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Summary. The P versus NP problem is undoubtedly the most important open question
in computer science. Frontiers of tractability or efficiency expressed by means of syntactic
or semantic ingredients in the framework of Membrane Computing, an unconventional
computing paradigm, can bring a new approach to tackle P versus NP. In this context,
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obtain this kind of borderlines. Besides, a relationship among cooperative rewriting rules
and instances of 2–SAT problem and 3–SAT problem is highlighted and their connections
with results of computational complexity theory are described.
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1 Introduction

The relevance of the P ?= NP question is not only the inherent pleasure of solving
a mathematical problem, since an answer to it could dramatically affect our every-
day lives. On the one hand, a negative answer to this question would confirm that
the majority of current cryptographic systems are secure from a practical point of
view. On the other hand, a positive answer would not only show the uncertainty
about the secureness of these systems, but also this kind of answer is expected to
come together with a general procedure such that it will provide a deterministic
algorithm solving any NP-complete problem in polynomial time. In an informal
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way, we can say that if P = NP then it would be possible to find solutions to
search problems as easily as checking whether those solutions are “correct”, that
is, almost all the algorithmic challenges that we face today could be solved in a
“practical way” and computers could solve almost any “mechanical task”. The
search of techniques other than the classical ones that allow us to tackle this prob-
lem becomes a very important challenge. In this context, frontiers of tractability
expressed by means of syntactic or semantic ingredients in the framework of Mem-
brane Computing can bring a new approach.

Membrane computing is a flexible and versatile branch of natural computing,
which arises as an abstraction of the compartmentalized structure of living cells,
and the way biochemical substances are processed in (or moved between) mem-
brane bounded regions [21]. Inspired by the structure of living cells, two main
classes of membrane systems have been investigated: a hierarchical (cell-like) ar-
rangement of membranes, inspired from the structure of the cell [21] and a net
of membranes (placed in the nodes of a directed graph), inspired from the cell-
interconnection in tissues [16] or inspired from the way that neurons communicate
with each other by means of short electrical impulses (spikes), emitted at precise
moments of time [10]. All classes of computing devices considered in the field of
membrane computing are generally called P systems or membrane systems, which
are parallel and distributed computational models based on processing multisets
of objects in cell-like or tissue-like structures by means of rewriting rules. A P
system is cooperative if it contains rules using cooperation, that is, rules that need
more than one object to be triggered.

This paper is devoted to study the role of cooperation of objects to trigger
rewriting rules in order to obtain frontiers of efficiency by means of ingredients of
membrane systems working in cell-like mode. For that, the use of cooperation in
rewriting rules is combined with some syntactical ingredients and the behaviour
of different “cocktails” are analysed. The paper is structured as follows. In next
section, some general concepts are briefly described in order to make the work
self-contained. Section 3 is devoted to present the different models of cell-like
membrane systems that will be studied in this work, emphasizing the syntactic and
semantic aspects of them. In the following section, frontiers of efficiency involving
cooperation are presented in the different models considered through the paper.
In Section 5, a relationship among cooperative rewriting rules and instances of
2–SAT and 3–SAT is highlighted from a complexity point of view. Finally, some
conclusions are discussed.

2 Preliminaries

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it is
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denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (resp. empty) if
its support is a finite (resp. empty) set. We denote by ∅ the empty multiset and
we denote by M(Γ ) the set of all multisets over Γ .

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ .

2.1 Graphs and trees

Let us recall some notions related with graph theory (see [6] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{x, y} | x ∈ V, y ∈ V, x 6= y} whose elements
are called edges. A directed graph is an ordered pair (V,E) where V is a set whose
elements are called nodes or vertices and E = {(x, y) | x ∈ V, y ∈ V } whose
elements are called arcs. A path of length k ≥ 1 from a node u to a node v in
a graph (V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u,
xk = v and (xi, xi+1) ∈ E for 0 ≤ i ≤ k − 1 (in the case of a directed graph or
{xi, xi+1} ∈ E in the case of an undirected graph. If k ≥ 2 and x0 = xk then
we say that the path is a cycle of the graph. A graph with no cycle is said to be
acyclic. An undirected graph is connected if there exist paths between every pair
of nodes.

A free tree (tree, for short) is a connected, acyclic, undirected graph. A rooted
tree is a tree in which one of the vertices (called the root of the tree) is distinguished
from the others. In a rooted tree the concepts of ascendants and descendants are
defined in a usual way. Given a node x (different from the root), if the last edge
on the (unique) path from the root of the tree to the node x is {x, y} (in this case,
x 6= y), then y is the parent of node x and x is a child of node y. The root is the
only node in the tree with no parent. A node with no children is called a leaf.

2.2 Decision problems

Roughly speaking, a decision problem X is one whose solution/answer is either
“yes” or “no”. This can be formally defined by an ordered pair (IX , θX), where IX
is a language over a finite alphabet ΣX and θX is a total boolean function over IX .
The elements of IX are called instances of the problem X. Each decision problem
X has associated a language LX over the alphabet ΣX as follows: LX = {u ∈
EX | θX(u) = 1}. Conversely, every language L over an alphabet Σ has associated
a decision problem XL = (IXL

, θXL
) as follows: IXL

= Σ∗ and θXL
(u) = 1 if and

only if u ∈ L. Then, given a decision problem X we have XLX
= X, and given a

language L over an alphabet Σ we have LXL
= L.
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It is worth pointing out that any Turing machine M (with input alphabet ΣM )
has associated a decision problem XM = (IM , θM ) defined as follows: IM = Σ∗M ,
and for every w ∈ Σ∗M , θM (w) = 1 if and only if M accepts w. Obviously, the
decision problem XM is solvable by the Turing machine M .

The satisfiability problem

The satisfiability problem (SAT problem) is described as follows: given a boolean
formula in conjunctive normal form (CNF), to determine whether or not there
exists an assignment to its variables, called truth assignment, on which it evaluates
true. SAT is the first problem which was demonstrated that belongs to the class of
NP-complete problems [7]. These problems are in the class NP and they verify
an interesting property: its individual complexity can be extended to the entire
class NP, that is, if SAT is a problem in P then all problems in NP also belongs
to P. Different variants of the SAT problem were considered, in particular, for each
k ≥ 1, k–SAT problem is a special case of the SAT problem in which all clauses of
the input formula have exactly k literals. It is well known that 2–SAT is in class P
(in fact, it is an NL) and 3–SAT is an NP-complete problem [7].

