
An apparently innocent problem in
Membrane Computing

David Orellana-Mart́ın, Luis Valencia-Cabrera,
Agust́ın Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {dorellana, lvalencia, ariscosn, marper}@us.es

Summary. The search for efficient solutions of computationally hard problems by means
of families of membrane systems has lead to a wide and prosperous field of research. The
study of computational complexity theory in Membrane Computing is mainly based on
the look for frontiers of efficiency between different classes of membrane systems. Every
frontier provides a powerful tool for tackling the P versus NP problem in the following
way. Given two classes of recognizer membrane systems R1 and R2, being systems from
R1 non-efficient (that is, capable of solving only problems from the class P) and systems
from R2 presumably efficient (that is, capable of solving NP-complete problems), and
R2 the same class that R1 with some ingredients added, passing from R1 to R2 is
comparable to passing from the non efficiency to the presumed efficiency. In order to
prove that P = NP, it would be enough to, given a solution of an NP-complete problem
by means of a family of recognizer membrane systems from R2, try to remove the added
ingredients to R2 from R1. In this paper, we study if it is possible to solve SAT by
means of a family of recognizer P systems from AM0(−d,+n), whose non-efficiency was
demonstrated already.

Key words: Membrane Computing, polarizationless P systems with active mem-
branes, cooperative rules, the P versus NP problem, SAT problem.

1 Introduction

Membrane Computing is a bio-inspired computing model based on the behavior
and the structure of living cells. Introduced by Gh. Păun in 1998 [4], it has been
used in a wide range of applications, and several variants have been developed de-
pending on the field of study. From the beginning, the research of computational
complexity issues from the perspective of membrane systems has been a prosper-
ous field of study, with several papers written and interesting results found. The

128 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

first “solution” to an NP-complete problem, the SAT problem, in linear time is pre-
sented in [5]. We say “solution” since there was no definition of solving a problem
by means of membrane systems. There was no definition until [8] where recognizer
membrane systems (called decision membrane systems in the paper, and accepting
membrane systems in a later paper), for a family of membrane systems of a certain
type capable of solving a computational problem.

In the following years, for demonstrating the non-efficiency of membrane sys-
tems (that is, the capability of only solving problems from the class P), some tools
were developed, as the simulation technique [7], the algorithmic technique [] and
the dependency graph technique [1]. By using the former, in [1] it was demonstrated
that P systems from PMCAM0(−d,+n) were capable of solving only problems from
the class P. As complexity classes PMCR, beingR a class of recognizer membrane
systems, was demonstrated to be closed under polynomial reduction [], finding an
efficient solution to any NP-complete problem by means of a family of P systems
from AM0(−d,+n) would lead to a negative answer to the P 6= NP conjecture;
that is, it solving an NP-complete problem in this framework leads to P = NP.
It seems interesting then trying to find a solution based on the most common
techniques while solving a computationally hard problem.

From here, the paper is organized as follows: in the next section, a brief view to
the general structure of techniques to solve NP-complete problems by membrane
systems is given. Section 3 is devoted to present a “solution” to the SAT problem,
such that it depends of the existence of some special machines. These machines
are detailed in the following two sections, explaining the structure in Section 4
and the behavior in Section 5. After that, in Section 6, the three kinds of special
machines introduced are reduced to a single one, capable of solving each of the
problems of the previous machines. Last, the main result is presented in Section 7.
The paper ends with some conclusions and interesting open research lines.

2 Solutions to NP-complete problems

In the framework of Membrane Computing, several efficient solutions to compu-
tationally hard problems have been provided by means of a family of membrane
systems; that is, they are solutions that run in polynomial time with respect of
the size of the input. Usually, this is done by interchanging time and space, in the
sense that we need to create an exponential workspace in terms of membranes or
cells in the computation in order to obtain all the possible alternatives to solve
the instance, and taking advantage of the inherent parallelism of membrane sys-
tems to check them at the same time. For this purpose, a family of membrane
systems must be defined, each of its systems solving a subset of all the instances
of the problem. Usually, the protocol to solve computationally hard problems is
the following one:

An apparently innocent problem in Membrane Computing 129

1. Generation stage: In this stage, using division rules [6], separation rules [3]
or membrane creation rules [2], among others, we can obtain an exponential
workspace in terms of membranes or cells in polynomial (or even linear time).

