
Marian Gheorghe
Petr Sosík
Šárka Vavrečková (Eds.)

The 15th
International Conference
on Membrane Computing

Prague, Czech Republic,
August 20—22, 2014

Institute of Computer Science
Faculty of Philosophy and Science
Silesian University in Opava

Proceedings

Marian Gheorghe

Petr Sośık

Šárka Vavrečková (Eds.)

15th International Conference

on Membrane Computing

CMC15, Prague, Czech Republic, August 20–22, 2014

Proceedings

Institute of Computer Science
Faculty of Philosophy and Science
Silesian University in Opava

15th International Conference

on Membrane Computing

Conference page: http://cmc15.slu.cz/

Institute of Computer Science
Faculty of Philosophy and Science in Opava
Silesian University in Opava
Bezručovo náměst́ı 13
746 01 Opava
Czech Republic

Web page: http://www.slu.cz/fpf/en/institutes/the-institute-of-computer-science

Editors: c© Marian Gheorghe (Sheffield, UK)
Petr Sośık (Opava, Czech Republic)
Šárka Vavrečková (Opava, Czech Republic)

Copyright: c© Institute of Computer Science, Silesian University in Opava
Authors are fully responsible for the content of their papers.

Cover Design: c© Karel Melecký

Published in Opava, July 2014

ISBN 978-80-7510-036-8

Preface

This volume contains a collection of papers presented at CMC15, the 15th Inter-
national Conference on Membrane Computing, Prague, Czech Republic, during
20th to 22nd August, 2014 (http://cmc15.slu.cz/).

The CMC series was initiated by Gheorghe Păun as the Workshop on Multi-
set Processing in the year 2000. Then two workshops on Membrane Computing
were organized in Curtea de Argeş, Romania, in 2001 and 2002. A selection of
papers from these three meetings was published as volumes 2235 and 2597 of the
Lecture Notes in Computer Science series, and as a special issue of Fundamenta
Informaticae (volume 49, numbers 1–3, 2002). The next six workshops were or-
ganized in Tarragona, Spain (in July 2003), Milan, Italy (in June 2004), Vienna,
Austria (in July 2005), Leiden, The Netherlands (in July 2006), Thessaloniki,
Greece (in June 2007), and Edinburgh, UK (in July 2008), with the proceedings
published in Lecture Notes in Computer Science as volumes 2933, 3365, 3850,
4361, 4860, and 5391, respectively. The 10th workshop returned to Curtea de
Argeş in August 2009 (LNCS volume 5957).

From the year 2010, the series of meetings on membrane computing con-
tinued as the Conference on Membrane Computing, held in Jena, Germany
(LNCS volume 6501), Fontainebleau, France (LNCS volume 7184), Budapest,
Hungary (LNCS volume 7762) and finally Chisinau, Moldova (LNCS volume
8340). Nowadays a Steering Committee takes care of the continuation of the
CMC series which is organized under the auspices of the European Molecular
Computing Consortium (EMCC). A regional version of CMC, the Asian Con-
ference on Membrane Computing, ACMC, started with 2012 edition in Wuhan,
China and continued with Chengdu, China (2013) and Coimbatore, India (2014).

CMC15 is organized by the Institute of Computer Science of the Faculty of
Philosophy and Science, Silesian University in Opava, in collaboration with the
Action M Agency, Prague. A special session is dedicated to the memory of Prof.
Yurii Rogozhin, the head organizer of CMC14, a world-class mathematician and
computer scientist and, last but not least, a dear friend of many participants to
the CMC series.

The Program Committee of CMC15 invited lectures from Claudio Zandron
(Italy), Erzsébet Csuhaj-Varjú (Hungary), Luděk Cienciala (Czech Republic),
Mario J. Pérez Jiménez (Spain), and Jǐŕı Wiedermann (Czech Republic).

In addition to extended abstracts of the invited talks, this volume contains 22
papers of regular talks and two extended abstracts presented at the Conference.
Each paper was subject to at least two referee reports.

The editors warmly thank the Program Committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants for their contribu-
tions to the success of CMC15.

August 2014 Marian Gheorghe
Petr Sośık

Šárka Vavrečková

iii

The Steering Committee of the CMC series consists of

Gabriel Ciobanu (Iaşi, Romania)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Rudolf Freund (Vienna, Austria)
Marian Gheorghe (Sheffield, UK) – chair
Vincenzo Manca (Verona, Italy)
Maurice Margenstern (Metz, France)
Giancarlo Mauri (Milan, Italy)
Gheorghe Păun (Bucharest, Romania and Seville, Spain)
Mario J. Pérez-Jiménez (Seville, Spain)
Linqiang Pan (Wuhan, China)
Petr Sośık (Opava, Czech Republic)
Sergey Verlan (Paris, France)

The Organizing Committee consists of

Petr Sośık – co-chair
Petr Čermák – co-chair
Luděk Ciencala
Miroslav Langer
Šárka Vavrečková
Štěpánka Tůmová
Hana Čerńınová

iv

The Programme Committee of the CMC consists of

Artiom Alhazov (Chişinău, Moldova)
Luděk Ciencala (Opava, Czech Republic)
Gabriel Ciobanu (Iaşi, Romania)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Giuditta Franco (Verona, Italy)
Rudolf Freund (Vienna, Austria)
Marian Gheorghe (Sheffield, UK) – co-chair
Thomas Hinze (Jena, Germany)
Florentin Ipate (Bucharest, Romania)
Shankara Narayanan Krishna (Bombay, India)
Alberto Leporati (Milan, Italy)
Vincenzo Manca (Verona, Italy)
Maurice Margenstern (Metz, France)
Giancarlo Mauri (Milan, Italy)
Radu Nicolescu (Auckland, New Zealand)
Linqiang Pan (Wuhan, China)
Gheorghe Păun (Bucharest, Romania and Seville, Spain)
Mario J. Pérez-Jiménez (Seville, Spain)
Dario Pescini (Milan, Italy)
Agust́ın Riscos-Núñez (Seville, Spain)
Yurii Rogozhin (Chişinău, Moldova)
Petr Sośık (Opava, Czech Republic) – co-chair
György Vaszil (Debrecen, Hungary)
Sergey Verlan (Paris, France)
Claudio Zandron (Milan, Italy)
Gexiang Zhang (Chengdu, Sichuan, China)

v

vi

Contents

Preface . iii

Invited Papers

From P colonies to 2D P colonies and to simulations of multiagent systems 3

Luděk Cienciala

P systems: A Formal Approach to Social Networks . 7

Erzsébet Csuhaj-Varjú, Marian Gheorghe, György Vaszil

A bioinspired computing approach to model complex systems 11

Mario J. Pérez–Jiménez

Inconspicuous Appeal of Amorphous Computing Systems 15

Jiř́ı Wiedermann

P Systems with Active Membranes Working in Sublinear Space 19
Claudio Zandron, Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca

Regular Papers

Membrane Computing Inspired Approach for Executing Scientific Workflow
in the Cloud . 25

Tanveer Ahmed, Rohit Verma, Abhishek Srivastava

P Systems with Anti-Matter . 41

Artiom Alhazov, Bogdan Aman, Rudolf Freund

Priorities, Promoters and Inhibitors in Deterministic Non-Cooperative
P Systems . 61

Artiom Alhazov, Rudolf Freund

P Systems with Toxic Objects . 71

Artiom Alhazov, Rudolf Freund

Length P Systems with a Lonesome Traveler . 99

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov

vii

viii

Promoters and Inhibitors in Purely Catalytic P Systems 117

Artiom Alhazov, Rudolf Freund, Sergey Verlan

A Short Note on Red-Green P Automata . 129

Bogdan Aman, Erzsébet Csuhaj-Varjú, Rudolf Freund

Extended Simulation and Verification Platform for Kernel P Systems 135
Mehmet E. Bakir, Florentin Ipate, Savas Konur, Laurentiu Mierla,
Ionut Niculescu

Notes on Spiking Neural P Systems with Structural Plasticity Computing
Morphisms . 153

Francis George Cabarle, Henry Adorna

The Abilities of P Colony Based Models in Robot Control 155

Luděk Cienciala, Lucie Ciencialová, Miroslav Langer, Michal Perdek

Probabilistic Guarded P systems, a New Formal Modelling Framework . . . 169
Manuel Garćıa-Quismondo, Miguel á. Mart́ınez-Del-Amor,
Mario J. Pérez-Jiménez

Solving the ST-Connectivity Problem with Pure Membrane Computing
Techniques . 191

Zsolt Gazdag and Miguel A. Gutiérrez-Naranjo

Simulating Turing Machines with Polarizationless P Systems with Active
Membranes . 205

Zsolt Gazdag, Miguel A. Gutiérrez-Naranjo, Gábor Kolonits

Categorised Counting Mediated by Blotting Membrane Systems for Particle-
based Data Mining and Numerical Algorithms . 217

Thomas Hinze, Konrad Grützmann, Benny Höckner, Peter Sauer,
Sikander Hayat

Polymorphic P Systems with Non-cooperative Rules and No Ingredients . . 235

Sergiu Ivanov

Simulating Elementary Active Membranes, with an Application to the P
Conjecture . 251

Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca,
Claudio Zandron

Spiking Neural P Systems with Cooperating Rules . 267

Venkata Padmavati Metta, Srinivasan Raghuraman, Kamala Krithivasan

ix

On the Dynamics of P Systems Based on Membrane Boundaries 283

Tamás Mihálydeák, Zoltán Ernő Csajbók

Parallel Thinning with Complex Objects and Actors . 287

Radu Nicolescu

Causal Nets for Geometrical Gandy–Păun–Rozenberg Machines 313

Adam Obtulowicz

P System Computational Model as Framework for Hybrid (Membrane-
Quantum) Computations . 333

Yurii Rogozhin, Artiom Alhazov, Liudmila Burtseva, Svetlana Cojocaru,
Alexander Colesnicov, Ludmila Malahov

Expressing Workflow and Workflow Enactment using P Systems 345

Rohit Verma, Tanveer Ahmed, Abhishek Srivastava

Fault Diagnosis Models for Electric Locomotive Systems Based on Fuzzy
Reasoning Spiking Neural P Systems . 361

Tao Wang, Gexiang Zhang, Mario J. Pérez-Jiménez

Graph Cluster Analysis by Lattice based P System with Conditional
Rules . 375

Jie Xue, Xiyu Liu

Author Index . 377

x

Invited Papers

From P colonies to 2D P colonies and to
simulations of multiagent systems

Luděk Cienciala

Institute of Computer Science
and

Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic

ludek.cienciala@fpf.slu.cz

Abstract

P colonies are a class of abstract computation devices based on one-membrane
agents acting in a shared environment. They belongs to a family of models
inspired by biology and biochemistry of cells called P systems introduced in [11]
by Gheorghe Păun in 2000.

Each agent is represented by a collection of objects embedded in a membrane
and by a set of programs for processing these objects. The number of objects
placed inside each agent is unchangeable and it is called the capacity of P colony.
The computational abilities in particular depend on the capacity of P colony, on
the number of agents and on the type of processing rules in the programs.

The rules used in programs are rewriting a → b, communication c ↔ d or
checking r1/r2. Using rewriting rule agent evolves object a to object b. Both
objects have to be placed inside this agent. Using rewriting rule agent change
its state. If the communication rule c ↔ d is applicable, the object c must
be contained inside the agent and there is at least one copy of object d in
the environment. By aplying communication rule the object c moves to the
environment and one object d comes to the agent. We can say, that agent took
information d from the environment and left information c in the environment.
The checking rule is not really new type of rules but checking rule can be obtained
by putting together two rules of previous types. This provides a pair of rules and
the order determines a priority among them.

Computational power of such a kind of devices with or without using checking
rules has been a point of interest of lots of research papers (e.g. [4, 8, 7]) and it
was shown, that they are computationally complete.

The environment is a communication channel for agents and storage place for
objects. It plays strategic role in synchronization of works of single agents during
computation. The environment has become the most changing / extending part
of P colonies.

In the eco-P colonies ([3, 1]) the static environment was replaced by the evolv-
ing one using 0L-scheme. The input tape was add to P colony in the model called
Pcol automaton ([2]). The last model derived from P colony uses environment

3

resembling cellular automata and it is called 2D P colony ([5]). The environ-
ment is changed to a form of a 2D grid of square cells. The agents are located in
this grid and their view is limited to the cells that immediately surround them.
Based on the contents of these cells, the agents decide their future locations. This
formal model seems to be suitable for e.g. simulations of artificial and natural
multiagent systems.

In the presentation we describe the individual models, compare them from
different viewpoints and we outline the development of models from the original
model of P colonies to 2D P colonies.

Remark 1.
This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and
by project OPVK no. CZ.1.07/2.2.00/28.0014.

References

1. Cienciala, L., Ciencialová, L.: Eco-P colonies, In: Păun, Gh., Pérez-Jiménez, M.J.,
Riscos-Núñez, A. (eds.) Pre-Proceedings of the 10th Workshop on Membrane Com-
puting, Curtea de Arges, Romania, pp. 201–209 (2009)

2. Ciencialová, L., Cienciala, L., Csuhaj–Varjú, E., Vaszil, Gy.: PCol Automata: Rec-
ognizing Strings with P Colonies. Report of Eight Brainstorming week on membrane
computing, Sevilla, Spain (2010)

3. Ciencialová, L., Csuhaj–Varjú, E., Kelemenová, A., Vaszil, Gy.: On Very Simple
P Colonies. Proceeding of The Seventh Brainstorming Week on Membrane Com-
puting, vol. I, Sevilla, Spain, pp. 97–108 (2009)

4. Ciencialová, L. Cienciala, L., Kelemenová, A.: On the number of agents in P
colonies, In G. Eleftherakis, P. Kefalas, and G. Paun (eds.), Proceedings of the 8th
Workshop on Membrane Computing (WMC’07), June 25-28, Thessaloniki, Greece,
2007, pp. 227–242.

5. Cienciala, L., Ciencialová, L., Perdek, M.: 2D P colonies. In Csuhaj-Varjú et al.
(eds.). CMC 2012, Springer, LNCS 7762, 2013, pp. 161–172.

6. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in
environment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006,
pp. 201–215.

7. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P Colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Comput-
ing (H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands,
2006, pp. 311–322.

8. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49–56.

9. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of com-
putation. Proc. of the 6th International Symposium of Hungarian Researchers on
Computational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

10. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. Workshop and Tutorial Proceedings, Ninth International

4

Conference on the Simulation and Synthesis of Living Systems, ALIFE IX (M.
Bedau at al., eds.) Boston, Mass., 2004, pp. 82–86.

11. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108–143.

12. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
13. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
14. Torrents, B.: Geosimulation. John Wiley & Sons, 2004.
15. P systems web page: http://psystems.disco.unimib.it

5

6

P systems:
A Formal Approach to Social Networks

(Abstract) ?

Erzsébet Csuhaj-Varjú1, Marian Gheorghe2 and György Vaszil3

1 Department of Algorithms and Their Applicationa, Faculty of Informatics
Eötvös Loránd University, Pázmány Péter sétány 1/c Budapest, Hungary

csuhaj@inf.elte.hu
2 Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom
m.gheorghe@sheffield.ac.uk

3 Department of Computer Science, Faculty of Informatics
University of Debrecen, PO Box 12, 4010 Debrecen, Hungary

vaszil.gyorgy@inf.unideb.hu

One of the major challenges for membrane computing is to find applications
of the obtained theoretical results in different scientific areas. Concepts and
methods in P systems theory have been so far successfully employed in solving
various problems in computer science and in modelling several biological phe-
nomena, but except applications in linguistics and natural language processing,
only a limited amount of attention has been paid to utilization of membrane
systems in social sciences.

One of the few steps in this direction was made in [12] where P systems (mem-
brane systems) were proposed to model social networks, an area of contemporary
computer science and practice which is in the focus of interest. Purely syntactic
models have already been used for describing communities of agents interacting
with each other and with their dynamically changing environment. Examples are
the framework of eco-grammar systems, from the theory of grammar systems,
launched in [10], and networks of (parallel) language processors describing pop-
ulations of agents by rewriting systems in [14, 8]. Multi-agent systems in terms
of formal language theory and membrane computing were discussed in [5], [6],
[4], and [17].

Roughly speaking, social networks are communities of individuals forming
a communication network based on some social phenomena. When formalizing
these networks, their special features, as interpersonal relationships between in-
dividuals, are expected to appear in the syntactic model. In various formalisms
related to the study of social phenomena, these relationships are defined as
information-carrying connections [16]. Two basic types of them are strong and
weak ties. Weak ties are responsible for the embeddedness and structure of social
networks and for the communication within these systems [16]. There are other

? Research supported in part by the Hungarian Scientific Research Fund, “OTKA”,
project K75952.

7

measures that characterize connections between nodes (agents). Centrality gives
an indication of the social power of a node and the strength of its connections.
It relies on other measures, betweenness, closeness, degree. Betweenness is the
degree of connectivity between a node and the nodes that have a significant
number of neighbours (direct connections). Closeness measures the distance be-
tween a node and all the other nodes in the network: it counts the number of
connections. For more details on these concepts and for some other measures of
connections existing in social networks the reader is advised to consult [25].

P systems, especially tissue P systems, can also be considered as collections
of agents (individuals) communicating with each other: the compartments or
nodes with the multisets of objects may represent the individuals and the rules
of the system describe the communication/interaction between the components.
In the case of population P systems, see [7], the established communication
links may dynamically change. Notice that the objects can also be considered as
information pieces, in this case a node represents a loosely organized community
of agents.

In [12] new classes of P systems capturing communication aspects in so-
cial networks were introduced and various research topics related to connections
between P systems theory and the theory of social interactions and networks
were initiated. They are called population P systems governed by communica-
tion (pcgP systems, for short). In this case, in addition to the multisets of stan-
dard objects which are called cellular objects, so-called communication objects
are present in the network. The transition takes place by rewriting and com-
munication of the cellular objects and recording the performed communication.
The transitions are governed by communication, i.e., rules can be performed
only if some predicates on the multisets of communication symbols associated
to the links are satisfied. Whenever communication takes place, the number of
communication symbols associated to the link inscreases.

It is easy to see that the model provides various possibilities to study the
behaviour of the nodes: ordinary or popular nodes - those that host individu-
als and allow communication between them; new-born nodes - those that are
dynamically created and linked to the existing network; non-visible or extinct
nodes - the nodes that are no longer connected to the network or have disap-
peared; nodes with one way communication, only allowing information to go
into, blackholes or allowing only to exit from, whiteholes. Some of these aspects
have been already discussed in membrane computing: for example, population
P systems allow nodes to be dynamically connected and disconnected [7]. We
can also take into account connections between nodes and look at the volume
of communication - the amount of (new) information generated or sent-received
by various nodes or groups of nodes; frequency of communicated messages - the
number of communication steps related to the evolution (computation) steps;
communication motifs - patterns of communication identified throughout the
network evolution.

In [12] we have focused on communication in these networks. In order to
characterize it and the fact that this might evolve in time by either increas-

8

ing or decreasing its value, we introduced some sort of symbols that act in this
respect, called complementary communication symbols. The customary (or pos-
itive) symbols strengthen a connection, whereas the complementary (negative)
ones weaken it.

The idea of complementary alphabets is not new in the field of natural com-
puting. It is a core idea of DNA computing, and the concept of related notions
have been discussed in membrane computing as well [1], [2], [3], [20], [19].

In [12] some further concepts regarding some specific types of pgcP systems
have also been defined, as well as presented some preliminary results for de-
terministic and non-cooperative pgcP systems, based on tools of Lindenmayer
systems (D0L systems). Among others, we described the growth of the com-
munication volume, the frequency, and the intensity of communication on the
links.

In this talk we will discuss pgcP systems with different types of predicates
for communication, and demonstrate how the choice of predicates affects the
volume and the intensity of communication, the type of communication motifs
in the network. We also will characterize other concepts and measures from social
networks like leaders and clusters emergence. Dynamical restructuring the links,
including break of links will also be topic of our discussion.

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun. Matter and Anti-Matter in Membrane
Systems. Brainstorming Week on Membrane Computing, Sevilla, 2014.

2. B. Aman, G. Ciobanu. Turing completeness using three mobile membranes. In
Unconventional Computing 2009, Lecture Notes in Computer Science, 5715, 42–
55, 2009.

3. B. Aman, G. Ciobanu. Mutual mobile membranes systems with surface objects. In
7-th Brainstorming Week of Membrane Computing, 29–39, 2009.

4. G. Bel-Enguix. A Multi-agent Model for Simulating the Impact of Social Structure
in Linguistic Convergence. InICAART(2) (J. Filipe et. al, Eds.), INSTICC Press,
367–372, 2009.

5. G. Bel-Enguix, M. A. Grando, M. D. Jiménez López. A Grammatical Framework
for Modelling Multi-Agent Dialogues. In PRIMA 2006 (Z.-Z. Shi, R. Sadananda,
Eds.), LNAI 4088, Springer Verlag, Berlin Heidelberg, 10–21, 2009.

6. G. Bel-Enguix,M. D. Jiménez López. Membranes as Multi-agent Systems: an Appli-
cation for Dialogue Modelling. In IFIP PPAI 2006 (J.K. Debenham, Ed.), Springer,
31–40, 2006.

7. F. Bernardini, M. Gheorghe. Population P systems. Intern J of Universal Comp
Sci, 10, 509–539, 2004.

8. E. Csuhaj-Varjú. Networks of Language Processors. EATCS Bulletin 63, 120–134,
1997.

9. E. Csuhaj-Varjú. Computing by networks of Watson-Crick D0L systems. In
Proc. Algebraic Systems, Formal Languages and Computation (M. Ito, Ed.) RIMS
Kokyuroku 1166, August 2000, Research Institute for Mathematical Sciences, Ky-
oto University, Kyoto, 43–51, 2000.

9

10. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun. Eco-Grammar Systems:
A Grammatical Framework for Studying Lifelike Interactions. Artificial Life, 3(3),
1–28, 1997.

11. E. Csuhaj-Varjú, V. Mitrana. Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica, 36(11), 913–926, 2000.

12. E. Csuhaj-Varjú, M. Gheorghe, M. Oswald, Gy. Vaszil. P systems for Social Net-
works. In BWMC11 (M.A. Martnez-del-Amor, Gh. Pŭn, I. Pérez-Hurtado, F.J.
Romero-Campero, L. Valencia-Cabrera, eds.), Fénix Editora, 113–124, 2011.

13. E. Csuhaj-Varjú, A. Salomaa. Networks of Watson-Crick D0L systems. In Words,
Languages & Combinatorics III. Proceedings of the International Colloquium, Ky-
oto, Japan, March 14-21, 2000. (M. Ito, T. Imaoka, Eds.), World Scientific Pub-
lishing Co., Singapore, 134–149, 2003.

14. E. Csuhaj-Varjú, A. Salomaa. Networks of Parallel Language Processors. In New
Trends in Formal Languages. Control, Cooperation, and Combinatorics (Gh. Păun,
A. Salomaa, Eds.), LNCS 1218, Springer Verlag, Berlin Heidelberg, 299-318, 1997.

15. E. Csuhaj-Varjú, G. Vaszil. P automata or purely communicating accepting P
systems. In Membrane Computing, LNCS 2579, Springer Verlag, Berlin Heidelberg,
219–233, 2003.

16. M.D. Granovetter. The Impact of Social Structures on Economic Development.
Journal of Economic Perspectives, 19, 33–50, 2004.

17. M. D. Jiménez López. Agents in Formal Language Theory: An Overview. In High-
lights in Practical Applications of Agents and Multiagent Systems. 9th Interna-
tional Conference on Practical Applications of Agents and Multiagent Systems (J.
Bajo Pérez et. al, Eds.) Advances in Intelligent and Soft Computing 89, Springer,
283–290, 2011.

18. M. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

19. Gh. Păun. Membrane computing. An Introduction. Springer, 2002.
20. L. Pan, G Păun. Spiking neural P systems with anti-spikes, Int J Computers

Comms Control, 4, 273–282, 2009.
21. Gh. Păun. Computing with Membranes. J. of Comput. Syst. Sci., 61, 108–143,

2000.
22. Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing - New Computing

Paradigms. Springer Verlag, 1998.
23. G. Rozenberg, A. Salomaa. (Eds). Handbook of Formal Languages I-III. Springer,

1997.
24. Gh. Păun, G. Rozenberg, A. Salomaa. (Eds). The Handbook of Membrane Com-

puting. Oxford University Press, 2009.
25. S. Wasserman, K. Faust. Social Networks Analysis: Methods and Applications.

Cambridge University Press, 1994.

10

A bioinspired computing approach
to model complex systems

Mario J. Pérez–Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

marper@us.es

Computational modelling is the process of representing real world problems in
mathematical terms in an attempt to find solutions to their associated complex
systems. Modelling is an integral part of many scientific disciplines and lies
behind great human achievements and developments [11]. Scientists regularly
use abstractions with the aim to describe and understand the reality they are
examining. A good model should have four properties: relevance, computability,
understandability and extensibility [14].

One of the main objectives of any model is to provide a predictive capability,
that is, the possibility to make conjectures of plausible hypothesis related to the
dynamics of the observed phenomenon in different scenarios. It is important to
notice that different models might be able to produce similar spatio-temporal
behaviour but they are distinguished by the different experiments they suggest.

Usually, cellular systems and population biology often depend on many vari-
ables of the observed behaviours. Since they define the dynamics of the system,
variables must satisfy some conditions, which can be referred as the invariants of
the related behaviour. Some of these invariants can be expressed by rules and can
be obtained by realizing experiments, while others cannot be measured in the
lab or are very expensive to estimate. Therefore, before simulations can be per-
formed in order to make predictions, we need to calibrate our model by obtaining
estimations for missing variables and validate it against the expected behaviour
of the system. This requires comparing trial results or simulations obtained by
using the model with real data coming from the lab or with data generated using
reliable methods. This stage involves an iterative process in which a candidate
set of parameters is proposed, some simulations are generated and, on the basis
of some metric of closeness to the desired behaviour, a new set of parameters is
tested. In some cases, design of the model has to be reconsidered.

Nowadays ordinary/partial differential equations (ODEs/PDEs) constitute
the most widely used approach in modelling complex systems. For example, they
have been successfully used to model kinetics of conventional macroscopic chem-
ical reactions. Nevertheless, in some cases such as molecular interaction networks
in cellular systems, any model described by means of a system of ODEs/PDEs
is based on two assumptions: (a) cells are assumed to be well stirred and ho-
mogeneous volumes so that concentrations do not change with respect to space;
and (b) chemical concentrations vary continuously over time in a deterministic

11

way. This assumption is valid if the number of molecules specified in the reac-
tion volume (the cell or the subcellular compartment) are sufficiently large and
reactions are fast. A sufficient large number of molecules is considered to be of
the order of, at least, thousands of molecules.

Membrane Computing is an emergent branch of Natural Computing intro-
duced by G. Paun. This new computing paradigm starts from the assumption
that processes taking place in the compartmental structure of a living cell can
be interpreted as computations. In contrast to differential equations, P systems
explicitly correspond to the discrete character of the components of an ecosys-
tem and use rewriting rules on multisets of objects which represent the variables
of the system. The inherent stochasticity, external noise and uncertainty in cel-
lular systems is captured by using stochastic or probabilistic strategies. While
the stochastic approach is usually applied to model micro-level systems (such
as bacteria colonies, signalling pathways, etc.), the probabilistic one is normally
used for macro-level modelling (of real ecosystems, for example).

A multienvironment P system can be viewed as a finite set of environments
and a finite set of P systems, such that: (a) the links between environments
are given by the arcs taken from a directed graph; (b) each P system has the
same working alphabet, the same membrane structure and the same evolution
rules; and (c) each environment contains several P systems, where each evolution
rule has associated a computable function and each one of them has an initial
multiset which depends on the environment; and (d) there is a finite set of rules
among the environments. Furthermore, inside the environments, only objects
from a distinguished alphabet can exist.

In the stochastic approach the following holds: (a) the computable functions
associated with the rules of the P systems are propensities, obtained from the ki-
netic constants [12] (these rules depend on time but not on the environment); and
(b) initially, the P systems are randomly distributed among the environments
of the system. These kind of P systems are called multicompartmental P sys-
tems. Dynamics of these systems is captured by either the multicompartmental
Gillespie’s algorithm [12] or the deterministic waiting time algorithm [2]. Some
practical examples of multicompartmental P systems applications for modelling
cellular systems are: signalling pathways (Epidermal Growth Factor Receptor
[13], FAS-induced apoptosis [2]), gene expression control in Lac Operon [16] and
quorum sensing in Vibrio Fischeri [15].

In the probabilistic approach the following holds: (a) the total number of P
systems Πk,j is equal to the number of environments: each environment contains
one P system; (b) functions associated with rules of P systems are probability
functions verifying some conditions; (c) rules among the environments have as-
sociated some probability functions verifying some conditions. The dynamics of
these systems is captured by ad hoc algorithms such as Binomial block based
simulation algorithm [6], DNDP (Direct Non Deterministic distribution with
Probabilities) algorithm [9] and DCBA (Direct distribution based on Consistent
Blocks Algorithm) algorithm [10], among others. These kind of P systems are
called population dynamics P systems (PDP systems) [7]. Some practical ex-

12

amples of PDP systems applications for modelling real ecosystems are: bearded
vultures in the Pyrenees (NE Spain) [3], avian scavengers in the Pyrenean and
Prepyrenean mountains of Catalonia, NE Spain [4], Pyrenean Chamois (Rup-
icapra p. pyrenaica) in the Catalan Pyrenees [5], zebra mussel in the dam of
Ribarroja (NE region of Spain) [1], and pandemics [8].

Acknowledgements

The author acknowledges the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, co-financed by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of
the Junta de Andalućıa, grant P08-TIC-04200.

References

1. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A computational modeling for real ecosystems based on P
systems. Natural Computing, 10, 1 (2011), 39-53.

2. S. Cheruku, A. Păun, F.J. Romero, M.J. Pérez–Jiménez, O.H. Ibarra. Simulating
FAS–induced apoptosis by using P systems. Proceedings of the First International
Conference on Bio–Inspired Computing: Theory and Applications, Wuhan, China,
September, 18–22, 2006.

3. M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, D. Sanuy, A. Margalida. Model-
ing ecosystems using P systems: The bearded vulture, a case study. Lecture Notes
in Computer Science, 5391 (2009), 137-156

4. M.A. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez. A bio-inspired com-
puting model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological modelling, 222, 1 (2011), 33-47.

5. M.A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy, E. Serrano, L. Valencia-Cabrera. Modeling population growth
of Pyrenean Chamois (Rupicapra p. pyrenaica) by using P systems. Lecture Notes
in Computer Science, 6501 (2011), 144-159.

6. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos. Comparing sim-
ulation algorithms for multienvironment probabilistic P system over a standard
virtual ecosystem. Natural Computing, 11 (2012), 369-379.

7. M.A. Colomer, A. Margalida, M.J. Pérez-Jiménez. Population Dynamics P System
(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools. PLOS ONE, 8 (4): e60698 (2013) (doi: 10.1371/jour-
nal.pone.0060698).

8. M.A. Colomer, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez-del-
Amor, M.J. Pérez-Jiménez, A. Riscos- Núñez, L. Valencia-Cabrera. Membrane
systems-based models for specifying population systems. In P. Frisco, M. Gheorghe,
M.J. Pérez-Jiménez (eds.) Applications of Membrane Computing in Systems and
Synthetic Biology. Series: Emergence, Complexity and Computation, Vol. 7, 2014.

9. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos, F. San-
cho. A simulation algorithm for multienvironment probabilistic P systems: A for-
mal verification. International Journal of Foundations of Computer Science, 22, 1
(2011), 107-118.

13

10. M.A. Mart́ınez, I. Pérez, M. Garćıa, L.F. Maćıas, L. Valencia, A. Romero, C.
Graciani, A. Riscos, M.A. Colomer, M.J. Pérez-Jiménez. DCBA: Simulating pop-
ulation dynamics P systems with proportional objects distribution. Lecture Notes
in Computer Science, 7762 (2013), 257-276.

11. L. Nunes de Castro (ed.) Fundamentals of Natural Algorithms. Basic concept, al-
gorithms and applications, Chapman and Hall/CRC, Taylor and Francis Group,
Boca Raton, FL, 2006.

12. M.J. Pérez-Jiménez, F.J. Romero-Campero. P Systems, a New Computationl Mod-
elling Tool for Systems Biology, Transactions on Computational Systems Biology
VI, LNBI 4220 (2006), 176-197.

13. M.J. Pérez-Jiménez, F.J. Romero-Campero. A Study of the Robustness of the
EGFR Signalling Cascade using Continuous Membrane Systems. Lecture Notes in
Computer Science, 3561 (2005), 268 – 278.

14. A. Regev, E. Shapiro. The π-calculus as an abstraction for biomolecular systems. In
Gabriel Ciobanu and Grzegorz Rozenberg, editors, Modelling in Molecular Biology,
Springer Berlin, 2004.

15. F.J. Romero-Campero, M.J. Pérez-Jiménez. A model of the Quorum Sensing sys-
tem in Vibrio fischeri using P systems, Artificial Life, 14, 1 (2008), 95–109.

16. F.J. Romero-Campero, M.J. Pérez-Jiménez. Modelling gene expression control us-
ing P systems: The Lac Operon, a case study, BioSystems, 91, 3 (2008), 438-457.

14

Inconspicuous Appeal
of Amorphous Computing Systems?

(Invited talk)

Jiřı́ Wiedermann

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

Abstract. Amorphous computing systems typically consist of myriads of tiny
simple processors that are randomly distributed at fixed positions or move ran-
domly in a confined volume. The processors are “embodied” meaning that each
of them has its own source of energy, has a “body” equipped with various sen-
sors and communication means and has a computational control part. Initially,
the processors have no identifiers and from the technological reasons, in the in-
terest of their maximal simplicity, their computational, communication, sensory
and locomotion (if any) parts are reduced to an absolute minimum. The proces-
sors communicate wirelessly, e.g., in an airborne medium they communicate via
a short-range radio, acoustically or optically and in a waterborne medium via
molecular communication. In the extreme cases the computational part of the
processors can be simplified down to probabilistic finite state automata or even
combinatorial circuits and the system as a whole can still be made universally
programmable. From the theoretical point of view the structure and the proper-
ties of the amorphous systems qualify them among the simplest (non-uniform)
universal computational devices. From the practical viewpoint, once technology
will enable a mass production of the required processors a host of new applica-
tions so far inaccessible to classical approaches to computing will follow.

Extended abstract: The history of amorphous computing systems began by the end of
the twentieth century, mainly as an engineering endeavor (cf. [1], [2], [4], [5], [6], or
[13]). Namely, in those days the progress in constructing the micro-electro-mechanical
systems (MEMS) has enabled to think of devices integrating a central data processing
unit (the microprocessor) and several components that interact with the surroundings
such as micro-sensors, wireless communication unit, and the energy source in a small
unit. These parts can possibly be complemented by micro-actuators and locomotive
means. The resulting device can be viewed as an embodied computational unit. Note
that such a unit possesses all the necessary parts characterizing autonomous embodied
robots.

MEMS devices generally range in size from 20 micrometres (20 × 10−6 m) to a
millimetre (i.e. 0.02 to 1.0 mm). Current ideas about nano-electro-mechanical systems
(NEMS) and nano-technology consider such systems at a nano-scale (10−9 m).

? This work was partially supported by RVO 67985807 and the GA ČR grant No. P202/10/1333

15

The driving force behind the respective development has mainly been a vision of
huge amounts of the respective “micro-robots” engaged in various application tasks
requiring local computation, local sensing, local actions and wireless communication
among the randomly distributed units of the system. The joint idea has been that using
local communication, the respective devices could self–organize in order to perform a
coordinated action none of the elements alone was able to realize.

It is obvious that the resulting system of locally communicating units has no fixed
architecture what is reflected by the term “amorphous computing systems”.

Amorphous computing systems could, e.g., be spread from an airplane on the sur-
face over a certain region in order to monitor certain parameters of the environment,
such as temperature, humidity, precipitation, or life manifestations (on an other planet)
(cf. [3], [5], [6], [12], [13], and [14]). These measurements can be transmitted into a
base station that will make the data processing. Such gadgets can also be used for object
surveillance. Another application is in medical sciences — the devices can be attached
to patients and spread over the hospitals in order to monitor the patients’ movements
and life functions. A nano-size device of such kind can even enter human bodies in or-
der to perform genetic manipulations at the cell level, to strengthen the immune system,
to heal up injuries, to cure heart or brain strokes, etc. (cf. [7]). Real bacteria represent a
template for such systems already existing in nature.

Amorphous computing systems communicating via radio can be seen as an extreme
case of wireless sensory networks: not only are the nodes of amorphous systems consid-
ered under severe size and cost constraints resulting into corresponding restrictions on
resources such as energy, memory, and computational speed. There are additional limi-
tations usually not considered in the domain of wireless sensory networks: the compu-
tational and communication hardware in the processors is stripped down to an absolute
minimum that seems to be necessary in order to maintain the required functionality and
scalability of the network. For instance, in order to allow potentially unbounded scal-
ability of amorphous computing systems their processors initially do not possess any
identifiers: they are all alike, they are very simple and theoretically can be seen as fi-
nite state automata. In order to maximally simplify the wireless communication mech-
anism in the nodes of amorphous computing systems no embedded communication
software is assumed. There is no synchronicity assumed and the communication among
the nodes is “blind” — a sender has no means for discovering the presence of nearby
receivers, it cannot learn that its message has been delivered since a receiver node can-
not reliably send message acknowledgement to a message sender. The broadcast itself
is disturbance-prone — the simultaneously broadcasting nodes jam each other in such
a way that no message can be delivered and moreover, the interference in broadcasting
cannot be recognized by the processors.

Waterborn amorphous computing systems usually work on different principles than
the radio-driven systems since radio waves do not travel well through good electrical
conductors like salt water and similar liquids. Therefore, the former systems commu-
nicate with the help of the signal molecules that spread around via Brownian motion
[16]. In some cases the decisions of nano-machines are based on so–called quorum
sensing [18], i.e., on the density of signal molecules in the environment. This calls for a

16

completely different design of the communication and control mechanisms that has no
counterpart in the domain of classical distributed computing.

The inconspicuous appeal of amorphous computing systems consists in their im-
mense variety of forms, in the possibility of their adaptation to particular characteristics
of their operational environment, in their extreme simplicity and, last but not least, in
their immense applicability to problems that cannot be solved by classical computa-
tional means. All these properties are supported by the computational universality of
the underlying systems.

So far, the prevailing focus of research in amorphous computing systems has mostly
been focused towards engineering or technological aspects of such systems almost com-
pletely ignoring theoretical questions related to their computational power and effi-
ciency. Obviously, without knowing their theoretical limits, one cannot have a complete
picture of the potential abilities and limitations of such systems. This was the starting
point of the project of the present author and his (then) PhD student L. Petrů (cf. his PhD
thesis [8]) devoted to studies of theoretical issues in amorphous computing initiated in
2004. Since that time various models of amorphous systems have been investigated.

The aim of the present talk is to give a brief overview of the developments within
the corresponding research as performed within our amorphous computing research
project. In the talk we present the main design ideas behind the respective models, point
to the main problems to be solved, indicate their solution, and present the main results.
The models will be approached roughly in the order of their increased generality (cf.
[19], [20], [21]).

We start with the simplest model of amorphous cellular automata [8] and will con-
tinue with more elaborated asynchronous stationary amorphous computing systems [9],
[17]. Then we turn our attention towards the so-called flying amorphous computing
systems with mobile processors (cf. [10] and [11]). Finally, we describe molecularly
communicating nano-machines that orchestrate their activities either by a molecular
analogue of radio broadcast [16] or via quorum sensing [18]. Interestingly, in the latter
case the nano-machines must be endowed by the self-reproduction ability.

The main result of our investigations is the proof of the computational universality
of the amorphous computing systems considered above . This points to the versatility
of such systems in various computational or robotic applications (cf. [15], [17]).

We conclude by stressing that the amorphous computing systems offer a radically
new concept in information technology that has the potential to revolutionize the way
we communicate and exchange information.

References

1. H. Abelson, et al. Amorphous Computing. MIT Artificial Intelligence Laboratory Memo No.
1665, Aug. 1999

2. H. Abelson, D. Allen, D. Coore, Ch. Hanson, G. Homsy, T. F. Knight, Jr., R. Nagpal, E.
Rauch, G. J. Sussman, R. Weiss. Amorphous Computing. Communications of the ACM,
Volume 43, No. 5, pp. 74–82, May 2000

3. D. K. Arvind, K. J. Wong: Speckled Computing A Disruptive Technology for Network
Information Appliances. Proc. IEEE International Symposium on Consumer Electronics
(ISCE’04), 2004, pp. 219-223

17

4. D. Coore: Introduction to Amorphous Computing. Unconventional Programming Paradigms:
International Workshop 2004, LNCS Volume 3566, pp. 99–109, Aug. 2005

5. J. M. Kahn, R. H. Katz, K. S. J. Pister. Next century challenges: mobile networking for
“Smart Dust”. In: Proceedings of the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, MobiCom ’99, ACM, pp. 271–278, Aug. 1999

6. J. M. Kahn, R. H. Katz, K. S. J. Pister. Emerging Challenges: Mobile Networking for Smart
Dust. Journal of Communications and Networks, Volume 2, pp. 188–196, 2000

7. Kurzweil, R.: The Singularity is Near. Viking Books, 652 pages, 2005
8. L. Petrů: Universality in Amorphous Computing. PhD Disseration Thesis. Dept. of Math.

and Physics, Charles University, Prague, 2009
9. L. Petrů, J. Wiedermann: A Model of an Amorphous Computer and Its Communication

Protocol. In: Proc SOFSEM 2007: Theory and Practice of Computer Science. LNCS Volume
4362, Springer, pp. 446–455, July 2007

10. L. Petrů, J. Wiedermann: A Universal Flying Amorphous Computer. In: Proc. Unconven-
tional Computation, 10th International Conference, UC’2011, LNCS, Vol. 6714, 2011, pp.
189-200

11. L. Petrů, J. Wiedermann: A Robust Universal Flying Amorphous Computer. In: C. Calude,
R. Freivalds, K. Iwama (Eds.), Jozef Gruska Festschrift, LNCS, 2014, to appear

12. M. J. Sailor, J. R. Link: Smart dust: nanostructured devices in a grain of sand, Chemical
Communications, Vol. 11, p. 1375, 2005

13. S. C. Shah, F. H. Chandio, M. Park: Speckled Computing: Evolution and Challenges. Proc.
IEEE International Conference on Future Networks, 2009, pp. 181-185

14. B. Warneke, M. Last, B. Liebowitz, K. S. J. Pister: Smart Dust: Ccommunicating with a
Cubic-Millimeter Computer. Computer, Volume: 34, Issue: 1, pp. 44–51, Jan. 2001

15. J. Wiedermann, L. Petrů: Computability in Amorphous Structures. In: Proc. CiE 2007, Com-
putation and Logic in the Real World. LNCS Volume 4497, Springer, pp. 781–790, July 2007

16. J. Wiedermann, L. Petrů: Communicating Mobile Nano-Machines and Their Computational
Power. In: Third International ICST Conference, NanoNet 2008, Boston, MA, USA, Septem-
ber 14-16, 2008, Revised Selected Papers, LNICST Vol. 3, Part 2, Springer, pp. 123-130,
2009.

17. J. Wiedermann, L. Petrů: On the Universal Computing Power of Amorphous
Computing Systems. Theory of Computing Systems 46:4 (2009), 995-1010,
www.springerlink.com/content/k2x6266k78274m05/fulltext.pdf

18. Wiedermann, J.: Nanomachine Computing by Quorum Sensing. In: J. Kelemen and A. Kele-
menová (Eds.): Paun Festschrift, LNCS 6610, p. 203215, 2011

19. Wiedermann, J.: Amorphous Computing: A Research Agenda for the Near Future. Natural
Computing, 2012, Vol. 11, No. 1, p. 59-63.

20. Wiedermann, J.: Computability and Non-computability Issues in Amorphous Computing. In
Baeten, J.C.M., Ball, T., de Boer, F.S. (ed.). Theoretical Computer Science. Berlin: Springer,
2012, p. 1-9.

21. Wiedermann, J.: The many forms of amorphous computational systems. In: H. Zenil (Ed.): A
Computable Universe. Understanding Computation and Exploring Nature As Computation,
p. 243-256, Singapore: World Scientific, 2013

18

P Systems with Active Membranes
Working in Sublinear Space

Claudio Zandron, Alberto Leporati, Luca Manzoni,
Giancarlo Mauri, Antonio E. Porreca

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

zandron/leporati/luca.manzoni/mauri/porreca@disco.unimib.it

EXTENDED ABSTRACT

P systems with active membranes have been introduced as a variant of P sys-
tems where the membranes play an active role in the computation: an electrical
charge, that can be positive (+), neutral (0), or negative (−), is associated
with each membrane; the application of the evolution rules can be controlled
by means of these electrical charges. Moreover, new membranes can be created
during the computation by division of existing ones. A very interesting feature
of such systems is that, using these operations, one can create an exponential
number of membranes in a polynomial time, and use them in parallel to solve
computationally hard problems, such as problems in NP or even in PSPACE.

This possibility raises many interesting questions concerning the trade–off be-
tween time and space needed to solve various classes of computational problems
by means of membrane systems. In order to clarify such relations, a definition of
space complexity for P systems has been proposed, on the basis of an hypothet-
ical implementation of P systems by means of real biochemical materials: every
single object and every single membrane requires some constant physical space.
As a consequence, the size of a configuration of a P system can be defined as the
sum of the number of membranes in the current membrane structure and the
total number of objects they contain. The space required by a halting computa-
tion is the maximum among the sizes of the configurations reached during such
a computation. The space complexity of a P system Π, denoted by |Π|, is the
maximum among the sizes of all its computations. Finally, a family of P systems
(working on strings from an alphabet Σ) Π = {Πx : x ∈ Σ?} is said to operate
in space f : N→ N if |Πx| ≤ f(|x|) for all x ∈ Σ?.

Research on the space complexity of P systems with active membranes has
shown that these devices, when using a polynomial amount of space, exactly
characterize the complexity class PSPACE. A similar result to characterize
the complexity class EXPSPACE can be obtained by considering exponential
space P systems. The results have then been generalized, showing that any Tur-
ing machine working in space Ω(n) can be simulated with a polynomial space
overhead.

19

The talk will focus on P systems working in sublinear space, with a survey
on recent research results obtained by our group at the University of Milano-
Bicocca. In order to consider sublinear space, we first need to define a corre-
sponding meaningful notion in the framework of membrane systems, inspired
by sublinear space definition for Turing machines: we consider P systems hav-
ing two distinct alphabets, an INPUT alphabet and a WORK alphabet. The
input objects do not contribute (unless they are rewritten) to the size of the
configuration, which is defined as the sum of the number of membranes in the
current membrane structure and the total number of only the working objects
they contain. Notice that, since sublinear-space Turing machines are weaker
(possibly strictly weaker) than those working in polynomial time, we also need
to consider uniformity conditions for the families of P systems that are weaker
than the P uniformity usually considered, such as logspace uniformity or even
DLOGTIME uniformity (usually employed for families of Boolean circuits).

The first natural approach, when considering the use of sublinear space in the
framework of membrane systems, is to compare P systems using a logarithmic
space with Turing machines using the same amount of space. We first showed that
DLOGTIME–uniform P systems with active membranes, using a logarithmic
amount of space, are able to simulate logarithmic-space deterministic Turing
machines, and thus to solve all problems in the class L.

However, this result felt somewhat unsatisfactory: in fact, logarithmic-space
Turing machines can only generate a polynomial number of distinct configura-
tions; on the contrary, P systems working in logarithmic space have exponentially
many potential ones. Indeed, n distinct input objects can, in principle, be arbi-
trarily partitioned in log n different regions of the P system. An interesting open
question, thus, was the following: is it possible to effectively reach (and distin-
guish in order to exploit them) all such configurations? The answer is trivially
yes when we consider non–confluent P systems, but it was not clear whether or
not this could actually be done also in a confluent way.

We proved that this was indeed the case, and that it is possible to move the
input objects among the membranes and to exploit their position in such a way
that harder problems than those in L can be solved. In particular, using such
a technique, polynomial-space Turing machines can be simulated by means of
P systems with active membranes using only logarithmic auxiliary space, thus
characterising PSPACE. This was the first case where the space complexity of
P systems and that of Turing machines differ by an exponential amount. Since,
as previously said, PSPACE had already been proved to be characterised by
polynomial -space P systems, these results also highlight a gap in the hierarchy
of space complexity classes for P systems: super-polynomial space is required in
order to exceed the computational power of logarithmic space.

We considered then P systems using only a constant amount of space, and
it turned out that, surprisingly, a constant amount of space is sufficient (and
trivially necessary) to solve all problems in PSPACE. To obtain this result, the
input objects are used to store the contents of the tape of the simulated Turing
machine, and the construction is based on two main ideas. The first one is that,

20

since by rewriting more than a constant number of input symbols the amount
of space would be non-constant, the only way to use such symbols to store the
state of the tape is to track their position inside the membrane structure. The
second idea is that it is possible to “read” a subscript of an input object σj
without rewriting it and by using only a constant number of additional objects
and membranes, using the objects to implement a counter and the charges of
the membranes to inform other objects that the timer has reached the value j.

This result challenges our intuition of space, formalized in the definition of
space complexity for P systems, adopted so far: does counting each non-input
object and each membrane as unitary space really capture an intuitive notion
of the amount of space used by a P system during a computation? From an
information-theoretic perspective, we may observe that, on an input of size n,
the constant number of working objects employed by the simulation actually
encode Θ(log n) bits of information, since they are taken from an alphabet of
polynomial size with respect to n. It may be argued that this amount of in-
formation needs a proportional amount of physical storage space. Similarly, the
membranes themselves, being identified by a label selected from a set Λ, contain
a number of bits of information that is Θ(logΛ), which must have a physical
counterpart.

Following these considerations, we proposed a more accurate estimate of the
space required by a configuration of a P system, that takes into account such
logarithmic factors. Using the new space definition, all the results involving at
least a polynomial amount of space, according to the first definition, still hold.
The difference appears only when P systems with severely tight bounds on the
amount of space used during computations are considered.

In fact, the systems used to obtain the result described above, and requiring
a constant amount of space according to the former definition, require now a
logarithmic amount of space. Furthermore, the space bounds of the simulation
of polynomial-space Turing machines by means of logarithmic-space P systems
with active membranes, previously described, increase to Θ(log n log log n), since
in that case each configuration of the P systems contains Θ(log n) membranes
with distinct labels and O(1) non-input objects.

We will conclude the talk by presenting a result that highlights the impor-
tance of rewriting input symbols for P systems when a sub-logarithmic number
of membrane labels is used. We proved that, under this last condition, if we only
allow the use of rules that move the input objects in the membrane hierarchy
(i.e. send-in, send-out, and dissolution rules), then it is even impossible to cor-
rectly distinguish two input strings of the same length (unless the ordering of
the symbols is not taken into account), even when no bound on the amount of
space is present. In other words, P systems having the limitations just described
and accepting (resp., rejecting) a long enough string x also accept (resp., reject)
another string obtained by swapping two symbols of x.

21

22

Regular Papers

Membrane Computing Inspired Approach for
Executing Scientific Workflow in the Cloud

Tanveer Ahmed, Rohit Verma, Miroojin Bakshi, Abhishek Srivastava

Indian Instititue of Technology Indore
{phd12120101, phd12110101, cse1200105, asrivastava}@iiti.ac.in

Abstract. The continuous expansion and appreciation of the service ori-
ented architecture is due to the standards of loose-coupling and platform
independence. Service-Oriented Architecture is most commonly and ef-
fectively realized through web services, and their temporal collaboration
commonly referred to as web service composition. In the present sce-
nario, the most popular variant of composition is service orchestration.
Orchestration is achieved through a centralized ‘heavyweight ’ engine, the
orchestrating agent, that makes the deployment configuration a massive
‘choke-point ’. The issue achieves significance when data and compute in-
tensive scientific applications rely on such a centralized scheme. Lately,
a lot of research efforts are put in to deploy a scientific application on
the cloud, thereby provisioning resources elastically at runtime. How-
ever, just like the orchestrating agent it is the cloud now that provisions
resources and in a similar manner there is an unnecessary burden on
the hosted platform. In this paper, we aim at eliminating this central
‘choke’ point by presenting a model inspired from ‘Membrane Comput-
ing ’ that executes a scientific workflow in a decentralized manner. The
benefit of this paradigm comes from the natural process of autonomy,
where each cell provision resources and execute process-steps on its own.
The approach is devised keeping in mind, the feasibility of deployment
on a cloud based infrastructure. To validate the model, a prototype is
developed and real scientific workflows are executed in-house (with-in
the Intranet). Moreover, the entire prototype is also deployed on a virtu-
alized platform with software defined networking, thereby studying the
effects of a low bandwidth environment, and dynamic provisioning of
resources.

Keywords: Scientific Workflows, Service Oriented Architecture, Membrane
Computing

1 Introduction

Service oriented architecture has now become a multipurpose paradigm execut-
ing business processes and helping compute intensive scientific applications [2].
It’s success can largely be attributed to advancements in the field of cloud com-
puting. The technological advancements, notwithstanding, the paradigm relies

25

on a centralized solution to orchestrate either a business process or data inten-
sive scientific applications as the case may be. The orchestrator, by virtue of its
inherent centralized nature is a single point of failure and suffers from the issues
of scalability, reliability, fault tolerance, security, and privacy [4].

It is well known that a scientific workflow is resource intensive, whereas a
business workflow is control oriented. A scientific workflow is well exemplified by
the Large Synoptic Survey Telescope1 experiment aimed to recursively explore
and take images of the sky for a period of 10 years and expected to generate
data (300MB/s) in the order of exabytes (both raw and pruned). To rely on a
centralized architecture in this context, is a potential processing and communi-
cation bottleneck. Moreover, the failure of an orchestrator or the hosted platform
(cloud’s Infrastructure as a Service), causes a cascaded chain reaction, making
the entire hierarchy of deployed services moot. The issue is evident by the failure
of Amazon in 2011, 2012, and 2013. A decentralized setup, on the other hand,
achieves a reduction in failures and enables quick recovery. Considering the ex-
ample of AstroGrid science (calculating Redshift) presented in [1], a reduction
of 43.47% (data transfer) was achieved by enacting a workflow using a decen-
tralized architecture. Hence, in the context of scientific applications, we believe
a fault tolerant decentralized solution towards workflow execution should be the
way forward.

With the advent of cloud computing, concepts such as Elastic Computing,
federation of clouds, and Mobile Cloud Computing, are just around the corner.
In respect to the scientific workflows, the benefit of decentralization comes in the
context of Elastic Computing. Consider, a compute intensive workitem is pro-
cessing huge volumes of data. If a centralized orchestrator is handling this task,
then the orchestrator is responsible for gathering resources, provision them into
the existing workflow, perform migrations at remote locations and several oth-
ers resulting in an un-necessary burden on the controlling authority. Moreover, a
centralized engine foster a lot of infrastructure, development, maintainence and
operational costs. Therefore, for certain scientific experiments limited by budget
constraints, the decentralized architecture is an ideal candidate.

Bell et al. [3] states “the rapidity with which any given discipline advances
is likely to depend on how well the community acquires the necessary exper-
tise in database, ‘workflow management ’, visualization, and cloud computing
technologies”. Taking this line of reasoning as a benchmark for the proposed
work, we propose a decentralized solution to execute a scientific workflow via
membrane computing approach. We take inspiration from biology to design a
workflow management model that execute services, realizing the process-steps
or workitems, in a decentralized manner. We use the elementary principles of
membrane computing to model the execution of a workflow. The choice of this
type of an architecture comes with the benefit that it provides a natural and an
intuitive method to model workflows, pass parameters and elastically increase or
decrease resources at runtime. We consider each membrane as a service capable
of executing a scientific workitem. The membranes are self capable of discov-

1 http://www.lsst.org/lsst/science

26

ering other resources (or services) on their own. Each service is provided with
evolutionary rules (Membrane terminology), it is through these rules the services
evolve, allocate & provision extra resources, and execute their respective tasks
in a cost-efficient manner.

Substantial literature focuses on achieving scientific workflow execution over
the cloud [1], [2], [9], [11], [12]. However, most of these rely on the cloud (or the
orchestrator) to elastically increase or decrease resources at runtime, or don’t
focus on elasticity at all. Therefore, our objective is to introduce ‘autonomy ’ in
resource provisioning by the work-items themselves.

To the best of our knowledge, this is the first endeavour to explore the pos-
sibility of executing a workflow via Membrane Computing. To demonstrate the
viability of the same in actual deployment, we have developed a prototype with
‘real’ services. We execute real scientific workflows collected from myexperi-
ment2, and deploy the prototype on a virtualizated platform (XENServer) to
test the validity of the proposed work. During validation, the services exchange
data and parameters via a stable storage. The stable storage itself was offered as
a service, thereby affirming to the standards of Service-Oriented Architecture.
Moreover, using Software Defined Networking, we study the effects of limited
bandwidth capabilities during execution.

The contribution of this paper is two-fold:
1) A novel membrane inspired approach for decentralizing workflow execu-

tion, with autonomous provisioning of computing resources
2) A proof of concept, via actual deployment and execution of scientific work-

flows.
The rest of the paper is organized as follows: Section ii presents a brief

introduction to membrane computing. Membrane Inspired Scientific Workflow
execution is discussed in Section iii. Results are discussed in Section iv, Related
Work is presented in Section v. We conclude with Future Work in Section vi.

For the purpose of clarification, a scientific workflow is called a workflow
throughout this paper. A resource is analogous to a service instantiated on a
Virtual Machine.

2 Membrane Computing Paradigm

Before beginning the discussion of Membrane Inspired workflow management,
we present a small discussion on the Membrane Computing paradigm.

Membrane computing takes its inspiration from a living cell. A living cell is
encapsulated by a membrane that separate its internals from the external envi-
ronment. The cell encloses multiple natural artifacts, e.g. nucleus, golgi appara-
tus, molecules, vesicles etc. The cytoplasm holds charged ions, whose movement
(either inwards or outwards) is controlled by the presence of certain type of
proteins. Using chemical receptors, the membrane allows a selective passage of
molecules and achieves cell-to-cell signaling.

2 http://myexperiment.org

27

The pioneering work in the area of membrane computing was proposed in
[6]. The author proposed, the basic structure of a membrane consist of several
separate sub-membranes. The membranes consist of the delimiting region, called
multiset, where several different objects are placed. The evolution, manipulation,
and transformation of objects is accomplished via evolutionary rules. The objects
are transferred from one membrane to another membrane, causing transitions
and carrying out the intended tasks. The execution rules are chosen in a non-
deterministic manner, thereby presenting an illusion of having infinite parallel
computing capability. The application of these rules is conditional i.e. a rule is
invoked if certain reaction conditions are applicable. The rules as explained in
[6] are of the form a −→ b, where a and b represents multisets of objects. Since,
the data and objects are transferred from one membrane to another, the author
proposed the notion of ‘target indications’. Using target indications, the objects
are retained, transferred and consumed. It can be deduced that using these rules
the multiset can be written very easily. An example of a rule applied towards
object evolution is demonstrated below.

Consider a rule of the form (ij) −→ (i,here) (i,out) (j,in) (j,out). In this ex-
ample, a copy of i and j is consumed and two copies of i and j are produced. One
copy of i is retained within the same membrane (the ‘here’ indicator), while the
other one moves out to the surrounding environment (the ‘out’ indicator). Out of
the two copies of j produced, one goes to the surrounding environment and the
other moves inwards toward the inner membrane(s). There exists catalytic rules
demonstrating the applicability only in the presence of a certain type of an ob-
ject, e.g. cb −→ cv, where c is the catalyst. Also, there are non co-operating rules,
e.g. a −→ b, membrane dissolving rules, e.g. j −→ oδ, where δ denotes the mem-
brane dissolving action. It should noted here, the author [6] deliberately points
out that the membrane dissolving rule cannot be applied to the skin membrane
(for obvious reasons). Further, there are communication rules, symport and an-
tiport, demonstrating how membranes communicate. As outlined earlier, in the
real world the membranes communicate via protein channels. Therefore, the pro-
tein channel and the molecules are the agents of communication in membrane
computing. The ‘symport rules’ allows for the passage of molecules in one way.
On the other hand, the ‘antiport rules’ allow for a two way communication via
molecules.

There also exists membrane division and merging rules. A membrane division
rule is of the form [1a]1−→[2b]2[3c]3 (a membrane is denoted as ‘[]’, [6]), while
a membrane merging rule is of the form [2e]2[3f]3−→[1d]1. Further, there exists
endocytosis rules, exocytosis rules, gemmation rules etc. The rules are applied
locally in each membrane in a non-deterministic, maximally parallel manner,
thereby causing transitions in the system.

In this paper, we try to use these elementary concepts to achieve a decen-
tralized workflow execution. Based on the discussion so far, it is understood that
this paradigm has a natural orientation, and can execute any type of compu-
tation problem (e.g. Satisfiability [14], Traveling Salesman Problem [16] etc). It
is due to this feature, it has received a lot of attention in literature, right from

28

the moment of its inception. It can be deduced that the membrane computing
paradigm allows a natural metaphor and an intuitive mechanism to model the
complex behavior of scientific workflows. As discussed previously the paradigm
allows communication rules (symport and antiport), membrane dissolving rules,
membrane division and merging rules etc. Using these rules, scientific workflow
constructs and functionality can be managed with little efforts. Further, apply-
ing the evolutionary rules, a workflow itself can be modified dynamically (via
endocytosis, exocytosis, gemmation etc.).

3 Membrane inspired scientific workflow execution

In the proposed work, a membrane is considered as a service capable of realizing
a single ‘workitem’ or a ‘process-step’. Each membrane has its fluid (local mem-
ory) capable of storing the contextual information and local data (or molecules).
The contextual information includes the load-indicator parameters, the inner
membranes (the successor workitems), the outer membranes (the predecessor
workitems), the resource pool etc (discussed below). The membranes communi-
cate via the ‘symport’ rules to pass control to the subsequent membrane. The
objects and data are passed via the multiset. The data is equivalent to the pro-
teins capable of penetrating the membrane structure. The membranes do not
pass data directly, but rather direct the subsequent membranes to read from the
stable storage location (implemented as a scalable distributed shared memory).
In the following text, a service is called a ‘membrane’ for the rest of the paper.

Fig. 1. Membrane Architecture

Before proceeding any further, we must outline the basic architecture utilized
to achieve a decentralized execution. Fig 1 represents the overall design used
while executing a workflow. The outermost membrane represents the skin mem-
brane, the inner membranes demonstrates the individual workitems. As visible,
all membranes pass data and parameters to the global multiset. Each membrane

29

operates on the objects available in the multiset locally. Hence, there is no need
of a central controlling authority. After completing an execution, the membrane
dissolves and leaves the transformed objects in the multiset. This procedure is
followed till the objects are pushed out to the surrounding i.e. the execution
of a workflow has completed. In the membrane computing model, we focus on

Fig. 2. A Simple Workflow & Membrane Representation

the property of elastically provisioning resources, by the membranes themselves
using cell division rules. An example of cell division rules was outlined previ-
ously. Using such type of division rules, the membrane is instantly divided, and
the load is dynamically shared between the parent membrane and the newly
born child membranes. It should be pointed out here that the provisioning of
resources is done autonomously (i.e. by a membrane itself), thereby the need
of the cloud service provider to locate and provision resources is removed com-
pletely. While provisioning extra resources (resource elasticity property), or in
membrane terminology, when a parent membrane is dynamically divided into
child membranes, the child membranes also read and write to the same multiset.
In this way, a membrane is self capable of finding and provisioning resources into
existing workflow. Previous works in literature do not take this property into con-
sideration, they either depend on cloud service provider or on the orchestrator to

30

accomplish this functionality. On the other hand, we focus on self-provisioning
of resources by the membranes themselves.

During execution, when a membrane is dynamically divided, the load has
to be shared between parent and child membranes. Since the provisioning of
resources, or rather, the membrane division process is autonomous (no orches-
trator), therefore one might think that the division process will take some time.
However, in the results section we prove that the division process, rather than
slowing things down, actually speeds up the process.

To dynamically divide a membrane, a load-indicator is instantiated with each
membrane. When a threshold value is reached, for either the response time, the
throughput, the queue size etc., the membrane division rule is invoked and the
parent membrane is divided into multiple child membranes. Whenever, the load-
indicator sensed the load has reduced, the membrane merging rule was invoked
and the extra provisioned resources were released.

In the proposed model, the multiset is considered as a stable, semantically
distributed shared memory offered as a service. Semantic space allow an inher-
ent capability for parallel processing and a distributed stable data management
platform. This type of platform allows huge volumes of data to be stored in a
semantic format, with event-driven and asynchronous mode of communication.
Such type of a storage schema allows a simple Application Programming Inter-
face (API) to read and write to a persistent storage. The APIs to access the
protocol are exposed as a web service (SOAP & RESTful APIs). The data cen-
ter allows the query to specified in GData, OpenSearch, XQuery/XPath over
HTTP, SPARQL etc. Since, the discussion of semantic spaces is out of scope for
this paper, we direct the interested reader to [7], [8].

Fig. 3. Execution Rules

To demonstrate the procedure used in the membrane computing model to
execute a workflow is explained with the help of an example. A simple workflow
with four activities in BPMN (Business Process Management Notation) [15]
format is demonstrated in Fig 2. The equivalent representation using membranes
is shown in the same Figure. The rules to execute the workflow are shown in Fig
3. The rules here do not include any division behavior, rather they specify the
execution procedure from a global point of view. It should be pointed out here
that the elastic behavior or the cell division rules are specified locally to each
membrane.

In this Figure, a,b,c,d,e,f are multisets of objects. The execution begins when
membrane one performs a transition, and writes the transformed data to the
multiset (Rule 1). Further, using Rule 1 the membrane dissolved (the δ indicator)

31

and let membranes two and three access the multiset to read the objects b and c
respectively. A similar procedure is followed for all the execution rules. The last
rule demonstrates the completion of transition activities, and the system halts.
In the proposed work, we have used the notion of the dependency operator,
enabling a sense of determinism during execution. In this paper, we propose the

use dependency operator as
(Details)−−−−−−−−→

Dependency
, where Dependency represents the type

of dependency (data or control) and Details demonstrate the list of dependent
membranes. It is a known fact that the membrane at same level execute their
rules in a non-deterministic manner. However, owing to control dependencies,
certain membranes have to be restricted from execution. In such scenarios, the
proposed operator provides a certain level of determinism and restrict few of
the membranes from execution. For example, consider the following dependency
rule:

[1[S1a]S1 [S2b]S2 [S3c]S3]1
S2,S3−−−−−→

Control
[1[S1a]S1]1δ (1)

In this rule, the dependency is control and the membrane list contains {S2,
S3}. The rule implies that prior to the execution of S1, or, in other words, prior
to the application of this rule, both S2 and S3 must dissolve (or S1 and S2 must
have completed their resp. tasks).

It was outlined previously, the membranes are self sufficient to procure re-
sources on their own. To accomplish this functionality, cell division rules are
utilized. For example, consider a rule

[1a]1−→[1.1a]1.1[1.2a]1.2

In this example, membrane one is divided into two halves, each having the same
processing functionality and capability. The division process is carried out us-
ing symport rules, involving the membrane and the load-indicator. As soon the
membrane divided, the execution procedure and order became

[1.1a]1.1[1.2a]1.2−→[2b, in]2 [3c, in]3 δ

If, in the middle of a transaction, the provisioned resources have to be released,
then cell merging rules are invoked, e.g.

[1.1a]1.1[1.2a]1.2−→[1a]1

Hence, by applying the division rules and the merging rules, resources can be
provisioned and released. The specification and application of these rules is de-
pendent on each individual membrane, there is no authority that controls the
division and merging process. The membranes are self-sufficient and self-capable
of invoking division rules and merging rules independently. During real world
experimentation, we have also used the same procedure to execute the scientific
workflows.

In the membrane computing model, a specific role is assigned to each mem-
brane. Moreover, the membranes are assigned a unique name and an identifier.
Membranes assigned to the same role can execute the same functionality. In

32

the Future Internet, the issue of reliability is inevitable, therefore redundant
membranes should be kept as back-up in case one fails during execution. Next,
while executing a workflow there are certain input and output dependencies that
must be resolved before proceeding. In the proposed work, these dependencies
are specified in an XML format thereby providing a straightforward mapping
to a machine readable format. Since, a lot of work [1], [5], [13] has been done
to resolve dependencies and automate the execution of traditional workflows,
therefore we rely on those procedures to proceed with the execution.

Listing 1.1. ResourcePool

<ResourcePool>
<Resource>
<Address>
h t t p : //10 . 200 . 40 . 139/ T r a f f i c / Diverte /node1
</ Address>
<Endpoint>
.
.
</Endpoint>
</ Resource>
<Resource>
<Address>
h t t p : //10 . 200 . 40 . 132/ T r a f f i c / Diverte /node2
</ Address>
<Endpoint>
.
.
</Endpoint>
</ Resource>
</ ResourcePool>

Now, to begin with the execution, a workflow is specified to the multiset.
Every participating membrane reads its corresponding dependencies (a low level
locking mechanism). In the experiments, we used an XML schema. It should
be noted that our motive is ‘not’ to introduce a new description language. The
schema is not limited and was constructed using the principles of domain specific
languages. Therefore, any type of workflow can be mapped to a machine readable
and executable format, thereby presenting a language independent interface. In
that case, each membrane must be equipped to handle any type of description.
A question arises here: How do membranes understand these specifications? To
interpret these constructs, each membrane is equipped with a local interpreter.
Hence, an extra layer is added to the membranes to correctly interpret the work-
flow description (either XML or normal rules).

33

Fig. 4. One of the Workflows for Experimentation

34

4 Results

4.1 Experimental Setup

In order to evaluate the proposed work, and to check the viability in actual
deployment scenarios, we have conducted experiments with multiple workflows
collected from myexperiment.org. The execution of these workflows was achieved
in 1) Inside the Institute’s Intranet 2)Virtual Machines within the Computing
Lab of the Institute. The configuration of each machine in the Intranet is i5 Pro-
cessor with 4 GB RAM, whereas the resource pool had multiple machines, each
having Quad-Core processors with 8GBs and 16GBs of RAM. The distributed
shared memory, MozartSpaces3, was deployed as a RESTful service. The appli-
cation container for the services was Apache Tomcat v7.0.41. The experiments
were conducted specifically keeping in mind the capability to provision resources
independently, specifically we concentrate on Infrastructure as a Service.

To study the effect of a low bandwidth environment, the networking capa-
bilities of each Virtual Machine (VM) was constrained. In this paper, one of our
motive was to test the model’s performance and feasibility to execute a decen-
tralized scientific workflow under duress with limited bandwith capabilities. We
discuss the behavior of the model in the next subsection.

4.2 Execution Efficiency

As outlined previously, we have chosen workflows from myexperiment. The work-
flows are uploaded by the people in the research community, and spans different
fields viz. Bio-Informatics, Protein Sequence Analysis, nucleotide and protein
sequence analysis. Each workflow was executed multiple times. A total of 13, 28,
and 18 services were developed for workflow I4, II5, and III6.

Fig. 5. Execution Time WF-I No Constraints

3 http://www.mozartspaces.org/
4 http://www.myexperiment.org/workflows/244.html
5 http://www.myexperiment.org/workflows/124.html
6 http://www.myexperiment.org/workflows/1477.html

35

During the experiments, it was assumed that each of the discrete workitems
are realized by a web service. In Fig 5, we have shown the execution time of
the workflow I, with no constraints on the bandwidth capabilities. As visible,
the execution time of the workflow started at a normal pace. But, when the
invocations increased linearly, the execution time followed. The moment, the
load-indicator (of each individual membrane) sensed duress, a new resource or
a Virtual Machine (VM) was provisioned from the resource pool. The newly
provisioned resource was made aware of the stable storage location and access
methodology.

After provisioning resources, the execution time experienced a sudden drop.
This is clearly visible in Fig 5. It should be noted here that in the experiments,
each workitem (or membrane) provisioned resources on its own. The first reduc-
tion in the execution time is due to the fact that only a few membranes provi-
sioned an extra resource. Therefore, the drop is not that much steep. However, a
sudden decrement in the execution time at the end of the graph indicate multiple
VMs were provisioned to complete the workflow. We invoked the same workflow
multiple times (in regular intervals) so as to test the behavior of autonomously
provisioning resources. It should be noted here, when the membranes provisioned
extra resources, it happened when the load indicator sensed duress for the new
incoming request. The already existing requests were not dynamically migrated
(live migration). In business terminology, the SLAs (Service Level Agreements)
were violated for the new requests only, there is no need to provision resources
for non-SLA violating requests (principles of cost elasticity).

Fig. 6. Execution Time WF-III No Constraints

The same procedure was followed to execute workflows II and III. The re-
sult demonstrating the execution time for workflow II is shown in Figure 6. As
visible, the execution time dropped the moment the load indicator sensed an
increment in the load of the individual membrane. Hence, looking at the execu-
tion results for workflows I and II, it can be said that though the membranes
provisioned resources autonomously, but the execution efficiency was never com-
promised. The results demonstrate the feasibility of the membrane computing
paradigm towards executing scientific workflows without requiring a centralized
controller, or without pre-defined arrangements with the cloud service provider
(Infrastructure as a Service).

36

Fig. 7. Execution Time WF-I Limited Bandwidth

In the experiments conducted so far, the bandwidth of each VM was not
limited. During experimentation, we limited the bandwidth of each VM deployed
to 2KBytes/s. This was done to evaluate the feasibility of the prototype in real
world scenarios. The resulting graph for the execution time is shown in Fig 7
(workflow I). As demonstrated in the Figure, the provisioning of extra resources
resulted the same sudden drop in the execution time. However, in this case the
execution time increased. This effect is due to the fact that the bandwidth is
limited and each individual membrane required some time to receive the data
dependencies. Moreover, it was observed that there were instances when the
request was dropped due to severe congestion.

Fig. 8. Network Performance Limited Bandwidth

In Figures 8, we have shown the snapshots of the network perfromance of
two VMs chosen at random. It can be seen from the Figures that the network
capabilities witnessed its peak during execution. It is at that instant, the new
incoming requests were dropped. Further, the performace showed that whenever
the load increased beyond the threshold limit, new VMs were provisioned to
balance the load.

5 Related Work

In literature, there are lot of techniques available to execute a workflow, either
centrally or decentrally. In the decentralized scenario, the services share data and
parameters either by passing messages directly or indirectly. However, only a few
are in the context of dynamically provisioning resources for scientific workflows
with actual deployment.

37

Nature inspired metaphors have caught some attention lately. Based on these
approaches we found two interesting metaphors 1) Chemistry 2) Physics. A de-
centralized framework to execute workitems, is proposed in [5], [2]. Fernandez
et al [2] propose executing a workflow using the chemical paradigm. Similar to
our work, the authors used a decentralized environment, however, they used a
centralized shared memory (hence, the authors suffered from scalability issues).
Moreover, they kept the services fixed to execute the workitems, with no provi-
sion of dynamic adaptations. Further, the issues of elasticity is not addressed. A
similar method to achieve orchestration and choreography is proposed in [5]. The
author used the same chemistry model to achieve orchestration and choreogra-
phy. Next, the work in physics, focus achieving motion co-ordination, using the
notion of ‘Computational Fields’ [17]. However, the focus is distributed motion
co-ordination, not scientific workflow execution. A similar to technique to syn-
chronize the motion of ‘Unmanned aerial system (UAS)’ is proposed in [18]. The
author has used the notion of physics inspired co-fields to accomplish this func-
tionality. A similar physics inspired technique is proposed in [10]. The authors
also focus achieving a decentralized service composition in dynamic environ-
ments. However, the focus is not scientific workflow execution.

A cloud based middleware is proposed in [11]. It is a platform proposed to
elastically provision resources at run time. However, the main focus of [11] is not
scientific workflow execution in a decentralized environment. In [9], a compari-
son between the resource consumption between a high performance computing
machine and a cloud based environment is presented. The cloud experiments are
conducted on Amazon’s EC2. The author found, the resources provisioned from
the cloud were not that powerful as compared to a traditional high performance
computing machine. They found, though executing scientific workflow was ac-
ceptable, however the data transfer costs were high. This is one of the factors
we will be focusing in the future works. How to find an optimal balance between
resource and cost elasticity? [12] introduces the concept of scheduling data in-
tensive scientific workflows in a cloud based environment with virtual clusters.
The scheduling is based on the ‘iterative ordinal optimization’ algorithm. The
application of the algorithm produces a significantly lower processing overhead
involved in scheduling the workflows. In this paper, we also achieved a decen-
tralized workflow execution based on observable virtual clusters.

6 Conclusion and Future Work

In this paper, we introduced the membrane computing paradigm towards real-
izing a scientific workflow. The membranes acted independently, with a global
perspective, and provisioned resources autonomously. We validated our approach
over real services, on real virtualization platform within the computer labs of our
institute. We were able to demonstrate that the proposed methodology was ef-
fective in provisioning resources autonomously at run-time, thereby validating
the technique for an actual deployment. Future work in this direction includes
work towards extending the methodology towards incorporating mobile devices.

38

Further, we are looking towards deploying the services on a grid based facility,
while provisioning resources from a public cloud. Finally, we propose to study
the effects of cost elasticity on resource provisioning.

7 Acknowledgement

The authors would like to thank fellow Ph. D students, to help with the technical
issues faced during experimentation, and figuring out with the technicalities of
Membrane Computing. We would also like to thank the people in the research
community, for sharing their scientific workflows.

References

1. Barker A., Walton C. D., Robertson D.: “Choreographing web services” Services
Computing, IEEE Transactions on 2, no. 2 (2009): 152-166.

2. Fernandez H., Tedeschi C., Priol T.: “A Chemistry Inspired Workflow Management
System for Decentralizing Workflow Execution”, IEEE Transactions on Services
Computing, doi: 10.1109/TSC.2013.27 (pre-print).

3. Bell G., Hey T., Szalay A.: “Beyond the data deluge.” Science 323, no. 5919 (2009):
1297-1298.

4. Alonso G., Agrawal D, Abbadi A. E., Mohan C.: “Functionality and limitations of
current workflow management systems.” IEEE Expert 12, no. 5 (1997): 105-111.

5. Wang C., Pazat J.: “A Chemistry-Inspired Middleware for Self-Adaptive Service Or-
chestration and Choreography.” In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pp. 426-433. IEEE, 2013.

6. Paun G.: “Computing with membranes” Journal of Computer and System Sciences
61, no. 1 (2000): 108-143.

7. Wang X., Dong J. S., Chin C., Hettiarachchi S. R., Zhang D.: “Semantic space: An
infrastructure for smart spaces.” Computing 1, no. 2 (2002): 67-74.

8. Zhuge H.: “Semantic grid: Scientific issues, infrastructure, and methodology.” Com-
munications of the ACM 48, no. 4 (2005): 117-119.

9. Juve G., Deelman E., Vahi K., Mehta G., Berriman B., Berman B. P., Maechling P.:
“Scientific workflow applications on Amazon EC2.” In E-Science Workshops, 2009
5th IEEE International Conference on, pp. 59-66. IEEE, 2009.

10. Ahmed T., and Srivastava A. “Minimizing Waiting Time for Service Composition:
A Frictional Approach.” In Web Services (ICWS), 2013 IEEE 20th International
Conference on, pp. 268-275. IEEE, 2013.

11. Calheiros R. N., Vecchiola C., Karunamoorthy D., Buyya R.: “The Aneka platform
and QoS-driven resource provisioning for elastic applications on hybrid Clouds.”
Future Generation Computer Systems 28, no. 6 (2012): 861-870.

12. Zhang F., Cao J., Hwang K., Wu C.: “Ordinal Optimized Scheduling of Scientific
Workflows in Elastic Compute Clouds.” In Cloud Computing Technology and Sci-
ence (CloudCom), 2011 IEEE Third International Conference on, pp. 9-17. IEEE,
2011.

13. Zaha J. M., Barros A., Dumas M., Hofstede A. T.: “Let’s dance: A language for
service behavior modeling.” In On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, pp. 145-162. Springer Berlin Heidelberg,
2006.

39

14. Cecili J. M., Garca J. M., Guerrero G. D., Martnez-del-Amor M., Hurtado I. P.,
Prez-Jimnez M.: “Simulating a P system based efficient solution to SAT by using
GPUs.” The Journal of Logic and Algebraic Programming 79, no. 6 (2010): 317-325.

15. White S. A.: “Introduction to BPMN.” IBM Cooperation 2, no. 0 (2004): 0.
16. Nishida T. Y. “An approximate algorithm for NP-complete optimization prob-

lems exploiting P systems.” In Proc. Brainstorming Workshop on Uncertainty in
Membrane Computing, pp. 185-192. 2004.

17. Mamei M., Zambonelli F., Leonardi L.: “Distributed motion coordination with co-
fields: A case study in urban traffic management.” In Autonomous Decentralized
Systems, 2003. ISADS 2003. The Sixth International Symposium on, pp. 63-70.
IEEE, 2003.