The reachability problem

The reachability problem is described as follows: given a directed graph G = (V,E)
with two specified vertices s and t, determine whether or not there is a path from
s to t. There are algorithms solving this problem, for instance, search algorithms
based on breadth-first search or depth-first search. These algorithms determine
whether two vertices are connected in O(max(|V |, |E|)) time. Moreover, they ba-
sically need to store at most |V | items, so these algorithms use O(|V |) space. But
this quantity of space can be reduced to O(log2|V |) by using an algorithm that
could be called middle-first search (see [20] for details, pp. 149-150). In particular,
reachability problem is in class P.

3 Cell-like membrane systems

In order to make this paper self-contained, the different models of membrane sys-
tems considered in this work are introduced detailing their syntax and semantics.

3.1 Basic transition P systems

Next, the basic model introduced by Gh. Păun in its seminal paper [21] is presented
by using a slightly different notation.

Definition 1. A basic transition P system of degree q ≥ 1 is a tuple Π =
(Γ, µ,M1, . . . ,Mq,R,PR, iout), where:
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1. Γ is a finite alphabet.
2. µ is a rooted tree.
3.M1, . . . ,Mq are multisets over Γ .
4. R is a finite set of rules of the following forms:

a) [u ]i → v1 [ v2 [ v3 ]j ]i, for i, j ∈ {1, . . . , q}, i 6= j and u, v1, v2, v3 ∈M(Γ ).
b) [u ]i → v1 [ v2 [ v3 ]j ]i δ, for i, j ∈ {1, . . . , q}, i 6= j and u, v1, v2, v3 ∈
M(Γ ), and δ is a distinguished symbol such that δ /∈ Γ .

5. PR ⊆ R×R is an strict partial order over R.
6. iout ∈ {0, 1, . . . , q}.

A basic transition P system Π = (Γ, µ, ,M1, . . . ,Mq,R,PR, iout), of degree q ≥ 1
can be viewed as a set of q membranes injectively labelled by 1, . . . , q, arranged
in a hierarchical structure µ given by a rooted tree whose root is called the skin
membrane of the system and with an environment labelled by 0 such that: (a)
M1, . . . ,Mq are multisets over the working alphabet Γ representing the objects
initially placed in the q membranes of the system; (b) R is the set of rules that
allows to evolve the system; (c) PR ⊆ R×R is a strict partial order relation over
R providing priorities between rules, in such a manner that if (r1, r2) ∈ PR we
say that rule r1 has a higher priority than r2 and we denote it by r1 > r2; and (c)
iout ∈ {0, 1, 2, . . . , q} represents a distinguished zone which will encode the output
of the system. We use the term zone i, 0 ≤ i ≤ q, to refer to membrane i in the
case 1 ≤ i ≤ q and to refer to the environment in the case i = 0.

An instantaneous description or a configuration at an instant t of a basic tran-
sition P system Π = (Γ, µ,M1, . . . ,Mq,R,PR, iout) is described by the mem-
brane structure at instant t and all multisets of objects over Γ associated with all
the membranes present in the system. The initial configuration of the system is
(µ,M1, · · · ,Mq).

A rule r ≡ [u ]i → v1 [ v2 [ v3 ]j ]i is applicable to a configuration Ct at an instant
t if the following holds: (a) membrane i is in Ct; (b) multiset u is contained in such
membrane; (c) j is the label of a membrane immediately inside membrane i; and
(d) there is no a rule r′ associated with membrane i applicable to Ct such that
r′ has a higher priority than r, that is, (r′, r) ∈ PR. When applying such a rule,
the objects specified by multiset u are consumed (multiset u is substracted from
the multiset of membrane i), the objects specified by multiset v1 will be moved to
the zone immediately outside membrane i, the parent p(i) of that membrane (this
zone is the environment in the case when i is the skin membrane: in this case,
the objects leave the system and they never come back), the objects specified by
multiset v2 will be placed in the same membrane i, and the objects specified by
multiset v3 in the membrane with label j which must be a membrane immediately
inside membrane i.

A rule [u ]i → v1 [ v2 [ v3 ]j ]i δ is applicable to a configuration Ct at an instant
t if the following holds: (a) the rule [u ]i → v1 [ v2 [ v3 ]j ]i is applicable to Ct; (b)
i 6= iout; and (c) i is not the label of the skin membrane. When applying the rule
[u ]i → v1 [ v2 [ v3 ]j ]i δ to a configuration Ct, first the rule [u ]i → v1 [ v2 [ v3 ]j ]i is
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applied to Ct and then membrane i is dissolved. After dissolving a membrane, all
objects and membranes previously present in it become elements of the contents
of the immediately upper membrane which has not been dissolved.

Given a basic transition P system Π, we say that configuration Ct yields con-
figuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if we can pass from
Ct to Ct+1 by applying the rules from R synchronously, in a non-deterministic
maximally parallel manner. This means the following: the objects to evolve in a
transition step and the rules by which they evolve are chosen in a non-deterministic
manner, but in such a way that in each membrane we have a maximally parallel
application of rule (at each transition step a multiset of rules which is maximal is
applied, no further applicable rule can be added). A computation of Π is a (finite
or infinite) sequence of configurations such that: (a) the first term of the sequence
is the initial configuration of the system; (b) each non-first term of the sequence is
obtained from the previous configuration by applying rules of the system in a non-
deterministic maximally parallel manner; and (c) if the sequence is finite (called
halting computation) then the last term of the sequence is a halting configuration,
that is, a configuration where no rule of the system is applicable to it.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout in the halting configuration.

Basic transition P systems have the ability to create an exponential workspace,
expressed in terms of number of objects, in linear time (e.g. via evolution rules of
the type [ a→ a2 ]h)

3.2 P systems with active membranes and electrical charges

Cell-like P systems with active membranes having associated electrical charges
with membranes were first introduced by Gh. Păun [22]. One of the main attractive
of these membrane systems is the ability to create an exponential workspace,
expressed in terms of number of objects and number of membranes, in linear time.

