_{ENV}$

•We consider the possibility of migratory flows between the populations of both environments (ENV1 and ENV2) with a rate M1

•Microbes released from intestinal discharge from cockroaches go into the environment and have the possibility of being re-acquired by other cockroaches with a rate M2.

•Cockroaches infect food with bacteria that have the subsequent possibility to colonize again cockroach gut with a rate M3.

•Antibiotic AB1 enters from water to the cockroach gut with a rate M4

Antibiotic AB2 enters from water to the cockroach gut with a rate M5

•Antibiotic AB1 enters from environment to the bacterial cell with a rate M6

•Antibiotic AB2 enters from environment to the bacterial cell with a rate M7

•Antibiotic AB1 enters from cockroach gut to the bacterial cell with a rate M8

•Antibiotic AB2 enters from cockroach gut to the bacterial cell with a rate M9

•Plasmids can be horizontally transferred via conjugation from a bacterial clone to another with rate M10 which comprises a relation among the growth rate (ψ) number of transconjugants (T) and the donors (D) and the receptors (R) in a plasmid population

•P1 recruits gene "b" from plasmid P2 with a rate M11

•P2 recruits gene "a" from plasmid P1 with a rate M12

•P3 recruits gene "a" from plasmid P1 with a rate M13

•P3 recruits gene "b" from plasmid P2 with a rate M14

Rules for mortality or loss

 $[AB1]_{Cn} \!\rightarrow \! [I]$

- 6-months old cockroaches die by natural causes according to rate D₁
- 5-months old cockroaches die by stress or competition according to rate D₂
- 4-months old cockroaches die by stress or competition according to rate D₃
- 3-months old cockroaches die by stress or competition according to rate D₄
- 2-months old cockroaches die by stress or competition according to rate D₅
- 1-months old cockroaches die by stress or competition according to rate D₆
- Cockroaches will die due to bacterial infection according to rate D₇, being the ratio between the total number of bacteria within a cockroach individual (CLobs) at a given generation and the maximum bacterial population size allowed in a cockroach microbiome (CLmax).
- Under food restrictions, a fraction of the cockroach population will starve to death according to rate D₈
- A Gram negative bacterial clone will die under a concentration X₁ of Antibiotic AB₁
- A Gram positive clone will die under a concentration X₂ of Antibiotic AB₂
- Bacteria cells in stationary phase will naturally die under rate D₉ which is equal to R₁. In the stationary phase there is
 equilibrium between cell division and death.
- Bacterial cells constituting a microbiome M_i will die if their cockroach host die
- Plasmids of bacterial cells are lost by degradation with a rate D₁₀
- Plasmids of bacterial cells will be lost by segregation during bacterial replication according to rate D₁₁

Rules for drinking and feeding

- ENV1 water includes a concentration of antibiotic AB1 of X₃ units/mI
- ENV1 water includes a concentration of antibiotic AB2 of X₄ units/ml
- An amount of food will be daily supplied to both populations ENV₁ and ENV₂ with a rate F₁
- A cockroach individuals feeds food with a rate F₂
- A cockroach individual drinks water with a rate F₃
- · Cockroaches will release faeces to the environment with a rate F₄

Rules for environment maintenance

- Boxes representing environments ENV1 and ENV2 will be clean from faeces remains with a rate A1
- Boxes representing environments ENV1 and ENV2 will be clean from food remains with a rate A₂
- Boxes representing environments ENV1 and ENV2 will be clean from both faeces and food remains with a rate A₃
- · Plasmids with gene "a" express ab1 protein with a rate M15
- Plasmids with gene "b" express ab2 protein with a rate M16
- ab1 neutralize AB1 in every clone
- ab2 neutralize AB2 in every clon

Rules for modification

Under values of R_8 below 1 time (T₁) necessary to apply R8 within ENV₁

• Under values of R₈ below 1 time (T₂) necessary to apply R8 within ENV₂

Rules for drinking and feeding

- ENV1 water includes a concentration of antibiotic AB1 of X₃ units/mI
- ENV1 water includes a concentration of antibiotic AB2 of X₄ units/ml
- An amount of food will be daily supplied to both populations ENV₁ and ENV₂ with a rate F₁
- A cockroach individuals feeds food with a rate F₂
- A cockroach individual drinks water with a rate F₃
- · Cockroaches will release faeces to the environment with a rate F₄

Rules for environment maintenance

- Boxes representing environments ENV1 and ENV2 will be clean from faeces remains with a rate A1
- Boxes representing environments ENV1 and ENV2 will be clean from food remains with a rate A₂
- Boxes representing environments ENV1 and ENV2 will be clean from both faeces and food remains with a rate A₃
- · Plasmids with gene "a" express ab1 protein with a rate M15
- Plasmids with gene "b" express ab2 protein with a rate M16
- ab1 neutralize AB1 in every clone
- ab2 neutralize AB2 in every clon