18. Reza H., Ogaard K.: “Modeling UAS swarm system using conceptual and dynamic
architectural modeling concepts.” In Conceptual Structures for Discovering Knowl-
edge, pp. 331-338. Springer Berlin Heidelberg, 2011.

40

P Systems with Anti-Matter

Artiom Alhazov1, Bogdan Aman2, Rudolf Freund3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, MD-2028, Chişinău, Moldova

E-mail: artiom@math.md
2 Institute of Computer Science, Romanian Academy, Iaşi, Romania

E-mail: bogdan.aman@iit.academiaromana-is.ro
3 Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Abstract. The concept of a matter object being annihilated when meet-
ing its corresponding anti-matter object is investigated in the context
of P systems. Computational completeness can be obtained with using
only non-cooperative rules besides these matter/anti-matter annihilation
rules if these annihilation rules have priority over the other rules. With-
out this priority condition, in addition catalytic rules with one single
catalyst are needed to get computational completeness. Even determin-
istic systems are obtained in the accepting case. Allowing anti-matter
objects as input and/or output, we even get a computationally complete
computing model for computations on integer numbers. Interpreting se-
quences of symbols taken in from and/or sent out to the environment as
strings, we get a model for computations on strings, which can even be
interpreted as representations of elements of a group based on a com-
putable finite presentation.

1 Introduction

Membrane systems as introduced in [16] and usually called P systems can be con-
sidered as distributed multiset rewriting systems, where all objects – if possible
– evolve in parallel in the membrane regions and may be communicated through
the membranes. Overviews on this emerging field of research can be found in the
monograph [17] and the handbook of membrane systems [18]; for actual news
and results we refer to the P systems webpage [20]. Computational completeness
(computing any partial recursive relation on non-negative integers) can be ob-
tained with using cooperative rules or with catalytic rules (eventually) together
with non-cooperative rules. In this paper, we use another concept to avoid co-
operative rules in general: for any object a (matter), we consider its anti-object
(anti-matter) a− as well as the corresponding annihilation rule aa− → λ, which
is assumed to exist in all membranes; this annihilation rule could be assumed
to remove a pair a, a− in zero time, but here we use these annihilation rules as
special non-cooperative rules having priority over all other rules in the sense of

41

weak priority (e.g., see [2], i.e., other rules then also may be applied if objects
cannot be bound by some annihilation rule any more). The idea of anti-matter
has already been considered in another special variant of P systems with motiva-
tion coming from modeling neural activities, which are known as spiking neural
P systems; for example, spiking neural P systems with anti-matter (anti-spikes)
were already investigated in [15]. Moreover, in [6] the power of anti-matter for
solving NP-complete problems is exhibited.

As expected (for example, compare with the Geffert normal forms, see [19]),
the annihilation rules are rather powerful. Yet it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with
the annihilation rules having priority, we already get computational complete-
ness without using any catalyst; without giving the annihilation rules priority, we
need one single catalyst. Even more surprising is the result that with priorities we
obtain deterministic systems in the case of accepting P systems. Allowing anti-
matter objects as input and/or output, we even get a computationally complete
computing model for computations on integer numbers. Finally, by interpreting
sequences of symbols taken in from and/or sent out to the environment as strings,
we also consider P systems with anti-matter as computing/accepting/generating
devices for string languages or even for languages over a group based on a com-
putable finite presentation.

2 Prerequisites

The set of integers is denoted by Z, while the set of non-negative integers by
N. Given an alphabet V , a finite non-empty set of abstract symbols, the free
monoid generated by V under the operation of concatenation is denoted by V ∗.
The elements of V ∗ are called strings, the empty string is denoted by λ, and
V ∗\{λ} is denoted by V +. For an arbitrary alphabet {a1, . . . , an}, the number
of occurrences of a symbol ai in a string x is denoted by |x|ai , while the length
of a string x is denoted by |x| = Σai |x|ai . The Parikh vector associated with x
with respect to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary
language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over
a one-letter (d-letter) alphabet, the corresponding sets of non-negative integers
are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in
an alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by

the string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet
V is denoted by V ◦.

42

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [5] and [19].

Register machines. A register machine is a tuple M = (m,B, l0, lh, P), where
m is the number of registers, B is a set of labels, l0 ∈ B is the initial label,
lh ∈ B is the final label, and P is the set of instructions bijectively labeled by
elements of B. The instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

3 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
multisets of objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes, in which
the space between a membrane and the immediately inner membranes defines a
region/compartment. The outermost membrane is called the skin membrane, the
region outside is the environment. Each membrane can be labeled, and the label
(from a set Lab) will identify both the membrane and its region; the skin mem-
brane is identified by (the label) 1. The membrane structure can be represented
by an expression of correctly nested labeled parentheses, and also by a rooted
tree (with the label of a membrane in each node and the skin in the root). The
multisets of objects are placed in the compartments of the membrane structure
and usually represented by strings of the form.

The evolution rules are multiset rewriting rules of the form u → v, where
u ∈ O◦ and v = (b1, tar1) . . . (bk, tark) with bi ∈ O◦ and tari ∈ {here, out, in}
or tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means
“consuming” the objects of u and “producing” the objects from b1, . . . , bk of v,
where the target here means that the objects remain in the same region where
the rule is applied, out means that they are sent out of the respective membrane
(in this way, objects can also be sent to the environment, when the rule is applied

43

in the skin region), in means that they are sent to one of the immediately inner
membranes, chosen in a non-deterministic way, and inj means that they are
sent into the specified inner membrane. In general, the target indication here is
omitted.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, lin, lout)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at
the beginning of a computation, R1, . . . , Rm are finite sets of evolution rules,
associated with the regions of µ, lin is the label of the membrane region where
the inputs are put at the beginning of a computation, and lout indicates the
region from which the outputs are taken; lout/lin being 0 indicates that the
output/input is taken from the environment.

If a rule u → v has |u| > 1, then it is called cooperative (abbreviated coo);
otherwise, it is called non-cooperative (abbreviated ncoo). In catalytic P systems
non-cooperative as well as catalytic rules of the form ca → cv are used, where
c is a catalyst – a special object that never evolves and never passes through a
membrane, but it just assists object a to evolve to the multiset v. In a purely
catalytic P system only catalytic rules are allowed. In both catalytic and purely
catalytic P systems, in their description O is replaced by O,C in order to specify
those objects from O that are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π a multiset of rules is chosen from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the ob-
tained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. A configuration of a system is given by the membranes and the
objects present in the compartments of the system. Starting from a given initial
configuration and applying evolution rules as described above, we get transitions
among configurations; a sequence of transitions forms a computation. A compu-
tation is halting if it reaches a configuration where no rule can be applied any
more.

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane lout in the halting config-
uration (lin can be omitted). In the accepting case, for lin 6= 0, we accept all
(vectors of) non-negative integers whose input, given as the corresponding num-
bers of objects in membrane lin, leads to a halting computation (lout can be
omitted). For the input being taken from the environment, i.e., for lin = 0, we
need an additional target indication come; (a, come) means that the object a
is taken into the skin from the environment (all objects there are assumed to
be available in an unbounded number). The multiset of all objects taken from
the environment during a halting computation then is the multiset accepted by
this accepting P system, which in this case we shall call a P automaton [4].
The set of non-negative integers and the set of (Parikh) vectors of non-negative
integers generated/accepted/accepted in the automaton way as results of halt-

44

ing computations in Π are denoted by Nδ(Π) and Psδ(Π), respectively, with
δ ∈ {gen, acc, aut}.

A P system Π can also be considered as a system computing a partial re-
cursive function (in the deterministic case) or even a partial recursive relation
(in the non-deterministic case), with the input being given in a membrane re-
gion lin 6= 0 as in the accepting case or being taken from the environment as in
the automaton case. The corresponding functions/relations computed by halt-
ing computations in Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps},
α ∈ {acc, aut}.

Computational completeness for (generating) catalytic P systems can be
achieved when using two catalysts or with three catalysts in purely catalytic P
systems, and the same number of catalysts is needed for P automata; in accepting
P systems, the number of catalysts increases with the number of components in
the vectors of natural numbers to be analyzed [8]. It is a long-time open problem
how to characterize the families of sets of (vectors of) natural numbers generated
by (purely) catalytic P systems with only one (two) catalysts. Using additional
control mechanisms as, for example, priorities or promoters/inhibitors, P systems
with only one (two) catalyst(s) can be shown to be computationally complete,
e.g., see Chapter 4 in [18]. Last year several other variants of control mechanism
have been shown to lead to computational completeness in (purely) catalytic P
systems using only one (two) catalyst(s), see [7], [10], and [11]. In this paper we
are going to investigate the power of using matter/antimatter annihilation rules
– with the astonishing result, that no catalysts are needed any more in case the
annihilation rules have weak priority over the other rules.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
(purely) catalytic P systems with at most m membranes and at most k catalysts
is denoted by YδOPm (catk) (YδOPm (pcatk)). The following characterizations
are known:

Theorem 1. For any m ≥ 1, d ≥ 1, δ ∈ {gen, aut},

PsaccOPm (catd+2) = PsaccOPm (pcatd+3) = NdRE.

PsδOPm (cat2) = PsδOPm (pcat3) = PsRE.

4 Using Matter and Anti-Matter

This concept to be used in (catalytic) P systems is a direct generalization of the
idea of anti-spikes from spiking neural P systems (see [15]): for each object a we
introduce the anti-matter object a−. We can look at these anti-matter objects
a− as objects of their own or else we may extend the notion of a (finite) multiset
over the (finite) alphabet V , V = {a1, · · · , an}, as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values. In a usual way, such an

extended multiset on Z is represented by
〈
a
f(a1)
1 , · · · , af(an)n

〉
. A unique string

representation for such an extended multiset is obtained by assigning a string
over the (ordered) alphabet 〈a1, a1−, · · · , an, an−〉 as a1

f(a1) · · · anf(an) such that

45

(ai)
−m

, m > 0, is represented by (ai
−)

m
, 1 ≤ i ≤ n. Any other string having the

same Parikh vector with respect to the (ordered) alphabet 〈a1, a1−, · · · , an, an−〉
can be used for representing the multiset given by f as well.

As in spiking neural P systems with anti-spikes, also in cell-like P systems
we might consider the annihilation of matter and anti-matter objects to happen
in zero-time or in an intermediate step between normal derivation steps in the
maximally parallel mode. Whenever related matter a and anti-matter a− meet,
they annihilate each other, as, for example, in an extended multiset on Z matter
a and anti-matter a− cannot exist at the same moment, hence, also not in a
string representing an extended multiset on Z.

Yet in this paper we consider both objects and anti-objects to be handled
by usual evolution rules; the annihilation of matter and anti-matter objects
then corresponds to an application of the (non-context-free!) rule aa− → λ. In
contrast to the case described above, now in an instantaneous description of a
configuration of a P system both matter and anti-matter objects may appear.
When working with context-free or catalytic rules over an (ordered) alphabet
〈a1, a1−, · · · , an, an−〉, we may give the matter/anti-matter annihilation rules
weak priority over all other rules – in order to not have matter a and anti-
matter a− in some configuration at the same moment and let them “survive”
for longer.

We now consider catalytic P systems extended by also allowing for annihila-
tion rules aa− → λ, with these rules having weak priority over all other rules,
i.e., other rules can only be applied if no annihilation rule could still bind the cor-
responding objects. The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut},
and the family of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut},
computed by such extended P systems with at most m membranes and k cata-
lysts is denoted by YδOPm (cat(k), antim/pri) and ZYαOPm (cat(k), antim/pri);
we omit /pri for the families without priorities.

The matter/anti-matter annihilation rules are so powerful that we only need
the minimum number of catalysts, i.e., zero!

Theorem 2. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim/pri) = Y RE and
ZYαOPn (cat(k), antim/pri) = ZY RE.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a one-
membrane P system, initially containing only the object l0, which simulates M .
The contents of register r is represented by the number of copies of the object ar,
1 ≤ r ≤ m, and for each object ar we also consider the corresponding anti-object
ar
−. The instructions of M are simulated as follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → arl2 and l1 → arl3.

46

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

and the annihilation rules

arar
− → λ, 1 ≤ r ≤ m, and ##− → λ

as well as the trap rules

#− → ## and #→ ##;

these last two rules lead the system into an infinite computation whenever
a trap symbol is left without being annihilated.
The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar
− and l1

′ → #l3.

The symbol # generated by the second rule l1
′ → #l3 can only be elimi-

nated if the anti-matter ar
− generated by the first rule l1 → l1

′ar− is not
annihilated by ar, i.e., only if register r is empty.
The decrement case for instruction l1 is simulated by the rule

l1 → l2ar
−.

The anti-matter ar
− either correctly annihilates one matter ar thus decre-

menting the register r or else traps an incorrect guess by forcing the symbol
ar
− to evolve to #− and then to ## in the next two steps in case register

r is empty.
• lh : HALT . Simulated by lh → λ.

When the computation in M halts, the object lh is removed, and no further
rules can be applied provided the simulation has been carried out correctly,
i.e., if no trap symbols # are present in this situation. The remaining objects
in the system represent the result computed by M . ut

Without this priority of the annihilation rules, the construction is not work-
ing, hence, a characterization of the families YδOPn (ncoo, antim) as well as
ZYαOPn (ncoo, antim) remains as an open problem. Yet in addition using cat-
alytic rules with one catalyst again allows us to obtain computational complete-
ness:

Theorem 3. For any n ≥ 1, k ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim) = Y RE and
ZYαOPn (cat(k), antim) = ZY RE.

47

Proof. We again consider a register machine M = (m,B, l0, lh, P) as in the
previous proof, and construct the catalytic P system

Π = (O, {c} , []
1
, cl0, R1, lin, 1) with

O = {ar, ar− | 1 ≤ r ≤ m} ∪ {l, l′, l′′ | l ∈ B} ∪ {#,#−, d} ,

with the single catalyst c in the skin membrane. The results now are sent to the
environment, in order not to have to count the catalyst in the skin membrane;
for that purpose, we simply use the rule ai → (ai, out) for the output symbols
ai (we assume that output registers of M are only incremented).

For each ADD-instruction l1 : (ADD (j) , l2, l3) in P , we again take the rules

l1 → arl2 and l1 → arl3.

For each SUB-instruction l1 : (SUB (r) , l2, l3), we now consider the four rules

l1 → l2ar
−,

l1 → l′′1dar
−,

l′′1 → l′1, and
l′1 → #l3.

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules

arar
− → λ and ##− → λ

as well as the trap rules

#→ ## and #− → ##,

but in addition, also
d→ ##

as well as the catalytic rules

cd→ c and car
− → c#−, 1 ≤ r ≤ m.

The decrement case is simulated as in the previous proof, by using the rule
l1 → l2ar

− and then applying the annihilation rule arar
− → λ. The zero-test

now is initiated with the rule li → l′′i dar
− thus introducing the (dummy) symbol

d which keeps the catalyst busy for one step, where the catalytic rule cd → c
has to be applied in order to avoid the application of the trap rule d → ##.
If register r is empty, then ar

− cannot be annihilated and therefore evolves to
#− in the third step by the application of the catalytic rule car

− → c#−, which
symbol #− afterwards annihilates the symbol # generated by the rule l′i → #lk
in the same step; if register r is not empty, ar

− is annihilated by some copy
of ar already in the first step, hence, the trap symbol # generated by the rule
l′i → #lk does not find its anti-matter #− and therefore evolves to ##, thus
leading to an infinite computation. Altough the annihilation rule arar

− → λ now
does not have priority over the catalytic rule car

− → c#−, maximal parallelism

48

enforces arar
− → λ to be applied, if possible, already in the first step instead of

car
− → c#−, as in a successful derivation the catalyst c first has to eliminate

the dummy symbol d.
The rule lh → λ is applied at the end of a successful simulation of the instruc-

tions of the register machine M , and the computation halts if no trap symbol
is present; the symbols sent out to the environment during the computation
represent the result of this halting computation. ut

In the accepting case, with priorities, we can even simulate the actions of a
deterministic register machine in a deterministic way, i.e., for each configuration
of the system, there can be at most one multiset of rules applicable to it.

Theorem 4. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antim/pri) = Y RE and
FunYdetaccOPn (cat(k), antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P) can be simulated in a deterministic way without introducing
a trap symbol and therefore causing infinite loops by them:

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

We now take the rules
ar
− → M̃r

−M̂r

and the annihilation rules arar
− → λ for every register r as well as l̂l̂− → λ and

l̃l̃− → λ for all l ∈ B. Then a SUB-instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B,
l2, l3 ∈ B′, 1 ≤ r ≤ m, is simulated by the rules

l1 → l̄1ar
−

,

l̄1 → l̂1
−(M̃r \ {l̃1}),

l̂1
− → l2(M̃r

− \ {l̃1−}), and

l̃1
− → l3(M̂r

− \ {l̂1−}).

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated (which indicates that the register is empty). ut

5 When Matter/Anti-Matter Annihilation Generates
Energy

The matter/anti-matter annihilation may also be assumed to result in the gener-
ation of a specific amount of “energy”, which is also well motivated by physics.
In the definitions of these systems, the matter/anti-matter annihilation rules

49

arar
− → λ are replaced by arar

− → e where e is a symbol denoting this special
amount of energy.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the set
of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such P systems with at most m membranes and k catalysts is denoted by
YδOPm (cat(k), antimen/pri) and ZYαOPm (cat(k), antimen/pri); we omit /pri
for the families without priorities.

The following results are immediate consequences of the corresponding Theo-
rems 2 and 4 – in both cases, each matter/anti-matter annihilation rule xx− → λ
is replaced by xx− → e where e is this symbol denoting a special amount of en-
ergy, and, in addition, we add the rule e→ λ:

Corollary 1. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antimen/pri) = Y RE and
ZYαOPn (cat(k), antimen/pri) = ZY RE.

Corollary 2. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antimen/pri) = Y RE and

FunYdetaccOPn (cat(k), antimen/pri) = FunY RE.

But we can even show more, i.e., omitting the rule e → λ and leaving the
amount of energy represented by the number of copies of e in the system, the
energy inside the system at the end of a successful computation is a direct
measure for the number of SUB-instructions simulated by the P system or even
a measure for the number of all instructions which were simulated.

Corollary 3. The construction in the proof of Theorem 2 can be adapted in
such a way that the simulation of each instruction of the register machine takes
exactly three steps (including the annihilation rules), and moreover, the number
of energy objects e at the end of a successful computation exactly equals the
number of instructions simulated.

Proof. Let M = (m,B, l0, lh, P) be a register machine. Following the construc-
tion given in the proof of Theorem 2, the instructions of M now can be simulated
as follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → l1
′,

l1
′ → l1

′′,
l1
′′ → earl2,

l1
′′ → earl3.

50

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.

As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

arar
− → e, 1 ≤ r ≤ m,

##− → e,
#− → ##,
#→ ##.

The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar−,

l1
′ → #l1

′′, and
l1
′′ → l3;

• the symbol # generated by the second rule l1
′ → #l1

′′ can only be
eliminated if the anti-matter ar

− generated by the first rule l1 → l1
′ar−

is not annihilated by ar, i.e., only if register r is empty; e is generated
by ##− → e.

The decrement case for instruction l1 is simulated by the rules

l1 → l̃1ar
−
,

l̃1 → l̃′1,
l̃′1 → l2;

• here, e is generated by arar
− → e.

• lh : HALT . Simulated by the rules

lh → lh
′,

lh
′ → lh

′′,
lh
′′ → e.

In each case, exactly one symbol e is generated during each cycle of three
steps simulating an instruction of M . ut

Remark 1. Let M be a register machine and

RS(M) = {(n,m) | n ∈ L(M), n is computed by M in m steps}.

Then, according to [3], RS is recursive. Hence, although L(M) may not be
recursive, RS(M) is recursive in any case.

Now let L ∈ NRE and L = L (M) for a register machine M . Following the
construction given in the proof of Corollary 3, we can construct a P system with
energy Π such that Ps (Π) = RS(M).

51

6 Computing with Integers

As already discussed in Section 4, given an alphabet V = {a1, · · · , ad} we may
extend the notion of a (finite) multiset over V , as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values, with a unique string
representation for such an extended multiset being obtained by assigning a string
over the (ordered) alphabet 〈a1, a1−, · · · , ad, ad−〉 as a1

f(a1) · · · adf(ad) such that
(ai)

−m
, m > 0, is represented by (ai

−)
m

, 1 ≤ i ≤ d. Besides this canonical
representation of f by the string a1

f(a1) · · · adf(ad), any other string having the
same Parikh vector with respect to the (ordered) alphabet 〈a1, a1−, · · · , ad, ad−〉
can be used for representing the multiset given by f as well. Acoording to these
definitions, matter and related anti-matter cannot be present in the same string
or multiset over the alphabet {a1, a1−, · · · , ad, ad−}. Obviously, their is a one-
to-one correspondence between vectors from Zd and the corresponding Parikh
vectors over 〈a1, a1−, · · · , ad, ad−〉, which can also be viewed as vectors over Z2d:
for any of these vectors v = (v1, v2, · · · , v2d−1, v2d), we have either v2i−1 = 0 or
v2i = 0 (or both), for all 1 ≤ i ≤ d.

In order to specify that now we are dealing with d-dimensional vectors of

integer numbers, we use the notation PsZ
d

: the family of sets of integer numbers

PsZ
d

δ (Π), δ ∈ {gen, acc, aut}, and the set of functions/relations ZPsZ
d

α (Π),
Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed by such P systems with at most

m membranes and k catalysts is denoted by PsZ
d

δ OPm (cat(k), antim/pri) and

ZPsZ
d

α OPm (cat(k), antim/pri); we omit /pri for the families without priorities.
Moreover, the family of recursively enumerable sets of integer numbers is denoted

by PsZ
d

RE, the corresponding functions/relations by ZPsZ
d

RE.

Theorem 5. For any d ≥ 1 we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and Z ∈
{Fun,Rel},

PsZ
d

δ OPn (cat(k), antim/pri) = PsZ
d

RE and

ZPsZ
d

α OPn (cat(k), antim/pri) = ZPsZ
d

RE;

– for any n ≥ 1, and k ≥ 0,

PsZ
d

detaccOPn (cat(k), antim/pri) = PsZ
d

RE and

FunPsZ
d

detaccOPn (cat(k), antim/pri) = FunZPsZ
d

RE.

Proof. As we have shown in Section 4, all variants of P systems with anti-
matter mentioned in the theorem are computationally complete when dealing
with multisets over any arbitrary alphabet, being able to simulate the actions
of a register machine. Hence, as any d-dimensional vector of integer numbers
can be represented by a 2d-dimensional vector of non-negative integers, which
can be processed in the usual way by register machines and thus simulated by
all the variants of P systems with anti-matter mentioned in the theorem, we

52

only have to solve the technical detail how to get this 2d-dimensional vector
of non-negative integers from a given d-dimensional vector of integer numbers
represented by symbols over the (ordered) alphabet 〈a1, a1−, · · · , ad, ad−〉: given
the input in an input membrane 6= 0, we there just make a first step using
in parallel the non-cooperative rules ai → [ai,+] and ai

− → [ai,−], 1 ≤ i ≤ d.
Then the multisets over these symbols can be handled in the usual way, now both
of them having the corresponding anti-matter objects [ai,+]

−
and [ai,−]

−
. In

a similar way, we can take the input from the environment by using rules of
the form q → p (ai, come) [ai,+] or q → p (ai

−, come) [ai,−] where q, p represent
states of the register machine. The symbols ai and ai

− then are not needed any
more and can be eliminated by the rules ai → λ and ai

− → λ. The remaining
computations in the respective P system then can be carried out by simulating
the actions of a register machine. ut

7 Computing with Languages

P systems with anti-matter, as most of the computationally complete variants of
P systems, can also be considered as language generating devices – the objects
sent out can be concatenated to strings over a given alphabet, and the objects
taken in during a halting computation can be assumed to form a string. For
sake of simplicity, we may assume that in each computation step, at most one
symbol is sent out or taken in; otherwise, as usual, e.g., see [4], we may take
any permutation of the symbols sent out or taken in to be part of a string to be
considered as output or input, respectively. Obviously, according to this method
of getting an input string, for the accepting case only the automaton variant is
to be considered now, as otherwise we would have to take an encoding of the
input string by a multiset.

7.1 Languages over Strings

Let V be a finite alphabet. The set of strings (over V) generated or accepted
(in the sense of automata) by a P system with anti-matter Π is denoted by
LVδ (Π), δ ∈ {gen, aut}, the function/relation computed by Π is denoted by
ZLVaut (Π), Z ∈ {Fun,Rel}. The family of sets LVδ (Π), δ ∈ {gen, aut}, and
the family of functions/relations ZLVaut (Π), Z ∈ {Fun,Rel}, computed by
such P systems with at most m membranes and k catalysts is denoted by
LVδ OPm (cat(k), antim/pri) and ZLVautOPm (cat(k), antim/pri), respectively; we
omit /pri for the families without priorities; cat (0) is used as a synonym for ncoo.
If the alphabet is arbitrary, we omit the superscript V in these notations. More-
over, the languages over V in RE are denoted by REV , the corresponding family
of functions/relations by ZREV .

The use of anti-matter and of matter/anti-matter annihilation rules (having
priority over other rules) allows us to give a simple example how to generate an
even non-context-free string language:

53

Example 1. Consider the P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {a, b, c} ∪ {b−, c−} ∪ {q1, q2, q3},
R1 = {q1 → q2, q2 → q3, q3 → λ, q1 → q1 (a, come) b−c−}
∪ {q2 → q2 (b, come) , q3 → q3 (c, come)}
∪ {a→ λ} ∪ {x→ x, x− → x−, xx− → λ | x ∈ {b, c}} .

The reader may easily verify that

L
{a,b,c}
aut (Π) = {anbncn | n ≥ 0} .

For each symbol a taken in with state q1 (which is eliminated in the next step
by a → λ) using the rule q1 → q1 (a, come) b−c−, an anti-matter object for
both b and c is generated. The anti-matter objects b− are eliminated in state
q2, and afterwards the anti-matter objects c− are eliminated in state q3. The
computation only halts (with empty skin membrane) after having used the rule
q3 → λ if and only if an equal number of objects a, b, and c has been taken in, as
otherwise, the rules x→ x or x− → x−, x ∈ {b, c}, keep the system in an infinite
loop if too many x or not enough x have been taken in, respectively. Observe
that this system also works if we do not require priority of the annihilation rules,
but then, for each successful computation accepting the string anbncn, n ≥ 1,
there exist inifinite computations where we use one of the rules x− → x− again
and again instead of letting x− being annihilated by xx− → λ. Hence, we may
say that

{anbncn | n ≥ 0} ∈ L{a,b,c}aut OP1 (ncoo) .

Theorem 6. For any arbitrary alphabet V we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},
LVδ OPn (cat(k), antim/pri) = REV and
ZLVautOPn (cat(k), antim/pri) = ZREV ;

– for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},
LVδ OPn (cat(k), antim) = REV and

ZLVautOPn (cat(k), antim) = ZREV .

Proof. As we have shown in Section 4, all variants of P systems with anti-
matter mentioned in the theorem are computationally complete when dealing
with multisets, being able to simulate the actions of a register machine. Hence, by
well-known techniques, input symbols composing an input string can be encoded
as numbers in an input register and thus as a multiset in the simulating P
system with anti-matter. In the same way, the results of a computation in the
P system can be decoded from the multiset representing the output register of
the underlying register machine. An input symbol a ∈ V is taken in by rules of
the form q → p (a, come) where q, p represent states of the register machine, and
sent out by rules of the form q → p (a, out). ut

54

7.2 Languages over Computable Finite Presentations of Groups

Strings may be used in a wider sense as representations of group elements. In
order to establish these more general results, we first need some definitions and
examples from group theory, e.g., see [12].

Groups and Group Presentations Let G = (G′, ◦) be a group with group
operation ◦. As is well-known, the group axioms are

– closure: for any a, b ∈ G′, a ◦ b ∈ G′,
– associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
– identity : there exists a (unique) element e ∈ G′, called the identity, such

that e ◦ a = a ◦ e = a for all a ∈ G′, and
– invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative, if for any a, b ∈ G′, a ◦ b = b ◦ a.
In the following, we will not distinguish between G′ and G if the group operation
is obvious from the context.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such
that bn = e provided such an n exists, and then we write ord (b) = n; if no such
n exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) =∞.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings in(

B ∪B−1
)∗

and two strings as different unless their equality follows from the

group axioms, i.e., for any a, b, c ∈
(
B ∪B−1

)∗
, a ◦ b ◦ b−1 ◦ c = a ◦ c; using these

reductions, we obtain a set of irreducible strings from those in
(
B ∪B−1

)∗
,

the set of which we denote by I (B). Then the free group generated by B is
F (B) = (I (B) , ◦) with the elements being the irreducible strings over B ∪B−1
and the group operation to be interpreted as the usual string concatenation,
yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group
G if every element a from G can be written as a finite product/sum of elements
from B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict
ourselves to finitely presented groups, i.e., having a finite presentation 〈B | R〉
with B being a finite generator set and moreover, R being a finite set of relations
among these generators. In a similar way as in the definition of the free group
generated by B, we here consider the strings in B∗ reduced according to the
group axioms and the relations given in R. Informally, the group G = 〈B | R〉 is
the largest one generated by B subject only to the group axioms and the relations
in R. Formally, we will restrict ourselves to relations of the form b1◦· · ·◦bm = c−1

with b1, . . . , bm, c ∈ B, which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e;
hence, instead of such relations we may specify R by strings over B yielding the
group identity, i.e., instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these
strings then are called relators).

55

Example 2. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 3. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or,
omitting the set brackets, written as 〈a | an〉); it is also known as Zn or as the
quotient group Z/Zn.

Example 4. Z is a special case of an Abelian group generated by (1) and its
inverse (−1), i.e., Z is the free group generated by (1). Zd is an Abelian group
generated by the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/pkZ for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Example 5. A very well-known example for a non-Abelian group is the hexagonal
group with the finite presentation

〈
a, b, c | a2, b2, c2

〉
. All three generators a, b, c

are self-inverse.

Remark 2. Unfortunately, given a finite presentation of a group 〈B | R〉, in gen-
eral it is not even decidable whether the group presented in that way is finite or
infinite. Hence, in this paper we restrict ourselves to infinite groups where the
word equivalence problem u = v is decidable, or equivalently, there is a decision
procedure telling us whether, given two strings u and v, u ◦ v−1 = e. In that
case, we call 〈B | R〉 a recursive or computable finite group presentation.

As a first example we now consider the set (“language”) of all one-dimensional
vectors:

Example 6. Consider the P system

Π = ({q0, q+, q−, qh}, []1, q0, R1, 1) where
R1 = {q0 → qh, q+ → qh, q− → qh}
∪ {q0 → (+1)q+, q+ → (+1)q+, q0 → (−1)q−, q− → (−1)q−}.

In order to generate the empty string, corresponding with the zero-vector (0), we
simply apply q0 → qh. We may also choose to generate a positive or a negative
vector, i.e., we start with q0 → (+1)q+ or q0 → (−1)q−, respectively. After n−1
applications of the rules q+ → (+1)q+ and q− → (−1)q− as well as of the final
rule q+ → qh or q− → qh, respectively, we have sent out a string representing
the unique irreducible representation of the vector (+n) or (−n), respectively.

Remark 3. The reader may easily verify that, given any finitely generated Abelian
group, such a regular P system exists which generates all strings representing
the (unique, with respect to a complete order on the positive generators) irre-
ducible representations of the group elements. For non-commutative groups with
relators, such trivial representations are not possible.

56

If we do not require irreducibility of the string sent out to the environment,
then of course, for any finitely generated group, we can generate representations
of all its elements very easily:

Example 7. Given a finite presentation of a group 〈B | R〉, with B− = B, con-
sider the P system

Π = ({q0}, []1, q0, R1, 1) where
R1 = {q0 → λ} ∪ {q0 → gq0 | g ∈ B}.

Most of the strings sent out now will not be reduced.

Remark 4. In general, as long as we have given the group by a computable finite
presentation, for a mechanism having the full power of Turing computability,
we can require that the “strings” sent out to the environment are irreducible
ones. Hence, for a given recursively enumerable set L of elements over the com-
putable finite presentation 〈B | R〉 of a group, such a mechanism can generate
the irreducible string representations of the elements in L. Thus, the results col-
lected in the following theorem are obvious consequences of the results stated in
Theorem 6.

Let 〈B | R〉 be the computable finite presentation of a group. The set of
string representations (of elements of this group with respect to this finite pre-
sentation 〈B | R〉) generated or accepted (in the sense of automata) by a P

system with anti-matter Π is denoted by L
〈B|R〉
δ (Π), δ ∈ {gen, aut}, the func-

tion/relation computed by Π is denoted by ZL
〈B|R〉
aut (Π), Z ∈ {Fun,Rel}. The

family of sets L
〈B|R〉
δ (Π), δ ∈ {gen, aut}, and the family of functions/relations

ZL
〈B|R〉
aut (Π), Z ∈ {Fun,Rel}, computed by such P systems with at most m

membranes and k catalysts is denoted by L
〈B|R〉
δ OPm (cat(k), antim/pri) and

ZL
〈B|R〉
aut OPm (cat(k), antim/pri), respectively; we omit /pri for the families

without priorities. If the computable finite group presentation may be an ar-
bitrary one, we omit the superscript 〈B | R〉 in these notations. The family of
recursively enumerable sets of elements over the computable finite presentation
〈B | R〉 of a group is denoted by RE〈B|R〉, the corresponding family of recursively
enumerable functions/relations by ZRE〈B|R〉, Z ∈ {Fun,Rel}.
Theorem 7. Let 〈B | R〉 be the computable finite presentation of a group. Then
we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
〈B|R〉
δ OPn (cat(k), antim/pri) = RE〈B|R〉 and

ZL
〈B|R〉
aut OPn (cat(k), antim/pri) = ZRE〈B|R〉;

– for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
〈B|R〉
δ OPn (cat(k), antim) = RE〈B|R〉 and

ZL
〈B|R〉
aut OPn (cat(k), antim) = ZRE〈B|R〉.

57

Proof. As for string languages, all computations can be carried out by simulating
register machines, hence, again the results from Section 4 apply. Moreover, as
already mentioned in Remark 4, the additional computations can also be carried
out in this way, as 〈B | R〉 is computable. ut

Remark 5. Let us mention that the results obtained in Theorem 7 for arbitrary
computable finite presentations 〈B | R〉 of a group can also be applied to the
infinite Abelian groups Zd with their canonical group presentations by the unit
vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). Keeping in mind that
there is a one-to-one correspondence between the representation of a vector in Zn
by a multiset of symbols and the corresponding string representing this multiset,
most of the results shown in Theorem 5 are special cases of the respective results
stated in Theorem 7.

8 Summary

We have shown that only non-cooperative rules together with matter/anti-matter
annihilation rules are needed to obtain computational completeness in P systems
working in the maximally parallel derivation mode if annihilation rules have weak
priority; without priorities, one catalyst is needed. In the case of accepting P sys-
tems we were able to even get deterministic systems. Allowing anti-matter ob-
jects as input and/or output, we have even obtained a computationally complete
computing model for computations on integer numbers. Interpreting sequences
of symbols taken in from and/or sent out to the environment, we have also got
a model for computations on strings, where strings can even be interpreted as
representations of elements of a group based on a computable finite presentation.

There may be a lot of other interesting models of P systems allowing for
introducing anti-matter objects and matter/anti-matter annihilation rules. Sev-
eral problems remain open even for the models presented here, for example, can
we avoid both catalysts and priorities. Moreover, the variants of P systems with
anti-matter computing on sets of integer numbers and on languages of strings,
even considered as representations of elements of a group based on a computable
finite presentation, deserve more detailed investigations.

Acknowledgements. The authors gratefully acknowledge the inspiring ideas and
discussions with Gheorghe Păun on the topics exhibited in this paper; even more
results on P systems with anti-matter can be found in [1].

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and Anti-Matter in Membrane
Systems. In: L. F. Maćıas-Ramos, M. A. Mart́ınez-del-Amor, Gh. Păun, A. Riscos-
Núñez, L. Valencia-Cabrera (Eds.): Proceedings of the Twelfth Brainstorming Week
on Membrane Computing, 2014, 1–26.

58

2. A. Alhazov, D. Sburlan: Static Sorting P Systems. In: G. Ciobanu, Gh. Păun, M.J.
Pérez-Jiménez (Eds.): Applications of Membrane Computing. Natural Computing
Series, Springer, 2005, pp. 215–252.

3. M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-Related Outputs of Com-
putations in P Systems. Journal of Automata, Languages and Combinatorics 11
(3), 263–278 (2006).

4. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P
Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing. International Workshop, WMC-CdeA 2002 Curtea de Argeş, Romania,
August 19–23, 2002. Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, pp. 219–233.

5. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

6. D. Dı́az-Pernil, F. Peña-Cantillana, M. A. Gutiérrez-Naranjo: Antimatter as a
Frontier of Tractability in Membrane Computing. Brainstorming Week in Mem-
brane Computing, Sevilla, February 2014.

7. R. Freund: Purely Catalytic P Systems: Two Catalysts Can Be Sufficient for Com-
putational Completeness. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin
(Eds.): CMC14 Proceedings – The 14th International Conference on Membrane
Computing, Chişinău, August 20–23, 2013. Institute of Mathematics and Com-
puter Science, Academy of Sciences of Moldova, 2013, pp. 153–166.

8. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Sys-
tems without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Sci-
ence 330, 251–266 (2005).

9. R. Freund, M. Oswald: A Small Universal Antiport P System with Forbidden
Context. In: H. Leung, G. Pighizzini (Eds.): 8th International Workshop on De-
scriptional Complexity of Formal Systems - DCFS 2006, Las Cruces, New Mexico,
USA, June 21 - 23, 2006. Proceedings DCFS, New Mexico State University, Las
Cruces, New Mexico, USA, 2006, pp. 259–266.

10. R. Freund, M. Oswald: Catalytic and Purely Catalytic P Automata: Control Mech-
anisms for Obtaining Computational Completeness. In: S. Bensch, F. Drewes,
R. Freund, F. Otto (Eds.): Fifth Workshop on Non-Classical Models of Automata
and Applications (NCMA 2013), OCG, Wien, 2013, pp. 133–150.

11. R. Freund, Gh. Păun: How to Obtain Computational Completeness in P Systems
with One Catalyst. In: T. Neary and M. Cook: Proceedings Machines, Compu-
tations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11,
2013, EPTCS 128, 47–61 (2013).

12. D. F. Holt, B. Eick, E. A. O’Brien: Handbook of Computational Group Theory.
CRC Press, 2005.

13. I. Korec: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996).

14. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA, 1967.

15. L. Pan, Gh. Păun: Spiking Neural P Systems with Anti-Matter. International Jour-
nal of Computers, Communications & Control 4 (3), 273–282 (2009).

16. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

17. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
18. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

59

19. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.
Springer, 1997.

20. The P Systems Website: www.ppage.psystems.eu.

60

Priorities, Promoters and Inhibitors in
Deterministic Non-Cooperative P Systems

Artiom Alhazov1 and Rudolf Freund2

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at

Abstract. Membrane systems (with symbol objects) are distributed
controlled multiset processing systems. Non-cooperative P systems with
either promoters or inhibitors (of weight not restricted to one) are known
to be computationally complete. Since recently, it is known that the
power of the deterministic subclass of such systems is subregular. We
present new results on the weight of promoters and inhibitors, as well as
characterizing the systems with priorities only.

1 Introduction

The most famous membrane computing model where determinism is a criterion
of universality versus decidability is the model of catalytic P systems, see [3]
and [6].

It is also known that non-cooperative rewriting P systems with either promot-
ers or inhibitors are computationally complete, [2]. Moreover, the proof satisfies
some additional properties:

– Either promoters of weight 2 or inhibitors of weight 2 are enough.

– The system is non-deterministic, but it restores the previous configuration
if the guess is wrong, which leads to correct simulations with probability 1.

Recently, in [1] we have shown that computational completeness cannot be
achieved by deterministic non-cooperative systems with promoters, inhibitors,
and priorities (in the maximally parallel or the asynchronous mode, unlike the
sequential mode), and characterized the corresponding classes:

61

NFIN ∪ coNFIN = NdetaOP
asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOP
maxpar
1 (ncoo, pro1,∗)

= NdetaOP
maxpar
1 (ncoo, inh1,∗)

= NdetaOP
asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)

= NdetaOP
maxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
, but

NRE = NdetaOP
sequ
1 (ncoo, pro1,1, inh1,1) .

A few interesting questions have been left open. For instance, what is the
power of P systems, e.g., in the maximally parallel mode, when we only use
priorities, or when we restrict the weight of the promoting/inhibiting multisets.
These are the questions we address in this paper.

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the
empty string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-
negative integers is denoted by N; Nk denotes the set of the non-negative integers
≥ k. A set S of non-negative integers is called co-finite if N \ S is finite. The
family of all finite (co-finite) sets of non-negative integers is denoted by NFIN
(coNFIN , respectively). The family of all recursively enumerable sets of non-
negative integers is denoted by NRE. In the following, we will use ⊆ both for
the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves
both determinism and the model, in the following we restrict ourselves to con-
sider membrane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from
O contained in the region, the set of all configurations over O is denoted by
C (O). A rule r : u → v is applicable if the current configuration contains the
multiset specified by u. Furthermore, applicability may be controlled by context
conditions, specified by pairs of sets of multisets.

Definition 1. Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configura-
tion C if r is applicable, and there exists some j ∈ {1, · · · ,m} for which

62

– there exists some p ∈ Pj such that p ⊆ C and
– q 6⊆ C for all q ∈ Qj.

In words, context conditions are satisfied if there exists a pair of sets of
multisets (called promoter set and inhibitor set, respectively), such that at least
one multiset in the promoter set is a submultiset of the current configuration,
and no multiset in the inhibitor set is a submultiset of the current configuration.

Note 1. The definition above is taken from [1]. As it will be shown in Remark
2, without restricting generality, every set Pj may be assumed to be a singleton.
The meaning of a set of promoters may be defined differently, replacing “there
exists some p ∈ Pj” by “for all p ∈ Pj” in the definition above. This alterna-
tive definition corresponds to definitions of sets as permitting context in string
rewriting models, yet, such a promoter set would be equivalent to a singleton
promoter which is a union of this set, so (unless we stress the descriptional com-
plexity) also in this case we do not need to deal with multi-element promoters.
In the rest of the paper we assume the first interpretation, as in the definition
above, noting that this variation does not influence results from [1] or those in
this paper.

Definition 2. A P system with context conditions and priorities on the rules
is a construct

Π = (O,Σ,w,R′, R,>) ,

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of
rules with context conditions and > is a priority relation on the rules in R; if
rule r′ has priority over rule r, denoted by r′ > r, then r cannot be applied if r′

is applicable.

Throughout the paper, we will use the word control to mean that at least
one of these features is allowed (context conditions or promoters or inhibitors
only and eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) by its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), multiple applicable rules may be chosen in a non-deterministic way
to be applied in parallel to the underlying configuration to disjoint submultisets,
possibly leaving some objects idle, under the condition that no further rule is
applicable to them (i.e., no supermultiset of the chosen multiset is applicable to
the same configuration). Maximal parallelism is the most common computation
mode in membrane computing, also see Definition 4.8 in [5]. In the asynchron-
uous mode (asyn), any positive number of applicable rules may be chosen in a
non-deterministic way to be applied in parallel to disjoint submultisets in the un-
derlying configuration. The computation step between two configurations C and
C ′ is denoted by C ⇒ C ′, thus yielding the binary relation ⇒: C (O)×C (O). A
computation halts when there are no rules applicable to the current configuration
(halting configuration) in the corresponding mode.

63

The computation of a generating P system starts with w, and its result is |x|
if it halts; an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is its
results – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOP

α
1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the
rules with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the
maximum number of promoters/inhibitors in the Pi and Qi, respectively; l and l′

indicate the maximum of weights of promotors and inhibitors, respectively. If any
of these numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types of rules
we are going to distinguish between cooperative (β = coo) and non-cooperative
ones (i.e., the left-hand side of each rule is a single object; β = ncoo).

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities
or the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm))
we have m = 1, we say that (r, (P1, Q1)) is a rule with a simple con-
text condition, and we omit the inner parentheses in the notation. Moreover,
context conditions only using promoters are denoted by r|p1,··· ,pn , meaning
(r, {p1, · · · , pn} , ∅), or, equivalently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions
only using inhibitors are denoted by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or
r|¬{q1,··· ,qn}. Likewise, a rule with both promoters and inhibitors can be speci-
fied as a rule with a simple context condition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for
(r, {p1, · · · , pn} , {q1, · · · , qn}). Finally, promoters and inhibitors of weight one
are called atomic.

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working
(obviously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition;
then we claim that (the effect of) this rule is equivalent to (the effect of) the
collection of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to ap-
pear in the configuration, but do not care about the other promoters p3 to pm; in

64

general, when promoter pj is chosen to make the rule r applicable, we do not al-
low p1 to pj−1 to appear in the configuration, but do not care about the other pro-
moters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj
from enabling the rule r to be applied, this makes no harm as in this case one
of the promoters pk, 1 ≤ k < j, must have the possibility for enabling r to
be applied. By construction, the domains of the new context conditions now
are disjoint, so this transformation does not create (new) non-determinism. In a
similar way, this transformation may be performed on context conditions which
are not simple. Therefore, without restricting generality, the set of promoters
may be assumed to be a singleton. In this case, we may omit the braces of the
multiset notation for the promoter multiset and write (r, p,Q).

Remark 3. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily
be deduced from the set of rules with context conditions R, we omit R′ in the
description of the P system. Moreover, for systems having only rules with a
simple context condition, we omit d in the description of the families of sets of
numbers and simply write

NδOP
α
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOP

α
1 (β, prok,l).

3 Results

In this section we first recall several results from [1] and then we establish our
new results, first for deterministic P systems with non-cooperative rules and
only priorities as control mechanism, and then we characterize systems using
promoters or inhibitors of weight 2.

3.1 Recent Results

We first recall from [1] the bounding operation over multisets, with a parameter
k ∈ N as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object
a present in more than k copies until exactly k remain. For two multisets
u, u′, bk (u) = bk (u′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k
and |u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into

(k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying,
for each a ∈ O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies or
more” are present. We denote the range of bk by {0, · · · , k}O.

65

Lemma 1. [1] Context conditions are equivalent to predicates defined on bound-
ings.

Theorem 1. [1] Priorities are subsumed by conditional contexts.

Remark 4. It is worth to note, see also [4], that if no other control is used, the
priorities can be mapped to sets of atomic inhibitors. Indeed, a rule is inhibited
precisely by the left side of each higher priority rule. This is straightforward in
case when the priority relation is assumed to be a partial order.

If this is not the case, then both the semantics of computations in P systems
and the reduction of priorities to inhibitors is a bit more complicated, but the
claim still holds.

Fix an arbitrary deterministic controlled non-cooperative P system. Take k
as the maximal size of all multisets in all context conditions. Then, the bounding
does not influence applicability of rules, and bk (u) is halting if and only if u is
halting. We recall that bounding induces equivalence classes preserved by any
computation.

Lemma 2. [1] Assume u→ x and v → y. Then bk (u) = bk (v) implies bk (x) =
bk (y).

Corollary 1. [1] If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Finally, the “at most NFIN ∪ coNFIN” part of characterizing

NdetaOP
maxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)

(the main theorem of [1]) is shown with the following argument:

Each equivalence class induced by bounding is completely accepted or
completely rejected. If no infinite equivalence class is accepted, then the
accepted set is finite (containing numbers not exceeding (k − 1) · |O|). If
at least one infinite equivalence class is accepted, then the rejected set
is finite (containing numbers not exceeding (k − 1) · |O|).

3.2 Deterministic Non-Cooperative P Systems with Priorities Only

We start with an example showing how an object t can be rewritten in a deter-
ministic way depending on the presence or absence of an object a.

Example 1.

Π = ({a,A,A′, t, t′, t+, t−}, {a}, tA,R,>), where

R = {1 : t→ t′, 2 : a→ λ, 3 : A→ A′, 4 : t′ → t+, 5 : t′ → t−, 6 : A′ → λ},
> = {a→ λ > A→ A′, A→ A′ > t′ → t−, A

′ → λ > t′ → t+}.

66

Indeed, object t waits for one step by becoming t′, while A will change to A′

or wait, depending on the presence of a. Then, object t′ becomes either t+ or t−,
depending on whether A or A′ is present. Notice, e.g., how adding either rule
t+ → t+ or rule t− → t− leads to a system accepting {0} or N \ {0}. Of course,
accepting only zero could be done instead by a trivial one-rule system with the
rule a → a, but this example is important because such a deciding subsystem
can be used, with suitable delays, as a building block for checking combinations
of presence/absence of multiple symbols.

We now proceed with characterizing systems with priorities only.

Theorem 2. NdetaOP
maxpar
1 (ncoo, pri) = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.

Proof. We already know that the priorities correspond to sets of atomic
inhibitors. This means that every system accepts a union of some equivalence
classes induced by bounding b1 (i.e., checking presence/absence). Note that var-
ious combinations of “= 0” and “≥ 1” yield numeric sets {0} and Nk (where
k > 0 is the number of different symbols present). The family of all unions of
these sets is

Fpri = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.
It follows that NdetaOP

maxpar
1 (ncoo, pri) ⊆ Fpri.

We proceed with the converse inclusion. Let Π0 = ({a, t}, {a}, t, R,>), then
R = {t → t} and the empty relation > yield ∅. To accept {0}, it is enough to
instead set R = {a→ a} and again take the empty relation >.

Now suppose we want to accept Nk. It suffices to count that we have at least
one of each objects a1, · · · , ak (we recall that we need to accept at least one input
of size j for each j ≥ k, and to reject the input if j < k). To accept Nk ∪ {0}
instead, we may perform a simultaneous check for absence of all input symbols.

Using the idea from Example 1, we now construct the system

Π1 = (O,Σ = {ai,0 | 1 ≤ i ≤ k}, tA0,0 · · ·Ak,0, R,>), where

O = {ai,j | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1} ∪ {Ai,j | 0 ≤ i ≤ k, 0 ≤ j ≤ i+ 2}
∪ {t, z, p} ∪ {ti | 0 ≤ i ≤ k + 1},

R = Ra ∪RA ∪Rt,
Ra = {ai,j → ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i}
RA = {Ai,j → Ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1}
Rt = {t→ t0, t0 → z, t0 → t1, p→ p} ∪ {ti → ti+1, ti → p | 1 ≤ i ≤ k},
> = {ai,0 → ai,1 > A0,0 → A0,1 | 1 ≤ i ≤ k}
∪ {A0,0 → A0,1 > t0 → z, A0,1 → A0,2 > t0 → t1}
∪ {ai,i → ai,i+1 > Ai,i → Ai,i+1 | 1 ≤ i ≤ k}
∪ {Ai,i → Ai,i+1 > ti → p, Ai,i+1 → Ai,i+2 > ti → ti+1 | 1 ≤ i ≤ k}.

67

Such a system accepts exactly Nk ∪ {0}. Indeed, after the first step, A0,1 is
present if all input symbols were absent, otherwise A0,0 is still present instead.
For any i, 1 ≤ i ≤ k, after step 1 + i, object Ai,i is present if input symbol ai,0
was present in the input, and otherwise Ai,i+1 is present instead. These “decision
symbols” are used by ti, 0 ≤ i ≤ k, to build the “presence picture”. We recall
that it suffices to accept when all input symbols are present, or when none is
present. In the second case, t0 becomes z, and the computation only continues
by rules from RA, leading to halting. Now let us assume that the first s of the
input symbols are present, s < k. Then, t0 becomes t1 · · · , ts, yet at the end the
absence of ts+1 causes ts to change into p, leading to an infinite computation.
But if all input symbols are present, then finally the computation halts with
tk+1.

It remains to notice that accepting Nk, k ≥ 1, can be done by simply adding
the rule z → z. �

3.3 Deterministic Non-Cooperative P Systems with Promoters or
Inhibitors of Weight 2

We start from examples, illustrating the deterministic choice of rewriting p,
depending on whether object a is absent, occurs exactly once, or occurs multiple
times.

Example 2. Symbols A, B are primed if input is present (multiple input sym-
bols are present). Then primed and unprimed symbols form mutually exclusive
conditions.

Π = (O = {p, p′, p′′, p>, p1, p0, A,B, a}, Σ = {a}, pAB,R), where

R = {1 : p→ p′, 2 : A→ A′|a, 3 : B → B′|aa,
4 : p′ → p>|B′ , 5 : p′ → p′′|B , 6 : p′′ → p1|A′ , 7 : p′′ → p0|A}.

Example 3. Notice that if we replace all promoters by inhibitors with the same
context, the effect of blocking rules will be reversed, but the result will be the
same. Indeed, the role of A′ and B′ will switch from found a and found aa,
respectively, to not found a and not found aa, respectively.

R = {1 : p→ p′, 2 : A→ A′|¬a, 3 : B → B′|¬aa,
4 : p′ → p>|¬B′ , 5 : p′ → p′′|¬B , 6 : p′′ → p1|¬A′ , 7 : p′′ → p0|¬A}.

We now proceed with characterizing systems with context of weight two.
Notice that we already know that their power does not exceed NFIN∪coNFIN .

Theorem 3. NdetaOP
maxpar
1 (ncoo, pro2) =

NdetaOP
maxpar
1 (ncoo, inh2) = NFIN ∪ coNFIN.

68

Proof. We use the technique from Example 2 for all input symbols and
combine the extracted information. Consider an arbitrary finite set M , and let
max(M) = n. We will use the following strategy: to accept a number j ∈M , we
will accept an input multiset with exactly j symbols appearing once, and nothing
else. To accept the complement of M , we split it into sets M ′′ = {j | j > n} and
M ′ = {j | j ≤ n, j /∈ M}. While M ′ is treated in a similar way as M , it only
remains to accept M ′′, which is covered by equivalence classes when all symbols
are present, and at least one is present more than once.

Π = (O,Σ = {ai | 1 ≤ i ≤ n}, tA1 · · ·AnB1 · · ·Bn, R), where

O = {ti,j , Ti,j , t′i,j , T ′i,j | 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ n}
∪ {Ai, A′i, Bi, B′i | 1 ≤ i ≤ n} ∪ {t,#},

R = {ti,j → Ti+1,j+1|B′
i
, Ti,j → Ti+1,j+1|B′

i
, ti,j → t′i,j |Bi , Ti,j → T ′i,j |Bi ,

t′i,j → ti+1,j+1|A′
i
, T ′i,j → Ti+1,j+1|A′

i
, t′i,j → ti+1,j |Ai

, T ′i,j → Ti+1,j |Ai

| 1 ≤ i ≤ n, 0 ≤ j < n}
∪ {Ai → A′i|ai , Bi → B′i|aiai | 1 ≤ i ≤ n} ∪ {t→ t1,0, #→ #}
∪ {Tn+1,j → # | 1 ≤ i ≤ n} ∪ {tn+1,j → # | j /∈M}.

The meaning of Tn+1,j is that exactly j input symbols are present, and at
least one of them is present multiple times. The meaning of tn+1,j is that the
input consisted of exactly j different symbols. This is how an arbitrary finite set
is accepted. To accept the complement of M , we replace j /∈ M by j ∈ M and
remove rule Tn+1,j → #. Therefore, deterministic P systems with promoters of
weight two accept exactly NFIN ∪ coNFIN .

For the inhibitor counterpart, notice that the computation of the number of
different symbols present, as well as checking if any symbol is present multiple
times, stays correct by simply changing promoters to the inhibitors with the same
condition, just like in Example 3. Rules processing objects tn+1,j and Tn+1,j will
have an opposite effect, accepting the complement of the set accepted by the
system with promoters, again yielding NFIN ∪ coNFIN . �

It is still open whether only inhibitors in the rules or only promoters in the
rules are sufficient to yield NFIN ∪ coNFIN with the asynchronuous mode,
too.

4 Conclusion

We have shown characterizations of deterministic non-cooperative P systems
with singleton inhibitors of weight 2, with singleton promoters of weight 2, and
with priorities. The first two cases did not reduce the accepting power with
respect to (unrestricted cardinality of promoter/inhibitor sets and) unrestricted
weight of promoters/inhibitors.

69

Acknowledgements

The first author acknowledges project STCU-5384 Models of high performance
computations based on biological and quantum approaches awarded by the Science
and Technology Center in the Ukraine.

References

1. A. Alhazov, R. Freund: Asynchronuous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN . The Tenth
Brainstorming Week in Membrane Computing, vol. 1, Sevilla, 2012, 25–34, and
Membrane Computing - 13th International Conference, CMC13, Budapest (E.
Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil, Eds.), Lec-
ture Notes in Computer Science 7762, 2013, 101-111.

2. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel
Multiset-Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh.
Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th
International Workshop, WMC 2004, Milano, Revised Selected and Invited Papers,
Lecture Notes in Computer Science 3365, Springer, 2005, 178–189.

3. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient, Theoretical Computer Science
330, 2, 2005, 251–266.

4. R. Freund, M. Kogler, M. Oswald, A General Framework for Regulated Rewriting
Based on the Applicability of Rules. In: J. Kelemen, A. Kelemenová, Computation,
Cooperation, and Life, Springer, Lecture Notes in Computer Science 6610, 2011,
35–53.

5. R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Systems. Mem-
brane Computing, 8th International Workshop, WMC 2007 Thessaloniki, 2007,
Revised Selected and Invited Papers (G. Eleftherakis, P. Kefalas, Gh. Pŭn, G.
Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer Science 4860, 2007,
271–284.

6. O.H. Ibarra, H.-C. Yen: Deterministic Catalytic Systems are Not Universal, The-
oretical Computer Science 363, 2006, 149–161.

7. M.L. Minsky: Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

8. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
9. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2010.
10. G. Rozenberg, A. Salomaa: Handbook of Formal Languages, 3 vol., Springer, 1997.
11. P systems webpage. http://ppage.psystems.eu

70

P Systems with Toxic Objects

Artiom Alhazov1 and Rudolf Freund2

1 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova

Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at

Abstract. We introduce the new concept of toxic objects, objects that
must not stay idle as otherwise the computation is abandoned without
yielding a result. P systems of many kinds using toxic objects allow for
smaller descriptional complexity, especially for smaller number of rules,
as trap rules can be avoided. Besides presenting a number of tiny P sys-
tems generating or accepting non-semilinear sets of (vectors of) natural
numbers with very small numbers of rules, we also improve the results
for catalytic and purely catalytic P systems: 14 rules for generating a
non-semilinear vector set and 29 rules for generating a non-semilinear
number set are sufficient when allowing only the minimal number of two
(three) catalysts; moreover, with using toxic objects, these numbers can
be reduced to 11 and 17. Yet only 23 rules – without using toxic objects
– are needed if we allow more catalysts, i.e., five (seven) catalysts.

1 Introduction

P systems using non-cooperative rules without any additional control have the
behaviour of E0L systems, but when only taking the results at halting means
that the objects evolve in a context-free manner, generating PsCF , which is
known (by Parikh’s theorem) to coincide with PsREG, i.e., to the family of
semilinear sets. In the accepting setup, P systems using non-cooperative rules
without any additional control are even weaker, accepting all multisets over some
subalphabet, or nothing, see [1].

In [2] we were interested in P systems able to generate or accept non-
semilinear sets of natural numbers or at least sets of vectors of natural numbers,
yet with as small ingredients as possible for different variants of P systems. Our
main focus was on the descriptional complexity of these P systems, i.e., on how
small the total number of rules may be, depending on the specific features of
particular models of P systems. As most of the models of P systems can be
shown to be computationally complete based on a simulation of the actions of
a register machine, even simple examples often turn out to be somehow more
complicated than the general proof.

71

As an example of special interest we consider the case of (purely) catalytic
P systems: Ideas how to find good examples of catalytic P systems generating a
non-semilinear set of numbers were discussed intensively during the Fourteenth
International Conference on Membrane Computing (CMC 2013) in Chişinău,
especially by Petr Sośık and Rudolf Freund, based on a draft by Petr Sośık, and
most of them finally being included in his paper [21]. Some new observations just
found recently allowed us to reduce the number of rules again in a considerable
way, see Section 4.6. Using the concept of toxic objects allows for saving a lot
more rules. As a second interesting example we consider P systems with target
selection and give another example which shows how toxic objects may help to
save a lot of rules.

In this paper, we investigate the new concept of toxic objects (first mentioned
in [2]) which allows us to “kill” a computation branch if we cannot find a multiset
of rules covering all occurrences of toxic objects which then somehow become
“lethal” by killing such a computation. For all the proof techniques using a trap
symbol # to “kill” a computation by introducing the trap symbol # with a
non-cooperative rule a→ #, the concept of toxic objects allows us to save most
of the trap rules, thus improving the descriptional complexity of the underlying
P systems.

The rest of the paper is organized as follows: We first recall the basic def-
initions from formal language theory as well as the definitions for the most
important variants of P systems considered later. Then we present examples
with a small number of rules for variants of P systems generating or accepting a
non-semilinear set of natural numbers or of vectors of natural numbers with only
a few rules, especially for the maximally parallel derivation mode, explained in
more detail in [2]. As a specific example for a variant of P systems where the use
of toxic objects allows for saving a lot of rules we consider P systems with label
selection. Then, for the catalytic and purely catalytic P systems, we improve
previous results established in [21] and [22].

2 Definitions

In this section we first recall the basic notions from formal language theory
needed in this paper and then the definitions of the basic variants of P systems
considered in the following sections. For more details in formal language theory
we refer the reader to the standard monographs and textbooks as [19] and for
the area of regulated rewriting to [8]. All the main definitions and results for P
systems can be found in [16] and [17]; only specific notations and models not yet
to be found there will be explained in more detail in this paper, especially the
new idea of “toxic objects”, which will be explained and studied in Section 4. For
actual informations and new developments in the area of membrane computing
we refer to the P systems webpage [23].

72

2.1 Prerequisites

The set of non-negative integers (natural numbers) is denoted by N. An alphabet
V is a finite non-empty set of abstract symbols. Given V , the free monoid gener-
ated by V under the operation of concatenation is denoted by V ∗; the elements
of V ∗ are called strings, and the empty string is denoted by λ; V ∗\{λ} is denoted
by V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occurrences
of a symbol ai in a string x is denoted by |x|ai ; the Parikh vector associated

with x with respect to a1, · · · , an is
(
|x|a1 , · · · , |x|an

)
. The Parikh image of a

language L over {a1, · · · , an} is the set of all Parikh vectors of strings in L,
and we denote it by Ps (L). For a family of languages FL, the family of Parikh
images of languages in FL is denoted by PsFL; for families of languages over a
one-letter alphabet, the corresponding sets of non-negative integers are denoted
by NFL; for an alphabet V containing exactly d objects, the corresponding sets
of Parikh vectors with d components is denoted by NdFL, i.e., we replace Ps
by Nd.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1 , · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · · amn
n is unique. The family of

regular, context-free, and recursively enumerable string languages is denoted by
REG, CF , and RE, respectively.

ET0L systems An ET0L system is a construct G = (V, T,w, P1, · · · , Pm)
where m ≥ 1, V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗ is the
axiom, and the Pi, 1 ≤ i ≤ m, are finite sets (tables) of non-cooperative rules
over V . In a derivation step in G, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L(G), consists of all terminal strings w ∈ T ∗ which can be generated by a
derivation in G starting from the axiom w. The family of languages generated
by ET0L systems and by ET0L systems with at most k tables is denoted by
ET0L and ETk0L, respectively.

Register machines A register machine is a tuple M = (m,B, l0, lh, P), where
m is the number of registers, P is the set of instructions bijectively labeled by
elements of B, l0 ∈ B is the initial label, and lh ∈ B is the final label. The
instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

73

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruc-
tion to be executed. Computations start by executing the first instruction of P
(labeled with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model, for ex-
ample, see [14]. In the following, we shall call a specific model of P systems
computationally complete or universal if and only if for any register machine M
we can effectively construct an equivalent P system Π of that type simulating
M and yielding the same results.

Non-semilinear sets of numbers and of vectors of numbers In most of
the examples described in the following sections, we will use (variants) of the set
of natural numbers

{2n | n ≥ 0} = N
({
a2

n | n ≥ 0
})

and the set of (two-dimensional) vectors of natural numbers

{(n,m) | n ≥ 1, n ≤ m ≤ 2n} = Ps ({(anbm) | n ≥ 1, n ≤ m ≤ 2n}) ,

which both are known to not be semilinear.

2.2 P Systems

The ingredients of the basic variants of (cell-like) P systems are the membrane
structure, the objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes. Each mem-
brane defines a region/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called the skin mem-
brane, the region outside is the environment, also indicated by (the label) 0.
Each membrane can be labeled, and the label (from a set Lab) will identify both
the membrane and its region. The membrane structure can be represented by
a rooted tree (with the label of a membrane in each node and the skin in the
root), but also by an expression of correctly nested labeled parentheses. The ob-
jects (multisets) are placed in the compartments of the membrane structure and
usually represented by strings, with the multiplicity of a symbol corresponding
to the number of occurrences of that symbol in the string. The basic evolution
rules are multiset rewriting rules of the form u → v, where u is a multiset of
objects from a given set O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and
tari ∈ {here, out, in} or tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using

74

such a rule means “consuming” the objects of u and “producing” the objects
b1, . . . , bk of v; the target indications here, out, and in mean that an object with
the target here remains in the same region where the rule is applied, an object
with the target out is sent out of the respective membrane (in this way, objects
can also be sent to the environment, when the rule is applied in the skin region),
while an object with the target in is sent to one of the immediately inner mem-
branes, non-deterministically chosen, whereas with inj this inner membrane can
be specified directly. In general, we may omit the target indication here.

Yet there are a lot of other variants of rules we shall consider later; for ex-
ample, if on the right-hand side of a rule we add the symbol δ, the surrounding
membrane is dissolved whenever at least one such rule is applied, at the same
moment all objects inside this membrane (the objects of this membrane region
together with the whole inner membrane structure) are released to the sur-
rounding membrane, and the rules assigned to the dissolved membrane region
get lost. Another option is to add promoters p1, . . . , pm ∈ O+ and inhibitors
q1, . . . , qn ∈ O+ to a rule and write u → v|p1,...,pm,¬q1,...,¬qn , which rule then is
only applicable if the current contents of the membrane region includes any of
the promoter multisets, but none of the inhibitor multisets; in most cases pro-
moters and inhibitors are rather taken to be singleton objects than multisets.
Further variants of P systems will be defined later.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at
the beginning of a computation, R1, . . . , Rm are finite sets of evolution rules,
associated with the membrane regions of µ, and f is the label of the membrane
region from which the outputs are taken/the inputs are put in (f = 0 indicates
that the output/input is taken from the environment).

If a rule u→ v has at least two objects in u, then it is called cooperative, oth-
erwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca → cv, where c is a special
object which never evolves and never passes through a membrane (both these
restrictions can be relaxed), but it just assists object a to evolve to the multiset
v. In a purely catalytic P system we only allow catalytic rules. For a catalytic
as well as for a purely catalytic P system Π, in the description of Π we replace
“O” by “O,C” in order to specify those objects from O which are the catalysts
in the set C. As already explained above, cooperative and non-cooperative as
well as catalytic rules can be extended by adding promoters and/or inhibitors,
thus yielding rules of the form u→ v|p1,...,pm,¬q1,...,¬qn .

All the rules defined so far can be used in different derivation modes: in the
sequential mode (sequ), we apply exactly one rule in every derivation step; in the
asynchronuous mode (asyn), an arbitrary number of rules is applied in parallel;
in the maximally parallel (maxpar) derivation mode, in any computation step of
Π we choose a multiset of rules from the sets R1, . . . , Rm in a non-deterministic

75

way such that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing objects in the membrane regions 1, . . . ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation (we often also say derivation). A
computation is halting if and only if it reaches a configuration where no rule can
be applied any more. With a halting computation we associate a result generated
by this computation, in the form of the number of objects present in membrane
f in the halting configuration. The set of multisets obtained as results of halting
computations in Π working in the derivation mode δ ∈ {sequ, asyn,maxpar} is
denoted by mLgen,δ (Π), the set of natural numbers obtained by just counting
the number of objects in the multisets of mLgen,δ (Π) by Ngen,δ (Π), and the set
of (Parikh) vectors obtained from the multisets in mLgen,δ (Π) by Psgen,δ (Π).

Yet we may also start with some additional input multiset winput over an
input alphabet Σ in membrane f , i.e., in total we there have wfwinput in the
initial configuration, and accept this input winput if and only if there exists a
halting computation with this input; the set of multisets accepted by halting
computations in

Π = (O,Σ, µ,w1, . . . , wm, R1, . . . , Rm, f)

working in the derivation mode δ is denoted by mLacc,δ (Π), the corresponding
sets of natural numbers and of (Parikh) vectors are denoted by Nacc,δ (Π) and
Psacc,δ (Π), respectively.

The family of sets Yγ,δ (Π), Y ∈ {N,Ps}, γ ∈ {gen, acc} computed by P
systems with at most m membranes working in the derivation mode δ and with
rules of type X is denoted by Yγ,δOPm (X).

For example, it is well known (for example, see [15]) that for any m ≥ 1, for
the types of non-cooperative (ncoo) and cooperative (coo) rules we have

NREG = Ngen,maxparOPm (ncoo) ⊂ Ngen,maxparOPm (coo) = NRE.

For γ ∈ {gen, acc} and δ ∈ {sequ, asyn,maxpar}, the family of sets
Yγ,δ (Π), Y ∈ {N,Ps}, computed by (purely) catalytic P systems with at
most m membranes and at most k catalysts is denoted by Yγ,δOPm (catk) and
Yγ,δOPm (pcatk), respectively; from [10] we know that, with the results being
sent to the environment (which means taking f = 0), we have

Ygen,maxparOP1 (cat2) = Ygen,maxparOP1 (pcat3) = Y RE.

If we allow a catalyst c to switch between two different states c and c̄ we call c
a bi-stable catalyst; in that way we obtain P systems with bi-stable catalysts. For
γ ∈ {gen, acc} and δ ∈ {sequ, asyn,maxpar}, the family of sets Yγ,δ (Π), Y ∈
{N,Ps}, computed by (purely) catalytic P systems with bistable catalysts with
at most m membranes and at most k catalysts is denoted by Yγ,δOPm (2catk)

76

and Yγ,δOPm (p2catk), respectively. We note that in the generative case we do
not count the catalysts in the output membrane region.

For all the variants of P systems of type X, we may consider to label all the
rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and
to take a set W containing subsets of H. Then a P system with label selection is
a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any
transition step in Π we first select a set of labels U ∈W and then apply a non-
empty multiset R of rules such that all the labels of these rules in R are in U (and
in the case of maximal parallelism, the set R cannot be extended by any further
rule with a label from U so that the obtained multiset of rules would still be
applicable to the existing objects in the membrane regions 1, . . . ,m). The families
of sets Y (Π), Y ∈ {N,Ps}, computed by P systems with label selection with
at most m membranes and rules of type X as well as card (W) ≤ k are denoted
by Yγ,δOPm (X, lsk), for any γ ∈ {gen, acc} and δ ∈ {sequ, asyn,maxpar}.

For all variants of P systems using rules of some type X, we may con-
sider systems containing only rules of the form u → v where u ∈ O and
v = (b1, tar) . . . (bk, tar) with bi ∈ O and tar ∈ {here, out, in} or tar ∈
{here, out} ∪ {inj | j ∈ H}, 1 ≤ i ≤ k, i.e., in each rule there is only one
target for all objects bi; if catalytic rules are considered, then we request the
rules to be of the form ca → c (b1, tar) . . . (bk, tar); in both cases, for a rule
u→ (b1, tar) . . . (bk, tar) we then write u→ (b1, . . . , bk; tar).

A P system with target selection contains only these forms of rules; moreover,
in each computation step, for each membrane region i we choose a multiset of
rules from Ri having the same target indication tar; for different membrane
regions these targets may be different; moreover, the total multiset obtained
in this way must not be empty. The families of sets Yγ,δ (Π), Y ∈ {N,Ps},
computed by P systems with target selection with at most m membranes and
rules of type X are denoted by Yγ,δOPm (X, ts), for any γ ∈ {gen, acc} and
δ ∈ {sequ, asyn,maxpar}.

Remark 1. P systems with target selection were first defined in [11], but there
the chosen multiset of rules for each Ri had to be non-empty if possible. In this
paper, we only require the total multiset of rules, obtained by choosing multisets
of rules in each Ri with the results going to a chosen target membrane, to be
non-empty. Yet as in [11] we assume that when choosing the target in all objects
are sent to just one selected inner membrane.

We may extend rules of the form u→ (b1, . . . , bk; tar) to rules of the form u→
(b1, . . . , bk;Tar) where Tar is a finite set of targets, thus obtaining P systems
with target agreement. In each computation step, for each membrane we first
choose a target tar and then a multiset of rules of the form u→ (b1, . . . , bk;Tar)

77

with tar ∈ Tar – again, for different membranes these targets may be different.
The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, computed by P systems with target
agreement with at most m membranes and rules of type X are denoted by
Yγ,δOPm (X, ta), for any γ ∈ {gen, acc} and δ ∈ {sequ, asyn,maxpar}.

P systems with target agreement have the same computational power as P
systems with target selection, as proved in the following theorem, yet they allow
for a more compact description of rules as we will see in Subsection 3.2.

Theorem 1. For all types of rules X, any γ ∈ {gen, acc}, any derivation mode
δ ∈ {sequ, asyn,maxpar}, any Y ∈ {N,Ps}, and any m ∈ N, we have

Yγ,δOPm (X, ta) = Yγ,δOPm (X, ts) .

Proof. Given a P system with target selection

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

we can also interpret Π as a P system

Π ′ = (O,µ,w1, . . . , wm, R
′
1, . . . , R

′
m, f)

with target agreement by replacing each rule u → (b1, . . . , bk; tar) in any of the
sets Ri, 1 ≤ i ≤ m, by the corresponding rule u → (b1, . . . , bk; {tar}) in R′i.
Obviously, Yγ,δ (Π) = Yγ,δ (Π ′).

On the other hand, given a P system

Π ′ = (O,µ,w1, . . . , wm, R
′
1, . . . , R

′
m, f)

with target agreement we immediately get the corresponding P system with
target selection

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

such that Yγ,δ (Π) = Yγ,δ (Π ′): for each rule u→ (b1, . . . , bk;Tar) ∈ R′i we take
all the rules u→ (b1, . . . , bk; tar) with tar ∈ Tar into Ri. ut

Whereas for most of the other variants considered in this paper the so-called
flattening procedure (for more details see [11]) allows for finding equivalent sys-
tems with only one membrane, for P systems with target selection or target
agreement the membrane structure usually plays an essential rôle.

For any of the families of (vectors of) natural numbers Yγ,δOPm (X) we will
add subscript k at the end to indicate that only systems with at most k rules
are considered, i.e., we write Yγ,δOPm (X)k. If any of the finite parameters like
m and k is unbounded, we replace it by ∗.

78

3 Examples for P Systems with a Small Number of Rules

In this section, we give examples for P systems with a very small number of rules
accepting or generating a non-semilinear set (of vectors) of natural numbers. In
[2], most of the examples comprised in the following table were elaborated in
detail; for the models not defined above and the examples for these models, we
refer the reader to this paper.

n models
1 – deterministic cooperative rules, accepting numbers with a

special (non-standard) halting and accepting condition
– non-cooperative rules with target agreement, generating numbers

2 – non-cooperative rules with target selection, generating numbers
– non-cooperative rules with label selection, generating numbers
– non-cooperative rules with tables, generating numbers
– non-cooperative rules with membrane dissolution, generating numbers
– non-cooperative rules in active membranes with

two polarizations, generating numbers
– non-cooperative rules with one inhibitor, generating numbers

3 – non-deterministic cooperative rules, accepting numbers
– symport/antiport rules of weight ≤ 2 (and size ≤ 4), accepting numbers
– non-cooperative rules with one promoter, generating numbers

4 – purely catalytic rules with one bi-stable catalyst, generating vectors
– symport/antiport rules of weight ≤ 2 (and size ≤ 3), accepting numbers

5 – non-cooperative rules with promoters/inhibitors, generating numbers
9 – [purely] catalytic rules with one bi-stable catalyst and

toxic objects, generating numbers
11 – (purely) catalytic rules with two (three) catalysts and

toxic objects, generating vectors
12 – [purely] catalytic rules with one bi-stable catalyst, generating numbers
14 – (purely) catalytic rules with two (three) catalysts, generating vectors
17 – (purely) catalytic rules with two (three) catalysts and

toxic objects, generating numbers
23 – (purely) catalytic rules with five (seven) catalysts, generating numbers
29 – (purely) catalytic rules with two (three), generating numbers

Table 1. Examples for using n rules in specific models of P systems.

3.1 Accepting P Systems

Consider the P system

Π0 = (O = {a, s}, Σ = {a}, µ = []1, w1 = λ,R1, f = 1) where
R1 = {aa→ a, a→ s, ss→ ss}.

In each derivation step, Π0 halves (part of) the objects a, renaming the rest
of objects a into s. If more than one s is produced, an infinite computation is

79

forced due to the rule ss→ ss. The only way to produce not more than one s is
to always have even multiplicity of objects a until it reaches the last one; hence,
we conclude mLacc,maxpar(Π0) = {a2n | n ≥ 0} ∪ {λ}.

This accepting P system Π0 has 3 cooperative rules, i.e., we have

{2n | n ≥ 0} ∪ {0} ∈ Nacc,maxparOP1 (coo)3 .

It is well-known that P systems with cooperative rules are computationally
complete. The smallest known universal one has 23 rules, see [6].

3.2 Generating by Doubling in the Maximally Parallel Mode

This section contains models of P systems with “mass influence”, where some-
thing can simultaneously affect (directly or indirectly) an unbounded number of
copies of specific objects (e.g., target agreement, target selection, label selection,
tables, membrane dissolution). In that way we obtain tiny P system using mas-
sive parallelism for repeated doubling, and using one of the effects mentioned
above to halt.

P Systems with Target Agreement Or Target Selection We first con-
sider the case of target agreement which allows for the smallest descriptional
complexity with only one rule:

Π2 = (O = {a}, µ = []1, w1 = a,w2 = λ,R1, R2 = ∅, f = 0) with
R1 = {a→ (aa, {here, out})}.

Π2 doubles the number of objects each turn that the objects stay in the skin
membrane choosing the target here. At some moment, all objects agree in the
target destination out thus moving into the environment where no rule can be
applied any more. At any moment of the computation, all simultaneously pro-
duced objects must agree in the same destination, effectively choosing between
continuing the doubling or halting.

If we resolve the rule a → (aa, {here, out}) into its two corresponding rules
a→ (aa, here) and a→ (aa, out), we immediately get the P system with target
selection

Π3 = (O = {a}, µ = []1, w1 = a,w2 = λ,R1, R2 = ∅, f = 0) with
R1 = {a→ (aa, here), a→ (aa, out)}.

In sum, we therefore infer

{2n | n ≥ 1} ∈ Ngen,maxparOP1 (ncoo, ta)1 ∩Ngen,maxparOP1 (ncoo, ts)2 .

P Systems with Tables The following P system with tables of rules (tabled
P system) needs only 2 rules and is closely related to the P system with target
selection described in Subsection 3.2.

Π4 = (O = {a}, µ = []1, w1 = b, R1, f = 0) with
R1 = {T1 = {a→ aa, here}, T2 = {a→ a, out}} .

80

Π4 doubles the multiplicity of objects a each step as long as using table T1.
At any time, if after n ≥ 0 such steps the second table T2 is chosen, all objects
a are sent out to the environment and the computation halts, having generated
a2

n

.
We also note that the second table (and thus the table feature) is not needed

under a specific variant of halting called unconditional halting which resembles
the L systems (Lindenmayer systems) mode of taking the result; P systems using
non-cooperative rules and taking the results after each computation step (i.e.,
with unconditional halting) were considered in [7] and shown to characterize
PsET0L.

In sum, we have obtained

{2n | n ≥ 0} ∈ Ngen,maxparOP1 (ncoo, table2)2 ∩Ngen−u,maxparOP1 (ncoo)1 ,

where gen− u indicates that we take the results generated in the output mem-
brane after every computation step (i.e., with unconditional halting) and table2
indicates that we are using 2 tables.

P systems with Label Selection Instead of selecting different targets, in the
P system with label selection

Π5 = (O = {a}, µ = []1, w1 = a,R1, H = {1, 2} ,W = {{1} , {2}} , f = 0) with
R1 = {1 : a→ (aa, here), 2 : a→ (aa, out)}.
we select different labels to be able to choose when to send out all objects from
the skin membrane to the environment; hence, we have

{2n | n ≥ 1} ∈ Ngen,maxparOP1 (ncoo, ls2)2 .

We will return to this model of P systems with label selection later when
considering catalytic rules only.