2. Checking stage: In this stage, the presumed solutions in the previous stage are
checked in order to know if any of them is a real solution of the instance.

3. Output stage: This stage consists in sending an object yes or an object no to
the environment depending on the solvability or not of the instance.

In this sense, an interesting work for the reader is [9], where solutions are
analyzed by decomposing the solutions in subroutines.

3 A “solution” to the SAT problem without using dissolution

Here we provide a solution to the SAT problem by means of a family of recognizer
P systems with active membranes Π = {Π(t) | t ∈ N} from AM0(−d,+n) with
a special mechanism whose behavior will be explained later. Given a Boolean
formula ϕ in CNF and simplified with n variables and p clauses, the system

Π(s(ϕ)) + cod(ϕ) processes it, being s(ϕ) = 〈n, p〉 = (n+p)(n+p+1)
2 + n and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj}.

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ, µ,M1,M2,M3,multisets(Mi,j)(1 ≤ i ≤ n, 1 ≤ j ≤ p),
multisets(Mi,j,l)(1 ≤ i ≤ d n2l e, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne),
multisets(Mj)(1 ≤ j ≤ p),multisets(Md,l)(1 ≤ l ≤ dlog2 ne),
multisets(Mr),R, iin, iout),

from AM0(−d,+n) where:

1. Working alphabet Γ :
{yes, no, a, a′} ∪ {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2i− 1} ∪
{ti,j , fi,j | 1 ≤ i ≤ n, 2i ≤ j ≤ 2n− 1} ∪
{Ti,j , Fi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1} ∪ {Ti, Fi, ti, fi | 1 ≤ i ≤ n} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ 3n} ∪
{ci,j,l | 1 ≤ i ≤ 2n

2l
, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne} ∪

{cj,l | 1 ≤ j ≤ p, 1 ≤ l ≤ (j − 1)(k + 2) + 1} ∪ {dj | 1 ≤ j ≤ p} ∪
{dp,l | 1 ≤ l ≤ dlog2 ne+ 1} ∪ alphabet(Mi,j)(1 ≤ i ≤ n, 1 ≤ j ≤ p) ∪
alphabet(Mi,j,l)(1 ≤ i ≤ d n2l e, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne) ∪
alphabet(Mj)(1 ≤ j ≤ p) ∪ alphabet(Md,l)(1 ≤ l ≤ dlog2 ne) ∪ alphabet(Mr)

2. Input alphabet Σ:
{xi,j,0, xi,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}

3. Initial multisets:
M1 = ∅,M2 = ∅,M3 = {ai,1 | 1 ≤ i ≤ n}

4. The rule set R consists on the following rules:

130 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

1.1 Rules to create p copies of every possible truth assignment in each of the
2n membranes labelled by 2.

[ai,j → ai,j+1]3 for 2 ≤ i ≤ n, 1 ≤ j ≤ 2i− 2

[ai,2i−1]3 → [ti,2i]3 [fi,2i]3 for 1 ≤ i ≤ n

[an,2n−1]3 → [Tn,n+1]3 [Fn,n+1]3

[[]3 []3]2 → [[]3]2 [[]3]2

[ti,j → ti,j+1]3

[fi,j → fi,j+1]3

}
for 1 ≤ i ≤ n− 1, 2i ≤ j ≤ 2n− 2

[ti,2n−1 → Ti,i+1]3

[fi,2n−1 → Fi,i+1]3

}
for 1 ≤ i ≤ n− 1

[Ti,j → Ti,j−1]3

[Fi,j → Fi,j−1]3

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ i+ 1

[Ti,0]3 → Ti,i []3

[Fi,0]3 → Fi,i []3

}
for 1 ≤ i ≤ n

[Tn,0]3 → Tn []3

[Fn,0]3 → Fn []3

[Ti,j → Ti,j+1]2

[Fi,j → Fi,j+1]2

}
for 1 ≤ i ≤ n− 2, i ≤ j ≤ n− 2

[Ti,n−1 → Ti]2

[Fi,n−1 → Fi]2

}
for 1 ≤ i ≤ n− 1

[Ti → tpi]2

[Fi → fpi]2

}
for 1 ≤ i ≤ n− 1

2.1 Rules to check which clauses are satisfied by the truth assignments.

[xi,j,k → xi,j,k+1]2

[xi,j,k → xi,j,k+1]2

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ 3n− 1

xi,j,3n []Mi,j
→ [a′]Mi,j

xi,j,3n []Mi,j
→ [a′]Mi,j

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[a′ → a]Mi,j
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