Definition 2. A P system with active membranes of degree q ≥ 1 is a tuple
Π = (Γ, µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. µ is a rooted tree.
3.M1, . . . ,Mq are multisets over Γ .
4. R is a finite set of rules (H denotes the set {1, . . . , q}) of the following forms:

a) [ a → u ]αh , for h ∈ H,α ∈ {+,−, 0}, a ∈ Γ , u ∈ Γ ∗ (object-evolution
rules).

b) a [ ]α1
h → [ b ]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–in commu-
nication rules).

c) [ a ]α1
h → [ ]α2

h b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–out
communication rules).
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d) [ a ]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).
e) [ a ]α1

h → [ b ]α2
h [ c ]α3

h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ (divi-
sion rules for elementary membranes).

f) [ [ ]α1
h1
. . . [ ]α1

hk
[ ]α2
hk+1

. . . [ ]α2
hn

]αh → [ [ ]α3
h1
. . . [ ]α3

hk
]βh [ [ ]α4

hk+1
. . . [ ]α4

hn
]γh, for k ≥

1, n > k, h, h1, . . . , hn ∈ H, α, β, γ, α1, . . . , α4 ∈ {+,−, 0} and {α1, α2} =
{+,−} (division rules for non–elementary membranes).

5. iout ∈ H ∪ {0}.

A P system with active membrane Π = (Γ, µ, ,M1, . . . ,Mq,R, iout), of degree
q ≥ 1 can be viewed as a set of q membranes injectively labelled by 1, . . . , q
with electrical charges (positive +, negative − or neutral 0) associated to them,
arranged in a hierarchical structure µ given by a rooted tree whose root is called
the skin membrane of the system and with an environment labelled by 0 such
that: (a) M1, . . . ,Mq are multisets over the working alphabet Γ representing the
objects initially placed in the q membranes of the system; (b) R is the set of
rules that allows to evolve the system; and (c) iout ∈ {0, 1, 2, . . . , q} represents a
distinguished zone which will encode the output of the system (the term zone is
used as above).

Notice that P systems with active membranes have some important features:
(a) they use three electrical charges; (b) the polarization of a membrane, but not
the label, can be modified by the application of a rule; (c) the rules are non-
cooperative (the corresponding left-hand side consist of only one symbol), and (d)
there are no priorities among rules.

The concept of configuration at an instant t of a P system with active mem-
branes Π = (Γ, µ,M1, . . . ,Mq,R, iout) is defined in a similar way to the one used
in basic transition P systems.

An object-evolution rule [ a → u ]αh is applicable to a configuration Ct at an
instant t if the following holds: (a) a membrane labelled by h is in Ct and its
electrical charge is α; and (b) object a is contained in such membrane. When
applying such a rule, object a is consumed and the objects specified by multiset u
will be placed in that membrane h.

A send-in rule a [ ]α1
h → [ b ]α2

h is applicable to a configuration Ct at an instant
t if the following holds: (a) a membrane labelled by h, different from the skin
membrane, is in Ct and its electrical charge is α1; and (b) object a is contained in
the zone immediately outside the membrane h, the parent p(h) of that membrane.
When applying such a rule, object a is consumed, object b will be placed in the
same membrane h and the polarization of such membrane h will change to α2.

A send-out rule [ a ]α1
h → b [ ]α2

h is applicable to a configuration Ct at an instant
t if the following holds: (a) a membrane labelled by h, different from the skin
membrane, is in Ct and its electrical charge is α1; and (b) object a is contained
in such membrane h. When applying such a rule, object a is consumed, object b
will be placed in the zone immediately outside the membrane h, the parent p(h)
of that membrane, and the polarization of such membrane h will change to α2.



46 L. Valencia-Cabrera et al.

A dissolution rule [ a ]αh → b is applicable to a configuration Ct at an instant t if
the following holds: (a) a membrane labelled by h is in Ct and its electrical charge
is α; and (b) object a is contained in such membrane h. When applying such a
rule, object a is consumed and the membrane is dissolved. After dissolving such
membrane h, all objects and membranes previously present in it become elements
of the contents of the immediately upper membrane which has not been dissolved,
except object a triggering the rule that evolves to b.

A division rule for elementary membranes [ a ]α1
h → [ b ]α2

h [ c ]α3
h is applicable to a

configuration Ct at an instant t if the following holds: (a) an elementary membrane
labelled by h, different from the skin membrane, is in Ct and its electrical charge
is α1; (b) h 6= iout; and (c) object a is contained in such membrane h. When
applying such a rule, object a is consumed and the membrane is divided into two
membranes with the same label h, maybe of different polarizations α2 and α3; the
object a specified in the rule is replaced in the two new membranes by possibly
new objects b and c, respectively.

A division rule for non-elementary membranes [ [ ]α1
h1
. . . [ ]α1

hk
[ ]α2
hk+1

. . . [ ]α2
hn

]αh →
[ [ ]α3

h1
. . . [ ]α3

hk
]βh [ [ ]α4

hk+1
. . . [ ]α4

hn
]γh, is applicable to a configuration Ct at an instant

t if the following holds: (a) a non-elementary membrane labelled by h, different
from the skin membrane, is in Ct and its electrical charge is α1; (b) such membrane
contains membranes with labels h1, . . . , hn some of them (h1, . . . , hk) with electri-
cal charge α1 and the remaining (hk+1, . . . , hn) with electrical charges α2, being
{α1, α2} = {+,−}; (c) if such membrane h0 contains other membranes than those
with labels h1, . . . , hn then they must have neutral charges. When applying such a
rule: (1) membrane h0 is divided into two membranes with the same label h, maybe
of different polarizations β and γ; (2) membranes with label h1, . . . , hk contained
in membrane h0 are placed (with polarization α3) inside of one of the new created
membranes; (3) membranes with label hk+1, . . . , hn contained in membrane h0 are
placed (with polarization α4) inside of the another new created membrane; and
(4) if membrane h0 contains other membranes than those with labels h1, . . . , hn
then they have neutral charges being duplicated in the new created membranes.

P systems with active membranes differ from the basic transition P systems
on the type of rules which are applied according to the following principles ([22]):

• All the rules are applied in parallel. In each transition step, one object of a
membrane can be used by only one rule (chosen in a non deterministic way).

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of type
(e)-(f) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. Of course, this process takes only one step.

• The rules associated with membranes labelled by h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
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of types (b)-(f), that is, these rules are applied in a sequential manner to each
membrane.

Given a P system with active membranes Π, we say that configuration Ct yields
configuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if we can pass
from Ct to Ct+1 by applying the rules from R synchronously, in a non-deterministic
maximally parallel manner according with the previous remarks. The concept of
computation of Π is defined in a similar way that in the previous section.