3.3 P Systems with Membrane Dissolution

When using only non-cooperative rules we cannot obtain computational com-
pleteness with the additional feature of membrane dissolution; yet, in [9] an
infinite hierarchy with respect to the number of membranes was established us-
ing membrane dissolution in a linear membrane structure. Now consider

Π6 = (O = {a}, µ = [[]2]1, w1 = λ,w2 = a,R1 = ∅, R2, f = 1)

where R2 = {a → aa, a → aaδ}. Π6 doubles the number of objects each turn
when only using the rule a → aa until at some moment the inner membrane
may be dissolved by at least for one a using the dissolution rule a → aaδ, thus
stopping the computation. This generative system has 2 non-cooperative rules
and membrane dissolution and computes mLgen,maxpar(Π6) = {a2n | n ≥ 0},
i.e.,

{2n | n ≥ 0} ∈ Ngen,maxparOP2 (ncoo, δ)2 .

81

4 P Systems with Catalysts

P systems with catalysts were already considered in the originating papers for
membrane systems, see [15]. In [10], two (three) catalysts were shown to be suffi-
cient for getting computational completeness with (purely) catalytic P systems.
Whether or not one (two) catalyst(s) might already be enough to obtain com-
putational completeness, is still one of the most challenging open problems in
the area of P systems. We only know that purely catalytic P systems (work-
ing in the maximally parallel mode) with only one catalyst simply correspond
with sequential P systems with only one membrane, hence, to multiset rewriting
systems with context-free rules, and therefore can only generate linear sets.

Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one catalyst can be shown to be compu-
tationally complete, e.g., see Chapter 4 of [17]. On the other hand, additional
features for the catalyst may be taken into account; for example, we may use
bi-stable catalysts (catalysts switching between two different states) as will be
considered next.

4.1 Generating a Non-Semilinear Number Set with One Bi-Stable
Catalyst

We now turn our attention to the – in general – more difficult generative case,
using the maximally parallel mode.

Π7 = (O,C = {c, c̄}, µ = []1, w1 = c̄pa,R1, f = 1) where
O = {c, c̄} ∪ {a, b} ∪ {p, q, s, t} ∪ {#},
R1 = {ca→ c̄bb, s→ t, c̄t→ cs, cs→ c̄p, t→ #, #→ #,

c̄b→ ca, p→ q, cq → c̄p, c̄p→ cs, c̄p→ c̄, q → #}.
Π7 works consists in two phases. In phase 1, in addition to the bi-stable cat-

alyst toggling between c and c̄, there is a state object present, toggling between
s and t. Every two steps, a is replaced by bb with c changing to c̄ while s changes
to t; then c̄t are reset to cs. If objects a are no longer present, c is idle for one
step, and then cs change to c̄p, entering phase 2.

In phase 2, the state object toggles between p and q. Every two steps, b is
renamed into a with c̄ changing to c while p changes to q; then cq are reset to
c̄p. If objects b are no longer present, c̄ is idle for one step, and then either c̄p
change to cs, returning to phase 1, or c̄ erases p thus causing the system to halt.

In both phases, if the bi-stable catalyst “chooses” a “ wrong” rule, then either
t or q are left to themselves, forcing the system to enter an infinite computation,
so this computation does not lead to a result any more; hence, in sum we obtain
mLgen,maxpar(Π7) = {a2n | n ≥ 0}.

Π7 is a purely catalytic P system with only one bi-stable catalyst and 12
rules, hence, we have

{2n | n ≥ 0} ∈ Ngen,maxparOP1 (2cat1)12 .

The computational completeness of P systems with one bi-stable catalyst
working in the maximally parallel mode was established in [3].

82

4.2 P Systems with Toxic Objects – a Special Variant of Halting
for Avoiding the Trap Symbol

Throughout this section, a main part of the constructions (which is inevitable
for proving computational completeness, too) is the introduction of the trap
symbol # in case the derivation goes the wrong way and by the rule #→ # (or
c#→ c# with a catalyst c) guaranteeing the derivation never to halt. Yet most
of these rules can be avoided if we apply a specific new halting strategy allowing
the system to halt without yielding a result. This somehow corresponds to the
case of a Turing machine halting its computation in a non-final state, and as for
Turing machines, where each such computation halting in a non-final state can
be transformed into an infinite computation, in P systems usually the trap rules
perform this task to yield an infinite computation.

This specific new halting strategy allowing the system to halt without yielding
a result can be defined in various ways, e.g., with a special symbol (like the trap
symbol) appearing in the configuration. As our main goal now is to save as many
rules as possible, we want to stop one step earlier, i.e., before the trap symbol
would be introduced. Hence, we specify a specific subset of toxic objects Otox;
the P system is only allowed to continue a computation from a configuration C
by using an applicable multiset of rules covering all copies of objects from Otox
occurring in C; moreover, if there exists no multiset of applicable rules covering
all toxic objects, the whole computation having yielded the configuration C is
abandoned, i.e., no results can be obtained from this computation.

This idea somehow resembles the strategy of using priorities with having the
rules involving the objects from Otox having priority over other rules. Yet this
strategy is both weaker and stronger compared with the strategy of priority on
rules: on one hand, we can only specify priorities with respect to the objects
from Otox; on the other hand, if not all copies of toxic objects from Otox can be
covered by any multiset of rules, we stop without getting a result, whereas in
the case of priorities any multiset of rules respecting the priority relation can be
used to continue the computation.

For any variant of P systems, we add the set of toxic objects Otox and in the
specification of the families of sets of (vectors of) numbers generated/accepted
by P systems with toxic objects using rules of type X we add the subscript tox
to O, thus obtaining the families Yγ,maxparOtoxPm (X), for any γ ∈ {gen, acc}
and m ≥ 1.

Hence, for the P system with one bi-stable catalyst Π7 elaborated in the pre-
ceding subsection, we obtain the corresponding P system Π8 with toxic objects

Π8 = (O,C = {c, c̄}, Otox, µ = []1, w1 = c̄pa,R1, f = 1) where
O = {c, c̄} ∪ {a, b} ∪ {p, q, s, t},

Otox = {q, t},
R1 = {ca→ c̄bb, s→ t, c̄t→ cs, cs→ c̄p,

c̄b→ ca, p→ q, cq → c̄p, c̄p→ cs, c̄p→ c̄}.

According to the arguments established in the preceding subsection, we im-
mediately infer mLgen,maxpar(Π8) = {a2n | n ≥ 0}. This system now does not

83

need more than 9 rules, and therefore we have

{2n | n ≥ 0} ∈ Ngen,maxparOtoxP1 (2cat1)9 .

4.3 General Results for [Purely] Catalytic P Systems with Toxic
Objects

Looking closer into the computational completeness proofs for catalytic P sys-
tems given in [10], we see that the only non-cooperative rules used in the proofs
given there are rules involving the trap symbol. When going to purely catalytic
P systems, we realize that all rules involving the trap symbol can be assigned
to one additional catalyst; for example, to generate any recursively enumerable
set of natural numbers we need two catalysts for catalytic P systems and three
catalysts for purely catalytic P systems.

As the proof of the basic result

PsRE = Psgen,maxparOP1(cat2) = Psgen,maxparOP1(pcat3)

also is the basis of the construction of the [purely] catalytic P system elaborated
in Subsection 4.6, we first recall the main ideas of the simulations for ADD- and
SUB-instructions of a register machine M = (d,B, l0, h,R).

For every instruction label l ∈ B of the register machine to be simulated two
symbols are used to keep the two main catalysts c1, c2 busy, starting with pj p̃j .
At the end, for the halting label h we use the two rules c1ph → c1 and c2p̃h → c2
to stop the derivation in case the simulation has succeeded to be correct. The
number na stored in register a is represented by na copies of the symbol oa.

Each ADD-instruction j : (ADD(a), k, l), for a ∈ {1, 2, . . . , d}, can easily be
simulated by the rules c1pj → c1oapkp̃k, c1pj → c1oaplp̃l, and c2p̃j → c2.

Each SUB-instruction j : (SUB(a), k, l), only necessary to be considered for
a ∈ 1, 2, is simulated in four steps as shown in the table listed below:

Simulation of the SUB-instruction j : (SUB(a), k, l) if
register a is not empty register a is empty
capj → cap̂j p̂

′
j capj → cap̄j p̄

′
j p̄
′′
j

c3−ap̃j → c3−a c3−ap̃j → c3−a
caoa → cac

′
a cap̄j → ca

c3−ap̂j → c3−a c3−ap̄′′j → c3−ap′′j
cac
′
a → cac

′′
a

c3−ap̂′j → c3−ap̂′′j c3−ap′′j → c3−ap′j
cap̂
′′
j → capkp̃k cap

′
j → caplp̃l

c3−ac′′a → c3−a c3−ap̄′j → c3−a

In addition, trap rules guarantee that in case the guess whether the contents
of register a is empty or not was wrong, the derivation enters an infinite loop with
the rule #→ # in the catalytic case or c3#→ c3# in the purely catalytic case.
These objects x for which we have such trap rules x→ # in the catalytic case or

84

c3x→ c3# in the purely catalytic case, are c′1, c
′′
1 , c
′
2, c
′′
2 and, for every label j of a

SUB-instruction j : (SUB(a), k, l), the objects pj , p
′
j , p
′′
j , p̂j , p̂

′′
j , p̃j , p̄j , p̄

′′
j , and for

every label j of an ADD-instruction j : (ADD(a), k, l) the objects pj , p̃j as well.
We should like to mention that these trap rules for the objects pj , p̃j coming from
the ADD-instructions j : (ADD(a), k, l) were forgotten to be included in the
proof of the special Corollary 8 in [10], whereas in the more general Theorem 4,
due to writing down the range of the trap rules in a different way, these trap
rules for the symbols indicating an ADD-instruction were included correctly.

The construction shown above strictly follows the proof elaborated in [10]; yet
we observe that many symbols are just needed to keep one of the two catalysts
busy for one step with being erased or else having to evolve to the trap symbol.
Hence, every symbol x for which we only have a rule cix → ciλ, i ∈ {1, 2}, can
be replaced by just one symbol di. In addition, for pj we now always use c1 and
for p̃j (which in fact now is replaced by d2) we now always use c2. Finally, we

can also replace all symbols p̄′j by just one variable d̂3−a.
In that way, we obtain the following tables of rules for the simulation of

ADD-instructions and SUB-instructions:

Simulation of the ADD-instruction j : (ADD(a), k, l)
c1pj → c1oapkd2, c1pj → c1oapkd2; c2d2 → c2.

The table for a SUB-instruction now contains several identical entries:

Simulation of the SUB-instruction j : (SUB(a), k, l) if
register a is not empty register a is empty

c1pj → c1d3−ap̂′j c1pj → c1dad̂3−ap̄′′j
c2d2 → c2 c2d2 → c2
caoa → cac

′
a cada → ca

c3−ad3−a → c3−a c3−ap̄′′j → c3−ap′′j
cac
′
a → cad3−a

c3−ap̂′j → c3−ap̂′′j c3−ap′′j → c3−ap′j
cap̂
′′
j → capkd2 cap

′
j → capld2

c3−ad3−a → c3−a c3−ad̂3−a → c3−a

The zero-test case now can be reduced considerably to two steps:

c1pj → c1p̄j
c2d2 → c2
ca remains idle
c3−ap̄j → c3−apld2

For x being an element of the following set, we have to add the trap rules
c3x → c3# in the purely catalytic case and the corresponding rules x → # in
the catalytic case:

{#, d1, d2, c′1, c′2} ∪ {pj | j : (ADD(a), k, l)} ∪
{
pj , p̂

′′
j , p̄j | j : (SUB(a), k, l)

}

In the case of catalytic P systems, the only non-cooperative rules are these
trap rules, and in the case of purely catalytic P systems, the trap rules, and only

85

those, are associated with the third catalyst c3. If we take exactly those objects
for which such a trap rule exists as toxic objects and omit all trap rules, then we
immediately infer the following computational completeness result, where Otox
indicates that we are using toxic objects:

Theorem 2. PsRE = PsOtoxPgen,maxpar(cat2) = PsOtoxPgen,maxpar(pcat2).

In general, for all the results elaborated in [10] we obtain similar results: when
using toxic objects, then the construction for obtaining the results for catalytic
and purely catalytic P systems coincide, as for example in the preceding theo-
rem, where in both cases we only need two catalysts (which number currently
is assumed to be the minimal one). Moreover, the simulation becomes somehow
deterministic, as only the correct simulation paths survive; in that sense, deter-
ministic register machines can be simulated by deterministic [purely] catalytic
P systems with toxic objects.

4.4 Generating a Non-Semilinear Vector Set with a [Purely]
Catalytic P System

We now construct [purely] catalytic P systems generating the non-semilinear set
of pairs of natural numbers {(n,m) | n ≤ m ≤ 2n}. First we define the purely
catalytic P system Π9 generating {an3am4 | n ≤ m ≤ 2n}.

Π9 = (O,C = {c1, c2, c3}, µ = []1, w1 = c1c2c3a1p1d1d2, R1, f = 1) where
O = {c1, c2, c3} ∪ {a1, a2, a3, a4, d1, d2, p1, p2,#},
R1 = {c1a1 → c1, c1p2 → c1a1a4p2, c1p2 → c1a1a3a4p1, c1p2 → c1a3a4,

c2a2 → c2, c2p1 → c2a2a2p1, c2p1 → c2a2a2p2,
c1d2 → c1, c2d1 → c2, c1d1 → c1#, c2d2 → c2#,
c3p1 → c3#, c3p2 → c3#, c3#→ c3#}.

This purely catalytic system has 14 rules, and with just omitting the third
catalyst we obtain the corresponding catalytic P system having 14 rules, too.
But with using toxic objects we can save some of (but in this case not all!) the
trap rules, i.e., we obtain the purely catalytic P system with toxic objects Π10

with only 11 rules:

Π10 = (O,C = {c1, c2}, Otox, µ = []1, w1 = c1c2a1p1d1d2, R1, f = 1) where
O = {c1, c2} ∪ {a1, a2, a3, a4, d1, d2, p1, p2,#},

Otox = {p1, p2,#},
R1 = {c1a1 → c1, c1p2 → c1a1a4p2, c1p2 → c1a1a3a4p1, c1p2 → c1a3a4,

c2a2 → c2, c2p1 → c2a2a2p1, c2p1 → c2a2a2p2,
c1d2 → c1, c2d1 → c2, c1d1 → c1#, c2d2 → c2#}.

In all cases, the derivations work as follows: the objects p1, p2 work as states,
and the objects di, i ∈ {1, 2}, are used to check that the corresponding catalyst

86

ci is busy at some stage, otherwise these objects di force the system to enter an
infinite loop with the trap rules or to kill the derivation.

In state p1, we decrement (the number of objects representing) register 1 by
the rule c1a1 → c1 and double their number by applying the rule c2p1 → c2a2a2p1
in parallel. By using the rule c2p1 → c2a2a2p2 instead, we change to state p2,
yet without checking whether register 1 is already empty. In case the latter rule
is used too late, i.e., if no object a1 is present any more, then we have to use the
trap rule c1d1 → c1#.

In state p2, we decrement (the number of objects representing) register 2 by
the rule c2a2 → c2 and copy (the contents of) this register to register 1, at the
same time adding this number to register 4 by using the rule c1p2 → c1a1a4p2 in
parallel. If this rule is used until no object a2 is present any more, then we have
to use the trap rule c2d2 → c2#. If instead we use the rule c1p2 → c1a1a3a4p1,
we switch back to state 1, at the same moment incrementing register 3, yet again
without checking register a2 for being zero. By using the rule c1p2 → c1a3a4,
we end this cycling between states p1 and p2, i.e., now both p1 and p2 are not
present any more, and the two objects d1 and d2 have to be eliminated, which
can be achieved by using the two rules c1d2 → c1 and c2d1 → c2 in parallel.

At the end of a computation, even if the two objects d1 and d2 have already
been deleted, the catalysts c1 and c2 will still be active to delete all the remaining
objects a1 and a2, hence, at the end only copies of objects a3 and a4 are present
any more. In sum, we conclude that Ps({an3am4 | n ≤ m ≤ 2n}) belongs to

Psgen,maxparOP1(pcat3)14 ∩ Psgen,maxparOtoxP1(pcat2)11.

4.5 Purely Catalytic P systems with Label Selection

If we only allow purely catalytic rules with two catalysts, P systems with label
selection can apply at most two rules in each derivation step and thus show a
behavior rather similar to the way matrix grammars in binary normal form work,
i.e., the set of labels defines the matrix of the two rules to be applied together.

We now construct a purely catalytic P system with label selection with two
catalysts which generates the non-semilinear set of natural numbers {2n | n ≥ 1}.

Π11 = (O,C = {c1, c2}, µ = []1, w1 = c1c2pa1, R1, H,W, f = 1) where
O = {c1, c2} ∪ {a1, a2, a3, p, q, r,#},
H = {i | 1 ≤ i ≤ 7} ∪ {i′ | i ∈ {1, 3, 6}} ∪ {#a1 ,#a2 ,#p,#q,#r,##} ,
W = {{1, 1′,#q,#r} , {2,#a1 ,#q,#r} , {3, 3′,#p,#r} , {4,#a2 ,#p,#r}

{5,#a1 ,#q,#r} , {6, 6′,#p,#q} , {7,#a2 ,#p,#q,##}},
R1 = {1 : c2p→ c2p, 1′ : c1a1 → c1a2a2, 2 : c2p→ c2q,

3 : c2q → c2q, 3′ : c1a2 → c1a1, 4 : c2q → c2p,
5 : c2p→ c2r, 6 : c2r → c2r, 6′ : c1a2 → c1a3,
7 : c2r → c2, #a1 : c1a1 → c1#, #a2 : c1a2 → c1#, ## : c2#→ c2#,
#p : c2p→ c2#, #q : c2q → c2#, #r : c2r → c2#}.

87

In “state” p we double the number of symbols a1, and in “state” q we rename
them back from a2 to a1; in “state” r we rename every symbol a2 to the output
symbol a3. The trap rules #p,#q,#r guarantee that the second rule associated
with the catalyst c1 is only carried out with the right state symbol evolving with
c2. The system in total has 16 rules. We can avoid the trap rules #p,#q,#r,##

by using toxic objects, in fact exactly p, q, r,#, thus obtaining a system with
only 12 rules:

Π ′11 = (O,C = {c1, c2}, µ = []1, w1 = c1c2pa1, R
′
1, H

′,W ′, f = 1) where
O = {c1, c2} ∪ {a1, a2, a3, p, q, r},

Otox = {p, q, r,#} ,
H ′ = {i | 1 ≤ i ≤ 7} ∪ {i′ | i ∈ {1, 3, 6}} ∪ {#a1 ,#a2} ,
W ′ = {{1, 1′} , {2,#a1} , {3, 3′} , {4,#a2} , {5,#a1} , {6, 6′} , {7,#a2}},
R′1 = {1 : c2p→ c2p, 1′ : c1a1 → c1a2a2, 2 : c2p→ c2q,

3 : c2q → c2q, 3′ : c1a2 → c1a1, 4 : c2q → c2p,
5 : c2p→ c2r, 6 : c2r → c2r, 6′ : c1a2 → c1a3,
7 : c2r → c2, #a1 : c1a1 → c1#, #a2 : c1a2 → c1#}.

In sum, we have mLgen,maxpar(Π11) = mLgen,maxpar(Π
′
11) = {a2n3 | n ≥ 0},

hence,

{2n | n ≥ 1} ∈ Ngen,maxparOP1(pcat2, ls)16 ∩Ngen,maxparOtoxP1(pcat2, ls)12.

Computational completeness of purely catalytic P systems is shown in [12].
We here recall this proof for the generating case, but also show how toxic objects
influence the descriptional complexity of the constructed P system:

Theorem 3. PsRE = PsOP1 (pcat2, ls) = PsOtoxP1 (pcat2, ls) .

Proof. We first prove the inclusion PsRE ⊆ PsOP1 (pcat2, ls). Let us consider
a deterministic register machine M = (2 + d,B, l0, lh, I) with the last d registers
containing the output values, and let A = {a1, . . . , ad+2} be the set of objects
for representing the contents of the registers 1 to d+ 2 of M . We construct the
following purely catalytic P system:

Π = (O, {c1, c2} , []
1
, c1c2dl0, R1, H,W, 0),

O = A ∪B ∪ {c1, c2, d,#} ,
H = {l, l′,#l | l ∈ B} ∪ {#α | α ∈ {d,#}} ∪ {l−r ,#ar | 1 ≤ r ≤ 2} ;

the sets of labels in W and the rules for R1 are defined as follows:

A. The trap rules are ## : c2# → c2# and #d : c1d → c1# as well as
#l : c2l → c2# for all l ∈ B and #ar : c1ar → c1# for all ar, 1 ≤ r ≤ 2.
Moreover, for every l ∈ B we define

B# (l′) = {#l | l ∈ B \ {l′}} .

88

B. Let li : (ADD (r) , lj , lk) be an ADD-instruction in I. Then we introduce
the two rules

li : c2li → c2ljar and l′i : c2li → c2lkar

and define {li, l′i} to be the corresponding set of labels in W . Observe that only
one of these rules can be applied at the same computation step in Π. For the
output registers r, 2 < r ≤ d+ 2, we replace ar by (ar, out).

C. The simulation of a SUB-instruction li : (SUB (r) , lj , lk), for 1 ≤ r ≤ 2, is
carried out by the following rules and the corresponding sets of labels in W :

For the case that the register r is not empty we take {li, l−r ,#d} ∪ B# (li)
into W where

li : c2li → c2lj and l−r : c1ar → c1.

If no symbol ar is present, i.e., if the register r is empty, then the trap symbol
is introduced by enforcing c1 to be used with #d : c1d→ c1#; moreover, this
set of labels should only be used in the presence of li as otherwise c2 is enforced
to be used with #l : c2l → c2# for the current label l just being present in the
system.

For the case that the register r is empty, we take {l′i,#ar} ∪B# (li) into W
with the rule

l′i : c2li → c2lk.

If at least one symbol ar is present, i.e., if the register r is not empty, then the trap
symbol # is introduced by the enforced application of the rule #ar : c1ar → c1#;
again this set of labels should only be used in the presence of li as otherwise
c2 is enforced to be used with #l : c2l → c2# for the current label l just being
present in the system.

In both cases, the simulation of the SUB-instruction works correctly if we
have made the right choice with respect to the current label present in the system
and the contents of register r.

D. At the end of a successful computation of the register machine M , all
registers r, 1 ≤ r ≤ d + 2, are empty, and M has reached labe lh. Hence, we
finally add {lh, l′h} ∪ B# (lh) to W where lh : c2lh → c2 and l′h : c1d → c1.
If during the simulation of the instructions of M by Π no trap symbol # has
been generated, the P system Π halts with only the catalysts remaining in the
skin region; otherwise, the system enters an infinite loop with the trap rule
: c2#→ c2# and {##} in W .

In sum, we have shown L (M) = Psgen,maxpar (Π), which observation com-
pletes the first part of the proof.

We now prove the inclusion PsRE ⊆ PsOtoxP1 (pcat2, ls) and construct the
following purely catalytic P system with toxic objects using the rules already

89

explained above:

Π ′ = (O′, {c1, c2} , []
1
, c1c2dl0, R

′
1, H

′,W ′, 0),
O′ = A ∪B ∪ {c1, c2, d,#} ,
Otox = B ∪ {#} ,
H ′ = {l, l′ | l ∈ B} ∪ {l−r | li : (SUB (r) , lj , lk) ∈ I} ∪ {#α | α ∈ {d, a1, a2}} ,
W ′ = {{lh, l′h}} ∪ {{li, l′i} | li : (ADD (r) , lj , lk) ∈ I}

∪ {{li, l−r ,#d} , {l′i,#ar} | li : (SUB (r) , lj , lk) ∈ I} ,
R′1 = {li : c2li → c2ljar, l

′
i : c2li → c2lkar | li : (ADD (r) , lj , lk) ∈ I, 1 ≤ r ≤ 2}

∪ {li : c2li → c2lj (ar, out) , l
′
i : c2li → c2lk (ar, out) |

li : (ADD (r) , lj , lk) ∈ I, 2 < r ≤ d+ 2}
∪ {li : c2li → c2lj , l

−
r : c1ar → c1, l

′
i : c2li → c2lk | li : (SUB (r) , lj , lk) ∈ I}

∪ {#α : α→ # | α ∈ {d, a1, a2}} ∪ {lh : c2lh → c2, l
′
h : c1d→ c1} .

In this purely catalytic P system with toxic objects, besides the trap symbol
itself, exactly the labels from B are toxic, i.e., they must evolve, which guarantees
that a set from W ′ is used with the correct label. This observation concludes the
proof showing L (M) = Psgen,maxpar (Π ′). ut

4.6 Generating Number Sets with [Purely] Catalytic P Systems

We now are going to improve the result from [21], where a catalytic P system with
54 rules was elaborated, generating the non-semilinear set of natural numbers
{2n − 2n | n ≥ 2}, and even the improved result from [22] where only 32 rules
were needed. In the following, we construct a [purely] catalytic P system with
29 rules, generating the (standard) non-semilinear set of natural numbers {2n |
n ≥ 1}. Yet we will show even more, i.e., our construction works for any set
of natural numbers representing a function g : N → N which is computed in
r3 by the following function program (starting with r1 = b0 and r2 = r3 = 0),
with r1, r2, r3 representing three registers of a register machine, and with the
parameters b0, b1, b2, b3, b4 being natural numbers, b0 ≥ 1:

function g(r3):
1: if r1 > 0

then begin DEC(r1); ADD(1,r2); goto 1 end

else goto 1

orelse begin ADD(b3,r3); goto 3 end

2: if r2 > 0
then begin DEC(r2); ADD(b2,r1); ADD(b1,r3); goto 2 end

else begin ADD(b4,r1); goto 1 end;
3: HALT

endfunction

The idea of this program is that in label 1 we copy (register) r1 to r2; the
notation DEC(r) means decrementing (register) r by one, whereas ADD(k,r)

90

means adding k to (register) r. As soon as register r1 is empty, we switch to
label 2 or halt after having added b3 to (the result register) r3 before. In label
2, we copy back the value of register r2 to r1, but take it b2 times, at the same
time adding b1 times the value of register r2 to r3, and at the end, when r2 is
empty, we add b4 to r1.

The structures

i: if ri > 0

then begin DEC(ri); ADD(1,r3−i); goto i end

else goto j

in this function program correspond with the following instructions in a register
machine program:

i : (SUB(i), i′, j)
i′ : (ADD(3− i), i, i)

We now describe the functions computed by specific values of the parameters
b0, b1, b2, b3, b4; thereby let fi(n), i ∈ {1, 3}, denote the value of register i after
n times, n ≥ 0, having gone through the loops 1 and 2, and g(n) the final value
of the function when going through the loops 1 and 2 for n times and then
performing loop 1 once more, yet exiting at the end of loop 1 to halt.

In general, we get f2(0) = f2(n) = 0 for all n ≥ 0 as well as the system of
linear recursions

f1(n+ 1) = b2f1(n) + b4,
f3(n+ 1) = f3(n) + b1f1(n)

with f1(0) = b0 and f3(0) = 0 as well as the final result g(n) = f3(n) + b3.

Case 1. b2 = 1:

In this case, we get the system of linear recursions

f1(n+ 1) = f1(n) + b4,
f3(n+ 1) = f3(n) + b1f1(n).

Solving these recursions yields f1(n) = b0 + b4n and, for n ≥ 0,

f3(n) = f3(0) +

n−1∑

i=0

b1f1(i) = b1

n−1∑

i=0

(b0 + b4i)

= b1b0n+ b1b4n(n− 1)/2

hence, g(0) = b3 and, for n ≥ 0,

g(n) = f3(n) + b3 = (b1b4/2)n2 + (b1b0 − b1b4/2)n+ b3,

i.e., a quadratic function provided b1 6= 0 and b4 6= 0.

As a specific example, for (b0, b1, b2, b3, b4) = (1, 1, 1, 0, 2) we obtain g(n) =
n2.

91

Case 2. b2 > 1, b1 = 1, b4 = 0:

In this case, we get the linear recursions

f1(n+ 1) = b2f1(n),
f3(n+ 1) = f3(n) + f1(n)

with f1(0) = b0 and f2(0) = f3(0) = 0 as well as the final result g(n) = f3(n)+b3,
i.e., for n ≥ 0 we obtain f1(n) = b0(b2)n and

f3(n) = f3(0) +
n−1∑

i=0

b0(b2)i = b0

n−1∑

i=1

(b2)i = b0(((b2)n − 1)/(b2 − 1))

as well as

g(n) = f3(n) + b3 = b0(((b2)n − 1)/(b2 − 1)) + b3.

As a specific example, for (b0, b1, b2, b3, b4) = (1, 1, 2, 1, 0) we therefore obtain
g(n) = 2n.

We now start from the constructions for simulating SUB-instructions as al-
ready exhibited in Subsection 4.3. In order to get even more efficient simulations,
we save the first steps in a specific way; moreover, every ADD-instruction can
be incorporated into the rules of the last steps of the simulations, in a similar
way as this was already done in the construction elaborated in [21]. Thus, for
the function g with the parameters b0, b1, b2, b3, b4 we construct the catalytic P
system

Π12(b0, b1, b2, b3, b4) = (O,C = {c1, c2}, µ = []1, w1, R1, f = 1) where
O = {a1, a2, a3, c′1, c′2, d,#}
∪ {pj , p′j , p′′j , p̄j | j ∈ {1, 2}},

w1 = c1c2(a1)b0p1,
R1 = R1,c ∪R1,#,

and R1,c consists of the catalytic rules contained in the following two tables:

Simulation of the instructions related with label 1 if
register 1 is not empty register 1 is empty
c1a1 → c1c

′
1 c1 remains idle

c2p1 → c2p
′
1 c2p̄1 → c2p2

c1c
′
1 → c1d

c2p
′
1 → c2p

′′
1

c1p
′′
1 → c1p1a2 or

c1p
′′
1 → c1p̄1a2

c2d→ c2
halting: c2p̄2 → c2(a3)b3

92

Simulation of the instructions related with label 2 if
register 2 is not empty register 1 is empty
c2a2 → c2c

′
2 c2 remains idle

c1p2 → c1p
′
2 c1p̄2 → c1p1(a1)b4

c2c
′
2 → c2d

c1p
′
2 → c1p

′′
2

c2p
′′
2 → c2p2(a1)b2(a3)b1 or

c2p
′′
2 → c2p̄2(a1)b2(a3)b1

c1d→ c1

In addition, we have to add trap rules to guarantee that in case of wrong
guesses, the derivation enters an infinite loop with the rule # → # in the
catalytic case (or c3# → c3# in the purely catalytic case). The objects x for
which we have such trap rules x → # in the catalytic case (or c3x → c3# in
the purely catalytic case) are # and d as well as, for j ∈ {1, 2}, the objects
c′j , pj , p

′
j , p
′′
j , p̄j , i.e.,

R1,# = {x→ # | x ∈ {#, d} ∪ {c′j , pj , p′j , p′′j , p̄j | j ∈ {1, 2}}}.

In total this yields 17 catalytic rules inR1,c and 12 trap rules inR1,#, i.e., 29 rules
in R1. Obviously, the same number of rules is obtained for the corresponding
purely catalytic P system Π ′12(b0, b1, b2, b3, b4) where we simply have to add
the third catalyst c3 and replace the context-free trap rules x → # by the
corresponding catalytic trap rules c3x→ c3#.

We can omit the trap rules when using toxic objects, i.e., if we take

Π ′′12(b0, b1, b2, b3, b4) = (O′′, C = {c1, c2}, Otox, µ = []1, w1, R1,c, f = 1) where
O′′ = {a1, a2, a3, c′1, c′2, d}
∪ {pj , p′j , p′′j , p̄j | j ∈ {1, 2}},

Otox = {c′1, c′2, d} ∪ {pj , p′j , p′′j , p̄j | j ∈ {1, 2}},
w1 = c1c2(a1)b0p1,

and R1,c contains the catalytic rules as listed above. This system now only
contains 17 rules.

How to argue that the catalytic P system Π12(b0, b1, b2, b3, b4) and the corre-
sponding catalytic P systems Π ′12(b0, b1, b2, b3, b4) and Π ′′12(b0, b1, b2, b3, b4) work
correctly was exhibited in detail in [10] as well as in [21] and [22]. Yet as we
have reduced the number of rules in a considerable way, we have to argue for
any possible case of decrementing or zero-test register a:

If decrementing of register a is possible, all steps have to be performed exactly
as described in the table. If decrementing fails, then in the last (third) step c3−a
must be used with the rule c3−aa3−a → c3−ac′3−a as not both registers can be
empty during a computation in the register machine. Yet in the next step the
catalyst c3−a is busy with the program symbol pa or p̄a, hence, with c′3−a and
one of these program symbols competing for the same catalyst, one of these
symbols will be trapped.

93

A successful simulation of testing register a for zero is performed in one
step leaving catalyst ca idle. In case the register is not empty, c′a has to be
generated, and this symbol in the next step will compete for the catalyst ca with
the program symbol p3−a and thus one of these symbols will be trapped.

As already explained in [21], we here also mention that when using c2p̄2 →
c2(a3)b3 instead of c2p̄1 → c2p2 in order to reach a halting configuration, the
system does not immediately halt, but instead, if having chosen the rule when
register 1 is empty, uses the sequences of rules c2a2 → c2c

′
2, c2c

′
2 → c2d, and

c1d→ c1 (or c1d→ c1), to clear register 2, so that in the end only the objects a3
remain besides the catalysts. If c2p̄2 → c2(a3)b3 is chosen too early, then both
registers may be cleared by using the corresponding rules. The result expressed
by the number of symbols a3 is not affected, if we make such a wrong choice at
the end only.

As specific examples, we therefore obtain

Ngen,maxpar(Π12(1, 1, 1, 0, 2)) = {n2 | n ≥ 0}

and
Ngen,maxpar(Π12(1, 1, 2, 1, 0)) = {2n | n ≥ 1}.

We observe that with respect to the complexity of the systems, especially
concerning the number of rules, there is no difference at all between the sets of
natural numbers growing in a quadratic and in an exponential way, respectively.

In sum, we conclude that all these non-linear sets of natural numbers as
described above are contained in

Ngen,maxparOP1(cat2)29 ∩Ngen,maxparOP1(pcat3)29

as well as in

Ngen,maxparOtoxP1(cat2)17 ∩Ngen,maxparOtoxP1(pcat2)17.

If we do not limit ourselves with the number of catalysts, a better solution
with respect to the number of rules is possible, i.e., for the function g with the
parameters b0, b1, b2, b3, b4 we construct the purely catalytic P system

Π13(b0, b1, b2, b3, b4) = (O,C =, µ = []1, w1, R1, f = 1) where
O = C ∪ {a1, a2, a3, p1, p2, ph, d1, d2, d′1, d′2, d, d′,#}
C = {cr,Decr, cr,0Test | r ∈ {1, 2}} ∪ {cd, cp, c#}
w1 = c1,Decrc1,0Testc2,Decrc2,0Testcdcpc#(a1)b0p1d2d

′
1d
′
2dd
′,

and R1 consists of the catalytic rules described in the following.
The main idea of this new construction is to use two catalysts for each register

– one for the decrement (cr,Decr) and one for the zero-test (cr,0Test). Moreover,
each SUB-instruction is simulated by two rules, one for the decrement and one for
the zero-test, just allowing the corresponding catalyst to do its work, whereas all
other catalysts are kept busy having introduced dr for cr,Decr and d′r for cr,0Test.

94

The catalyst cd for the special symbol d is kept busy by d′; the symbol d is used
for trapping in case an intended decrement fails and can only be allowed to
vanish in the last step. The catalyst cp is used with the instruction labels p1, p2,
and ph. The catalyst c# is only needed for handling the trap symbol #.

For each of the two registers r ∈ {1, 2}, the following rules perform the
decrement and the zero-test, respectively, in case this operation is initiated by
omitting dr or d′r, respectively, in the step before.

decrement cr,Decrar → cr,Decr: if register r is not empty, it is decremented;
cr,Decrd → cr,Decr#: if register r is empty, the catalyst cr,Decr has to be used

with the symbol d thereby introducing the trap symbol #;
cr,Decrdr → cr,Decr: dr keeps cr,Decr busy if another instruction is to be simu-

lated;
c#dr → c##: dr is a “toxic” object which must not stay idle;
cdd
′ → cd: d

′ keeps cd busy until the end;
c#d

′ → c##: d′ is a “toxic” object which must not stay idle.
zero-test cr,0Testar → cr,0Test#: if register r is not empty, a trap symbol # is

generated;
cr,0Testd

′
r → cr,0Test: d

′
r keeps cr,0Test busy if another instruction is to be

simulated; for the symbol d′r we do not need an additional trap rule as the
only alternative is already a trap rule.

The following rules initiate the decrement or the zero-test on register 1 or 2
and simulate the program for the function g:

1. cpp1 → cpa2p1d2d
′
1d
′
2d
′: decrement register 1;

cpp1 → cpp2d1d2d
′
2d
′: zero-test register 1;

2. cpp2 → cp(a1)b2(a3)b1p2d1d
′
1d
′
2d
′: decrement register 2;

cpp2 → cp(a1)b4p1d1d2d
′
1d
′: zero-test register 2;

cpp1 → cp(a3)b3phd1d2d
′
2d
′: zero-test register 1 and go to halting.

3. Whereas register 1 is already empty, now also register 2 has to be cleaned
using the instruction label ph:
cpph → cpphd1d

′
1d
′
2d
′: decrement register 2;

cpph → cpd1d2d
′
1: zero-test register 2 and eliminate ph;

cdd→ cd: finally cd is allowed to eliminate d;
c## → c##: in case something goes wrong during a simulation of an in-
struction, this rule keeps the P system in an infinite loop.

In sum, this purley catalytic P system Π13(b0, b1, b2, b3, b4) contains only 23
rules. We can save two catalysts by using non-cooperative rules instead of the
catalytic rules assingned to the catalysts cp and c#, thus obtaining the catalytic
P system Π ′13(b0, b1, b2, b3, b4). Hence, all the non-linear sets of natural numbers
described above are contained in

Ngen,maxparOP1(cat5)23 ∩Ngen,maxparOP1(pcat7)23.

Besides the trap rule c## → c##, only the rules c#dr → c##, r ∈ {1, 2},
and c#d

′ → c## can be omitted when considering a (purely) catalytic P system
with “toxic” objects, yet this result with 19 rules is even weaker than the previous
one where we also used less catalysts.

95

5 Conclusions

In this paper we have investigated and illustrated with several examples the ef-
fect of using toxic objects in various models of P systems. Moreover, we have
given a lot of examples for small P systems accepting or generating specific non-
semilinear sets of vectors of natural numbers or non-semilinear sets of natural
numbers. As our main result, we have improved considerably the result estab-
lished in [21] and even improved the newest result obtained in [22] by show-
ing that 29 rules are enough for generating the non-semilinear set of numbers
{2n | n ≥ 1} with (purely) catalytic P systems and 2 (3) catalysts; using toxic
objects, only 17 rules are needed. Allowing for a larger number of catalysts, with
a new proof technique we could even reduce the number of rules to 23.

For the catalytic P systems/purely catalytic P systems it is still one of the
most challenging questions in the area of P systems whether we really need
two/three catalysts to get computational completeness or at least to accept or
generate a non-semilinear set of (vectors of) natural numbers. Another direction
for future research is to investigate the influence of toxic objects in further models
of P systems.

Acknowledgements

The first author acknowledges project STCU-5384 Models of high performance
computations based on biological and quantum approaches awarded by the Sci-
ence and Technology Center in the Ukraine. Both authors are very grateful to
Petr Sośık for pointing out the mistake in the proof of Corollary 8 in [10].

References

1. A. Alhazov, R. Freund: Asynchronous and Maximally Parallel Deterministic Con-
trolled Non-cooperative P Systems Characterize NFIN and coNFIN. In: E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil (Eds.): Membrane
Computing - 13th International Conference, CMC 2012, Budapest, Revised Se-
lected Papers. Lecture Notes in Computer Science 7762, Springer, 2013, 101–111.

2. A. Alhazov, R. Freund: Small P Systems Defining Non-semilinear Sets. To appear.
3. A. Alhazov: P Systems without Multiplicities of Symbol-Objects. Information Pro-

cessing Letters 100 (3), 124–129 (2006).
4. A. Alhazov, R. Freund, Gh. Păun: Computational Completeness of P Systems

with Active Membranes and Two Polarizations. In: M. Margenstern (Ed.): Ma-
chines, Computations, and Universality, International Conference, MCU 2004,
Saint Petersburg, Revised Selected Papers. Lecture Notes in Computer Science
3354, Springer, 2005, 82–92.

5. A. Alhazov, R. Freund, A. Riscos-Núñez: One and Two Polarizations, Membrane
Creation and Objects Complexity in P Systems. Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 05. EEE
Computer Society, 2005, 385–394.

6. A. Alhazov, S. Verlan: Minimization Strategies for Maximally Parallel Multiset
Rewriting Systems. Theoretical Computer Science 412 (17), 1581–1591 (2011).

96

7. M. Beyreder, R. Freund: Membrane Systems Using Noncooperative Rules with
Unconditional Halting. Membrane Computing. 9th International Workshop, WMC
2008, Edinburgh, UK, July 28-31, 2008, Revised Selected and Invited Papers. Lec-
ture Notes in Computer Science 5391, Springer, 2009, 129–136. DOI=10.1007/978-
3-540-95885-7 10.

8. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

9. R. Freund: Special Variants of P Systems Inducing an Infinite Hierarchy with
Respect to the Number of Membranes. Bulletin of the EATCS 75, 209–219 (2001).

10. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science
330 (2), 251–266 (2005).

11. R. Freund, A. Leporati, G. Mauri, A. E. Porreca, S. Verlan, C. Zandron: Flattening
in (Tissue) P Systems. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu.Rogozhin, G.
Rozenberg, A. Salomaa (Eds.): Membrane Computing – 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20–23, 2013, Revised
Selected Papers. Lecture Notes in Computer Science 8340, Springer 2014, 173–188.
DOI=10.1007/978-3-642-54239-8.

12. R. Freund, M. Oswald, Gh. Păun: Catalytic and Purely Catalytic P Systems and
P Automata: Control Mechanisms for Obtaining Computational Completeness.
Fundamenta Informaticae, to appear.

13. O.H. Ibarra, S.Woodworth: On Symport/Antiport P Systems with a Small Number
of Objects. International Journal of Computer Mathematics 83 (7), 2006, 613–629.
137–152.

14. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA, 1967.

15. Gh. Păun: Computing with Membranes. J. Comput. Syst. Sci. 61, 108–143 (2000);
also see TUCS Report 208, 1998, www.tucs.fi.

16. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
17. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, 2010, 118–143.
18. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic

Press, New York, 1980.
19. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
20. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International

Journal of Foundations of Computer Science 17 (1), 205–221 (2006).
21. P. Sośık: A Catalytic P System with Two Catalysts Generating a Non-Semilinear

Set. Romanian Journal of Information Science and Technology 16 (1), 3–9 (2013).
22. P. Sośık, M. Langer: Improved Universality Proof for Catalytic P Systems and a

Relation to Non-Semi-Linear Sets. In: S. Bensch, R. Freund, F. Otto (Eds.): Sixth
Workshop on Non-Classical Models of Automata and Applications (NCMA 2014),
books@ocg.at, Band 304, Wien, 2014, 223–234.

23. The P systems webpage. http://ppage.psystems.eu

97

98

Length P Systems with a Lonesome Traveler

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, MD-2028, Chişinău, Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at
3 LACL, Université Paris Est – Créteil Val de Marne

61, av. Général de Gaulle, 94010, Créteil, France
Email: sergiu.ivanov@u-pec.fr

Abstract. In this paper we examine P systems with linear membrane
structures (only one membrane is elementary), in most cases considering
systems with at most one object. We prove that two labels, elementary
membrane creation and dissolution, together with the usual send-in and
send-out rules, suffice to achieve computational completeness, even with
the restriction that only one object is allowed to be present in any config-
uration of the system. On the other hand, limiting the number of labels
to one reduces the computational power to regular sets of non-negative
integers. We also consider the possibility of interpreting the sequences
of membrane labels in halting configurations as languages and we prove
that all RE languages can be generated in this way. Finally, we show
that, when multiple objects can appear in the system, it suffices to only
allow one membrane to be labeled differently from the other membranes
to achieve computational completeness.

1 Introduction

P systems with symbol objects are formal computational models of parallel dis-
tributed multiset processing. In the scope of the present paper, we mainly deal
with one object, so the model is reduced to sequential distributed tree rewriting
controlled by one traveler object with a finite memory. Moreover, we assume the
membrane structure to be linear (the tree is a path), with one or two possible
membrane labels. Hence, we are interested in controlled rewriting of strings over
one or two symbols.

Unbounded linear membrane structures have received the attention of re-
searchers in the past, see, e.g., [5] and [4]. In the latter paper, the authors dis-
cussed the generation of languages by representing strings a1 · · · an as membrane
labels arranged in a linear structure as follows:

[
a1

[
a2
· · · [

an
]
an
· · ·]

a2
]
a1
.

99

A different example of research where unbounded membrane structures
played a crucial role for obtaining an important result – the computational com-
pleteness of P systems with active membranes without polarizations – is given
in [1], improved in terms of presentation and object/symbol/membrane label
complexity in [3].

This research direction, focusing on the membrane structure – rather than
the multiset of objects in a designated region – as the result of the computa-
tion of a P system, has been recalled during the 12th Brainstorming Week on
Membrane Computing in Sevilla, see [2]. The technique proposed there of how
to generate (the description of) recursively enumerable sets of vectors of non-
negative integers, using membrane structures with only two labels (0 and 1),
where the number of membranes labeled by 1 remains bounded by a constant
throughout the computation, is explained in Section 3. In Section 6 we drop this
restriction, thus generating languages. It was also conjectured that:

With one label and at most one “traveler” we can only characterize linear
sets, even with membrane generation and deletion.

We confirm this conjecture (referred to as “the regularity conjecture”) in Sec-
tion 4. Finally, in Section 5 we discuss variants of the model leading to weak
computational completeness, while in Section 7 we strengthen this result by
considering multiple objects.

2 Definitions

We assume the reader to be familiar with the basic notions and results of formal
language theory, e.g., see [11], and of membrane systems, see the monographs
[9] and [10] as well as the P systems webpage [12].

The families of regular and recursively enumerable string languages are de-
noted by REG and RE, respectively. The corresponding families of sets of num-
bers as well as of vectors of numbers are denoted by NREG and NRE as well as
by PsREG andPsRE, respectively. The languages generated by matrix gram-
mars are denoted by MAT . The corresponding families of sets of numbers are
denoted by NMAT .

A regular (right-linear) grammar is a construct G = (N,T, S, P), where N is
the set of nonterminals, T is the set of terminals, S is the start symbol, and P is
a set of rules of the form A→ bC and A→ λ with A,C ∈ N and b ∈ T (λ is the
empty string). The language generated by G is defined as the set of words over T
which can be obtained from S by sequentially applying the rules from P . Without
loss of generality we may assume that G is reduced, i.e., every nonterminal in N
is reachable from S and from every nonterminal A ∈ N (eventually except S, if
the empty set is generated by the set of rules {S → aS}) a terminal string can
be derived. The family of languages generated by (reduced) regular grammars
exactly coincides with REG.

A linear grammar is a construct G = (N,T, S, P), where N , T , and S are
defined as above, while P is a set of productions of the form A → α, where

100

A ∈ N and w is a string over N ∪ A such that it contains at most one symbol
from N . The language generated by G is defined in the same way as in the case
of regular grammars. A language is called linear, if it is generated by a linear
grammar.

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number
of registers, B is a finite set of labels, l0 ∈ B is the initial label, lh ∈ B is the
final label, and P is the set of instructions bijectively labeled by elements of B.
The instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.
• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.

If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.
• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh. We say that M computes the output
values y1, . . . , yk, yj ∈ N, 1 ≤ j ≤ k, on the input x1, . . . , xn, xi ∈ N, 1 ≤ i ≤ n, if,
starting from the initial configuration in which the first n registers ofM contain
the values xi, the machine reaches the HALT-instruction with the values yj in
its first k registers.

Register machines are well-known computationally complete mechanisms,
e.g., see [8].

2.1 P Systems with Membrane Creation and Dissolution

A P system with membrane creation and dissolution is a construct defined as
follows:

Π = (O,H, µ, h1, · · · , hn, w1, · · · , wn, R) where

– O is the (finite) alphabet of objects;
– H is the (finite) alphabet of membrane labels;
– µ is the initial membrane structure consisting of n membranes labeled by

elements of H;
– hi ∈ H, 1 ≤ i ≤ n, is the initial label of the membrane i;
– wi ∈ O∗, 1 ≤ i ≤ n, is the string which represents the initial contents of

membrane i;
– R is the set of rules.

101

Each rule in R is of one of the following types (we avoid the label (a) because
it is usually reserved for evolution rules):

(b) [
h2
a[

h1
]
h1

]
h2
→ [

h′
2

[
h′
1
b]

h′
1

]
h′
2
,

a, b ∈ O, h1, h2, h
′
1, h
′
2 ∈ H – send-in rule,

(c) [
h2

[
h1
a]

h1
]
h2
→ [

h′
2
b[

h′
1

]
h′
1

]
h′
2
,

a, b ∈ O, h1, h2, h
′
1, h
′
2 ∈ H – send-out rule,

(d) [
h2

[
h1
a]

h1
]
h2
→ [

h′
2
b]

h′
2
,

a, b ∈ O, h1, h2, h
′
2 ∈ H – membrane dissolution rule,

(e) [
h1
a]

h1
→ [

h′
1

[
h2
b]

h2
]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane creation rule.

A rule of type (b) consumes the symbol a in a membrane with label h2 and
puts a symbol b into an inner membrane, rewriting the labels of the involved
membranes. Symmetrically, a rule of type (c) consumes an instance of a in a
membrane with label h1, which is located within a membrane with label h2, and
puts an instance of b into the latter membrane, rewriting the labels.

A rule of type (e) consumes an instance of a in membrane with label h1 and
adds to it a new membrane with label h2, with an instance of b inside. The label
of the original membrane is rewritten to h′1. Symmetrically, a rule of type (d)
consumes an instance of a in a membrane with label h1, which is located within
a membrane with label h2, copies all the symbols from the membrane with label
h1 to its parent membrane, discards the membrane h1, adds a b to the membrane
h2 and rewrites its label to h′2.

The rules are applied in the maximally parallel way, with the restriction that
in one derivation step at most one rule of types (b), (c), (d), and (e) can be
applied per each membrane labeled by h1 in the definition of the rules given
above. We deliberately avoid evolution rules, so that no parallelism can happen
at the level of any membrane.

A configuration Ck of the system Π consists of the description of the mem-
brane structure µk, the labeling of the membranes, and the multisets over O
representing the contents of the regions. A configuration is called halting if no
more rules are applicable any more. A computation of Π is a sequence of con-
figurations (Ck)1≤k≤m, where C1 is the initial configuration, Cm is a halting
configuration, and Ck+1 is obtained from Ck by applying the rules from R.

Note: In the following, we will restrict ourselves to P systems with linear mem-
brane structure. In such systems, membrane creation should never be applied in
a non-elementary membrane, otherwise a non-linear membrane structure would
be obtained, which is unwanted in the model of the current paper. In Section 3,
the P system is constructed in such a way that the object triggering membrane
creation would only appear in the elementary membrane. However, in Sections
4 and 5, the setup is more restricted (e.g., one label only), which would yield
too restrictive P systems. To overcome this, we impose the following restriction:
membrane creation rules are disabled in non-elementary membranes. We refer
to this kind of rules as (ee). In a similar way, we are interested in membrane

102

dissolution rules which are disabled in non-elementary membranes, and we de-
note them by (de). Clearly, for each of these membrane dissolution and creation
operations, the constructions in Section 3 work for either variant (emphasizing
(de), otherwise the decrement could be simplified). The regularity conjecture
originally assumed only elementary dissolution to be used as well as results only
to be obtained at halting with the object in the elementary membrane.

In Section 5 we also consider the following type of rule (introduced already
in [4]; we have removed the object in the inner membrane on the right side
to let the systems considered in the paper have at most one object during the
computation):

(f) [
h1
a]

h1
→ [

h′
1
b[

h2
]
h2

]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane duplication rule:

the membrane h1, in the presence of an object a, is duplicated, that is, the label
h1 is changed into h′1, the object a is replaced by b and a new inner membrane
labeled by h2 is created; all the contents of membrane h1 (membranes or objects
except this copy of object b) is now inside membrane h2.

Note: In [4] the authors have assumed the outer membrane to be the newly
created one; it makes no difference as long as we can change both labels by this
rule. However, we prefer to view the inner membrane as the new membrane.
This lets us keep h′1 = h1 whenever we need it.

Moreover, the following simplifications/restrictions are made to the rule types
in Section 5: membranes h2, h′2 are not mentioned in the notation of rules (b), (c)
and (d), which means that the listed rules act independently of the corresponding
external membranes and do not modify them:

(br) a[
h1

]
h1
→ [

h′
1
b]

h′
1
, a, b ∈ O, h1, h

′
1 ∈ H,

(cr) [
h1
a]

h1
→ b[

h′
1

]
h′
1
, a, b ∈ O, h1, h

′
1 ∈ H,

(dr) [
h1
a]

h1
→ b, a, b ∈ O, h1 ∈ H (we write (der) if the rule is only applicable

for the elementary membrane).

One difference, not relevant for P systems with at most one object, is that the
outermost membrane, not reflected in a rule, is no longer bound by this rule,
and can simultaneously be used for some other rule with a different object.

3 Length P Systems

In what follows we will consider a special class of P systems with membrane
creation and dissolution. A length P system Π is a P system with membrane
creation and dissolution which has the following properties:

– the membrane structure is linear in every configuration, i.e., every membrane
has at most one inner membrane;

103

– the membranes in any configuration of Π reachable from the initial one are
labeled by one out of at most two labels only.

Consider a halting configuration C of a length P system Π and construct
the sequence of membrane labels (hi)1≤i≤n, in which h1 corresponds to the
label of the skin membrane, h2 to the label of the membrane inner to the skin
membrane, etc., and n is the number of membranes in C. Since hi is a member
of a two-element set, we can interpret this sequence as a vector of numbers coded
in unary by runs of one label and separated by instances of the other label. This
vector of numbers will be considered as the output of the length P system Π.

Following the same convention, we can define the input of Π as a two-label
membrane structure coding a certain vector of numbers, i.e., for an input vector
v = (v1, v2, . . . , vn), we construct the initial configuration of the length P system
Π with the membranes labeled according to the string α10v110v21 . . . 10vn1β
over H, where α, β ∈ H∗ are fixed and do not depend on v. For a different
example of designing P systems with the membrane structure being a part of
the input, see [6].

We will now show that length P systems with the input supplied via the
membrane structure are computationally complete. To achieve this goal we will
take an arbitrary register machineM and simulate it by the length P system Π1

which only uses two labels H = {0, 1}, only the skin membrane is not empty in
the initial configuration and contains qs, and the sequence of initial membrane
labels written as a string h1h2 · · ·hn has the form 110R110R2 · · · 10Rm1, where
Ri, 1 ≤ i ≤ m, is the value of the i-th register of M.

The evolution of the system starts with the rule

[
h
qs[1]

1
]
h
→ [

h
[
1
q1,1]

1
]
h
, 0 ≤ h ≤ 1,

where the symbol q1,1 represents the first instruction in the program of M and
also keeps the information about the fact that it is located in the region of the
membrane structure corresponding to the first register ofM. We use the generic
label h in this case to show that we do not ever depend on the actual label of the
skin (as the traveler can detect that it is in the skin by counting the membranes
labeled by 1 it traverses on its way out).

To simulate an increment of the i-th register of M, we need to add a mem-
brane to the membrane structure and assure that the sequence of labels changes
from 110R1 · · · 10Ri · · · 10Rm1 to 110R1 · · · 10Ri+1 · · · 10Rm1. We start with the
symbol ql,1 in the inner membrane of the skin, where l is the label of the in-
crement operation, and we move it to the innermost membrane, counting the
registers we traverse on that way:

[
h
ql,j [0]

0
]
h
→ [

h
[
0
ql,j]

0
]
h
,

[
h
ql,j [1]

1
]
h
→ [

h
[
1
ql,j+1]

1
]
h
, 1 ≤ j ≤ m, 0 ≤ h ≤ 1.

When we reach the end marker of the last register, we go into the innermost
membrane and add a new membrane:

[
1
ql,m+1]

1
→ [

1
[
0
sl,m+1]

0
]
1
.

104

We have now changed the sequence of labels from 110R1 · · · 10Ri · · · 10Rm1 to
110R1 · · · 10Ri · · · 10Rm10.

The series of s-symbols will now swap this new membrane label 0 with the
labels of the other membranes, in order to obtain a new membrane labeled by 0
in the zone of the membrane structure corresponding to register Ri:

[
0

[
0
sl,j]

0
]
0
→ [

0
sl,j [0]

0
]
0
,

[
1

[
0
sl,j]

0
]
1
→ [

0
sl,j−1[

1
]
1

]
0
, i < j ≤ m+ 1.

When we produce the symbol sl,i, we have already pushed all labels corre-
sponding to the registers with numbers greater than i towards the innermost
membrane and we have added a membrane labeled by 0 to the zone correspond-
ing to the i-th register. The following rules move the s-symbol back into the skin
membrane:

[
h

[
0
sl,j]

0
]
h
→ [

h
sl,j [0]

0
]
h
,

[
h

[
1
sl,j]

1
]
h
→ [

h
sl,j−1[

1
]
1

]
h
, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, sl,0 produces the symbol corresponding to the next instruction l′ of
the register machine:

[
h
sl,0[

1
]
1

]
h
→ [

h
[
1
ql′,1]

1
]
h
, 0 ≤ h ≤ 1.

The simulation of a decrement and zero-check of the i-th register of M is
symmetric to the simulation of an increment: we start with finding the zone of
the membrane structure corresponding to the i-th register:

[h ql,j [0]0]h → [h [0 ql,j]0]h,
[
h
ql,j [1]

1
]
h
→ [

h
[
1
ql,j+1]

1
]
h
, 1 ≤ j < i, 0 ≤ h ≤ 1.

If the value of the register is zero, the symbol ql,i immediately encounters
another membrane with the label 1, so it produces the corresponding signal
symbol:

[
1
ql,i[1]

1
]
1
→ [

1
[
1
zl,i+1]

1
]
1
.

The signal symbol then travels to the skin membrane:

[
h

[
0
zl,j]

0
]
h
→ [

h
zl,j [0]

0
]
h
,

[
h

[
1
zl,j]

1
]
h
→ [

h
zl,j−1[

1
]
1

]
h
, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, in the outer membranes, zl,0 produces the symbol coding the next
instruction l′, corresponding to unsuccessful decrement:

[
h
zl,0[

1
]
1

]
h
→ [

h
[
1
ql′,1]

1
]
h
, 0 ≤ h ≤ 1.

If, however, ql,i detects that the i-th register is not empty, it produces a
different signal symbol:

[
1
ql,i[0]

0
]
1
→ [

1
[
0
dl,i]

0
]
1
.

105

This symbol moves all membrane labels one step outwards:

[
0
dl,j [0]

0
]
0
→ [

0
[
0
dl,j]

0
]
0
, i ≤ j ≤ m,

[
0
dl,j [1]

1
]
0
→ [

1
[
0
dl,j+1]

0
]
1
, i ≤ j ≤ m.

When it reaches the end of the zone of the membrane structure corresponding
to the m-th register, dl,m+1 dissolves the innermost membrane:

[
1

[
0
dl,m+1]

0
]
1
→ [

1
sl,m+1]

1
.

Now the s-symbol goes outwards to the skin membrane:

[h [0 sl,j]0]h → [h sl,j [0]
0

]
h
,

[
h

[
1
sl,j]

1
]
h
→ [

h
sl,j−1[

1
]
1

]
h
, 1 ≤ j ≤ m+ 1, 0 ≤ h ≤ 1.

Finally, sl,0 generates the symbol coding the next operation l′′, corresponding
to a successful decrement:

[
h
sl,0[

1
]
1

]
h
→ [

h
[
1
ql′′,1]

1
]
h
, 0 ≤ h ≤ 1.

Note: The construction can be rewritten in such a way that only one membrane
participates on the left side of any rule. In that case the total number of mem-
branes labeled by 1 will no longer remain a constant, yet will still stay bounded.
In the construction presented above, however, the number of membranes labeled
by 1 is constant during the computation, namely, it is m+ 2. Indeed, membrane
creation and membrane dissolution rules do not modify the label of the outer
membrane, while communication rules either keep unchanged the labels of the
two membranes they work with, or they swap them. The number of membranes
labeled by 1 may be reduced by one, by starting with the skin labeled by 0;
this does not affect the proof. Moreover, with a technique mentioned at the end
of Section 5 the innermost membrane labeled 1 may be avoided. For the spe-
cial case m = 2, in Section 5 we present a construction where, using membrane
duplication, we avoid even the membrane labeled by 1 which separates the rep-
resentation of the two registers, by keeping track of this position with the object
itself.

Before describing that specific result, we proceed with the conjecture that
length P systems with one label only generate regular sets of numbers, in case
elementary membrane creation, elementary membrane dissolution and commu-
nication rules are used.

4 On the Regularity Conjecture

Clearly, any regular set of numbers can be generated with rules (e) only, sim-
ulating each rule pa → q, p → qh of a finite automaton accepting a one-
letter language (for which, without restricting generality we require that every
state except qh is non-final and has at least one outgoing transition) by rules

106

[
0
p]

0
→ [

0
[
0
q]

0
]
0

and [
0
p]

0
→ [

0
[
0
qh]

0
]
0
, respectively. Here, the skin and

the elementary membrane are to be seen as additional endmarkers (as otherwise
only numbers ≥ 2 could be generated). Interpreting the elementary membrane
as an endmarker can be avoided by additionally using a rule of type (d), i.e., of
the form [

0
[
0
qh]

0
]
0
→ [

0
q′h]

0
.

There are two possible reasons why the power of length P systems with one
label and one object is restricted. The first reason (R1) is that the object can
never detect that it is in the skin (unless we additionally allow the skin to have
a distinguished label). Indeed, if C ⇒ C ′ is one computation step, then it is easy
to see (just by looking at all kinds of rules) that

[
0
C]

0
⇒ [

0
C ′]

0
(1)

is also a valid computation step. This immediately generalizes to multiple mem-
brane levels and multiple derivation steps:

C ⇒∗ C ′ implies [0 · · · [0︸ ︷︷ ︸
n

C]0 · · ·]0 ⇒∗ [0 · · · [0︸ ︷︷ ︸
n

C ′]0 · · ·]0. (2)

The second reason (R2) is that the total membrane depth can only be in-
creased while the “traveler” is in the elementary membrane (unless we addi-
tionally allowed membrane duplication rules). Let us denote by C ⇒dive C

′ a
“membrane dive”, i.e., such a computation fragment that the object is in the
elementary membrane in both C and in C ′, but never in the intermediate con-
figurations. Let us also denote by 〈n, a〉 the configuration consisting of a linear
structure of n membranes, the elementary one containing the object a:

〈n, a〉 = [
0
· · · [

0︸ ︷︷ ︸
n

a]
0
· · ·]

0
.

Clearly, for any a, b ∈ O, one of the following cases is true:

– There exists some minimal value n ∈ N for which 〈n, a〉 ⇒dive 〈n, b〉 is true.
Let us denote this value by n(a, b). We recall from (2) that 〈n, a〉 ⇒dive 〈n, b〉
holds for any n ≥ n(a, b).

– 〈n, a〉 ⇒dive 〈n, b〉 is not true for any n ∈ N.

We denote by n̄ the maximum of values n(a, b) over the first case. We denote
by N the set of all numbers not exceeding n̄ generated by the length P system.
We denote by A the set of all objects a ∈ O such that 〈n̄, a〉 is reachable in the
length P system.

It is easier to confirm the conjecture for the case when membrane dissolution
is only allowed for elementary membranes. Then, the power of the length P sys-
tem is described by the union of the finite set N with the power of a partially
blind 1-register machine, starting in a state corresponding to an object from
A with n̄ in its only register, which does not modify the register during tran-
sitions from state a to state b for which 〈n̄, a〉 → 〈n̄, b〉, and whose increment

107

and decrement instructions correspond to creating and dissolving elementary
membranes.

It is known, see, e.g., [7], that the number sets generated by partially blind
1-register machines are equal to NMAT = NREG. Finally, in this case it is
immediate that the membrane structure cannot change between the last time
the object is in the elementary membrane and the halting.

Note: The regularity conjecture remains valid even if non-elementary membranes
can be dissolved. Indeed, a similar (non-constructive) argument can be made;
we only describe it informally . For any two symbols a, b ∈ O, either there exists
some minimal number m ∈ N such that 〈m, a〉 ⇒ 〈m + 1, b〉, and we denote it
by m(a, b), or this derivation is not possible for any m ∈ N. Then the behavior
of the length P system can be decomposed into a finite part (the membrane
structure depth not exceeding the maximum of all defined values m(a, b)), and
a regular part defined by the binary relation over O which is the domain where
m(a, b) is defined. As for the computation between the last time the object is in
the elementary membrane and halting (in case halting is not in the elementary
membrane), this should also preserve regularity, because without being able to
test for skin and without returning to the elementary membrane, we just have a
finite control walking across the unilabeled membrane structure, and membrane
dissolution in this case can only perform some regular erasing transformation.

5 Weak Computational Completeness

In this section we show that we can construct length P systems with one label
which are weakly computationally complete, assuming the following ingredients:

– Membrane duplication rules are allowed (nullifying reason R2).
– The skin can be distinguished (nullifying reason R1) either by being the only

membrane with another label (s = 1), or by having its own set of rules Rs.
We use the first case for the presentation of the result.

– As typical in membrane computing, dissolution is not limited to elementary
membranes.

– Membrane creation rules are disabled in non-elementary membranes. (Alter-
natively, if one allows to also have special rules for the elementary membrane,
we may forbid membrane creation in the rest of the system).

The result relies on simulating 2-register machines, storing the register values
in the multiplicity of membranes, using the object to separate the two numbers.

[
1

[
0
· · · [

0︸ ︷︷ ︸
n1

a [
0
· · · [

0︸ ︷︷ ︸
n2

]
0
· · ·]

0
]
0
· · ·]

0
]
1

(3)

We first present a simpler construction, assuming an additional elementary
membrane labeled by 1. In this case, membrane creation rules are not even
needed, because membrane duplication suffices.

108

Indeed, the first register is tested for zero by using the skin rules (duplicate,
enter, dissolve). The second register is tested for zero by entering one membrane,
checking its label and exiting it.

The increment is done by a duplication rule (f) in the case of the first register,
followed by entering the newly created membrane.

The decrement is performed by a dissolution rule (d) in the case of the second
register, preceded by moving the object into the next membrane.

We proceed to the formal description of the simulation (membrane label h
stands for any of 0 or 1).

(l1 : ADD(1), l2, l3) is performed as:

[
h
l1]

h
→ [

h
l′1[

0
]
0

]
h
, l′1[

0
]
0
→ [

0
l2]

0
, l′1[

0
]
0
→ [

0
l3]

0
.

(l1 : ADD(2), l2, l3) is performed as:

[
h
l1]

h
→ [

h
l2[

0
]
0

]
h
, [

h
l1]

h
→ [

h
l3[

0
]
0

]
h
.

(l1 : SUB(1), l2, l3) is performed as:

[
0
l1]

0
→ l2,

[
1
l1]

1
→ [

1
l′1[

0
]
0

]
1
, l′1[

0
]
0
→ [

0
l′′1]

0
, [

0
l′′1]

0
→ l3.

(l1 : SUB(2), l2, l3) is performed as:

l1[
0

]
0
→ [

0
l′1]

0
, [

0
l′1]

0
→ l2,

l1[
1

]
1
→ [

1
l′1]

1
, [

1
l′1]

1
→ l3[

1
]
1
.

Notice that the first three operations above – ADD(1), ADD(2), and SUB(1)
– operate identically in the absence of the elementary membrane labeled by 1,
and so does the first line of SUB(2), corresponding to the decrement case. Using
membrane creation (e) (immediately followed by dissolution) to test for the
membrane to be the elementary one, it is possible to avoid the extra elementary
membrane labeled by 1, and to stay with the representation (3): we replace the
last two rules of the construction given above by the following ones:

[
h
l1]

h
→ [

h
[
0
l′′1]

0
]
h
, [

0
l′′1]

0
→ l3.

In this way, using only one label for non-skin membranes, weak computa-
tional completeness of length P systems is shown with one object, by taking
advantage of rules creating non-elementary membranes under the assumption
that elementary membrane creation is disabled in non-elementary membranes.

6 Generating Languages

In this section we no longer require that the number of membranes labeled by 1
is bounded by a constant. This allows us to generate binary languages: the result
of each halting computation is the sequence of labels in the obtained membrane
structure. The aim is to generate all recursively enumerable binary languages

109

(the skin is the left delimiter; the restricted rules do not permit changing it, and
it is always forbidden to dissolve the skin membrane in membrane computing).

This result is not straightforward because of the following problem: we can
only detect that the object is in the skin by using membrane labels. However,
the approach from Section 3 does not work, since it takes unboundedly many
membranes labeled by 1 to represent binary words, and we cannot find the skin
by counting them with one object. Hence, we have to use encoding. We choose
the following representation: the left marker is represented by bits 11, the right
marker is represented by bits 10, symbol 0 is represented by bits 00, and symbol
1 is represented by bits 01.

Suppose that we have a two-symbol {0, 1}-Turing machineM, which uses the
encoding mentioned above to simulate some (arbitrarily chosen) Turing machine
M′ with two symbols 0 and 1 and the endmarkers l and r, with the following
conditions:

– the head never moves to the left of the left marker;
– the right marker cannot be overwritten by 1;
– if the right marker is overwritten, then the next instructions write the right

marker and move the head to the position immediately to the left of the
right marker.

Clearly, any recursively enumerable language may be generated by such a
Turing machine M′. Moreover, without restricting generality we may assume
that the routing ofM, corresponding to moving the right marker byM′, starts
by detecting that the first bit is 1, and that distinguished states are used from
this point, until the marker is written in the neighboring position.

We proceed with simulatingM by a length P system. The sequence of labels
of membranes corresponds to the contents of the tape of M between the end-
markers, including them, with the additional skin membrane labeled by 1 (this
membrane will never be involved in the rules, but it prevents the object from
leaving to the environment), hence, the three outermost membranes are labeled
by 1.

Consider an instruction i : (q, a, b, d, q′) where q and q′ are the old and the
new state, respectively, a is rewritten by b, and d denotes the direction the head
has to move (L means left, R means right). In case the head is not over the
endmarker, or the endmarker is not moved, i can be simulated as follows:

[
a
q]

a
→ q′[

b
]
b

if d = L;
[
a
q]

a
→ q1[

a
]
a
, q1[

a
]
a
→ [

b
q2]

b
, q2[

c
]
c
→ [

c
q2]

c
, 0 ≤ c ≤ 1 if d = R.

To simulate instructions (q, r, 0, R, q1), (q1, 0, r, L, q
′) ofM′, we use the following

rules:

[
1
q]

1
→ q1[

1
]
1
, q1[

1
]
1
→ [

0
q2]

0
, q2[

0
]
0
→ [

0
q3]

0
,

[
0
q3]

0
→ [

0
[
1
q4]

1
]
0
, [

1
q4]

1
→ [

1
[
0
q5]

0
]
1
,

[
0
q5]

0
→ q6[

0
]
0
, [

1
q6]

1
→ q7[

1
]
1
, [

0
q7]

0
→ q′[

0
]
0
.

110

To simulate instructions (q, r, 0, L, q1), (q1, a, r, L, q
′), 0 ≤ a ≤ 1 of M′, we use

the following rules:

[
1
q]

1
→ q1[

1
]
1
, q1[

1
]
1
→ [

0
q2]

0
, q2[

0
]
0
→ [

0
q3]

0
,

[
0
q3]

0
→ q4, [

0
q4]

0
→ q5,

[
a
q5]

a
→ q6[

0
]
0
, 0 ≤ a ≤ 1, [

0
q6]

0
→ q7[

1
]
1
, [

b
q7]

b
→ q′, 0 ≤ b ≤ 1.

It only remains to remove the encoding of symbols after M has reached the
final state qf . The decoding can be done from left to right, one symbol at a
time, moving the left marker to the right of the decoding symbol (1100 becomes
011 and 1101 becomes 111). Furthermore, since we have restricted the scope of
membrane dissolution to elementary membranes only, to perform such a rewrit-
ing shortening the label sequence by one symbol, membrane labels have to be
shifted outside by one position. We may assume, without restricting generality,
thatM′ halts with the head over the last symbol. Hence, in the length P system
being constructed, object qh appears in the elementary membrane. We add the
following rules:

[
0
qh]

0
→ s0, [

1
s0]

1
→ s10[

0
]
0
,

[
a
sbc]

a
→ sabc[b]

b
, [

0
sabc]

0
→ s0a[

a
]
a
, a, b, c ∈ {0, 1},

[
1
s10a]

1
→ t[

a
]
a
, t[

a
]
a
→ [

a
t′]

a
, 0 ≤ a ≤ 1,

t′[
0

]
0
→ [

1
t′′]

1
, t′′[

a
]
a
→ [

1
t1]

1
, 0 ≤ a ≤ 1,

t1[
0

]
0
→ [

0
t2]

0
, t2[

a
]
a
→ [

a
t1]

a
, 0 ≤ a ≤ 1,

t1[
1

]
1
→ [

1
t3]

1
, t3[

0
]
0
→ [

0
qh]

0
,

[
1
s110]

1
→ d1[

1
]
1
, d1[

1
]
1
→ [

0
d2]

0
,

d2[
1

]
1
→ [

0
d3]

0
, d3[

0
]
0
→ [

0
d4]

0
,

[0 d4]0 → d5, [0 d5]0 → d6, [0 d6]0 → d7.

The last seven rules correspond to the final phase of the decoding. When
all symbols have been moved to the left of the left marker, the latter becomes
adjacent to the right marker. The procedure above already deleted one of the four
membranes corresponding to the markers. Symbols di move across the remaining
three membranes that have served as markers, delete them and halt with the
sequence of membrane labels corresponding exactly to the string generated by
M (not including the endmarkers), prefixed by 1 for the skin (for the technical
reason described above).

Since the choice of the underlying machineM′ simulated byM was arbitrary,
it immediately follows that (when the number of membranes labeled by 1 is not
bounded) length P systems generate all recursively enumerable languages over
two symbols.

This result can be easily generalized to generating the full RE family, either
under a suitable encoding of symbols, or with length P systems having the
corresponding set of membrane labels. However, the most interesting part was
to show how binary languages were generated by length P systems with two
labels only.

In a similar way, one can also speak about length P systems with input (given
by the membrane structure), either accepting languages or even computing par-
tial recursive functions on them. However, if the underlying alphabet of the input

111

language matches the alphabet of possible membrane labels (e.g., {0, 1}), then
the input has to be given in some encoding, because it is otherwise impossible
to detect where the beginning of the input is.

7 Multiple Objects

In this section we consider systems not restricted to only have one object. This
makes it possible to have at most one membrane labeled by 1 at a time in any
computation, and to still generate all recursively enumerable sets of vectors, even
with rules (br), (cr), (der), and (ee) only.

We start with the membrane structure of m+4 levels, all membranes labeled
by 0. Initially, the skin is empty, the traveler is in the membrane inside the skin,
and the next m+1 membranes contain objects marking the register boundaries:

[
0

[
0
t0[

0
b1 [

0
· · · [

0︸ ︷︷ ︸
R1

[
0
b1 · · · [0 b1 [

0
· · · [

0︸ ︷︷ ︸
Rm

[
0
b1[

0
]
0
· · ·]

0︸ ︷︷ ︸
m+4+

∑m
i=1 Ri

,

all the values R1, · · · , Rm initially being 0.
The traveler crosses the membrane structure, counting the number of markers

it meets (ti means the marker is in the space corresponding to register i). Meeting
the marker is done as follows. The traveler enters a membrane and sets its label
to 1, to see whether it contains a marker:

ti[0]
0
→ [

1
ti,1]

1
.

It waits for two more steps by going into the next membrane and back out:

ti,1[
0

]
0
→ [

0
ti,2]

0
, [

0
ti,2]

0
→ ti,3[

0
]
0
.

The traveler then returns to the membrane being inspected. If the label remained
1, then there was no marker there, so the traveler resets the label, exits it and
continues:

[
1
ti,3]

1
→ ti,4[

0
]
0
, ti,4[

0
]
0
→ [

0
ti]

0
.

The following diagram illustrates the trajectory of the traveler in the absence of
the marker:

ti 0→1
((

ti,4
((

ti,1
&&

ti,3

1→0 55

ti

ti,2

88

If the traveler meets a marker b, the marker resets the label:

[
1
b1]

1
→ b2[

0
]
0
.

112

Then the traveler and the marker use the membrane label to communicate. The
possible messages from the traveler to the marker are “ok, I see you”, “move one
level out”, and “move one level in”. These can be communicated by the time the
traveler sets the membrane label to 1 for the second time:

[
0
b2]

0
→ b3[

0
]
0
, b3[

0
]
0
→ [

0
b4]

0
, [

0
b4]

0
→ b5[

0
]
0
, b5[

0
]
0
→ [

0
b6]

0
,

b6[
1

]
1
→ [

0
b1]

0
, b6[

0
]
0
→ [

0
b7]

0
, [

0
b7]

0
→ b8[

0
]
0
,

[
0
b8]

0
→ b9[

0
]
0
, b9[

0
]
0
→ [

0
b10]

0
, [

0
b10]

0
→ b11[

0
]
0
, b11[

0
]
0
→ [

0
b12]

0
,

b12[
1

]
1
→ [

0
b13]

0
, [

0
b13]

0
→ b1[

0
]
0
, b12[

0
]
0
→ [

0
b′13]

0
, b′13[

0
]
0
→ [

0
b1]

0
.

According to the rules described above, the marker performs the routine of
exiting the current membrane (let us refer to it by h), waiting for four steps
by twice exiting/re-entering the parent membrane of h, and then re-entering
membrane h. When the marker b1 exits membrane h, it resets the label to 0,
letting the traveler know it is there. At the end of the routine, if the label is 1
again, then the marker does not take any further action, returning to state b1. If
the label remained 0, the marker b7 repeats the same routine. Depending on the
label of h when it comes back as b12, the marker moves inside one membrane or
outside one membrane.

Note that the fact that evolution rules are not allowed makes it necessary to
have the marker cross a membrane in order to change its state.

The rest of the construction describes the work of the traveler. To simply
move inwards across the membrane structure, the following rules are used:

[
0
ti,3]

0
→ ti,4[

1
]
1
, ti,4[

1
]
1
→ [

1
ti,5]

1
, ti,5[

0
]
0
→ [

0
ti,6]

0
, [

0
ti,6]

0
→ ti+1[

1
]
1
.

The last two steps are used to wait until the marker has reset the label of h
to 0 before setting the label of the child membrane of h to 1, keeping the number
of membranes labeled by 1 at most 1 at any time.

The following diagram illustrates how the traveler checks the marker:

b3
))

b5
))

b2

55

b4

55

b6
1→0

&&ti
0→1

%%

ti,4

##
b1 b1

1→0

>>

b1

ti,1
))

ti,3

0→1

>>

ti,5
))

ti+1

ti,2

55

ti,6

55

Altogether, the rules above are similar to the corresponding part of the con-
struction in Section 3 which corresponds to traversing the membrane structure
outside-in, counting the markers.

Now consider that the markers move one level inside (we add superscript + to
the notation of the traveler) or outside (we add superscript − in that case). Such
operations are required to simulate the increment and decrement instructions of

113

a register machine.

[
0
t−i,3]

0
→ t−i,4[

0
]
0
, t−i,4[

0
]
0
→ [

0
t−i,5]

0
,

t−i,5[
0

]
0
→ [

0
t−i,6]

0
, [

0
t−i,6]

0
→ t−i,7[

0
]
0
,

t−i,7[
0

]
0
→ [

0
t−i,8]

0
, [

0
t−i,8]

0
→ t−i,9[

0
]
0
,

[
0
t−i,9]

0
→ t−i,10[

0
]
0
, t−i,10[

0
]
0
→ [

1
t−i,11]

1
,

t−i,11[
0

]
0
→ [

0
t−i,12]

0
, [

0
t−i,12]

0
→ ti+1[

0
]
0
.

The role of the last two steps is to wait until the marker resets the label to 0 be-
fore the traveler considers the next membrane. The following diagram illustrates
how the marker moves one level outside:

b3
&&

b5
&&

b9
''

b11
''

b4

88
b6

��

b8

88
b10

77
b12

1→0

!!

b1

t−i,4

��

t−i,10
0→1

""b7

BB

b13

CC

t−i,3

BB

t−i,5
$$

t−i,7
$$

t−i,9

AA

t−i,11
%%

ti+1

t−i,6

::

t−i,8

::

t−i,12

99

In the case when the marker should be moved inside, the construction is similar,
except that the traveler with subscript 10 should not change the label of h to 1.
Moreover, we change the path of the traveler because the marker will be entering
the child membrane of h while changing its subscript from 13:

[
0
t+i,3]

0
→ t+i,4[

0
]
0
, t+i,4[

0
]
0
→ [

0
t+i,5]

0
,

t+i,5[
0

]
0
→ [

0
t+i,6]

0
, [

0
t+i,6]

0
→ t+i,7[

0
]
0
,

t+i,7[
0

]
0
→ [

0
t+i,8]

0
, [

0
t+i,8]

0
→ t+i,9[

0
]
0
,

[
0
t+i,9]

0
→ t+i,10[

0
]
0
, t+i,10[

0
]
0
→ [

0
t+i,11]

0
,

[
0
t+i,11]

0
→ t+i,12[

0
]
0
, [

0
t+i,12]

0
→ t+i,13[

0
]
0
,

t+i,13[
0

]
0
→ [

0
t+i,14]

0
, t+i,14[

0
]
0
→ [

0
ti+1]

0
.