ti []Mi,j
→ [a]Mi,j

fi []Mi,j → [a]Mi,j

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Mi,j(3n+ 2) : a2 ci,j,1 in k steps for 1 ≤ i ≤ n, 1 ≤ j ≤ p

An apparently innocent problem in Membrane Computing 131

2.2 Rules to obtain only one copy of each object cj , if possible.

c2i−1,j,l []Mi,j,l
→ [a′]Mi,j,l

c2i,j,l []Mi,j,l
→ [a]Mi,j,l

}
for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne

[a′ → a]Mi,j,l
for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne
2l−1 membranes of each type Mi,j,l are present in the step 3n+ 1

Mi,j,l((3n+ 3) + 2l + k(l − 1)) :
a2 ci,j,l+1

a ci,j,l+1

}
in k steps for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p,
1 ≤ l ≤ dlog2 ne − 1

M1,j,dlog2 ne((3n+ 3) + (2 + k)dlog2 ne − 1) :
a2 cj,1

a cj,1

}
in k steps for 1 ≤

j ≤ p
3.1 Rules to check if all the clauses are satisfied by a truth assignment.

dj−1 []Mj → [a′]Mj

cj,(j−1)(k+2)+1 []Mj
→ [a]Mj

}
for 1 ≤ j ≤ p

[cj,l → cj,l+1]2 for 1 ≤ j ≤ p, 1 ≤ j ≤ (j − 1)(k + 2)

Mj((3n+ 3) + (2 + k)dlog2 ne+ 2j + k(j − 1)) : a2 dj in k steps for 1 ≤
j ≤ p

4.1 Rules to obtain only one copy of the object dp, if possible.

[dp]2 → dp,1[]2

dp,l []Md,l
→ [a]Md,l

for 1 ≤ l ≤ dlog2 ne
2l−1 membranes of each type Md,l are present in the step (3n+ 3) + (2 +
k)(dlog2 ne+ p)

Md,l((3n+ 3) + (2 + k)(dlog2 ne+ p) + 2l + k(l − 1)) :
a2 dp,l+1

a dp,l+1

}
for 1 ≤

l ≤ dlog2 ne
4.2 Rules to return the correct answer.

dp,dlog2 ne+1 []Mr
→ [a]Mr

Mr((3n+ 3) + (2 + k)(2dlog2 ne+ p+ 1)) :
a yes

a0 no

}
in k steps

[yes]1 → yes []1

[no]1 → no []1
5. The input membrane is the membrane labelled by 2 (iin = 2) and the output

zone is the environment (iout = env).

132 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

The proposed solution follows a brute force algorithm in the framework of
recognizer P systems with active membranes without dissolution rules and divi-
sion rules for elementary and non-elementary membranes, and it consists on the
following stages:

1. Generation stage: Using rules from 1.1, 2n membranes labelled by 2 and 3
will be produced. Each of the membranes labelled by 2 will contain a different
truth assignment for the n variables. This stage takes 3n+ 1 time steps.

2. First checking stage: In this stage, an object cj,1 will be produced in the mem-
branes labelled by 2 whose truth assignment makes true the clause Cj . First
of all, with rules from 2.1, multiple copies of objects ci,j,1 will be produced,
and later with the rules from 2.2 will lead to a single copy of objects cj,1 if
there was at least one object ci,j,1. This stage takes (2 + k)dlog2 ne.

3. Second checking stage: In this stage, an object dp will be produced in a mem-
brane labelled by 2 if the truth assignment associated with it makes true the
whole formula ϕ, by using rules from 3.1. This stage takes p(2+k) time steps.