Rules for modification

Under values of R_8 below 1 time (T₁) necessary to apply R8 within ENV₁

• Under values of R₈ below 1 time (T₂) necessary to apply R8 within ENV₂

Server

129

k

😰 🚍 🗊 🛛 marce@marce-SATELLITE-P850: ~

```
marce@marce-SATELLITE-P850:~$ ssh biotechvana.uv.es -l irycis
irycis@biotechvana.uv.es's password:
Welcome to Ubuntu 12.04.4 LTS (GNU/Linux 3.8.0-29-generic x86 64)
```

* Documentation: https://help.ubuntu.com/

System information as of Wed Jan 15 23:58:16 CET 2014

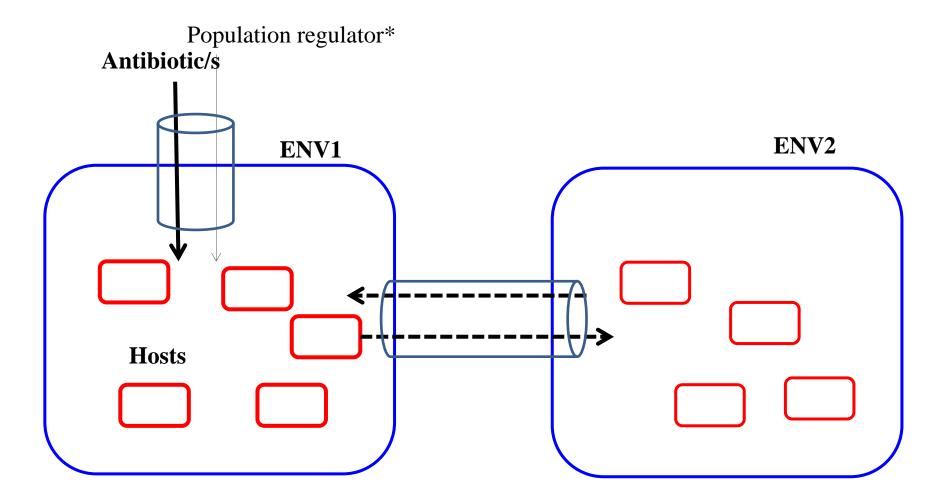
```
System load: 0.0
                                Processes:
Usage of /: 14.0% of 671.66GB Users logged in: 0
                                IP address for eth0: 147.156.220.149
Memory usage: 6%
Swap usage: 0%
```

```
Graph this data and manage this system at:
 https://landscape.canonical.com/
```

```
packages can be updated.
updates are security updates.
```

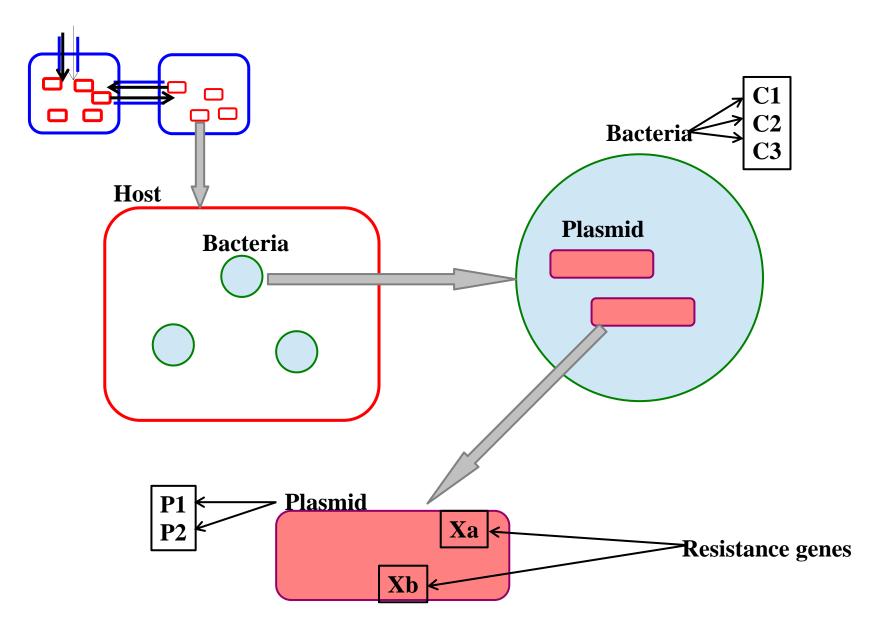
Last login: Thu Dec 19 15:15:13 2013 from 46.222.120.129