The following diagram illustrates how the marker moves one level inside (starting
with objects with subscript 10).

b11

''

t+i,13
((

b10

66

t+i,12

66

t+i,14

""
t+i,10

""

b12
))
b′13

""

ti+1

t+i,11

<<

b1

114

Traversing the structure inside-out can be done in a similar way:

[
0
r′i]

0
→ ri[0]

0
, [

1
ri,5]

1
→ r′i−1[

1
]
1
,

together with all rules from above operating on objects ti, ti,1, · · · , ti,4 on the
left side, accordingly renaming objects ti, ti,j , 1 ≤ j ≤ 5 into ri and ri,j . Here,
as opposed to the case of the outside-in travel, there is no need to wait for two
last steps, because the label of h will be reset to 0 before the label of the parent
of h may be changed. Clearly, traversing the structure inside-out with moving
the markers may be also done in a similar fashion.

Having shown all scenarios above, we skip making the construction like that
in Subsection 3, leaving the details to the interested reader.

Now consider to simulate an arbitrary register machine M with m = 3
registers and the condition that it halts with the last two registers being empty.
Simulating M and finally erasing m + 3 = 6 innermost membranes (we view
the skin as an additional endmarker, since otherwise 0 cannot be represented)
implies strong computational completeness with at most one membrane labeled
by 1 at a time, only using rules of types (br), (cr), (der) and (ee). It is immediate
that one can also speak about generating PsRE with at most one membrane
labeled by 1 at a time, if the corresponding convention of taking the result as
vectors of numbers of membranes separating the objects is used.

8 Discussion

We introduced P systems with a linear membrane structure (i.e., only one mem-
brane is elementary) with at most one object. The result of such systems, called
length P systems, is either the total number of membranes at halting, or the vec-
tor of numbers of consecutive membranes labeled by 0. In Section 3 we presented
the simulation of register machines with any fixed number of registers.

The power of length P systems with one object and one membrane label
depends on two factors: whether the object can detect the skin membrane, and
whether non-elementary membrane creation is allowed. The first factor is related
to the zero-test of the “first” register, and the second factor is related to the
possibility of effectively operating with two numbers instead of one. Since the
regularity conjecture assumed that these two ingredients are not allowed, we
confirmed the conjecture.

In Section 5 we showed that removing both of these conditions leads to P
systems being weakly computationally complete. Questions arise about interme-
diate extensions.

We now formulate the following two conjectures:

Conjecture 1. Length P systems produce only regular languages even when
membrane duplication is allowed (i.e., without reason R2). The intuition be-
hind the conjecture is that such P systems relate to 2-register machines, where
one register is blind (i.e., it can be incremented and decremented, but cannot
be tested for zero, and the computation of the machine is discarded without a
result if decrement of zero is attempted).

115

Conjecture 2. Length P systems produce only regular languages even if the skin
membrane has a distinguished label (i.e., without reason R1). The intuition
behind the conjecture is that such P systems should relate to 1-register machines,
but for the proof many more cases would have to be investigated.

In Section 6 we showed how to generate languages by length P systems when
the number of membranes labeled by 1 is unbounded, and in Section 7 we showed
how to generate vector sets with at most one membrane labeled by 1 at a time,
with restricted rules, by using multiple objects.

Acknowledgements

Artiom Alhazov acknowledges project STCU-5384 Models of high performance
computations based on biological and quantum approaches awarded by the Sci-
ence and Technology Center in the Ukraine. Moreover, the authors acknowledge
the useful comments of the anonymous referees.

References

1. A. Alhazov: P Systems without Multiplicities of Symbol-Objects. Information Pro-
cessing Letters 100 (3), 2006, 124–129.

2. Alhazov, A., Freund, R., Ivanov, S: Length P Systems with a Lone Traveler. In:
L. F. Maćıas-Ramos, M. A. Mart́ınez-del-Amor, Gh. Păun, A. Riscos-Núñez, L.
Valencia-Cabrera (Eds.): Proceedings of the Twelfth Brainstorming Week on Mem-
brane Computing, 2014, 37–46.

3. A. Alhazov, R. Freund, A. Riscos-Núñez: Membrane Division, Restricted Mem-
brane Creation and Object Complexity in P Systems. International Journal of
Computer Mathematics 83 (7), 2006, 529-548.

4. F. Bernardini, M. Gheorghe: Languages Generated by P Systems with Active Mem-
branes. New Generation Computing 22 (4), 2004, 311–329.

5. R. Freund: Special Variants of P Systems Inducing an Infinite Hierarchy with
Respect to the Number of Membranes. Bulletin of the EATCS 75, 2001, 209–219.

6. A. Alhazov, M. Margenstern, S. Verlan: Fast Synchronization in P Systems. In:
D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa: Membrane Comput-
ing - 9th International Workshop, WMC 2008, Edinburgh, Revised Selected and
Invited Papers, Lecture Notes in Computer Science 5391, Springer, 2009, 118-128.

7. R. Freund, O.H. Ibarra, Gh. Păun, H.C. Yen: Matrix Languages, Register Ma-
chines, Vector Addition Systems. Proceedings of the Third Brainstorming Week
on Membrane Computing, Sevilla, 2005, 155–167.

8. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA, 1967.

9. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
10. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
11. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
12. The P Systems Website: http://ppage.psystems.eu/.

116

Promoters and Inhibitors in
Purely Catalytic P Systems

Artiom Alhazov1, Rudolf Freund2, Sergey Verlan1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at
3 LACL, Département Informatique, Université Paris Est

61, av. Général de Gaulle, 94010 Créteil, France
Email: verlan@u-pec.fr

Abstract. We consider purely catalytic P systems with two catalysts
together with promoters and inhibitors on the rules. We show that com-
putational completeness can be achieved in a deterministic way by using
atomic promoters or sets of atomic inhibitors. Using atomic inhibitors
computational completeness is achieved using a non-deterministic con-
struction.

1 Introduction

Catalytic P systems are one of the first models in the area of P systems. This
model allows for context-free (non-cooperative) rewriting rules like a→ u, where
a is a single symbol, as well as contextual (cooperative) catalytic rules of the
form ca→ cu, where c is a special object – the catalyst – present in one copy. The
number of catalysts is a natural descriptional complexity parameter for such sys-
tems. It is known that systems with two catalysts are computationally complete,
see [5, 14], while systems with no catalysts generate PsREG. The computational
power of systems with one catalyst is still an open question. When additional
ingredients are used, then such systems become computationally complete, e.g.
when using promoters/inhibitors [11, 17] or different rule control mechanisms [8].

In purely catalytic P systems only catalytic rules are allowed, which limits
the degree of the parallelism to the number of catalysts in the system. Such
systems are very similar to catalytic P systems, however, not always the proofs
can be translated from one model to another one because they should take into
account the limitation of the parallelism. In many cases, the same results hold
for purely catalytic P systems with n catalysts and catalytic P systems with
n− 1 catalysts. For example, three catalysts are sufficient for the computational
completeness of purely catalytic P systems. With one catalyst such systems are
identical to sequential context-free multiset rewriting grammars, so they can

117

generate exactly PsREG. As in the previous case, the computational power of
such systems with two catalysts is not yet known and different extensions have
been studied in order to increase the computational power.

Promoters/inhibitors are special variants of permitting/forbidding contexts,
which correspond to a single permitting/forbidding set and an empty forbid-
ding/permitting set. It is known that non-cooperative P systems with either
promoters or inhibitors of weight 2 are computationally complete, see [3]. Re-
cently, in [1] it was shown that computational completeness cannot be achieved
by deterministic non-cooperative systems with promoters, inhibitors and prior-
ities (in the maximally parallel or the asynchronous mode, unlike the sequen-
tial mode). In [2] some interesting questions on the power of P systems in the
maximally parallel mode using only priorities or restricting the weight of the
promoting/inhibiting multisets were addressed.

In this paper we consider purely catalytic P systems having two catalysts and
rules with promoters and inhibitors of weight 1 (consisting of a single object,
and we call them atomic). We show that using atomic promoters or sets of
atomic inhibitors it is possible to achieve computational completeness using a
deterministic construction. In the case of atomic inhibitors our construction
for computational completeness is non-deterministic. Moreover, our results can
easily be adapted to the case of catalytic P systems yielding simpler proofs for
the results established in [11]. We remark that the converse is not true, as the
proofs from the cited article make use of a massive unbounded parallelism, so
they cannot be adapted to the purely catalytic case.

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N. The family of all finite sets of non-negative integers is
denoted by NFIN . The family of all recursively enumerable sets of non-negative
integers is denoted by NRE. In the following, we will use ⊆ both for the subset
as well as the submultiset relation and we will represent multisets by a string
notation. If we consider vectors of non-negative integer, N is replaced by Ps
in these notations. The corresponding functions and relations on these sets are
indicated by the prefix Fun and Rel, respectively.

2.1 Register machines.

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.

118

Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine (li; v1, . . . , vm) is described by the value of
the current label indicating the next instruction to be executed and the contents
of each register. Computations start by executing the instruction l0 of P , and
terminate with reaching the HALT-instruction lh.

2.2 (Purely) Catalytic P Systems

Since flattening [7] the membrane structure of a membrane system preserves both
determinism and the model, in the following we restrict ourselves to consider
membrane systems with only one membrane, eventually communicating with the
environment, hence, in the description we omit the trivial membrane structure
only consisting of the skin membrane.

Definition 1. A catalytic P system is a tuple

Π = (O,C,Σ, T,w,R′,min,mout)

where O is a finite alphabet, C ⊂ O is the set of catalysts, Σ ⊆ O is the input
sub-alphabet, T ⊆ O is the output sub-alphabet, w ∈ O∗ is a string represent-
ing the initial multiset in the skin membrane, min and mout are the input and
output membranes with 1 indicating the skin membrane and 0 indicating the
environment, and R′ is a set of rules of one of the following forms:

– r : a→ v, a ∈ O, v ∈ O∗ (non-cooperative rule);
– r : ca→ cv, a ∈ O, c ∈ C, v ∈ O∗ (catalytic rule);

for communication with the environment, in both non-cooperative and cat-
alytic rules, an object a in v may be replaced by (a, come) meaning that the
symbol a is taken from the environment, or by (a, out) meaning that the
symbol a is sent out to the environment.
If only catalytic rules occur in R′, then the system is called purely catalytic.

Below, we briefly describe the semantics of catalytic P systems; more formal
details can be found in [9, 14].

A configuration of the system Π is represented by a multiset of objects from
O contained in the region, the set of all configurations over O is denoted by
C(O). A rule r : u → v is applicable if the current configuration contains the
multiset specified by u.

Furthermore, applicability may be controlled by context conditions, specified
by two sets of multisets.

119

Definition 2. Let P and Q be (finite) sets of multisets over O. A (simple)
rule with context conditions (r;P,Q) is applicable to a configuration C if r is
applicable, and its applicability is defined by the applicability of any of these
simple rules with context conditions.

– for all p ∈ P , p ⊆ C, and
– for all q ∈ Q, q 6⊆ C.

The more general variant of a rule with context conditions is of the form
(r; (P1, Q1), . . . , (Pm, Qm)) where any of the corresponding triples (r; (Pi, Qi)),
1 ≤ i ≤ m, is a simple rule with context conditions, and its applicability is
defined as the applicability of any of these simple rules with context conditions.

In the definition of a (simple) rule with context conditions (r;P,Q) as given
above the set P is called the permitting set, while the set Q is called the forbid-
ding set (for r). In words, context conditions are satisfied if all multisets in the
permitting set are submultisets of the current configuration, and no multiset in
the forbidding set is a submultiset of the current configuration.

By a promoter/inhibitor we understand an element of a permit-
ting/forbidding set. Traditionally, P systems with promoters use the nota-
tion r|p1,··· ,pn , which is equivalent to (r; {p1, . . . , pn}; ∅). In the case of P sys-
tems with inhibitors the notation r|¬q1,··· ,¬qn is used, which is equivalent to
(r; ∅, {q1, . . . , qn}). Finally, promoters and inhibitors consisting of one symbol
are called atomic.

Definition 3. A P system with context conditions and priorities on the rules
is a construct

Π = (O,C,Σ, T,w,R′, R, lin, lout, >)

where (O,C,Σ, T,w,R′,min,mout) is a catalytic P system as defined above, R
is a set of rules with context conditions and > is a priority relation on the rules
in R.

During a computational step the applicability of a rule can additionally be
restricted by a priority relation >: if rule r′ has priority over rule r, denoted by
r′ > r, then r cannot be applied if r′ is applicable.

The computation of the system follows the usual maximally parallel deriva-
tion mode, meaning that a maximal applicable multiset of rules is chosen to
be applied in each step. Also other strategies for a computational step exist,
e.g., the sequential or the asynchronous derivation mode; we refer to [9, 14] for
a detailed discussion on this topic. The computation step between two config-
urations C and C ′ is denoted by C =⇒ C ′, thus yielding the binary relation
⇒: C(O)×C(O). A computation halts when there are no rules applicable to the
current configuration in the corresponding mode; such a configuration is called
a halting configuration.

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane mout in a halting config-
uration (min can be omitted). The set of non-negative integers and the set of

120

(Parikh) vectors of non-negative integers obtained as results of halting compu-
tations in Π are denoted by Ngen(Π) and Psgen(Π), respectively.

In the accepting case, for min 6= 0, we accept all (vectors of) non-negative
integers whose input, given as the corresponding numbers of objects in mem-
brane min, leads to a halting computation (mout can be omitted); the set of
non-negative integers and the set of (Parikh) vectors of non-negative integers
accepted in that way by halting computations in Π are denoted by Nacc(Π) and
Psacc(Π), respectively.

For the input being taken from the environment, i.e., for min = 0, we need the
additional target indication come; (a, come) means that the object a is taken into
the skin from the environment (all objects there are assumed to be available in
an unbounded number). The multiset of all objects taken from the environment
during a halting computation then is the multiset accepted by this accepting P
system, which in this case we shall call a P automaton, e.g., see [4]; the set of
non-negative integers and the set of (Parikh) vectors of non-negative integers
accepted by halting computations in Π are denoted by Naut(Π) and Psaut(Π),
respectively.

A P system Π can also be considered as a system computing a partial recur-
sive function (in the deterministic case) or even a partial recursive relation (in
the non-deterministic case), with the input being given in a membrane region
min 6= 0 as in the accepting case or being taken from the environment as in
the automaton case. The corresponding functions/relations computed by halt-
ing computations in Π are denoted by ZYα(Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps},
α ∈ {acc, aut}.

The family of sets Yδ(Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
(purely) catalytic P systems with context conditions and priorities on the rules
having at most m catalysts is denoted by YδOP (catm, (prok,l, inhk′,l′)d, pri)
(YδOP (pcatm, (prok,l, inhk′,l′)d, pri)); d denotes the maximal number m in
the rules with context conditions (r, (P1, Q1), · · · , (Pm, Qm)); k and k′ denote
the maximum number of promoters/inhibitors in the Pi and Qi, respectively;
l and l′ indicate the maximum of weights of promoters and inhibitors, respec-
tively. If any of these numbers k, k′, l, l′ is not bounded, we replace it by ∗.
For Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, δ ∈ {acc, aut}, the corresponding families
of functions/relations are denoted by FYδOP (catm, (prok,l, inhk′,l′)d, pri) and
FYδOP (pcatm, (prok,l, inhk′,l′)d, pri), respectively.

In the case of accepting systems and of of systems computing functions, we
also consider the idea of determinism, which means that in each step of any
computation at most one (multiset of) rule(s) is applicable; in this case, we
write detacc.

In the literature, we find a lot of restricted variants of P systems with context
conditions and priorities on the rules, e.g., we may omit the priorities or the
context conditions completely.

Remark 1. As in a P system (O,C,Σ, T,w,R′, R,min,mout, >) the set of rules
R′ can easily be deduced from the set of rules with context conditions R, we omit
R′ in the description of the P system. Moreover, for systems having only rules

121

with a simple context condition, we omit d in the description of the families, and
each control mechanism not used can be omitted, too.

Remark 2. It is worth to note, see also [6], that if no other control is used, the
priorities can be mapped to sets of atomic inhibitors. Indeed, a rule is inhibited
precisely by the left side of each rule with higher priority. This is straightforward
in the case when the priority relation is assumed to be a partial order. Therefore,
we will restrict ourselves to consider systems without priorities in the following.

3 Results

In this section we present the main results of the paper. First we show that purely
catalytic P systems with atomic promoters are computationally complete.

Theorem 1. The computation of a register machine can be simulated by a
purely catalytic P system with only two catalysts and atomic promoters. More-
over, the simulation preserves determinism.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We construct a purely
catalytic P system with promoters

Π = (O,C,Σ, T,w,R,min,mout) where

O = C ∪ {ar | 1 ≤ r ≤ m} ∪ {X,Y } ∪ {li | li ∈ B} ∪
{l′i, l′′i , l′′′i , bi | li : (SUB(r), lj , lk) ∈ P},

C = {c1, c2},
Σ, T ⊆ {ar | 1 ≤ r ≤ m},
w = l0, min = mout = 1,

R = {c1li → c1ljar, c1li → c1lkar | li : (ADD(r), lj , lk) ∈ P}
∪

⋃
li:(SUB(r),lj ,lk)∈P

Ri,

where Ri is the set of rules corresponding to the conditional decrement instruc-
tion labeled by i, consisting of the rules below.

i.1.1 : c2li → c2l
′
iX i.2.1 : c1ar → c1bi|li

i.1.2 : c2l
′
i → c2l

′′
i |bi i.2.2 : c1X → c1Y

i.1.3 : c2l
′′
i → c2l

′′′
i i.2.3 : c1Y → c1

i.1.4 : c2l
′′′
i → c2lj i.2.4 : c1bi → c1|l′′′i

i.1.5 : c2l
′
i → c2lk|Y

The simulation of the instructions of the register machine M is performed as
described in the following; each configuration (li; v1, . . . , vm) of M is encoded as
lia

v1
1 . . . avmm in Π.
The simulation of the increment instruction is done directly by changing the

label li and incrementing the corresponding register. The catalyst c1 is used for
this operation.

122

The conditional decrement instruction li : (SUB(r), lj , lk) is simulated
as follows: In the first step, the rule i.1.1 is applicable, and if register r
is not empty, then the rule i.2.1 is applicable, too, yielding the configura-
tion l′iXa

v1
1 . . . avr−1r bi . . . a

vm
m . Then only the rules i.1.2 and i.2.2 are applica-

ble, yielding the configuration l′′i Y a
v1
1 . . . avr−1r bi . . . a

vm
m . After that only the

sequence of rules i.1.3, i.1.4 and i.2.3, i.2.4 can be applied, finally yield-
ing the configuration lja

v1
1 . . . avr−1r . . . avmm corresponding to the configuration

(lj ; v1, . . . , vr − 1, . . . , vm) of M . If the register r is empty, then in the second
step only rule i.2.2 is applicable. In the next step, only the rules i.1.5 and i.2.3
can be applied yielding the configuration lka

v1
1 . . . a0r . . . a

vm
m , which correctly en-

codes the corresponding configuration of M . �

Remark 3. We remark that only the rule with ar on the left side actually requires
the catalyst; removing the catalysts from all other rules would still yield an
equivalent system, except that this system would not be purely catalytic. Hence,
the catalysts could be assigned in an arbitrary way, provided no catalyst is
assigned to both rules in any line.

Remark 4. We observe that is Π deterministic if M is deterministic, but also
that the construction was made in such a way that the rules with the same left
side and the same right side never have different promoters (without fulfilling
this condition, a simpler deterministic construction could be obtained).

The next theorem shows a similar result with inhibitors. However, this proof
does not preserve the determinism.

Theorem 2. The computation of a register machine can be simulated by a
purely catalytic P system with only two catalysts and atomic inhibitors.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We construct a purely
catalytic P system with inhibitors

Π = (O,C,Σ, T,w,R,min,mout) where

O = C ∪ {li | li ∈ B} ∪ {ar | 1 ≤ r ≤ m} ∪
{#, Z, h} ∪ {l′i, l̄i, Zi, Z̄i, Z̄i

′
, bi, b̄i | li : (SUB(r), lj , lk) ∈ P},

C = {c1, c2},
Σ, T ⊆ {ar | 1 ≤ r ≤ m},
w = l0Z, min = mout = 1,

R = {c1li → c1ljar, c1li → c1lkar | li : (ADD(r), lj , lk) ∈ P}
∪ {c1#→ c1#, c2#→ c2#, c1lh → c1hS1S2}
∪

⋃
li:(SUB(r),lj ,lk)∈P

Ri,

where Ri is the set of rules corresponding to the conditional decrement instruc-
tion labeled by i, consisting of the rules below.

123

i.1.1 : c2li → c2 l̄iS1S1S2 |¬S1 i.2.1 : c1ar → c1bi |¬S1 i.3.1 : c1Z → c1Zi |¬S1

i.1.2 : c2li → c2l
′
iS1S1S1S2 |¬S1 i.2.2 : c1bi → # |¬l̄i

i.3.2 : c1Zi → c1# |¬l′i

i.1.3 : c2S1 → c2 |¬S2 i.2.3 : c1bi → c1b̄i |¬S2 i.3.3 : c1Zi → c1Z̄i |¬S2

i.1.4 : c2S2 → c2 |¬h i.2.4 : c1b̄i → c1 i.3.4 : c1Z̄i → c1#

i.1.5 : c2 l̄i → c2lj |¬S1 i.3.5 : c1Z̄i → c1Z̄
′
i |¬ar

i.1.6 : c2l
′
i → c2lk |¬S1 i.3.6 : c1Z̄

′
i → c1Z

The simulation of the instructions of the register machine M is performed as
described in the following; each configuration (li; v1, . . . , vm) of M is encoded as
liZa

v1
1 . . . avmm in Π.

The simulation of the increment instruction li : (ADD(r), lj , lk) ∈ P is done
directly by changing the label li and incrementing the corresponding register.
The catalyst c1 is used for this operation.

The conditional decrement instruction li : (SUB(r), lj , lk) is simulated as
follows: As can easily be seen, the rules from Ri have the property that if c1x→
y ∈ Ri and c2z → u ∈ Ri, then x 6= z. Hence, the contents of a configuration
can be split into two parts C1 and C2 with respect to this property (objects
that involve catalyst c1 will be part of C1, those that involve c2 will be part
of C2). For the case of the configuration liZa

v1
1 . . . avmm in Π, C2 = {li} and

C1 = {Zav11 . . . avmm }. Moreover, since the forbidding contexts of the rules i.1.∗ do
not involve objects from C1, their application is independent from rules involving
catalyst c1.

First we now examine the evolution of objects from C2 (lj). Using catalyst
c2, a non-deterministic guess is made about the contents of register r. If rule
i.1.1 is used, then it is guessed that register r is not zero, yielding l̄iS1S1S2,
while if rule i.1.2 is used, then it is guessed that register r is empty, yielding
l′iS1S1S1S2. In the first case only rule i.1.4 is applicable in the next step, leading
to the removal of S2. During the next two steps only i.1.3 is applicable, removing
the two occurrences of S1. Finally, symbol lj replaces l̄i.

When using the second group of rules, the computation is one step longer
(because of the presence of three copies of S1) and yields lk.

Now consider the evolution of objects from C1 (Zav11 . . . avmm). Initially a guess
is made about which is the current decrement instruction and whether using c2
it was guessed that the corresponding register is empty or not. In some sense this
permits to synchronize with the guess done in parallel using catalyst c2. This
materializes in two groups of rules i.2.∗ and i.3.∗; the first one corresponds to
the case when the parallel guess is that register r is not empty, while the second
case corresponds to the fact that register r is empty.

Let us consider the evolution of the system in the first case. Rule i.2.1 takes
symbol ar corresponding to a non-empty register r and transforms it to bi. In
the next step, rule i.2.3 is not applicable because symbol S2 is still present in the

124

configuration (it disappears on the next step as shown above). Now, if symbol l̄i is
present in the configuration (this means that the parallel guess was to decrement
register r being in state li), then no rule using catalyst c1 is applicable. Otherwise,
rule i.2.2 is applied introducing the trap symbol # into the system. So, if at the
beginning of the third step no symbol # has been introduced, then the indices i of
symbols l̄i and bi must coincide. After that, symbol bi is transformed to b̄i, which
is erased in the next step. We note that at the same moment rule i.1.5 is applied,
hence, the resulting configuration is ljZa

v1
1 . . . avr−1r . . . avmm , corresponding to the

configuration (lj ; v1, . . . , vr − 1, . . . , vm) of M .

In the case of the application of rule i.3.1, a similar mechanism involving
rules i.3.2 and i.3.3 permits to check if the parallel guess was that register r is
empty. In this case, the rules i.3.4 and i.3.5 verify that this register is indeed
empty by introducing a trap symbol if this is not the case. Finally, rule i.3.6
introduces back the additional symbol Z used for the zero check.

When the final label lh is reached, rule c1lh → hS1S2 is applied and after
that the system halts as S1 and S2 cannot be removed, so no rule involving the
first or the second catalyst can be applied. �

We remark that the proof given above is highly non-deterministic. We conjec-
ture that in the deterministic case atomic inhibitors should not suffice to obtain
computational completeness.

The next theorem shows that forbidding conditions using sets of atomic in-
hibitors allow a computational completeness proof preserving the determinism.

Theorem 3. The computation of a register machine can be simulated by a
purely catalytic P system with only two catalysts and sets of atomic inhibitors.
Moreover, the simulation preserves determinism.

Proof. Let M = (m,B, l0, lh, P) be a register machine. Let Bsub be the
subset of B corresponding to the labels of SUB-instructions of M . We construct
a purely catalytic P system with inhibitors

Π = (O,C,Σ, T,w,R,min,mout) where

O = C ∪ {X} ∪ {mi | mi ∈ B} ∪ {ar | 1 ≤ r ≤ m} ∪ {Z}
∪ {l′i | li : (SUB(r), lj , lk) ∈ P},

C = {c1, c2},
Σ, T ⊆ {ar | 1 ≤ r ≤ m},
w = l0, min = mout = 1,

R = {c1li → c1ljar, c1li → c1lkar | li : (ADD(r), lj , lk) ∈ P}
∪

⋃
li:(SUB(r),lj ,lk)∈P

Ri,

where Ri is the set of rules corresponding to the conditional decrement instruc-
tion labeled by i, consisting of the rules below.

125

i.1.1 : c2li → c2l
′
iX

i.1.2 :
(
c2l

′
i → c2lk; ∅, {ar}

)
i.2.1 : c1X → c1

i.1.3 :
(
c2l

′
i → c2lj ; ∅, {X}

)
i.2.2 :

(
c1ar → c1; ∅, {X} ∪B ∪ (B′

sub \ {l′i})
)

The simulation of the instructions of the register machine M is performed as
described in the following; each configuration (li; v1, . . . , vm) of M is encoded as
lia

v1
1 . . . avmm in Π.
As in the previous proofs, the simulation of the increment instruction li :

(ADD(r), lj , lk) ∈ P is done directly by changing the label li and incrementing
the corresponding register. The catalyst c1 is used for this operation.

The conditional decrement instruction li : (SUB(r), lj , lk) is simulated as
follows: In the first step the only applicable rule is i.1.1, which rewrites symbol
li to l′iX. In the next step rule i.2.1 is applicable, and only if register r is empty,
then rule i.1.2 is applicable as well. In this way, the zero check is simulated.
If register r is not empty, then in the next step rules i.1.3 and i.2.2 have to
be applied performing the decrement operation. We remark that the conditions
from rule i.2.2 allow its application only in the case when l′i is present and X is
absent. �

Summing up the results from the preceding three theorems we obtain the
following:

Theorem 4. For Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, δ ∈ {acc, aut},

– ZYδOP1 (pcat2, pro1,1) = ZY RE.
– ZYδOP1 (pcat2, inh1,1) = ZY RE.
– FunYdetaccOP1 (pcat2, pro1,1) = FunY RE.
– FunYdetaccOP1 (pcat2, inh∗,1) = FunY RE.

Generation and acceptance of a set of (vectors of) natural numbers L can be
interpreted as a specific relation {0} × L and a function L × {0}, respectively;
thus from the previous theorem we immediately obtain the following results for
generating and accepting systems:

Corollary 1. For Y ∈ {N,Ps}, δ ∈ {gen, acc, aut},

– YδOP1 (pcat2, pro1,1) = Y RE.
– YδOP1 (pcat2, inh1,1) = Y RE.
– YdetaccOP1 (pcat2, pro1,1) = Y RE.
– YdetaccOP1 (pcat2, inh∗,1) = Y RE.

126

4 Conclusion

We have shown computational completeness for purely catalytic P systems with
only two catalysts and either atomic promoters or sets of atomic inhibitors in
such a way that for accepting P systems and for systems computing functions,
we even get deterministic systems. The main open question is whether computa-
tional completeness can even be achieved with atomic inhibitors instead of sets
of atomic inhibitors.

Acknowledgements

Artiom Alhazov acknowledges project STCU-5384 awarded by the Science and
Technology Center in the Ukraine.

References

1. A. Alhazov, R. Freund: Asynchronuous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN . The Tenth
Brainstorming Week in Membrane Computing, vol. 1, Sevilla, 2012, 25–34, and
Membrane Computing – 13th International Conference, CMC13, Budapest (E.
Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil, Eds.), Lec-
ture Notes in Computer Science 7762, 2013, 101-111.

2. A. Alhazov, R. Freund: Priorities, Promoters and Inhibitors in Deterministic
Non-Cooperative P Systems. In: L. F. Maćıas-Ramos, M. A. Mart́ınez-del-Amor,
Gh. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (Eds.): Proceedings of the Twelfth
Brainstorming Week on Membrane Computing, 2014, 27–36.

3. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel
Multiset-Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh.
Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th
International Workshop, WMC 2004, Milano, Revised Selected and Invited Papers,
Lecture Notes in Computer Science 3365, Springer, 2005, 178–189.

4. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P
Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing. International Workshop, WMC-CdeA 2002 Curtea de Argeş, Romania,
August 19–23, 2002. Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, pp. 219–233.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient, Theoretical Computer Science
330, 2, 2005, 251–266.

6. R. Freund, M. Kogler, M. Oswald, A General Framework for Regulated Rewriting
Based on the Applicability of Rules. In: J. Kelemen, A. Kelemenová, Computation,
Cooperation, and Life, Springer, Lecture Notes in Computer Science 6610, 2011,
35–53.

7. R. Freund, A. Leporati, G. Mauri, A.E. Porreca, S. Verlan, C. Zandron: Flattening
in (Tissue) P Systems. In: Membrane Computing - 14th International Conference,
CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised Selected
Papers. Lecture Notes in Computer Science, 8340, 2013, 173–188.

127

8. R. Freund, Gh. Păun: How to Obtain Computational Completeness in P Systems
with One Catalyst. In: Proceedings Machines, Computations and Universality 2013,
MCU 2013, Zürich, Switzerland, September 9-11, 2013, EPTCS, 128, 47–61.

9. R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Systems. Mem-
brane Computing, 8th International Workshop, WMC 2007, Thessaloniki, 2007,
Revised Selected and Invited Papers (G. Eleftherakis, P. Kefalas, Gh. Păun, G.
Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer Science 4860, 2007,
271–284.

10. O.H. Ibarra, H.-C. Yen: Deterministic Catalytic Systems are Not Universal, The-
oretical Computer Science 363, 2006, 149–161.

11. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. JUCS, 10(5):
581–599 (2004).

12. M.L. Minsky: Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

13. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
14. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2010.
15. G. Rozenberg, A. Salomaa: Handbook of Formal Languages, 3 vol., Springer, 1997.
16. P systems webpage. http://ppage.psystems.eu
17. D. Sburlan: Further results on P systems with promoters/inhibitors. Int. J. Found.

Comput. Sci., 17(1): 205–221 (2006).

128

A Short Note on
Red-Green P Automata

Bogdan Aman1, Erzsébet Csuhaj-Varjú2, and Rudolf Freund3

1 Institute of Computer Science, Romanian Academy
Iaşi, Romania

Email: bogdan.aman@gmail.com
2 Faculty of Informatics, Eötvös Loránd University

Budapest, Hungary
Email: csuhaj@inf.elte.hu

3 Faculty of Informatics, Vienna University of Technology
Vienna, Austria

Email: rudi@emcc.at

Abstract. In this short note we extend the notion of red-green Turing
machines to specific variants of P automata. Acceptance and recogniz-
ability of finite strings by a red-green automaton are defined via infinite
runs of the automaton on the input string and the way how to distinguish
between red and green states.

1 Introduction

In this short note we introduce the notion of red–green automata in the area of P
systems. Acceptance and recognizability of finite strings by a red–green Turing
machine are defined via infinite runs of the automaton on the input string and
the way how to distinguish between red and green states; via infinite runs which
are allowed to change between red and green states more than once, more than
the recursively enumerable sets of strings can be obtained, i.e., in that way we
can “go beyond Turing”. Various possibilities how to “go beyond Turing” to be
already found in the literature are discussed in [10]; most of the definitions and
results for red–green Turing machines are taken from this paper. In the area of
P systems, first attempts to do that can be found in [6] and [9]. Computations
with infinite words by P automata have been investigated in [5].

Here we focus on the idea of being able to switch between red and green
states in P automata, where states are specific properties of a configuration,
for example, the occurrence or the non-occurrence of a specific symbol. As for
Turing machines, with one change from red to green states, we can accept all
recursively enumerable languages. A similar result can easily be obtained for
several variants of P automata, especially for the basic model using antiport
rules assigned to the skin membrane.

In this note we only focus on the concept of red–green automata for P au-
tomata, without giving formal definitions or proofs, as we assume the reader to

129

know the underlying notions and concepts from formal language theory (e.g.,
see [8]) as well as from the area of P systems (e.g., see [7]).

We only describe the Arithmetical Hierarchy (for example, see [2]). The
Arithmetical Hierarchy is usually developed with the universal (∀) and existen-
tial (∃) quantifiers restricted to the integers. Levels in the Arithmetical Hierarchy
are labeled as Σn if they can be defined by an expression beginning with a se-
quence of n alternating quantifiers starting with ∃. Similar expressions that start
with ∀ are labeled as Πn. Σ0 and Π0 are defined as having no quantifiers and
are equivalent. Σ1 and Π1 only have the single quantifier ∃ and ∀, respectively.
We only need to consider alternating pairs of the quantifiers ∀ and ∃ because
two quantifiers of the same type occurring together are equivalent to a single
quantifier.

Another way of looking at the Arithmetical Hierarchy is to consider the Halt-
ing Problem for Turing machines and machines equipped with an oracle solving
this problem. Then one can apply the original proof for the undecidability of the
Halting Problem proof to such a machine to prove it cannot solve its own Halting
Problem. Then one can give an oracle for this higher level Halting Problem and
generate an even higher level problem. Thus the Arithmetical Hierarchy reflects
degrees of unsolvability.

A related way to extend the hierarchy of unsolvable problems is to ask if a
computer program will generate an infinite number of outputs. This property can
be generalized by interpreting the output of a computer as the Gödel number
of another computer. Then one can ask the question “Does a program have
an infinite number of outputs an infinite subset of which, when interpreted as
computer programs, have an infinite number of outputs?” This can be iterated
any finite number of times to create the Arithmetical Hierarchy. In that sense,
the Arithmetical Hierarchy can be described as in the following table taken from
[2]:

Table 1. Arithmetical Hierarchy

Level Question: will the computer program

Σ0 = Π0 halt in fixed time

Σ1 ever halt

Π1 never halt

Σ2 have at most a finite number of outputs

Π2 have an infinite number of outputs

Σ3 have at most a finite number of Π2 outputs

Π3 have an infinite number of Π2 outputs

Σn have at most a finite number of Πn−1 outputs

Πn have an infinite number of Πn−1 outputs

130

2 Red–Green Turing Machines

A Turing machine M is called a red–green Turing machine if its set of internal
states Q is partitioned into two subsets, Qr and Qg, and M operates without
halting. Qr is called the set of red states, Qg the set of green states.

Red–green Turing machines can be seen as a type of ω-Turing machines on
finite inputs with a recognition criterion based on some property of the set(s) of
states visited (in)finitely often, in the tradition of ω-automata (see [5]), i.e., we
call an infinite run of the Turing machine on input w recognizing if and only if

– no red state is visited infinitely often and
– some green states (one or more) are visited infinitely often.

Remark 1. In the following, “mind change” means changing the color, i.e., chang-
ing from red to green or vice versa.

To get the reader familiar with the basic idea of red–green automata, we give
a short sketch of the proofs for some well-known results (see [10]):

Theorem 1. A set of strings L is recognized by a red–green TM with one mind
change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Proof. Let L be the set of strings recognized by a red–green TM M with one mind
change. Then design a TM that enumerates all possible inputs, simulates and
dovetails the computations of M on these inputs, and outputs string w whenever
M makes its first mind change (if any) during the computation on w.

Conversely, if L ∈ Σ1 and M is the TM that enumerates L, then design
a red–green TM that on input w simulates the computation of M in red but
switches to green when w appears in the enumeration. This machine precisely
recognizes L. ut

2.1 Red–Green Turing Machines – Going Beyond Turing

If more mind changes are allowed, the full power of red–green Turing machines
is revealed. For example, the complement of a recursively enumerable set L need
not be recursively enumerable, too, but it is always red–green recognizable:

Let M ′ be the TM recognizing L. Then construct a red–green TM M that op-
erates on inputs w as follows: starting in red, the machine immediately switches
to green and starts simulating M ′ on w. If M ′ halts (thus recognizing w), the
machine switches to red and stays in red from then onward. It follows that M
precisely recognizes, in fact accepts, the set L. Acceptance means that for every
word not recognized by the TM it will never make an infinite number of mind
changes, i.e., it finally will end up in red.

The following result characterizes the computational power of red–green Tur-
ing machines (see [10]):

131

Theorem 2.
(i) Red–green Turing machines recognize exactly the Σ2 sets of the Arith-

metical Hierarchy.
(ii) Red–green Turing machines accept exactly the Π2 sets of the Arithmetical

Hierarchy.

3 The Basic Model of P Automata

The basic model of P automata as introduced in [3] and in a similar way in [4]
is based on antiport rules, i.e., on rules of the form u/v, i.e., the multiset u goes
out through the membrane and v comes in instead. As it is already folklore, only
one membrane is needed for obtaining computational completeness with antiport
rules in the maximally parallel derivation mode; the input string is defined as the
sequence of terminal symbols taken in during a halting computation (without
loss of generality we may assume that at most one terminal symbol is taken
in from the environment in each computation step). Restricting ourselves to P
automata with only one membrane as the basic model, we define a P automaton
as follows:

A P automaton is a construct

Π = (O, T,w,R)

where

– O is the alphabet of objects,
– T is the terminal alphabet,
– w is the multiset of objects present in the skin membrane at the beginning

of a computation, and
– R is a finite set of antiport rules.

The strings accepted by Π consist of the sequences of terminal symbols taken
in during a halting computation.

Let us cite from [9]:

“... a super-Turing potential is naturally and inherently present in
evolution of living organisms.”

In that sense, we now seek for this potential in P automata.

4 Red–Green P Automata

The main challenge is how to define “red” and “green” states in P automata.
In fact, states sometimes are considered to simply be the configurations a P
automaton may reach during a computation, or some specific elements occurring
in a configuration define its state.

132

Another variant is to consider the multiset applicable to a configuration as
its state, which especially makes sense in the case of deterministic systems. Yet
then these multisets have to be divided into “red” and “green” ones.

The easiest way to do this is to specify a subset of the rules as green rules,
and all multisets consisting of such green rules only constitute the set of all
“green” multisets, whereas all the other ones are “red” multisets.

A stronger condition would be to divide the set of rules into “red” and “green”
and to define the set of “red” and “green” multisets as those which only consist
of “red” and “green” rules, respectively. But then we would have the problem
how to deal with the multisets of rules consisting of rules of both colors.

5 First Results

As is well known, even with the basic model of P automata as defined above
we obtain computational completeness by easy simulations of register machines
(which themselves are known, even with only two registers, to be able to sim-
ulate the actions of a Turing machine). Hence, the following results are direct
consequences of the results known for Turing machines:

Theorem 3. A set of strings L is recognized by a red–green P automaton with
one mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 4.
(i) Red–green P automata recognize exactly the Σ2 sets of the Arithmetical

Hierarchy.
(ii) Red–green P automata accept exactly the Π2 sets of the Arithmetical

Hierarchy.

Proof. (Sketch) Let TM be a Turing machine and RM be a register machine
simulating TM having its set of internal states Q partitioned into two subsets,
Qr (the set of red states) and Qg (the set of green states); TM operates without
halting, i.e., with infinite runs on every input string. The register machine can
also color its states in red and green, but when simulating the actions of TM
eventually needs a green and red variant of its states and actions in order to
totally stay within the same color as TM when simulating the actions of one
computation step of TM . The P automaton Π = (O, T,w,R) can simulate the
actions of RM very easily, e.g., see Chapter V in [7], without introducing trap
symbols, and even in a deterministic way provided RM is deterministic. Each
multiset of antiport rules from R applied in the maximally parallel way contains
exactly one rule of the form qu/pv where q, p are “states” of Π representing
corresponding states of RM and u, v are multisets not containing any state
symbol (and the other rules do not contain any state symbol, too). Hence, a
configuration can be defined to exactly have the color of the “state” currently
occurring in the skin region of Π, representing the corresponding state from
RM . ut

133

One of the main reasons that the proof of the preceding theorems is that
easy is based on the fact that the simulation does not need the trick to trap
non-wanted evolutions of the system, which is a trick used very often in the area
of P systems. Yet this exactly would contradict the basic feature of the red–green
automata way of acceptance by looking at infinite computations. Fortunately,
the basic model of P automata comes along with this nice feature of not needing
trap rules for being able to simulate register machines. Only few models of P
automata have this nice feature; another variant are P automata with anti-
matter, just recently introduced and investigated, see [1].

6 Future Research

A lot of research topics wait for being investigated for P automata “going beyond
Turing”, not only the different variants of defining “red” /“green” as already
discussed above. For instance, the idea of having red and green configurations
should also investigated together with models of P automata which are not
computationally complete, as for example dP automata.

There are already a lot of strategies and models to be found in the litera-
ture how to “go beyond Turing”; some of them should also be of interest to be
considered in the P systems area. Thus, a wide range of possible variants to be
investigated remains for future research.

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and anti-matter in membrane
systems. Proceedings of the Twelfth Brainstorming Week on Membrane Computing,
Sevilla, February 2014, 1–26.

2. P. Budnik: What is and what will be. Mountain Math Software, 2006.
3. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-

tems, in: Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19–23, 2002, Revised Papers (Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron, Eds.), Lecture Notes in Computer Science 2597, Springer,
2003, 219–233.

4. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS
78, 2002, 231–236.

5. R. Freund, M. Oswald, L. Staiger: ω-P Automata with Communication Rules. Work-
shop on Membrane Computing, 2003, 203–217 .

6. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. Biosystems 77 (2004), 175–194.
7. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
8. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
9. P. Sośık, O. Vaĺık: On Evolutionary Lineages of Membrane Systems, in: R. Freund

et al. (Eds.): WMC 2005, Lecture Notes in Computer Science 3850 (2006), 67–78.
10. J. van Leeuwen, J. Wiedermann: Computation as an unbounded process. Theoret-

ical Computer Science 429 (2012), 202–212.

134

Extended Simulation and Verification Platform for Kernel
P Systems

Mehmet E. Bakir1, Florentin Ipate2, Savas Konur1, Laurentiu Mierla3, and Ionut Niculescu3

1 Department of Computer Science, University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

{mebakir1,s.konur}@sheffield.ac.uk
2 Department of Computer Science, University of Bucharest

Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro

3 Department of Computer Science, University of Pitesti
Str. Targul din Vale, nr.1, 110040 Pitesti, Arges, Romania

ionutmihainiculescu@gmail.com, laurentiu.mierla@gmail.com

Abstract. We present two extensions to the software framework developed to support kernel
P systems: a formal verification tool based on the NuSMV model checker and a large scale
simulation environment based on FLAME. The use of these two tools for modelling and
analysis of biological systems is illustrated with a synthetic biology example.

1 Introduction

Membrane computing [16] is a branch of natural computing inspired by the hierarchical structure
of the living cell. The central model, called P systems, consists of a membrane structure, the
regions of which contain rewriting rules operating on multisets of objects [16]. P systems evolve by
repeatedly applying rules, mimicking chemical reactions and transportation across membranes or
cellular division or death processes, and halt when no more rules can be applied. The most recent
developments in this field are reported in [17].

The origins of P systems make it highly suited as a formalism for representing biological systems,
especially (multi-)cellular systems and molecular interactions taking place in different locations of
living cells [6]. Different simple molecular interactions or more complex gene expressions, com-
partment translocation, as well as cell division and death are specified using multiset rewriting
or communication rules, and compartment division or dissolution rules. In the case of stochastic
P systems, constants are associated with rules in order to compute their probabilities and time
needed to be applied, respectively, according to the Gillespie algorithm [18]. This approach is based
on a Monte Carlo algorithm for stochastic simulation of molecular interactions taking place inside
a single volume or across multiple compartments.

The recently introduced class of kernel P (kP) systems [7] integrates in a coherent and elegant
manner many of the features (of different P system variants) most successfully used for modelling
various applications. The kP model is supported by a modelling language, called kP-Lingua, capable
of mapping a kernel P system specification into a machine readable representation. Furthermore,
the KPWorkbench framework that allows simulation and formal verification of the obtained
models using the model checker Spin was presented in a recent paper [4].

In this paper, we present two new extensions to KPWorkbench: a formal verification tool
based on the NuSMV model checker [3] and a large scale simulation environment using FLAME
(Flexible Large-Scale Agent Modelling Environment) [5], a platform for agent-based modelling on
parallel architectures, successfully used in various applications ranging from biology to macroeco-
nomics. The use of these two tools for modelling and analysis of biological systems is illustrated
with a synthetic biology case study, pulse generator.

135

The paper is structured as follows. Section 2 defines the formalisms used in the paper, stochastic
and kernel P systems as well as stream X-machines and communicating stream X-machine systems,
which are the basis of the FLAME platform. Section 3 presents an overview on the kP-lingua
language and the simulation and model checking tools. The case study and the corresponding
experiments are presented in Section 4 and 5, respectively, while conclusions are drawn in Section
6.

2 Basic definitions

2.1 Stochastic and kernel P systems

Two classes of P systems, used in this paper, will be now introduced. The first model is a stochastic
P system with its components distributed across a lattice, called lattice population P systems [18,
2], which have been applied to some unconventional models e.g. the genetic Boolean gates [12, 11].
For the purpose of this paper we will consider stochastic P systems with only one compartment
and the lattice will be regarded as a tissue with some communication rules defined in accordance
to its structure.

Definition 1. A stochastic P system (SP system) with one compartment is a tuple:

SP = (O,M,R) (1)

where O is a finite set of objects, called alphabet; M is the finite initial multiset of objects of the
compartment, an element of O∗; R is a set of multiset rewriting rules, of the form rk : x

ck→ y,
where x, y are multisets of objects over O (y might be empty), representing the molecular species
consumed (x) and produced (y).

We consider a finite set of labels, L, and a population of SP systems indexed by this family, SPh,
h ∈ L. A lattice, denoted by Lat, is a bi-dimensional finite array of coordinates, (a, b), with a and
b positive integer numbers. Now we can define a lattice population P system, by slightly changing
the definition provided in [2].

Definition 2. A lattice population P system (LPP system) is a tuple

LPP = (Lat, (SPh)h∈L, Pos, Tr) (2)

where Lat, SPh and L are as above and Pos : Lat → {SPh|h ∈ L} is a function associating to
each coordinate of Lat a certain SP system from the given population of SP systems. Tr is a set of
translocation rules of the form rk : [x]h1

ck→ [x]h2
, where h1, h2 ∈ L; this means that the multiset

x from the SP system SPh1, at a certain position in Lat, will move to any of the neighbours (east,
west, south, north) in Lat that contains an SP system SPh2 .

The stochastic constant ck, that appears in both definitions above, is used by Gillespie algorithm
[8] to compute the next rule to be applied in the system.

One can see the lattice as a tissue system and the SP systems as nodes of it with some com-
munication rules defined according to the neighbours and also to what they consist of.

Another class of P systems, called kernel P systems, has been introduced as a unifying
framework allowing to express within the same formalism many classes of P systems [7, 4].

Definition 3. A kernel P system (kP system) of degree n is a tuple

kΠ = (O,µ,C1, . . . , Cn, i0) (3)

136

where O is a finite set of objects, called alphabet; µ defines the membrane structure, which is a
graph, (V,E), where V are vertices indicating compartments, and E edges; Ci = (ti, wi), 1 ≤ i ≤ n,
is a compartment of the system consisting of a compartment type from T and an initial multiset,
wi over O; i0 is the output compartment where the result is obtained (this will not be used in the
paper).

Definition 4. T is a set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, σi), 1 ≤ i ≤ s,
consists of a set of rules, Ri, and an execution strategy, σi, defined over Lab(Ri), the labels of the
rules of Ri.

In this paper we will use only one execution strategy corresponding to the execution of a rule in
each compartment, if possible. For this reason the execution strategy will be no longer mentioned
in the further definition of the systems. The rules utilised in the paper are defined below.

Definition 5. A rewriting and communication rule, from a set of rules, Ri, 1 ≤ i ≤ s, used in
a compartment Cli = (tli , wli), 1 ≤ i ≤ n, has the form x → y {g}, where x ∈ O+ and y has
the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ O and tj indicates a compartment type from T –
see Definition 3 – with instance compartments linked to the current compartment, Cli ; tj might
indicate the type of the current compartment, i.e., tli – in this case it is ignored; if a link does not
exist (the two compartments are not in E) then the rule is not applied; if a target, tj, refers to
a compartment type that has more than one instance connected to Cli , then one of them will be
non-deterministically chosen.

The definition of a rule from Ri, 1 ≤ i ≤ s, is more general than the form provided above,
see [7, 4], but in this paper we only use the current form. The guards, denoted by g, are Boolean
conditions and their format will be discussed latter on. The guard must be true when a rule is
applied.

2.2 X-machines and communicating stream X-machine systems

We now introduce the concepts of stream X-machine and communicating stream X-machine and
also discuss how these are implemented in Flame [5]. The definitions are largely from [10].

A stream X-machine is like a finite automaton in which the transitions are labelled by (partial)
functions (called processing functions) instead of mere symbols. The machine has a memory (that
represents the domain of the variables of the system to be modelled) and each processing function
will read an input symbol, discard it and produce an output symbol while (possibly) changing the
value of the memory.

Definition 6. A Stream X-Machine (SXM for short) is a tuple
Z = (Σ,Γ,Q,M,Φ, F, I, T,m0), where:

– Σ and Γ are finite sets called the input alphabet and output alphabet respectively;
– Q is the finite set of states;
– M is a (possibly) infinite set called memory;
– Φ is the type of Z, a finite set of function symbols. A basic processing function φ : M ×Σ −→
Γ ×M is associated with each function symbol φ.

– F is the (partial) next state function, F : Q × Φ 7→ 2Q. As for finite automata, F is usually
described by a state-transition diagram.

– I and T are the sets of initial and terminal states respectively, I ⊆ Q,T ⊆ Q;
– m0 is the initial memory value, where m0 ∈M ;
– all the above sets, i.e., Σ, Γ , Q, M , Φ, F , I, T , are non-empty.

137

A configuration of a SXM is a tuple (m, q, s, g), where m ∈M, q ∈ Q, s ∈ Σ∗, g ∈ Γ ∗. An initial
configuration will have the form (m0, q0, s, ε), where m0 is as in Definition 6, q0 ∈ I is an initial
state, and ε is the empty word. A final configuration will have the form (m, qf , ε, g), where qf ∈ T
is a terminal state. A change of configuration, denoted by `, (m, q, s, g) ` (m′, q′, s′, g′), is possible
if s = σs′ with σ ∈ Σ, g′ = gγ with γ ∈ Γ and there exists φ ∈ Φ such that q′ ∈ F (q, φ) and
φ(m,σ) = (γ,m′). A change of configuration is called a transition of a SXM. We denote by `∗ the
reflexive and transitive closure of ` .

A number of communicating SXMs variants have been defined in the literature. In what follows
we will be presenting the communicating SXM model as defined in [10] since this is the closest to
the model used in the implementation of Flame [5] (there are however, a few differences that will
be discussed later). The model defined in [10] appears to be also the most natural of the existing
models of communicating SXMs since each communicating SXM is a standard SXM as defined by
Definition 6. In this model, each communicating SXM has only one (global) input stream of inputs
and one (global) stream of outputs. Depending on the value of the output produced by a commu-
nicating SXM, this is placed in the global output stream or is processed by a SXM component. For
a more detailed discussion about the differences between various models of communicating SXMs
see [14].

The following definitions are largely from [10].

Definition 7. A Communicating Stream X-Machine System (CSXMS for short) with n compo-
nents is a tuple Sn = ((Zi)1≤i≤n, E), where:

– Zi = (Σi, Γi, Qi,Mi, Φi, Fi, Ii, Ti,mi,0) is the SXM with number i, 1 ≤ i ≤ n.
– E = (eij)1≤i,j≤n is a matrix of order n× n with eij ∈ {0, 1} for 1 ≤ i, j ≤ n, i 6= j and eii = 0

for 1 ≤ i ≤ n.
A CSXMS works as follows:

– Each individual Communicating SXM (CSXM for short) is a SXM plus an implicit input queue
(i.e., of FIFO (first-in and first-out) structure) of infinite length; the CSXM only consumes the
inputs from the queue.

– An input symbol σ received from the external environment (of FIFO structure) will go to
the input queue of a CSXM, say Zj , provided that it is contained in the input alphabet of
Zj . If more than one such Zj exist, then σ will enter the input queue of one of these in a
non-deterministic fashion.

– Each pair of CSXMs, say Zi and Zj , have two FIFO channels for communication; each channel
is designed for one direction of communication. The communication channel from Zi to Zj is
enabled if eij = 1 and disabled otherwise.

– An output symbol γ produced by a CSXM, say Zi, will pass to the input queue of another
CSXM, say Zj , providing that the communication channel from Zi to Zj is enabled, i.e. eij = 1,
and it is included in the input alphabet of Zj , i.e. γ ∈ Σj . If these conditions are met by more
than one such Zj , then γ will enter the input queue of one of these in a non-deterministic
fashion. If no such Zj exists, then γ will go to the output environment (of FIFO structure).

– A CSXMS will receive from the external environment a sequence of inputs s ∈ Σ∗ and will
send to the output environment a sequence of outputs g ∈ Γ ∗, where Σ = Σ1 ∪ · · · ∪ Σn,
Γ = (Γ1 \ In1) ∪ · · · ∪ (Γn \ Inn), with Ini = ∪k∈KiΣk, and Ki = {k | 1 ≤ k ≤ n, eik = 1}, for
1 ≤ i ≤ n.
A configuration of a CSXMS Sn has the form z = (z1, . . . , zn, s, g), where:

– zi = (mi, qi, αi, γi), 1 ≤ i ≤ n, where mi ∈Mi is the current value of the memory of Zi, qi ∈ Qi

is the current state of Zi, αi ∈ Σ∗i is the current contents of the input queue and γi ∈ Γ ∗i is
the current contents of the output of Zi;

138

– s is the current value of the input sequence;

– g is the current value of the output sequence.

An initial configuration has the form z0 = (z1,0, . . . , zn,0, s, ε), where zi,0 = (mi,0, qi,0, ε, ε), with qi,0 ∈
Ii.A final configuration has the form zf = (z1,f , . . . , zn,f , ε, g), where zi,f = (mi, qi,f , αi, γi), with qi,f ∈
Ti.

A change of configuration happens when at least one of the X-machines changes its configura-
tion, i.e., a processing function is applied. More formally, a change of configuration of a CSXMS
Sn, denoted by |=,

z = (z1, . . . , zn, s, g) |= z′ = (z′1, . . . , z
′
n, s
′, g′),

with zi = (mi, qi, αi, γi) and z′i = (m′i, q
′
i, α
′
i, γ
′
i), is possible if one of the following is true for some

i, 1 ≤ i ≤ n:

1. (m′i, q
′
i, α
′
i, γ
′
i) = (mi, qi, αiσ, ε), with σ ∈ Σi; z

′
k = zk for k 6= i; s = σs′, g′ = g;

2. (mi, qi, σαi, γi) ` (m′i, q
′
i, α
′
i, γ) with σ ∈ Σi, γ ∈ (Γi \ Ini); z

′
k = zk for k 6= i; s′ = s, g′ = gγ;

3. (mi, qi, σαi, γi) ` (m′i, q
′
i, α
′
i, γ) with σ ∈ Σi ∪ {ε}, γ ∈ (Γi ∩Σj)∪ {ε} for some j 6= i such that

eij = 1; (m′j , q
′
j , α
′
j , γ
′
j) = (mj , qj , αjγ, ε); z

′
k = zk for k 6= i and k 6= j; s′ = s, g′ = g;

A change of configuration is called a transition of a CSXMS. We denote by |=∗ the reflexive and
transitive closure of |= .

The correspondence between the input sequence applied to the system and the output sequence
produced gives rise to the relation computed by the system, fSn . More formally, fSn : Σ ←→ Γ is
defined by: s fSn g if there exists z0 = (z1,0, . . . , zn,0, s, ε) and zf = (z1,f , . . . , zn,f , ε, g) an initial
and final configuration, respectively, such that z0 |=∗ zf and there is no other configuration z such
that zf |= z.

In [14] it is shown that for any kP system, kΠ, of degree n, kΠ = (O,µ,C1, . . . , Cn, i0), using
only rewriting and communication rules, there is a communicating stream X-machine system,
Sn+1 = ((Zi,ti)1≤i≤n, Zn+1, E

′) with n+ 1 components such that, for any multiset w computed by
kΠ, there is a complete sequence of transitions in Sn+1 leading to s(w), the sequence corresponding
to w.. The first n CSXM components simulate the behaviour of the compartment Ci and the
(n+1)th component Zn+1 helps synchronising the other n CSXMs. The matrix E′ = (e′i,j)1≤i,j≤n+1

is defined by: e′i,j = 1, 1 ≤ i, j ≤ n, iff there is an edge between i and j in the membrane structure
of kΠ and e′i,n+1 = e′n+1,i = 1, 1 ≤ i ≤ n (i.e., there are connections between any of the first n
CSXMs and Zn+1, and vice-versa). Only one input symbol σ0 is used; this goes into the input
queue of Zn+1, which, in turn, sends [σ0, i] to each CSXM Zi and so initializes their computation,
by processing the strings corresponding to their initial multisets. Each computation step in kΠ is
reproduced by a number of transitions in Sn+1. Finally, when the kP system stops the computation,
and the multiset w is obtained in Ci0 , then tSn+1 moves to a final state and the result is sent out
as an output sequence, s(w).

We now briefly discuss the implementation of CSXMSs in Flame. Basically, there are two
restrictions that the Flame implementation places on CSXMSs: (i) the associated FA of each
CSXM has no loops; and (ii) the CSXMSs receive no inputs from the environment, i.e., the inputs
received are either empty inputs or outputs produced (in the previous computation step) by CSXM
components of the system. As explained above, a kP system is transformed into a communicating
X-machine system by constructing, for each membrane, a communicating X-machine that simulates
its behaviour; an additional X-machine, used for the synchronization of the others, is also used.
In Flame, however, the additional X-machine is no longer needed since the synchronization is
achieved through message passing - for more details see Section 3.1 and Appendix.

139

3 Tools used for kP system models

The kP system models are specified with a machine readable representation, called kP–Lingua [4].
A slightly modified version of an example from [4] is presented below, showing how various kP
systems concepts are represented in kP–Lingua.

Example 1. A type definition in kP–Lingua.

type C1 {

choice {

> 2b : 2b -> b, a(C2) .

b -> 2b .

}

}

type C2 {

choice {

a -> a, {b, 2c}(C1) .

}

}

m1 {2x, b} (C1) - m2 {x} (C2) .

Example 1 shows two compartment types, C1, C2, with corresponding instances m1, m2, respec-
tively. The instance m1 starts with the initial multiset 2x, b and m2 with an x. The rules of C1 are
selected non-deterministically, only one at a time. The first rule is executed only when its guard
is true, i.e., only when the current multiset has at least three b’s. This rule also sends an a to the
instance of type C2 linked to it. In C2 there is only a rule which is executed only when there is an
a in the compartment.

The specifications written in kP–Lingua can be simulated and formally verified using a model
checker called Spin [4]. In this paper we show two further extensions, another verification mech-
anism based on the NuSMV model checker [3] and a large scale simulation environment using
Flame (see website4). These two tools, which can be downloaded from the KPWorkbench web
page [13], will be presented below. The specification language kP–Lingua and the verification and
simulation tools are all integrated within KPWorkbench [4].

3.1 Simulation

The ability of simulating kernel P systems is one important aspect provided by a set of tools
supporting this formalism. Currently, there are two different simulation approaches (a performance
comparison can be found in [15]). Both receive as input a kP–Lingua model and outputs a trace
of the execution, which is mainly used for checking the evolution of a system and for extracting
various results out of the simulation.

KPWorkbench Simulator. KPWorkbench contains a simulator for kP system models and
is written in the C# language. The simulator is a command line tool, providing a means for
configuring the traces of execution for the given model, allowing the user to explicitly define the
granularity of the output information by setting the values for a concrete set of parameters:

– Steps - a positive integer value for specifying the maximum number of steps the simulation
will run for. If omitted, it defaults to 10

4 http://flame.ac.uk

140

– SkipSteps - a positive integer value representing the number of steps to skip the output gener-
ation for. By using this parameter, the simulation trace will be generated from the step next
to the current specified one, onward. If not set, the default value is 0

– RecordRuleSelection - defaulting to true, takes a boolean value on which to decide if the rule
selection mechanism defined by the execution strategy will be generated into the output trace

– RecordTargetSelection - if true (which is also the default value), traces the resolution of the
communicating rules, outputting the non-deterministically selected membrane of a specified
type to send the objects to

– RecordInstanceCreation - defaulting to true, specifies if the membrane creation processed should
be recorded into the output simulation trace

– RecordConfigurations - if true (being also the default setting), generates as output, at the end
of a step, the multiset of objects corresponding to each existing membrane

– ConfigurationsOnly - having precedence over the other boolean parameters, sets the value
of the above flags to false, except the one of the RecordConfigurations, causing the multiset
configuration for each of the existing membranes to be the only output into the simulation
trance. The default value is false

It’s worth mentioning that the KPWorkbench Simulator tool, including the simulator, are
also available for the Unix-based operating systems supported by the Mono framework5.

FLAME-based Simulator The agent-based modeling framework Flame is also used for simulat-
ing kP–Lingua specifications, one of the main advantages of this approach being its big scalability
degree and efficiency for simulating large scale models.

A general Flame simulation requires the provision of a model for specifying the agents repre-
senting the definitions of communicating X-machines, whose behaviour is to be simulated, together
with input data representing the initial values of the memory for the generated X-machines. The
model specification is composed of an xml file defining the structure of the agents, while their
behaviour is provided as a set of functions in the C programming language.

In order to be able to simulate kernel P system models using the Flame framework, an auto-
mated model translation is made for converting the kP–Lingua specification into the above men-
tioned formats. Thus, the various compartments defined into the kP-Lingua model are translated
into agent definitions, while the rule execution strategies corresponds to the transitions describing
the behaviour of the agents. More specifically, each membrane of the kP system is represented by
an agent. The rules are stored together with the membrane multiset as agent data. For each type
of membrane from the kP system, a type of agent is defined, and for each execution strategy of the
membrane, states are created in the X-machine. Transitions between the two states are represented
by C functions that are executed in Flame when passing from one state to another. Each type
of strategy defines a specific function that applies the rules according to the execution strategy. A
detailed description of the algorithm for translating a kP system into Flame is given in Appendix.

Each step of the simulation process modifies the memory of the agents, generating at the same
time output xml files representing the configuration of the corresponding membranes at the end of
the steps. The granularity level of the information defining the simulation traces is adjustable by
providing a set of concrete parameters for the input data set.

3.2 Model Checking

KPWorkbench already integrates the Spin model checker [9]. A more detailed account can be
found in [4]. In this paper, we also integrate the NuSMV model checker [3] to the KPWorkbench

5 http://mono-project.com

141

(a) Sender cell. (b) Pulsing cell.

Fig. 1: Two cell types of the pulse generator system (taken from [2]).

platform to be able to verify branching-time semantics. NuSMV is designed to verify synchronous
and asynchronous systems. Its high-level modelling language is based on Finite State Machines
(FSM) and allows the description of systems in a modular and hierarchical manner. NuSMV
supports the analysis of specification expressed in Linear-time Temporal Logic (LTL) and Compu-
tation Tree Logic (CTL). NuSMV employs symbolic methods, allowing a compact representation
of the state space to increase the efficiency and performance. The tool also permits conducting
simulation experiments over the provided FSM model by generating traces either interactively or
randomly.

4 Case study: Pulse Generator

The pulse generator [1] is a synthetic biology system, which was analysed stochastically in [2, 12].
It is composed of two types of bacterial strains: sender and pulsing cells (see Figure 1). The sender
cells produce a signal (3OC6-HSL) and propagates it through the pulsing cells, which express the
green fluorescent protein (GFP) upon sensing the signal. The excess of the signalling molecules are
propagated to the neighbouring cells.

Sender cells synthesize the signalling molecule 3OC6-HSL (AHL) through the enzyme LuxI, ex-
pressed under the constitutive expression of the promoter PLtetO1. Pulsing cells express GFP under
the regulation of the PluxPR promoter, activated by the LuxR 3OC6 2 complex. The LuxR protein
is expressed under the control of the PluxL promoter. The GFP production is repressed by the
transcription factor CI, codified under the regulation of the promoter PluxR that is activated upon
binding of the transcription factor LuxR 3OC6 2.

4.1 Stochastic model

The formal model consists of two bacterial strains, each one is represented by an SP system model.
So, L = {sender, pulsing}, describes these two labels and accordingly:

SPh = (Oh,Mh, Rh), h ∈ L (4)

142

where
Osender = {PLtetO1 geneLuxI, proteinLuxI, proteinLuxI Rib, rnaLuxI,

rnaLuxI RNAP, signal3OC6}

Msender = PLtetO1 geneLuxI

Rsender = {r1 : PLtetO1 geneLuxI
k1→ PLtetO1 geneLuxI + rnaLuxI RNAP k1 = 0.1,

r2 : rnaLuxI RNAP
k2→ rnaLuxI k2 = 3.36,

r3 : rnaLuxI
k3→ rnaLuxI + proteinLuxI Rib k3 = 0.0667,

r4 : rnaLuxI
k4→ k4 = 0.004,

r5 : proteinLuxI Rib
k5→ proteinLuxI k5 = 3.78,

r6 : proteinLuxI
k6→ k6 = 0.067,

r7 : proteinLuxI
k7→ proteinLuxI + signal3OC6 k7 = 5}

and

Opulsing = {CI2, LuxR2, PluxL geneLuxR, PluxPR CI2 geneGFP,
PluxPR LuxR2 CI2 geneGFP, PluxPR LuxR2 geneGFP, PluxPR geneGFP,
PluxR LuxR2 geneCI, PluxR geneCI, proteinCI, proteinCI Rib, proteinGFP,
proteinGFP Rib, proteinLuxR, proteinLuxR 3OC6, proteinLuxR Rib, rnaCI,
rnaCI RNAP, rnaGFP, rnaGFP RNAP, rnaLuxR, rnaLuxR RNAP, signal3OC6}

Mpulsing = PluxL geneLuxR, PluxR geneCI, PluxPR geneGFP.

The set of rules (Rpulsing) is presented in Table 6 (Appendix).
The translocation rules are:

Tr = {r1 : [signal3OC6]sender
k1→ [signal3OC6]pulsing k1 = 1.0,

r2 : [signal3OC6]sender
k2→ [signal3OC6]sender k2 = 1.0,

r3 : [signal3OC6]pulsing
k3→ [signal3OC6]pulsing k3 = 1.0}.

The lattice, given by Lat, is an array with n rows and m columns of coordinates (a, b), where
0 ≤ a ≤ n − 1 and 0 ≤ b ≤ m − 1. The values n and m will be specified for various experiments
conducted in this paper. In all the experiments the first column will be associated with sender SP
systems and the rest with pulsing systems. Formally, Pos(a, 0) = SPsender, 0 ≤ a ≤ n − 1, and
Pos(a, b) = SPpulsing, 0 ≤ a ≤ n− 1 and 1 ≤ b ≤ m− 1.

4.2 Nondeterministic model

Non-deterministic models are used for qualitative analysis. They are useful for detecting the exis-
tence of molecular species rather than for measuring their concentration. A typical non-deterministic
model can be obtained from a stochastic model by removing the kinetics constants.

More precisely, one can define two types corresponding to the two bacterial strains in accordance
with Definition 4, namely T = {sender, pulsing}, and the corresponding rule sets, R′sender and
R′pulsing. The rules from R′sender are obtained from Rsender and r1, r2 ∈ Tr, and those from
R′pulsing are obtained from Rpulsing and r3 ∈ Tr, by removing the kinetic rates. For each rule

from the set Tr, namely rk : [x]h1

ck→ [x]h2
, the corresponding rule of the kP system will be

rk : x → x(t), where t ∈ T . The execution strategies are those described in the associated
definitions of the kP systems.

143

The kP system with n×m components is given, in accordance with Definition 3, by the graph
with vertices Ca,b = (ta,b, wa,b), where ta,b ∈ T and wa,b is the initial multiset, 0 ≤ a ≤ n − 1,
0 ≤ b ≤ m − 1; and edges where each component Ca,b, with 0 ≤ a ≤ n − 2, 0 ≤ b ≤ m − 2, is
connected to its east, Ca,b+1, and south, Ca+1,b, neighbours. The types of these components are
ta,0 = sender, 0 ≤ a ≤ n − 1, and ta,b = pulsing, 0 ≤ a ≤ n − 1 and 1 ≤ b ≤ m − 1. The initial
multisets are wa,0 = Msender, 0 ≤ a ≤ n−1, and wa,b = Mpulsing, 0 ≤ a ≤ n−1 and 1 ≤ b ≤ m−1.

So, one can observe the similitude between the lattice and function Pos underlying the definition
of the LPP system and the graph and the types associated with the kP system.

4.3 Nondeterministic simplified model

In order to relieve the state explosion problem, models can also be simplified by replacing a long
chain of reactions by a simpler rule set which will capture the starting and ending parts of this chain,
and hence eliminating species that do not appear in the new rule set. With this transformation we
achieve a simplification of the state space, but also of the number of transitions associated with
the model.

The non-deterministic system with a set of compacted rules for the sender cell is obtained from
the kP system introduced above and consists of the same graph with the same types, T , and initial
multisets, wa,b, 0 ≤ a ≤ n− 1, 0 ≤ b ≤ m− 1, but with simplified rule sets obtained from R′sender
and R′pulsing, and denoted R′′sender, defined as follows:

R′′sender = {r1 : PLtetO1 geneLuxI→PLtetO1 geneLuxI + rnaLuxI RNAP,
r2 : proteinLuxI→,
r3 : proteinLuxI→proteinLuxI + signal3OC6,
r4 : signal3OC6→signal3OC6 (pulsing),
r5 : signal3OC6→signal3OC6 (sender)}

and R′′pulsing is defined in Table 7 (Appendix).

5 Experiments

5.1 Simulation

The simulation tools have been used to check the temporal evolution of the system and to infer
various information from the simulation results. For a kP system of 5 × 10 components, which
comprises 25 sender cells and 25 pulsing cells, we have observed the production and transmission
of the signaling molecule from the sender cells to the furthest pulsing cell and the production of
the green florescent protein.

FLAME Results As explain earlier, in Flame each agent is represented by an X-machine. When
the X-machine reaches the final state, the data is written to the hard disk and it is then used as
input for the next iteration. Since the volume of data increases with the number of membranes,
the more membranes we have, the more time for reading and writing data from or to the hard
disk is required. Consequently, when the number of membranes is large, the time required by the
read and write operations increases substantially and so the simulation may become infeasible6.
For example, for the pulsing generator system it was difficult to obtain simulation results after
100,000 steps; the execution time for 100,000 steps was approximately one hour.

6 On the other hand, the distributed architecture of Flame allows the simulation to be run on parallel
supercomputers with great performance improvements, but this is beyond the scope of this paper.

144

Table 1: FLAME results.

sender1,1 pulse5,9
Step Interval signal3OC6 signal3OC6 proteinGFP

0 – 10,000 Exist Exist None
10,001 – 20,000 Exist Exist None
20,001 – 30,000 Exist Exist None
30,001 – 40,000 Exist Exist None
40,001 – 50,000 Exist Exist None
50,001 – 60,000 Exist Exist None
60,001 – 70,000 Exist Exist None
70,001 – 80,000 Exist Exist None
80,001 – 90,000 Exist Exist None
90,001 – 99,666 Exist Exist None
99,667 – 100,000 Exist Exist Exist

Table 2: KPWorkbench Simulator results.

sender1,1 pulse5,10
Step Interval signal3OC6 signal3OC6 proteinGFP

0 – 300,000 Exist Exist None
300,001 – 600,000 Exist Exist None
600,001 – 900,000 Exist Exist None
900,001 – 1,200,000 Exist Exist None

1,200,001 – 1,500,000 Exist Exist None
1,500,001 – 1,800,000 Exist Exist None
1,800,001 – 2,100,000 Exist Exist None
2,100,001 – 2,400,000 Exist Exist None
2,400,001 – 2,700,000 Exist Exist Exist
2,700,001 – 3,000,000 Exist Exist None

The signaling molecule signal3OC6 appeared for the first time in the sending cell sender1,1 at
the 27th step ; after that , it appeared and disappeared many times. In the pulsing cell pulse5,9, the
signaling molecule appeared for the first time at 4963 steps, while the proteinGFP was produced
for the first time after 99,667steps.

The results of the Flame simulation show that the signaling molecules produced in the sending
cells are propagated to the pulsating cells which, in turn, produce the proteinGFP. The results of
the simulation are given in Table 1. In 100,000 steps (the maximum number of steps considered for
the Flame simulation), the farthest cell in which proteinGFP was produced was pulse5,9 - this
was produced after 99,667 steps.

KPWorkbench Simulator Results KPWorkbench Simulator is a specialised simulation
tool and provides better results, in terms of execution time, then a general purpose simulation
environment like FLAME. This is mainly due to the fact that this approach makes the simulation
to be performed in a single memory space, that scales according to the number of membranes used
in the model and the number of objects resulting from applying the rules in each simulation step.

Table 2 presents the production and availability of the signaling molecule at the first sender
cell (i.e. sender1,1) and the transmission of the signaling molecule and the production of the green
florescent protein at the furthest pulsing cell (i.e. pulse5,10).

145

Table 3: Property patterns used in the verification experiments.

Prop. Informal specification and the corresponding CTL translations

1
X will eventually be produced.

EF X>0

2
The availability/production of X will eventually lead to the production of Y.

AG (X ⇒ EF Y)

3
Y cannot be produced before X is produced.

¬ E (X=0 U Y>0)

We have run the simulator for 3,000,000 time steps. The sender1,1 cell was able to produce the
signaling molecule at 22 steps, and later produced more signaling molecules. The pulse5,10 cell, as
the furthest pulse generator cell, was able to receive the signaling molecule at the 5474 step. But,
the production of proteinGFP was possible at the 2,476,813 step, and it remained inside the cell
until the 2,476,951 step, then it was consumed.

The simulation results show that the signaling molecule can be produced and transmitted by
a sender cell. In addition, a pulse generator cell can have a signaling molecule only after a sender
cell sends it, and can use the signal for the production of proteinGFP in later steps.

5.2 Verification

The properties of the system are verified using the NuSMV model checker, fully integrated into
the KPWorkbench platform. In this section, we first verify individual cell properties, and then
verify the properties of the whole kP system, involving multiple cells that are distributed within
the lattice and interact with each other via the translocation rules.

Our verification results show that when the cell population is small, the properties can be
verified using reasonable computational resources. However, given that the complete rule set is
used, when the number of cell increases, verification becomes no longer feasible due to the state
explosion problem. To mitigate this problem, we have used simplified rule set to verify the cell
interaction properties when the cell populations is large.

Complete Rule Sets. Experiments under this section are conducted on a small population of
multi-cellular systems including the complete set of rules. We have analysed two pulse-generator
systems that differ only in the number of pulse generator cells. The first group consists of one
sender cell and one pulse generator cell, i.e. 1× 2 components, whereas the second group has one
more pulse generator cell, i.e. 1× 3 components.

For our experiments, we use the property patterns provided in Table 3. Table 4 shows the
verification results for the properties given in Table 3 using two different groups. NuSMV has
returned True for all the properties. In the group with 1 × 2 components, we have verified that
the sender cell (sender1) can produce a signalling molecule and transmit it to the pulsing cell
(pulsing1). In addition, the pulse generator cell can use that signal to produce the green florescent
protein (proteinGFP). In the group with 1× 3 components, we have verified similar properties. In
addition, we have verified that the first pulsing cell (pulsing1) can transmit the signalling molecule
to the second pulsing cell (pulsing2).

Reduced Rule Sets. Using a larger sets of components, we want to prove that the signalling
molecule can be transmitted to the further pulsing cells. However, when we increase the number
of cells, verification becomes no longer feasible due to the state explosion problem. In order to
achieve the verification results within a reasonable time, we have compacted the rules sets such

146

Table 4: Verification experiments for the complete rule sets.

Lattice Property X, Y

1× 2

Prop. 1
X = sender1.signal3OC6

X = pulsing1.signal3OC6

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing1.proteinGFP

X = sender1.signal3OC6, Y = pulsing1.proteinGFP

Prop. 3
X = pulsing1.signal3OC6, Y = pulsing1.proteinGFP

X = sender1.signal3OC6, Y = pulsing1.proteinGFP

1× 3

Prop. 1
X = pulsing2.signal3OC6

X = pulsing2.proteinGFP

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing2.proteinGFP

X = sender1.signal3OC6, Y = pulsing2.proteinGFP

Prop. 3
X = pulsing1.signal3OC6, Y = pulsing2.signal3OC6

X = sender1.signal3OC6, Y = pulsing2.signal3OC6

Table 5: Verification experiments for the reduced rule sets.

Lattice Property X, Y

1× 5

Prop. 1
X = pulsing4.signal3OC6

X = pulsing4.proteinGFP

Prop. 2
X = pulsing1.signal3OC6, Y = pulsing4.proteinGFP

X = sender1.signal3OC6, Y = pulsing4.proteinGFP

Prop. 3
X = pulsing3.signal3OC6, Y = pulsing4.signal3OC6

X = pulsing3.signal3OC6, Y = pulsing4.proteinGFP

that an entire chain of reactions is replaced by a fewer simple rules. Consequently, the overall
number of interactions is reduced and all the species which do not appear in the new set of rules
are removed from the model. These changes are made in the non-deterministic models as these
are used for qualitative analyses where the concentration of certain molecules is not significant or
chain of reaction already analysed can be replaced by some abstractions mimicking their behaviour
through simpler rewriting mechanisms.

Here, we define a group of cells with 1× 5 components, where 1 sender and 4 pulsing cells are
placed in row. For this scenario, we could verify the same properties in Table 4 using the reduced
rule sets (as defined in Section 4.3). In addition, we have verified additional properties to analyse
the other pulsing cells. Table 5 shows these properties, for which NuSMV has returned True.
The verification results show that the sender cell can produce the signalling molecule and transmit
it to the adjacent pulsing cell, and the pulsing cells can use the signalling molecule to produce
proteinGFP and transmit it to the its neighbour pulsing cells.

6 Conclusions

In this paper, we have presented two extensions to KPWorkbench: a formal verification tool based
on the NuSMV model checker and a large scale simulation environment using FLAME, a platform
for agent-based modelling on parallel architectures. The use of these two tools for modelling and
analysis of biological systems is illustrated with a pulse generator, a synthetic biology system. We
have provided both the stochastic model as SP systems and the non-deterministic model as kP
systems as well as a reduced model. We have also provided both simulation and verification results,
confirming the desired behaviour of the pulse generator system.

147

Future work will involve modeling, simulation and verification of even more complex biological
systems as well as performance comparisons of simulators and model checking tools integrated
within KPWorkbench.

Acknowledgements. The work of FI, LM and IN was supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI (project number: PN-II-ID-PCE-
2011-3-0688). SK acknowledges the support provided for synthetic biology research by EPSRC
ROADBLOCK (project number: EP/I031812/1). MB is supported by a PhD studentship provided
by the Turkey Ministry of Education.