4. Output stage: Finally, by using rules from 4.1, a single object dp,dlog2 ne will
be produced in the skin membrane if there exists at least one truth assignment
that makes true the formula ϕ. If such an object exists, the system will send
an object yes to the environment. Otherwise, it will return an object no. This
is done by using the rules from 4.2. This stage takes dlog2 ne+ 4 time steps.

4 Details of the special machines

In the previous solution, new syntax with respect to the classical of membrane sys-
tems appears. Let us define some kind of “machines” that follows a not-so-much
special behavior. A machine Mi is no more than a P system from the correspond-
ing family, in this case, from AM0(−d,+n). Given a machine Mi, we say that
multisets(Mi) will be the multisets of objects placed initially in the membranes
within the structure of the machine Mi, alphabet(Mi) will be the working alphabet
of the machine and if there is a rule of the kind Mi(t) : rules, the machine Mi will
execute the corresponding rule associated to the number of objects placed in the
system at configuration Ct. In k steps, the machine Mi will return the correspond-
ing answer to the parent membrane. Of course, not all the machines will spend
the same amount of time steps, since in the end they are P systems and different
machines can spend different times, but for the sake of simplicity, we say that they
spend the same number of time steps. Later, we will look for a simple machine
that must spend exactly k time steps, and that machine will be a “sub-routine”
used for the ones used in the solution.

As opposed to oracles, that in this sense they can be though as machines that
start working when they receive some input, these machines are “running” from
the first configuration; that is, they are P systems that work as a P system of its
family, so it cannot accomplish tasks that are impossible for P systems of its own

An apparently innocent problem in Membrane Computing 133

family.

We can think that the “machine” can wait until step t by using subscripts
and evolution rules. Since division rules are allowed for both elementary and non-
elementary rules, we can ensure that we can obtain enough number of machines of
each kind. For this purpose, if a machine Mi needs to be replicated into 2k copies,
a single copy of this machine is present at the beginning of the computation. In
the skin membrane of this machine, there is a leaf membrane labelled by d, and
such that it contains an object: a1. Let us define the following rules:

[a2i → a2i+1]d for 1 ≤ i ≤ k − 1

[a2i−1]d → [a2i]d[a2i]d for 1 ≤ i ≤ k

[[]d[]d]skinMi
→ [[]d]skinMi

[[]d]skinMi

By using these rules, we can obtain 2k exact copies of the machine Mi in 2k−1
steps. The label d is a label such that it is not used in the whole machine Mi.
Since the rest of objects are supposed to be evolving within their corresponding
membranes, this process does not affect in this task.

5 Duties of the special machines

Five different machines are described in the previous solution. As discussed in the
previous section, a machine Mi such that it has a rules defined as Mi(t) : rule,
then when the configuration Ct is reached, the rule will be executed from the next
transition. In k time steps, it will return to its parent membrane the corresponding
answer.

• Mi,j : If there are 2 copies of the object a, then it returns an object ci,j,1.
Otherwise, it returns nothing.

• Mi,j,l: If there are 1 or 2 copies of the object a, then it returns an object ci,j,l+1.
Otherwise, it returns nothing.

• Mj : If there are 2 copies of the object a, then it returns an object dj . Otherwise,
it returns nothing.

• Md,l: If there are 1 or 2 copies of the object a, then it returns an object dp,l+1.
Otherwise, it returns nothing.

• Mr: If there are 1 copy of the object a, then it returns an object yes. If there
are no copies of the object a, it returns no. Otherwise, it returns nothing.

As we can observe, three different behaviors are required here. For instance, the
answers of Mi,j and Mj are similar. Since they do not return the same object, we
can think that we have a single type of machine Mi, and it is within a membrane
labelled by M ′i,j (respectively, M ′j). The behavior of this machine is simple: If there
are 2 copies of the object a, then it returns yes. Otherwise, it returns no. The
corresponding answer would be sent at the (k − 1)-th time step to the membrane

134 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

M ′i,j (resp., M ′j). Then, in the k-th time step, the membrane M ′i,j (resp., M ′j)
would send to the parent membrane an object ci,j,1 (resp., dj) if an object yes

appeared in the previous configuration, and it would not send anything if an object
no had appeared.