3.3 Polarizationless P systems with active membranes

P systems with active membranes and without electrical charges were initially
studied in [2, 3]. In these systems, polarizations were replaced by the possibility to
change the label of the membranes by means of some rules. However, in order to
obtain polynomial-time solutions to computationally hard problems, two polariza-
tions suffice (see [4] for details). In [28] bi-stable catalysts are used to compensate
the loss of computational efficiency represented by avoiding polarizations.

Definition 3. A polarizationless P system with active membranes of degree q ≥ 1
is a tuple Π = (Γ, µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. µ is a rooted tree.
3.M1, . . . ,Mq are multisets over Γ .
4. R is a finite set of rules (H denotes the set {1, . . . , q}), of the following forms:

(a) [ a→ u ]h, for h ∈ H, a ∈ Γ , u ∈ Γ ∗ (object-evolution rules).
(b) a [ ]h → [ b ]h, for h ∈ H, a, b ∈ Γ (send–in communication rules).
(c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ Γ (send–out communication rules).
(d) [ a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules).
(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ Γ (division rules for elementary or

weak division rules for non-elementary membranes).
(f) [ [ ]h1 . . . [ ]hk

[ ]hk+1 . . . [ ]hn ]h → [ [ ]h1 . . . [ ]hk
]h [ [ ]hk+1 . . . [ ]hn ]h, where k ≥

1, n > k, h, h1, . . . , hn ∈ H (division rules for non-elementary membranes).
5. iout ∈ {0, 1, . . . , q}.

The semantics of these rules are similar to the ones of P systems with active
membranes and they are applied according to usual principles of these systems,
described in the previous section.

3.4 P systems with symport/antiport rules

In this section we introduce a kind of cell-like P systems that use communication
rules capturing the biological phenomenon of trans-membrane transports of sev-
eral chemical substances, in the same or in opposite directions. Specifically, two
processes have been considered. The first one allows a multiset of chemical sub-
stances to pass through a membrane in the same direction. In the second one, two
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multisets of chemical substances (located in different biological membranes) only
pass with the help of each other (an exchange of objects between both membranes).

Next, we introduce an abstraction of these operation in the framework of P sys-
tems with symport/antiport rules following [23]. In these models, the membranes
are not polarized.

Definition 4. A P system with symport/antiport rules of degree q ≥ 1 is a tuple
Π = (Γ, E , µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ( Γ .
3. µ is a rooted tree.
4.M1, . . . ,Mq are multisets over Γ .
5. R = R1 ∪ · · · ∪ Rq, where Ri is a finite set of rules associated with membrane
i, of the following forms:
? Symport rules: (u, out) or (u, in), where u ∈M(Γ ) such that |u| > 0;
? Antiport rules: (u, out; v, in), where u, v ∈ M(Γ ) such that |u| > 0 and
|v| > 0;

6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules of degree q

Π = (Γ, E , µ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane
of the system, labelled by 1, and with an environment labelled by 0 such that: (a)
M1, . . . ,Mq are multisets over the working alphabet Γ representing the objects
initially placed in the q membranes of the system; (b) E is the set of objects ini-
tially located in the environment of the system, all of them available in an arbitrary
number of copies; (c) R = R1 ∪ · · · ∪Rq where Ri is a finite set of communication
rules over Γ associated with membrane i of µ; and (d) iout represents a distin-
guished zone which will encode the output of the system (the term zone is used as
before). The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u|
(resp. |u|+ |v|).

A P system with symport/antiport rules of degree q ≥ 1

Π = (Γ, E , µ,M1, . . . ,Mq,R, iout)

where E = ∅, is called a P system with symport/antiport rules and without envi-
ronment.

For each membrane i ∈ {2, . . . , q}, different from the skin membrane, we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport rules is described by the membrane structure at instant t,



Cooperative P Systems and the P Versus NP Problem 49

all multisets of objects over Γ associated with all the membranes present in the
system, and the multiset of objects over Γ −E associated with the environment at
that moment. Recall that initially there are infinite copies of objects from E in the
environment, and hence this set is not properly changed along the computation.
The initial configuration of the system is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant
t if the following holds: (a) a membrane labelled by i is in Ct; and (b) multiset u
is contained in such membrane. When applying a rule (u, out) ∈ Ri, the objects
specified by multiset u are sent out of such membrane i into the region immediately
outside, the parent p(i) of such membrane. This can be the environment in the
case of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant t
if the following holds:: (a) a membrane labelled by i is in Ct; and (b) multiset u is
contained in the parent p(i) of such membrane i. When applying a rule (u, in) ∈ Ri,
the objects specified by multiset u goes out from the parent p(i) membrane of i
and enters into the region defined by the membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if if the following holds: (a) a membrane labelled by i is in Ct; (b) multiset
u is contained in such membrane; and (c) multiset v is contained in the parent p(i)
of membrane i. When applying a rule (u, out; v, in) ∈ Ri, the objects specified by
multiset u are sent out of membrane i into the parent p(i) of i and, at the same
time, bringing the objects specified by multiset v into such membrane i.

The rules of a P system with symport/antiport rules are applied in a non-
deterministic maximally parallel manner: at each step we apply a multiset of rules
which is maximal, so no further applicable rule can be added.

Given a P system with symport/antiport rules Π, we say that configuration
Ct yields configuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if we
can pass from Ct to Ct+1 by applying the rules from R1 ∪ · · · ∪ Rq following the
previous remarks. The concept of computation of Π is defined in a similar way
that in the previous section.

P systems with symport/antiport rules and membrane division or
membrane separation

In this section, we introduce new types of rules (membrane division and mem-
brane separation) inspired by the mitosis and the membrane fission processes, in
the framework of P systems with symport/antiport rules. These rules provide a
mechanism to construct an exponential workspace (expressed in terms of number
of objects and number of membranes) in linear time.

Definition 5. A P system with symport/antiport rules and membrane division of
degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R, iout), where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R, iout) is a P system with symport/antiport rules.
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2. R = R1 ∪ · · · ∪ Rq, where Ri is a finite set of symport/antiport rules, as-
sociated with membrane i, which can also contain rules of the following form:
[a]i → [b]i[c]i, where i /∈ {1, iout} and a, b, c ∈ Γ (division rules for elementary
membranes).