The authors would like to thank Marian Gheorghe for his valuable comments to this paper.

References

1. Basu, S., Mehreja, R., Thiberge, S., Chen, M.T., Weiss, R.: Spatio-temporal control of gene expression
with pulse-generating networks. PNAS 101(17), 6355–6360 (2004)

2. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe, M.: Infobiotics
Workbench: A P systems based tool for systems and synthetic biology. In: [6], pp. 1–41. Springer
(2014)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tac-
chella, A.: NuSMV version 2: An open source tool for symbolic model checking. In: Proc. International
Conference on Computer-Aided Verification (CAV 2002). LNCS, vol. 2404. Springer, Copenhagen,
Denmark (July 2002)

4. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model checking kernel P systems. In: 14th
International Conference on Membrane Computing. LNCS, vol. 8340, pp. 151–172. Springer (2013)

5. FLAME: Flexible large-scale agent modeling environment (available at http://www.flame.ac.uk/)
6. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems

and Synthetic Biology. Springer (2014)
7. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-Quismondo, M., Pérez-

Jiménez, M.J.: Kernel P systems - Version 1. 12th BWMC pp. 97–124 (2013)
8. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)
9. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineering 23(5), 275–295

(1997)
10. Ipate, F., Bălănescu, T., Kefalas, P., Holcombe, M., Eleftherakis, G.: A new model of communicating

stream X-machine systems. Romanian Journal of Information Science and Technology 6, 165–184
(2003)

11. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional verification for uncon-
ventional computing: a genetic XOR gate example. Fundamenta Informaticae p. To Appear (2014)

12. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qualitative and quanti-
tative analysis of systems and synthetic biology constructs using P systems. ACS Synthetic Biology p.
To Appear (2014)

13. KPWorkbench (available at http://muvet.ifsoft.ro/kpworkbench/)
14. Niculescu, I.M., Gheorghe, M., Ipate, F., Stefanescu., A.: From kernel P systems to X-machines and

FLAME. Journal of Automata, Languages and Combinatorics To appear (2014)
15. Niculescu, I., Ipate, F., Bakir, M.E., Konur, S., Gheorghe, M.: High performance simulations of ker-

nel P systems. In: The 16th IEEE International Conference on High Performance Computing and
Communications. p. To Appear (2014)

16. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143
(2000)

17. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford
University Press (2010)

18. Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N.: A multiscale modeling frame-
work based on P systems. In: Membrane Computing, LNCS, vol. 5391, pp. 63–77. Springer (2009)

Appendix

148

Algorithm 1 Transforming a kP Systems into Flame algorithm

1: procedure AddTtransition(startState, stopState, strategy, guard)
. procedure adding the appropriate transition strategy to the current agent stack given as parameter

and FLAME function applying rules conforming to execution strategy

. guard is an optional parameter that represents the transition guard
2: if strategy is Sequence then
3: agentTtransitions.Push(startState, stopState, SequenceFunction, guard)

. FLAME function SequenceFunction applies rules in sequentially mode
4: else if strategy is Choice then
5: agentTtransitions.Push(startState, stopState, ChoiceFunction, guard)

. FLAME function ChoiceFunction applies rules in choice mode
6: else if strategy is ArbitraryParallel then
7: agentTtransitions.Push(startState, stopState, ArbitraryParallelFunction, guard)

. FLAME function ArbitraryParallelFunction applies rules in arbitrary parallel mode
8: else if strategy is MaximalParallel then
9: agentTtransitions.Push(startState, stopState, MaximalParallelFunction, guard)

. FLAME function MaximalParallelFunction applies rules in maximal parallel mode
10: end if
11: end procedure
12:

. main algorithm for traforming a kP system into Flame
13:
14: agentsStates.Clear()
15: agentsTtransitions.Clear()

. empty state and transition stacks of agents
16: foreach membrane in kPSystem do

. for each membrane of kP system build corresponding agent, consisting of states and transitions
17: agentStates.Clear()
18: agentTtransitions.Clear()

. empty state and transition stacks of agent that is built for the current membrane
19: agentStates.Push(startState)

. adding the initial state of the X machine
20: agentStates.Push(initializationState)

. adding initialization state
21: agentTtransitions.Push(startState, initializationState)

. adding transition between the initial and initialization states; this transition performs objects
allocation on rules and other initializations

22: foreach strategy in membrane do
. for each strategy of the current membrane the corresponding states and transitions are built

23: previousState = agentStates.Top()
. the last state is stored in a temporary variable

24: if is first strategy and strategy.hasNext() then
. when the strategy is the first of several, state and transition corresponding to the execution

strategy are added
25: agentStates.Push(strategy.Name)
26: AddTtransition(previousState, strategy.Name, strategy)
27: else
28: if not strategy.hasNext() then

. if it is the last strategy, the transition corresponding to the execution strategy is added
29: AddTtransition(previousState, applyChangesState, strategy)
30: else

149

Algorithm 1 Transforming a kP Systems into Flame algorithm (continued)

31: agentStates.Push(strategy.Name)
. add corresponding state of the current strategy

32: if strategy.Previous() is Sequence then
. verify that previous strategy is of sequence type

33: AddTtransition(previousState, strategy.Name, strategy, IsApplyAllRules)
. add transition from preceding strategy state to the current strategy state. The guard

is active if all the rules have been applied in the previous strategy transition.
34: agentTtransitions.Push(previousState, applyChangesState, IsNotApplyAllRules)

. add transition from preceding strategy state to state where changes produced by rules
are applied. The guard is active if not all rules have been applied in the previous
strategy transition

35: else
36: AddTtransition(previousState, strategy.Name, strategy)

. add transition from preceding strategy state to the current strategy state
37: agentTtransitions.Push(previousState, applyChangesState, IsApplyStructureRule)

. add transition from preceding state strategy to state in which changes produced by the
applied rules are committed. The guard is active when the structural rule has been
applied on the previous strategy transition

38: end if
39: end if
40: end if
41: end for
42: agentStates.Push(applyChangesState)

. adding state in which changes produced by the applied rules are committed
43: agentTtransitions.Push(applyChangesState, receiveState)

. adding transition on which changes produced by the applied rules are committed
44: agentStates.Push(receiveState)

. add state that receives objects sent by applying the communication rules in other membranes
45: agentTtransitions.Push(receiveState, s0State)

. add transition that receives objects sent by applying the communication rules in other membranes
46: agentStates.Push(s0State)

. add an intermediary state
47: agentTtransitions.Push(s0State, endState, IsNotApplyStructureRule)

. add transition to the final state in which nothing happens unless a structural rule was applied
48: agentTtransitions.Push(s0State, endState, IsApplyStructureRule)

. add the transition to the final state on which structural changes are made if the structure rule has
been applied

49: agentStates.Push(endState)
. add the final state

50: agentsStates.PushAll(agentStates.Content())
. add the contents of the stack that holds the current agent states to the stack that holds the states

of all agents
51: agentsTtransitions.PushAll(agentStates.Content())

. add the contents of the stack that holds the current agent transitions to the stack that holds the
transitions of all agents

52: end for

150

Table 6: Multiset rules (Rpulsing) of the SP systems model of the pulsing cell.

Rule
Kinetic
constant

r1 : PluxL geneLuxR
k1→ PluxL geneLuxR + rnaLuxR RNAP k1 = 0.1

r2 : rnaLuxR RNAP
k2→ rnaLuxR k2 = 3.2

r3 : rnaLuxR
k3→ rnaLuxR + proteinLuxR Rib k3 = 0.3

r4 : rnaLuxR
k4→ k4 = 0.04

r5 : proteinLuxR Rib
k5→ proteinLuxR k5 = 3.6

r6 : proteinLuxR
k6→ k6 = 0.075

r7 : proteinLuxR + signal3OC6
k7→ proteinLuxR 3OC6 k7 = 1.0

r8 : proteinLuxR 3OC6
k8→ k8 = 0.0154

r9 : proteinLuxR 3OC6 + proteinLuxR 3OC6
k9→ LuxR2 k9 = 1.0

r10 : LuxR2
k10→ k10 = 0.0154

r11 : LuxR2 + PluxR geneCI
k11→ PluxR LuxR2 geneCI k11 = 1.0

r12 : PluxR LuxR2 geneCI
k12→ LuxR2 + PluxR geneCI k12 = 1.0

r13 : PluxR LuxR2 geneCI
k13→ PluxR LuxR2 geneCI + rnaCI RNAP k13 = 1.4

r14 : rnaCI RNAP
k14→ rnaCI k14 = 3.2

r15 : rnaCI
k15→ rnaCI + proteinCI Rib k15 = 0.3

r16 : rnaCI
k16→ k16 = 0.04

r17 : proteinCI Rib
k17→ proteinCI k17 = 3.6

r18 : proteinCI
k18→ k18 = 0.075

r19 : proteinCI + proteinCI
k19→ CI2 k19 = 1.0

r20 : CI2
k20→ k20 = 0.00554

r21 : LuxR2 + PluxPR geneGFP
k21→ PluxPR LuxR2 geneGFP k21 = 1.0

r22 : PluxPR LuxR2 geneGFP
k22→ LuxR2 + PluxPR geneGFP k22 = 1.0

r23 : LuxR2 + PluxPR CI2 geneGFP
k23→ PluxPR LuxR2 CI2 geneGFP k23 = 1.0

r24 : PluxPR LuxR2 CI2 geneGFP
k24→ LuxR2 + PluxPR CI2 geneGFP k24 = 1.0

r25 : CI2 + PluxPR geneGFP
k25→ PluxPR CI2 geneGFP k25 = 5.0

r26 : PluxPR CI2 geneGFP
k26→ CI2 + PluxPR geneGFP k26 = 0.0000001

r27 : CI2 + PluxPR LuxR2 geneGFP
k27→ PluxPR LuxR2 CI2 geneGFP k27 = 5.0

r28 : PluxPR LuxR2 CI2 geneGFP
k28→ CI2 + PluxPR LuxR2 geneGFP k28 = 0.0000001

r29 : PluxPR LuxR2 geneGFP
k29→ PluxPR LuxR2 geneGFP + rnaGFP RNAP k29 = 4.0

r30 : rnaGFP RNAP
k30→ rnaGFP k30 = 3.36

r31 : rnaGFP
k31→ rnaX + proteinGFP Rib k31 = 0.667

r32 : rnaGFP
k32→ k32 = 0.04

r33 : proteinGFP Rib
k33→ proteinGFP k33 = 3.78

r34 : proteinGFP
k34→ k34 = 0.0667

Table 7: Multiset rules (R′′pulsing) of the kP systems model of the pulsing cell.

Rule

r1 : PluxL geneLuxR → PluxL geneLuxR + rnaLuxR RNAP

r2 : proteinLuxR →
r3 : proteinLuxR + signal3OC6 → proteinLuxR 3OC6

r4 : proteinLuxR 3OC6 →
r5 : proteinLuxR 3OC6 + PluxPR geneGFP → PluxPR LuxR2 geneGFP

r6 : PluxPR LuxR2 geneGFP → PluxPR LuxR2 geneGFP + proteinGFP

r7 : proteinGFP →
r8 : signal3OC6 → signal3OC6 (pulsing)

151

152

Notes on Spiking Neural P Systems with Structural
Plasticity Computing Morphisms

Francis George C. Cabarle, Henry N. Adorna

Algorithms & Complexity Lab
Department of Computer Science

UP Diliman, 1101, Quezon City, Philippines
email: fccabarle@up.edu.ph,hnadorna@dcs.upd.edu.ph

Abstract. Spiking Neural P Systems with Structural Plasticity (or SPSNP sys-
tems) introduced the biological feature of structural plasticity into SNP systems:
neurons can create or remove synapses among them. This work is an ongoing
effort to investigate SPSNP transducers for computing morphisms.

Key words: Spiking Neural P systems, structural plasticity, transducers, morphisms
SPSNP systems were introduced in [1], where plasticity rules are added to the stan-

dard spiking rules in SNP systems literature (more information can be found in [2] and
[4]). Plasticity rules allow the creation and removal of synapses, therefore changing the
synapse graph of the system. The addition of plasticity rules is a partial response to the
open problem D by Păun in [4] where “dynamism for synapses” is proposed. Spiking
and forgetting rule syntax and semantics from SNP systems remain the same for SP-
SNP systems. The plasticity rules are of the form E/ac → αk : (i,Nj), where: E is a
regular expression over {a}; c spikes are consumed when the rule is applied in neuron
σi; α ∈ {+,−,±,∓} indicates whether to create, delete, create-then-delete, or delete-
then-create synapses, respectively; Nj is a set of neurons that σi can create synapses to
or delete synapses from. Every time σi creates a synapse to some σk, k ∈ Nj , one spike
is immediately sent from σi to σk. For example, applying the rule a→ +1 : (i, {j, k})
in σi means consuming one spike and creating one synapse from σi nondeterministi-
cally to either σj or σk.

In [3] SNP transducers were investigated: SNP transducers are simply SNP systems
with both input and output neurons. SNP transducers were used to compute morphisms
from three classes over a binary alphabet: (non)erasing, (non)length preserving, (not)
powers of the same word. Consider the morphism µ : {0, 1}∗ → {0, 1}+ where µ(0) =
01 and µ(1) = 10. From [3] we have that µ is a morphism that is non-erasing, non-
length preserving, and not power of the same word. It is known that morphisms such as
µ cannot be computed by SNP transducers (see [3] for more information). What follows
is an overview of an SPSNP transducer computing µ using an encoding for the input
spike train.

Consider the SPSNP transducer Πµ, graphically shown below. The initial configu-
ration is where only σ2 contains one spike. In the figure, neurons with no rules shown
have only the rule a → a, and we omit this from writing. We mark the time for the
initial configuration as time 0. The infinite spike train that is considered after time 0

153

will be the input of Πµ. Recall that no spike corresponds to an input (or output) of
0, and a spike corresponds to an input (or output) of 1. We use an encoding γ on an
input w ∈ {0, 1}∗ ∪ {0, 1}ω of µ for Πµ as follows: only the inputs entering Πµ at
odd times are considered as correct or valid inputs. For example, an input 011010 for
µ is encoded as γ(011010) = 0(1)0(2)1(3)0(4)1(5)0(6)0(7)0(8)1(9)0(10)0(11), where
(t), t ∈ {1, 2, . . . , 11}, is the time when no spike or a spike enters Πµ. Whenever t
is even this corresponds to an input we do not consider. In particular, an input of 0 or
no spike must be present on even times, so that these inputs do not interfere with the
functioning of Πµ. Only the inputs for odd values of t, shown in bold numbers, are
considered.

�
�
�
�

�
�
�
�#
"

!��
�
�

�
�
�
�

?
6
HH

HY
?

�

?
in

a→ ±1 : (in, {1})
a2 → ±1 : (in, {out})

3

2
a

1

out

The correct output of Πµ is only considered starting at time 3, so that we have a fixed
and unambiguous prefix 02 in the output, i.e., given an input w, we have Πµ(γ(w)) =
02µ(w). Neuron in is the only neuron with plasticity rules, and acts similar to a switch:
it activates (by sending one spike) either σ1 or σout depending on whether σin contains
one or two spikes, respectively. In the case when no spike enters the system (an input of
0) at some time t then, the plasticity rule withE = a is always applied in σin. Applying
this plasticity rule creates a synapse (which is deleted in the next step) and sends one
spike from σin to σ1. Therefore at time t+1 no spike is sent to the environment, and σ1
sends one spike to σout. At time t+ 2 one spike is sent to the environment by σout. We
therefore produced an output produced by µ(0). If however we have a spike as input at
time t (input of 1), then the plasticity rule with E = a2 is always applied. Applying this
rule creates a synapse (which is deleted in the next step) and sends one spike from σin
to σout. At time t+ 1 we have one spike sent to the environment by σout, and no spike
is sent at time t+ 2. We therefore produced an output produced by µ(1).

References

1. Cabarle, F.G.C., Adorna, H.N.: Spiking Neural P Systems with Structural Plasticity. ACMC
2013

2. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundamenta Informaticae,
vol. 71,(2,3) pp. 279-308 (2006)

3. Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking Neural P
Systems. IJFC. vol. 8(6) pp. 1371-1382 (2007)

4. Păun, Gh., Pérez-Jiménez, M.J.: Spiking Neural P Systems. Recent Results, Research Topics.
A. Condon et al. (eds.), Algorithmic Bioprocesses, Springer (2009)

154

The Abilities of P Colony Based Models in
Robot Control

Luděk Cienciala, Lucie Ciencialová, Miroslav Langer, and Michal Perdek

Institute of Computer Science and Research Institute of the IT4Innovations Centre of
Excellence, Silesian University in Opava, Czech Republic

{ludek.cienciala, lucie.ciencialova, miroslav.langer,

michal.perdek}@fpf.slu.cz

Abstract. P colonies were introduced in 2004 (see [10]) as an abstract
computing device composed of independent single membrane agents, re-
actively acting and evolving in a shared environment. Each agent is
equipped with set of rules which are structured into simple programs.
There are some models outgoing from original P colony. In most cases,
models are equipped with such components which are associated with the
environment. This is the case of Pcol automaton too. The agents work
not only with environment but also with an input tape. We use this two
theoretical computational devices to build complex robot controllers. In
this paper we introduce simple controllers one fulfilling instructions and
the other one for passing the maze using right-hand rule. We followed two
different approaches and ideas and we present here the obtained results.

1 Introduction

Recently, the robotics has been more and more expanding and intervening
in various branches of science like biology, psychology, genetics, engineering,
cognitive science, neurology etc. An effort to create robots with an artificial
intelligence which are able to cogitate or to solve various types of problems
refers to hardware and software limits. Many of these limits are managed to be
eliminated by the interdisciplinary approach which allows creating new concepts
and technics suitable for the robot control and facture of the new hardware.

The robot control is often realized by the classical procedures known from
the control theory (see [17]), concepts inspired by the biology, evolution concepts
(see [7]) or with use of the decentralized approaches (see [16]).

Another proposal to use the P systems as an instrument for the realiza-
tion of the robot control can be found in [1], [2]. The controller based on the
numerical P systems allows the parallelization of the computation of the func-
tion which the controller has to perform. In [18] the authors showed the use of
P systems for modelling mobile robot path planning. The authors proposed a
modified membrane-inspired algorithm based on particle swarm optimization,
which combines membrane systems with particle swarm optimization.

The robot’s control is realized by the control unit. Robots are equipped with
the various types of sensors, cameras, gyroscopes and further hardware which all

155

together represent the robots perception. These hardware components provide
to the control unit the information about the actual state of the environment
in which the robot is present and also the information about the internal states
of the robot. After the transformation of these inputs a new data is generated
which is forwarded to the actuators like the wheels, robotic arm etc. Thus the
robot can pass the obstacle by using the sensors and adjusting the speed of
the particular wheels. So the objective of the control unit is to transform input
signals to the output signals which consequently affect the behaviour of the
robot. Transformation of these signals can be done computationally in various
ways with use of the knowledge or fuzzy knowledge systems, artificial neural
networks, or just with use of the membrane systems namely P colonies as it will
be shown in this paper.

P colonies were introduced in 2004 as an abstract computing devices com-
posed from independent single membrane agents, reactively acting and evolving
in a shared environment ([9]). P colonies reflect motivation from colonies of gram-
mar systems, i.e. the idea of the devices composed from as simple as possible
agents placed in a common environment; the system, which produce nontrivial
emergent behaviour, using the environment only as the communication medium
with no internal rules. P colonies consist of single membrane agents, cells, “float-
ing” in a common environment. Sets of rules of cells are structured to simple
programs in P colonies. Rules in a program have to act in parallel in order to
change all objects placed into the cell, in one derivation step. Objects are grouped
into cells or they can appear in their completely passive environment in which
these cells act. In [9] the set of programs was extended by the checking rules.
These rules give an opportunity to the agents to opt between two possibilities.
They have form r1/r2. If the checking rule is performed, the rule r1 has higher
priority to be executed than the rule r2 has. It means that the agent checks the
possibility to use rule r1. If it can be executed, the agent has to use it. If the
first rule cannot be applied, the agent uses the second one.

Pcol automaton was introduced in order to describe the situation, when
P colonies behave according to the direct signals from the environment (see
[3]). This modification of the P colony is constructed in order to recognize input
strings. In addition to the writing and communication rules usual for a P colony
cells in Pcol automata have also tape rules. Tape rules are used for reading next
symbol from the input tape and changing an object in cell(s) to the read symbol.
Depending on the way tape rules and other rules can take a part in derivation
process several computation modes are treated. After reading the whole input
word, computation ends with success if the Pcol automaton reaches one of its
accepting configurations. So, in accordance with finite automata, Pcol automata
are string accepting devices based on the P colony computing mechanisms. Con-
troller based on P colonies described in this paper is drawn up as a group of
cooperating agents who live in shared environment, through which agents can
communicate. Such controller can be used for wide range of tasks associated
with control issues.

156

In this paper we follow two ideas of how to control robot with use of P colonies.
The first controller model uses Pcol automaton for which we put on the input
tape the instruction for robot. The agents have to read the current information
from the tape and with the objects in the environment that come from receptors
they generate objects - commands for actuators. The second idea is to use orig-
inal model of P colony and put all information to the environment. We divide
the agents into modules that will perform the individual functions in the control
of the robot.

The paper is structured as follows: After the brief introduction, we will
present formal model of the P colony and of the Pcol automata in section 2.

In section 3 Pcol automaton is used for robot control. Our device consists
from 7 agents structured into four natural modules; namely control unit, left
actuator controller, right actuator controller and infra-red receptor. The Pcol
automaton uses checking rules but it can be redesigned to the Pcol automaton
without using checking rules with the greater number of agents then 7. In the
section 4 we describe P colony controller which can go through the maze using
right-hand rule. The P colony has 5 agents with capacity 3. At the conclusion
we compare both models and we outline one of possible directions for further
research.

Throughout the paper we assume that the reader is familiar with the basics
of the formal language theory.

2 Preliminaries on the P colonies and Pcol automata

P colonies were introduced in 2004 (see [10]) as an abstract computing device
composed of independent single membrane agents, reactively acting and evolv-
ing in a shared environment. This model is inspired by structure and function
of a community of living organisms in a shared environment.

Each agent is represented by a collection of objects embedded in a membrane.
The number of objects inside each agent is constant during the computation.
With each agent is associated a set of simple programs. Each program is com-
posed from the rules which can be of two types. The first type of rules, called
the evolution rules, are of the form a → b. It means that the object a inside
the agent is rewritten (evolved) to the object b. The second type of rules, called
the communication rules, are of the form c ↔ d. If the communication rule is
performed, the object c inside the agent and the object d outside the agent swap
their places. Thus after executing the rule, the object d appears inside the agent
and the object c is placed outside the agent.

If the checking rule r1/r2 is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the
rule r1 is applicable. If the rule can be executed, then it is compulsory for the
agent to use it. If the rule r1 cannot be applied, then the agent uses the rule
r2. The program determines the activity of the agent. The agent can change
the content of itself or of the environment.

157

The environment contains several copies of the basic environmental object
denoted by e. The environmental object e appears in arbitrary large number of
copies in the environment.

This interaction between agents is a key factor in functioning of the P colony.
In each moment each object inside the agent is affected by executing the program.

For more information about P systems see [14] or [15].

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

– A is an alphabet of the colony, its elements are called objects;
– e ∈ A is the basic object of the colony;
– f ∈ A is the final object of the colony;
– VE is a multiset over A−{e}, it determines the initial state (content) of the

environment;
– Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where
• Oi is a multiset over A, it determines the initial state (content) of the

agent, |Oi| = k;
• Pi = {pi,1, . . . , pi,ki

} is a finite multiset of programs, where each program
contains exactly k rules, which are in one of the following forms each:
∗ a→ b, called the evolution rule;
∗ c↔ d, called the communication rule;
∗ r1/r2, called the checking rule; r1, r2 are the evolution rules or the

communication rules.

An initial configuration of the P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset Oi for 1 ≤ i ≤ n and by the set VE . Formally, the configuration of the P
colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents
all the objects placed inside the i-th agent, and wE ∈ (A− {e})∗ represents all
the objects in the environment different from the object e.

We will use the parallel model of P colonies for the robot controller. It means
that each agent tries to find one usable program in current configuration at each
step of the parallel computation. If the number of applicable programs is higher
than one, then the agent nondeterministically chooses one of the programs. The
maximal possible number of agents is active at each step of the computation.
By use of chosen programs the P colony goes from one configuration to another
one.

The configuration is called halting if any agent has no applicable program.
The result of computation is associated with the halting configuration. It is the
number of final objects placed in the environment at the end of computation. Be-
cause of nondeterminism in computation we obtain the set of numbers computed
by P colony.

By extending the P colony with the input tape we obtain a string accepting/
recognizing device; the PCol automaton (see [3]). The input tape contains the
input string which can be read by the agents. The input string is the sequence
of the symbols. To access the tape the agents use special tape rules (T -rules).

158

The rules not accessing the tape are called non-tape rules (N -rules). The com-
putation and use of the T -rules is very similar to the use of the rules in the
P colonies. Once any of the agents uses its T -rule, the actual symbol on the tape
is considered as read.

Definition 2. A PCol automaton of the capacity k and with n agents, k, n ≥ 1,
is a construct

Π = (A, e, wE , (O1, P1) , . . . (On, Pn)), where

– A is a finite set, an alphabet of the PCol automaton, its elements are called
objects;

– e is an environmental object, e ∈ A;
– wE is a multiset over A−{e} defining the initial content of the environment;
– (Oi, Pi), 1 ≤ i ≤ n is an i-th agent, where
• Oi is a multiset over A defining the initial content of the agent, |Oi| = k;
• Pi is a finite set of the programs, Pi = Ti ∪Ni, Ti ∩Ni = ∅; where every

program is formed from k rules of the following types:
∗ the tape rules (T-rules for short)

· a T→ b are called the rewriting T-rules, a, b ∈ A;

· a T↔ b are called the communication T-rules, a, b ∈ A;
∗ the non-tape rules (N-rules for short)
· a→ b are called the rewriting N-rules, a, b ∈ A;
· a↔ b are called the communication N-rules, a, b ∈ A;
· r1/r2 are called the checking N-rules, r1, r2 are rewriting or com-

munication rules;
∗ Ti is a finite set of tape programs (T-programs for short) consisting

from one T-rule and k − 1 N-rules;
∗ Ni is a finite set of non-tape programs (N-programs for short) con-

sisting from k N-rules.

The configuration of the PCol automaton is the (n+2)-tuple (vT ; vE ; v1, . . . ,
vn), where vT ∈ A∗ the unprocessed (unread) part of the input string, vE ∈
(A− {e})∗ is a multiset of the objects different from the object e placed in the
environment of the PCol automaton and vi, 1 ≤ i ≤ n is a content of the i-th
agent.

The computation starts in the initial configuration defined by the input string
ω on the tape, the initial content of the environment wE and the initial content
of the agents Oi, 1 ≤ i ≤ n. The computation is performed similarly as in the
case of P colonies. When an agent looks for applicable program, it scans the set
of T -programs at first. If there is at least one applicable program, agent use one
of applicable programs. If there is no suitable T -program, agent proceed with
the set of N -programs. The current symbol on the input tape we consider as
read iff at least one agent uses its T -program in the particular derivation step.

The computation halts if no agent has any applicable program. The halting
configuration is accepting iff all symbols on the input tape are already read. In
such a case we can say that Pcol automaton accepts input word ω if there exists
at least one accepting halting computation starting in the initial configuration
with ω on the input tape.

159

3 Pcol automaton controller with commands on the
input tape

The main advantage of using PCol automaton in the controlling robot behavior
is the parallel proceeding of the data done by very primitive computational units
using very simple rules.

Combining the modularity and the PCol automaton we obtain a powerful tool
to control robot behaviour. PCol automaton is a parallel computation device.
Collaterally working autonomous units sharing common environment provide
a fast computation device. Dividing agents into the modules allows us to com-
pound agents controlling single robot sensors and actuators. All the modules are
controlled by the main controlling unit. Input tape gives us an opportunity to
plan robot actions. Each input symbol represents a single instruction which has
to be done by the robot, so the input string is the sequence of the actions which
guides the robot to reach its goal; performing all the actions. In this meaning the
computation ends by halting, and it is successful if whole input tape is read. For
this purpose we use special symbol which marks the end of the actions. When
the last tape symbol is read, the controlling unit sends halting symbol to the
receptor modules, which stop their action. All the other modules will stop their
actions independently on the halting symbols, because they will not obtain any
other instruction from the controlling unit.

We construct a PCol automaton with capacity 2 and 7 agents. The agents are
divided into the four modules: Control unit contains two agents, Left actuator
controller and Right actuator controller, each contains one agent and Infra-red
receptor contains three agents. Entire automaton is amended by the input and
output filter. The input filter codes signals from the robots receptors and spread
the coded signal into the environment. In the environment there is the coded
signal used by the agents. The output filter decodes the signal from the environ-
ment which the actuator controllers sent into it. Decoded signal is forwarded to
the robots actuators.

If the program is formed from rules of the same kind we can write 〈ab→ cd〉
or 〈ab↔ cd〉 instead of 〈a→ c; b→ d〉 or 〈a↔ c; b↔ d〉. Let us introduce the
formal specification of the mentioned PCol automaton. We will not present all
the programs entirely, but we focus on the individual sets of programs and their
functions.

We define Pcol automaton as follows:

Π = (A, e, wE , (O1, P1) , . . . (O7, P7)), where

A = {0L, 0R, 1L, 1R, e, FF , FF , FL, FL, FR, FR, GF , GL, GR, IF ,
IL, IR,MF ,ML,MR, NF , NF , NL, NL, NR, NR, RT ,WF ,
WL,WR,WT , H},

wE = {ε}.
Let us descripe the meaning of the particular objects:

160

0L, 0R Signal for the output filter - don’t move the left/right
wheel.

1L, 1R Signal for the output filter - move the left/right wheel.
FF , FL, FR Signal from the input filter - no obstacle in front/on the

left/right.
NF , NL, NR Signal from the input filter - obstacle in front/on the

left/right.

FF , FL, FR Signal from the IR module to the control unit- no ob-
stacle in front/on the left/right.

NF , NL, NR Signal from the IR module to the control unit- obstacle
in front/on the left/right.

IF , IL, IR Signal from the control unit to the IR module - is there
an obstacle in front/on the left/right?

MF ,ML,MR Signal from the control unit to the actuator controllers
- move front, turn left/right.

RT Signal from the actuator controllers to the control unit
- read next tape symbol.

H Halting symbol - the last symbol on the tape.

Remaining objects (WF , WL, WR, G) are used for inner representation of the
actions and as the complementary objects.

Particular modules and agents which they contain are defined as follows:

Control unit: The control unit has two agents B1 and B2 with the initial
contents O1 = eRT and O2 = eRT . They process the input string in parallel.
The first programs are designed for reading instruction from the input tape.

P1 : < RT
T→MF ; e→ e > - instruction “move front”;

< RT
T→ML; e→ e > - instruction “move left”;

< RT
T→MR; e→ e > - instruction “move right”;

< RT
T→ H; e→ H > - instruction “halt”;

P2 : < RT
T→MF ; e→ IF >;

< RT
T→ML; e→ IL >;

< RT
T→MR; e→ IR >;

< RT
T→ H; e→ H >;

The second agent generates the object to be send to infra-red modules. This
object has information about the next move the robot has to do. The following
programs are to send this object of type Ix to the environment; x ∈ {F,L,R}.
P2 : < Ix ↔ e;Mx →Wx >

There are two different types of symbols which can appear in the environment
after some steps - Fx the space in requested direction is free or Nx there is
obstacle in requested direction. The agent B2 consumes the object and if the
object is of the type Fx it generates the instruction for agent B1 to generate
command for actuators.
P2 : < Wx → e; e↔ Fx/e↔ Nx >;

< Fx → Gx; e→ e >;
< Gx ↔ e; e→WT >

161

The object of type Gx is processed by the agent B1. After consuming Gx

it generates two objects Mx, the information for actuator module to generate
commands for wheels.
P1 : < e↔ Gx;Mx →Mx >;

< GxMx →MxMx >;
< MxMx ↔ ee >;
< ee→ eWT >

When inside both agents there are objects WT it means that agents have to
wait for execution of their command. It is performed before object RT appears
in the environment. They are generated by actuator module after sending the
command for the wheels to the environment.
P1 : < WT → e; e↔ RT >
P2 : < WT → e; e↔ RT >

Now the control unit is prepared to read new symbol from the input tape.
If the symbol read from the input tape is H, both agents generate a pair of Hs.
These objects are needed for halting three agents in infra-red module.
P1 : < H → H;H ↔ e >
P2 : < HH ↔ ee >

Infra-red unit: The infra-red module is composed from three agents with sim-
ilar programs. Each agent is to utilize object coming from the infra-red sensors
Fx;x ∈ {F,L,R}. Each one for one direction (F - front, L - left, R - right). The
initial content of all agents in infra-red module is ee - Oi = ee; i = {3, 4, 5}. If
there is object Fx or Nx in the environment - comes from infra-red sensors, the
corresponding agent consumes it. It remakes the object Fx or Nx. If the control
unit needs information about situation in the direction x - object Ix is present
in the environment. The infra-red unit exchange object Fx or Nx for Ix. If there
is no request from control unit, the agents shred the information (they rewrite
object Fx or Nx to e). If the object H appears in the environment each agent
consumes it preferably and the agent halts.

Pi = { < e↔ H/e↔ Fx; e→ Fx >;
< Fx ↔ Ix/Fx → e;Fx → e >;
< e↔ H/e↔ Nx; e→ Nx >;
< Nx ↔ Ix/Nx → e;Nx → e >;
< Ixe→ ee;>}; i = {3, 4, 5}

The left and right actuator controllers wait for the activating signal (Mx)
from the control unit. After obtaining the activating signal the controllers try
to provide demanded action by sending special objects - coded signal for the
output filter into the environment. When the action is performed successfully
the actuators send the announcement of the successful end of the action to the
control unit.

The left actuator controller:
O6 = { e, e},
P6 = { < e↔MF ; e→ 1L >; < MF → RT ; 1L ↔ e >;

< e↔MR; e→ 1L >; < MR → RT ; 1L ↔ e >;
< e↔ML; e→ 0L >; < ML → RT ; 0L ↔ e >;
< RT ↔ e; e→ e >}.

162

The right actuator controller:
O7 = { e, e},
P7 = { < e↔MF ; e→ 1R >; < MF → RT ; 1R ↔ e >;

< e↔MR; e→ 0R >; < MR → RT ; 0R ↔ e >;
< e↔ML; e→ 1R >; < ML → RT ; 1R ↔ e >;
< RT ↔ e; e→ e >}.

The robot driven by this very simple PCol automaton is able to follow the in-
struction on the tape safely without crashing into any obstacle. If the instruction
cannot be proceeded, the robot stops. This solution is suitable for known robots
environment. If the environment is changed before or during the journey and
the robot cannot reach the final place it will not crash, either. We consider the
computation as successful if the input string is processed and the robot fulfills
the last action. The computation is unsuccessful otherwise.

4 P colony robot controller

We construct a P colony with four modules: Controlling unit, Left actuator con-
troller, Right actuator controller and Infra-red receptor. Entire colony is amended
by the input and output filter. The input filter codes signals from the robots re-
ceptors and spread the coded signal into the environment. In the environment
there is the coded signal used by the agents. The output filter decodes the signal
from the environment which the actuator controllers sent into it. Decoded signal
is forwarded to the robots actuators.

Let us introduce the formal definition of the mentioned P colony:

Π = (A, e, VE , (O1, P1) , . . . (O5, P5) , ∅), where

A = {1L, 1R,−1L,−1R, AL, AR, F, FF , FO, F
F
F , F

F
O , G, IF , IR, H,H1, L,MF ,

R,RF , RO, R
F
F , R

F
O,Wi}

VE = {e},
Let us describe the meaning of the particular objects:

1L,−1L Signal for the output filter - move the left wheel for-
ward/backward.

1R,−1R Signal for the output filter - move the right wheel for-
ward/backward.

F,L,R Signal from the control unit to the actuator controllers - move
forward, turn left/right.

FF
F , R

F
F Signal from the input filter - no obstacle in front/on the right.

FF
O , R

F
O Signal from the input filter - obstacle in front/on the right.

FF , RF Signal from the IR module to the control unit - no obstacle in
front/on the right.

FO, RO Signal from the IR module to the control unit - obstacle in
front/on the right.

IF , IR Signal from the control unit to the IR module - is there an
obstacle in front/on the right?

G Maze exit.
H Halting symbol.

163

Remaining objects (AL, AR, H1, . . .) are used for inner representation of the
actions and as complementary objects.

Particular modules and agents which they contain are defined as follows:
Control unit: The control unit ensures the computation. It controls the be-

haviour of the robot, it asks the data from the sensors and it sends instructions
to the actuators by sending particular symbols to the environment. The con-
trolling unit contains set of programs which provides fulfilling set goal, in this
case pass through the maze using the right-hand rule. If the exit from the maze
is found; symbol G appears in the environment, the control unit releases into
the environment special symbol H, which stops the infra-red receptors and the
P colony stops and so the robot.

The control unit is realized by one agent B1. Initial content of the agent
is O1 = IF IRWi. At first the agent sends the request for information about
obstacles to the environment.

P1 : < IF IR↔ee;Wi →Wi >

Then the agent waits until it receive the answer form infra-red modules.

P1 : < Wi→Wi; ee↔ RFFF >; < Wi→Wi; ee↔ ROFF >;
< Wi→Wi; ee↔ ROFO >; < Wi→Wi; ee↔ RFFO >;

Based on the information about obstacles agent generates commands to ac-
tuator units and sends objects to the environment.

P1 : < ROFOe→LLe >; < RFFF e→RRMF >;
< ROFF e→FFe >; < RFFOe→RRMF >;

< LL↔ee; e→e >; < RR↔ee;MF→MF >;
< FF↔ee; e→e >; < MF ee→FFe >

After emitting object F , L or R to the environment the content of the agent
is eee and agent B1 has to prepare for the next step. It consumes objects AL

and AR - the information about successfully performed motion and consumes G
or e from the environment. If there is G on the environment, it means that the
robot finds the exit from the maze and computation can halt. If there is no G
in the environment, the control unit must generate new request.

P1: < ee↔ALAR; e↔ G/e→ e >;
< ALARe→ IF IRWi >;
< ALARG→HHH >;
< HH↔ee;H → H1 >

Control unit contains program which controls robots behaviour. According
to the data obtained from the IR module it sends instructions to the Actuator
controllers. It passes the maze using the right-hand rule until it finds symbol G
which represents exit from the maze. While it founds the exit the Control unit
releases symbol H into the environment which stops the computation.

The actuator controllers wait for the activating signal from the control unit.
After obtaining the activating signal the controllers try to provide demanded

164

action by sending special objects - coded signal for the output filter into the
environment. When the action is performed successfully the actuators send the
announcement of the successful end of the action to the control unit, the an-
nouncement of the unsuccessful end of the action otherwise.
Left Actuator controller: Right Actuator controller:
O2 = { e, e, e},
P2 = { < e↔F ; e→ 1L; e→ AL >;

< F→e; 1L ↔ e;AL ↔ e >;
< e↔R; e→ 1L; e→ AL >;
< R→e; 1L ↔ e;AL ↔ e >;
< e↔L; e→ −1L; e→ AL >;
< L→e;−1L ↔ e;AL ↔ e >}.

O3 = { e, e, e},
P3 = { < e↔F ; e→ 1R; e→ AR >;

< F→e; 1R ↔ e;AR ↔ e >;
< e↔R; e→ −1R; e→ AR >;
< R→e;−1R ↔ e;AR ↔ e >;
< e↔L; e→ 1R; e→ AR >;
< L→e; 1R ↔ e;AR ↔ e >}.

Right and left Actuator controllers wait for the activating signal from the
Control unit. According to signal they move the robot in required direction by
sending appropriate signal to the output filter.

The infra-red receptors consume all the symbols released into the environ-
ment by the input filter. It releases actual information from the sensors on de-
mand of the control unit. The infra-red receptors remove unused data from the
environment.
Front Infra-red module:
O4 = { e, e, e},
P4 = { < e↔ H/e↔ FF

F ; ee→ eFF >;
< e↔ H/e↔ FF

O ; ee→ eFO >;
< FF ↔ IF /FF ↔ e;FF

F e→ ee >;
< FO ↔ IF /FO ↔ e;FF

O e→ ee >;
< IF ee→ eee;>}.

Right Infra-red module:
O5 = { e, e, e},
P5 = { < e↔ H/e↔ RF

F ; ee→ eRF >;
< e↔ H/e↔ RF

O; ee→ eRO >;
< RF ↔ IR/RF ↔ e;RF

F e→ ee >;
< RO ↔ IR/RO ↔ e;RF

Oe→ ee >;
< IRee→ eee;>}.

Infra-red modules consume all the symbols send by the input filter into the
environment. They send actual data to the Control unit on demand.

Robot driven by this P colony is able to pass through simple mazes that are
possible to pass using the right-hand rule.

5 Experimental results

We have used the mobile robotics simulation software Webots for the implemen-
tation of our controller. Webots is a visualizing tool which allows us to work with
the model of robot and verify the functionality of our controller. The simulators
of the P colony and PCol automaton are written in the Java and they processes
text files with the specification of the P colony systems. The file contains initial

165

content of the environment, the definition of the agents, including their rules and
initial content, and initial content of the input tape, eventually. Both of these
simulating tools are interconnected. That allows us to provide our experiments.

Fig. 1. Simulator environment

Fig. 2. Starting position Fig. 3. Ending position

To verify our concept we have provided following simulation. The robot,
namely the koala, was placed into the simulating environment in the grid shape
with the obstacles. According to the instructions on the input tape (see figure
1) the robot went through prepared maze (see figures 2, 3). All the instructions
on the tape were interpreted as performable so the robot went through the maze
with use of our controller.

166

In the second experiment, it was used the P colony controller. A robot passed
the maze from the starting position to the final position using the right-hand
rule.

Both of the experiments suggest that using these types of controllers on real
robots is feasible. Parallel processing of the instructions and the cooperation
between the agents appear to be convenient with respect to the possible extension
of the controllers by new functions, i.e. by adding new modules.

6 Conclusion and future research

In this paper we have introduced two variants of the robot controller based on
the P systems, P colony and Pcol automaton.

We constructed Pcol automaton with seven agents with capacity two that can
follow the instructions written on the input tape.The Pcol automaton controller
is suitable for use in well-known environment, where the actions can be planned
accurately. Unexpected obstacle causes halt of the computation, the goal will
not be fulfilled, but the robot will not crash.

We also constructed P colony with five agents with capacity three for pass-
ing the maze using right-hand rule. The P colony controller is suitable for the
autonomous systems. The behaviour of the robot is given by the rules of the
control unit.

The further research can be in following such an idea to combine advantages
of both constructed models. Our idea is to construct Pcol automaton with a dy-
namically changing input tape because the receptors will write the information
here. One input symbol can be vector of inputs or we can precompute or filter
and scale the values. The active agents will be formed to layers, the first layer is
formed from agents that can read the current input symbol, the agents “control-
ling” behaviour of robot belong to the second layer. The last layer is composed of
agents generating output for actuators. The layers are formed from active agents
only. So the controlling layer can activate different agents in different situations
(guiding closer to the obstacle, avoiding the obstacle or touching and pushing
obstacle).

Remark 1. Article has been made in connection with project IT4Innovations
Centre of Excellence, reg. no. CZ.1.05/1.1.00/02.0070.

Research was also supported by project OPVK no. CZ.1.07/2.2.00/28.0014
and by projects SGS/24/2013 and SGS/6/2014 .

References

1. Arsene, O., Buiu, C., Popescu, N.: SNUPS - A simulator for numerical membrane
computing. In: International Journal of Innovative Computing, Information and
Control, 7(6), 2011, pp. 3509–3522.

2. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile
robots, In: Information Sciences, 187, Elsevier Science Inc. New York, NY, USA,
2012, pp. 33–51.

167

3. Cienciala, L., Ciencialová,L., Csuhaj-Varjú, E., Vazsil, G.: PCol Automata: Recog-
nizing Strings with P colonies. Eight Brainstormung Week on Membrane Computing
(V Mart́ınez del Amor, M. A., Păun, G., Hurtado de Mendoza, I. P., Riscon-Núnez,
A. (eds.)), Sevilla, 2010, pp. 65–76.

4. Cienciala, L., Ciencialová,L., Langer, M.: Modularity in P colonies with Checking
Rules. In: Revised Selected Papers 12 th International Conference CMC 2011 (Ghe-
orge, M., Păun, Gh., Rozenber, G., Salomaa, A., Verlan, S. eds.), Springer, LNCS
7184, 2012, pp. 104–120.

5. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in
environment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006,
pp. 201–215.

6. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Comput-
ing (H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands,
2006, pp. 311–322.

7. Floreano, D. and Mattiussi, C. (2008). Bio-inspirated Artificial Inteligence: Theories,
Methods, and Technologies. MIT Press.

8. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49–56.

9. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of com-
putation. Proc. of the 6th International Symposium of Hungarian Researchers on
Computational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

10. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. Workshop and Tutorial Proceedings, Ninth International
Conference on the Simulation and Synthesis of Living Systems, ALIFE IX (M.
Bedau at al., eds.) Boston, Mass., 2004, pp. 82–86.

11. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ, 1967.

12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108–143.

13. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
14. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
15. P systems web page: http://psystems.disco.unimib.it
16. Weiss, G.: Multiagent systems. A Modern Approach to Distributed Artificial Intel-

ligence, MIT Press, Cambridge, Massachusetts, 1999.
17. Wit, C. C., Bastin, G., Siciliano, B.: Theory of Robot Control, Springer-Verlag New

York, 1996.
18. Wang, X. Y., Zhang, G.X., Zhao, J.B., Rong, H.N., Ipate, F., Lefticaru, R.: A

Modified Membrane-Inspired Algorithm Based on Particle Swarm Optimization for
Mobile Robot Path Planning, International Journal of Computers, Communications
& Control, accepted, 2014.

168

Probabilistic Guarded P systems, a new formal
modelling framework

Manuel Garćıa-Quismondo, Miguel A. Mart́ınez-del-Amor,
Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: mgarciaquismondo@us.es, mdelamor@us.es, marper@us.es

Abstract. Multienvironment P systems are a general, formal framework
for modelling the dynamics of population biology, which consists of two
main approaches: stochastic and probabilistic. The framework has been
successfully used to model biologic systems at both micro (e.g. bacteria
colony) and macro (e.g. ecosystems) levels, respectively.
In this paper, we extend the general framework. The extension is made
by a new variant within the probabilistic approach, called Probabilistic
Guarded P systems (in short, PGP systems). We provide a formal
definition, a simulation algorithm to capture the dynamics, and a survey
of the associated software.

Keywords: Modelling Framework, Multienvironment P systems, Probabilistic
Guarded P systems

1 Introduction

Since P systems were introduced in 1998 [19], they have been utilised as a high
level computational modelling framework [10,20]. Their main advantage is the
integration of the structural and dynamical aspects of complex systems in a
comprehensive and relevant way, while providing the required formalisation to
perform mathematical and computational analysis [2].

In this respect, multienvironment P systems are a general formal framework
for population dynamics modelling in biology [7]. This framework has two ap-
proaches: stochastic and probabilistic. Stochastic approach is usually applied to
model micro-level systems (such as bacteria colonies), whereas the probabilistic
approach is normally used for macro-level modelling (real ecosystems, for ex-
ample). Population Dynamics P systems [2,16,17,3] (PDP systems, in short) are
a variant of multienvironment P systems, in the probabilistic approach. PDP
systems have been successfully applied to ecological modelling, specially with
real ecosystems of some endanger [6,3] and exotic species [3]. PDP systems have
shown to comply with four desirable properties of a computational model [2]:

169

relevance (capture the essential features of the modelled system), computabil-
ity (inherent by P systems), understandability (objects and rules capture the
dynamics in a simple way), and extensibility (rule design is module-oriented).

In this paper, we introduce a brand new variant inside the probabilistic ap-
proach of multienvironment P systems: Probabilistic Guarded P systems (PGP
systems, for short). They are specifically oriented for ecological processes. PGP
systems are a computational probabilistic framework which takes inspiration
from different Membrane Computing paradigms, mainly from Tissue–like P sys-
tems [23], PDP systems [2] and Kernel P systems [12]. This framework aims for
simplicity, considering these aspects:

Model designers: In PGP systems, model designers do not need to worry
about context consistency. That is to say, they do not need to take into
account that all rules simultaneously applied in a cell must define the same
polarization in the right–hand side [16]. This is because the framework
centralizes all context changes in a single rule per cycle, rather than
distributing them across all rules. Therefore, there exist two types of rules:
context–changing rules and non context–changing rules. Due to the nature
of the model, only one of such rules can be applied at the same time on
each cell, so context inconsistency is not possible. Moreover, the fact that
the context is explicitly expressed in each cell and that cells do not contain
internal cell structures simplifies transitions between contexts without loss
of computational or modelling power.

Simulator developers: The fact that the framework implicitly takes care
of context consistency simplifies the development of simulators for these
models, as it is a non–functional requirement which does not need to be
supported by simulators. In addition, the lack of internal structure in cells
simplifies the simulation of object transmission; the model can be regarded
as a set of memory regions with no hierarchical arrangement, thus enabling
direct region fetching.

Probabilistic Guarded P Systems can be regarded as an evolution of
Population Dynamic P systems. In this context, PGP systems propose a
modelling framework for ecology in which inconsistency (that is to say, undefined
context of membranes) is handled by the framework itself, rather than delegating
to simulation algorithms. In addition, by replacing alien concepts to biology
(such as electrical polarizations and internal compartment hierarchies) by state
variables known as flags and defined by designers models are more natural to
experts, thus simplifying communication between expert and designer.

This paper is structured as follows. Section 2 introduces some preliminaries.
Section 3 shows the formal framework of multienvironment P systems, and
the two main approaches. Section 4 describes the framework of PGP systems,
providing a formal definition, some remarks about the semantics of the model,
and a comparison with other similar frameworks of Membrane Computing.
Section 5 provides a simulation algorithm, and a software environment based
on P–Lingua and a C++ simulator. Section 6 summarizes an ecosystem under

170

study with PGP systems. Finally, Section 7 ends the paper with conclusions and
future work.

2 Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols of Γ is a string or word over Γ . As usual, the empty
string (with length 0) will be denoted by λ. The set of all strings over an alphabet
Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → N
is a mapping. For each x ∈ Γ we say that f(x) is the multiplicity of the
symbol x in m. If m = (Γ, f) is a multiset, then its support is defined as
supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite
set. A set is a multiset such that the multiplicity of each element of its support,
is equal to 1.

If m = (Γ, f) is a finite multiset over Γ , and supp(m) = {a1, . . . , ak} then

it will be denoted as m = a
f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we

say that f(a1) + · · · + f(ak) is the cardinal of m, denoted by |m|. The empty
multiset is denoted by ∅. We also denote by M(Γ) the set of all finite multisets
over Γ .

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . We define the following
concepts:

– The union of m1 and m2, denoted by m1 +m2 is the multiset (Γ, g), where
g = f1 + f2, that is, g(x) = f1(x) + f2(x) for each x ∈ Γ .

– The relative complement of m2 in m1, denoted by m1 \m2 is the multiset
(Γ, g), where g = f1(x)− f2(x) if f1(x) ≥ f2(x) and g(x) = 0 otherwise.

We also say thatm1 is a submultiset ofm2, denoted bym1 ⊆ m2, if f1(x) ≤ f2(x)
for each x ∈ Γ .

Let m = (Γ, f) a multiset over Γ and A a set. We define the intersection
m∩A as the multiset (Γ, g), where g(x) = f(x) for each x ∈ Γ ∩A, and g(x) = 0
otherwise.

3 Multienvironment P systems

Definition 1. A multienvironment P system of degree (q,m, n) with q ≥ 1,
m ≥ 1, n ≥ 0, taking T time units, T ≥ 1, is a tuple

Π = (G,Γ,Σ,Φ, µ, T, n =
m∑

j=1

nj , {Πk,j | 1 ≤ k ≤ nj , 1 ≤ j ≤ m}, {Aj | 1 ≤ j ≤ m},RE)

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

171

– Γ,Σ and Φ are finite alphabets such that Σ $ Γ and Γ ∩ Φ = ∅.
– µ is a rooted tree with q ≥ 1 nodes labelled by elements from {1, . . . , q} ×
{0,+,−}.

– n =
∑m
j=1 nj, with nj ≥ 0

– For each k (1 ≤ k ≤ nj , 1 ≤ j ≤ m), Πk,j is a tuple (Γ, µ,Mk
1,j , . . . ,Mk

q,j ,Rj , iin),
where:

• For each i, 1 ≤ i ≤ q, Mk
i,j ∈M(Γ).

• Rj is a finite set of rules of the type: u[v]αi
p−→ u′[v′]α

′
i , being u, v, u′, v′ ∈

M(Γ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−} and p is a real computable function
whose domain is {0, . . . , T}.

• iin is a node from µ.

Let us note that nj can be eventually 0, so that there would not exist any
Πk,j for such an environment j.

– For each j, 1 ≤ j ≤ m, fj ∈ Φ and Ej ∈M(Σ).
– RE is a finite set of rules among environments of the types:

(x)ej
p1−→ (y1)ej1 · · · (yh)ejh (Πk,j)ej

p2−→ (Πk,j)ej1
{f} (u)ej

p3−→ (v)ej1 {f} (u, f)ej
p4−→ (v, g)ej

being x, y1, . . . yh ∈ Σ, (ej , eji) ∈ S, 1 ≤ j ≤ m, 1 ≤ i ≤ h, 1 ≤ k ≤ n, f, g ∈
Φ, u, v ∈ M(Γ) and p1, p2, p3, p4 are computable functions whose domain is
{0, . . . , T}.

– For each j, 1 ≤ j ≤ m, Aj ∈M(Σ ∪ Φ).

A multienvironment P system of grade (q,m, n) can be viewed as a set of m
environments e1, . . . , em, n systems Πk,j of order q, and a set Φ of flags, in such
a way that: (a) the links between the m environments are given by the arcs from
the directed graph G; (b) each environment has a flag from Φ at any instant; (c)
all P systems have the same working alphabet, the same membrane structure and
the same evolution rules; (d) each environment ej contains several P systems,
Π1,j , . . . ,Πnj ,j , where each evolution rule has associated a computable function
pj , and each one of them has an initial multiset which depends on j. Furthermore,
inside the environments, only objects from the alphabet Σ can exist; that is,
there are symbols from the working alphabet that cannot circulate through the
environments.

A configuration of the system at any instant t is a tuple whose components
are the following: (a) the flags associated with each environment at instant t
(initially f1, . . . , fm); (b) the multisets of objects present in the m environments
at instant t (initially E1, . . . , Em); and (c) the multisets of objects associated with
each of the regions of each P system Πk,j (initially Mk

1,j , . . . ,Mk
q,j), together

with the polarizations of their membranes (initially all membranes have a neutral
polarization).

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (both from RE and R)
are synchronized in all environments.

172

The P system can pass from one configuration to another by using the rules
from R = RE ∪

⋃m
j=1Rkj as follows: at each transition step, the rules to be

applied are selected according to the probabilities assigned to them, and all
applicable rules are simultaneously applied.

A rule of the type u[v]αi
p−→ u′[v′]α

′
i is applicable to a configuration at

any instant t if the following is satisfied: in that configuration membrane i
has polarization α, contains multiset v and its parent (the environment if the
membrane is the skin membrane) contains multiset u. When that rule is applied,
multisets u, v produce u′, v′, respectively, and the new polarization is α′ (the
value of function p in that moment provide the affinity of the application of that
rule). For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of Rkj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

A rule of the environment of the type (x)ej
p1−→ (y1)ej1 · · · (yh)ejh is

applicable to a configuration at any instant t if the following is satisfied: in that
configuration environment ej contains object x. When that rule is applied, object
x passes from ej to ej1 , . . . , ejh possibly transformed into objects y1, . . . , yh,
respectively (the value of function p1 in that moment provide the affinity of the
application of that rule).

A rule of the environment of the type (Πk,j)ej
p2−→ (Πk,j)ej′ : is applicable to

a configuration at any instant t if the following is satisfied: in that configuration
environment ej contains the P systemΠk,j . When that rule is applied, the system
Πk,j passes from environment ej to environment ej′ (the value of function p2 in
that moment provide the affinity of the application of that rule).

A rule of the environment of the type {f} (u)ej
p3−→ (v)ej1 , where ej1 can

be equal to ej or not, is applicable to a configuration at any instant t if the
following is satisfied: in that configuration environment ej has flag f and contains
the multiset u. When that rule is applied multiset u produces multiset v and
environment ej keep the same flag. This kind of rule can be applied many times
in a computation step. The value of function p3 in that moment provide the
affinity of the application of that rule.

A rule of the environment of the type {f} (u, f)ej
p4−→ (v, g)ej is applicable to

a configuration at any instant t if the following is satisfied: in that configuration
environment ej has flag f and contains the multiset u. When that rule is applied
multiset u produces multiset v and flag f of environment ej is replaced by flag
g. Bearing in mind that each environment only has a flag in any instant, this
kind of rules can only be applied once in any moment.

Next, we depict the two approaches (stochastic and probabilistic) for
multienvironment P systems.

3.1 Stochastic approach

We say that a multienvironment P system has a stochastic approach if the
following holds:

173

(a) The alphabet of flags, Φ, is an empty set.
(b) The computable functions associated with the rules of the P systems are

propensities (obtained from the kinetic constants) [22]: These rules is
function of the time but they do not depend on the environment.

(c) Initially, the P systems Πk,j are randomly distributed among the m
environments of the system.

e1 e2

e3 e4

Multicompartmental P systems Multicompartmental P systems are
multienvironment P systems with a stochastic approach which can be formally
expressed as follows:

Π = (G,Γ,Σ, T, n =
m∑

j=1

nj , {Πk,j | 1 ≤ k ≤ nj , 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m},RE)

These systems can be viewed as a set of m environment connected by the arcs of
a directed graph G. Each environment ej only can contains P systems of the type
Πk,j . The total number of P systems is n, all of them with the same skeleton.
The functions associated with the rules of the system are propensities which are
computed as follows: stochastic constants are computed from kinetic constants
by applying the mass action law, and the propensities are obtained from the
stochastic constants by using the concentration of the objects in the LHS at any
instant. In these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′
i

2. (x)ej
p1−→ (y1)ej1 · · · (yh)ejh

3. (Πk,j)ej
p2−→ (Πk,j)ej′

The dynamics of these systems is captured by the multicompartmental Gille-
spie’s algorithm [22] or the deterministic waiting time [4]. Next, some practical
examples of multicompartmental P systems applications are highlighted: Quo-
rum sensing in Vibrio Fischeri [24], gene expression control in Lac Operon [25],
and FAS-induced apoptosis [4]. A software environment supporting this model
is Infobiotics Workbench [1], which provides (in version 0.0.1): a modelling lan-
guage, a multi-compartmental stochastic simulator based on Gillespie’s Stochas-
tic Simulation Algorithm, a formal model analysis, and a structural and param-
eter model optimisation.

174

3.2 Probabilistic approach

We say that a multienvironment P system has a stochastic approach if the
following holds:

(a) The total number of P systems Πk,j is, at most, the number m of
environment, that is, n ≤ m.

(b) Functions pr associated with rule r ≡ u[v]αi
pr−→ u′[v′]α

′
i from Πk,j are

probability functions such that for each u, v ∈ M(Γ), i ∈ {1, . . . , q},
α ∈ {0,+,−}, if r1, . . . , rz are the rules in Rkj whose LHS is u [v]αi , then
z∑

j=1

prj (t) = 1, for each t (1 ≤ t ≤ T).

(c) Functions p1 associated with the rules of the environment (x)ej
p1−→

(y1)ej1 · · · (yh)ejh are probability functions such that for each x ∈ Σ and
each environment ej , the sum of all functions associated with the rules whose
LHS is (x)ej , is equal to 1.

(d) Functions p2 associated with the rules of the environment (Πk,j)ej
p2−→

(Πk,j)ej′ are constant functions equal to 0; that is, these rules will never
be applied.

(e) Functions p3 associated with the rules of the environment {f} (u)ej
p3−→

(v)ej1 are probability functions.

(f) Functions p4 associated with the rules of the environment {f} (u, f)ej
p4−→

(v, g)ej are constant functions equal to 1.

(g) There exist no rules u[v]αi
p−→ u′[v′]α

′
i in the skin membrane of Πk,j and

rules of the environment (x)ej
p1−→ (y1)ej1 · · · (yh)ejh such that x ∈ u.

(h) Initially, each environment ej contains at most one P system Πk,j .

e1 e2

e3 e4

Population Dynamics P systems (PDP) Population Dynamics P systems
are multienvironment P systems with a probabilistic approach such that the
alphabet Φ of the flags is an empty set and n = m, that is, the environment
has not any flag and the total number n of P systems are equal to the number
m of environments. Then in a PDP system Π each environment ej contains

175

exactly one P system Πk,j , which will be denoted henceforth by Πj ; that is,
∀j, 1 ≤ j ≤ m,nj = 1.

Π = (G,Γ,Σ, T, n, {Πj | 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m},RE)

In these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′
i

2. (x)ej
p1−→ (y1)ej1 · · · (yh)ejh

Let us recall that in this kind of systems each rule has an associated
probability function that depends on the time and on the environment where
the rule is applied.

Finally, in order to ease the understandability of the whole framework, Figure
1 shows a graphical summary of multienvironment P systems and the two
approaches (stochastic and probabilistic).

Fig. 1: The formal framework of Multienvironment P systems

Some practical examples of using PDP systems on the modelling of real
ecosystems are: the Bearded Vulture at the Pyrenees (Spain) [6,3], the Zebra
mussel at the Ribarroja reservoir (Spain) [3], and the Pyrenean Chamois [5]. A
simple example of modelling pandemics dynamics can be seen in [2].

The dynamics of these systems is captured by the Direct Non-deterministic
Distribution algorithm with Probabilities (DNDP) algorithm [17], or the Direct
distribution based on Consistent Blocks Algorithm (DCBA) [16]. DNDP aims
to perform a random distribution of rule applications without using the concept
of rule block, but this selection process is biased towards those rules with

176

the highest probabilities. DCBA was first conceived to overcome the accuracy
problem of DNDP, by performing an object distribution along the rule blocks,
before applying the random distribution process. Although the accuracy achieved
by the DCBA is better than the DNDP algorithm, the latter is much faster. In
order to improve the performance of simulators implementing DCBA, parallel
architectures has been used [15]. For example, a GPU-based simulator, using
CUDA, reaches the acceleration of up to 7x, running on a NVIDIA Tesla C1060
GPU (240 processing cores). However, these accelerated simulators are still to be
connected to those general environments to run virtual experiments. Therefore,
P–Lingua and pLinguaCore are being utilised to simulate PDP systems [2,11].
The provided virtual experimentation environment is called MeCoSim [21], and
it is based on P–Lingua.

4 Probabilistic Guarded P systems (PGP)

Probabilistic Guarded P systems are multienvironment P systems with a
probabilistic approach such that n = 0, that is, there is no P systems Πk,j

(so the alphabet Γ can be considered as an emptyset), and the alphabet of the
flags, Φ, is a nonempty set such that every environment has a unique flag in the
initial configuration.

Definition 2. A Probabilistic Guarded P system (PGP system, for short) of
degree m ≥ 1 is a tuple Π = (G,Σ,Φ, T, {Aj | 1 ≤ j ≤ m},RE), where:

– G = (V, S) is a directed graph whose set of nodes is V = {e1, . . . , em}.
– Σ and Φ are finite alphabets such that Σ ∩ Φ = ∅. Elements in Σ are called

objects and elements in Φ are called flags.
– For each j, 1 ≤ j ≤ m, Aj = Ej ∪ {fj}, with fj ∈ Φ and Ej ∈M(Σ). Thus,

from now on, we “represent” Aj by the pair (fj , Ej).
– RE is a finite set of rules of the following types:

• {f} (u)ej → (v)ej1 with u, v ∈M(Σ) , f ∈ Φ and 1 ≤ j, j1 ≤ m.
• {f} (u, f)ej → (v, g)ej with u, v ∈M(Σ), f, g ∈ Φ and 1 ≤ j ≤ m.

There are no rules of types {f} (u, f)ej → (v, g)ej and {f} (u)ej−→(v)ej1 ,
for f ∈ Φ, 1 ≤ j, j1 ≤ m and u ∈M(Σ)).
For each f ∈ Φ and j, 1 ≤ j ≤ m, there exists only one rule of type
{f} (u, f)ej → (v, g)ej .

– The arcs of graph G = (V, S) are defined from RE as follows: (ej , ej1) ∈ S if
and only if there exists a rule of the type {f} (u)ej → (v)ej1 , or j = j1 and
there exists a rule of the type {f} (u, f)ej → (v, g)ej .

– Each rule from RE has an associated probability, that is, there exists a
function pRE

from RE into [0, 1], such that:

• For each f ∈ Φ, u ∈ M(Σ), 1 ≤ j ≤ m, if r1, . . . , rt are rules of the type
{f} (u)ej → (v)ej1 , then

∑t
s=1 pRE

(rs) = 1.
• If r ≡ {f} (u, f)ej → (u, g)ej , then pRE

(r) = 1.

177

A Probabilistic Guarded P system can be viewed as a set of m environments,
called cells, labelled by 1, . . . ,m such that: (a) E1, . . . , Em are finite multisets
over Σ representing the objects initially placed in the cells of the system; (b)
f1, . . . , fm are flags that initially mark the cells; (c) G is a directed graph whose
arcs specify connections among cells; (d) RE is the set of rules that allow the
evolution of the system and each rule r is associated with a real number pRE

(r)
in [0, 1] describing the probability of that rule to be applied in the case that it
is applicable. That is to say, each rule r has a probability pRE

(r) to be applied
at an instant t for each possible application of r at such an instant. Γ and n are
omitted, as they are Γ = and n = 0, respectively.

In PGP systems, two types of symbols are used: objects (elements in Σ) and
flags (elements in Φ). It can be considered that objects are in cells and flags are
on (the borderline of) cells.

4.1 Semantics of PGP systems

Definition 3. A configuration at any instant t ≥ 0 of a PGP system Π is
a tuple Ct = (x1, u1, . . . , xm, um) where, for each i, 1 ≤ i ≤ m, xi ∈ Φ and
ui ∈ M(Σ). That is to say, such a configuration is described by all multisets of
objects over Σ associated with all the cells present in the system and the flags
marking these cells. (f1, E1, . . . , fm, Em) is said to be the initial configuration
of Π. At any instant, each cell has exactly one flag, in a similar manner to
polarizations in cell–like P systems.

Definition 4. A rule r of the type {f} (u)i → (v)j is applicable to a configura-
tion Ct = (x1, u1, . . . xm, um) if and only if xi = f and u ⊆ ui, for all 1 ≤ i ≤ m.

When applying r to Ct, objects in u are removed from cell i and objects in
v are produced in cell j. Flag f is not changed; it plays the role of a catalyst
assisting the evolution of objects in u.

Definition 5. A rule r of the type {f} (u, f)i → (v, g)i 1 ≤ i ≤ m is applicable
to a configuration Ct = (x1, u1, . . . xm, um) if and only if xi = f and u ⊆ ui.

When applying r to Ct, in cell i objects in u are replaced by those in v and f
is replaced by g. In this case, flag f is consumed, so r can be applied only once
in instant t in cell i.

Remark 1. After applying a rule r of the type {f} (u, f)i → (v, g)i, other rules
r′ of the type {f} (u)i → (v)j can still be applied (the flag remains in vigor).
However, f has been consumed (in the same sense that an object x ∈ Σ is
consumed), so no more rules of the type {f} (u, f)i → (v, g)i can be applied.

Definition 6. A configuration is a halting configuration if no rule is applicable
to it.

178

Definition 7. We say that configuration C1 yields configuration C2 in a
transition step if we can pass from C1 to C2 by applying rules from RE in
a non–deterministic, maximally parallel manner, according to their associated
probabilities denoted by map pRE . That is to say, a maximal multiset of rules
from RE is applied, no further rule can be added.

Definition 8. A computation of a PGP system Π is a sequence of configura-
tions such that: (a) the first term of the sequence is the initial configuration of
Π, (b) each remaining term in the sequence is obtained from the previous one
by applying the rules of the system following Definition 7, (c) the sequence will
have, at most, T + 1 terms. That is, we consider that the execution of a PGP
system will perform, at most, T steps.

4.2 Comparison between PGP systems and other frameworks in
Membrane Computing

Probabilistic Guarded P systems (PGP systems) display similarities with other
frameworks in Membrane Computing. For example, P systems with proteins on
membranes [18] are a type of cell-like systems in which membranes might have
attached a set of proteins which regulate the application of rules, whilst in PGP
systems each cell has only one flag. Therefore, some rules are applicable if and
only if the corresponding protein is present.

When comparing PGP systems and Population Dynamics P systems [2], it is
important to remark the semantic similarity between flags and polarizations, as
they both define at some point the context of each compartment. Nevertheless,
as described at the beginning of this paper, upon the application of a rule
r ≡ {f} (u, f)i → (v, g)i flag f is consumed, thus ensuring that r can be applied
at most once to any configuration. This property keeps PGP transitions from
yielding inconsistent flags; at any instant, only one rule at most can change
the flag in each membrane, so scenarios in which inconsistent flags produced
by multiple rules are impossible. Moreover, in PDP systems the number of
polarizations is limited to three (+, - and 0), whereas in their PGP counterpart
depends on the system itself. Finally, each compartment in PDP systems contains
a hierarchical structure of membranes, which is absent in PGP systems.

5 Simulation of PGP systems

When simulating PGP systems, there exist two cases, according to if there exists
object competition or not. In this work, only algorithms for the second case are
introduced, but some ideas are given to handle object competition among rules
in the model, and kept for future developments.

5.1 Some definitions on the model

The following concepts defined for PGP systems are analogous to those described
in [16], but adapted to the syntax of PGP systems.

179

Remark 2. For the sake of simplicity, henceforth the following notation will be
used. For every cell i , 1 ≤ i ≤ m, and time t , 0 ≤ t ≤ T, the flag and multiset of
cell i in step t are denoted as xi,t ∈ Φ and ui,t ∈ M(Σ), respectively. Similarly,
|u|y, where u ∈M(Σ), y ∈ Σ denotes the number of objects y in multiset u.

Definition 9 shows the notation regarding the left-hand and right-hand sides
of rules.

Definition 9. For each rule r ∈ RE :

Type 1: If r is of the form r ≡ {f} (u)i → (v)j, we denote the left–hand side
of r (LHS(r)) as LHS(r) = (i, f, u) and the right–hand side of r (RHS(r))
as RHS(r) = (j, f, v).

Type 2: If r is of the form r ≡ {f} (u, f)i → (v, g)i, we denote the left–hand
side as LHS(r) = (i, f, u, f) and the right–hand side as RHS(r) = (i, g, v).

Let us recall that for each i , 1 ≤ i ≤ m and f ∈ Φ, there exists a unique rule
of type 2: r ≡ {f} (u, f)i → (v, g)i.

Next, Definition 10 introduces the concept of rule blocks in PGP systems,
which is inspired by the one used in PDP systems [16].

Definition 10. For each 1 ≤ i ≤ q, f ∈ Φ, and u ∈M(Σ), we will denote:

– The block of communication rules B1
i,f,u = {r ∈ R : LHS(r) = (i, f, u)};

that is, the set of rules of type 1 having the same left–hand side.
– The block of context–changing rules B2

i,f,u = {r ∈ R : LHS(r) =
(i, f, u, f)}; that is, the set of rules of type 2 having the same left–hand side.

B1
i,f,u ∩ B2

i,f,u = ∅. It is important to recall that, as it is the case in PDP
systems, the sum of probabilities of all the rules belonging to the same block is
always equal to 1 – in particular, rules with probability equal to 1 form individual
blocks. Consequently, non–empty blocks of context–changing rules (type 2) are
composed of single rules. In addition, rules with overlapping (but different) left–
hand sides are classified into different blocks.

Definition 11. For each i, 1 ≤ i ≤ m, we will consider the set of all rule blocks
associated with cell i as Bi = {B1

i,f,u, B
2
i,f,u : f ∈ Φ ∧ u ∈M(Σ)}.

We will also consider a total order in Bi, for 1 ≤ i ≤ m, Bi =
{Bi,1, Bi,2, . . . , Bi,αi

}. Therefore, there are αi blocks associated to cell i.
Furthermore, let Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi be a block associated to cell i.

We define the following notations:

– Type(Bi,j) is equal to:
• 1, if ∃f ∈ Φ, u ∈M(Σ) such that Bi,j = B1

i,f,u

• 2, if ∃f ∈ Φ, u ∈M(Σ) such that Bi,j = B2
i,f,u

– Flag(Bi,j) = f , if ∃k(1 ≤ k ≤ 2) ∧ ∃u ∈M(Σ) such that Bi,j = Bki,f,u
– Mult(Bi,j) = u, if ∃k(1 ≤ k ≤ 2) ∧ ∃f ∈ Φ such that Bi,j = Bki,f,u

180

In addition, for each block Bi,j , 1 ≤ i ≤ m and 1 ≤ j ≤ αi, associated to
cell i, we consider a total order in its set of rules: Bi,j =

{
ri,j,1, . . . , ri,j,hi,j

}
,

where hi,j(1 ≤ i ≤ m, 1 ≤ j ≤ αi) denotes the number of rules in block Bi,j .
Obviously, all the rules of a block are of the same type.

Definition 12. A PGP system is said to feature object competition, if there
exists at least two different blocks Bi,j and Bi,j′ (possibly of different type), such
that Flag(Bi,j) = Flag(Bi,j′), and Mult(Bi,j)∩Mult(Bi,j′) 6= ∅. That is, their
rules have overlapping (but not equal) left-hand sides.

Remark 3. It is worth noting that all rules in the model can be consistently
applied. This is because there can only exists one flag f ∈ Φ at every membrane
at the same time, and, consequently, at most one context–changing rule r ≡
{f} (u, f)i → (v, g)i can consume f and replace it (where possibly f = g).

Definition 13. Given a block B1
i,f,u or B2

i,f,u, where u ∈M(Σ), f ∈ Φ,
1 ≤ i ≤ m and a configuration Ct = {x1, u1, . . . , xm, um} , 0 ≤ t ≤ T , the
maximum number of applications of such a block in Ct is the maximum times
that each one of its rules can be applied in Ct.

5.2 Simulation Algorithm

Next, we define some auxiliary data structures to be used in the simulation
algorithms.

NBA (Number of Block Applications): a matrix of integer numbers of
dimension m×NBM , where NBM = max(αi | 1 ≤ i ≤ m) (maximum number
of blocks for all cells). Each element NBAi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ NBM
stores the number of applications of block Bi,j .

NRA (Number of Rule Applications): a matrix of integer numbers of
dimension m × NBM × NRM , where NRM = max(hi,j), 1 ≤ i ≤ m, 1 ≤
j ≤ αi (maximum number of rules for all blocks in all membranes). Each
element NRAi,j,k, 1 ≤ i ≤ m, 1 ≤ j ≤ αi, 1 ≤ k ≤ hi,j , stores the number
of applications of rule ri,j,k, identified by its cell, block and local identifier
inside its block, according to the established total order.

The algorithm for simulation of PGP systems receives three parameters:

– The PGP system Π of degree m.
– The integer number T > 0 (number of time steps).
– An integer number K > 0 (random accuracy). It indicates for how many

cycles block applications are assigned among their rules in random fashion.
That is, the algorithm distributes the applications of each block among its
rules for K cycles, and after that, block applications are maximally assigned
among rules in a single cycle. Therefore, the greater K is, the more accurate
the distribution of rule applications for each block becomes, but at the
expense of a greater computational cost. It is used as an accuracy parameter
for the probabilistic method. Algorithm 5.4 performs this function.

181

When simulating PGP systems without object competition, it is not
necessary to randomly assign objects among blocks; as they do not compete
for objects, then the number of times that each block is applied is always equal
to its maximum number of applications. As it is the case of DCBA for PDP
systems [16], the simulation algorithm heavily relies on the concept of block,
being rule applications secondary. However, DCBA handles object competition
among blocks, penalizing more those blocks which require a larger number of
copies of the same object which is inspired by the amount of energy required to
join individuals from the same species. On the other hand, object competition is
not supported on the proposed algorithm. Algorithm 5.1 describes a simulation
algorithm for PGP systems without object competition.

Algorithm 5.1 Algorithm for simulation of PGP systems

Input:

– T : an integer number T ≥ 1 representing the iterations of the simulation.
– K: an integer number K ≥ 1 representing non–maximal rule iterations (i.e.,

iterations in which the applications selected for each rule do not necessarily need
to be maximal).

– Π = (G,Σ,Φ, T, {(fj , Ej) | 1 ≤ j ≤ m},RE): a PGP system of degree m ≥ 1.

1: Initialization (Π)
2: for t← 1 to T do . See Algorithm 5.2
3: C′t ← Ct−1

4: SELECTION of rules:
5: PHASE 1: Objects distribution (C′t) . See Algorithm 5.3
6: PHASE 2: Rule application distribution (C′t) . See Algorithm 5.4
7: EXECUTION of rules:
8: PHASE 3: Object production (C′t) . See Algorithm 5.5
9: Ct ← C′t

10: end for

On each simulation step t, 1 ≤ t ≤ T and cell i, 1 ≤ i ≤ m, the following
stages are applied: Object distribution (selection), Rule application distribution
(selection) and Object generation (execution).

However, before starting the simulation process, we must initialize some
data structures. In Initialization (Algorithm 5.2), the initial configuration C0

is constructed with the input PGP system Π. Moreover, the information about
blocks are created; that is, the blocks of rules are computed, and ordered for
each cell. Moreover, the rules inside each block are also ordered. Finally, the
data structures NBA and NRA are initialized with zeros.

In the Object distribution stage (Algorithm 5.3), objects are distributed
among blocks. As the system to simulate does not feature object competition,
the number of applications of each block is its maximum. Then, objects are
consumed accordingly. It is in this stage that the flag checking for each block

182

Algorithm 5.2 Initialization

Input: Π = (G,Σ,Φ, T, {(fj , Ej) | 1 ≤ j ≤ m},RE)

1: C0 ← {f1, E1, . . . , fm, Em} . Initial configuration
2: for i← 1 to m do . For each cell
3: Bi ← ordered set of blocks formed by rules of R associated with cell i
4: αi ← |Bi| . Number of rule blocks
5: for j ← 1 to αi do . For each block associated with the cell
6: Bi,j ← ordered set of rules from jth block in Bi.
7: hi,j ← |Bi,j | . Number of rules within the block
8: NBAi,j ← 0 . Initially, all blocks applications are 0
9: for k ← 1 to hi,j do . Initially, all rule applications are 0

10: NRAi,j,k ← 0
11: end for
12: end for
13: end for

is performed. Moreover, blocks of type 2 (context–changing rules) consume and
generate the new flag.

Algorithm 5.3 Phase 1: Object distribution among blocks

Input: C′t = {x1,t, u1,t, . . . , xm,t, um,t}
1: for i← 1 to m do . For each cell
2: for j ← 1 to αi do . For each block associated with the cell
3: if Flag(Bi,j) = xi,t then
4: if Type(Bi,j) = 1 ∧Mult(Bi,j) ⊆ ui,t then

5: NBAi,j ← min(b |ui,t|z
|Mult(Bi,j)|z c : z ∈ Σ) . Maximal application

6: ui,t ← ui,t −NBAi,j ·Mult(Bi,j) . Update the configuration
7: end if
8: if Type(Bi,j) = 2 ∧Mult(Bi,j) ⊆ ui,t then
9: NBAi,j ← 1 . Just one application

10: xi,t ← g, being RHS(ri,j,1) = (i, g, v) with Bi,j = {ri,j,1} . Update
cell flag

11: ui,t ← ui,t −NBAi,j ·Mult(Bi,j) . Update the configuration
12: end if
13: end if
14: end for
15: end for

Next, objects are distributed among rules according to a binomial distribu-
tion with rule probabilities and maximum number of block applications as para-
meters. This algorithm is composed of two stages non–maximal and maximal
repartition. In the non–maximal repartition stage, a rule in the block is randomly
selected according to a uniform distribution, so each rule has the same proba-
bility to be chosen. Then, its number of applications is calculated according to

183

an ad–hoc procedure based on a binomially distributed variable Binomial(n, p),
where n is the remaining number of block applications to be assigned among its
rules and p is the corresponding rule probability. This process is repeated a num-
ber K of iterations for each block Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi. We propose this
procedure to simulate a multinomial distribution, but it could be easily inter-
changeable by another one. Algorithm 5.4 describes this procedure. If, after this
process, there are still applications to assign among rules, a rule per applicable
block is chosen at random and as many applications as possible are assigned to
it in the maximal repartition stage. An alternative approach would be to imple-
ment a multinomial distribution of applications for the rules inside each block,
such as the way that it is implemented on the DCBA algorithm [16]. A method
to implement a multinomial distribution would be the conditional distribution
method, which emulates a multinomial distribution based on a sequence of bino-
mial distributions [9]. This would require to normalize rule probabilities for each
rule application distribution iteration. This approach has also been tested on
the simulation algorithm, but was discarded because it tends to distribute too
few applications in the non–maximal repartition stage, thus leaving too many
applications for the rule selected in the maximal repartition one.

