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Abstract. In contrast to differential equations, P systems are an unconventional model of compu-
tation which takes into consideration the discrete character of the quantity of components and the
inherent randomness that exists in biological phenomena. The key feature of the P systems is their
compartmentalized structure which represents the heterogeneity of the structural organization of
the cells, and where one can take into account the role played by membranes in the functioning of
the system, for example signalling at the cell surface, selective uptake of substances from the media,
diffusion across different compartments, etc.
We show here that the P systems can be a reliable tool for Systems Biology and could even outper-
form in some cases the current simulation techniques based on differential equations. We will also
use a strategy that is based on the well known Gillespie’s algorithm but running on more than one
compartment and so it will be called Multi-compartmental Gillespie Algorithm.

1 Introduction

Understanding the biosignaling pathways is essential for designing effective therapeutic ap-
proaches to several important disease. For example the FAS-induced apoptotic signalling path-
way was shown to be one of the most relevant processes for understanding and combating cancer,
AIDS and neurodegenerative diseases such as Parkinson’s disease, Alzheimer, etc. With several
pathways unraveled in the last years, each one with its own unique structure and complexity,
there is an increasing need to model these signalling cascades due to their complex nature. Be-
cause there is usually immense data collected for only one pathway, it is almost always hard to
understand the pathway without the help of computer simulators. For better understanding of
the FAS-induced apoptosis we are proposing a new way (actually two different approaches) of
simulating the pathway by using P systems.

A typical group of biosignaling pathways is known to lead to apoptosis (also known as pro-
grammed cell death). Apoptosis is a mechanism which helps the unwanted, injured, or improperly
developed cells to commit suicide playing a fundamental role in the fight of the organism against
cancers. Thus, aberrations in apoptotic responses to death signals contribute to cancer develop-
ment, resistance to treatment, but also the reverse problem: autoimmune diseases. One major
mechanism for inducing the apoptosis is through the activation of death receptors. Among the
death receptors the signaling pathways for FAS-induced apoptosis are best characterized at the
moment. We believe that the only way to understand the complex signaling behavior of this
pathway is by modeling it in computer simulators.

Modeling FAS-induced apoptosis (or any biosignaling pathway) can be done in many ways,
the traditional approach being at the moment the use of differential equations. We argue that
the use of differential equations is not the best approach for simulating processes that involve



low number of molecules/objects as the ordinary differential equations (ODEs) are assuming
large populations of molecules and are modeling the changes in the concentration/numbers of
molecules of a particular species. For low numbers of molecules we argue that the ODEs do
not provide an accurate modeling. A model, an abstraction of the real-world onto a mathemati-
cal/computational domain, highlights some key features while ignoring others that are assumed
to be not relevant. A good model should have four properties: relevance, computability, under-
standability and extensibility. A model must be relevant capturing the essential properties of
the phenomenon investigated; and computable so it can allow the simulation of its dynamic
behavior, as well as the qualitative and quantitative reasoning about its properties. An under-
standable model will correspond well to the informal concepts and ideas of molecular biology.
Finally, a good model should be extensible to higher levels of organizations, like tissues, organs,
organism, etc, in which molecular systems play a key role. We believe that P systems posses all
these properties.

The approach followed by differential equations is usually referred to as macroscopic chem-

istry since they model the average evolution of the concentration of chemical substances across
the whole system.

The microscopic approach considers the molecular dynamics for each single molecule involved
in the system taking into account their positions, momenta of atoms, etc. This approach is
computationally intractable because of the number of atoms involved, the time scale and the
uncertainty in many of the cellular components.

Our approach is referred as mesoscopic chemistry [19]. Like in the microscopic approach one
considers individual molecules like proteins, DNA and mRNA but ignores many other molecules
like water and non-regulated parts of the cellular machinery. Besides this, the position and
momenta of the molecules are also not modeled, instead one deals with the statistics of which
reactions occur and how often. This approach is more tractable than microscopic chemistry but
it provides a finer and better understanding than the macroscopic chemistry.

Another observation is that the P system paradigm focuses on the compartmental structure
that is exhibited by the cells; in each compartment one has different rules and objects, and the
system moves from one configuration to the next one by obeying the rules and using only the
objects available in each compartment. These are the features that we want to simulate in the
signalling pathways, so using P systems is a natural approach.
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