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at an instant
t if the following holds: (a) a membrane labelled by i, different from the skin
membrane, is in Ct; (b) i 6= iout; and (c) object a is contained in such membrane.
When applying a division rule [a]i → [b]i[c]i, under the influence of object a, the
membrane with label i is divided into two membranes with the same label; in the
first copy, object a is replaced by object b, in the second one, object a is replaced
by object c; all the other objects residing in such membrane i are replicated and
copies of them are placed in the two new membranes.

Definition 6. A P system with symport/antiport rules and membrane separation
of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , µ,M1, . . . ,Mq,R, iout)

where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R, iout) is a P system with symport/antiport rules.
2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
3. R = R1 ∪ · · · ∪ Rq where Ri is a finite set, associated with membrane i,

of rules symport/antiport rules which can also contain rules of the following
form: [a]i → [Γ0]i[Γ1]i, where i /∈ {1, iout} and a ∈ Γ (separation rules).

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at
an instant t if the following holds: (a) a membrane labelled by i, different from
the skin membrane, is in Ct; (b) i 6= iout; and (c) object a is contained in such
membrane. When applying a separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri, in reaction
with an object a, the membrane i is separated into two membranes with the same
label; at the same time, object a is consumed; the objects from Γ0 are placed in
the first membrane, those from Γ1 are placed in the second membrane.

With respect to the semantics of these variants, the rules of such P systems are
applied in a non-deterministic maximally parallel manner, with the following im-
portant remark: when a membrane i is divided (resp. separated), the division rule
(resp. separation rule) is the only one from Ri which is applied for that membrane
at that step (however, some rules can be applied in a daughter membrane). The
new membranes resulting from division (resp. separation) could participate in the
interaction with other membranes or the environment by means of communication
rules at the next step – providing that they are not divided (resp. separated) once
again. The label of a membrane precisely identify the rules which can be applied
to it.
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3.5 Recognizer membrane systems

Let us recall that solving a decision problem can be expressed in terms of recog-
nizing the language associated with it. Recognizer P systems were introduced in
[32] and they provide a natural framework to solve decision problems.

In this section, the term membrane system is used to refer any cell-like P
systems introduced at the previous sections. An arbitrary membrane system of
the order q, q ≥ 1, will be described by a tuple

(Γ, Γ0, Γ1, E , µ,M1, . . . ,Mq,R,PR, iout)

where we can think that Γ0 = Γ1 = ∅ for membrane systems without separation
rules, E = ∅ for basic transition P systems or P systems with active membranes,
and PR 6= ∅ only for basic transition P systems.

Next, we introduce the concept of recognizer associated with the membrane
systems defined in the previous section.

Definition 7. A recognizer membrane system

Π = (Γ, Γ0, Γ1, E , µ,M1, . . . ,Mq,R, iout)

is a membrane system verifying the following:

• The working alphabet Γ has two distinguished objects yes and no, with at least
one copy of them present in some initial multisets, but none of them initially
present in E;

• there exists an additional alphabet Σ (the input alphabet) strictly contained in
Γ such that E ⊆ Γ \Σ;

• M1, . . . ,Mq are multisets over Γ \Σ;
• iin ∈ {1, . . . , q} is the label of the input membrane;
• the output zone iout is the environment;
• all computations halt;
• if C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each multiset M over the input alphabet Σ, a computation of Π with in-
put multiset M starts from the configuration of the form (µ,M1, . . . ,Miin

+
M, . . . ,Mq, ∅), where the input multisetM has been added to the content of the
input membrane iin. That is, we have an initial configuration associated with each
input multisetM over Σ in recognizer membrane systems. We denote by Π +M
the P system Π with input multiset M.

3.6 Polynomial complexity classes of recognizer membrane systems

Next, according to [27], we define what solving a decision problem by a family of
recognizer P systems with symport/antiport rules, in a uniform way, means.
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Definition 8. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N} of recognizer membrane systems (in a uniform way)
if the following conditions hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N (n expressed in unary);

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

According to Definition 8, we say that for each u ∈ IX , the recognizer membrane
system Π(s(u)) + cod(u) is confluent, in the sense that all possible computations
of the system must give the same answer.

If R is a class of recognizer membrane systems, then we denote by PMCR
the set of all decision problems which can be solved in polynomial time (and in
a uniform way) by means of systems from R. The class PMCR is closed under
complement and polynomial-time reductions (see [27] for details).

4 Frontiers of tractability in membrane systems

We say that a class of recognizer membrane systems F is presumably efficient if
there exists an NP-complete problem that can be solved in polynomial time by a
family of systems from F . From the properties of the NP-completeness, we deduce
that any NP-complete problem can be solved in polynomial time by families of a
presumably efficient class of recognizer membrane systems. Because class PMCF
is closed under complement and polynomial-time reductions (see [27] for details),
if the class F is presumably efficient then NP ∪ co-NP ⊆ PMCF .

We say that a class of recognizer membrane systems F is feasible if only
tractable problems can be solved in polynomial time by a family of systems from
F , that is, if PMCF = P. According to these definitions, if P = NP then a class
F is feasible if and only if it is presumably efficient. Besides, if P 6= NP then
each feasible class is not presumably efficient. Nevertheless, under that hypothesis
a non-feasible class could be non-presumably efficient (as a consequence of the
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Ladner theorem by which if P 6= NP then there exist NP-intermediate problems,
that is, problems which are neither in the class P nor in the class of NP-complete
problems, see [11] for details).

Let F1 and F2 be two models from a computing paradigm such that F1 is an
extension of F2, in other words, F1 is obtained from F2 by adding some syntactic
or semantic ingredients (called additional ingredients). In this case, each solution
of a decision problem in model F2 is also a solution in model F1. In this context,
if F2 is a feasible model and F1 is a presumably efficient model, then we say that
the additional ingredients provide a frontier of tractability between tractability
and NP-hardness.

Feasible Presumably Efficient

2 1
F F

Let us consider two models F1 and F2 of recognizer membrane systems such
that F2 is feasible, F1 is presumably efficient and model F1 is an extension of
model F2. On the one hand, translating an efficient solution of an NP-complete
problem by a family of systems in F1, into an efficient solution by a family of
systems in F2 amounts to proving P=NP. On the other hand, proving that with-
out the additional ingredients in F1 it is not possible to solve an NP-complete
problem in polynomial-time, then the result P 6= NP follows. Hence, each frontier
of tractability provide a tool to tackle the P versus NP problem.