Algorithm 5.4 Phase 2: Rule application distribution

Input: C′t = {x1,t, u1,t, . . . , xm,t, um,t}
for k ← 1 to K do . Non-maximal repartition stage

for i← 1 to m do
for j ← 1 to αi do

l← Uniform{1, . . . , hi,j} . Select a random rule ri,j,l in Block Bi,j

lnrap← Binomial(NBAi,j , pR(ri,j,l))
NRAi,j,l ← NRAi,j,l + lnrap . Update rule applications
NBAi,j ← NBAi,j − lnrap

end for
end for

end for
for i← 1 to m do . Maximal repartition stage

for j ← 1 to αi do
l← Uniform{1, . . . , hi,j}
NRAi,j,l ← NRAi,j,l +NBAi,j

NBAi,j ← 0
end for

end for

Lastly, rules produce objects as indicated by their right–hand side. Each rule
produces objects according to its previously assigned number of applications.
Algorithm 5.5 describes this procedure.

The algorithm proposed in this paper works only for models without object
competition. This is because the models studied so far (such as the Pieris
oleracea model to be mentioned on Section 6) did not have object competition,

184

Algorithm 5.5 Phase 3: Object production

for i← 1 to m do . For each cell
for j ← 1 to αi do . For each block associated with the cell

for k ← 1 to hi,j do . For each rule belonging to the block
ui,t ← ui,t +NRAi,j,k · v, where RHS(ri,j,k) = (i′, f ′, v)
NRAi,j,k ← 0

end for
end for

end for

so this feature was not required. However, it might be interesting to develop
new algorithms supporting it. They would be identical to their counterpart
without object competition, solely differing in the protocol by which objects
are distributed among blocks. As an example, it would be possible to adapt the
way in which objects are distributed in the DCBA algorithm [16].

5.3 Software environment

This section provides an overview of the developed simulators, the P–Lingua
extension, and the GUI for PGP systems.

Simulators A simulator for PGP systems without object competition has been
incorporated on P–Lingua [11]. In addition, a C++ simulator for PGP systems
(namely PGPC++) has also been implemented. The libraries used for random
number generation are COLT [26] in the P–Lingua simulator, and standard
std::rand [27] for PGPC++. In the latter, the facilities provided by std::rand are
directly used. These libraries provide a wide range of functionality to generate
and handle random numbers, and are publicly available under open source
licenses.

P–Lingua extension In order to define PGP systems, P–Lingua has been
extended to support PGP rules. Specifically, given f, g ∈ Φ, u, v ∈ M(Σ), 1 ≤
i, j ≤ m, p = pR(r), rules are represented as follows:

{f} (u)i
p→ (v)j , ≡ @guard f ?[u]’i --> [v]’j :: p ;

{f} (u, f)i → (v, g)i ≡ @guard f ?[u,f]’i --> [v,g]’i :: 1.0;

In both cases, if p = 1.0, then :: p can be omitted. If i = j, then {f} (u)i
p→ (v)j

can be written as @guard f ?[u --> v]’i :: p ;. Likewise, {f} (u, f)i →
(v, g)i can always be written as @guard f ?[u,f --> v,g]’i ;.

Further additional constructs have been included to ease parametrization of P
systems. The idea is to enable completely parametric designs, so as experiments
can be tuned by simply adjusting parameters leaving modifications of P–Lingua

185

files for cases in which changes in semantics are in order. This extension is going
to be released on the next version of P–Lingua.

In addition, two new formats have been integrated into P-Lingua. These
formats (XML–based and binary) encode P systems representing labels and
objects as numbers instead of strings, so they are easily parsed and simulated
by third–part simulators such as PGPC++.

A graphical environment for PGP systems MeCoGUI is a new
Graphical User Interface (GUI) developed for the simulation of PGP systems.
MeCoSim [21] could have been used instead. However, in the environment in
which the simulators were developed there exist some pros and cons on this
approach versus and ad–hoc simulator.

MeCoSim is an integrated development environment (IDE). That is to say, it
provides all functionality required for the simulation and computational analysis
of P systems. To define the desired input and output displays, it is necessary to
configure a spreadsheet by using an ad–hoc programming language. However, it
would entail teaching this language to prospective users, who can be proficient
in any other statistic programming language instead, such as R. In this sense, a
more natural approach for them is to develop a GUI in which users can define
input parameters and results analysis on R.

To do so, the developed GUI takes as input a P system file on P–Lingua
format and a CSV file encoding its parameters, and outputs a CSV file which
contains simulation results. This way, users can define inputs and analyse
outputs on their programming language of choice. CSV is a widespread, simple
and free format with plenty of libraries for different languages. This flexibility
comes at the cost concerning that the developed GUI is not an IDE, as input
parameters and simulation analysis cannot be directly input and viewed on the
GUI. Rather, it is necessary to develop applications to generate and process
these CSV files which depend on the domain of use. In some simulators (such
as PGPC++), the output CSV files represent labels and objects as integers,
but this application includes a button to translate output files from PGPC++
into string–representative file formats. Figure 2 displays the main screen of this
application.

MeCoGUI can also translate P systems into machine–readable formats, such
as those read by PGPC++. Finally, it is important to remark that these
applications play the role of domain–specific spreadsheets on MeCoSim, so
MeCoGUI can simulate any type of P system supported by P–Lingua. This
is because only external applications for input data and simulation processing
depend on the domain, not MeCoGUI itself, which is general for any type of P
system.

6 Applications of PGP systems

A model of the ecosystem of the white cabbage butterfly (Pieris oleracea) [8],
based on PGP systems, is a currently ongoing project. Such a species is suffering

186

Fig. 2: Main screen of MeCoGUI

the invasion of the garlic mustard (Alliaria petiolata), which is replacing native
host broadleaf toothwort (Cardamine diphylla) and ravaging the butterfly’s
natural habitat. Specifically, A. petiolata contains a deterrent agent for larvae of
P. oleracea. Moreover, such a plant is toxic for these larvae, although it contains
a chemical compound which lures mature butterflies and frames them into
laying eggs. Nevertheless, a minority of individuals tolerates such a deterrent,
metabolize the toxin and reach the pupa stage [13,14].

The distribution of phylogenetic profiles across the species consists of a
majority of homozygous individuals unable to thrive on A. petiolata patches,
a minority of homozygous individuals which do well on A. petolata rosettes
and, in the midterm, an slightly larger population of heterozygous individuals
with both alleles. The allele which enables butterflies to overcome the dietary
restrictions imposed by A. petiolata is dominant, but individuals carrying this
allele undergo a detoxification mechanism which entails an energetic cost and
hampers their arrival at adulthood [13].

The model under development aims to identify if there has been any
evolutionary adaptation of the butterfly species significant enough so as to
ensure its survival in the new scenario. Specifically, the idea is to assess if the
detoxification cost associated with individuals tolerating A. petiolata pays off in
the new scenario or, on the other hand, the phylogenetic distribution will stay
the same and other mechanism will come into effect, such as hybridization with
other butterfly species such as Pieris rapae [8].

The approach taken in this project aims to validate the model qualitatively.
A qualitative validation is defined as follows: a model is qualitatively validated
if it can reproduce some properties verified by the ecosystem under different
scenarios (according to the experts).

187

7 Conclusions and Future Work

Multienvironment P systems are a general, formal framework for modelling
population dynamics in biology. The framework has two main approaches:
stochastic (micro–level oriented) and probabilistic (macro–level oriented). The
framework has been extended in the probabilistic approach, with the inclusion of
a new modelling framework called Probabilistic Guarded P (PGP) systems. PGP
systems are inspired by Population Dynamics P systems, and aim to simplify
the design and simulation of models of ecological phenomena. The model has
been formalized in this paper, and a simulation algorithm is introduced. This
algorithm is restricted for models which do not feature object competition.
Moreover, an extension of the P–Lingua language is provided to enable PGP
systems in P–Lingua, as well as a Graphical User Interface (GUI) to simulate
PGP systems (MeCoGUI).

The framework of PGP systems is being utilised for modelling the ecosystem
of Pieris napi oleracea, a butterfly native to Northeaster U.S.A. The aim is to
validate the model qualitatively; that is, checking that if the ecosystem verifies
some properties under different scenarios (experts), our model reproduces those
properties as well.

Although PGP systems provide a simplified alternative to PDP systems,
some constraints to the supported models are imposed: only models without
object competition are allowed. Therefore, future research lines will be focused
on overcoming this constraint, providing new simulation algorithms permitting
object competition. Moreover, new case studies will be considered, which can
help to extend the framework. Finally, PGP simulation will be accelerated by
using parallel architectures, such as GPU computing with CUDA.

Acknowledgements

The authors acknowledge the support of the project TIN2012-37434 of the
“Ministerio de Economı́a y Competitividad” of Spain, co-financed by FEDER
funds. Manuel Garćıa–Quismondo also acknowledges the support from the
National FPU Grant Programme from the Spanish Ministry of Education.
Miguel A. Mart́ınez-del-Amor also acknowledges the support of the 3rd
Postdoctoral phase of the PIF program associated with “Proyecto de Excelencia
con Investigador de Reconocida Vaĺıa” of the “Junta de Andalućıa” under grant
P08-TIC04200.

References

1. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor. The Infobiotics
Workbench: an integrated in silico modelling platform for Systems and Synthetic
Biology, Bioinformatics, 27, 23 (2011), 3323-3324.

188

2. M.A. Colomer, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez-del-
Amor, I. Pérez-Hurtado, M.J. Pérez–Jiménez, A. Riscos-Núñez, L. Valencia-
Cabrera. Membrane system-based models for specifying Dynamical Population
systems. Applications of Membrane Computing in Systems and Synthetic
Biology. Emergence, Complexity and Computation series, Volume 7. Chapter
4, pp. 97–132, 2014, Springer Int. Publishing.

3. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, D. Sanuy. A computational modeling for real ecosystems based
on P systems, Natural Computing, 10, 1 (2011), 39–53.

4. S. Cheruku, A. Păun, F.J. Romero-Campero, M.J. Pérez-Jiménez, O.H. Ibarra.
Simulating FAS-induced apoptosis by using P systems, Progress in Natural
Science, 17, 4 (2007), 424–431.

5. M.A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy, E. Serrano, L. Valencia-Cabrera. Modeling population
growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by using P systems,
LNCS, 6501 (2011), 144-159.

6. M.A. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez. A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers
as a case study, Ecological modelling, 222, 1 (2011), 33–47.

7. M.A. Colomer, M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
A. Riscos-Núñez. A uniform framework for modeling based on P Systems.
Proceedings IEEE Fifth International Conference on Bio-inpired Computing:
Theories and Applications (BIC-TA 2010), Volume 1, pp. 616–621.

8. F.S. Chew. Coexistence and local extinction in two pierid butterflies, The
American Naturalist, 118, 5 (1981), 655–672.

9. C.S. Davis. The computer generation of multinomial random variates. Compu-
tational Statistics and Data Analysis, 16, 2 (1993), 205–217.

10. P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez (eds.) Applications of Membrane
Computing in Systems and Synthetic Biology, Springer, 2014.

11. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, Agust́ın Riscos-Núñez. An overview of P-Lingua 2.0, LNCS, 5957
(2010), 264–288.

12. M. Gheorghe, F. Ipate, C. Dragomir, L. Mierla, L. Valencia-Cabrera, M. Garćıa-
Quismondo, M.J. Pérez-Jiménez. Kernel P systems - Version I, Proceedings of
the Eleventh Brainstorming Week on Membrane Computing (BWMC2013), 2013,
pp. 97–124.

13. M.S. Keeler, F.S. Chew. Escaping an evolutionary trap: preference and
performance of a native insect on an exotic invasive host, Oecologia, 156, 3
(2008), 559–568.

14. M.S. Keeler, F.S. Chew, B.C. Goodale, J.M. Reed. Modelling the impacts of
two exotic invasive species on a native butterfly: top-down vs. bottom-up effects,
Journal of Animal Ecology, 75, 3 (2006), 777–788.

15. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster,
M.J. Pérez-Jiménez. Population Dynamics P systems on CUDA. LNBI, 7605
(2012), 247–266.

16. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F. Maćıas-
Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani, A. Riscos-Núñez,
M.A. Colomer, M.J. Pérez-Jiménez. DCBA: Simulating Population Dynamics P
Systems with Proportional Object Distribution, LNCS, 7762 (2012), 27–56.

189

17. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-
Núñez, F. Sancho-Caparrini. A simulation algorithm for multienvironment prob-
abilistic P systems: A formal verification, International Journal of Foundations
of Computer Science, 22, 1 (2011), 107–118.

18. A. Păun, B. Popa. P systems with proteins on membranes, Fundamenta
Informaticae, 72, 4 (2006), 467–483.

19. G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61, 1 (2000), 108–143, and TUCS Report No 208.

20. G. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, 2010.

21. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating bio-
logical phenomena by means of P Systems, Proceedings IEEE Fifth Interna-
tional Conference on Bio-inpired Computing: Theories and Applications (BIC-
TA 2010), volume I (2010), pp. 637–643.

22. M.J. Pérez-Jiménez, F.J. Romero. P systems. A new computational modelling
tool for Systems Biology. Transactions on Computational Systems Biology VI.
Lecture Notes in Bioinformatics, 4220 (2006), 176–197.

23. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue-like P systems,
Journal of Complexity, 26, 3 (2010), 296–315.

24. F.J. Romero-Campero, M.J. Pérez-Jiménez. A model of the Quorum Sensing
system in Vibrio fischeri using P systems, Artificial Life, 14, 1 (2008), 95–109.

25. F.J. Romero-Campero, M.J. Pérez-Jiménez. Modelling gene expression control
using P systems: The Lac Operon, a case study, BioSystems, 91, 3 (2008), 438-
457.

26. COLT library. http://acs.lbl.gov/software/colt/index.html
27. RAND function in C++/C Standard General Utilities Library (cstdlib).

http://www.cplusplus.com/reference/cstdlib/rand

190

Solving the ST-Connectivity Problem with
Pure Membrane Computing Techniques

Zsolt Gazdag1 and Miguel A. Gutiérrez–Naranjo2

1 Department of Algorithms and their Applications
Faculty of Informatics

Eötvös Loránd University, Budapest, Hungary
gazdagzs@inf.elte.hu

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla, 41012, Spain
magutier@us.es

Abstract. In Membrane Computing, the solution of a decision problem
X belonging to the complexity class P via a polynomially uniform family
of recognizer P systems is trivial, since the polynomial encoding of the
input can involve the solution of the problem. The design of such solu-
tion has one membrane, two objects, two rules and one computation step.
Stricto sensu, it is a solution in the framework of Membrane Computing,
but it does not use Membrane Computing strategies. In this paper, we
present three designs of uniform families of P systems that solve the de-
cision problem STCON by using Membrane Computing strategies (pure
Membrane Computing techniques): P systems with membrane creation,
P systems with active membranes with dissolution and without polar-
izations and P systems with active membranes without dissolution and
with polarizations. Since STCON is NL-complete, such designs are con-
structive proofs of the inclusion of NL in PMCMC , PMCAM0

+d
and

PMCAM+
−d

.

1 Introduction

Membrane Computing [13] is a well-established model of computation inspired
by the structure and functioning of cells as living organisms able to process
and generate information. It starts from the assumption that the processes tak-
ing place in the compartmental structures as living cells can be interpreted as
computations. The devices of this model are called P systems.

Among the different research lines in Membrane Computing, one of the most
vivid is the search of frontiers between complexity classes of decision problems,
i.e., to identify collections of problems that can be solved (or languages that
can be decided) by families of P systems with similar computational resources.
In order to settle the correspondence between complexity classes and P system
families, recognizer P systems were introduced in [9, 10]. Since then, recognizer P
systems are the natural framework to study and solve decision problems within
Membrane Computing.

191

In the last years, many papers have been published about the problem of
deciding if a uniform family of recognizer P systems of type F built in polynomial
time is able to solve a given decision problem X . This is usually written as the
problem of deciding if X belongs to PMCF or not. It has been studied for
many P system models F and for many decision problems X (see, e.g., [2–5] and
references therein).

The solution of a decision problem X belonging to the complexity class P
via a polynomially uniform family of recognizer P systems is trivial (see [8,
11]), since the polynomial encoding of the input can involve the solution of the
problem. On the one hand, by definition, X ∈ P if there exists a deterministic
algorithm A working in polynomial time that solves X. On the other hand,
the belonging of X to PMCF requires a polynomial time mapping cod that
encodes the instances u of the problem X as multisets which will be provided as
inputs. Formally, given a decision problem X and an algorithm A as described
above, two different functions s (size) and cod (encoding) can be defined for each
instance u of the decision problem:

– s(u) = 1, for all u

– cod(u) =

{
yes if A(u) = yes
no if A(u) = no.

The family of P systems which solves X is Π = {Π(n)}n∈N with

Π(n) = 〈Γ,Σ,H, µ,w,R, i〉, where

– Alphabet: Γ = {yes, no}
– Input alphabet: Σ = Γ
– Set of labels: H = {skin}
– Membrane structure: []skin
– Initial multisets: w = ∅
– Input label: i = skin
– Set of rules: [yes]skin → yes []skin and [no]skin → no []skin. Both are send-

out rules.

Let us notice that Π is formally a family, but all the members of the fam-
ily are the same. It is trivial to check that, for all instance u of the problem,
Π(s(u)) + cod(u) provides the right solution in one computation step, i.e., it
suffices to provide cod(u) as input to the unique member of the family in order
to obtain the right answer. Stricto sensu, it is a solution in the framework of
Membrane Computing, but it does not use Membrane Computing strategies. All
the work is done in the algorithm A and one can wonder if the computation
itself can be performed by using pure Membrane Computing techniques.

We focus now on the well-known ST-Connectivity problem (known as
STCON). It can be settled as follows: Given a directed graph 〈V,E〉 and two
vertices s and t in V , the STCON problem consists of deciding if t is reachable
from s, i.e., if there exists a sequence of adjacent vertices (i.e., a path) starting
with s and ending with t. It is known that it is an NL-complete problem, i.e., it

192

can be solved by a nondeterministic Turing machine using a logarithmic amount
of memory space and every problem in the class NL is reducible to STCON
under a log-space reduction.

In this paper, we study the STCON in the framework of P systems. As shown
above, since STCON ∈ NL ⊆ P, there exist a trivial family of P systems in
PMCF which solves it, regardless of the model F . It suffices that F deals with
send-out rules. In this paper, we present three designs of uniform families of P
systems that solve the decision problem STCON by pure Membrane Computing
techniques, i.e., techniques where the features of the model F are exploited in
the computation: P systems with membrane creation, P systems with active
membranes with dissolution and without polarizations and P systems with active
membranes without dissolution and with polarizations. We provide such designs
and show the differences with previous studies found in the literature.

Since STCON is NL-complete, such designs are constructive proofs of the
belonging of NL to PMCMC , PMCAM0

+d
and PMCAM+

−d
.

The paper is structured as follows: First of all, we recall some basic definitions
used along the paper. In Section 3, previous works on NL are revisited. Next, our
designs of solutions are provided and the paper finishes with some conclusions
and presenting research lines for a future work.

2 Preliminaries

Next, some basic concepts used along the paper are recalled. We assume that
the reader is familiar with Membrane Computing techniques (for a detailed de-
scription, see [13]).

A decision problem X is a pair (IX , θX) such that IX is a language over a
finite alphabet (whose elements are called instances) and θX is a total Boolean
function over IX . A P system with input is a tuple (Π,Σ, iΠ), where Π is a P
system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ −Σ; and iΠ is the label
of a distinguished (input) membrane. Let (Π,Σ, iΠ) be a P system with input,
Γ be the working alphabet of Π, µ its membrane structure, and M1, . . . ,Mp

the initial multisets of Π. Let m be a multiset over Σ. The initial configuration
of (Π,Σ, iΠ) with input m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp). We denote by IΠ
the set of all inputs of the P system Π (i.e. IΠ is a collection of multisets over
Σ). In the case of P systems with input and with external output, the above
concepts are introduced in a similar way.

Definition 1. A recognizer P system is a P system with input and with external
output such that:

1. The working alphabet contains two distinguished elements yes, no.

2. All its computations halt.

193

3. If C is a computation of Π, then either the object yes or the object no (but not
both) must have been released into the environment, and only in the last step
of the computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object yes (respectively, no) appears in the ex-
ternal environment associated to the corresponding halting configuration of
C.

3 Previous Works

The relation between the complexity class NL and Membrane Computing models
has already been explored in the literature. In [6], Murphy and Woods claim that
NL ⊆ PMCAM0

−d,−u
, i.e., every problem in the complexity class NL can be

solved by a non-uniform family of recognizer P systems with active membranes
without polarization and without dissolution.

The proof shows the design of a family of P systems with active membranes
without polarization and without dissolution which solves STCON and con-
siders the NL-completeness of STCON. Nonetheless, the authors use a non
standard definition of recognizer P systems. According to the usual definition of
recognizer P system (see, e.g., [4]), either one object yes or one object no (but
no both) must have been released into the environment, and only in the last step
of the computation. In the proposed family by Murphy and Woods, it is easy to
find a P system which sends yes to the environment in an intermediate step of
the computation and sends no to the environment in the last step of the compu-
tation, so their proof of NL ⊆ PMCAM0

−d,−u
cannot be considered valid with

respect to the standard definition of recognizer P systems.

Counterexample: Let us consider the instance (s, t,G) of STCON where G
has only two vertices s and t and only one edge (s, t). According to [6], the P sys-
tem of the cited model that solves this instance has Γ = {s, t, yes, no, c0, . . . , c4}
as alphabet, h as unique label and []h as membrane structure. The initial con-
figuration is [s c4]h and the set of rules consists of the following seven rules:

[s→ t]h [t]h → []h yes
[c0]h → []h no [ci → ci−1]h for i ∈ {1, . . . , 4}.

It easy to check that this P system sends yes to the environment in the second
step of computation and sends no in the fifth (and last) step, so, according to the
standard definition, it is not a recognizer P system. In [7] Murphy and Woods
revisited the solution of STCON by non-uniform families of recognizer P systems
and considered three different ways of the acceptance in recognizer P systems,
one of them was the standard one (Def. 1).

4 Three Designs for the STCON Problem

In this section, we provide three uniform families of P systems that solve the
STCON problem in three different P system models. All these models use the

194

same encoding of an instance of the problem. We do not loss generality if we
consider the n vertices of the graph as {1, . . . , n}. In this case, a concrete instance
I = (s, t, 〈V,E〉) of the STCON on a graph 〈V,E〉 with vertices {1, . . . , n}, can
be encoded as

cod(I) = {xs, yt} ∪ {aij : (i, j) ∈ E},

i.e., xs stands for the starting vertex, yt for the ending vertex and aij for each
edge (i, j) in the graph. By using this coding, all the instances of the STCON
problem with n vertices, can be encoded with the alphabet

Σ = {xi : i ∈ {1, . . . , n}}∪
{yj : j ∈ {1, . . . , n}}∪
{aij : i, j ∈ {1, . . . , n}}

whose cardinality is 2n+ n2.
Next we present three solutions of the STCON problem by P systems. The

first two of them are based on P systems with active membranes, while the last
one uses P systems with membrane creation. The first solution does not use
membrane dissolution but uses the polarizations of the membranes. The sec-
ond solution does not use polarizations but uses membrane dissolution instead.
Moreover, none of these solutions use membrane division rules.

All the three solutions, roughly speaking, work in the following way. For
a given directed graph G = 〈V,E〉 and vertices s and t, the system cre-
ates/activates certain membranes in the initial configuration corresponding to
the edges in E. Then, these membranes will be used to create those objects that
represent the vertices reachable from s. Meanwhile, it is tested whether or not
the vertex t is created or not. If yes, the system initiates a process which will
send yes out to the environment. If the vertex t is not produced by the system,
i.e., t is not reachable from s in G, then a counter will create the symbol no
which is then sent out to the environment.

Although these solutions are similar, they use different techniques according
to the class of P systems that we employ. We believe that some of the construc-
tions used in the following designs might be useful also in solutions of other
problems by these classes of P systems.

4.1 P Systems with Active Membranes with Polarization and
without Dissolution

As a first approach, we will provide the design of a uniform family Π = {Πn}n∈N
of P systems in PMCAM−d which solves STCON. Each P system Πn of the
family decides on all the possible instances of the STCON problem on a graph
with n nodes. Such P systems use two polarizations, but they do not use divi-
sion or dissolution rules, so not all the types of rules of P systems with active
membranes are necessary to solve STCON. Each Πn will receive as input an
instance of the STCON as described above and will release yes or no into the

195

environment in the last step of the computation as the answer of the decision
problem. The family presented here is

Πn = 〈Γn, Σn, Hn, ECn, µn, w
a
n, w

1
n, . . . , w

n
n, w

11
n , . . . , w

nn
n , wskinn ,Rn, in〉.

For the sake of simplicity, thereafter we will omit the subindex n. The compo-
nents of Πn are as follows.

– Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 1}}∪
{k, yes, no}.

– Input alphabet: Σ, as described at the beginning of the section. Let us
remark that Σ ⊂ Γ .

– Set of labels: H = {〈i, j〉 : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, skin}.
– Electrical charges: EC = {0,+}.
– Membrane structure: [[]01 . . . []0n []0〈1,1〉 . . . []0〈n,n〉 []0a]0skin.

– Initial multisets: wa = c0, wskin = wij = wk = λ for i, j, k ∈ {1, . . . , n}.
– Input label: i = skin.

The set of rules R:

R1. aij []0〈i,j〉 → [aij]
+
〈i,j〉 for i, j ∈ {1, . . . , n}.

Each input object aij activates the corresponding membrane by changing its
polarization. Notice that such a symbol aij represents an edge in the input
graph.
R2. yj []0j → [yj]

+
j for j ∈ {1, . . . , n}.

The object yj activates the membrane j by changing its polarization. As the
input multiset always has exactly one object of the form yj , Πn will have a
unique membrane with label in {1, . . . , n} and polarization +.
R3. [xi → zi1 . . . zinti]

0
skin for i ∈ {1, . . . , n}.

The goal of these rules is to create n+ 1 copies of an object xi. A copy zij will
be able to produce an object xj if the edge (i, j) belongs to E. The object ti will
be used to witness that vertex i is reachable.
R4. zij []+〈i,j〉 → [xj]

0
〈i,j〉

tj []+j → [k]0j

}
for i, j ∈ {1, . . . , n}.

If the membrane with label 〈i, j〉 has polarization +, then the symbol zij produces
a symbol xj inside this membrane. Meanwhile, the polarization of this membrane
changes from + to 0, i.e., the membrane is deactivated. Moreover, if the symbol
tj appears in the skin and the membrane with label j has positive polarization,
then an object k is produced inside this membrane. Such object k will start the
process to send out yes to the environment.
R5., [k]0j → k []0j k []0a → [k]+a .
The object k is a witness of the success of the STCON problem. If it is produced,
it goes into the membrane with label a and changes its polarization to +.

196

R6. [xj]
0
〈i,j〉 → xj []0〈i,j〉 for i, j ∈ {1, . . . , n}.

The produced object xj is sent to the membrane skin in order to continue the
computation by rules form R3.
R7. [ci → ci+1]0a, [c3n+1]0a → no []0a

[ci → ci+1]+a , [c3n+1]+a → yes []0a

}
for i ∈ {0, . . . , 3n}.

Object ci evolves to ci+1 regardless of the polarization of the membrane with
label a. If during the evolution the object k enters the membrane with label a,
then the polarization of this membrane changes to + and the object c3n+1 will
produce yes in the skin membrane. Otherwise, if the object k is not produced,
the polarization is not changed and the object c3n+1 will produce no.
R8. [no]skin → no []skin, [yes]skin → yes []skin .
Finally, yes or no is sent out the P system in the last step of computation.

To see in more details how a computation of the presented P system goes,
let us consider an instance I = (s, t,G) of STCON where G is a graph
〈{1, . . . , n}, E〉. The computation of Πn on cod(I) can be described as follows.
During the first step, using rules in R1, every aij enters the membrane with label
〈i, j〉 and changes its polarization to +. Thus, after the first step the edges in E
are encoded by the positive polarizations of the membranes with labels of the
form 〈i, j〉. During the same step, using the corresponding rule in R2, yt enters
the membrane with label t and changes its polarization to +. This membrane
will be used to recognize if an object representing that t is reachable from s is
introduced by the system.

Now let l ∈ {1, 4, . . . , 3(n − 1) + 1} and consider an object xi in the skin
membrane. During the lth step, using rules in R3, xi creates n + 1 copies of
itself. The system will try to use a copy zij (j ∈ {1, . . . , n}) in the next step to
create a new object xj . The copy ti will be used to decide if i = t.

During the (l + 1)th step, using rules in R4, the systems sends zij into
the membrane with label 〈i, j〉 if that membrane has a positive polarization.
Meanwhile, zij evolves to xj and the polarization of the membrane changes to
neutral. During the same step, if i = t and the membrane with label t has
positive polarization, then the system sends ti into this membrane. Meanwhile,
ti evolves to k and the polarization of the membrane changes to neutral.

During the (l + 2)th step, using rules in R6, the object xj is sent out of the
membrane with label 〈i, j〉. Moreover, if the membrane with label t contains k,
then this k is sent out of this membrane.

One can see that during the above three steps the system introduces an object
xj if and only if (i, j) is an edge in E. Using this observation we can derive that
during the computation of the system, an object xj appears in the skin if and
only if there is a path in G from s to j. Thus, t is reachable from s in G if and
only if there is a configuration of Πn where the skin contains xt. However, in
this case an object k is introduced in the membrane with label t. It can also
be seen that Πn sends out to the environment yes if and only if k appears in
membrane t. Moreover, if k does not appear in membrane t, then the systems
sends out to the environment no. Thus, Πn sends out to the environment yes or
no according to that t is reachable from s or not. As Πn stops in at most 3n+ 2

197

steps, we can conclude that the family Π decides STCON in linear time in the
number of vertices of the input graph.

4.2 P Systems with Active Membranes with Dissolution and
without Polarization

Based on the solution presented in the previous sub-section, we give here a
uniform family Π = {Πn}n∈N in PMCAM0 which solves STCON. As here we
cannot use the polarizations of the membranes, we use membrane dissolution to
select those membranes of the initial configuration that correspond to the edges
of the input graph. Next we will describe the mentioned family Π. Since we
do not use polarizations, we do not indicate it at the upper-right corner of the
membranes. The family presented here is

Πn = 〈Γ,Σ,H,EC, µ,W,R, i〉.

The components of Πn are as follows.

– Alphabet:

Γ = {xi, v1i, v2i, v3i, vi, yi, ti : i ∈ {1, . . . , n}}∪
{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 4}}∪
{k, yes, no}.

– Input alphabet: Σ, as described at the beginning of the section.
– Set of labels: H = {〈i, j, in〉, 〈i, j, out〉 : i, j ∈ {1, . . . , n}} ∪ {〈i, in〉,
〈i, out〉 : i ∈ {1, . . . , n} ∪ {a, skin}.

– Electrical charges: EC = ∅.
– Membrane structure: [[[]〈1,in〉]〈1,out〉 . . . [[]〈n,in〉]〈n,out〉 [[]〈1,1,in〉]〈1,1,out〉 . . .
. . . [[]〈n,n,in〉]〈n,n,out〉 []a]skin.

– Initial multisets: W = {wa, w〈1,in〉, . . . , w〈n,in〉, w〈1,out〉, . . . , w〈n,out〉,
w〈1,1,in〉, . . . , w〈n,n,in〉, w〈1,1,out〉, . . . , w〈n,n,out〉, wskin}, where
wa = c0, wskin = w〈i,j,out〉 = w〈k,out〉 = λ, w〈i,j,in〉 = w〈k,in〉 = f0, for
i, j, k ∈ {1, . . . , n}.

– Input label: i = skin.

The set of rules R:

R0. [xi → v1i]skin, [vji → vj+1,i]skin, [v3i → vi]skin for i ∈ {1, . . . , n} and
j ∈ {1, 2}.
In this solution we cannot use an object xi in the same role as we did in the pre-
vious sub-section because of the following reason. The system needs four steps to
select those membranes in the initial membrane configuration that correspond
to the edges in E. Thus, the system introduces in four steps the object vi which
will act in this solution as xi did in the previous one.
R1. [fm → fm+1]〈i,j,in〉

[f3]〈i,j,in〉 → f4
[f4]〈i,j,out〉 → f4

 for i, j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.

198

These rules can dissolve the membranes with label 〈i, j, in〉 or 〈i, j, out〉. However,
if aij is in the input multiset, then it prevents the dissolution of the membrane
with label 〈i, j, out〉 using the following rules.
R2. aij []〈i,j,m〉 → [aij]〈i,j,m〉

[aij]〈i,j,in〉 → aij

}
for i, j ∈ {1, . . . , n}, m ∈ {in, out}.

By these rules the input symbol aij goes into the membrane with label 〈i, j, in〉
and dissolves that. This way the second rule in R1 cannot be applied, thus the
membrane with label 〈i, j, out〉 cannot be dissolved by the third rule.
R3. [fm → fm+1]〈j,in〉

[f3]〈j,in〉 → f4
[f4]〈j,out〉 → f4

 for j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.

These rules can dissolve the membranes with label 〈j, in〉 or 〈j, out〉. However,
if yj is in the input multiset, then it prevents the dissolution of the membrane
with label 〈j, out〉 using the following rules.
R4. yj []〈j,m〉 → [yj]〈j,m〉

[yj]〈j,in〉 → yj

}
for j ∈ {1, . . . , n} and m ∈ {in, out}.

By these rules the input symbol yj goes into the membrane with label 〈j, in〉 and
dissolves that. With this it is achieved that the membrane with label 〈j, out〉 is
not dissolved by the rules in R3.
R5. [vi → zi1 . . . zinti]skin for i ∈ {1, . . . , n}.
The role of these rules is the same as that of the rules in R3 in Section 4.1.
R6. zij []〈i,j,out〉 → [vj]〈i,j,out〉

tj []〈j,out〉 → [k]〈j,out〉

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1: If the
membrane with label 〈i, j, out〉 has not been dissolved, then the object zij pro-
duces a symbol vj inside this membrane. Analogously, if the symbol tj appears
in the skin and the membrane with label 〈j, out〉 is not dissolved, then an object
k is produced inside this membrane. Such object k will start the process to send
yes out to the environment.
R7. [k]〈j,out〉 → k []〈j,out〉, k []a → [k]a, [k]a → k.
The object k is a witness of the success of the STCON problem. If it is pro-
duced, it goes into the membrane with label a and dissolves it.
R8. [vj]〈i,j〉 → vj for i, j ∈ {1, . . . , n}.
The produced object vj dissolves the membrane with label 〈i, j〉 as the compu-
tation does not need this membrane any more. This way the object vj appears
in the skin and the computation can continue using the rules in R5.
R9. [ci → ci+1]a, [c3n+4]a → no []a

[ci+1]skin → [yes]skin

}
for i ∈ {0, . . . , 3n+ 3}.

Object ci evolves to ci+1 in membrane with label a. If during this evolution the
object k appears in this membrane, then it dissolves it and the object ci+1 gets
into the skin membrane where it produces yes. Otherwise, if the object k is not
produced, c3n+4 remains in membrane with label a and produces no.
R10. [no]skin → no []skin, [yes]skin → yes []skin .
Finally, yes or no is sent out the P system in the last step of computation.

199

One can observe that during the first four steps of Πn a membrane with
label 〈i, j, out〉 is not dissolved if and only if aij is in the input. Thus, Πn has a
membrane with label 〈i, j, out〉 after the first four steps if and only if Πn defined
in Section 4.1 has a membrane 〈i, j〉 with positive polarization after the first step.
Similar observations apply in the case of membranes with label 〈j, out〉. Thus,
the correctness of Πn defined in this section follows from the correctness of Πn

defined in Section 4.1. One can also observe that Πn stops after at most 3n+ 5
steps, which means that the family Π defined in this section decides STCON
in linear time.

4.3 P Systems with Membrane Creation

Here we provide a solution of the problem STCON by a uniform family of P
systems in the framework of P systems with Membrane Creation. Since STCON
is NL-complete, we have a direct proof of NL ⊆ PMCMC . This result is well-
know, since NL ⊂ NP and NP ⊆ PMCMC (see [4]). Nonetheless, to the best of
our knowledge, this is the first design of a P system family which solves STCON
in PMCMC .

Next we will describe the family Π = {Πn}n∈N of P systems in PMCMC .
Each Πn will receive as input an instance of the STCON as described at the
beginning of the section and will release yes or no into the environment in the
last step of the computation as the answer of the decision problem. The family
presented here is

Πn = 〈Γ,Σ,H, µ,wa, wb, wc,R, i〉.
The components of Πn are as follows.

– Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{noi : i ∈ {0, . . . , 3n+ 3}}∪
{yesi : i ∈ {1, . . . , 4}}∪
{yes, no}.

– Input alphabet: Σ, as it is described at beginning of the section.
– Set of labels: H = {〈i, j〉 : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, b, c}.
– Membrane structure: [[]a []b]c.
– Initial multisets: wa = no0, wb = wc = λ.
– Input label: i = b.

The set of rules R:

R1. [[aij → [λ]〈i,j〉]b for i, j ∈ {1, . . . , n}.
Each input symbol aij creates a new membrane with label 〈i, j〉. Recall that
such a symbol aij represents an edge in the directed graph.
R2. [yj → [λ]j]b for j ∈ {1, . . . , n}.
By these rules an input symbol yj creates a new membrane with label j.
R3. [xi → zi1 . . . zinti]b for i ∈ {1, . . . , n}.

200

The role of these rules is the same as that of the rules in R3 in Section 4.1.
R4. zij []〈i,j〉 → [xj]〈i,j〉

tj []j → [yes0]j

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1 except
that here an object tj introduces an object yes0 in the membrane with label j.
This new object yes0 will evolve with the rules in R6 and R7 until the final
object yes is produced in the environment.
R5. [xj]〈i,j〉 → xj for i, j ∈ {1, . . . , n}.
The object xj dissolves the membrane with label 〈i, j〉. The useful information
is that xj is reachable. We keep this information, but the membrane can be
dissolved. This way xj gets to the membrane b and the computation can go on
using the rules in R3.
R6. [yes0]j → yes1 for j ∈ {1, . . . , n}.
For each possible value of j, if yes0 is produced, the corresponding membrane is
dissolved and yes1 appears in the membrane with label b.
R7. [yes1]b → yes2, yes2 []a → [yes3]a,

[yes3]a → yes4, [yes4]c → yes []c .
The evolution of the object yesi firstly dissolves the membrane with label b. If
this membrane is dissolved, the rules from R3 will be no longer applied. In a
similar way, object yes3 dissolves the membrane with label a and this stops the
evolution of the objects inside this membrane.
R8. [noi → noi+1]a for i ∈ {1, . . . , 3n+ 2}.
The object noi evolves inside the membrane with label a. If this evolution is not
halted by the dissolution of this membrane, these objects will produce an object
no in the environment.
R9. [no3n+3]a → no, [no]c → no []c .
If the evolution of noi is not stopped, the object no3n+3 dissolves the mem-
brane with label a and creates a new object no. This object will be sent to the
environment in the next step of the computation.

It is not difficult to see using the comments given after the rules that this so-
lution works essentially in the same way as our first solution. The main difference
is that while in Section 4.1 an input symbol aij is used to change the polarization
of a membrane 〈i, j〉, here this symbol is used to create such a membrane. Thus,
the correctness of the solution presented here can be seen using the correctness
of the solution given in Section 4.1. It is also clear that the P systems presented
here work in linear time in the number of vertices in the input graph.

As we have mentioned, in solutions of problems in P via uniform families of
P systems it is important to use such input encoding and P system constructing
devices that are not capable to compute the correct answer. It is easy to see that
the decision processes in the solutions of STCON presented in this paper are
entirely done by the P systems themselves. Thus our solutions could be easily
modified so that the construction of the used families and the computation of the
input encoding can be carried out by reasonable weak computational devices,
for example, by logarithmic-space deterministic Turing machines.

201

5 Conclusions

The design of a uniform family of recognizer P systems working in polynomial
time which solves a decision problem with pure Membrane Computing techniques
is a hard task, regardless of the complexity class of the problem. The difficulty
comes from the hard restrictions imposed on such family. Firstly, the use of
input P systems implies that each instance of the problem must be encoded as a
multiset and such multiset must be introduced at the starting configuration in
one input membrane. The multiset encoding the instance cannot be distributed
in several membranes in the starting configuration. Secondly, in uniform families,
each P system must solve all the instances of the problem of the same size
(regardless of whether the answer is positive or not). This means that the set
of rules which leads to send yes to the environment and the set of rules which
leads to send no must be present in the design of the P system; and thirdly, the
standard definition of recognizer P systems claims that an object yes or no (but
no both) is sent to the environment in the last step of computation.

A deep study of these constraints shows that it is not sufficient to implement
a design of P system with the control scheme “if the restrictions of the decision
problem are satisfied, then an object yes must be sent to the environment”.
Instead of such scheme, the design must consider the following structure: “if the
restrictions are satisfied, then an object yes must be sent to the environment,
else an object no must be sent”. This scheme if-then-else must be controlled
with the ingredients of the P system model. In the three presented designs, this
if-then-else scheme is implemented via dissolution, polarization, or membrane
creation.

These ideas lead us to consider the necessity of revisiting the complexity
classes under P and adapt the definition of recognizer P systems for these classes.
Some papers in this new research line can be found in the literature (see, e.g.,
[12]), but further research is needed.

Acknowledgements

The authors gratefully acknowledge the helpful suggestions and comments of the
anonymous referees. This work was partially done during Zsolt Gazdag’s visit
at the Research Institute of Mathematics of the University of Sevilla (IMUS)
partially supported by IMUS. Miguel A. Gutiérrez–Naranjo acknowledges the
support of the project TIN2012-37434 of the Ministerio de Economı́a y Compet-
itividad of Spain.

References

1. Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.):
Membrane Computing - 13th International Conference, CMC 2012, Budapest,
Hungary, August 28-31, 2012, Revised Selected Papers, Lecture Notes in Com-
puter Science, vol. 7762. Springer (2013)

202

2. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A Linear Time Solution to the Partition Problem in a Cellular Tissue-Like Model.
Journal of Computational and Theoretical Nanoscience 7(5), 884–889 (MAY 2010)

3. Gazdag, Z., Kolonits, G.: A new approach for solving SAT by P systems with
active membranes. In: Csuhaj-Varjú et al. [1], pp. 195–207

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform
solution to SAT using membrane creation. Theoretical Computer Science 371(1-2),
54–61 (2007)

5. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete
problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lec-
ture Notes in Computer Science, vol. 4860, pp. 336–352. Springer, Berlin Heidelberg
(2007)

6. Murphy, N., Woods, D.: A characterisation of NL using membrane systems with-
out charges and dissolution. In: Calude, C.S., Costa, J.F., Freund, R., Oswald,
M., Rozenberg, G. (eds.) Unconventional Computing, Lecture Notes in Computer
Science, vol. 5204, pp. 164–176. Springer Berlin Heidelberg (2008)

7. Murphy, N., Woods, D.: On acceptance conditions for membrane systems: char-
acterisations of L and NL. In: Proceedings International Workshop on The Com-
plexity of Simple Programs. Cork, Ireland, 6-7th December 2008. pp. 172–184.
Electronic Proceedings in Theoretical Computer Science. Vol 1 (2009)

8. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Com-
plexity - membrane division, membrane creation. In: Păun et al. [13], pp. 302 –
336

9. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. In: Csuhaj-Varjú, E., Kin-
tala, C., Wotschke, D., Vaszil, G. (eds.) Proceeding of the 5th Workshop on De-
scriptional Complexity of Formal Systems. DCFS 2003. pp. 284–294 (2003)

10. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

11. Porreca, A.E.: Computational Complexity Classes for Membrane System. Master’s
thesis, Univertita´ di Milano-Bicocca, Italy (2008)

12. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems
with active membranes. In: Csuhaj-Varjú et al. [1], pp. 342–357

13. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)

203

204

Simulating Turing Machines with
Polarizationless P Systems with Active

Membranes

Zsolt Gazdag1, Gábor Kolonits1, Miguel A. Gutiérrez–Naranjo2

1 Department of Algorithms and their Applications
Faculty of Informatics

Eötvös Loránd University, Budapest, Hungary
2 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain

{gazdagzs, kolomax}@inf.elte.hu, magutier@us.es

Abstract. In this paper, we prove that every single-tape deterministic
Turing machine working in time t(n), for some function t : N→ N, can be
simulated by a uniform family of polarizationless P systems with active
membranes. Moreover, this is done without significant slowdown in the
working time. Furthermore, if log t(n) is space constructible, then the
members of the uniform family can be constructed by a family machine
that uses space O(log t(n)).

1 Introduction

The simulation of the behaviour of Turing machines by families of P systems has
a long tradition in Membrane Computing (see, e.g., [1, 11, 8, 13]). The purpose of
such simulations is twofold. On the one hand, they allow to prove new properties
on complexity classes and, on the other hand, they provide constructive proofs
of results which have been proved via indirect methods3.

In this paper, we give a new step on the second research line, by showing
that Turing machines can be simulated efficiently by families of polarizationless
P systems with active membranes. By efficiency we mean that these P systems
can simulate Turing machines without significant slowdown in the working time.
Moreover, the space complexity of the presented P systems is quadratic in the
time complexity of the Turing machine.

The conclusions obtained from such simulations are well-known: the decision
problems solved by Turing machines can also be solved by families of devices in
the corresponding P system models. In fact, it is well-known that the solution
of a decision problem X belonging to the complexity class P via a polynomially
uniform family of recognizer P systems is trivial, since the polynomial encoding
of the input can involve the solution of the problem (see [3, 7]).

3 The reader is supposed to be familiar with standard techniques and notations used
in Membrane Computing. For a detailed description see [10].

205

This fact can be generalized to more wide situations: the solution of a decision
problem X by a uniform family of P systems Π may be trivial in the following
sense. Let us consider a Turing machine that computes the encoding of the
instances of X (also called the encoding machine). If this machine is powerful
enough to decide if an instance is a positive instance of X or not, then a trivial
P system can be used to send out to the environment the correct answer.

In order to avoid such trivial solutions, the encoding machine and the Turing
machine that computes the members of Π (often called the family machine)
should be reasonably weak. More precisely, if the problem X belongs to a com-
plexity class C, then the family machine and the encoding machine should belong
to a class of Turing machines that can compute only a strict subclass of C (see
[8]).

According to this, we will use a family of P systems to simulate a Turing
machine M which members can be constructed by a family machine with the
following property. If M works in time t(n), for some function t : N → N,
and log t(n) is space constructable, then the family machine works using space
O(log t(n)). In particular, if t is a polynomial, then the family machine uses
logarithmic space. Moreover, we will use the following function pos to encode
the input words of M : For a given input word w, pos(w) is a multiset where
every letter of w is coupled with its position in w. Furthermore, the positions
of the letters are encoded in binary words. It was discussed in [8] that pos is
computable by deterministic random-access Turing machines using logarithmic
time (in other words, pos is DLOGTIME computable). In this way, there is
no risk that pos can compute a solution of a problem outside of DLOGTIME.
Since DLOGTIME is a rather small complexity class, if follows that we can
use pos safely as the input encoding function during the simulation of M .

The presented result is similar to the one appearing in [1] stating that every
single-tape deterministic Turing machine can be simulated by uniform families
of P systems with active membranes with a cubic slowdown and quadratic space
overhead. However, this result and ours are not comparable, as the constructions
in [1] use the polarizations of the membranes, while our solution does not.

The paper is organized as follows. First of all, we recall some basic definitions
used along the paper. Then, in Section 3, we present the main result. Finally,
we give some concluding remarks in Section 4.

2 Preliminaries

First, we recall some basic concepts used later.

Alphabets, Words, Multisets. An alphabet Σ is a non-empty and finite set of
symbols. The elements of Σ are called letters and Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. The length of a word
w ∈ Σ∗ is denoted by l(w). We will use multisets of objects in the membranes
of a P system. As usual, these multisets will be represented by strings over the
object alphabet of the P system.

206

The set of natural numbers is denoted by N. For i, j ∈ N, [i, j] denotes the set
{i, i+ 1, . . . , j} (notice that if j < i, then [i, j] = ∅). For the sake of simplicity,
we will write [n] instead of [1, n]. For a number i ∈ N, b(i) denotes its binary
form and b(N) = {b(i) | i ∈ N}. Given an alphabet Σ, the function pos : Σ∗ →
(Σ × b(N))∗ is defined in the following way. For a word w = a1 . . . an ∈ Σ∗,
where ai ∈ Σ , i ∈ [n], pos(w) := (a1, b(1)) . . . (an, b(n)). If a is the ith letter of
w, then we will also write the ith letter of pos(w) in the form ab(i).

Turing Machines. Turing machines are well known computational devices. In
the following we describe the variant that appears, e.g., in [12]. A (deterministic)
Turing machine is a 7-tuple M = (Q,Σ, Γ, δ, q0, qa, qr) where

– Q is the finite set of states,
– Σ is the input alphabet,
– Γ is the tape alphabet including Σ and a distinguished symbol t 6∈ Σ, called

the blank symbol,
– δ : (Q− {qa, qr})× Γ → Q× Γ × {L,R} is the transition function,
– q0 ∈ Q is the initial state,
– qa ∈ Q is the accepting state,
– qr ∈ Q is the rejecting state.

M works on a single infinite tape that is closed on the left-hand side. During
the computation of M , the tape contains only finitely many non-blank symbols,
and it is blank everywhere else. Let us consider a word w ∈ Σ∗. The initial
configuration of M on w is the configuration where w is placed at the beginning
of the tape, the head points to the first letter of w, and the current state of M is
q0. A configuration step performed by M can be described as follows. If M is in
state p and the head of M reads the symbol X, then M can change its state to
q and write X ′ onto X if and only if δ(p,X) = (q,X ′, d), for some d ∈ {L,R}.
Moreover, if d = R (resp. d = L), then M moves its head one cell to the right
(resp. to the left) (as usual, M can never move the head off the left-hand end
of the tape even if the head points to the first cell and d = L). We say that
M accepts (resp. rejects) w, if M can reach from the initial configuration on
w the accepting state qa (resp. the rejecting state qr). Notice that M can stop
only in these states. The language accepted by M is the set L(M) consisting of
those words in Σ∗ that are accepted by M . It is said that M works in time t(n)
(t : N→ N) if, for every word w ∈ Σ∗, w stops on w after at most t(l(w)) steps;
M works using space s(n) (s : N → N) if it uses at most s(n) cells when it is
started on an input word with length n. As usual, if M is a multi-tape Turing
machine and it does not write any symbol on its input tape, then those cells that
are used to hold the input word are not counted when the space complexity of
M is measured4. Let us consider a function f : N→ N such that f(n) is at least
O(log n). We say that f is space constructible if there is a Turing machine M that

4 For the formal definitions of the well known complexity classes concerning Turing
machines (such as L, P, TIME(t(n)) and SPACE(s(n))), the interested reader is
referred to [12].

207

works using space O(f(n)) and M always halts with the unary representation
of f(n) on its tape when started on input 1n.

Recognizer P systems. A P system is a construct of the form Π =
(Γ,H, µ,w1, . . . , wm, R), where m ≥ 1 (the initial degree of the system); Γ is
the working alphabet of objects; H is a finite set of labels for membranes; µ is a
membrane structure (a rooted tree), consisting of m membranes, labelled with
elements of H; w1, . . . , wm are strings over Γ , describing the initial multisets of
objects placed in the m regions of µ; and R is a finite set of developmental rules.

A P system with input is a tuple (Π,Σ, i0), where Π is a P system with work-
ing alphabet Γ , with m membranes, and initial multisets w1, . . . , wm associated
with them; Σ is an (input) alphabet strictly contained in Γ ; the initial multisets
are over Γ −Σ; and i0 is the label of a distinguished (input) membrane.

We say that Π is a recognizer P system [4, 5] if Π is a P system with input
alphabet Σ and working alphabet Γ ; Γ has two designated objects yes and no;
every computation of Π halts and sends out to the environment either yes or
no, but not both, and this is done exactly in the last step of the computation;
and, for a word w ∈ Σ∗, called the input of Π, w can be added to the system
by placing it into the input membrane i0 in the initial configuration.

A P system Π is deterministic if it has only a single computation from its
initial configuration to its unique halting configuration. Π is confluent if every
computation of Π halts and sends out to the environment the same object.
Notice that, by definition, recognizing P systems are confluent.

P Systems with Active Membranes. In this paper, we investigate recognizer
P systems with active membranes [9]. These systems have the following types of
rules. As we are dealing with P systems that do not use the polarizations of the
membranes, we leave out this feature from the definition.

(a) [a→ v]h, for h ∈ H, a ∈ Γ, v ∈ Γ ∗
(object evolution rules, associated with membranes and depending on the
label of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of these
rules nor are they modified by them);

(b) a[]h → [b]h, for h ∈ H, a, b ∈ Γ
(send-in communication rules, sending an object into a membrane, maybe
modified during this process);

(c) [a]h → []hb, for h ∈ H, a, b ∈ Γ
(send-out communication rules; an object is sent out of the membrane,
maybe modified during this process);

(d) [a]h → b, for h ∈ H, a, b ∈ Γ
(membrane dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [a]h → [b]h[c]h, for h ∈ H, a, b, c ∈ Γ
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes; the object a specified in the rule

208

is replaced in the two new membranes by (possibly new) objects b and c
respectively, and the remaining objects are duplicated; the new membranes
have the same labels as the divided one).

As usual, a P system with active membranes works in a maximally parallel
manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule in (a)-(e);

– when some rules in (b)-(e) can be applied to a certain membrane, then one
of them must be applied, but a membrane can be the subject of only one of
these rules during each step.

We will use uniform families of P system to decide a language L ⊆ Σ∗. In
this paper, we follow the notion of uniformity used in [8] for the definition of
uniform families of P systems: Let E and F be classes of computable functions.
A family Π = (Π(i))i∈N of recognizing P systems is called (E,F)-uniform if and
only if (i) there is a function f ∈ F such that, for every n ∈ N, Π(n) = f(1n)
(i.e., mapping the unary representation of each natural number to an encoding
of the P system processing all the inputs of length n); (ii) there is a function
e ∈ E that maps every word x ∈ Σ∗ to a multiset e(x) = wx over the input
alphabet of Π(l(x)).

An (E,F)-uniform family of P systems Π = (Π(i))i∈N decides a language
L ⊆ Σ∗ if, for every word x ∈ Σ∗, starting Π(l(x)) with wx in its input mem-
brane, Π(l(x)) sends out to the environment yes if and only if x ∈ L. In general,
E and F are well known complexity classes such as P or L.

We say that Π(n) works in time t(n) (t : N → N) if Π(n) halts in at most
t(n) steps, for every input multiset in its input membrane. Next, we adopt the
notion of space complexity for families of recognizer P systems similarly to the
definition appearing in [8] (see also [6]). Let C be a configuration of a P system
Π. The size of C (denoted by |C|) is the sum of the number of membranes and
the total number of objects in C. If C = (C0, . . . , Ck) is a halting computation
of Π, then the space required by C is defined as |C| = max{|C0|, . . . , |Ck|}. The
space required by Π is |Π| = sup{|C| | C is a halting computation of Π}. Let
us note that in the presented solution a P system Π always has finitely many
different halting computations, which clearly implies that |Π| ∈ N. Finally, Π(n)
works using space s(n) (s : N→ N), if |Π(n)| ≤ s(n), for every input multiset in
its input membrane.

3 The Main Results

In this section we prove the main result of the paper:

Theorem 1. Let t : N → N be a function such that log t(n) is space con-
structible and consider a Turing machine M working in time t(n). Then M
can be simulated by a (DLOGTIME,SPACE(log t(n)))-uniform family ΠM =
(ΠM (i))i∈N of recognizer P systems with the following properties:

209

– the members of ΠM are polarizationless P systems with active membranes,
without using membrane division rules, and

– for every n ∈ N, ΠM (n) works in time O(t(n)) and in space O(t2(n)).

The rest of this section is devoted to the proof of this theorem. Let us consider
a Turing machine M = (Q,Σ, Γ, δ, q0, qa, qr) working in time t(n). We construct
a uniform family of recognizer P systems ΠM = (ΠM (i))i∈N that decides the
language M(L). Assume that Q = {s1, . . . , sm}, for some m ≥ 3, where s1 = q0,
sm−1 = qa and sm = qr. Moreover, Γ = {X1, . . . , Xk} for some k > |Σ|, where
Xk = t is the blank symbol of the working tape.

Before giving the precise construction of ΠM (n), we describe informally some
of its components. As the number of certain components of ΠM (n) will depend
on n, when the family machine that constructs ΠM (n) enumerates these com-
ponents, an efficient representation of numbers depending on n should be used.
Thus, instead of using a number to denote a component of ΠM (n), we will use
the binary form of this number.

As M stops in at most t(n) steps, the segment of the tape of M that is
used during its work consists of at most t(n) cells. This segment of the tape
will be represented by the nested membrane structure appearing on Fig. 1. Here
the first membrane in the skin represents the first cell of the tape, while the
innermost membrane represents the t(n)th one. We will call these membranes of
ΠM (n) tape-membranes. Let us consider a tape-membrane representing the lth
cell of the tape. We call this membrane the lth tape-membrane. Notice that the
lth tape-membrane has label b(l), if l ≤ n, and it has label b(n + 1) otherwise
(we distinguish the indexes of the first n+ 1 tape-membranes in order to ensure
that the objects in the input multiset are able to find their corresponding tape-
membranes).

Fig. 1. The membrane structure corresponding to the simulated tape

For every l ∈ [t(n)], the lth tape-membrane contains further membranes:
for every state si, it contains t(n) copies of a membrane with label si. Such a
membrane contains a further elementary membrane with label s′i. Moreover, the
lth tape-membrane contains a symbol Xj ∈ Γ if and only if the lth cell of M

210

contains the symbolXj . Furthermore, ifM is in state si and the head ofM points
to the lth cell, then an object ↑i is placed into the lth tape-membrane to represent
this information (see Fig. 2 where we depicted the third tape-membrane).

Fig. 2. The membrane structure of the third tape-membrane

We will see that when ↑i and Xj appear in the lth tape-membrane, then
these objects will dissolve a membrane pair [[]s′i]si and introduce new objects
corresponding to the value δ(sj , Xi). With these new objects ΠM (n) will be able
to maintain its configurations so that finally its current configuration corresponds
to the new configuration of M .

The formal definition of ΠM (n) is as follows. For every n ∈ N, let ΠM (n) :=
(Σ′, Γ ′, H, µ,W,R), where:

– Σ′ := {ab(i) | a ∈ Σ, 1 ≤ i ≤ n}
– Γ ′ := Σ′ ∪ Γ ∪ {↑i, ↓i,d| 1 ≤ i ≤ m, d ∈ {L,R}} ∪ {db(0), . . . , db(2n)}
– H := {skin, b(1), . . . , b(n+ 1)} ∪ {s1, . . . , sm, s′1, . . . , s′m};
– µ is a nested membrane structure [[[. . . [. . . []b(n+1) . . .]b(n+1) . . .]b(2)]b(1)]skin

(containing t(n)−nmembranes with label b(n+1)), such that each membrane
in this structure contains a further membrane structure ν, where ν consists
of t(n) copies of the membrane structure [[]s′i]si , for every i ∈ [m]. The
input membrane is []skin;

– W := wskin, wb(1), . . . , wb(n+1), ws1 , . . . , wsm , ws′1 , . . . , ws′m , where
• wskin := ε;
• wb(1) := d0, wb(l) := ε, for every l ∈ [2, n], and wb(n+1) := Xk (i.e.,
wb(n+1) is the blank symbol);

• wsi = ws′i
:= ε, for every i ∈ [m];

– R is the set of the following rules:
• Rules to set up the initial configuration of M :

(a) ab(i)[]b(l) → [ab(i)]b(l), ab(i)[]b(i) → [a]b(i), for every i ∈ [1, n] and
l < i;

(b) [db(i) → db(i+1)]1, [db(2n) →↑1]1, for every i ∈ [2n− 1];
• Rules for simulating a configuration step of M :

(c) ↑i []si → [↑i]si , [↑i]si → ε, for every i ∈ [1,m];
(d) Xj []s′i → [Xj]s′i , [Xj]s′i → Xr ↓t,d, for every i ∈ [1,m], j ∈ [1, k]

and (Xr, st, d) = δ(si, Xj);

211

(e) ↓i,R []b(l) → [↑i]b(l), for every i ∈ [1,m], l ∈ [1, n+ 1];
(f) [↓i,L]b(l) → []b(l) ↑i, [↓i,L]1 → [↑i]1, for every i ∈ [1,m], l ∈ [2, n+

1];
• Rules for sending out the computed answer to the environment:

(g) [↓m−1,d→ yes]b(l), [↓m,d→ no]b(l), for every l ∈ [1, n + 1] and d ∈
{L,R};

(h) [yes]b(l) → []b(l)yes, [no]b(l) → []b(l)no, for every l ∈ [1, n+ 1];
(i) [yes]skin → []skinyes, [no]skin → []skinno.

Next, we describe how ΠM (n) simulates the work of M . We will see that
ΠM (n) can set up the initial configuration of M in O(n) steps and that every
configuration step of M can be simulated by the P system performing a constant
number of steps. We distinguish the following three main stages of the simulation:

Stage 1: Setting up the initial configuration of M . Assume that M is provided
with the input word a1a2 . . . an (ai ∈ Σ, i ∈ [n]). Then the input multiset of
ΠM (n) is pos(w). During the first 2n steps, every object ab(i) in the input mul-
tiset finds its corresponding membrane with label b(i). At the last step, ab(i)
evolves to a, as the sub-index b(i) is not needed any more. Meanwhile, in mem-
brane 1 object d0 evolves to object db(2n) and db(2n) evolves to ↑1. After these
steps, the lth tape-membrane of the system contains an object X ∈ Γ if and only
if the lth cell of the tape of M contains X. Moreover, the object ↑1 occurring
in the first tape-membrane represents that M ’s current state is s1 (that is, the
initial state) and that the head of M points to the first cell. Thus, after 2n steps
the configuration of ΠM (n) corresponds to the initial configuration of M .

Stage 2: Simulating a configuration step of M . Let us assume that M has the
configuration appearing in Fig. 3. We can assume that ΠM (n) has the corre-
sponding configuration depicted in Fig. 4 (for the sake of simplicity we assume
that l ∈ [n+ 1]).

Fig. 3. A configuration of M

The simulation of the computation step of M starts as follows. Firstly, ↑i goes
into a membrane with label si and then dissolves it using rules in (c). Meanwhile,
↑i evolves to ε. Let us remark that the system always can find a membrane with
label si in the corresponding tape-membrane. Indeed, at the beginning of the

212

Fig. 4. The corresponding configuration of ΠM (n)

computation, every tape-membrane contains t(n) copies of a membrane with
label si. Moreover, M can perform at most t(n) steps and the simulation of one
step dissolves exactly one membrane with label si.

Next, Xj goes into the membrane s′i and then dissolves it. During the dis-
solution two new objects, Xr and ↓t,d are introduced according to the value
δ(si, Xj). Notice that in ↓t,d, the index t corresponds to the index of the new
state of M and d denotes the direction of the tape head. Now the simulation
of the corresponding movement of the head is done as follows. According to the
value of d we distinguish the following cases:

Case 1: d = R. In this case ΠM (n) applies rules in (e): ↓t,R is sent into the next
inner tape-membrane and, meanwhile, it evolves to ↑t. This corresponds to the
move of the tape head to the right.

Case 2: d = L. This case is similar to the previous one, but here ΠM (n) applies
rules in (f): ↓t,L is sent out of the current tape-membrane and it evolves to ↑t.
This corresponds to the move of the tape head to the left. Notice that if l = 1,
then ΠM (n) can apply only the second rule in (f) which means that in this case
↑t remains in the first tape-membrane. This still corresponds to the step of M ,
since in this case the head of M cannot move left.

Stage 3: Sending to the environment the correct answer. Whenever an object
↓m−1,d (d ∈ {L,R}) is introduced in a tape-membrane (i.e., when the simulated
M enters its accepting state), the system introduces object yes using the first
rule in (g). Then this object is sent out of the tape-membranes until it reaches
the skin membrane using rules in (h). Finally, yes is sent out to the environment
using the first rule in (i). ΠM (n) performs a similar computation concerning
object no.

It can be seen using the notes above that ΠM (n) is a confluent polarization-
less recognizer P system that simulates M correctly. It is also clear that ΠM (n)
does not employ dissolution and membrane division rules. The other properties
of ΠM (n) mentioned in Theorem 1 are discussed next.

213

Time and space complexity of ΠM (n). The time complexity of ΠM (n) is
measured as follows. As we already discussed, Stage 1 takes O(n) steps. It can
be seen that the simulation of a step of M takes five steps. Thus, Stage 2 takes
O(t(n)) steps. Finally, Stage 3 takes also O(t(n)) steps. Thus, for every word
x ∈ Σ∗ with length n, starting ΠM (n) with pos(x) in its input membrane, it
halts in O(t(n)) steps.

Concerning the space complexity, a configuration of ΠM (n) contains t(n)
tape-membranes and every tape membrane contains t(n) copies of the membrane
structure [[]s′i]si , for every i ∈ [m]. Moreover, every cell of ΠM (n) contains a

constant number of objects. Thus, the space complexity of ΠM (n) is O(t2(n)).

(DLOGTIME,SPACE(log t(n)))-uniformity. We have already discussed
that pos, which is the function that we used to encode the input words in Σ∗ is in
DLOGTIME. Thus, it remains to describe a deterministic Turing machine F
that can construct ΠM (n) using space O(log t(n)). It is clear that the objects in
Γ ′ and the rules of ΠM (n) can be enumerated by F using O(log n) cells. Indeed,
Γ ′ contains O(mn) objects, but m here is a constant that depends only on M .
Moreover, ΠM (n) has O(n) different rules.

Furthermore, as log t(n) is space constructable, F can construct log t(n) in
unary form using space O(log t(n)). Using the unary representation of log t(n),
the initial membrane structure of ΠM (n) can be constructed by F as follows:
when F constructs the lth tape-membrane, then it stores b(l) on one of its tapes
using at most log t(n) cells. Furthermore, when F constructs the kth membrane
structure of the form [[]s′i]si (k ∈ [t(n)], i ∈ [m]) in the lth tape-membrane, then
it stores the words b(k) and b(i) on one of its tapes. This also needs O(log t(n))
cells. Thus, the total number of cells used on the work tapes of F when it
constructs ΠM (n) is O(log t(n)).

4 Conclusions

The simulation of the behaviour of a device of a computation model in a different
model allows to see all problems from a new point of view. One of the frontiers of
the current research in Membrane Computing corresponds to the computational
power of P systems according to the power of the function that encodes the
input and the function that constructs the family of P systems.

In this paper, we prove a general result in this line, since we show that every
single-tape deterministic Turing machine working in time t(n) can be simulated
by a uniform family of recognizer polarizationless P systems with active mem-
branes. Moreover, this is done without significant slowdown in the working time.
Furthermore, if log t(n) is space constructible, then the members of the family
can be constructed by a family machine that uses space O(log t(n)).

As it is pointed out in [2], uniform families of polarizationless P systems
with active membranes and without dissolution rules are at most as powerful
as the used input encoding function (see Theorem 10 in [2]). This fact, together
with the result of this paper, illustrates the importance of dissolution rules in

214

P systems with active membranes when the polarizations of the membranes are
not allowed.

As it is mentioned above, if the simulated Turing machine M works in time
t(n) and log t(n) is space constructible, then ΠM can be constructed using space
log t(n). As a particular case, it means that if t(n) is a polynomial function, then
ΠM is a (DLOGTIME,L)-uniform family of P systems. Likewise, if t(n) is an
exponential function, then ΠM is a (DLOGTIME,PSPACE)-uniform family.

It remains as an open question if (DLOGTIME,SPACE(log t(n)))-
uniformity in Theorem 1 can be strengthened to (DLOGTIME,L)-uniformity
(i.e., whether the construction of ΠM can be done using logarithmic space what-
ever is the running time of M). In our construction membrane division rules are
not employed. Nevertheless, even if we used these rules, it is not clear how the
tape-membranes or the membrane structures in them could be constructed using
logarithmic space. This might be a subject of further research.

Acknowledgements

The authors gratefully acknowledges the helpful suggestions and comments of
the anonymous referees. Miguel A. Gutiérrez–Naranjo acknowledges the support
of the project TIN2012-37434 of the Ministerio de Economı́a y Competitividad
of Spain.

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity
equivalence of P systems with active membranes and Turing machines. Theoretical
Computer Science 529(0), 69 – 81 (2014)

2. Murphy, N., Woods, D.: The computational complexity of uniformity and semi-
uniformity in membrane systems. In: Mart́ınez-del-Amor, M.A., Orejuela-Pinedo,
E.F., Păun, Gh., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Seventh Brainstorming
Week on Membrane Computing. vol. II, pp. 73–84. Fénix Editora, Sevilla, Spain
(2009)

3. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Com-
plexity - membrane division, membrane creation. In: Păun et al. [10], pp. 302 –
336

4. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. In: Csuhaj-Varjú, E., Kin-
tala, C., Wotschke, D., Vaszil, G. (eds.) Proceeding of the 5th Workshop on De-
scriptional Complexity of Formal Systems. DCFS 2003, pp. 284–294 (2003)

5. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

6. Porreca, A., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity
measure for P systems. International Journal of Computers, Communications and
Control 4(3), 301–310 (2009)

7. Porreca, A.E.: Computational Complexity Classes for Membrane System. Master’s
thesis, Universitá di Milano-Bicocca, Italy (2008)

215

8. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems
with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Sa-
lomaa, A., Vaszil, Gy. (eds.) International Conference on Membrane Computing.
Lecture Notes in Computer Science, vol. 7762, pp. 342–357. Springer (2012)

9. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)

11. Romero Jiménez, Á., Pérez-Jiménez, M.J.: Simulating Turing machines by P sys-
tems with external output. Fundamenta Informaticae 49(1-3), 273–278 (2002)

12. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
13. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient sim-

ulation of polynomial-space Turing machines by P systems with active membranes.
In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science,
vol. 5957, pp. 461–478. Springer, Berlin Heidelberg (2009)

216

Categorised Counting Mediated by Blotting
Membrane Systems for Particle-based

Data Mining and Numerical Algorithms

Thomas Hinze1,2, Konrad Grützmann3, Benny Höckner1

Peter Sauer1, and Sikander Hayat4

1Brandenburg University of Technology
Institute of Computer Science and Information and Media Technology

Postfach 10 13 44, D-03013 Cottbus, Germany

2Friedrich Schiller University Jena
Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany

3Helmholtz Centre for Environmental Research – UFZ
Permoserstr. 15, D-04318 Leipzig, Germany

4Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA

{thomas.hinze,benny.hoeckner,peter.sauer}@tu-cottbus.de,
konrad.gruetzmann@ufz.de, Sikander Hayat@hms.harvard.edu

Abstract. Blotting turns out to be a rather common and effective ap-
proach in molecular information processing. An initial pool of molecules
considered as sets of individual data becomes spatially separated accord-
ing to the presence or absence of specific attributes like weight index or
chemical groups and labels. In this connection, molecules with similar
properties form a spot or blot. Finally, each blot can be visualised or
analysed revealing a corresponding score index or count from the number
of accumulated molecules. The entire variety of blots emerged over time
provides crucial and condensed information about the molecular system
under study. Inspired by the idea to obtain a significant data reduction
while keeping the essential characteristics of the molecular system as
output, we introduce blotting membrane systems as a modelling frame-
work open for numerous applications in data mining. By means of three
dedicated case studies, we demonstrate its descriptive capability from
an explorative point of view. Our case studies address particle-based nu-
merical integration which suggests a model for the synchronised 17-year
life cycle of Magicicadas. Furthermore, we exemplify electrophoresis to
carry out a variant of bucket sort.

1 Introduction and Background

From a technical point of view, biological information processing as well as molec-
ular computing and particle-based algorithms commonly result in a huge amount
of more or less raw data. Afterwards, an appropriate interpretation of these data

217

sets from a holistic perspective towards evident conclusions turns out to be a
challenging task [14]. In many cases, this is due to the partly diffuse nature of
molecular processes at a mesoscale level. By means of this term, we summarise a
typical outcome of a measure or a direct observation obtained from an underly-
ing experiment or system under study. Interestingly, the majority of visualisation
techniques and analytical tools in biochemistry comprises a spatial separation of
molecules or particles based on relevant attributes or properties. For instance, an
electrophoresis spreads electrically charged molecules by their individual weights
[15]. Other attempts to capture a molecular system employ fluorescence labels
specifically attached to signalling molecules [4, 16]. Here, the spatial distribution
of these labels represents the overall behaviour of the system. In addition, high-
resolution microscopy in many facets sheds light on the geometrical location of
molecular clusters or even single molecules up to a nanometre scale [5].

All these techniques have in common that the number of molecules or parti-
cles present within predefined grid regions or accumulated towards distinguish-
able clusters gives the crucial information about the underlying system. Often,
the number of molecules needs to overcome a certain threshold before taken into
consideration for detectability. Finally, the number of molecules subject to a ge-
ometrical grid tends to be expressed by a kind of heatmap. Here, the range of
potential molecular amounts becomes divided into several disjoint intervals while
each of them is assigned to a corresponding colour or intensity value. Having a
look at the grid mostly reveals a collection of spots or blots in different size and
colour, sometimes partially overlapping, and almost certainly somehow blurry
or frazzled.

A variety of dedicated blotting techniques which emerged during the last
decades produces two-dimensional blot diagrams, sometimes also called blotting
papers [3, 24]. The metaphor rather illustratively describes this form of data
representation, especially in case of prevalent Southern, Western, and Northern
blots [22]. These techniques allow among others a spatial separation of DNA
(deoxyribonucleic acid), RNA (ribonucleic acid), or labelled proteins from an
initial mixture according to their weights or according to the presence or absence
of oligomeric subsequences. In application scenarios with medical background,
resulting blot diagrams help to identify whether or not certain viral infections
or gene mutations occurred. Both reasons can imply synthesis of malformed,
functionally insufficient proteins [26]. From the percentage of malformed proteins
in comparison to the total amount, a stage or degree of the damage can be
hypothesised if there is enough empirical, statistical, or deducible significance.

The effect of spatial blotting can also be seen in nature. Control of cell differ-
entiation and proliferation in the embryo of the fruit fly Drosophila melanogaster
gives a fascinating example [25]. The underlying processes manage the formation
of embryonic patterns from the fertilised egg [23]. Embryonic patterns mark an
essential intermediate state in the morphogenesis of the organism which leads
to its functional structures and appendages. Beyond the body proportions, also
shape, positions and size of head and thorax and more fine-grained, those of
organs like eyes and wings during maturation become mainly determined by

218

anteroposterior axis anteroposterior axis dorsoventral sides

Fig. 1. Schematic representation of an embryonic pattern in the fertilised egg of the
fruit fly Drosophila melanogaster. The pattern forms a 7 × 4-grid whose 28 coordi-
nated regions are characterised by individual presence of specific cytokine combinations.
Along with cell differentiation and proliferation during maturation, functional struc-
tures and appendages of the organism emerge from corresponding initial regions of the
embryonic pattern. It constitutes the anteroposterior axis together with its dorsoven-
tral sides as well. Graphical respresentation inspired by fluorescence microscopy images
(Hox coordinate gene expression states) in [25].

embryonic patterns. In simple terms, the embryonic pattern quite precisely de-
fines a geometrical grid throughout the longitudinal (anteroposterior) axis and
orthogonally along the so-called dorsoventral sides, see Figure 1. In the first
developmental stage, the embryonic pattern separates seven dedicated regions
anterioposterially and four regions dorsoventrally. Each of these regions is char-
acterised by a specific mixture of a number of proteins called cytokines whose
individual concentrations are spatially distributed according to the regions. Typ-
ically, within a region a total amount of one up to three different cytokines
exhibits a high concentration while all other cytokines persist in low concentra-
tions. The grid-like spatial distribution of cytokines results from an underlying
expression scheme of so-called coordinate genes. The activation of these genes
is controlled by a reaction cascade in several phases along a predefined time
course. The activation cascade starts simultaneously from both opposite tips of
the embryo triggered by the zygote (fertilised egg cell) in concert with environ-
mental stimuli. In terms of a systemic understanding, the process of embryonic
pattern formation reflects the functionality of categorised counting. Here, the
categories symbolise all single regions from which the grid is composed of, while
the ratios of individual cytokine concentrations accumulated within each region
indicate its spatial position inside the entire grid. In other words, each region
can be identified by a specific index (count value) estimated from the involved
cytokine concentration gradients. In subsequent phases of maturation, the initial
embryonic pattern becomes more and more refined. To do so, the cytokines act
as transcription factors specifically activating those parts of the genome whose
resulting proteins lead to differentiated cells forming the variety of body struc-
tures.

All scenarios addressed here so far share a common essential principle con-
sisting of three consecutive steps:

1. Particles or molecules which represent a pool of data create spatially dis-
tributed blots of diverse size or density. In a general term, this step is called
clustering. Initiated by a more or less complex interplay of physical processes

219

like transduction or diffusion mainly in conjunction with (bio)chemical re-
actions, clustering follows known principles of natural laws but can be en-
riched by stochastic effects. This stochasticity causes a certain bias inflating
the amount of raw data. In order to enable a later analysis, the geometri-
cal location of each cluster needs to be captured in an appropriate manner.
Most simply, the boundaries of each cluster might be marked a priori. In
case the expected cluster positions remain unknown until the clustering is
completed, a subsequent classification turns out to be the method of choice
instead, especially if there is evidence of (partially) overlapping blots.

2. The number of relevant molecules within each cluster defines a dedicated
qualitative score like a colour intensity or just an index for instance. This
step can be covered by the term counting. The ability to carry out count-
ing comes along with a previously finalised categorisation. To this end, a
predefined setting of available categories becomes identified which in turn
specifies the domain of potential and acceptable scores. A final set of dis-
tinct greyscales or a range of discrete measurement readings give typical ex-
amples for categories. Eventually, counting maps the molecular abundance
into the corresponding category. Hence, we obtain a more or less tremen-
dous data reduction. Afterwards, each cluster exhibits its count as essential
information.

3. Based on the clusters together with its corresponding counts, the final step
comprises the generation of system’s response. Living organisms taken as
natural systems like the fruit fly exhibit a special behavioural pattern like
maturation for response. In contrast, man-made systems like electrophoresis
chambers request an external mathematical analysis instead, mostly statis-
tics or deduction. Anyway, a computation typically takes place having the
response as output.

We say that a system operating in this manner performs categorised count-
ing. Inspired by numerous further examples, the idea arises whether this common
behavioural principle can be advantageously captured by a consistent dedicated
description framework. Therefor, the notion of a P system [20] seems to be
an ideal candidate due to its multiset-based nature. A multiset inherently sup-
ports the strategy of categorised counting: Elements reflect the categories while
its multiplicities stand for the corresponding count. Clustering is expressed by
accumulation of elements into the underlying multiset. Putting all necessary
descriptive ingredients together will lead us to the introduction of blotting mem-
brane systems, a new class of P systems aimed at formalisation of categorised
counting. The level of abstraction taken into consideration should be balanced
in order to cope with the computational complexity of multiple particle systems
entering the clustering process. The main focus is laid to facilitate explorative
in-silico studies able to extract a condensed but sufficient description of the sys-
tems behaviour and/or possible conclusions from a (huge) set of slightly biased
raw data. Having in mind that particularly the response stage in categorised
counting might incorporate statistical techniques and deductive methods ap-
plied to an initial set of data, blotting membrane systems can open the field of

220

data mining [8, 10] for membrane computing. To our best knowledge, this is the
first attempt to primarily addressing this line of research.

In Section 2, we familiarise the reader with the formal definition of blotting
membrane systems together with all required prerequisites. Hereafter, three case
studies selected from different facets of molecular information processing demon-
strate the descriptive capability. We start with an initial example, particle-based
numerical integration, presented in Section 3. This feature in addition with a
limiting threshold is sufficient for a simple behavioural model on how insects of
the species Magicicada can count a time span of rather exactly 17 years which
comprises the synchronised life cycle of all individuals within the population.
Section 4 is dedicated to electrophoresis, a commonly used technique to arrange
electrically charged molecules by their weights. The resulting systems behaviour
resembles the algorithmic strategy of bucket sort. A final discussion concludes
benefits as well as open questions for future work.

2 Blotting Membrane Systems

Formal Prerequisites

Let A and B be arbitrary sets, ∅ the empty set, N the set of natural numbers
including zero, R the set of real numbers, and R+ the set of non-negative real
numbers. A and B are disjoint (share no common elements) iff A ∩ B = ∅.
The Cartesian product A × B = {(a, b) | a ∈ A ∧ b ∈ B} collects all tuples
from A and B. For A× A, we write A2 for short. The term card(A), also writ-
ten as |A|, denotes the number of elements in A (cardinality). A multiset over
A is a mapping F : A −→ N ∪ {+∞}. Multisets in general can be written
as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .} since
∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F) ⊆ A of F is defined by
supp(F) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | = ∑

a∈A
F (a).