1. Mi,j ,Mj : Differentiate between 1 and 2 copies of object a.
2. Mi,j,l,Md,l: Differentiate between 1 or 2 and none copies of object a.
3. Mr: Differentiate between 1 and 0 copies of object a.

In fact, taking into account that we are deciding if the number of objects a is
equal to a number, then we can generalize these three cases into a single one, in
order to have a single problem to be solved.

6 Covering all the cases

What we are trying to solve here is deciding if the number of objects of a certain
type corresponds to a particular number.

Then, the following question could generalize the previous problems:

Can we differentiate the existence of a single object from
the non-existence or the multiple existence of the object?

Or, more formally, if there is a single instance of an object, then return yes.
Otherwise, return no.

We are going to give a proof on how these three cases can be reduced to this
question.

1. The first case is reduced as follows: let Mi,1, Mi,2 and Mi,3 be three machines
that solve the current problem. Then, we can think that the machine Mi is
formed as follows:

Mi

Mi,1

a

Mi,2

An apparently innocent problem in Membrane Computing 135

For sending objects a to each machine Mi,j , they can be replicated by using
object evolution rules and sent to them by using send-in rules (for the order,
subscripts can be used). Mi,1 will solve the problem normally; that is, if there
is only one object a, then it will send an object yes1 to Mi in k steps, other-
wise, it will return an object no1. At the same time, the problem will be solved
in Mi,2, but as there is an object a present in the system, it will return an ob-
ject yes2 if there are no objects a in Mi, otherwise it will return an object no2.

If Mi,1 returns an object yes1, it means that there is only one copy of the
object a. Therefore, Mi will not send anything to its parent membrane. If
Mi,1 returns no1, there are two possibilities: On the one hand, there can be
no objects a, then Mi,2 will return an object yes2. On the other hand, there
can be two copies of object a, then Mi,2 will return Mi,2 will return an object
no2. The following table represent the desired output for each possibility:

Input Mi,1 Mi,2 Output

n = 0 no1 yes2 no

n = 1 yes1 no2 no

n = 2 no1 no2 yes

Since these three cases are the only possible ones, it is easy to see that if only
an object no is present, it must return no (that will not be sent to the parent
membrane, since in these situations, there is only one or none copies of object
a). The other possible situation is that two objects no appear. In that case, we
should return an object yes (that later will be sent to the parent membrane as
the corresponding object). It is easy to do it by changing objects noi to objects
a. If there is a single copy, the machine Mi will return nothing. Otherwise, it
will send to the parent membrane the corresponding object.

2. The second case is similar to the first one. In this case, the objective of Mi is
to return an object when there are 1 or 2 copies of the object a. In the other
case; that is, when there are no copies of the object a, it will return nothing.
As in the previous case, we will have the following structure:

136 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

Mi

Mi,1

a

Mi,2

If Mi,1 and Mi,2 work as in the previous case, while there are 2 copies of
the object a, it will return the correct answer. But in the case that there is
a single copy of a, then it will return nothing, and this is not the behavior
that we expect. But, with a simple trick, we can transform this answer to the
correct one just by flipping the answer of Mi,2; that is, if there is a single object
a, then return no2. Otherwise, it returns yes2. Remember that it is possible
since it can have an external membrane that has object evolution rules similar
to yes → no2 and no → yes2. Therefore, the following table represents the
desired output taking into account the behavior of Mi,1 and Mi,2:

Input Mi,1 Mi,2 Output

n = 0 no1 yes2 no

n = 1 yes1 no2 yes

n = 2 no1 no2 yes

By looking at the table, we can clearly see that if an object no2 comes out
from the machine Mi,2, then it will return yes (that will be sent to the parent
membrane as the corresponding object). Then, we can transform object no2
into an object a. Objects no1, yes1 and yes2 will not evolve into an object
a. Therefore, if objects no1 and yes2 are the output of machines Mi,1 and
Mi,2 there will not be any object a in Mi, thus it will return a no (that will
not be sent to the parent membrane). If object no2 is the output of Mi,2,
no matter the output of Mi,1, since it will not produce another object a will
produce a yes as an output (and it will be sent to the parent membrane as
the corresponding object).