4.1 Basic transition P systems

Let us recall that the decision problem associated with a Turing machine M with
input alphabet ΣM is the problem XM = (IM , θM ), where IM = Σ∗M , and for
every w ∈ Σ∗M , θM (w) = 1 if and only if M accepts w. Then we say that a Turing
machine M is simulated in polynomial time by a family of recognizer membrane
systems from R if XM ∈ PMCR.

In [9] an efficient simulation of deterministic Turing machines by recognizer
basic transition P systems was given.

Proposition 1. (Sevilla theorem) Every deterministic Turing machine work-
ing in polynomial time can be simulated in polynomial time by a family of recognizer
basic transition P systems.
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Also, in [9] was shown that each confluent basic transition P system can be
(efficiently) simulated by a deterministic Turing machine. As a consequence, if a
decision problem is solvable in polynomial time by a family of recognizer basic
transition P systems, then there exists a deterministic Turing machine solving it
in polynomial time. Then, we have the following result: P = PMCT , being T the
class of all recognizer basic transition P systems. Thus, the use of cooperative rules
in basic transition P systems and their ability to create exponential workspace (in
terms of number of objects) in linear time is not enough to efficiently solve NP-
complete problems (assuming that P 6= NP).

4.2 P systems with active membranes

Let us denote by DAM the class of all recognizer P systems with active membranes
and let NAM be the class of recognizer P systems with active membranes which
do not make use of division rules.

In the framework of cell-like membrane systems, confluent systems from NAM
can be efficiently simulated by a deterministic Turing machine [43].

Proposition 2. (Milano theorem) A deterministic P system with active mem-
branes but without membrane division can be simulated by a deterministic Turing
machine with a polynomial slowdown.

As a consequence of the Milano theorem, we have PMCNAM ⊆ P. Bearing in
mind that the reverse implication is easily deduced from Definition 8, we have
PMCNAM = P.

By using membrane systems from DAM which do not make use of disso-
lution rules, different efficient solutions to strongly NP-complete problems (SAT
[27], Clique [3], Bin Packing [29], Common Algorithmic Problem [30]) have been
given. Since the class PMCDAM is closed under complement and polynomial-time
reductions, we deduce that NP ∪ co-NP ⊆ PMCDAM.
Remark 1: In the framework of P systems with active membranes, the use or not
of the division rules provides a borderline for the tractability of decision problems,
assuming that P 6= NP. Thus, by using division rules we can solve NP-complete
problems in polynomial time, but without division rules only problems in P can
be solved in an efficient way. Then, in this framework, cooperative rules are
not necessary to obtain frontiers of tractability.

4.3 Polarizationless P systems with active membranes

Let us denote by DAM0(α, β, γ, η) the class of all recognizer polarizationless P
systems with active membranes which make use of division rules such that:

• If α = +e (α = −e, resp.) then object-evolution rules are permitted (forbidden,
resp.);
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• if β = +c (β = −c, resp.) then communication rules are permitted (forbidden,
resp.);

• if γ = +d (α = −d, resp.) then dissolution rules are permitted (forbidden,
resp.); and

• if η = +n (η = −n, resp.) then division rules for elementary and non-
elementary membranes are permitted (only division rules for non-elementary
membranes are permitted).

In the same way, we denote by SAM0 the corresponding class when separation
rules are considered instead of division rules.

The so-called Păun’s conjecture can be formally formulated in terms of mem-
brane computing complexity classes as follows: P = PMCDAM0(+e,+c,+d,−n). Cur-
rently, this is a relevant open problem. However, several partial solution have been
given.

Let Π be a recognizer polarizationless P system with active membranes which
does not make use of dissolution rules. A directed graph (called dependency graph)
can be associated with Π verifying the following property: every accepting com-
putation of Π is characterized by the existence of a path in the graph between two
specific nodes. Based in this concept and by using the fact that reachability problem
is in class P, the following result has been provided [8]:

P = PMCDAM0 (+e,+c,−d,−n) = PMCDAM0 (+e,+c,−d,+n)

Thus, polarizationless P systems with active membranes which do not make use of
dissolution rules cannot solve NP-complete problems in polynomial time (unless
P=NP). This result can be considered as a partial affirmative answer to the Păun’s
conjecture.

Let us now consider polarizationless P systems with active membranes making
use of dissolution rules. Will it be possible to solve NP-complete problems in that
framework? Several authors [1, 8] gave a positive answer when division for non-
elementary membranes are allowed. The mentioned papers provide solutions in
linear time to SAT problem and Subset Sum problem, respectively. Hence, we have
NP ∪ co-NP ⊆ PMCDAM0 (+e,+c,+d,+n). Therefore, a partial negative answer
to Păun’s conjecture is given: assuming that P 6= NP and making use of dis-
solution rules and division rules for elementary and non-elementary membranes,
computationally hard problems can be efficiently solved avoiding polarizations.
The answer is partial because efficient solvability of NP-complete problems by
means of families from DAM0 (+e,+c,+d, n) is unknown.
Remark 2: In the framework of polarizationless P systems with active membranes,
the use or not of dissolution rules provides a borderline for the tractability of
decision problems, assuming that P 6= NP, that is, by using dissolution rules we
can solve NP-complete problems in polynomial time, but without dissolution rules
only problems in P can be solved in an efficient way.
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4.4 Cooperation in polarizationless P systems with active membranes

The role of dissolution rules in the framework of DAM0 is crucial in order to
provide polynomial-time solutions to computationally hard problems (assuming
that P 6= NP). In this section we prove that by using (very restrictive) coope-
rative rules in polarizationless P systems with active membranes, it is possible to
solve NP-complete problems in an efficient way.

Next, several types of minimal cooperation in object-evolution rules are consid-
ered in the framework of polarizationless P systems with active membranes. The
term “minimal cooperation” is used in the following sense: the left-hand side of
such rules consists of two symbols.

– Minimal cooperation (mc): object-evolution rules are of the form [u → v ]h,
where u, v ∈M(Γ ) such that 1 ≤ |u| ≤ 2.

– Primary minimal cooperation (pmc): object- evolution rules are of the form
[u→ v ]h, where u, v ∈M(Γ ) and 1 ≤ |u|, |v| ≤ 2.

– Bounded minimal cooperation (bmc): object- evolution rules are of the form
[u→ v ]h, where u, v ∈M(Γ ) and 1 ≤ |v| ≤ |u| ≤ 2.

– Minimal cooperation and minimal production (mcmp): object- evolution rules
are of the forms [ a→ b ]h or [ a b→ c ]h, where a, b, c ∈ Γ .