Definition of Systems Components

A blotting membrane system is a construct

Π = (P,L,C,B1, . . . , B|C|, S,R, r) (1)

whose components mimic all ingredients of categorised counting, namely

– spatially distributed particles equipped with labels,

– resulting blots acting as categories,

– score values (counts) according to each category, and

– a response as follows:

221

We assume that the systems input consists of a final set of particles arbitrarily
located at a two-dimensional, not necessarily bounded grid. Therefore, each
particle carries its grid coordinates (Cartesian or by generic system) together
with an individual label (like weight index or presence of a chemical fluorescence
marker) beforehand responsible for processing the spatial separation.

L arbitrary set of available labels
P ⊂ R× R× L final set of particles, each of them specified by grid position

and label

By means of the components C and B1, . . . , B|C|, we capture the arrangement
of particles into blots as well as the assignment of categories to the blots.

C arbitrary set of available categories either defined explicitly or
obtained implicitly as result of a classification over P

B1 ⊆ P
...

B|C| ⊆ P
entirety of blots, each of them specified by the accumulated
particles

In simple cases, the number of categories |C| can be set explicitly, particularly
in those studies which enable a precise prediction of the expected blots due to a
sufficient knowledge of the systems behaviour. More elaboratively, the number
of categories can result from a classification process taking into account spa-
tial distances (or distance measures) between all or selected particles. To this
end, a distance matrix of the incorporated particles is created first making each
particle its own singleton category for the beginning. Out of the matrix, those
two particles exhibiting the minimal distance to each other become identified.
They are removed from the matrix by being merged into a common category.
This new category is placed in the distance matrix again. This comes along with
filling its distances to all other categories present in the matrix. There are dif-
ferent calculation schemes on how to obtain these distance updates originating
a variety of classification approaches [6]. By iterating the merge of two nearest
categories, the total number of categories decreases more and more. Usually, the
merging process stops after a certain distance threshold is reached or a desired
final number of categories emerged (agglomerative hierarchical clustering, [11]).

We denote the blots by the family of sets B1 until B|C|. If the condition⋂|C|
i=1Bi = ∅ holds, the blots are said to be non-overlapping. Please note that

the blots do not need to be necessarily disjoint. In general, a particle is allowed
to be part of several (overlapping) blots.

S : C −→ N multiset subsuming the score values (counts) over all categories
R arbitrary set specifying the response domain

r : N|C| −→ R response function

The multiset S appears to represent the central part of the blotting membrane
system since its core functionality of data reduction by categorised counting is
expressed here. Typically, we choose S(c) = |Bc| for all c ∈ C. In order to finalise

222

systems description, we still need to formalise its response. In this context, we
initiate a response domain R capturing the whole of potential systems outputs.
Based on that, the response function r analyses the counts of all categories.
Finally, it derives the corresponding response. This step might include statistical
tests and/or some dedicated reasoning. Hence, the formal description of function
r within application scenarios might become rather extensive.

A Toy Example: Particle-based Approximation of Constant π ≈ 3.14

Using a toy example, we illus-
1

1

x

y

−1

−1

Fig. 2. Particles randomly distributed
in spatial equipartition on an under-
lying square-shaped grid. The number
of particles placed within the inscribed
circle in comparison to the total number
of particles provides a rational approx-
imation of the constant π.

trate the formalism of blotting mem-
brane systems. To this end, we ex-
emplify a simple particle-based ratio-
nal approximation of the mathemati-
cal constant π. This application sce-
nario utilises a square-shaped under-
lying grid equipped with Cartesian co-
ordinates along with a centered point
of origin. The grid inscribes a cir-
cle, for simplicity we choose a radius
whose unit of length equals to 1. Now,
a huge number of particles is ran-
domly distributed on the underlying
grid taking care that an equipartition
of the particles is met. The equipar-
tition ensures a spatial homogeneity.
Those particles placed within the cir-
cle form a blot with a corresponding
category on its own, see Figure 2. Beyond that, all particles in the whole grid are
considered as a (partially overlapping) blot as well substantiating a second cat-
egory. Towards an approximation of π = 3.14159265 . . ., we only need to count
the number of particles in both categories. Since the circle with radius 1 covers
an area of π while the grid constitutes 4 surface units. As an approximation, we
end in the responding relation:

π

4
=

number of particles placed within the circle

number of particles in total on the whole grid

Let us now formulate the dedicated blotting membrane system. To do so,
we assume to have enough previously scattered particles P at hand whose co-
ordinates come either from a numerical simulation based on a (pseudo) random
number generator or from direct physical measurement. We employ a uniform
label l for all particles. A resulting system might read:

Π = (P,L,C,B1, . . . , B|C|, S,R, r) with

L = {l}

223

P = {(0.70191,−0.21355, l), (0.02273, 0.91508, l), . . . , (−0.45160, 0.52241, l)}
C = {�,�}
B� = {(x, y, l) | (x, y, l) ∈ P ∧ x2 + y2 ≤ 1}
B� = {(x, y, l) | (x, y, l) ∈ P ∧ |x| ≤ 1 ∧ |y| ≤ 1}
S(c) = |Bc| ∀c ∈ C
R = R

r(S) = 4 · S(�)

S(�)

A simulation case study discloses following numerical results for instance:

|P | S(�) S(�) rational approximation r of π
10,000 7,928 10,000 3.1712. . . (2 reliable digits)

1,000,000 785,502 1,000,000 3.1421. . . (3 reliable digits)
100,000,000 78,542,447 100,000,000 3.1417. . . (4 reliable digits)

Obviously, an ascending number of particles involved in the system leads to a
higher accuracy of the approximation. Nevertheless, we are aware of the slow
convergence behaviour. An additional decimal digit of π reliably figured out by
the blotting membrane system requires a 100-fold increase of the total particle
number due to the two-dimensional nature of the experimental setting. Of
course, the numerical precision of particle coordinates needs to be adapted as
well.

3 Particle-based Numerical Integration

An evident application of cate-

0

a bx

f

h

y

Fig. 3. Operating scheme of a particle-
based numerical integrator

gorised counting for molecular compu-
tation can be found in particle-based
numerical integration. Enhancing the
idea of a particle-based rational ap-
proximation of the constant π intro-
duced in the previous section, we pre-
pare a two-dimensional grid with the
complete course of the desired real-
valued function f : R −→ R+ to be
integrated numerically within a range
[a, b] of interest, see Figure 3. Subse-
quently, a huge number of particles
becomes consistently scattered over
the whole grid producing a spatially homogeneous particle distribution. Within
a separate category, the number of particles placed below the function course
of f is achieved by counting. Its amount in comparison with the total number
of particles on the whole grid offers a rational approximation of the numerical
integral to be calculated:

224

b∫
a

f(x) dx

h · (b− a)
=

number of particles placed below the function course of f

number of particles in total on the whole grid

Written as a blotting membrane system, we obtain for instance (particle coordi-
nates adjusted to h = 10, a = 0, b = 10):

Π = (P,L,C,B1, . . . , B|C|, S,R, r) with

L = {l}
P = {(3.46119, 1.83835, l), (0.92240, 2.70318, l), . . . , (4.07919, 3.95624, l)}
C = {

∫
,�}

B∫ = {(x, y, l) | (x, y, l) ∈ P ∧ x ≥ a ∧ x ≤ b ∧ y ≥ 0 ∧ y ≤ f(x)}
B� = {(x, y, l) | (x, y, l) ∈ P ∧ x ≥ a ∧ x ≤ b ∧ y ≥ 0 ∧ y ≤ h}
S(c) = |Bc| ∀c ∈ C
R = R

r(S) = h · (b− a) · S(
∫

)

S(�)

An impressive example for biological exploitation of numerical integration is
inspired by cicadas, insects of the species Magicicada. Populations in northern
America share a synchronous life cycle of 17 years while those in central America
prefer 13 years [18]. Most of its existence is spent underground in a dormant state.
Shortly before the end of the life cycle, all the adults of a brood emerge at roughly
the same time to reproduce for several weeks. After laying their eggs, the adults
die off and the cycle begins again. What stands out is that 17 and 13 are prime
numbers, which suggests that the reproduction period does not coincide with the
life cycles of potential predators. The simultaneous mass awakening of a brood
also ensures that predators are overwhelmed by the number of cicadas so that
a large number can survive. In order to guarantee a concerted awakening of all
members of a brood, the species needs a precise molecular mechanism to measure
the passage of the appropriate amount of time. Since it seems that there is no
external stimulus with a natural period of 13 or 17 years, its exact estimation
exclusively based on annual or even shorter cycles becomes a complicated task
[28].

There is some evidence for a potential annual stimulus utilised by periodical
cicadas: sap circulating through the root capillars. Its intensity alters between
high abundance during the growth period and almost absence during winter [7].
Cicada larvae could make use of the sap for nutrition while metabolic byprod-
ucts accumulate in terms of a numerical integration from its temporal course.
Following this idea, the byproducts would persist within one or several vesicles
whose outer membranes are going to burst after its content has reached a certain
mass.

225

la
te

 a
le

rt
 i
f

a
n

n
u

a
l
g

ro
w

th
d

im
in

is
h

e
d

 b
y
 2

.8
0

%

p
e

rf
e

c
t

a
le

rt

e
a

rl
y
 a

le
rt

 i
f

a
n

n
u

a
l
g

ro
w

th
in

c
re

a
s
e

d
 b

y
 2

.9
7

%

1 2 3 4 16 170

s
a
p

a
b
u
n
d
a
n
c
e
 o

f
a
c
c
u
m

u
la

te
d

m
o
le

c
u
la

r
b
y
p
ro

d
u
c
t
in

 v
e
s
ic

le

0 1 2 3 4 16 17

15

15

a
b
u
n
d
a
n
c
e

years

years

threshold

Fig. 4. Schematic representation of a molecular numerical integrator possibly residing
in periodical 17-year cicadas for control and synchronisation of population life cycle

Up to now, we failed in retrieving detailed scientific publications on hypoth-
esised or even verified mechanisms. A more or less speculative model aims at a
combination of two processes, a slow growth on the one hand and a threshold
on the other. Growth means a successive accumulation of a dedicated species.
As soon as its concentration exceeds an inherently set threshold, the finalisation
of the life cycle is initialised indicating the elapsed amount of 17 years. A suc-
cessive accumulation organised for instance in annual cycles is useful for a high
precision. To this end, a core oscillator (like periodical sap cycle) could provide
an annually altering signal of the form a + sin(bt) subject to time t. A simple
signal integration then produces a temporal course of the form at− 1

b ·cos(bt)+C
with a successive, staircase-shaped growth, see Figure 4.

The molecular alert after reaching the threshold could initiate a signalling
cascade which in turn releases trigger molecules into the environment. The trig-
ger molecules on their own could interact by a special form of quorum sensing
[2, 19]: A cicada larva needs to perceive enough trigger molecules in conjunction
with having met its inherent threshold in order to finalise its life cycle. This
finetuning synchronisation strategy seems to be sufficiently robust but never-
theless, it is more prone to premature or late alert than a discretely operating
n-ary counter which in contrast requires a large and complex reaction network
[13]. In simulation studies, we empirically found out that annual variation of
byproduct increase within a range of approx. −2.80% . . . + 2.97% can be tol-
erated by sinusoidal numerical integration keeping the point in time when the
threshold is reached within the growth period of year 17 (Figure 4, right part).
Furthermore, a numerical integrator in concert with a finetuning sensing mech-
anism for population-wide synchronisation is sufficient to toggle the life cycle
between a variety of years by a low number of slight evolutionary changes. Hav-

226

ing this feature at hand, it becomes plausible how a widespread range of life
times could emerge where those forming prime numbers resist the evolutionary
selection driven by predators.

Let us now formalise the speculative model using a blotting membrane system
which is focused on alerting life cycle finalisation. Here, the categorised counting
mechanism needs to distinguish the accumulated byproduct (A) on the one hand
and the sensed trigger molecules (T) on the other. To this end, we employ two
molecular labels A and T , respectively. The underlying grid is symbolised by a
plan view into the soil (arbitrarily chosen: 0 ≤ x ≤ 8 and 0 ≤ y ≤ 3). A spatial
cluster of byproducts A (maximum cluster inherent distance: 0.03) marks the
position of a cicada larva. Within a local circular environment (maximal distance:
0.8), it detects trigger molecules. Systems response comprises overall alerting on
life cycle finalisation:

Π = (P,L,C,B1, . . . , B|C|, S,R, r) with

L = {A, T}
P = {(1.123, 1.992, A), (1.125, 2.001, A), . . . , (4.338, 0.874, T)}
C = ∪B(x,y,l) with l ∈ L

B(x,y,A) = {(x, y,A) | (x, y,A) ∈ P ∧ ∀(a, b, A) ∈ P : (x− a)2 + (y − b)2 ≤ 0.03}
whereas

x =
1

|B(x,y,A)|
·

∑

(x,y,l)∈B(x,y,A)

x and y =
1

|B(x,y,A)|
·

∑

(x,y,l)∈B(x,y,A)

y

B(x,y,T) = {(x, y, T) | (x, y, T) ∈ P ∧ (x− x)2 + (y − y)2 ≤ 0.8}
S(x, y,A) = |D| with

D = {B(x,y,A)

∣∣ |B(x,y,A)| ≥ thresholdA ∧ |B(x,y,T)| ≥ thresholdT }
R = N

r(S) = |supp(S)|

Figure 5 illustrates the formalism. P is composed of all dark dots, small ones
and ellipsoidal ones. Small dots represent accumulated byproducts A arranged
in four clusters while ellipsoidal dots exhibit trigger molecules T, all of them
spatially distributed on a grid (soil). The classification identifies four byproduct
categories corresponding to the clusters. They are named in accordance to their
central coordinates: B(1,2,A), B(3,1,A), B(5,1.5,A), B(7,1,A). Each of them stands
for a cicada larva surrounded by a circular environment which sensibilises for
trigger molecules: B(1,2,T), B(3,1,T), B(5,1.5,T), B(7,1,T). Especially, B(7,1,T) = ∅
since there are no trigger molecules here. Let us require at least 20 byproduct
molecules to form thresholdA and at least 5 trigger molecules for thresholdT .
Multiset S decides for each larva whether or not it exceeds both thresholds:
S = {((1, 2, A), 1), ((3, 1, A), 1), ((5, 1.5, A), 0), ((7, 1, A), 0)}. The final response
provides the number of larvae alerting finalisation of life cycle, here r(S) = 2.

227

3

2

21 4 5 6 7 8
x

y

1

trigger molecules (T)
intracicadially accumulated byproduct (A)

Fig. 5. Fictive cicada population given by a two-dimensional distribution of trigger
molecules (T) released by three cicadas and individually accumulated byproduct (A).
Central positions of cicadas were chosen randomly, molecules T and A also randomly
placed within and around circular regions assigned to each cicada. Trigger molecules
T reflect outcome of a potential quorum sensing process at a fixed point in time.

4 Electrophoresis: A Molecular Bucket Sort

Electrophoresis subsumes a physical technique able to spatially separate elec-
trically charged molecules by their weights [15]. Particularly, DNA (negatively
charged) and many naturally originated proteins (twisted and folded chains of
amino acids whose electrical charge is mainly determined by outer amino acid
side chains) are beneficial candidates for widespread applications in molecular
biology and chemical analysis [27].

Mostly, electrophoresis takes place within a special physical medium like a
gel which carries and steers the molecules during the separation process. To do
so, the gel is prepared in a way to be equipped with numerous pores forming
woven channels or tunnels sufficiently sized to allow passage of charged sample
molecules. For instance, agarose is commonly used to compose a gel suitable
for electrophoresis on DNA. The fibre structure of agarose enables pores whose
diameter usually varies between 150 and 500 nanometres while a DNA strand
(in biologically prevalent B-DNA conformation) diametrally consumes merely 2
nanometres but its length can reach several hundred nanometres [9]. The ready-
made gel, typically between 10 and 30 centimetres in length or width and up to 5
millimetres thick, is embedded in a gel chamber filled up with a buffer solution in
order to adjust an appropriate pH environment. The gel chamber comes with two
electrodes, a negative one and a positive one, placed at the opposite boundaries
of the gel, see Figure 6.

Subsequently, the sample mixture of DNA strands to be separated becomes
injected into the gel close to the negative electrode. Now, an electrical direct-
current (DC) voltage, provided by an external power supply and mostly chosen
between 80 and 120 volts, is applied to the electrodes. Driven by the electri-
cal force, the negatively charged molecules begin to run towards the positive
electrode along a lane through the pores of the gel. In order to mobilise, each
molecule has to overcome its friction notable in both forms, with the gel on the
one hand and inherently on the other. Interestingly, the resulting velocity of

228

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

gel tray ready−made
agarose gel

slots for injection of
DNA sample

2

3

4

100150200 DNA strand length

in base pairs (bp)

50bp standard ladder

DNA

1

50

− +

further

sample lanes

−
+

− +
100V

chamber

external

power

supply

gel

Fig. 6. Sketching technical instruments and outcome of agarose gel electrophoresis.

movement strongly depends on the mass (weight) of the individual molecules.
Since small and light molecules induce a low friction, they run faster than heavier
exemplars. This distinction finally effects the resulting spatial separation accord-
ing to the weights of involved charged molecules. The process of electrophoresis
is stopped by switching off the voltage shortly before the smallest molecules have
reached the opposite end of the gel. For an easier visualisation of this process,
the molecular mixture initially becomes enriched by a weakly binding dye whose
velocity converges in compliance with the smallest sample molecules [27].

In addition, the DNA sample molecules had been stained using a fluorescence
marker like ethidium bromide [21]. This substance loosely binds to the hydrogen
bonds of double-stranded DNA and persists at the DNA during the electrophore-
sis run. Ethidium bromide attached to DNA fluoresces under ultra violet (UV)
light making the DNA visible inside the gel. Typically, the DNA after elec-
trophoresis is arranged in so-called bands (sustained bar-shaped blots) along the
underlying lane. Normally, these bands appear in light-grey up to white colours
on a dark gel background. The colours intensity gives a raw information on the
absolute number of molecules of almost the same mass accumulated within each
band, see Figure 7, left part. In a first and mostly sufficient approximation, gel
electrophoresis can be modelled by an obvious equation. The electrical force FE
needs to overcome the friction FR. Movement of charged molecules starts up iff
both forces are almost in parity to each other with slight (negligible) emphasis
on FE :

FE ≥ FR, in good approximation FE = FR

Now, we can resolve both forces by formulating its strength using a couple
of dedicated parameters. The electrical force is defined as the product of the
molecular electrical charge q with the electrical field E which in turn can be
measurably expressed by the quotient of the voltage U and the distance h be-
tween the electrodes: FE = q · E = q · Uh . In contrast, the friction in accordance
with Stokes’ law reads: FR = 6 ·π ·η · r ·v assuming movement of a sphere where
r denotes the radius, v symbolises its velocity, and η stands for the viscosity of
the medium, mainly reflecting the average size of the pores. The velocity can
be assumed to remain almost constant after a short acceleration phase in con-
junction with switching on the electrical voltage. Putting everything together
reveals:

v =
q · E

6 · π · η · r

229

The only indetermined parameter is the radius r of the anticipated sphere
respresenting the moving charged molecule. In order to cope with that, we can
imagine that the volume Vmolecule of the charged molecule resembles the volume
Vsphere of the anticipated sphere. Having this in mind, we can write Vmolecule = m

ρ

with m denoting the mass (weight) of the molecule and ρ its density. Moreover,
Vsphere = 4

3 · π · r3. From that, we obtain:

r =

(
3

4 · π ·
m

ρ

) 1
3

Let us now compose a resulting function s : R2 −→ R which describes the
distance moved by a charged molecule with mass m after an elapsed time t:

s(m, t) = v · t

=
q · E

6 · π · η
(

3·m
4·π·ρ

) 1
3

· t

=
q

6 · π ·
(

3
4·π·ρ

) 1
3

︸ ︷︷ ︸
taken as global parameter G

·E
η
· 1

m
1
3

· t

= G · E
η
· 1

m
1
3

· t

For DNA agarose gel electrophoresis, the electrical field E frequently con-
stitutes between 400V

m and 500V
m while the viscosity commonly differs from

0.001 kg
m·s (consistency like water in large-pored gels) up to 0.02 kg

m·s in small-
meshed gels enhancing the friction along with producing heat. From empirical

studies, we fitted a constant average value of approx. 6.794 · 10−4 A·s·kg 1
3

m for G
in agarose gel electrophoresis on double-stranded non-denaturing DNA. When
employing the molecule mass m in kg along with elapsed time t in s and re-

membering that 1VAs = 1kg·m2

s3 , the final value of the function is returned in
metres.

By means of a complementary study, we face the mathematical model with
corresponding experimental data captured within a blotting image. This study
is dedicated to demonstrate that electrophoresis can be interpreted to execute a
variant of bucket sort which ascendingly arranges the involved charged molecules
by their masses. In concert with the notion of a blotting membrane system, we
exploit the aforederived function s(m, t) for geometrical definition of the buckets,
each of them representing a region on the gel assigned to a cluster. For the ex-
periment, we utilise a predefined mixture of double-stranded DNA whose strand
lengths reach from 100 base pairs (bp) up to 1000bp in steps of 100bp. Addition-
ally, the sample contains strands with 1200bp and 1500bp. The whole sample
acts as a so-called DNA ladder made from a cleaved plasmid (100bp standard

230

B1B2B10

1
0

0

2
0

0

4
0

0

1
0

0
0

5
0

0

3
0

0

bp x

y

0.15

agarose gel image
dithered image

and blots
with regions

Fig. 7. Left: 100bp ladder with DNA bands visible in agarose gel. Bands at 500 and
1000bp emphasised by enhanced DNA concentration. Right: Dithered image taken
from gel photo. Based on an underlying coordinate system in metre scale, altering
background regions B1 up to B10 define regions (buckets) in which the DNA molecules
accumulate forming bands arranged as non-overlapping blots. DNA bands with more
than 1000bp neglected in dithered image.

ladder by New England BioLabs) composed of an almost uniform distribution
of the nucleotides A, C, G, and T.

In order to disclose the relation between mass of a DNA double strand and
its length in base pairs, we need to consider the average mass of a nucleotide.
Indeed, there are slight mass deviations between single nucleotides A (Adenine,
≈ 5.467 · 10−25kg), C (Cytosine, ≈ 5.234 · 10−25kg), G (Guanine, ≈ 5.732 ·
10−25kg), and T (Thymine, ≈ 5.301 · 10−25kg). Each nucleotide mass comprises
the chemical base together with its section of the sugar-phosphate backbone. In
average, we obtain ≈ 5.4335 · 10−25kg per nucleotide or ≈ 1.0867 · 10−24kg per
base pair. Marginal influences of dye and ethidium bromide are neglected.

The left part of Figure 7 depicts the agarose gel image under UV light mak-
ing visible the individual DNA bands arranged within the lane after running
the electrophoresis for 2700 seconds (45 minutes). Each band corresponds to a
predefined strand length. Using the gel image, a simple dithering (selectively ap-
plied to all bands between 100 and 1000 base pairs) generates a set of uniquely
located dots from the bands, see right part of Figure 7. The dots are equipped
with geometrical coordinates. At that stage, we have everything at hand to fi-
nally formulate the blotting membrane system from the experiment (running
conditions E = 400V

m , η = 0.001 kg
m·s):

Π = (P,L,C,B1, . . . , B|C|, S,R, r) with

L = {l}
P = {(0.143, 0.082, l), (0.142, 0.077, l), . . . , (0.714, 0.079, l)}
C = {1, . . . , 10}
Bi = {(x, y, l) | (x, y, l) ∈ P ∧

s
(
(100 · i− 50) · 1.0867 · 10−24, 2700

)
≥ x ∧

x ≥ s
(
(100 · i+ 50) · 1.0867 · 10−24, 2700

)
} ∀i ∈ C

S(c) = |Bc| ∀c ∈ C
R = N|C|

r(S) = (S(1), . . . , S(10))

231

5 Discussion and Conclusions

Along with a couple of case studies we demonstrated the descriptive practicabil-
ity of blotting membrane systems. The main advantage of this formalism consists
in its capability of tremendous data reduction. From a large number of geomet-
rical dot coordinates together with some auxiliary data, a rather condensed
systems output can be achieved retaining the crucial behaviour and characteris-
tics of the system under study. For instance, in case of numerical integration, an
amout of several million individual dots taken as systems input becomes com-
piled forming a single rational number which stands for the resulting integral
value.

In its present form, blotting membrane systems behave in a more or less
static manner. Recently, they lack any temporal or dynamical aspect [1, 12, 17].
A promising extension could take into account a possible progression of the blots,
spots, and dots over time. From a modelling point of view, this feature might
be incorporated by creation of a finite automaton whose states are blotting
membrane systems. Using periodical trigger signals or by means of signalling
events, a dedicated state transition from the previous system to its successor(s)
could help to trace clusters together with its counts along a time line.

We believe that membrane computing as an innovative field of research sus-
tainably benefits from a plethora of real-world applications making the underly-
ing algebraic formalisms a powerful toolbox to cope with challenges in managing
big data. Categorised counting can be seen as a technique of data mining which
combines the possibility of massively parallel data processing promoted in mem-
brane computing with exploitation of statistical or deductive methods. Futural
studies will be intent upon strengthening this fruitful relationship.

References

1. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, L. Tesei. Spatial P
Systems. Natural Computing 10:3-16, 2011

2. F. Bernardini, M. Gheorghe, N. Krasnogor. Quorum sensing P systems. Theoretical
Computer Science 371(1-2):20-33, 2007

3. B. Bowen, J. Steinberg, U.K. Laemmli, H. Weintraub. The detection of DNA-
binding proteins by protein blotting. Nucleic Acids Research 8(1):1-20, 1980

4. M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher. Green fluorescent
protein as a marker for gene expression. Science 263(5148):802-805, 1994

5. L.S. Churchman, Z. Ökten, R.S. Rock, J.F. Dawson, J.A. Spudich. Single molecule
high-resolution colocalization of Cy3 and Cy5 attached to macromolecules mea-
sures intramolecular distances through time. PNAS 102(5):1419-1423, 2005

6. H. Cohen, C. Lefebvre (Eds.). Handbook of Categorization in Cognitive Science.
Elsevier, 2005

7. T.E. Dawson, J.S. Pate. Seasonal water uptake and movement in root systems
of plants of dimorphic root morphology: a stable isotope investigation. Oecologia
107:13-20, 1996

8. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From Data Mining to Knowledge
Discovery in Databases. American Assoc. for Artificial Intelligence 3:37-54, 1996

232

9. D. Hames, N. Hooper. Biochemistry. Third Edition, Taylor & Francis, 2005
10. J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. Morgan Kauf-

mann, 2011
11. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Series in Statistics, Springer Verlag, 2009
12. T. Hinze, R. Fassler, T. Lenser, P. Dittrich. Register Machine Computations on

Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using
Mass-Action Kinetics. International Journal of Foundations of Computer Science
20(3):411-426, 2009

13. T. Hinze, B. Schell, M. Schumann, C. Bodenstein. Maintenance of Chronobiological
Information by P System Mediated Assembly of Control Units for Oscillatory
Waveforms and Frequency. In E. Csuhaj-Varju et al. (Eds.). Proc. CMC13. Lecture
Notes in Computer Science 7762:208-227, 2013

14. T. Hinze, J. Behre, C. Bodenstein, G. Escuela, G. Grünert, P. Hofstedt, P. Sauer,
S. Hayat, P. Dittrich. Membrane Systems and Tools Combining Dynamical Struc-
tures with Reaction Kinetics for Applications in Chronobiology. In P. Frisco, M.
Gheorghe, M.J. Perez-Jimenez (Eds.). Applications of Membrane Computing in
Systems and Synthetic Biology. Series Emergence, Complexity, and Computation.
Vol. 7, pp. 133-173, Springer Verlag, 2014

15. B.G. Johannson. Agarose Gel Electrophoresis. Scandinavian Journal of Clinical
and Laboratory Investigation 29(s124):7-19, 1972

16. G.J. Kremers, S.G. Gilbert, P.J. Cranfill, M.W. Davidson, D.W. Piston. Fluores-
cent proteins at a glance. Journal of Cell Science 124:157-160, 2011

17. L. Marchetti, V. Manca, R. Pagliarini, A. Bollig-Fischer. MP Modelling for Systems
Biology: Two Case Studies. In P. Frisco, M. Gheorghe, M.J. Perez-Jimenez (Eds.).
Applications of Membrane Computing in Systems and Synthetic Biology. Series
Emergence, Complexity, and Computation. Vol. 7, pp. 223-243, Springer Verlag,
2014

18. C.L. Marlatt. The periodical cicada. Bull. U.S. Dept. Agri., Div. Entomol. Bull.
18:52, 1907

19. M.B. Miller, B.L. Bassler. Quorum Sensing in Bacteria. Annu. Rev. Microbiol.
55:165-199, 2001

20. G. Păun. Membrane Computing: An Introduction. Springer Verlag, 2002
21. R.W. Sabnis. Handbook of biological dyes and stains: synthesis and industrial ap-

plication. Wiley-VCH, 2010
22. E.M. Southern. Detection of specific sequences among DNA fragments separated

by gel electrophoresis. Journal of Molecular Biology 98(3):503-517, 1975
23. A. Sparmann, M. van Lohuizen. Polycomb silencers control cell fate, development

and cancer. Nature Reviews Cancer 6:846-856, 2006
24. H. Towbin, T. Staehelin, J. Gordon. Electrophoretic transfer of proteins from poly-

acrylamide gels to nitrocellulose sheets: Procedure and some applications. PNAS
76(9):4350-4354, 1979

25. C. Nüsslein-Volhard. Determination of the embryonic axes of Drosophila. Devel-
opment 113:1-10, 1991

26. M. Lizotte-Waniewski, W. Tawe, D.B. Guiliano, W. Lu, J. Liu, S.A. Williams,
S. Lustigman. Identification of Potential Vaccine and Drug Target Candidates by
Expressed Sequence Tag Analysis and Immunoscreening of Onchocerca volvulus
Larval cDNA Libraries. Infection and Immunity 68(6):3491-3501, 2000

27. R. Westermeier. Electrophoresis in Practice. Wiley-VCH, 2005
28. K.S. Williams, C. Simon. The ecology, behavior and evolution of periodical cicadas.

Annual Review of Entomology 40:269-295, 1995

233

234

Polymorphic P Systems with Non-cooperative
Rules and No Ingredients

Sergiu Ivanov

Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est
61, av. du gén. de Gaulle, 94010 Créteil, France

sergiu.ivanov@u-pec.fr

Abstract. Polymorphic P systems represent a variant of the bio-inspired
computational model of P systems, in which the rules are not explicitly
given in the description of the system, but are implicitly defined by the
contents of certain membranes. In this paper we give a characterisation of
the most basic class of such systems, in which only non-cooperative rules
are allowed and no ingredients are included. We start by formulating two
different formal definitions of non-cooperativity and then show that they
are equivalent. We also define the upper bound on the generative power
of polymorphic P systems and, finally, show that the languages produced
by such systems form a hierarchy related to the maximal allowed depth
of the membrane structure.

1 Introduction

Membrane computing is a fast-growing research field opened by Gh. Păun in
1998. It presents a formal framework inspired from the structure and function-
ing of the living cells. In the paper [1], yet another relatively powerful exten-
sion to the model is defined, which allows the system to dynamically change
the set of rules, which is thus not limited to some finite prescribed set of candi-
dates. There were three main motives for this extension. Firstly, experience shows
that “practical” problems need “more” computing potential than just computa-
tional completeness. Secondly, a very important computational ingredient was
imported from computer science: the approach in which both the “program” and
the “data” are represented in the same way. And finally, such an extension cor-
relates with the biological idea that different actions are carried out by different
objects which can, too, in their turn, be acted upon. The full motivation as well
as references to related papers are given in the cited work [1].

In this paper we give a characterisation of the most basic class of polymorphic
P systems, which only relies on non-cooperative rules and does not include any
ingredients. We start by formulating two different formal definitions of non-
cooperativity and then show that they are equivalent. We also define the upper
bound on the generative power of polymorphic P systems and, finally, show that
the languages produced by such systems form a hierarchy related to the maximal
allowed depth of the membrane structure.

235

The motivation for examining the class of polymorphic P systems with non-
cooperative rules without any additional ingredients but polymorphism itself is
twofold. On the one hand, since this is the most restricted variant of polymorphic
P systems, and thus understanding its computing power is important for under-
standing the computing power of the general variant. On the other hand, poly-
morphic P systems without ingredients and with non-cooperative rules turn out
to be more powerful than conventional transition P systems with non-cooperative
rules. In fact, polymorphism enables some otherwise very restricted models to
generate rather “difficult” superexponential number languages. Given that an
actual software implementation of polymorphic rules does not seem to require
essentially more resources than that of invariant rules, restricted variants of poly-
morphic P systems may turn out practical to use in solving certain real-world
problems. We would expect to find such applications in the domains in which
massive parallelism is required, because non-cooperative rules are intrinsically
easy to parallelise.

2 Preliminaries

2.1 Formal Languages and Complexity Theory

In this section we recall some of the basic notions of the formal language and
complexity theories. For a more comprehensive overview of the mentioned topics
we refer the reader to [3, 7, 8, 2].

A (non-deterministic) finite automaton is the tuple

A = (Q,Σ, δ, q0, F),

where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 is the initial state of the automaton and F is the
set of final states. The automaton starts in the initial state q0 and examines the
input tape symbol by symbol. If it finds the symbol a ∈ Σ in state qi ∈ Q, it
transitions in a non-deterministic way into one of the states from the set δ(qi, a).
If, at a certain step, the automaton is in state qi and is reading a symbol a such
that δ(qi, a) = ∅, it halts. The automaton A is said to accept (recognise) only
those inputs for which it consumes the input entirely and halts in a final state.

We will refer to the families of sets which can be recognised by a finite
automaton as regular families.

Let V be a finite set. A finite multiset w over V is a mapping w : V → N,
which specifies the number of occurrences of each a ∈ V . The size of the multiset
is defined as |w| = ∑

a∈V
w(a). A multiset w over V can be also represented by any

string x such that it contains exactly w(a) symbols a, for all a ∈ V . The support
of w is the set of symbols which appear in it: supp(w) = {a ∈ V | w(a) > 0}.
Given two multisets x and y over the same alphabet V , x is called a submultiset
of y, written x ≤ y, if x(a) ≤ y(a), for all a ∈ V . If x(a) < y(a) for some a ∈ V ,
x is called a strict submultiset of y, written as x < y.

236

Let f and g be two functions defined on a subset of real numbers. We write
f(x) ∈ O(g(x)) if and only if there exists a positive real number M and a real
number x0 such that |f(x)| ≤ M |g(x)| for all x ≥ x0. We write f(x) ∈ Θ(g(x))
if there exist positive real numbers k1 and k2, and a real number x0, such that
k1 · g(x) ≤ f(x) ≤ k2 · g(x), for all x ≥ x0.

We will now define the notion of a polymorphic P system without ingredients.
For the original definition we refer the reader to [1]. For a general introduction
to P systems, the reader is referred to [4, 6]. For a comprehensive overview of
the domain, we recommend the handbook [7].

A polymorphic P system is defined as a tuple

Π = (O, T, µ, ws, w1L, w1R, . . . , wmL, wmR, iout),

where O is a finite alphabet and µ is a tree structure consisting of 2m + 1
membranes, bijectively labelled by the elements of H = {s} ∪ {iL, iR | 1 ≤
i ≤ m}. The label s is assigned to the skin membrane. We require that, for
1 ≤ i ≤ m, the membranes iL and iR have the same parent membrane. Finally,
the set T ⊆ O describes the output objects, while iout ∈ H∪{0} gives the output
region, the symbol 0 standing for the environment.

The rules of a polymorphic P system are not explicitly given in its description.
Essentially, such a system has m rules, and these rules change as the contents
of the regions other than the skin change. Initially, for 1 ≤ i ≤ m, the rule
i : wiL → wiR belongs to the region defined by the parent membrane of iL and
iR. If wiL is empty, then the rule is considered disabled. For every step of the
computation, each rule is defined in the same way, taking the current contents
of iL and iR instead of the initial ones. We sometimes refer to the membranes
iL and iR as to left-hand-side and right-hand-side membranes of the rule i,
respectively.

For reasons of readability, we will often resort to graphical presentation of
polymorphic P systems. In such figures, we will not draw the membranes cor-
responding to invariable rules, but instead will write the rules directly, as it is
conventionally done for other P system models.

A polymorphic P system Π of degree n is said to be with strongly non-
cooperative rules, if, in any evolution, any of the membranes iL, 1 ≤ i ≤ m,
contains at most one symbol. A polymorphic P system Π of degree n is said
to be with weakly non-cooperative rules, if, in any evolution, all rules which are
applied have exactly one symbol in the left-hand side.

Note that weak non-cooperativity allows left-hand sides of rules to contain
more than one symbol and only requires that, whenever this happens, the rule
be not applicable.

In our shorthand notation for classes of polymorphic P systems we will write
ncoos and ncoow to refer to the classes of polymorphic P systems with strongly
and weakly non-cooperative rules respectively. We will also specify the number
of membranes and whether disabling rules is allowed. Thus to refer to the fam-
ily of polymorphic P systems with weakly non-cooperative rules, in which rule
disabling is allowed, and which have at most k membranes, we will write the

237

following expression:
OPk(polym+d(ncoow)).

If no bound on the number of membranes is specified, k is replaced by ∗ or is
omitted. If disabling rules is not allowed, we write −d in the subscript of polym.

For weakly non-cooperative polymorphic P systems, not allowing the dis-
abling of rules would mean that all left-hand-side membranes are not empty at
any step of the evolution. In the case of strong non-cooperativity, the same re-
quirement would mean that no left-hand-side membrane iL contains an erasing
rule (a rule of the form a→ λ).

We would like to remark that, due to the inherently dynamic nature of rules of
a polymorphic P system, verifying whether the rules are weakly non-cooperative,
or whether they can be disabled, are not straightforward tasks. Indeed, deciding
if the rules are never disabled would mean checking if the languages gener-
ated in left-hand-side membranes contain the empty word. Proving weak non-
cooperativity is even more complex: it would require showing that, whenever the
contents of the left-hand-side membrane iL contain more than one symbol, this
multiset is not a submultiset of the contents of the parent membrane of iL.

The depth of a polymorphic P system is defined as the height of the membrane
structure µ seen as a tree. Thus, a polymorphic P system which has no rules has
depth 1, a polymorphic P systems which has invariable rules is of depth 2, etc.
To refer to a class of polymorphic P system of depth limited to d, we add the
number d as a superscript the notation we have introduced above:

OP d
k (polym+d(ncoow)).

A polymorphic P system is called left-polymorphic if only left-hand sides of
the rules are allowed to vary. A polymorphic P system is called right-polymorphic
if only right-hand sides of the rules are allowed to vary.

In the notation we have introduced in the previous paragraphs, we will use the
symbols lpolym and rpolym to refer to the classes of left- and right-polymorphic
P systems respectively.

Note that the effective implication of the definition of left-polymorphic P
systems is that no right-hand-side is allowed to contain any rules. The symmetric
statement is true for right-polymorphic P systems.

3 Strong and Weak Non-cooperativity

In this section we are going to show that the notions of strong and weak non-
cooperativity are equivalent, when no ingredients but disabling of rules are al-
lowed.

We start by proving an intermediate result concerning left-polymorphic P
systems of depth 3.

Lemma 1. Consider a left-polymorphic P system Π of depth 3 and with weakly
non-cooperative rules. Then, any weakly non-cooperative rule i of Π can be re-
placed with a strongly non-cooperative one without changing the generated lan-
guage.

238

Proof. Consider a left-hand side membrane iL of Π. If the contents of this
membrane do not change in any evolution, or do not ever include more than
one symbol, the rule i is strongly non-cooperative. Suppose now that, at certain
evolution steps iL may contain more than one symbol. Consider a computation
C of Π and two configurations Ck and Cm, k < m, such that in Ck and Cm

the membrane iL contains at most one symbol, and none of the configurations
Ck+1, . . . , Cm−1 has this property. Suppose that in Ck the membrane iL contains
an instance of x and in Cm it contains an instance of y or the empty multiset
λ. Remember that, since the depth of Π is 3, the rules which appear in iL are
invariable, that is, they are normal context-free multiset rewriting rules. The fact
that such rules cannot be used for counting multiplicities of symbols motivates
the following construction.

Define the transition relation (→iL) ⊆ 2O×2O on the subsets of the alphabet
O of Π as follows. Consider the “flattened” version of the rules in iL, that is,
only consider the supports of the multisets defining the right-hand sides of the
rules. Now, for M1,M2 ⊆ Q, define M1 →iL M2 to be equivalent to the fact that
the set M2 can be obtained from M1 as a union of the right-hand sides of those
(flattened) rules in iL whose left-hand sides are in M1.

Consider a sequence (Mi)1≤i≤k of subsets of O, such that Mi →iL Mi+1,
1 ≤ i ≤ k − 1. Then, whenever iL contains a multiset with support M1 there
exists an evolution of Π in which, after k steps, iL contains a multiset with
support M2. Such an evolution can be obtained by always applying one kind of
rule to any symbol; e.g., if there are several instances of a and several rules with
a in their left-hand side, then we only apply one of the rules to all instances of
the symbol a.

Now turn back to our original pair of configurations Ck and Cm, and consider
the case in which, in Cm, iL contains the empty multiset. Some of the possible
evolutions of the contents of iL are given by the sequences M of subsets of O
which pairwise satisfy the relation (→iL) and in which the first subset is {x}
and the last one is ∅. We now claim that the length of a derivation of Π which
brings Ck into Cm corresponds to the length of such a sequence M. Indeed,
the evolutions of the contents of iL which are not directly modelled by chains
defined by (→iL) are those in which, at a certain step, different rules r1, . . . , rm
are applied to different instances of the same symbol a. But then, the next
state of iL can be seen as modelled by all subsets of O which correspond to the
(possible) steps in which only one of the rules r1, . . . , rm is applied.

Consider, for example, the multiset aa and two rules a→ b and a→ c. This
gives rise to the following two relations: {a} → {b} and {a} → {c}. Then we
say that these two relations model any transition from aa to a multiset derived
according to the shown rules.

Using this approach we can model any evolution of iL as a tree of subsets of
O. The height of this tree will be given by the length of the longest path from its
root, which is itself a sequence of subsets of O pairwise satisfying (→iL). Thus,
the length of any derivation bringing an instance of x in iL to an empty set is
given by a length of a such sequence of subsets. Remember now that (→iL) is a

239

finite relation, which means that there exists a finite automaton which recognises
the sequences defined by (→iL).

To prove that a similar fact holds for the case in which the instance of x in iL
is transformed into exactly one instance of y in configuration Cm we will define
the extended transition relation (→′iL) ⊆ 2O

′ × 2O
′
, where O′ = {a, a′ | a ∈ O}.

Intuitively, the fact that a set M ⊆ O′ contains a primed symbol a′ will refer to
the fact that M represents a multiset that contains more than one instance of
a. The extended transition relation is defined in the following way.

For M ⊆ O, we consider all the multisets w which can be obtained by
applying the rules from iL to the multiset containing one instance of every
symbol from M . Then, for every such multiset w we build the set M ′ ⊆ O′ in
the following way:

M ′ = {a ∈ O | w(a) = 1} ∪ {a′ ∈ O′ | w(a) > 1},

and we put M →′iL M ′ for every such M ′.
Now let M ⊆ O′ contain some primed symbols. First off, let R be the set of

“flattened” rules in iL (only take the supports of their right-hand sides); consider
also the set R′ which contains the same rules as in R, but operating on primed
symbols. We now build all the multisets which can be obtained by applying the
rules from R ∪R′ to the multiset containing one instance of every symbol from
M . For every such multiset w we build the set M ′ in the following way:

M ′ = {a ∈ O | w(a) = 1} ∪ {a′ ∈ O′ | w(a) > 1} ∪ {a′ ∈ O′ | w(a′) > 0},

that is, when we apply a rule to a primed symbol, all the products are kept primed
to indicate that, in the represented multiset there may be multiple instances of
them. Again, we put M →′iL M ′ for all such sets M ′.

The extended transition relation as we have defined it so far (→′iL) allows
us to model the possible evolution scenarios of the contents of the region iL
in a way similar to (→iL). However, it does not yet capture the possibility
of deriving a single instance of y from a different symbol a present in more
than one copy in iL. To capture that possibility as well, we will further extend
(→′iL). Based on the original set M and a primed symbol a′ ∈ M , we will
define another set Ma = (M ∪ {a}) \ {a′} and we will construct the sets M ′a in
exactly the same way we constructed M ′. We will then pair up those sets M ′

and M ′a which were obtained by applying two different rules (modulo primed
symbols) to a′ (respectively a), build the unions M ′ ∪M ′a of such pairs, and set
M →′iL M ′ ∪M ′a. The way in which these unions are constructed permits us to
capture the situations in which only one instance of a is consumed by a rule,
while the other a’s were consumed by different rules.

Repeating the argument we made above about (→iL) for the situation in
which Cm contains the empty multiset, we can conclude that the number of
steps between the configurations in which iL contains one instance of x and
those in which it contains exactly one y correspond to the length of chains
defined by (→′iL) starting at {x} and ending at {y}. Therefore, there exists a
finite automaton recognising the heights of such trees and only them.

240

From the existence of the finite automata recognising exactly the distances
in steps between the configurations in which iL contains one symbol or the
empty set, it follows that it is possible to replace the rules in iL by invariable
rules which have at most one symbol in their right-hand side and which model
the state transitions of the corresponding finite automaton, which implies the
statement of the lemma.

The previous lemma makes it possible to prove the following statement con-
cerning left-polymorphic P systems.

Theorem 1. NOP∗(lpolym+d(ncoow)) = NOP∗(lpolym+d(ncoos)).

Proof. Consider a left-polymorphic P system Π with weakly non-cooperative
rules. We will prove the statement of the theorem by induction over the left-
hand-side membranes of Π. Our goal will be to describe the construction of the
counterpart of the extended transition relation from Lemma 1.

Consider such a membrane iL of Π that the sequences of symbols which may
appear in the left-hand sides of the rules in iL at the moments when they are
applicable can be recognised by a finite automaton (one per rule). Remember
that the right-hand sides of all the rules in Π are constant. On the other hand,
the fact that the rules in iL are strongly non-cooperative implies that the to-
tal number of rules which may appear in iL is finite. This makes it possible to
construct finite (multi)sets of rules available in iL at a step of evolution. Fur-
thermore, all the sequences of rules made available by a pair of membranes jL
and jR contained inside iL are regular, and so are the sequences of (multi)sets
of rules made available in iL.

We will construct the transition relation starting from the first step of evo-
lution of iL. We will represent the contents at this step as a subset M of the
alphabet O′ extended with prime symbols and will list the sets M ′ as we did in
the proof of Lemma 1, using the rules available at this step of evolution. Since
the sequences of sets of available rules are regular and since O′ is a finite set,
the sequences of sets defined by the newly-built transition relation are regular
as well.

We can now conclude that, if all the sequences of symbols which appear in the
left-hand sides of the rules in iL are regular, the distances between the steps in
which iL contains exactly one symbol or no symbols at all are regular. Therefore
it is possible to replace the rules in iL with invariable rules modelling the tran-
sitions of the said finite automaton. Together with Lemma 1, this observation
implies the statement of the theorem.

We would now like to prove the general result that polymorphic P systems
with weakly non-cooperative rules do not generate more number languages than
polymorphic P systems with strongly non-cooperative rules. It suffices to show
that the sequence of supports of the multisets representing the right-hand side
of a rule is regular. The following lemma captures this assertion.

Lemma 2. Consider a weakly non-cooperative polymorphic P system Π, pick
a right-hand-side membrane iR of Π, and consider the sequence of multisets

241

(wi)1≤i≤n that appear in iR during an n-step derivation. The sequence of sup-
ports of these multisets is regular.

Proof. In the proof of Lemma 1 we have already seen that the statement we
would like to prove is valid for a membrane iR which only contains invariable
rules. Consider now such a membrane iR which contains rules whose right-hand
sides satisfy the statement of the present lemma and whose left-hand sides can
be modelled with one-symbol transitions (as in Theorem 1). We can adapt the
procedure we followed in the proof of the previous theorem to the situation in
the present lemma. Indeed, since the sequences of supports of both left-hand
sides and right-hand sides of the rules in iR are regular, it is possible to build
a regular sequence of (multi)sets of rules available in iR at every step of the
evolution. Then a sequence of supports of the multisets which appear in iR
will be defined by its first element and the sequence of rules available at each
step, and will therefore be regular. Inductively applying this observation in the
bottom-up manner to all right-hand side membranes of Π proves the statement
of the lemma.

All the arguments we have shown by now can be used to directly derive the
following statement showing that strongly and weakly non-cooperative polymor-
phic P systems define the same sets of languages.

Theorem 2. NOP∗(polym+d(ncoow)) = NOP∗(polym+d(ncoos)).

Proof. Similarly to the procedure shown in Theorem 1, the proof here is done
by induction over left-hand-side membranes. The idea is essentially the same,
and is also based on the statement of Lemma 2: supposing that the sequences of
(multi)sets of flattened rules appearing in a given left-hand-side membrane are
regular, it follows that the activity of this membrane can be simulated with a
finite automaton, which proves the statement of the theorem.

Given the fundamental similarity between P systems with strongly and weakly
non-cooperative rules, we will from now on refer to both classes using the word
“non-cooperative” and the notation ncoo without a subscript.

The proofs we have shown so far imply the following important corollaries.

Corollary 1. Given a polymorphic P system Π ∈ OP∗(polym+d(ncoo)) and a
membrane i of it, the sequence of supports of the multisets which appear in this
membrane is regular.

Corollary 2. Given a polymorphic P system Π ∈ OP∗(polym+d(ncoo)), it is
possible to construct another polymorphic P system Π ′ such that N(Π ′) = N(Π)
and all left-hand-side membranes of Π ′ contain invariable rules.

The P system Π ′ from the previous corollary, is given by the construction
briefly presented in the proof of Theorem 2, that is, by replacing all rules in
a left-hand-side membrane with invariable rules simulating the transitions of a
finite automaton. The practical implication of this corollary is that, in the case of

242

polymorphic P systems with non-cooperative rules and no additional ingredients,
the variability of left-hand sides of rules is only useful for slightly changing the
scope of a rule and switching rules on and off.

We conclude this section by showing that, in the case of non-cooperative
rules, explicitly disabling a rule by emptying its left-hand-side membrane can be
simulated by replacing the empty multiset with a special symbol not belonging
to the original alphabet.

Lemma 3. NOP∗(polym−d(ncoo))) = NOP∗(polym+d(ncoo)).

Proof. Take a polymorphic P system Π ∈ OP∗(polym+d(ncoo))) and pick a
left-hand-side membrane iL which becomes empty at a certain step of the com-
putation. According to Corollary 2, we can consider that all the rules in iL are
invariable, without losing generality. Now replace all the empty right-hand sides
of rules in iL with the singleton multiset ⊥, where ⊥ does not belong to the al-
phabet of Π. Clearly, whenever ⊥ appears in iL, the rule i is effectively disabled
and is blocked in this state forever. On the other hand, we avoid emptying the
membrane iL, which proves the statement of the theorem.

Because it turns out that disabling of rules makes no real difference in terms
of the number languages a (left-) polymorphic P system with non-cooperative
rules can generate, we will sometimes avoid adding “+d” (“−d”) to the shorthand
notation for classes of polymorphic P systems with non-cooperative rules.

4 Left Polymorphism

In this section we will briefly overview the computational power of left-
polymorphic P systems. Remember that, in such P systems, the right-hand side
of any rule is not allowed to embed any other rules. We start by showing that
such polymorphic P systems are still more powerful than conventional transition
P systems [7].

Lemma 4. L2n = {2n | n ∈ N} ∈ NOP∗(lpolym(ncoo)).

Proof. We construct the following left-polymorphic P system generating the
number language L2n :

Π = ({a}, {a}, µ, a, aa, a, a, a, λ, s), where
µ = [[[]

2L
[]

2R
[]

3L
[]

3R
]
1L

[]
1R

]
s
.

The graphical representation of this P system is given in Figure 1.
Π works by repeatedly doubling the number of a’s in the skin membrane,

until the symbol a in 1L is rewritten into the empty multiset, which disables
rule 1 and makes Π halt.

On the other hand, the following observation shows that left-polymorphic P
systems cannot generate all recursively enumerable sets of numbers.

243

2 : a→ a

3 : a→ λ

a
1L

aa
1R

a
s

Fig. 1. A left-polymorphic P system generating {2n | n ∈ N}

Lemma 5. Ln! = {n! | n ∈ N} 6∈ NOP∗(lpolym+d(ncoo)).

Proof. We will pick a left-polymorphic P system Π ∈ NOP∗(lpolym(ncoo)) and
see what are the possible multiplicities of symbols in some of the multisets it
generates. There exist derivations in which no more than one type of rule is
applied per symbol type (e.g., only the rule a→ bc is applied 5 times to all the 5
instances of a, even though there may be more rules consuming the same symbol).
For such derivations, the multiplicities of all symbols in the halting configuration
can be expressed as sums of products of the quantities of certain symbols in
the initial contents of the skin by constant factors, which depend only on the
(invariable) right-hand sides of the rules. Since generating the factorial would
require multiplication by an unbounded set of factors, the preceding observation
concludes the proof.

Note that Lemma 5 only shows an example of a language which cannot be
generated by left-polymorphic P systems; this model of P systems can still be
undecidable.

5 Right Polymorphism

In this section we will show that right-polymorphic P systems, just as their left-
polymorphic counterparts, generate a wider class of languages than conventional
transition P systems.

Lemma 6. L′2n = {2n | n ∈ N, n > 2} ∈ NOP∗(rpolym(ncoo)).

Proof. We will construct the following right-polymorphic P system generating
the number language L′2n :

Π = ({a, b}, {b}, µ, a, a, aa, a, a, a, a, a, b, s), where
µ = [[]

1L
[[]

2L
[[]

3L
[]

3R
[]

4L
[]

4R
]
2R

]
1R

]
s
.

The graphical representation of this P system is given in Figure 2.
The principle behind the functioning of this polymorphic P system is essen-

tially the same as the one used in the proof of Lemma 4: Π works by repeatedly
doubling the number of a’s in the skin. Having Π halt correctly is trickier,
though, since we cannot disable rules and we cannot just rewrite the symbols in

244

3 : a→ a

4 : a→ b

a
2R

a
2L

aa
1R

a
1L

a
s

Fig. 2. A right-polymorphic P system generating {2n | n ∈ N, n > 2}

1R to b, because then we could get rule 1 to have the form a→ ab, which would
result in the production of the language {m · 2n | m,n ∈ N} (maybe without
several shortest words) instead of L′2n . To work around this problem we allow no
choice in membrane 1R, that is, all instances of a are always rewritten into some-
thing, and it is the right-hand side of rule 2 that decides whether to reproduce
the two instances of a and keep the exponentiation going, or transform them
into b and stop the evolution. During the time b’s take to propagate through the
membrane structure, Π keeps multiplying the number in the skin by 2, which
results in the fact that Π cannot generate the numbers 2 and 22 from L2n \L′2n .

The upper bound on the generating power of right-polymorphic P systems is
obtained in the next section by establishing an upper bound on the expressive
power of general non-cooperative polymorphic P systems.

6 General Polymorphism

In this section we will show that there are languages which cannot be generated
by polymorphic P systems with non-cooperative rules. The intuition for this
observation comes from the fact that non-cooperative rules cannot synchronise
separate processes running in the P system. Therefore, it suffices to pick a lan-
guage which cannot be generated without such synchronisation. The following
theorem formally captures this intuition.

Theorem 3. Ln! = {n! | n ∈ N} 6∈ NOP∗(polym(ncoo)).

Proof. Suppose there exists a polymorphic P system Π ∈ OP∗(polym(ncoo))
which generates the factorial language. In this case, according to Lemma 5, the
rules of Π must rely on variable right-hand sides, and there must exist such rules
which are applied an unbounded number of times.

Consider such a rule i in skin and its right-hand-side membrane iR which
contains the multiset wk at step k. Let pk < wk be the bounded multiset of
symbols which may be consumed by rules with right-hand sides longer than 1.
Remember now that, at a certain moment, the membrane iR must halt. There-
fore, for all symbols in pk, it is possible to choose such rules which will lead to
halting of iR in a bounded number of steps.

245

Suppose now that the symbols in wk − pk are not consumed by any rules
in iR. This means that the symbols from wk may be consumed by some rules
in the skin, with indices from the (not necessarily non-empty) set I (including,
maybe, the rule i). Since, according to our supposition, the rule i is applied an
unbounded number of times, the rules from I must be capable of consuming the
symbols from wk at an unbounded number of computation steps. But then, if,
at a certain step, the membrane iR halts, the rules from I and the left-hand side
membrane iL may continue their operation, which will lead to an unbounded
number of multiplications of the quantities of certain symbols in the skin by a
constant factor, which means that, in this case N(Π) \ Ln! 6= ∅.

Now consider the situation in which the symbols from wk− pk are consumed
by some rules in iR. The important difference which may arise in this case as
compared to the previous one is the scenario in which, at a certain moment, the
multiset wk−pk is rewritten into a different multiset that, when in the skin, will
only evolve for a bounded number of steps (i.e., no more rules will be applicable
to the symbols derived from this multiset after a constant number of steps).
However, in this case the same synchronisation problem persists: if the symbols
from pk are rewritten in such a way that the contents of iR will stop growing
after a bounded number of steps, and the symbols from wk − pk are still being
rewritten into something which may be further used in the skin to apply iR some
more times, the size of the contents of the skin will be essentially multiplied by a
constant factor an unbounded number of times, which leads us to the conclusion
that Π cannot produce the factorial language.

The following statement concerning the computational power of right-
polymorphic P systems is a direct consequence of the previous theorem.

Corollary 3. Ln! = {n! | n ∈ N} 6∈ NOP∗(rpolym(ncoo)).

7 A Hierarchy of Polymorphic P Systems with
Non-cooperative Rules

In this section we will show that the generative power of a polymorphic P system
Π is essentially limited by its depth. The intuition for this remark comes from
looking at the superexponentially growing P systems shown in [1] and from the
observation that more nested rules means faster growth.

We briefly recall how superexponential growth can be achieved with poly-
morphic P systems.

Example 1. (cf. [1]) Consider the following (left-)polymorphic P system:

Π = ({a}, {a}, µ, a, a, a, a, aa, s), where
µ = [[]

1L
[[]

2L
[]

2R
]
1R

]
s
.

The graphical presentation of Π is given in Figure 3.
After one step of evolution, the skin of Π will still contain the multiset a,

and 1R will contain a2. At the next step the skin will contain a4 and 1R will

246

2 : a→ aa

a
1R

a
1L

a
s

Fig. 3. A (left-)polymorphic P system with superexponential growth

contain a4. It is easy to verify that, after k evolution steps, the skin of Π will

contain 2
k(k−1)

2 instances of a.

While the polymorphic P system from the previous paragraph does have
superexponential growth, it never halts. Actually generating a superexponential
number language requires somewhat more design effort. A possible approach
using the trick we have shown in the proof of Lemma 6 is implemented in the
following example.

Example 2. The following P system generates the superexponential number lan-

guage {2n(n−1)
2 | n ∈ N, n > 3}.

Π = ({a, b}, {b}, µ, a, a, a, a, aa, a, a, a, a, a, b, s), where
µ = [[]

1L
[[]

2L
[[]

3L
[[]

4L
[]

4R
[]

5L
[]

5R
]
3R

]
2R

]
1R

]
s
.

The graphical representation of this P system is given in Figure 4.
Rules 1 and 2 of Π work exactly as the two rules of the P system shown

in the previous example, while the other three rules are used to assure proper
halting in the same way as it is done in the construction from Lemma 6.

4 : a→ a

5 : a→ b

a
3R

a
3L

aa
2R

a
2L

a
1R

a
1L

a
s

Fig. 4. A polymorphic P system generating {2
n(n−1)

2 | n ∈ N, n > 3}

We will now confirm the supposition of existence of an infinite hierarchy of
polymorphic P systems by proving the following theorem.

Theorem 4. Ld−1 = {2(nd−1) | n ∈ N} 6∈ NOP d
∗ (polym(ncoo)), for d > 1.

247

Proof. We will prove the statement by induction over the depth of polymorphic
P systems. The base case d = 2 refers to transition P system with invariable
rules, which as is known [7], cannot generate the language L1 = {2n | n ∈ N}.

Before we proceed, we make an important observation as to how P systems
with a fixed number of non-cooperative rules generate numbers. Consider two
multisets an1 and an2 , where n1 and n2 are two different natural numbers greater
that the number of rules in membrane i, and consider the possible ways they
can evolve at the same step in this membrane. Because the left-hand sides of
the rules are not allowed to contain more than one symbol, for any multiset w1

derived from an1 there exists a multiset w2 derived from an2 for which it is true
that supp(w1) = supp(w2) and w2(x) = (n2 − n1)w1(x), for any x ∈ w1. This
essentially means that non-cooperative (polymorphic) rules cannot be used to
count the number of instances of a symbol in a membrane. The further conclusion
is that the sets of numbers that Π can generate are essentially given by the form
of the right-hand sides of the rules.

Suppose now that the statement of the theorem is true for a certain d. Con-
sider a polymorphic P system Π of depth d + 1. We pick a membrane iR of Π
which, if regarded as a separate P system, has depth d. As it can be seen in
Example 1, the fastest growth we can achieve for the contents of iR is having

the lengths of the words at a step f(n) of evolution belong to O
(

2(n
d−2)

)
, where

f(n) ∈ Θ(n). But then we can use the rule i to assure that the growth of the
contents of the skin as a function of the number of the evolution step is only

in O
(

2n
(d−1)

)
. On the other hand, the observation we made in the previous

paragraph tells us that a P system with non-cooperative rules cannot generate
numbers belonging to a family which grows faster than what can be achieved
with the right-hand sides of the rules, which means that no P system Π of depth
d+ 1 can generate the language Ld.

The proof of the previous theorem, combined with the observations made in
Examples 1 and 2, leads us to the following corollary defining a depth-related
hierarchy of polymorphic P systems with non-cooperative rules.

Corollary 4. NOP d
∗ (polym(ncoo)) ⊂ NOP d+1

∗ (polym(ncoo)), for d > 1.

Theorem 4 also shows the relationship between left-polymorphic and general
P systems. Indeed, Corollary 2 effectively states that the depth of any left-
polymorphic P system is at most 3. This suggests the following assertion.

Corollary 5. NOP∗(lpolym(ncoo)) ⊂ NOP∗(polym(ncoo)).

Establishing whether a similar inclusion is true for right-polymorphic P sys-
tems is an open problem.

8 Further Discussion and a Conclusion

In this paper we have explored some of the fundamental properties of the most
basic class of polymorphic P systems introduced in [1]: polymorphic P systems

248

with non-cooperative rules and without any additional ingredients. We presented
new special cases of such P systems (left- and right-polymorphic variants) and
characterised the generative power of each of them, as well as of general poly-
morphic P systems. We have concluded the paper by bringing to light an infinite
hierarchy of classes of polymorphic P systems with the base case being the usual
non-polymorphic transition P systems.

The central conclusion of the paper is that, despite the apparent simplic-
ity and restrictiveness of the definition, polymorphic P systems with non-
cooperative rules and no additional ingredients are a very interesting object
of study. We now directly proceed to formulating the questions which have been
left unanswered in the paper.

The first question is concerned with the right-polymorphic variant of P sys-
tems. Just by looking at the definitions of left- and right-polymorphic P sys-
tems, it might seem that the generative power of both of them is strictly less
than that of the most general version, and this is indeed the case for the left-
polymorphic variant. The situation turns out to be much more complicated for
right-polymorphic P systems: the author has no intuition whatsoever with re-
spect to whether right-polymorphic P systems are less powerful then the general
variant or not. On the one hand, the possibility to control left-hand sides of
rules seems to increase the generative power of the model. On the other hand,
all the proofs of all results concerning the upper bounds on the complexity of
the languages produced by polymorphic P systems are directly applicable to the
right-polymorphic case. Therefore, the fundamental question still to be answered
in subsequent research is whether right-polymorphic P systems can generate all
languages which can be produced by the general variant and if not, which are
the languages separating the two classes.

A further question concerns the way in which right-polymorphic P systems
are related to their left-polymorphic counterparts. We have seen that both of
them can produce the number language {2n | n ∈ N}, but it is not clear whether
the class of languages produced by the former family covers the one produced by
the latter family. We suppose that the answer to this question is closely related
to the reasoning exposed in the previous paragraph.

Finally, we would like to remember that we have only considered the most
restricted version of polymorphic P systems in this paper. While adding in-
gredients to the model and/or allowing cooperative rules quickly renders the
systems computationally complete [1] and thus (probably) less interesting for
strictly theoretical research, applications of such models may present some in-
terest. The fundamental feature of polymorphic P systems is that, in a way,
they lie in between conventional models with static membrane structures, which
require substantial design effort to attack practical problems, and the models
with dynamic membrane structures, which often rely on duplicating computing
units on the fly, together with their data [5]. This position, which we believe to
be quite advantageous, may make polymorphic P systems a practical tool for
solving certain real-world problems.

249

Acknowledgements Sergiu Ivanov gratefully acknowledges Artiom Alhazov for
fruitful discussions.

References

1. Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In
Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Membrane Computing, volume 6501 of Lecture Notes in Computer
Science, pages 81–94. Springer Berlin Heidelberg, 2011.

2. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P sys-
tems. In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg,
and Arto Salomaa, editors, Membrane Computing, volume 4860 of Lecture Notes in
Computer Science, pages 271–284. Springer Berlin Heidelberg, 2007.

3. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation - international edition (2. ed). Addison-Wesley,
2003.

4. Gheorghe Păun. Membrane Computing: An Introduction. Natural Computing Series
Natural Computing. Springer, 2002.

5. Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. P
systems with active membranes: Trading time for space. 10(1):167–182, March 2011.

6. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61:108–143, 1998.

7. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook of
Membrane Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

8. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Vol. 3: Beyond Words. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

250

Simulating Elementary Active Membranes
With an Application to the P Conjecture?

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{leporati, luca.manzoni, mauri, porreca, zandron}@disco.unimib.it

Abstract. The decision problems solved in polynomial time by P systems
with elementary active membranes are known to include the class P#P.
This consists of all the problems solved by polynomial-time deterministic
Turing machines with polynomial-time counting oracles. In this paper
we prove the reverse inclusion by simulating P systems with this kind
of machines: this proves that the two complexity classes coincide, finally
solving an open problem by Păun on the power of elementary division.
The equivalence holds for both uniform and semi-uniform families of
P systems, with or without membrane dissolution rules. Furthermore, the
inclusion in P#P also holds for “P conjecture systems” (with elementary
division and dissolution but no charges), which improves the previously
known upper bound PSPACE.

1 Introduction

The computational power of P systems with elementary active membranes working
in polynomial time was first investigated in [10]. The ability of P systems to
exploit parallelism to perform multiple computations at the same time allows an
efficient solution of NP-complete problems. This feature was further exploited [8]
to show that P systems with elementary active membranes can solve all PPP

problems (or P#P problems, due to the equivalence of the two classes).
While all the previous results showed an ever increasing lower bound for the

power of this class of P systems, the upper bound for their computational ability
was proved to be PSPACE [9]. Therefore, until now it was only known that
this class is located between P#P and PSPACE. In this paper we show that
the already known lower bound is, in fact, also an upper bound. This implies
that non-elementary membrane division is necessary in order to solve PSPACE-
complete problems (unless P#P = PSPACE), as conjectured by Sosík and
Pérez-Jiménez and formulated as Problem B by Păun in 2005 [5]. This bound

? This work was partially supported by Università degli Studi di Milano-Bicocca,
FA 2013: “Complessità computazionale in modelli di calcolo bioispirati: Sistemi a
membrane e sistemi di reazioni”.

251

has also an interesting implication for the P conjecture [5, Problem F], stating
that P systems with elementary division and dissolution but no charges can solve
only problems in P. The previously known upper bound for the computational
power of that class of P systems was also PSPACE but, since those systems are
a weaker version of the ones studied here, the P#P bound also applies to them.

The main idea behind the simulation of P systems with elementary active
membranes by Turing machines with #P oracles is similar to one from [9]:
we cannot store the entire configuration of the P system, since it can grow
exponentially in time due to elementary membrane division. Therefore, instead of
simulating directly the behaviour of the elementary membranes, we only simulate
the interactions between them and their parent regions. Indeed, from the point of
view of a non-elementary membrane, all the membranes it contains are just “black
boxes” that absorb and release objects. We thus only store the configurations
of non-elementary membranes and, when needed, we exploit a #P oracle to
determine how many instances of each type of object are exchanged between
elementary membranes and their parent regions. As will be clear in the following,
while doing so we also need to take special care for send-in rules, since they
require, in some sense, a partial knowledge of the parent’s multiset of objects,
and conflicts between send-in rules competing for the same objects that can
be applied to different membranes may be difficult to resolve. Thus, we have
devised a way to provide a “centralised control” that allows to correctly apply
the different send-in rules.

The paper is structured as follows. In Section 2 the basic definitions con-
cerning P systems and the relevant complexity classes are briefly recalled. The
simulation of P systems is described in Section 3; in particular, the three phases
of the simulation algorithm requiring more computing power than a deterministic
Turing machine working in polynomial time are detailed in Section 3.1 (movement
of objects into elementary membranes), Section 3.2 (releasing objects from ele-
mentary membranes), and Section 3.3 (establishing if a membrane is elementary).
The theorem stating the main result and the implications for the P conjecture
are presented in Section 4. The paper is concluded with a summary of the results
and some directions for future research in Section 5.

2 Basic Notions

We begin by recalling the basic definition of P systems with (elementary) active
membranes [4].

Definition 1. A P system with elementary active membranes of initial de-
gree d ≥ 1 is a tuple Π = (Γ,Λ, µ, wh1

, . . . , whd
, R), where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
– Λ is a finite set of labels for the membranes;
– µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

252

– wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial

multisets of objects placed in the d regions of µ;
– R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge, which can be either neutral (0), positive (+) or
negative (−) and is always neutral before the beginning of the computation.

The rules in R are of the following types1:

(a) Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w).

(b) Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a
is sent into h becoming b and, simultaneously, the charge of h becomes β.

(c) Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h becomes β.

(d) Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the membrane is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

(e) Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c,
while the other objects of the multiset are replicated in both membranes.

Notice that “being an elementary membrane” is a dynamic property: even if
a membrane originally contained other membranes, the dissolution of all of
them makes the membrane elementary; if this happens, we also assume that
any elementary division rules involving it become applicable, provided that its
multiset and charge match the left-hand sides of the rules2. Clearly, once a
membrane is elementary it can never become non-elementary.

Since it is an essential technical detail in this paper, we carefully distinguish
the concepts of membrane and membrane label, since membrane division allows
1 The general definition of P systems with active membranes [4] also includes non-

elementary division rules (type (f)), which are not used in this paper.
2 The results of this paper, as well as the previous P#P lower bound [8], continue
to hold even if we assume that R can only contain elementary division rules for
membranes that are already elementary in the initial configuration of the P system.

253

the creation of multiple membranes sharing the same label. In the rest of the paper,
we use the expression “membrane h” (singular) only when a single membrane
labelled by h is guaranteed to exist, and refer to “membranes (labelled by) h”
(plural) otherwise.

Definition 2. The instantaneous configuration of a membrane consists of its
label h, its charge α, and the multiset w of objects it contains at a given time.
It is denoted by [w]αh . The (full) configuration C of a P system Π at a given
time is a rooted, unordered tree. The root is a node corresponding to the external
environment of Π, and has a single subtree corresponding to the current mem-
brane structure of Π. Furthermore, the root is labelled by the multiset located
in the environment, and the remaining nodes by the configurations [w]αh of the
corresponding membranes.

A computation step changes the current configuration according to the fol-
lowing set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules: inside each membrane, several evolution
rules can be applied simultaneously.

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). Analogously, each membrane can only be subject to
one communication, dissolution, or elementary division rule (types (b)–(e))
per computation step. In other words, the only objects and membranes that
do not evolve are those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously (in
an atomic way). However, in order to clarify the operational semantics, each
computation step is conventionally described as a sequence of micro-steps as
follows. First, all evolution rules are applied inside the elementary membranes,
followed by all communication, dissolution and division rules involving the
membranes themselves; this process is then repeated to the membranes
containing them, and so on towards the root (outermost membrane). In
other words, the membranes evolve only after their internal configuration has
been updated. For instance, before a membrane division occurs, all chosen
object evolution rules must be applied inside it; this way, the objects that
are duplicated during the division are already the final ones.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence C = (C0, . . . , Ck)
of configurations, where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck.

254

P systems can be used as language recognisers by employing two distinguished
objects yes and no: we assume that all computations are halting, and that either
object yes or object no (but not both) is sent out from the outermost membrane,
and only in the last computation step, in order to signal acceptance or rejection,
respectively. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the P system is said to be confluent. All P systems
in this paper are assumed to be confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ? by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
inputs of any length, as discussed in detail in [2].

Definition 3. A family of P systems Π = {Πx : x ∈ Σ?} is said to be
(polynomial-time) uniform if the mapping x 7→ Πx can be computed by two
polynomial-time deterministic Turing machines E and F as follows:

– F (1n) = Πn, where n is the length of the input x and Πn is a common
P system for all inputs of length n with a distinguished input membrane.

– E(x) = wx, where wx is a multiset encoding the specific input x.
– Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ?.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [2] for further details on
the encoding of P systems.

Recall that the classes of decision problems solved by uniform and semi-
uniform families of P systems working in polynomial time with evolution, commu-
nication, dissolution, and elementary division rules are denoted by PMCAM(−n)
and PMC?AM(−n), respectively. When dissolution is not allowed, the two corre-
sponding classes are denoted by PMCAM(−d,−n) and PMC?AM(−d,−n).

Finally, we recall the definitions of the complexity classes #P and P#P (the
latter being equivalent to PPP), and a notion of completeness for #P [3].

Definition 4. The complexity class #P consists of all the functions f : Σ? → N,
also called counting problems, with the following property: there exists a polyno-
mial time nondeterministic Turing machine N such that, for each x ∈ Σ?, the
number of accepting computations of N on input x is exactly f(x).

A function f ∈ #P is said to be #P-complete under parsimonious reduc-
tions if and only if for each g ∈ #P there exists a polynomial-time reduc-
tion r : Σ? → Σ? such that g(x) = f(r(x)) for each x ∈ Σ?.

255

w0

[w1]
0
h1

[w2]
+
h2

[w6]
0
h5

[w7]
+
h5

[w8]
0
h6

[w3]
−
h3

[w4]
0
h3

[w5]
−
h4

[w9]
−
h7

w0

[w1]
0
h1

[w2]
+
h2

[w5]
−
h4

Fig. 1. A full configuration and a partial configuration for the same P system, where in
the latter the configurations of all elementary membranes have been removed.

Definition 5. The complexity class P#P consists of all decision problems (lan-
guages) recognisable in polynomial time by deterministic Turing machines with
oracles for #P functions. These are Turing machines Mf , with f ∈ #P, having
a distinguished oracle tape and a query state such that, when Mf enters the
query state, the string x on the oracle tape is immediately (i.e., at unitary time
cost) replaced with the binary encoding of f(x).

3 The Simulation Algorithm

Let L ∈ PMC?AM(−n) be a language, and let Π = {Πx : x ∈ Σ?} be a semi-
uniform family of confluent recogniser P systems with elementary active mem-
branes deciding L in polynomial time. Let H be a polynomial-time deterministic
Turing machine computing the mapping x 7→ Πx.

A straightforward deterministic simulation of Π, which stores the entire
configuration of a P system and applies the rules in a step-by-step fashion, in
general incurs in an exponential slowdown, due to the exponential size of the
configurations of the P systems, even when a binary encoding of the multisets
is employed: indeed, by the “Milano Theorem” [10], the exponential space (and
time) blowup of the simulation is due to the exponential number of elementary
membranes created by division, and not to the number of objects itself. Here
we simulate Π with a polynomial slowdown by means of a deterministic Turing
machine with a #P counting oracle.

We begin by observing that we do not need to explicitly store the configurations
of the elementary membranes (either those that are elementary in the initial
configuration, or those that become elementary during the computation), as
long as we can somehow keep track of the interactions between them and their
parent regions. Specifically, we need a way to track the objects that are released
from the elementary membranes (via send-out or dissolution rules) and those
that are absorbed by them (via send-in rules). We call partial configuration the
portion of configuration of a P system that we store explicitly, in which we
exclude the elementary membranes (unless, temporarily, in the very moment they
become elementary and there is only a polynomial number of them) but include

256

1 construct the P system Πx by simulating H on x
2 let C be the initial (full) configuration of Πx

3 for each time step t do
4 for each label h in C do
5 if h denotes an elementary membrane then
6 remove its configuration from C
7 else
8 apply the rules to membrane h
9 remove from membrane h the objects sent into

elementary children membranes (see Algorithm 2)
10 for each label h′ denoting elementary membranes do
11 add the output of all membranes

labelled by h′ to their parent multiset
12 if yes or no is found in the environment then
13 accept or reject accordingly

Algorithm 1. Simulation of a semi-uniform family Π of P systems with elementary
active membranes on input x.

the environment surrounding the outermost membrane. An example of partial
configuration is shown in Fig. 1.

Since the environment is where the result of any computation of a recogniser
P system Πx is ultimately decided, by the presence of an object yes or no, an
up-to-date partial configuration is sufficient for a Turing machine to establish
whether Πx accepts or rejects. Furthermore, a partial configuration can be
stored efficiently when the multisets are encoded in binary, since it consists of a
polynomial number of regions containing an exponential number of objects [7].

The main technical result of this paper is a procedure for computing the final
partial configuration of a P system in Π from the previous partial configurations
and the initial full configuration, by using a counting oracle to reconstruct the
interactions between the partial configuration and the elementary membranes.
This simulation exploits the assumption of confluence of the P systems in Π
when choosing the multiset of rules to apply at every time step. In principle, the
simulation can be adapted to work with any deterministic way of choosing the
rules but, in order to simplify the presentation, we give the following priorities:

Object evolution rules have the highest priority, followed by send-in rules,
followed by the remaining types of rule. Inside these three classes, the
priorities are given by any fixed total order.

Algorithm 1 provides an overview of the simulation; the algorithm takes a
string x ∈ Σ? as input. First of all, it simulates the machine H that provides
the uniformity condition for Π on input x, thus obtaining a description of the
P system Πx (line 1). It also stores the initial configuration of Π as a suitable
labelled tree data structure (line 2).

257

The main loop (lines 3–13) is repeated for each time step of Πx, and consists of
three main phases. First, the algorithm iterates (lines 4–9) through all membrane
labels in the current partial configuration C. The configurations of membranes
that have become elementary during the previous computation step are removed
from C (lines 5–6), as described in Section 3.3. Instead, the rules are applied
normally [10] to non-elementary membranes (line 8), and the objects that are sent
into their children elementary membranes are also removed from them (line 9); the
latter operation will be detailed in Section 3.1. In the second phase the algorithm
computes the output of the elementary membranes and adds it to their parent
membranes (lines 10–11). This phase will be detailed in Section 3.2. Finally, in the
third phase (lines 12–13) the algorithm checks whether the object yes (resp., no)
was sent out from the outermost membrane in the current computation step
of Πx; if this is the case, the simulation halts by accepting (resp., rejecting) x.

3.1 Moving Objects into Elementary Membranes

Line 9 of the simulation algorithm requires the removal from a specific non-
elementary membrane h of the objects sent into its elementary children mem-
branes. While the current configuration of h is known, as it is stored in the partial
configuration C, the configuration of its children membranes is not stored.

We solve this problem by nondeterministically simulating each children mem-
brane of h having label h′; each computation keeps track of just a single mem-
brane h′ among those obtained by division, starting from the moment the initial
(unique) membrane h′ became elementary, up to the current time step of the
P system. Hence, whenever a membrane becomes elementary (a fact discovered
at line 5 of the simulation algorithm), before removing it from C the algorithm
stores its configuration, together with the current time step t, in an auxiliary
table of polynomial size, indexed by membrane labels.

We are only interested in simulating the internal configuration of elementary
membranes (i.e., the multiset it contains and its charge), without keeping track
of any objects released from them either by send-out or dissolution rules. Hence,
the only problematic rules are those of type send-in, since multiple membranes
sharing the same parent compete for the same objects, but cannot coordinate
because each membrane is simulated by a different computation; recall that
distinct computations of a nondeterministic Turing machine do not communicate.
In order to solve the conflicts, a table apply[r, t] can be precomputed, associating
each send-in rule r = a []αh → [b]βh and time step t with the set of individual
membranes with label h that must apply r at time t.

Computing the entries of the table apply first requires us to name each
individual membrane among those sharing the same label. In order to do so, we
exploit a solution already proposed by Sosík and Rodríguez-Patón [9], attaching
to each elementary membrane an identifier computed as follows:

– When membrane h becomes elementary, its identifier is id = 0.
– If a membrane has identifier id at time τ and no division occurs at that time,

its new identifier at time τ + 1 is 2× id .