Server

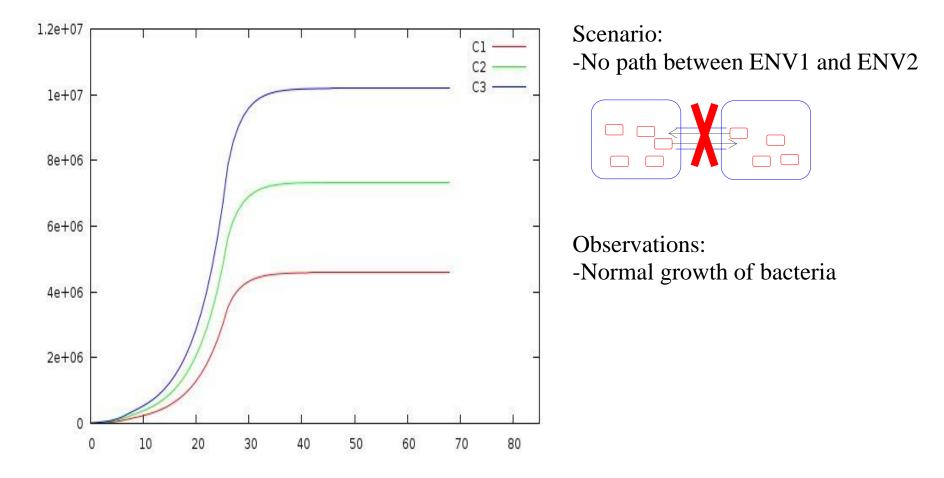

😣 🖻 📵 🛛 marce@marce-SATELLITE-P850: ~

5 cd simulador

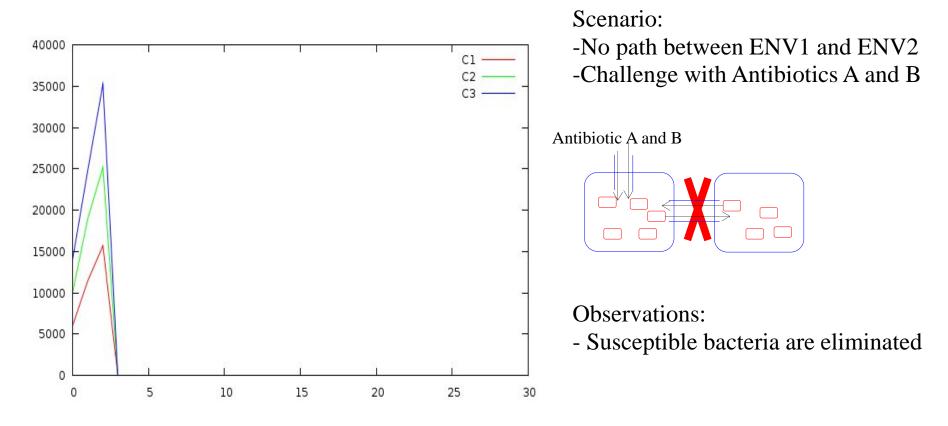
5 ./executa_auto

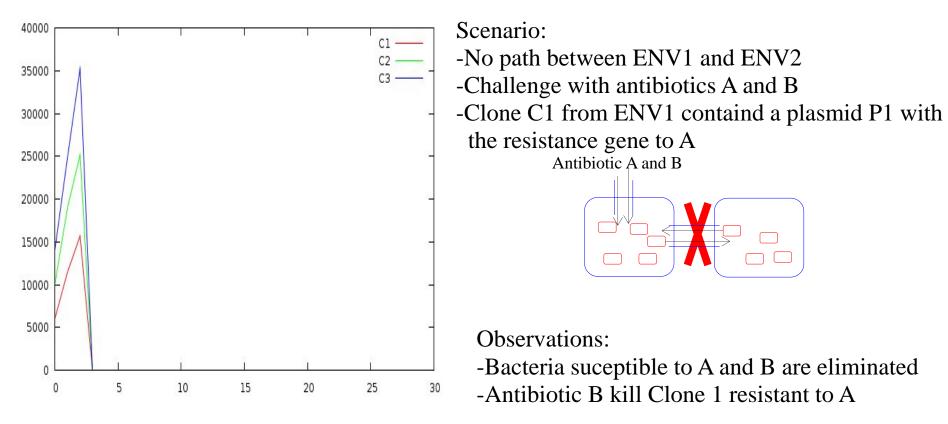

#[ENV1, ENV2, ECO, C4, C3, C5, C1, C2, M1] [con3, P3XaXb, con2, con5, con4, con7, A, con6, con9, B, con8, P3Xb, P2XaXb, P3Xa, con24, P1Xa, P1Xb, P2Xb, con20, P1XaXb, P2Xa, con21, INS, con22, con23, con1, b, a, P1, P3, P2, con11, con12, con10, con15, con16, con13, con14, con19 , con17, con18]