In polarizationless P systems with active membranes and minimal cooperation in
object-evolution rules, the remaining rules (send-in communication rules, send-out
communication, dissolution and division) are non-cooperative rules. Besides, the
rules are applied according to the same principles than in “classical” P systems
with active membranes.

In the expression DAM0(α, β, γ, δ), parameter α associated with object-
evolution rules is extended as follows:

• if α = mc then minimal cooperation in object- evolution rules are permitted.
• if α = pmc then primary minimal cooperation in object- evolution rules are

permitted.
• if α = bmc then bounded minimal cooperation in object- evolution rules are

permitted.
• if α = mcmp then minimal cooperation and minimal production in object-

evolution rules are permitted.

Next, we summarize some interesting results.

1. Families of systems from DAM0(+e,+c,+d,+n) can solve PSPACE-comple-
te problems in polynomial time, that is, PSPACE ⊆ PMCDAM0(+e,+c,+d,+n)

[5]. In fact, PSPACE = PMCDAM0(+e,+c,+d,+n) (see [36] and [37] for de-
tails).

2. Families of systems from DAM0(+e,+c,−d,+n) can efficiently solve only
problems in class P, that is, PMCDAM0(+e,+c,−d,+n) = P (see [8] for details).
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3. Families of systems from SAM0(+e,+c,−d,+n) can efficiently solve only
problems in class P, that is, PMCSAM0(+e,+c,−d,+n) = P (see [42] for de-
tails).

4. Families of systems from DAM0(bmc,+c,−d,−n) can solve NP-complete
problems in polynomial time, i.e., NP ∪ co-NP ⊆ PMCDAM0(bmc,+c,−d,−n)

(see [38] for details).
5. Families of systems from SAM0(bmc,+c,+d,+n) can efficiently solve only

problems in class P, that is, PMCSAM0(bmc,+c,+d,+n) = P (see [40] for de-
tails).

6. Families of systems from SAM0(pmc,+c,−d,−n) can solve NP-complete
problems in polynomial time, i.e., NP ∪ co-NP ⊆ PMCSAM0(pmc,+c,−d,−n)

(see [38] for details).
7. Families of systems from DAM0(mcmp,+c,−d,−n) can solve NP-complete

problems in polynomial time, i.e., NP ∪ co-NP ⊆ PMCDAM0(mcmp,+c,−d,−n)

(see [41] for details).
8. Families of systems from SAM0(mcmp,+c,+d,+n) can efficiently solve only

problems in class P, that is, P = PMCSAM0(mcmp+c,+d,+n) (see [41] for
details).

From these results, the following frontiers of tractability are obtained.

• In the framework DAM0(∗,+c,−d,−n): passing from non-cooperative object-
evolution rules to bounded minimal cooperation in object-evolution rules.

• In the framework SAM0(∗,+c,−d,−n): passing from non-cooperative object-
evolution rules to primary minimal cooperation in object-evolution rules.

• In the framework ∗AM0(bmc,+c,−d,−n): passing from separation rules to
division rules.

• In the framework ∗AM0(mcmp,+c,−d,−n): passing from separation rules to
division rules.

Non Efficiency Efficiency Frontiers
(Feasible) (Presumably Efficient)

DAM0(+e,+c,−d,−n) DAM0(mcmp,+c,−d,−n) minimal cooperation
and minimal production

SAM0(+e,+c,−d,−n) SAM0(pmc,+c,−d,−n) primary minimal
cooperation

SAM0(bmc,+c,−d,−n) DAM0(bmc,+c,−d,−n) separation vs division

SAM0(mcmp,+c,−d,−n) DAM0(mcmp,+c,−d,−n) separation vs division
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4.5 P systems with symport/antiport rules

The class of all recognizer P systems with symport/antiport rules and with mem-
brane division (resp. membrane separation) will be denoted by CDC (resp. CSC).
For each natural number k ≥ 1, we denote by CDC(k) (resp. CSC(k)) the class of
all recognizer P systems with membrane division (resp. membrane separation) and
with symport/antiport rules of length at most k. In the case of P systems with-
out environment, we denote by ĈDC, ĈSC, ĈDC(k) and ĈSC(k), respectively,
the corresponding class. Obviously, recognizer P systems from CDC(1), CSC(1),
ĈDC(1) and ĈSC(1), are non-cooperative systems, and the remaining recognizer
P systems are cooperative systems.
Next, we summarize some interesting results.

• Families of non-cooperative P systems with symport/antiport rules can only
efficiently solve problems in class P, that is, P = PMCCDC(1) = PMCCSC(1)

(see [14] for details).
• In [39] a family of P systems with division rules and symport/antiport rules

using minimal cooperation solving in polynomial-time the HAM-CYCLE problem,
a well known NP-complete problem [7], has been given. Thus, NP ∪ co-NP
⊆ PMCCDC(2).

• Families of P systems with separation rules and symport/antiport rules using
minimal cooperation can only efficiently solve problems in class P, that is,
P = PMCCSC(2) (see [13] for details). However, in the cited paper, a family of
P systems with separation rules and using symport/antiport rules with length
at most three solving in polynomial-time the SAT problem, has been given, that
is, NP ∪ co-NP ⊆ PMCCSC(3).

• The role of the environment is irrelevant when we try to provide polynomial-
time solutions to NP-complete problems by means of families of P systems with
symport/antiport rules and membrane division. Specifically, for each k ∈ N
we have PMCCDC(k+1) = PMC

ĈDC(k+1)
(see [15] for details).

• Families of P systems with symport/antiport rules and separation rules but
without environment, can only efficiently solve problems in class P, that is,
P = PMC

ĈSC
(see [12] for details). Hence, the role of the environment is

relevant when we try to provide polynomial-time solutions to NP-complete
problems by means of families of P systems with symport/antiport rules and
membrane separation

From these results, the following frontiers of tractability are obtained.
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Non Efficiency Efficiency Frontiers
(Feasible) (Presumably Efficient)

CDC(1) CDC(2) (length)

CSC(2) CSC(3) (length)

CSC(2) CDC(2) (separation vs division)

ĈSC(2) ̂CDC(2) (separation vs division)

ĈSC CSC (environment)

5 Satisfiability problems and cooperation in rewriting rules

In this section, a relationship among cooperative rewriting rules and instances of
2–SAT problem and 3–SAT problem is highlighted.

