Automated Reasoning Systems and
Molecular Computing

Carmen Graciani-Diaz, Mario J. Pérez-Jiménez

Dpto. Ciencias de la Computacién e Inteligencia Artificial
E.T.S. Ingenieria Informatica, Universidad de Sevilla
Avda. Reina Mercedes, s/n — 41012 Sevilla, Spain

E-mail: cgdiaz, marper@us.es

Abstract

This work was intended as an attempt to show the possible advantages
provided by bringing together two areas, automated reasoning systems
and DNA computing. The former as theoretical and formal devices to
study the correctness of a program. The latter as practical devices to
handle DNA strands to solve classical hard problems using laboratory
techniques. To illustrate this approximation we present how we have
obtained in the PVS proof checker the correctness of a program in a sticker
based model for DNA computation. This result required a previous work:
the formalization of the elected model within the PVS language. Also, in
order to deal with imperative programs, we have studied a formalization
of the Floyd-Hoare logic in the same system, PVS.

1 Introduction

The study and use of formal methods is among the most active areas in Com-
puter Science. By formal methods we understand the study of how primari-
ly mathematics and its techniques can be useful to solve software engineering
problems. The widely development of this area and the increasing complexity
of interesting problems have given rise to the use of informatics tools in order
to “automate” logic reasoning.

In automate reasoning one of the main attacked problems is the correctness
one [1]: developing specifications and proofs in a formal way to ensure that a
program meets its specifications. That is, to prove that a program really solves
the problem for which it was designed. This aim requires a previous work of
formalization: expressing all definitions and results in the formal language of
the chosen system to avoid semantic ambiguity. One of the most important
advantage of using formal methods lies in the fact that the obtained proofs can
support rigorous revisions.



The development of provers that use as their specification language more
and more expressive logics cause difficulties to automate the process of de-
duction. The majority of systems constructed within this spirit are interac-
tive. An overview to the “Database of Eristing Mechanized Reasoning System”,
http://www-formal.stanford.edu/clt/ARS/systems.html shows how many
initial system have disappeared, other have evolved and many other new ones
have appeared.

Formal methods and automated reasoning systems acquired special relevance
in new computing paradigms such as Natural Computing in order to prevent
the appearance of numerous results whose veracity is assume but, however, a
careful revision of them shows their lacks.

We have focused our attention in DNA based molecular computing and the
Prototype Verification System, PVS [7]. To illustrate our work we present how
the correctness of a program, in a sticker based model for DNA computation,
designed to solve the exact cover problem can be established with the usual
techniques for imperative programs due to Floyd—Hoare using the PVS proof
checker.

This article is organized as follows. First, a presentation of PVS and of the
sticker model is given. The former with the purpose to introduce the system
used and to make easier the reading of the rest of the article. The latter to
present the molecular model based on stickers due to S. Roweis, E. Winfree
et al. [12] in 1998. Along with the description of the computational model a
possible formalization using the specification language of PVS in given. In the
third section we review imperative programs and the common tools based on
specifications of partial correctness from Floyd-Hoare logic used to deal with
their verification. Also, a possible implementation of them in PVS is given. To
conclude, in order to illustrate the behavior of the previous presented work we
include two subroutines and a program designed in the sticker model that solve
the exact cover problem. We provide a correctness result obtained with PVS to
demonstrate this assert.

The achievement of this work has included the developing of a set of PVS
theories that allows us to represent and operate in the system with different
data structures (finite sequences, multisets, etc) in a natural way. Moreover,
following the treatment given by P. Y Gloess [5] a construction of a first order
logic and a Floyd-Hoare calculus to handle imperative programs over two types
states is included. The well-foundness of the logic has also been established.

The description of different used elements are illustrated with the tcorrespon-
ding declaration in PVS. Each declaration is included in a box with a label on
the upper right corner indicating the theory which it belongs to. The complete
set of theories built in PVS 3.1 for this article are available on the web at
http://www.cs.us.es/ cgdiaz/investigacion.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

Boyer, R. S.; Moore, J. S. The correctness problem in computer science.
Academic Press, 1981.

Crow, J.; Owre, S.; Rushby, J.; Shankar, N.; Srivas, M. A tu-
torial introduction to PVS, presented at Workshop on Industrial-
Strength Formal Specification Techniques (1995). Available at
http://www.csl.sri.com/wift-tutorial.html.

Graciani-Diaz, C. Especificacion y wverificacion de programas
moleculares en PVS. PhD thesis, University of Seville, 2003,
http://wuw.cs.us.es/ cgdiaz/investigacion.

Floyd, R. W. Assigninig meaning to programs, in Schwartz, J. T. (ed.),
American Mathematical Society Symposium on Applied Mathematics, 19
(1967), Providence, R.I., 19-32.

Gloess, P. Y. Imperative program wverification in PVS, 1999,
http://dept-info.labri.u-bordeaux.fr/ gloess/pvs/imperative/.

Hoare, C. A. R. An axiomatic basis for computer programming, Commu-
nications of the ACM, 12, 10 (1969), 576—-583.

Owre, S.; Rushby, J. M.; Shankar, N. PVS: A prototype verification system,
in Kapur, D. (ed.), 11th International Conference on Automated Deduction
(CADE), LNCS 607, Springer-Verlag (1992), 748-752.

Owre, S.; Rushby, J. M.; Shankar, N.; Stringer-Calvert, D. W. J. PVS Lan-
guage Reference, Computer Science Laboratory, SRI International, Menlo
Park, CA, 1999.

Owre, S.; Rushby, J. M.; Shankar, N.; Stringer-Calvert, D. W. J. PVS
Prover Guide, Computer Science Laboratory, SRI International, Menlo
Park, CA, 1999.

Owre, S.; Shankar. N. The formal semantics of PVS, Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo
Park, CA, 1997.

Owre, S.; Shankar, N.; Rushby, J. M.; Stringer-Calvert, D. W. J. PVS
System Guide, Computer Science Laboratory, SRI International, Menlo
Park, CA, 1999.

Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N. V.; Goodman,
M. F.; Rothemund, P. W. K.; Adleman, L. M. A sticker based model for
DNA computation, in Proceedings of the Second Annual Meeting on DNA
Based Computers, DIMACS: Series in Discrete Mathematics and Theoret-
ical Computer Science, American Mathematical Society (1996), 1-27.