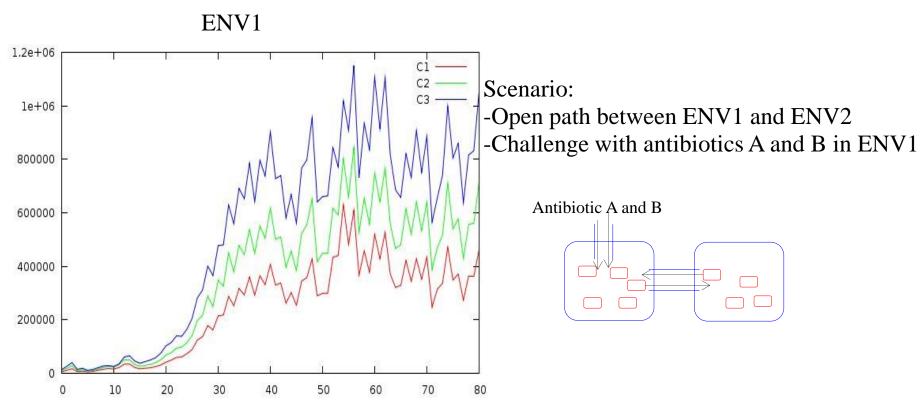
The Scenario



* Insecticide (Blatella)

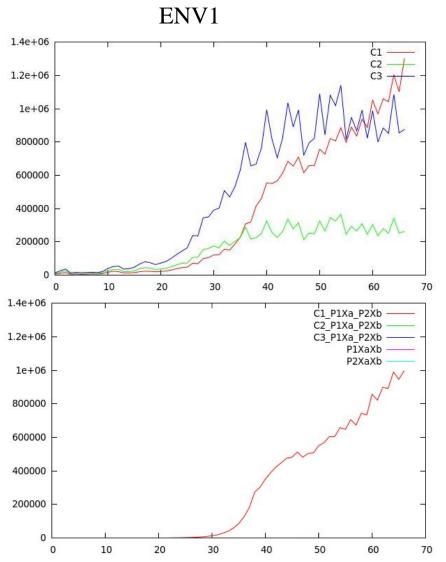

The Scenario


ENV1



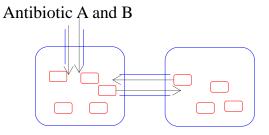
ENV1

ENV1



Observations:

-There is a constant flow of bacteria from ENV2 to ENV1. Because of this bacteria are not fully eliminated from in ENV1


-The noise in the graph is caused for the dead and migrations of bacteria in every step

Scenario:

-Open path between ENV1 and ENV2

- -Challenge with antibiotics A and B
- -C1 from ENV1 have P1 with resistance to A
- -C2 from ENV2 have P2 with resistance to B

Observations:

-Clone 2 with resistance to B move from ENV2 to ENV1 and transfer P2 to Clone 1

- Clone C1 resisting both antibiotics survive and spread

Observations:

1.4e+06

1.2e+06

1e+06

800000

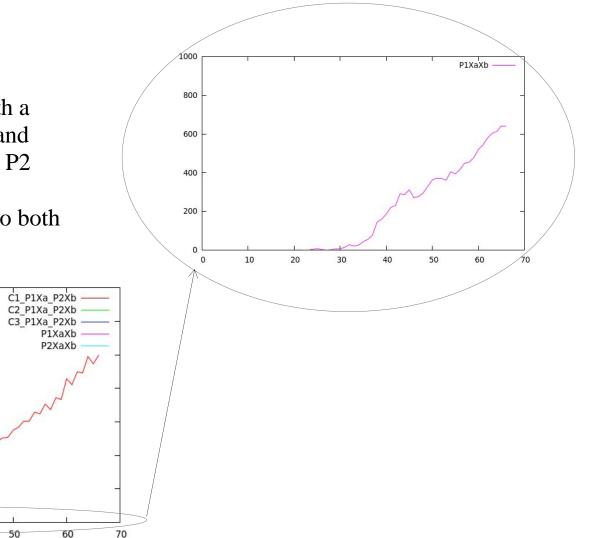
600000

400000

200000

0

0


10


20

30

40

If the number of bacteria with plasmid P1 with a gene of Aresistance, and plasmid P2 with a gene of B- resistance survive and grow, the probability of P1 or P2 transfer to the other plasmid increase, leading to resitance to both antibiotics.

Scenario:

-Open path between ENV1 and ENV2
-Challenge with A and B antibiotics
-A proportion of hosts are eliminated
(insecticide in *Blatella*)
-C1 from ENV1 has P1 with gene of A-resistance
-C2 from ENV2 has P2 with gene of B-

resistance

Antibiotic A, B and insecticide

Observations:

If the number of susceptible hosts decrease, resistant organisms are disappearing.

Future research and work in progress

- Refinement of the rules
- Stochastic/Probabilistic approach: migration to PDP systems
- Interfaces for input and output data
- Generalization of the experiments
- Connection with other sowftwares (i.e. R packages)