5.1 Implication graph associated with instances of 2–SAT

Let ϕ = C1 ∧ · · · ∧ Cp be a boolean formula consisting of p (p ≥ 2) clauses
Cj = l1j ∨ l2j , 1 ≤ j ≤ p, that is, ϕ is an instance of 2–SAT. The implication graph
Gϕ = (Vϕ, Eϕ) is the directed graph defined as follows:

• Vϕ is the set of all literals associated with the set V ar(ϕ) of variables of ϕ.
• Eϕ ⊆ Vϕ × Vϕ is the following set of arcs: (x, y) ∈ Vϕ × Vϕ if and only if there

exists a clause C = l1 ∨ l2 of ϕ such that x = l1 ∧ y = l2 or x = l2 ∧ y = l1.

According with the previous definition, each clause Cj = l1j ∨ l2j of ϕ has associated
two arcs (l1j , l

2
j ) and (l2j , l

1
j ). In some sense, these arcs capture the boolean values

of logical implications associated with each clause of ϕ in a natural way.
It is worth pointing out that the implication graphs associated with instances

of 2–SAT verify the following result (see [20] for details):

Theorem 1. Let ϕ = C1∧· · ·∧Cp be an instance of 2–SAT with p (p ≥ 2) clauses.
Then the following assertions are equivalent:

• ϕ is unsatisfiable.
• There exists a variable x ∈ V arϕ such that there are paths in Gϕ from x to x

and from x to x.

From this theorem, by using the tractability of the reachability problem, it is easy
to follow that 2–SAT is a problem in class P.
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5.2 Rewriting rules associated with instances of k–SAT

Let k ≥ 2 and ϕ = C1∧· · ·∧Cp be a boolean formula consisting of p (p ≥ 2) clauses
Cj = l1j ∨ . . . ∨ lkj , 1 ≤ j ≤ p, that is, ϕ is an instance of k–SAT. Let us recall that

each clause Cj is logically equivalent to the boolean formula l1j ∧ · · ·∧ l
k−1
j → lkj . If

σ is a truth assignment which makes true the formula ϕ and σ(l1j ∧ · · · ∧ l
k−1
j ) = 1

then we deduce that σ(lkj ) = 1.

In this context, the expression l1j · · · l
k−1
j → lkj is associated with clause Cj and

it can be viewed as a rewriting rule in the following sense: the rule is applicable for a
truth assignment σ which makes true the formula ϕ if and only if σ(l1j∧· · ·∧l

k−1
j ) =

1. The application of that rule produces σ(lkj ) = 1 as some kind of “information”.
Following the same idea and bearing in mind the properties of logical equiva-

lence of boolean formulas, different rewriting rules could be associated with formula

ϕ. Specifically, for each t, 1 ≤ t ≤ k, rewriting rules of the type l1j · · · l̂tj · · · lkj → ltj

are associated to clause Cj , where the expression l1j · · · l̂tj · · · lkj means that literal
ltj does not appear in the left-hand side. In this paper, the particular case t = k
has been considered.

Next, we show that any instance of 2–SAT problem has associated non-
cooperative rewriting rules (their left-hand side contain only one object) and any
instance of 3–SAT problem has associated cooperative rewriting rules (their left-
hand side contain at least two objects).

Instances of 2–SAT

Let ϕ = C1 ∧ · · · ∧ Cp be a boolean formula consisting of p (p ≥ 2) clauses
Cj = l1j ∨ l2j , 1 ≤ j ≤ p, that is, ϕ is an instance of 2–SAT. Then, clause l1j ∨ l2j
has associated the “non-cooperative rewriting rule” l1j → l2j . As usual, the term
“non-cooperative” refers to the propery that its left-hand side contains only one
“object” (in this case, one literal).

We say that the non-cooperative rewriting rule l1j → l2j is applicable for a truth
assignment σ associated with the set of variables V arϕ of ϕ if σ(l1j ) = 1; that is,
in order to determine if such a rule is applicable for σ only is necessary to know
the truth value of one literal. When applying a rule l1j → l2j for a truth assignment
σ, we deduce the following information: σ(l2j ) = 1.

Instances of 3–SAT

Let ϕ = C1 ∧ · · · ∧ Cp be a boolean formula consisting of p (p ≥ 2) clauses
Cj = l1j ∨ l2j ∨ l3j , 1 ≤ j ≤ p, that is, ϕ is an instance of 3–SAT. We associate with
clause l1j ∨ l2j ∨ l3j the “cooperative rewriting rule” l1j l

2
j → l3j . As usual, the term
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“cooperative” refers to the propery that its left-hand side contains more than one
“object” (more than one literal).

We say that cooperative rewriting rule l1j l
2
j → l3j is applicable for a truth

assignment σ associated with the set of variables V arϕ of ϕ if σ(l1j ) = 1 and
σ(l2j ) = 1; that is, in order to determine if such a rule is applicable for σ is necessary
to know the truth value of two literals. So, these literals must “cooperate” in order
to apply the rewriting rule. When applying a rule l1j l

2
j → l3j for a truth assignment

σ, we deduce the following information: σ(l3j ) = 1.

Cooperation as a new frontier of tractability

It is well known that 2–SAT ∈ P and 3–SAT is an NP-complete problem. On the
one hand, non-cooperative rewriting rules have been associated with instances of
2–SAT and cooperative rewriting rules have been associated with instances of 3–
SAT. On the other hand, “passing” from 2–SAT to 3–SAT can be interpreted as
passing from tractability to (the presumable) intractability (assuming that P 6=
NP). In this context we can consider that passing from non-cooperative rewriting
rules to cooperative ones amounts to passing from tractability to (the presumable)
intractability (assuming that P 6= NP).

6 Conclusions

The quest for tools that provide new approaches to address the problem P versus
NP, is a major challenge in computer science due to the relevance of the above
mentioned problem. This paper focuses on tools related to frontiers of tractability
expressed in terms of syntactic or semantic ingredients associated with models in
a computing paradigm.

The role of cooperation of objects to trigger rewriting rules is analysed in order
to obtain this kind of borderlines in the framework of Membrane Computing.
Specifically, some cell-like membrane systems have been considered:

• Basic transition P systems.
• P systems with active membranes -with/without electrical charges and with/

without environment- and with membrane division or membrane separation.
• P systems with symport/antiport rules -with or without environment- and with

membrane division or membrane separation.
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Campero. On the power of dissolution in P systems with active membranes. Lecture
Notes in Computer Science, 3850 (2006), 224-240.
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