3. The third case is trivial since only two scenarios can occur: On the one hand,
if there is no object a it will return an object no. On the other hand, if there
is an object a present in the machine, then it will return a yes.

The three previous problems have been reduced to the previously stated ques-
tion. Therefore, having a P system from AM0(−d,+n) capable of solving this

An apparently innocent problem in Membrane Computing 137

problem, would complete the solution. This machine must be totally independent
from the input, and this machine will spend exactly k steps.

7 Reduction of the problem

In order to prove NP ∪ co − NP ⊆ PMCR, an efficient solution to an NP-
complete problem by means of a family of recognizer P systems from R must be
provided. In this paper, a “solution” to the SAT problem has been provided by
means of a family of recognizer membrane systems from AM0(−d,+n). This so-
lution depends on the ability of these P systems to solve the proposed problem.
Thus, the existence of a single membrane system of this family capable of solving
this question would lead to NP ∪ co−NP ⊆ PMCAM0(−d,+n).

In [1], by using the dependency graph technique, it was proved that P =
PMCAM0(−d,+n). Therefore, a single membrane system from this family solving
the cited problem would not exist unless P = NP.

Thus, a new tool to tackle the P versus NP problem has been stablished: If
there exists a single membrane from AM0(−d,+n) solving the problem of dif-
ferentiating a single appearance of a certain object from its non-existence or the
multiple existence, then P = NP.

8 Conclusions and future work

In this paper, a “solution” to the SAT problem in the framework of recognizer P
systems from AM0(−d,+n) has been given. This is not a real solution since it
needs of special “machines” that execute tasks whose possible execution in this
framework has not been demonstrated. Since a positive solution of this problem
yields P = NP, a very powerful tool to tackle this problem has been raised.

Two interesting research lines open up: On the one hand, solve this problem
as it would lead to a very powerful result (in fact, if it ends up being a question
with an affirmative answer, an efficient mechanism to solve NP-complete problems
would raise from the solution). On the other hand, to explore the existence of more
conjectures of this type, since they can be helpful to solve, in an affirmative or in
a negative way, the P versus NP problem.

References

1. M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In

138 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

R. Freund, Gh. Păun, Gr. Rozenberg, A. Salomaa (eds.). Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Re-
vised Selected and Invited Papers, Lecture Notes in Computer Science, 3850 (2006),
224-240.

2. M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero. A uniform so-
lution to SAT using membrane creation. Theoretical Computer Science, 371, 1–2
(2007), 54–61.

3. L. Pan, T-.O.Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

4. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

5. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

6. M.J. Pérez-Jiménez, A. Riscos-Núñez, Á. Romero-Jiménez, D. Woods. Complexity:
Membrane division, membrane creation. In: Păun et al. (eds.), The Oxford Handbook
of Membrane Computing, Oxford University Press, 2010, chap. 12, 302–336.

7. M.J. Pérez-Jiménez, Á. Romero Jiménez. Simulating Turing Machines by P systems
with External Output. Fundamenta Informaticae, Annales Societatis Mathematicae
Polonae, Series IV, IOS Press, Amsterdam, 49, 1-3 (2002), 273-287

8. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. Decision P systems
and the P 6= NP conjecture. In Gh. Păun, Gr. Rozenberg, A. Salomaa, C. Zandron
(eds.) Membrane Computing 2002. Lecture Notes in Computer Science, 2597 (2003),
388-399. A preliminary version in Gh. Păun, C. Zandron (eds.) Pre-proceedings of
Workshop on Membrane Computing 2002, MolCoNet project-IST-2001-32008, Pub-
lication No. 1, Curtea de Arges, Romanian, August 19-23, 2002, pp. 345-354.

9. Á. Romero-Jiménez, D. Orellana-Mart́ın. Design Patterns for Efficient to NP-
Complete Problems in Membrane Computing. In C. Graciani et al. (eds.), Enjoy-
ing Natural Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday, Springer, 2018, chap. 19, 237–255.