258

– If a membrane has identifier id at time τ and a division occurs at that time,
the new identifiers of the two resulting membranes at time τ + 1 are 2× id
and 2× id + 1, respectively.

This ensures that, at time t, each membrane with label h has a unique identifier in
the range [0, 2t − 1] (although not all identifiers in that range need to correspond
to actual membranes).

Example 1. The procedure that assigns unique identifiers to elementary mem-
branes sharing the same label can be represented graphically. On the left, we
show a tree of membrane divisions (not to be confused with a configuration tree,
as illustrated in Fig. 1): time goes downward, starting from the moment t0 when
the membrane became elementary, each level representing a time step; notice
that not all membranes necessarily divide at each step. On the right, we show
the identifiers assigned to the membranes:

τ = t0

τ = t0 + 1

τ = t0 + 2

τ = t0 + 3

[w0]
0
h′

[w1]
−
h′

[w2]
−
h′

[w3]
+
h′ [w4]

−
h′

[w2]
0
h′

[w5]
+
h′

[w3]
+
h′

[w6]
0
h′

[w7]
−
h′ [w8]

+
h′

0

0

0

0 1

1

2

4

3

6 7

Notice how all identifiers differ, even for membranes having the same configuration:
for example, the two copies of [w3]

+
h′ at time τ = t0 + 3 have identifiers 0 and 4.

Furthermore, not all identifiers between 0 and 2t − 1 correspond to a membrane:
here 2, 3, and 5 do not correspond to any membrane.

Naively storing arbitrary subsets of [0, 2t − 1] as entries of the table apply
requires an exponential amount of space with respect to t. We can, however,
exploit the hypothesis of confluence of the family Π and choose, among all
possible computations of the simulated P system, the computation where each
send-in rule r = a []αh → [b]βh is applied, at each step t, to all (and only the)
membranes h having charge α whose identifiers are included in an interval, to be
computed as described below. Distinct intervals involving the same membrane
label h may overlap only for rules r1, r2 having a different charge on the left-hand
side, as shown in the following example.

Example 2. Consider the P system of Example 1 at time t = 3, and suppose the
following rules (sorted by priority) are associated to the membrane label h′:

r1 = a []−h′ → [c]+h′ r2 = a []+h′ → [d]+h′ r3 = b []+h′ → [e]0h′

Furthermore, suppose the parent membrane h of h′ contains exactly 3 instances
of object a and 4 instances of b. Then, one of the possible choices of intervals of

259

e1 set id := 0
e2 for each time step τ ∈ {t0, . . . , t− 1} do
e3 set newid := 2× id
e4 for each applicable evolution rule r ∈ R involving h′ do
e5 apply r as many times as possible
e6 for each non-evolution rule r applicable to h′ do
e7 if r = [a]αh′ → []βh′ b then
e8 remove an instance of a from the membrane
e9 change the charge of the membrane to β

e10 else if r = [a]αh′ → b then
e11 reject
e12 else if r = [a]αh′ → [b0]

β0

h′ [b1]
β1

h′ then
e13 nondeterministically guess a bit i
e14 set newid := newid + i
e15 rewrite an instance of a to bi
e16 change the charge of the membrane to βi
e17 else if r = a []αh′ → [b]βh′ and left[r, τ] ≤ id ≤ right[r, τ] then
e18 add an instance of b to the membrane
e19 change the charge of the membrane to β
e20 set id := newid

Algorithm 2. Nondeterministic simulation of steps t0 to t − 1 of an elementary
membrane h′. Here t0 is the time when membrane h′ became elementary.

identifiers, which is consistent with the previous discussion, is

apply[r1, t] = [0, 7] apply[r2, t] = [0, 3] apply[r3, t] = [4, 7]

The interval apply[r1, t] contains exactly 2 identifiers of membranes h′ having
negative charge (the maximum number of instances of a that can be sent in by
means of rule r1); the interval apply[r2, t] contains only 1 identifier of membranes h′
with positive charge (since only one copy of a remains that is not used up by
rule r1); finally, the interval apply[r3, t] contains the remaining 2 identifiers of
membranes h′ with positive charge, leaving two instances of b unused by send-in
rules. Notice that the interval apply[r1, t] overlaps with the others, since rule r1
is applied to membranes h′ having different charge than those where r2 and r3
may be applied, while apply[r2, t] and apply[r3, t] are necessarily disjoint.

In order to save space, we can replace each interval apply[r, t] with its
bounds left[r, t] and right[r, t]. Storing the intervals of identifiers then requires
only two binary numbers per each original entry apply[r, t]; hence, the information
contained in the table can now be stored in polynomial space.

The pseudocode for the nondeterministic simulation of the elementary mem-
branes labelled by h′, starting from the time t0 when h′ became elementary
and up to time t− 1 (i.e., leaving out the last computation step), is shown as

260

Algorithm 2. This is a straightforward simulation algorithm for P systems, as
already described in the literature [10, 7], except for a few key differences:

– the simulation aborts by rejecting if the membrane dissolves within step t− 1
(lines e10–e11);

– when simulating an elementary division (lines e12–e16) the algorithm performs
a nondeterministic choice between the two membranes resulting from the
division, and continues to simulate only one of them;

– before simulating a send-in rule (lines e17–e19), the algorithm checks whether
the identifier of the membrane being simulated belongs to the range of
identifiers of membranes applying that rule at time τ .

Notice that the loop of lines e6–e19 applies at most one non-evolution rule, as
required by the semantics of P systems with active membranes.

Let r = a []αh′ → [b]βh′ be a send-in rule. We can simulate a further computation
step of each membrane labelled by h′, halting by accepting if rule r is actually
applicable (i.e., the current membrane h′ has charge α, and its identifier is in the
correct range), and rejecting otherwise. As a consequence, Algorithm 2 with this
additional step has as many accepting computations as the number of membranes
having label h′ where rule r is applied at time t. This proves the following:

Lemma 1. Suppose we are given the configuration [w]αh′ of an elementary mem-
brane h′, a set of rules, two time steps t0 (corresponding to configuration [w]αh′)
and t expressed in unary notation3, two tables left and right as described above,
and a specific send-in communication rule r = a []αh′ → [b]βh′ ∈ R. Then, counting
the number of applications of rule r at time t is in #P. ut

Remark 1. Counting the number of satisfying assignments for a Boolean formula
in 3CNF (a #P-complete problem) can be reduced in polynomial time to counting
the number of send-in rules applied during the “counting” step by the P systems
solving the Threshold-3SAT problem described in [6]. This requires setting
the threshold to 2m, where m is the number of variables. Hence, the counting
problem of Lemma 1 is actually #P-complete.

Line 9 of Algorithm 1 can thus be expanded as Algorithm 3, where the entries
of left and right are also computed. The number of objects sent in from h to its
children membranes h′ by means of a rule r = a []αh′ → [b]βh′ can be computed
(line 9.8) as the minimum k between the number of instances of a contained in h
and the number m of membranes h′ having charge α which have not yet been
assigned a send-in rule. The initial value of m is thus the number of membranes h′
having identifier at least left[r, t] and charge α. The membranes h′ having charge α
and an identifier smaller than left[r, t] have already been assigned to a different
interval, and will apply a different send-in rule. The algorithm can then remove k
copies of a from h (line 9.9). The value of right[r, t] must then be updated, in
3 Expressing the number of time steps t in unary is necessary for the problem to be
in #P, otherwise the value t might be exponentially larger than its representation,
thus increasing the complexity of the problem.

261

9.1 for each elementary membrane label h′ contained in h do
9.2 for each charge α ∈ {+, 0,−} do
9.3 set ` := 0

9.4 for each rule r = a []αh′ → [b]βh′ in R do
9.5 set left[r, t] := `
9.6 set right[r, t] := 2t − 1
9.7 let m be the number of membranes with label h′ and

left[r, t] ≤ id ≤ right[r, t] where r is applicable at time t
9.8 set k := min{m, number of instances of a in h}
9.9 remove k instances of a from h

9.10 while m 6= k do
9.11 update right[r, t] by binary search
9.12 recompute m
9.13 set ` := right[r, t] + 1

Algorithm 3. Removing from a non-elementary membrane h the objects sent into its
elementary children membranes (Algorithm 1, line 9).

order to ensure that exactly k membranes with label h′ apply r at time t. A
correct value for right[r, t] can be determined by performing a binary search in
the interval

[
left[r, t], 2t − 1

]
while recomputing the value of m (line 9.12) as in

Lemma 1.

3.2 Moving Objects from Elementary Membranes

Line 11 of Algorithm 1 deals with communication in the opposite direction with
respect to line 9, i.e., from the elementary membranes towards their parent.

For each label h′ denoting an elementary membrane and for each object
type a, the number of instances of a released from membranes with label h′ at
time t can be determined by first simulating these membranes up to time t− 1
by using Algorithm 2; the last time step is then simulated as follows:

– If a rule sending out a is applied, the computation accepts.
– If the membrane dissolves, the algorithm accepts as many times as the num-

ber k of instances of a in the simulated membrane. This requires “forking” k
accepting computations, which in nondeterministic Turing machines corre-
sponds to first nondeterministically guessing a number between 1 and k,
and then accepting. This can be performed in polynomial time even if k is
exponential, since the number of bits of k is polynomial.

– Otherwise, the computation rejects.

The number of accepting computations of the algorithm is the number of instances
of a to be added to the parent of h′. This proves the following:

Lemma 2. Suppose we are given the configuration [w]αh′ of an elementary mem-
brane h′, a set of rules, two time steps t0 (corresponding to configuration [w]αh′)

262

w0

[w1]
0
h1

[w2]
+
h2

[w6]
0
h5

[w7]
+
h5

[w8]
0
h6

[w3]
−
h3

[w4]
0
h3

[w5]
−
h4

[w9]
−
h7

h1

h2

h5 h6

h3 h4

h7

Fig. 2. A full configuration and the tree T containing the information about the
inclusions among its membranes, expressed in terms of labels only.

and t expressed in unary notation, two tables left and right as described above,
and an object type a. Then, counting the number of instances of object a released
(via send-out or dissolution rules) from membranes with label h′ at time t is
in #P. ut

Remark 2. We can reduce the assignment counting problem of Remark 1 to
counting the number of objects sent out by elementary membranes. Indeed, during
the “checking” phase of the aforementioned algorithm for Threshold-3SAT [6],
all membranes containing a satisfying assignment simultaneously send out a
specific object. Hence, the counting problem of Lemma 2 is also #P-complete.

3.3 Deciding if a Membrane is Elementary

In order to decide (line 5 of Algorithm 1) if a label h belongs to an elementary
membrane at time t (recall that membranes sharing the same label are either
all elementary and share the same parent, or there is only one of them) without
keeping them in the partial configuration C, we can use an auxiliary data structure.
We employ a rooted, unordered tree T whose nodes are labels from Λ, i.e., no
repeated labels appear in T . This tree represents the inclusion relation between
membranes before each simulated step, and it is initialised before entering the
main loop of the simulation (lines 3–13). As an example, Fig. 2 shows a full
configuration and the corresponding inclusion tree between membranes labels.
This data structure is updated in two different steps of Algorithm 1: at line 8,
when non-elementary membranes dissolve, and after the execution of line 5 (as
described below).

Then, for each label h appearing in the partial configuration C (line 4), either
it is associated to an internal node in C, and in that case it is not elementary, or
it is a leaf in C, and then the node h has leaf children in T . In that case, since
we do not keep track of the elementary membranes in partial configurations,
the algorithm needs to explicitly check, for each child membrane label h′ of h,
whether there does actually still exist at least one membrane with label h′.

Once again, we employ Algorithm 2 to simulate the elementary membranes
with label h′ up to time step t − 1; if the algorithm does not have already

263

rejected by then, this means that the simulated membrane still exists, and the
computation must accept. In this case there is no need to count the accepting
computations, but only to check whether there exists at least one. We can thus
state the following:

Lemma 3. Suppose we are given the configuration [w]αh′ of an elementary mem-
brane h′, a set of rules, two time steps t0 (corresponding to configuration [w]αh′)
and t expressed in unary notation, and two tables left and right as described
above. Then, deciding whether there exists a membrane with label h′ at time t is
in NP. ut

Remark 3. The most common solutions to NP-complete problems using P sys-
tems with elementary active membranes (such as [10]) first generate one membrane
per candidate solution, then check all of them for validity. By dissolving all mem-
branes containing invalid solutions, we can easily show that the decision problem
of Lemma 3 is actually NP-complete by reduction from any other NP-complete
problem.

4 A Characterisation of P#P

We are now able to analyse the complexity of the simulation algorithm.

Lemma 4. Algorithm 1 runs in polynomial time on a deterministic Turing
machine with access to an oracle for a #P-complete function.

Proof. Lines 1 and 2 can be executed in polynomial time due to the assumption
of semi-uniformity of the family Π. The loop of line 3 simulates a polynomial
number of time steps, and those of lines 4 and 10 iterate over sets of membrane
labels. Hence, lines 5–9 and 11–13 are executed a polynomial number of times.

Line 6 simply consists in removing a node from a tree data structure, line 8
in the application of rules to a polynomial number of membranes, which can be
performed in polynomial time [10, 7], and lines 12–13 in a membership test.

Let f : Σ? → N be #P-complete under parsimonious reductions (e.g., #SAT).
Then, the counting problems of Lemmata 1 and 2 and the decision problem of
Lemma 3 can be reduced in polynomial time to evaluating f . Suppose we have
access to an oracle for f .

The implementation of line 5 described in Section 3.3 employs the auxiliary
tree data structure T (which can be scanned and updated in polynomial time),
and can ascertain the existence of children membranes of h by performing a
reduction and a query to the oracle for f at most once per label.

Moving objects into elementary membranes (line 9), as described in Sec-
tion 3.1, executes Algorithm 3. This performs a polynomial number of iterations
of lines 9.5–9.13. Lines 9.7 and 9.12 are reductions followed by an oracle query
for f . The loop of lines 9.10–9.12 is executed a logarithmic number of times with
respect to the exponential number of identifiers (i.e., a polynomial number).

Finally, line 11 of Algorithm 1, whose implementation is described in Sec-
tion 3.2, computes the output of the elementary membranes. This also consists in

264

performing a reduction and an oracle query to f for each elementary membrane
label and each object type. The statement of the lemma follows. ut

As a consequence, we obtain the equivalence of several complexity classes for
P systems with elementary active membranes to P#P.

Theorem 1. The following equalities hold:

PMC
[?]
AM(−d,−n) = PMC

[?]
AM(−n) = P#P

where [?] denotes optional semi-uniformity instead of uniformity.

Proof. The inclusions of the following diagram hold:

PMC?AM(−d,−n)
⊆ ⊆

P#P ⊆ PMCAM(−d,−n) PMC?AM(−n) ⊆ P#P

⊆ ⊆
PMCAM(−n)

Indeed, uniformity implies semi-uniformity, and adding dissolution rules does
not decrease the power of P systems. Furthermore, P systems with restricted
(without dissolution) elementary active membranes are able to efficiently simulate
polynomial-time deterministic Turing machines with counting oracles [8]. The
last inclusion PMC?AM(−n) ⊆ P#P follows from Lemma 4. ut

4.1 Consequences for the P Conjecture

In P systems without charges, the presence of dissolution rules becomes important:
without them, only problems in P may be solved in polynomial time [1]. The
P conjecture [5, Problem F] claims that not even elementary division together
with dissolution rules can break this barrier, although the tightest known upper
bound up to now was PSPACE [9].

P systems without charges are equivalent to P systems with charges where the
membranes always remain neutral (i.e., no rule ever changes a membrane charge).
Hence, the class of problems solved in polynomial time by the former model
without non-elementary division rules, denoted by PMCAM0(−n), is trivially
included in PMCAM(−n). The corresponding inclusion also holds in the semi-
uniform case. As a consequence, Theorem 1 implies the following improved upper
bound for the P conjecture:

Corollary 1. PMC
[?]

AM0(−n) ⊆ P#P. ut

5 Conclusions

In this paper we have presented a simulation of polynomial-time semi-uniform
families of P systems with elementary active membranes, characterising the com-
plexity class PMC?AM(−n), by means of deterministic Turing machines working in

265

polynomial time with access to a #P oracle. This simulation and the previously
known lower bound [8] complete the characterisation of this complexity class,
as well as those obtained by requiring uniformity instead of semi-uniformity or
disallowing dissolution rules: all these classes coincide with P#P. This result is
also interesting because it represents an improvement of the upper bound of the
computational power for the class of P systems involved in the P conjecture. We
hope that this step will help in the search for a solution to the conjecture.

In the future we plan to investigate the computational power of P systems
with active membranes in which non-elementary division is allowed but limited
to membranes of a certain depth. While unrestricted non-elementary division
increases the computational power to PSPACE, we conjecture that limited
division can generate a hierarchy of complexity classes. Furthermore, we plan
to investigate the computational power of non-confluent P systems with active
membranes using division rules. Currently, no upper bound tighter than NEXP

is known for these classes of P systems.

References

1. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Nuñez, A., Romero-Campero,
F.J.: Computational efficiency of dissolution rules in membrane systems. Interna-
tional Journal of Computer Mathematics 83(7), 593–611 (2006)

2. Murphy, N., Woods, D.: The computational power of membrane systems under
tight uniformity conditions. Natural Computing 10(1), 613–632 (2011)

3. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
4. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
5. Păun, Gh.: Further twenty six open problems in membrane computing. In: Gutíerrez-

Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Pro-
ceedings of the Third Brainstorming Week on Membrane Computing. pp. 249–262.
Fénix Editora (2005)

6. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Elementary active membranes
have the power of counting. International Journal of Natural Computing Research
2(3), 329–342 (2011)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes working in polynomial space. International Journal of Foundations of Com-
puter Science 22(1), 65–73 (2011)

8. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle
computations. In: Gheorghe, M., Păun, Gh., Salomaa, A., Rozenberg, G., Verlan, S.
(eds.) Membrane Computing, 12th International Conference, CMC 2011, Lecture
Notes in Computer Science, vol. 7184, pp. 346–358. Springer (2012)

9. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1),
137–152 (2007)

10. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-
tems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.)
Unconventional Models of Computation, UMC’2K, Proceedings of the Second
International Conference, pp. 289–301. Springer (2001)

266

Spiking Neural P Systems with

Cooperating Rules

Venkata Padmavati Metta1, Srinivasan Raghuraman2, and
Kamala Krithivasan2

1 Institute of Computer Science and Research Institute of the IT4Innovations Centre
of Excellence, Silesian University in Opava, Czech Republic

2 Indian Institute of Technology, Chennai, India
vmetta@gmail.com, srini131293@gmail.com, kamala@iitm.ac.in

Abstract. The concept of cooperation and distribution as known from
grammar systems is introduced to spiking neural P systems (in short,
SN P systems) in which each neuron has a finite number of sets (called
components) of rules. During computations, at each step only one of the
components can be active for the whole system and one of the enabled
rules from this active component of each neuron fires. The switching
between the components occurs under different cooperation strategies.
This paper considers the terminating mode, in which the switching occurs
when no rule is enabled in the active component of any neuron in the
system. By introducing this new mechanism, the computational power
of asynchronous and sequential SN P systems with standard rules is
investigated. The results are that asynchronous standard SN P systems
with two components and strongly sequential unbounded SN P systems
with two components are Turing complete.

1 Introduction

Cooperative grammar systems were introduced by Meersman and Rozenberg in
[6], in the context of two-level grammars. The systematic study of cooperating
distributed (for short, CD) grammar systems was initiated by Csuhaj-Varjú and
Dassow in [2], where productions are distributed over a finite number of sets,
called components. These components cooperate during the derivation process
by applying productions on a common sentential form; following some fixed
cooperation protocol.

The concept of cooperation and distribution as known from CD grammar
systems is introduced to spiking neural P systems. Spiking neural P systems [5]
are parallel and distributed computing models inspired by the neurophysiological
behaviour of neurons sending electrical pulses of identical voltages called spikes
to the neighbouring neurons through synapses. An SN P system is represented
as a directed graph where nodes correspond to the neurons having spiking rules
and forgetting rules. The rules involve the spikes present in the neuron in the
form of occurrences of a symbol a. The arcs indicate the synapses among the
neurons. The spiking rules are of the form E / ar → a and are used only if

267

the neuron contains n spikes such that an ∈ L(E) and n≥ r, where L(E) is
the language represented by regular expression E. In this case ar number of
spikes are consumed and one spike is sent out. When neuron σi sends a spike,
it is replicated in such a way that one spike is immediately sent to all neurons
j such that (i, j) ∈ syn, where syn is the set of arcs between the neurons. The
transmission of spikes takes no time, the spike will be available in neuron j in
the next step. The forgetting rules are of the form as → λ and are applied only
if the neuron contains exactly as spikes. The rule simply removes s spikes. For
all forgetting rules, s must not be the member of L(E) for any firing rule within
the same neuron.

A rule is bounded if it is of the form ai/aj → a, where 1 ≤ j ≤ i, or of the
form ak → λ, where k ≥ 1. A neuron is bounded if it contains only bounded
rules. A rule is called unbounded if is of the form ac(ai)∗/aj → a, where c ≥ 0,
i ≥ 1, j ≥ 1. A neuron is unbounded if it contains only unbounded rules. A
neuron is general if it contains both bounded and unbounded rules. An SN P
system is bounded if all the neurons in the system are bounded. It is unbounded
if it has bounded and unbounded neurons. Finally, an SN P system is general
if it has general neurons (i.e., it contains at least one neuron which has both
bounded and unbounded rules).

The usual SN P systems are synchronous (a global clock is assumed) and work
in a maximally parallel manner, in the sense that all neurons that are fireable
must fire. However, in any neuron, at most one rule is allowed to fire. One
neuron is designated as the output neuron of the system and its spikes can exit
into the environment, thus producing a spike train. Two main kinds of outputs
can be associated with a computation in an SN P system: a set of numbers,
obtained by considering the number of steps elapsed between consecutive spikes
which exit the output neuron, and a set of numbers, obtained by considering
the total number of spikes emitted by the output neuron until the system halts.
Two main types of results were obtained for synchronous SN P systems using
standard rules (producing one spike): computational completeness in the case
when no bound was imposed on the number of spikes present in the system, and
a characterization of semi-linear sets of numbers in the case when a bound was
imposed [5].

This paper introduces spiking neural P system with cooperating rules where
each neuron has a finite number of sets of spiking and forgetting rules. Each set is
called a component which can be empty. At any step or during a sequence of steps
(depending on the mode of application) only one of the components is active for
the whole system and only one of the enabled rules from this component of each
neuron can fire during that step. After that another (not necessarily different)
component of each neuron becomes active. The way of passing active control is
called a protocol. Similar to CD grammar systems, series of cooperation protocols
among the components in neurons of an SN P system can be considered, where
for example any component, once started, has to perform exactly k, at most
k, at least k, k ≥ 1 or an arbitrary number of transition steps. In the so-called
terminating mode, a component may stop working if and only if none of the rules

268

in that component of any neuron is applicable. In any case, the selection of the
next active component is non-deterministic and only one component generates
the output at a step, other components wait for receiving control.

This paper considers asynchronous SN P systems [1], where in any step, a
neuron can apply or not apply its rules which are enabled by the number of
spikes it contains (further spikes can come, thus changing the rules enabled in
the next step). Because the time between two firings of the output neuron is
now irrelevant, the result of a computation is the number of spikes sent out
by the system, not the distance between certain spikes leaving the system.
It was proved that such asynchronous SN P systems with extended rules are
equivalent to Turing machines (as generators of sets of natural numbers) but
universality of such systems with standard rules is still an open problem. The
additional non-determinism introduced in the functioning of the system by the
non-synchronization has more computing power in the case of using two com-
ponents. That is, two component SN P systems with standard rules working
asynchronously are equivalent to the Turing machines (interpreted as generators
of sets of (vectors of) numbers).

The paper also considers sequential SN P systems in which, at every step
of the computation, if there is at least one neuron with at least one rule that
is fireable, we only allow one such neuron and one such rule (both nondeter-
ministically chosen) to be fired. Here, not every step has at least one neuron
with a fireable rule. (Thus, the system might be dormant until a rule becomes
fireable. However, the clock will keep on ticking.) The sequential unbounded as
well as general SN P systems are proved to be universal [4]. A system is strongly
sequential, if at every step, there is at least one neuron with a fireable rule. It is
shown that strongly sequential general SN P systems are universal but strongly
sequential unbounded SN P systems are not universal [4]. In this paper, we also
prove that strongly sequential unbounded SN P systems with two components
are universal.

The paper is organized as follows. In the next section, register machines are
defined. SN P systems with cooperating rules are introduced in Section 3. The
universality of asynchronous two component SN P systems with standard rules is
proved in Section 4 and that of strongly sequential SN P systems with standard
unbounded neurons is proved in Section 5.

2 Prerequisites

We assume the reader to be familiar with formal language theory, CD grammar
systems and membrane computing. The reader can find details about them in
[10], [3], [9] etc.

The family of Turing computable sets of natural numbers is denoted by NRE
(the notation comes from the fact that these numbers are the length sets of
recursively enumerable languages). The family of NRE is also the family of
sets of numbers generated/recognized by register machines. For the universality
proofs in this paper, we use the characterization of NRE by means of register

269

machines [7]. Such a device - in the non-deterministic version - is a constructM =
(m,H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labelling an ADD instruction), lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from
H labels only one instruction from I, thus precisely identifying it.

The labelled instructions are of the following forms:

1. li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj,lk non-deterministically chosen),

2. li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 1 (the registers are numbered
from 1 to m) at that time is said to be generated by M . It is known (e.g.,
see, [7]) that register machines generate all sets of numbers which are Turing
computable.

A register machine can also accept a set of numbers: a number n is accepted
by M if, starting with n in register 1 and all other registers empty, the compu-
tation eventually halts (without loss of generality, we may assume that in the
halting configuration all registers are empty). Deterministic register machines
(i.e., with ADD instructions of the form li : (ADD(r), lj) working in the accept-
ing mode are known to be equivalent to Turing machines.

It is also possible to consider register machines producing sets of vectors of
natural numbers. In this case a distinguished set of v registers (for some v ≥ 1)
are designated as the output registers. A v-tuple (l1, l2, . . . , lv) ∈ Nv is generated
if M eventually halts and the contents of the output registers are l1, l2, . . . , lv
respectively.

Without loss of generality we may assume that in the halting configuration all
the registers, except the output ones, are empty. We also assume (without loss
of generality) that the output registers are non-decreasing and their contents
is only incremented (i.e., the output registers are never the subject of SUB
instructions, but only of ADD instructions).

We will refer to a register machine with v-output registers (the other registers
are auxiliary registers) as a v-output register machine. It is well known that a set
S of v-tuples of numbers is generated by a v-output register machine if and only
if S is recursively enumerable. When dealing with vectors of numbers, hence with
the Parikh images of languages (or with sets of vectors generated/recognized by
register machines), we write PsRE.

270

3 Spiking Neural P Systems with Cooperating Rules

We pass on now to introducing SN P systems with cooperating rules investigated
in this paper.
Definition 1. [SN P system with cooperating rules] An SN P system with
cooperating rules is an SN P system of degree m ≥ 1 with p ≥ 1 components, of
the form

Π = (O,Σ, σ1, σ2, σ3, . . . , σm, syn, out), where

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {1, 2, . . . , p} is the label alphabet for components;
3. σ1, σ2, σ3, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m;

where
(a) ni ≥ 0 is the initial number of spikes contained in the neuron;
(b) Ri = ∪l∈ΣRil, where each Ril, 1 ≤ l ≤ p, is a set (can be empty) of rules

representing a component l in σi having rules of the following two forms:
i. E/ar → a, where E is a regular expression over O, r ≥ 1 (if L(E) =

ar, then we simply write ar → a);
ii. as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any

rule E/ar → a of type i. from Ril;
4. syn ⊆ {1, 2, 3, . . . ,m} × {1, 2, 3, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m

(synapses among cells);
5. out ∈ {1, 2, 3, . . . ,m} indicates the output neuron.

Because we do not need the delay between firing and spiking (i.e., rules of the
form E/ar → a; d, with d ≥ 1) as well as extended rules (i.e., rules of the form
E/ar → aq, with q ≥ 1) in the proofs below, we do not consider these features
in the definition, but such rules can be introduced in the usual way.

The rules of the type E/ar → a are spiking rules, and can be applied only if
the neuron contains n spikes such that an ∈ L(E) and n ≥ r. When neuron σi

spikes, its spike is replicated in such a way that one spike is sent immediately
to all neurons σj such that (i, j) ∈ syn. The rules of type as → λ are forgetting
rules; s spikes are simply removed (“forgotten”) when applying such a rule. Like
in the case of spiking rules, the left-hand side of a forgetting rule must “cover”
the contents of the neuron, that is, as → λ is applied only if the neuron contains
exactly s spikes. For simplicity, in the graphical representation of the system,
the rules in the component l of neuron σi are prefixed with l and the components
inside the neuron is separated by lines.

As defined above, each component of the neurons can contain several rules.
More precisely, it is allowed to have two spiking rules E1/a

r1 → a and E2/a
r2 →

a with L(E1)∩L(E2) 6= ∅ in the same component. This leads to a non-deterministic
way of using the rules and we cannot avoid the non-determinism (deterministic
systems will compute only singleton sets).

271

The configuration of an SN P system is described by the number of spikes
in each neuron. Thus, the initial configuration of the system is described as
C0 = 〈n1, n2, n3, . . . , nm〉.

The SN P system is synchronized by means of a global clock and works in a
locally sequential and globally maximal manner with one component active at a
step for the whole system. That is, the working is sequential at the level of each
neuron. In each neuron, at each step, if there is more than one rule enabled from
the active component by its current contents, then only one of them (chosen non-
deterministically) can fire. But still, the system as a whole evolves in a parallel
and synchronising way, as in each step, all the neurons (that have an enabled
rule) choose a rule from the active component and all of them fire at once. Using
the rules, the system passes from one configuration to another configuration;
such a step is called a transition.

In a component-l-restricted transition, we say that the symbol 1 is generated
if at least one rule with label l is used and a spike is sent out to the environment
by the output neuron and the symbol 0 is generated if no spike is sent out to
the environment. Similar to CD grammar systems, several cooperation strategies
among the components can be considered: we here consider only the five basic
ones.

For two configurations C and C′, we write C =⇒∗
l C′, C =⇒=k

l C′, C =⇒≤k
l C′,

C =⇒≥k
l C′, C =⇒t

l C′, for some k ≥ 1, if configuration C′ can be reached from
C as follows: (1) by any number of transitions, (2) by k transition steps, (3) by
at most k transition steps, (4) by at least k transition steps, (5) by a sequence
of transition steps using rules from lth component of each neuron, which cannot
be continued, respectively.

A computation ofΠ is a finite or infinite sequence of transitions starting from
the initial configuration, and every configuration appearing in such a sequence is
called reachable. Therefore a finite (step) computation γα of Π in the mode α ∈
{∗, t}∪{≤ k,= k,≥ k | k ≥ 1}, is defined as γα = C0 =⇒α

j1
C1 =⇒α

j2
. . . =⇒α

jy
Cy

for some y ≥ 1, 1 ≤ jy ≤ p, where C0 is the initial configuration. A computation
γα of Π halts when the system reaches a configuration where no rule can be
used as per the cooperating protocol α (i.e., the SN P system has halted). This
paper only works in the terminating mode, so for convenience the mode is not
explicitly used in the definitions hereafter.

With any computation, halting or not, we associate a spike train: a sequence
of digits 0 and 1, with 1 appearing at positions corresponding to those steps
when the output neuron sent a spike out of the system. With a spike train
we can associate various numbers, which can be considered as generated by an
SN P system. For instance, the distance in time between the first two spikes,
between all consecutive spikes, the total number of spikes (in the case of halting
computations), and so on.

It is clear that the standard SN P system introduced in [5] is a special case
of the cooperating SN P system where the number of components is one. Similar
to the standard SN P system, there are various ways of using this device. In the
generative mode, one of the neurons is considered as the output neuron and the

272

spikes of the output neuron are sent to the environment. SN P systems can also
be used for generating sets of vectors, by considering several output neurons,
σi1 , σi2 , . . . , σiv . In this case, the system is called a v-output SN P system. Here
a vector of numbers, (n1, n2, . . . , nv), is said to be generated by the system if nj

is the number corresponding to the spike train from σij , where 1 ≤ j ≤ v.

We denote by CpN
max
gen (Π) [CpPsmax

gen (Π)] the set of numbers [of vectors,
resp.] generated by a p-component SN P system Π in a maximally parallel man-
ner, and by NCpSpik2P

max
m (β) [PsCpSpik2P

max
m (β)], β ∈ {gene, unb, boun},

the family of such sets of numbers [sets of vectors of numbers, resp.] generated
by cooperating SN P systems of type β (gene stands for general, unb for un-
bounded, boun for bounded), with at most m neurons and p components. When
m is not bounded, it is replaced by ∗. The subscript 2 reminds us of the fact
that we count the number of steps elapsed between the first two spikes.

An SN P system can also work in the accepting mode: a neuron is designated
as the input neuron and two spikes are introduced in it at an interval of n steps;
input n is encoded by 2n in the input register; the number n is accepted if the
computation halts.

In the asynchronous case, in each time unit, any neuron is free to use a rule
or not. Even if enabled, a rule is not necessarily applied, the neuron can remain
still in spite of the fact that it contains rules which are enabled by its contents.
If the contents of the neuron are not changed, a rule which was enabled in a step
t can fire later. If new spikes are received, then it is possible that other rules
will be enabled – and applied or not. This way of using the rules also applies
to the output neuron, hence now the distance in time between the spikes sent
out by the system is no longer relevant. That is why, for asynchronous SN P
systems we take as the result of a computation the total number of spikes sent
out; this, in turn, makes necessary considering only halting computations (the
computations never halting are ignored, they provide no output). We denote
by CpN

nsyn
gen (Π) [CpPsnsyngen (Π)] the set of numbers [of vectors, resp.] generated

by an asynchronous cooperating SN P system Π with p components, and by
NCpSpiktotP

nsyn
m (β) [PsCpSpiktotP

nsyn
m (β)], β ∈ {gene, unb, boun}, the fam-

ily of such sets of numbers [sets of vectors of numbers, resp.] generated by an
asynchronous cooperating SN P systems of type β, with at most m neurons and
p components. When m is not bounded, it is replaced by ∗. The subscript tot
reminds us of the fact that we count all spikes sent to the environment.

In the strongly sequential case, in each neuron, in each time unit, at least
one neuron contains a fireable rule and exactly one of them is chosen to fire
non-deterministically. Here, the output can be interpreted in any of the earlier
suggested ways. In this paper, we consider the distance in time between the
first two spikes. We denote by CpN

sseq
gen (Π) [CpPssseqgen (Π)] the set of numbers

[of vectors, resp.] generated by a strongly sequential cooperating SN P system
Π , and by NCpSpik2P

sseq
m (β) [PsCpSpik2P

sseq
m (β)], β ∈ {gene, unb, boun}, the

family of such sets of numbers [sets of vectors of numbers, resp.] generated by
strongly sequential cooperating SN P systems of type β, with at most m neurons
and p components. When m is not bounded, it is replaced by ∗.

273

4 Computational completeness of asynchronous SN P
systems with two components using standard rules

We pass now to prove that the power of two components in standard neurons
(where standard rules, producing one spike at a time, are used) can compensate
for the loss of power entailed by removing the synchronization.

Theorem 1. NC2SpiktotP
nsyn
∗ (gene) = NRE.

Proof. We only have to prove the inclusion NRE ⊆ NC2SpiktotP
nsyn
∗ (gene),

and to this aim, we use the characterization of NRE by means of register ma-
chines used in the generating mode.

Let M = (m,H, l0, lh, I) be a register machine with m registers, having the
properties specified above: the result of a computation is the number stored in
register 1 at the end of the computation and this register is never decremented
during the computation.

What we want is an asynchronous SN P system with two components Π
which (1) simulates the register machine M , and (2) has its output neuron
emitting the number of spikes equal to the number computed by M .

Instead of specifying all technical details of the construction, we present the
three main types of modules of the system Π , with the neurons, their rules, and
their synapses represented graphically. In turn, simulating M means to simulate
the ADD instructions and the SUB instructions. Thus, we will have one type
of module associated with ADD instructions, one associated with SUB instruc-
tions, and one dealing with the spiking of the output neuron (a FIN module).
The modules of the three types are given in Figs. 1, 2 and 3 respectively.

For each register r of M , we consider a neuron σr in Π whose contents
corresponds to the contents of the register. Specifically, if the register r holds
the number n > 0, then the neuron σr will contain 2n spikes. With each label li
of an instruction in M , we also associate a neuron σli with a single rule a → a
in its first component and no rules in its second component. There are also
some auxiliary neurons σli,q , q = 1, 2, 3, . . ., thus precisely identified by label
li. Initially, all these neurons are empty, with the exception of the neuron σl0

associated with the start label of M , which contains a single spike. This means
that this neuron is activated. During the computation, the neuron σli which
receives a spike will become active in its first component. Thus, simulating an
instruction li : (OP (r), lj , lk) of M means starting with neuron σli activated,
operating the register r as requested by OP , then introducing a spike in one
of the neurons σlj , σlk which becomes active in this way. When activating the
neuron σlh , associated with the halting label of M , the computation in M is
completely simulated in Π ; we will then send to the environment a number of
spikes equal to the number stored in the register 1 of M . Neuron σ1 is the output
neuron of the system.
Simulating li : (ADD(r), lj , lk) (module ADD in Fig. 1).

The initial instruction, that labelled l0, is an ADD instruction. Assume that
we are in a step when we have to simulate an instruction li : (ADD(r), lj , lk),

274

Fig. 1. ADD module: simulation of li : (ADD(r), lj , lk)

with a spike present in neuron σli (like σl0 in the initial configuration) and no
spikes in any other neurons, except in those associated with registers. Even if
the system is in the second component at the time, it must switch over to the
first component, since we are working in the terminating mode and there are no
rules in the second component which are currently applicable anywhere in the
system.

Having a spike inside and now in the first component, neuron σli can fire, and
at some time it will do it, producing a spike. This spike will simultaneously go
to neurons σr , σli,1 and σli,2 . The neurons σr and σli,2 cannot spike because the
firing rules are present in their second components. The neuron σli,1 will spike at
some time, then a spike will simultaneously go to the neurons σr and σli,2 . Since
no rules are enabled in the first component, the system switches to the second
component. Before the system switches, the neuron σr receives two spikes from
σli and σli,1 , thus simulating the increase of the value of register r with 1. Now
the system is in the second component. The neuron σli,2 has two spikes and it
can fire by choosing one of its rules a2/a → a or a2 → a non-deterministically.
If the neuron σli,2 uses its first rule a2/a → a, then it consumes one spike and
sends a spike to each of the neurons σli,3 and σli,4 . The neuron σli,2 is left with
one spike and thus it has an enabled rule a → a. The system switches to the
first component only when no rules are enabled in the neuron σli,2 . When the
neuron σli,2 fires for the second time, neurons σli,3 and σli,4 receive another spike
and the system switches to the first component. The neurons σli,3 and σli,4 have
enabled rules and they can fire. The system will be in the first component as
long as enabled rules are present in σli,3 and σli,4 . After some time, the neuron
σli,3 uses it spiking rule and sends a spike to σli,5 and the neuron σli,4 forgets its

275

spikes. So eventually neuron σli,5 fires and sends a spike to σlj , thus activating
it.

If the neuron σli,2 uses its second rule a2 → a, then each of the neurons
σli,3 and σli,4 receive one spike finally. After some time, the neuron σli,4 uses it
spiking rule and sends a spike to σli,6 and the neuron σli,5 forgets its spikes. So
after some time, neuron σli,6 fires and sends a spike to σlk , thus activating it.
Therefore, from the firing of neuron σli , the system adds two spikes to neuron
σr and non-deterministically fires one of the neurons σlj and σlk . Consequently,
the simulation of the ADD instruction is possible in Π .
Simulating li : (SUB(r), lj , lk) (module SUB in Fig. 2).

Fig. 2. SUB module: simulation of li : (SUB(r), lj , lk)

Let us now examine Fig. 2, starting from the situation of having a spike in neuron
σli and no spike in other neurons, except neurons associated with registers;
assume that neuron σr holds a number of spikes of the form 2n, n ≥ 0. Sometime,
the neuron σli will fire and a spike goes immediately to each of the neurons σli,1 ,
σli,2 and σr. The system must switch over to the second component, since we are
working in the terminating mode and there are no rules in the first component
which are currently applicable anywhere in the system.

If σr does not contain any spikes to begin with (this corresponds to the case
when register r is empty), then eventually the spike sent by σli gets forgotten
by virtue of the rule a → λ and σr is again left with no spikes, indicating that it
is still zero. Eventually, neurons σli,1 and σli,2 also send spikes using their rule
a → a. Thus, neurons σli,3 and σli,4 end up with 2 spikes each and the system
switches to the first component. After some steps, σli,3 forgets the two spikes

276

through the rule a2 → λ and the neuron σli,4 fires using its rule a2 → a. With
no rules applicable in the first component, the system switches to the second
component and eventually neuron σli,6 sends a spike to neuron σlk , as required,
thus finishing the simulation of the SUB instruction for the case when register
r is empty.

If neuron σr has 2n spikes to begin with, where n ≥ 1, then after some steps,
the rule a(aa)+/a3 → a is used in σr. Hence, σr now has two spikes less that
what it began indicating that r has been reduced by 1. Further, neurons σli,3

and σli,4 end up with 3 spikes each. After some steps, σli,4 forgets the three
spikes through the rule a3 → λ and the neuron σli,3 fires using its rule a3 → a.
With no rules applicable in the first component, the system switches to the
second component and eventually neuron σli,5 sends a spike to neuron σlj , thus
completing the simulation of the decrement case of the SUB instruction.

What remains to be examined is the possible interference between SUB
modules. Note that there may be more than a single SUB instruction involving
the same register r. Assume that we simulate the instruction li : (SUB(r), lj , lk),
hence neuron σr sends a spike to all neurons of the form σli′,3 and σli′,4 for which
there is an instruction l′i : (SUB(r), l′j , l

′
k) in M . These spikes will be forgotten

using the rule a → λ and this is the correct continuation of the computation.
Note that the system will be in the first component as long as any spikes are
present in the neurons of the form σli′,3 and σli′,4 . Thus, the neurons σli,5 and
σli,6 will become active only after the forgetting rule a → λ is applied in each
neuron of the form σli′,3 and σli′,4 .

This means that the simulation of the SUB instruction is correct, we started
from li and ended in lj if the register was non-empty (and we decreased it by
one), and in lk if the register was empty.
Simulating lh : (HALT) (module FIN in Fig. 3).

Fig. 3. FIN module: simulation of lh : HALT

When the neuron σlh is activated, it (eventually) sends one spike to neuron σ1,
corresponding to the register 1 of M . From now on, this neuron can fire, and it
sends out one spike for each two spikes present in it, hence the system will emit
a number of spikes which corresponds to the contents of the register 1 of M at
the end of the computation (after reaching the instruction lh : HALT).

Consequently, C2N
nsyn
gen (Π) = N(M) and this completes the proof. ⊓⊔

277

Clearly, the previous construction is the same for the accepting mode, and can
be carried out for deterministic register machines (the ADD instructions are of
the form li : (ADD(r), lj). Similarly, if the result of a computation is defined as
the number of spikes present in a specified neuron in the halting configuration,
then the previous construction is the same, we only have to add one further
neuron which is designated as the output neuron and which collects all spikes
emitted by neuron σ1.

Theorem 1 can easily be extended by allowing more output neurons and then
simulating a v-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 2. PsC2SpiktotP
nsyn
∗ (gene) = PsRE.

5 Sequential spiking neural P systems with two
components

In this section, we restrict the model to operate in a sequential manner. Before
considering the power of sequential SN P systems with two components, we first
recall some results from [4] on the power of the sequential SN P systems with
one component.

1. Sequential SN P systems with general neurons are universal.
2. Sequential SN P systems with unbounded neurons are universal.
3. Strongly sequential SN P systems with general neurons are universal.
4. Strongly sequential SN P systems with unbounded neurons are not universal.

The paper [4] makes use of delayed rules to achieve synchronization. Here the
synchronization can be achieved by switching between the components and hence
delayed rules are not required. Here we prove that two component strongly se-
quential SN P systems with standard unbounded neurons without any delay are
computationally complete.

Theorem 3. NC2Spik2P
sseq
∗ (unb) = NRE.

Proof. Given some register machine M generating a set N(M), we can simulate
M with a strongly sequential unbounded SN P Π having two components which
generates the set C2N

seq
gen(Π) = {x | x ∈ N(M)}. The SN P Π ’s initial configu-

ration will again start with the initial configuration for each module along with
a single spike in neuron σl0 .

To create a strongly sequential unbounded SN P generating exactly N(M)
use the same ideas and methods given in Theorem 1. The ADD module is the
same as the one shown in Fig. 1 but we remove the rule 2 : a → λ from the
neuron σr so that the subsystem becomes unbounded. Since no rules from σr are
fired in the ADD module, the subsystem works correctly even in the sequential
mode.

The new subtraction module is shown in Fig. 4. It is initiated with a single
spike in neuron σli which immediately sends a spike to neurons σr, σli,1 and σli,2

278

Fig. 4. Strongly sequential unbounded two component SN P SUB module

at time t + 1 (where t is the time the initial spike is sent to neuron σli). If the
value in the register r is not zero then the three neurons non-deterministically
spike during the next three steps (time t+2, t+3, and t+4). This causes neuron
σli,3 to spike and neuron σli,4 to forget sequentially during the following two time
steps (time t+5 and t+6). Since no rules are enabled in the second component,
the system switches to the first component. In the step t + 7, neuron σli,5 fires
and sends a spike to σli,6 . Since neuron σr sends spikes to all neurons σli′,3 and
σli′,4 where li′ : (SUB(r), lj′ , lk′), these neurons receive a single spike during
the computation of instruction li. These spikes must be forgotten before the
next instruction executes. Here, the system switches to the second component
and fires the rule in the neuron σli,6 only after all spikes are removed from the
neurons σli′,3 and σli′,4 using their forgetting rule a → λ present in their first
components. When the neuron σli,6 fires, it initiates the instruction module lj .

If σr does not contain any spikes to begin with (this corresponds to the case
when register r is empty), then the neuron σr does not fire and the neurons
σli,3 and σli,4 receive two spikes each. Since no rules are enabled in the second
component, the system switches to the first component. This causes neurons
σli,3 to forget and σli,4 to spike sequentially during the following two time steps
(time t + 4 and t + 5). The spike from σli,4 goes simultaneously to neurons σr

and σli,7 in time step t+6. Neuron σli,7 sends a spike to σr and σli,8 in time step
t+ 7. Since no rules are enabled in the first component, the system switches to
the second component. Now the neuron σr has three spikes. The neurons σr and

279

σli,8 fire sequentially in the next two steps t+ 8 and t+ 9. Thus the contents of
σr is cleared indicating that r remains zero, as required. The spike from σr goes
to σli,3 , σli,4 and all neurons σli′ ,4 , where li′ : (SUB(r), lj′ , lk′). The neurons σli,9

and σli,10 with rules in different components ensures that the spikes in σli,3 , σli,4

and all σli′,3 and σli′,4 are forgotten before enabling the instruction module lk
as the spike received by σli,8 (from σli,7) percolates through σli,9 and σli,10 to lk.

Fig. 5. Strongly sequential unbounded two component SN P output module

To simulate lh : (HALT), we create the module given in Fig. 5. When
neuron lh receives a spike, it fires and sends a spike to neurons σ1 and σout with
the system in the first component (it will switch to the first component even
otherwise as only rules in the first component are enabled and we are working
in the terminating mode). Let t be the moment when neuron lh fires. Suppose
the number stored in the register 1 of M is n.

At step t + 1, neuron σout fires for the first time sending its spike to the
environment. The number of steps from this spike to the next one is the number
computed by the system. Since no rule is enabled in the first component, the
system switches to the second component. Now the neuron σ1 spikes during
the next n steps. The neuron σout will become active only after 2n spikes are
removed from σ1. So at time t + n + 1, the system again switches to the first
component and the neuron σout fires for the second time. The interval between
the two spikes emitted by σout is (t+ n+ 1)− (t+ 1) = n, which is the number
stored in the register 1 of M . The system halts after n−1 steps with all neurons
empty except neuron σ1 which contains a spike. ⊓⊔

Theorem 3 can easily be extended by allowing more output neurons and then
simulating a v-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 4. PsC2Spik2P
sseq
∗ (unb) = PsRE.

One more observation is that the module given in Fig. 4 works even if the
system is asynchronous. It is now possible to construct a new system with ADD
module shown in Fig. 1 without the rule 2 : a → λ in the neuron σr, the SUB

280

module given in Fig. 4 and the FIN module given in Fig. 3 without the rule
2 : a → λ in the neuron σ1 which would be unbounded and work correctly in the
case of an asynchronous system. Hence, we have the following two theorems.

Theorem 5. NC2SpiktotP
nsyn
∗ (unb) = NRE.

Theorem 6. PsC2SpiktotP
nsyn
∗ (unb) = PsRE.

Finally, the system constructed in Section 4 with the FIN module in Fig. 5
would work for sequential systems. Hence, we have the following two theorems.

Theorem 7. NC2Spik2P
sseq
∗ (gene) = NRE.

Theorem 8. PsC2Spik2P
sseq
∗ (gene) = PsRE.

6 Conclusion and discussion

The usual SN P systems operate in a maximally parallel manner. This model
was shown to be computationally complete even with a variety of additional re-
strictions on the rule types [8, 11]. In this paper, we introduced a spiking neural
P system with cooperating rules. Computational completeness has been proved
for asynchronous as well as sequential cooperating SN P systems with two com-
ponents using unbounded as well as general neurons working in the terminating
mode. This suggests that cooperating SN P systems are indeed more powerful
by offering seamless synchronization without the use of any delays. Further work
would include the construction of small universal systems. It would also be in-
teresting to consider the languages generated by these systems using different
number of components. Further, this paper considers only the terminating mode,
which is known to be more powerful than others in the case of CD grammar sys-
tems. A discussion on if the same result holds for cooperating SN P systems
working in other models would be worthwhile.

Acknowledgements The work was supported by EU project Development of
Research Capacities of the Silesian University in Opava (CZ.1.07/2.3.00/30.0007)
and European Regional Development Fund in the IT4Innovations Centre of Ex-
cellence project (CZ.1.05/1.1.00/02.0070).

References

1. Cavaliere, M., Ibarra, O.H., Păun, Gh., Egecioglu, Ö., Ionescu, M., Woodworth,
S.: Asynchronous spiking neural P systems, Theoretical Computer Science, 410
(24-25), 2352–2364 (2009).

2. Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems, Jour-
nal of Information Processing and Cybernetics (EIK), 26, 49–63 (1990).

3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach, London,
(1994).

281

4. Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural P systems and
partially blind counter machines, Natural Computing 7(1), 3–19 (2008).

5. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems, Fundamenta
Informaticae, 71, 279–308 (2006).

6. Meersman, R., Rozenberg, G.: Cooperating grammar systems, Proceedings of
Mathematical Foundations of Computer Science, LNCS 64, 364–374 (1978).

7. Minsky, M.: Computation – Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, (1967).

8. Pan, L., Păun, Gh.: Spiking Neural P Systems: An Improved Normal Form, The-
oretical Computer Science, 411, 906–918 (2010).

9. Păun, Gh., Rozenberg, G., Salomaa, A. (eds): Handbook of Membrane Computing,
Oxford University Press, Oxford (2010).

10. Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages. 3 volumes,
Springer, Berlin, (1997).

11. Zeng, X., Zhang, X., Pan, L.: Homogeneous Spiking Neural P Systems, Fundamenta
Informaticae, 97, 1–20 (2009).

282

On the Dynamics of P Systems
with Membrane Boundaries

Extended Abstract

Tamás Mihálydeák1 and Zoltán Ernő Csajbók2

1 Department of Computer Science, Faculty of Informatics, University of Debrecen
Kassai út 26, H-4028 Debrecen, Hungary

mihalydeak.tamas@inf.unideb.hu
2 Department of Health Informatics, Faculty of Health, University of Debrecen,

Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
csajbok.zoltan@foh.unideb.hu

Abstract. There are many different variants of P systems which are
used as a formalism to build more realistic models for complex biotic/
chemical systems. In real biotic/chemical interactions, objects have to
be close enough to membranes so that they are able to pass through
them. Recently, the authors have proposed a new framework modeling
the abstract notion of “closeness to membranes” in P systems by the help
of multiset approximation spaces. The communication rules are restricted
to these boundaries of membranes. This paper is addressed to reveal a
possible intuitive meaning of this two-component structure.

Keywords: P systems, approximation spaces, potential energy, stable
states

1 Introduction

The P system model was invented by Păun around the millennium [8–10]. In
cell–like P systems, membranes delimit compartments (regions) arranged in a
hierarchical structure. Each region is associated with a finite multiset of objects
and a finite set of rules modeling reactions inside regions (evolution rules) and
movements of objects through membranes (communication rules).

Communication rules are powerful means in membrane systems [7, 2, 11].
However, real biotic/chemical interactions represented by communication rules
in P systems are taken place in the vicinity of membranes. Therefore, such an
abstract concept of “closeness to membranes” is required which does not decrease
the power of communication rules but controls their functioning in some ways.

Rough set theory, Pawlak’s classical theory of set approximations [5, 6] gives
a plausible opportunity to model boundary zones around sets. We worked out
its generalization for multisets called the multiset approximation space. This
paper is addressed to show a possible biologically/chemically inspired intuitive
meaning of the two-component structure, i.e., membrane system together with
multiset approximation space.

283

2 P Systems with Membrane Boundaries

A P system with membrane boundaries which was first proposed in [3] has
a two-component structure: 1) a communicating P system; and 2) a multiset
approximation space. Using the multiset approximation technique, the abstract
notion of closeness around membranes is specified. The communication rules are
restricted to membrane boundaries. This approach is restrictive by nature but
preserves the two important principles of P systems, the maximal parallelism
and the nondeterminism. Hence, the membrane computations can be controlled
to some extent [1, 4].

Among others, robustness, stability, equilibrium, periodicity are important
aspects of real biotic/chemical processes. In the following, within the scope of the
proposed framework, the question of stability in P systems will be investigated.

Formal definitions of all notions mentioned below can be found in [1, 3, 4].
A multiset approximation space, the one component of the proposed model,

is defined over a finite alphabet U , and denoted by MAS(U). It has four basic
constituents:

– Domain — a set of finite multisets, msets for short, over U whose mem-
bers are approximated. The msets associated with the regions belong to the
domain.

– Base system — a set of some beforehand detached msets from the domain
serving as the basis for the approximation process. Its members are the base
msets.

– The set of definable msets deriving from base msets. They are possible ap-
proximations of the members of the domain. Base msets and the empty mset
are always definable.

– Approximation pair — determining the lower and upper approximations of
the msets of the domain as definable msets.

In chemical systems, energy is stored via chemical bonds (ionic or covalent)
which establish a coherent unit from the atoms of elements, namely, a compound.
Stored energy is called potential because it has the “potential” to do work.
In Nature, the lower the potential energy of a system, the more stable it is.
Moreover, natural systems, left to themselves, attempt to reach the configura-
tion with the lowest energy possible under a given set of constraints.

In multiset approximation space MAS(U), each base mset consists of objects
which together form a coherent unit, too. Hence, base msets can be taken as the
representation of compounds which store potential energy. Therefore, they repre-
sent the stable state of their constituent objects, and they have lower (potential)
energy together as they would have separately.

The other component, the communication P system Π is also defined over a
finite alphabet. In the framework, it is a cell–like system, i.e., its regions form a
hierarchical structure. Sets of rules associated with the regions consist of solely
communications rules of symport/antiport type. Having given the communica-
tion P system Π, an mset approximation space, denoted by MAS(Π), can be
created over the finite alphabet of the P system.

284

It is assumed that the msets associated with the regions belong to the
domain of MAS(Π), and so their lower/upper approximations and boundaries
can be formed in MAS(Π). However, these boundaries do not obey the mem-
brane structure in general. Thus, they are adjusted to the membrane structure
by a new mapping which gives the actual membrane boundaries.

Membrane boundaries are collections of base msets. A very important aspect
of these base msets is that all of them are split into two parts by the membranes.
They evidently form the inner and outer parts of the boundaries. In both parts,
bisected base msets are not stable from the energetic point of view. In other
words, they are in “excited states”, i.e., they have higher energy as they would
have together as a coherent unit, namely, a base mset. As it was mentioned
earlier, a natural system, left to itself, attempt to reach the configuration with
the lowest energy if possible. Accordingly, base msets bisected by membranes are
ready for moving towards the stable states of lower potential energy. However,
they can reach these states only in the case if the adequate objects are able to
pass through the membranes.

The movements of objects through membranes are regulated by communica-
tion rules restricted to membrane boundaries. Consequently, a base mset split
into two parts can only put in a lower potential energy state, i.e., a more stable
state if the communication rules make possible that the objects form a base mset
again. If it happens, the (re)combined base mset wholly gets inside/outside the
region. Then, at the same time, it is removed from the membrane boundary as
well, i.e., the boundary changes.

Anyway, after each computation step in the framework, boundaries, both
inner and outer parts, have to be recalculated. Then, the membrane computation
can start again. It will finish if there is no applicable communication rule.

Acknowledgements

The publication was supported by the TÁMOP–4.2.2.C–11/1/KONV–2012–0001
project. The project has been supported by the European Union, co-financed by
the European Social Fund.

The authors are thankful to the anonymous referees for their constructive
comments.

References

1. Csajbók, Z.E., Mihálydeák, T.: Maximal parallelism in membrane systems with
generated membrane boundaries. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K.
(eds.) Language, Life, Limits. 10th Conference on Computability in Europe, CiE
2014, Budapest, Hungary, June 23-27, 2014. Proceedings. LNCS, vol. 8493, pp.
103–112. Springer International Publishing, Switzerland (2014)

2. Freund, R., Păun, A.: Membrane systems with symport/antiport rules: Universality
results. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane
Computing, LNCS, vol. 2597, pp. 270–287. Springer Berlin Heidelberg (2003)

285

3. Mihálydeák, T., Csajbók, Z.E.: Membranes with boundaries. In: Csuhaj-Varjú, E.,
Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) Membrane Comput-
ing. 13th International Conference, CMC 2012, Budapest, Hungary, August 28-31,
2012, Revised Selected Papers. LNCS, vol. 7762, pp. 277–294. Springer-Verlag,
Berlin Heidelberg (2013)

4. Mihálydeák, T., Csajbók, Z.E., Takács, P.: Communication rules controlled by
generated membrane boundaries. In: Alhazov, A., Cojocaru, S., Gheorghe, M.,
Rogozhin, Y., Salomaa, A. (eds.) Membrane Computing, 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised
Selected Papers. LNCS, vol. 8340, pp. 265–279. Springer, Berlin Heidelberg (2014)

5. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11(5), 341–356 (1982)

6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

7. Păun, A., Păun, Gh.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–305 (September 2002)

8. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

9. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin (2002)
10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford Handbooks, Oxford University Press, Inc., New York, NY,
USA (2010)

11. Sosík, P.: P systems versus register machines: Two universality proofs. In: Păun,
Gh., Zandron, C. (eds.) Pre-Proceedings of Workshop on Membrane Computing
(WMC-CdeA2002), Curtea de Argeş, Romania, pp. 371–382 (2002)

286

Parallel Thinning

with Complex Objects and Actors

Radu Nicolescu
Department of Computer Science, The University of Auckland

Auckland, New Zealand, r.nicolescu@auckland.ac.nz

9 May, 2014

Abstract

Based on our earlier complex objects proposal, we present three novel
concurrent membrane computing models for a fundamental image pro-
cessing task: the thinning (or skeletonisation) of binary images, based on
the classical Guo-Hall algorithm (A2). The first model is synchronous
and uses one cell per pixel and relies on inter-cell parallelism; the second
model is an asynchronous version of the first; the third model uses one
single cell, with one sub-cellular object per pixel, and relies on intra-cell
parallelism. The static and dynamic qualities of our models validate our
complex objects proposal: (i) the proposed models are crisp (comparable
to the best pseudocode); and (ii) complex objects concurrency and mes-
saging can be efficiently emulated on a message-based Actors framework
(which opens a novel research path).

Keywords: Membrane computing, P systems, inter-cell parallelism,
intra-cell parallelism, Prolog terms, complex objects, generic rules, im-
age processing, Guo-Hall algorithm, parallel and concurrent models,
synchronous and asynchronous models, termination detection, message-
based, Actor model.

1 Introduction

We have previously used complex objects to successfully model problems in
a wide variety of domains: computer vision [8, 9, 14]; graph theory [18, 6];
distributed algorithms [2, 4, 5, 17, 25, 19]; high-level P systems programming [16,
15]; numerical P systems [16, 15]; NP-complete problems [16, 15, 19].

In this paper, we choose another test case, a fundamental image processing
task: thinning (or skeletonisation) of black-and-white images. Specifically, we
model Guo and Hall’s algorithm A2 [10] and we asses the merits of our complex
framework. We provide three closely related models, with a straightforward
translation between them:

• A synchronous multi-cell model, based on a 1 : 1 mapping between pixels
and cells and essentially using the inter-cell parallelism;

• An asynchronous multi-cell model, based on a 1 : 1 mapping between
pixels and cells and essentially using the inter-cell parallelism; and

1t287

• A (synchronous) single-cell model, based on a 1 : 1 mapping between
pixels and sub-cellular complex objects and essentially using the intra-cell
parallelism.

Further, although not detailed here (for lack of space), we provide a direct
emulation of our three models in the asynchronous Actors framework [11, 1],
using F#’s mailbox processor library [24]. We conjecture that, given a good
support for pattern matching, the translation from complex objects to Actors
be largely automatised, not only for similar image processing tasks, but for
many other applications (such as we earlier studied), for both synchronous and
asynchronous cases.

We are aware of only a few other quality studies proposing membrane com-
puting models for thinning algorithms or other real-life complex image pro-
cessing tasks. Reina-Molina et al. [23] propose a traditional tissue system,
without mentioning any experimental mapping, and raise an open question:
if other membrane computing versions can provide “better” (in a very loose
sense) models. Reina-Molina and Dı́az-Pernil [22] discuss a similar tissue based
system. Peña-Cantillana et al. [20] discuss a related cellular model, mapped on
the CUDA platform. Dı́az-Pernil et al. [3] propose a spiking neural model also
mapped on the CUDA platform.

We think that our study is a partial answer to the above open question:
our complex objects seem to support crisper models, with fixed-sized rulesets,
independent on the size of the image. Moreover, our approach seems to be the
first offering multiple but closely related solutions for an image processing task,
such as a pair of “twin” multi-cell/single-cell solutions, or a pair of “twin” syn-
chronous/asynchronous solutions. Also, we are not aware of any other attempt
that map membrane computing to an Actors based platform, so this is another
novel path explored in this paper.

This study leads us to formulate a couple of open questions (not followed
here), about a distributed termination detection of this algorithm or the mer-
its of a partial asynchronous version of this algorithm. We are not aware of
many membrane computing studies that could be related to these open prob-
lems. For example, Nicolescu and Wu [19] and Wu [26] have recently studied
distributed termination detection for diffusing (single source) algorithms, but
probably more studies are needed on non-diffusing (multiple source) algorithms
such as this (especially for scenarios when a master control node cannot be
easily incorporated).

Because of space constraints, for the rest of the paper, we assume that the
reader is already familiar with:

• basic definitions used in traditional tissue-like transition P systems, in-
cluding state based rules, weak priority, promoters and inhibitors, e.g. as
discussed in the membrane computing handbook [21];

• basic concepts of image processing and an understanding of Guo and Hall’s
image thinning algorithm A2 [10, 20];

• basic concepts of concurrent processing with functional programming, us-
ing the message-based Actor model, e.g. as described in Syme’s mono-
graph [24].

288

However, to ensure some degree of self-containment, following Nicolescu et al.
recent papers [16, 15, 19], we discuss two important extensions used: complex ob-
jects and generic rules (if our complex objects presentation is not enough, then
we also suggest a quick revision of basics of Prolog terms unification). Here we
also extend the previously published format of complex objects and generic rules,
by adding an optional path notation which enables efficient “micro-surgeries”
on inner nested objects (without affecting their enclosing outer objects).

2 Background: Image Thinning

Thinning is the transformation of a digital binary image into a simplified, but
topologically equivalent image, often called “skeleton”. The image pixels are
divided into two categories: (i) foreground, conventionally black or true (i.e.
ordinal 1); and (ii) background, conventionally white or false (i.e. ordinal
0). Typically, the thinning process repeatedly turns black pixels to white (con-
ceptually “deleting” them from the foreground), while trying (a) to keep the
topological connectivity, and (b) to balance the whitening around the so call
medial lines. The algorithm stops when no further changes can be made.

Intuitively, Figure 1 shows a thinning example: (1a) the original image, and
(1b) a possible skeleton. For efficiency, many thinning algorithms make such
changes solely based on the current pixel’s 8-neighbourhood, where center pixel
p0 has the following neighbours (see also Figure 2a): p1 at NW, p2 at N, p3 at
NE, p4 at E, p5 at SE, p6 at S, p7 at SW, p8 at W.

(a) Original image (b) Skeleton

Figure 1: Sample thinning (with Guo and Hall A2)

Because of paper size limits, we only outline the critical steps of Guo and
Hall’s algorithm A2 [10]; please see the original paper for more details on thin-
ning and on this algorithm, including arguments for its correctness and effi-
ciency.

Briefly, one partitions the pixels into an even/odd checkerboard pattern,
where a pixel at (i, j) is even if (i+j)%2 = 0, and odd otherwise. This algorithm
makes alternative iterations, where at one step only even (or odd) black pixels
are active and examined for possible changes. Figure 2b shows the essential
pixel state changes of this algorithm: a white pixel remains white; a black pixel
continuously alternates between an active and inactive state (determined by the
checkerboard pattern and iteration number); and an active black pixel may turn
white, under the specific conditions detailed below.

289

p1 p2 p3

p4p0p8

p7 p6 p5

261
5

8

4

7
3 6 2 5

1

4

8

3
7

(a) The 8-neighbourhood

bi ba w

(b) Thinning statechart

• bi=black inactive

• ba=black active

• w=white

Figure 2: The “standard” 8-neighbourhood and algorithm statechart

Besides being in the active state, the following three conditions1 must be
simultaneously true for properly changing the colour of a black pixel p0 (“delet-
ing” it from the foreground):

• β = 1, where

β = ord(¬((p1 ∧ p3 ∧ p5 ∧ p7)∨
(p2 ∧ p4 ∧ p6 ∧ p8)))

• γ = 1, where

γ =(ord ((¬p2) ∧ (p3 ∨ p4))) + (ord ((¬p4) ∧ (p5 ∨ p6)))+

(ord ((¬p6) ∧ (p7 ∨ p8))) + (ord ((¬p8) ∧ (p1 ∨ p2)))

• δ > 1, where

δ =(ord p1) + (ord p2) + (ord p3)+

(ord p8) + (ord p4)+

(ord p7) + (ord p6) + (ord p5)

These three values can be each time computed from scratch, according to
the formulas, or precomputed and stored in three fast access tables, each one
storing all values for all 28 = 256 combinations of p1, p2, . . . p8. Or, even better,
we can precompute all answers for the combined three conditions:

ψ = ord((β = 1) ∧ (γ = 1) ∧ (δ > 1)).

Also, to avoid special cases for pixels lying on the image borders, in many
cases we can assume that all border pixels are background (white). In this
paper, we follow these two optimisations.

Table 3a shows (in a compact way) a few lines of the β, γ, δ and ψ tables;
the configurations of lines 124 and 125 are displayed in Figure 3b; the original
article [10] explains the rationale of these three values (called 4 − connection,
C(P), and B(P), respectively).

1Function ord(b) returns the ordinal value of boolean b, i.e. ord(⊥) = 0, ord(>) = 1.

290

p8, p7, p6, p5, p4, p3, p2, p1 β γ δ ψ
0 0, 0, 0, 0, 0, 0, 0, 0 1 0 0 0

.
124 0, 1, 1, 1, 1, 1, 0, 0 1 1 5 1
125 0, 1, 1, 1, 1, 1, 0, 1 0 2 6 0
.
255 1, 1, 1, 1, 1, 1, 1, 1 0 0 8 0

(a) Excerpts of the β, γ, δ and ψ tables

#124 #125

(b) Configurations of lines
124 (centre pixel can
be “deleted”) and 125
(centre pixel cannot be
“deleted”)

Figure 3: Precomputed tables

This algorithm can be parallelised by allocating one distinct task for each
pixel, provided that we have implicit or explicit synchronisation barriers, which
ensure that the colour changes do not affect other pixels’ evaluation of the “dele-
tion” condition. This condition is implicit in synchronous settings; however, in
asynchronous settings (as typical in parallel multi-cores applications), we need
two explicit synchronisation barriers. Listing 1 shows a parallel pseudocode of
the essential steps of Guo and Hall’s algorithm A2 (using indentation to delimit
blocks), assuming that colours are directly changed in the original pixels. We
can safely use this approach, in a synchronous P system model, where all steps
are implicitly synchronised.

Practically, to avoid excessive parallelisation overhead, one should reduce
the number of tasks, by adequately partitioning the image and allocate a task
to each subrange of pixels. Thus, the first line of Listing 1 should be replaced
by the lines shown in Listing 2. This mixed approach is not further developed
here, but is briefly mentioned again, as an open problem, in Section 5.

Listing 1: Synchronous parallel pseudocode of Guo and Hall’s algorithm A2

paral le l for each p i x e l π[i, j] in image do
i f (π[i, j].colour = black) then

π[i, j].active := ((i+ j)%2 = 0)
while (¬ terminated) do // question: how do black cells know this?

π[i, j].active := ¬ π[i, j].active
i f (π[i, j].active) then

barrier // phase synchronisation
local ψ := . . . // needs the colours of its 8 neighbours
barrier // phase synchronisation
i f (ψ = 1) then // i.e. (β = 1) ∧ (γ = 1) ∧ (δ > 1)

π[i, j].colour := white
break while

else
barrier // phase synchronisation
idle
barrier // phase synchronisation

This algorithm raises an interesting termination issue, in the case of a dis-

291

Listing 2: Partitioning pseudocode for Guo and Hall’s algorithm A2

Π = p a r t i t i o n of input image // question: what is the best partition?
paral le l for each subrange in Π do

coroutine for each p i x e l π[i, j] in subrange do
. . . // the rest is identical

tributed implementation over a cluster of computing nodes: how do all nodes
learn that the algorithm has terminated, promptly and efficiently? Is there a
master node that supervises the whole process, perhaps centralising the number
of deleted pixels at each step (as we assume here), or do the nodes concurrently
run an ad-hoc termination detection control layer?

Another interesting question is to find well-behaved asynchronous versions
of this algorithm. While a full asynchronous version could arguably return bad
results (e.g. far from the medial line), a restricted, globally asynchronous but
locally synchronous (GALS) version may still give exact results. In Section 6,
we propose an asynchronous Actors based version, where we precisely know
the number of expected messages at each phase, which enables an ad-hoc local
synchronisation, without the overhead of more general synchroniser [12].

3 Background: Membrane Computing with Com-
plex Objects

3.1 Complex objects

Complex objects play the roles of cellular micro-compartments or substructures,
such as organelles, vesicles or cytoophidium assemblies (“snakes”), which are
embedded in cells or travel between cells, but without having the full processing
power of a complete cell. In our proposal, complex objects represent structured
data that have no own processing power: they are acted upon by the rules of
their enclosing cells.

Technically, our complex objects, are Prolog-like first-order terms, recursively
built from multisets of atoms and variables. Atoms are typically denoted by
lower case letters, such as a, b, c. Variables are typically denoted by uppercase
letters, such as X, Y , Z. For improved readability, we also consider anonymous
variables, which are denoted by underscores (“ ”). Each underscore occurrence
represents a new unnamed variable and indicates that something, in which we
are not interested, must fill that slot.

Terms are either (i) simple atoms, or (ii) atoms (here called functors), fol-
lowed by one or more parenthesized lists of comma-separated “arguments”,
which are multisets/bags of other objects (terms or variables). Functors that are
followed by more than one list of arguments are called curried (by analogy to
functional programming) and, as we see later, are useful to precisely described
deep ‘micro-surgical” changes which only affect inner nested objects, without
directly touching their enclosing outer objects. Terms that do not contain vari-
ables are called ground, e.g.:

292

• Ground terms: a, a(b), a(λ), a(b, c), a(b, λ), a(λ, c), a(λ, λ), a(b(c)), a(bc),
a(bc(λ)), a(b(c)d(e)), a(b(c), d(e)), a(b(c), d(e(λ))), a(bc2, d, eg); or, a cur-
ried form: a(bc2)(d, eg).

• Terms which are not ground: a(b,X), a(b(X)), a(Xc), a(bY), a(XY),
a(XX), a(XdY), a(Xc()), a(b(X)d(e)), a(b(c), d(Y)), a(b(X), d(e(Y))),
a(b(X), d(e(X))); or, a curried form: a(b(c))(d(Y)); also, using anonymous
variables: a(b), a(X), a(b(X), d(e())).

Note that we may abbreviate the expression of complex objects by removing
inner λ’s as explicit references to the empty bag, e.g. a(λ) = a(), a(b, λ) = a(b,).

Complex objects can be formally defined by the following grammar:

<term> ::= <atom> | <functor> (’(’ <arguments> ’)’)+

<functor> ::= <atom>

<arguments> ::= <bag-argument> (’,’ <bag-argument>)*

<bag-argument> ::= λ | (<term-or-var>)+

<term-or-var> ::= <term> | <variable>

Natural numbers. Natural numbers can be represented via bags containing
repeated occurrences of the same atom. For example, considering that l repre-
sents the unary digit, then the following complex objects can be used to describe
the contents of a virtual integer variable a: a() = a(λ) — the value of a is 0;
a(l3) — the value of a is 3. Nicolescu et al. [16, 15, 19] show how arithmetic
operations can be efficiently modelled by P systems with complex objects.

Indexed symbols. Complex objects can sometimes be represented as indexed
symbols, where lower-case indices stand for arguments, e.g. ak = a(k); this is
especially convenient when indices represent numbers or cell IDs (which typically
are numbers).

Unification. All terms (ground or not) can be (asymmetrically) matched
against ground terms, using an ad-hoc version of pattern matching, more pre-
cisely, a one-way first-order syntactic unification, where an atom can only match
another copy of itself, and a variable can match any bag of ground terms (in-
cluding the empty bag, λ). This may create a combinatorial non-determinism,
when a combination of two or more variables are matched against the same bag,
in which case an arbitrary matching is chosen. For example:

• Matching a(X, eY) = a(b(c), def) deterministically creates a single set of
unifiers: X,Y = b(c), df .

• Matching a(XY) = a(df) non-deterministically creates one of the fol-
lowing four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ;
X,Y = f, d.

• However, matching a(XY, Y) = a(def, e) deterministically creates a single
set of unifiers: X,Y = df, e.

Performance note. If the rules avoid any matching non-determinism, then
this proposal should not affect the performance of P simulators running on
existing machines. Assuming that bags are already taken care of, e.g. via hash-
tables, our proposed unification probably adds an almost linear factor. Let us

293

recall that, in similar contexts (no occurs check needed), Prolog unification al-
gorithms can run in O(ng(n)) steps, where g is the inverse Ackermann function.
Our conjecture must be proven though, as the novel presence of multisets may
affect the performance.

Alternative notations. Using Lisp terms instead Prolog terms, we could use
an equivalent notation, where the functor becomes the first term in a parent-
sized expression, instead of preceding it. For example, the Prolog-like term
a(bc2, d, eg) could be rewritten as the Lisp-like term, (a, bc2, d, eg), with addi-
tional commas to clearly separate items.

If there is no confusion with atomic symbols, simple complex terms with
just one level of nesting can also be abbreviated by an indexed notation. For
example, the term a(i, j) could be rewritten as ai,j .

3.2 Generic rules

By default, rules are applied top-down, in the so-called weak priority order.
Rules may contain any kind of terms, ground and not-ground; however, in this
proposal, cells can only contain ground terms.

Pattern matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

• The cell’s current content includes the ground term:
n(l10, n(l20, f(l30), f(l40)), f(l50))

• The following rewriting rule is considered:
n(X,n(Y, Y1, Y2), f(Z)) → v(X) n(Y, Y1, Y2) v(Z)

• Our pattern matching determines the following unifiers:
X = l10, Y = l20, Y1 = l30, Y2 = l40, Z = l50.

• This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(l10) n(l20, f(l30), f(l40)) v(l50)

Generic rules format. More generally, we consider rules of the following
generic format (we call this format generic, because it actually defines templates
involving variables):

current-state objects . . . →α target-state [immediate-objects] . . .

(in-objects) . . . (out-objects)δ . . .

| promoters . . . ¬ inhibitors . . .

Where:

• States are complex objects (which can be matched, as previously de-
scribed).

294

• All objects, promoters and inhibitors are bags of terms, possibly containing
variables (which are matched as previously described).

• Out-objects are sent, at the end of the step, to the cell’s structural neigh-
bours. These objects are enclosed in round parentheses which further
indicate their destinations, above abbreviated as δ; the most usual sce-
narios include: (a) ↓i indicates that a is sent to child i (unicast), (a) ↑i
indicates that a is sent to parent i (unicast), (a) ↓∀ indicates that a is sent
to all children (broadcast), (a) ↑∀ indicates that a is sent to all parents
(broadcast), (a) l∀ indicates that a is sent to all neighbours (broadcast).

• Both immediate-objects and in-objects remain in the current cell, but
there is a subtle difference:

– in-objects become available at the end of the current step only, as
in traditional P systems (we can imagine that these are sent via an
ad-hoc loopback channel);

– immediate-objects become immediately available to (i) to the current
rule, if its uses the max instantiation mode, and (ii) the succeeding
rules (in weak priority order).

Immediate objects can substantially improve the runtime performance,
which could be required for two main reasons: (i) to achieve parity with
best traditional algorithms, and (ii) to ensure correctness when proper
timing is logically critical. However, they are not used in the systems
presented in this paper.

• Symbol α ∈ {min, max} × {min, max}, indicates a combined instantiation and
rewriting mode, as further discussed below.

We often abbreviate by omitting the round parentheses that enclose in-
objects. In other words, the traditional in-objects are the default. This respects
the tradition and is especially useful for rulesets which do not use immediate
objects.

Example. To explain our combined instantiation and rewriting mode, let us
consider a cell, σ, containing three counter-like complex objects, c(c(a)), c(c(a)),
c(c(c(a))), and the four possible instantiation⊗rewriting modes of the following
“decrementing” rule:

(ρα) S1 c(c(X))→α S2 c(X),where α ∈ {min,max} × {min,max}.

1. If α = min⊗min, rule ρmin⊗min nondeterministically generates and applies (in
the min mode) one of the following two rule instances:

(ρ′1) S1 c(c(a))→min S2 c(a) or

(ρ′′1) S1 c(c(c(a)))→min S2 c(c(a)).

Using (ρ′1), cell σ ends with counters c(a), c(c(a)), c(c(c(a))). Using (ρ′′1),
cell σ ends with counters c(c(a)), c(c(a)), c(c(a)).

295

2. If α = max⊗min, rule ρmax⊗min first generates and then applies (in the min

mode) the following two rule instances:

(ρ′2) S1 c(c(a))→min S2 c(a) and

(ρ′′2) S1 c(c(c(a)))→min S2 c(c(a)).

Using (ρ′2) and (ρ′′2), cell σ ends with counters c(a), c(c(a)), c(c(a)).

3. If α = min⊗max, rule ρmin⊗max nondeterministically generates and applies (in
the max mode) one of the following rule instances:

(ρ′3) S1 c(c(a))→max S2 c(a) or

(ρ′′3) S1 c(c(c(a)))→max S2 c(c(a)).

Using (ρ′3), cell σ ends with counters c(a), c(a), c(c(c(a))). Using (ρ′′3),
cell σ ends with counters c(c(a)), c(c(a)), c(c(a)).

4. If α = max⊗max, rule ρmin⊗max first generates and then applies (in the max

mode) the following two rule instances:

(ρ′4) S1 c(c(a))→max S2 c(a) and

(ρ′′4) S1 c(c(c(a)))→max S2 c(c(a)).

Using (ρ′4) and (ρ′′4), cell σ ends with counters c(a), c(a), c(c(a)).

The interpretation of min⊗min, min⊗max and max⊗max modes is straightforward.
While other interpretations could be considered, the mode max⊗min indicates that
the generic rule is instantiated as many times as possible, without superfluous
instances (i.e. without duplicates or instances which are not applicable) and
each one of the instantiated rules is applied once, if possible.

If a rule does not contain any non-ground term, then it has only one possi-
ble instantiation: itself. Thus, in this case, the instantiation is an idempotent
transformation, and the modes min⊗min, min⊗max, max⊗min, max⊗max fall back onto
traditional modes min, max, min, max, respectively.

Special cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(I, J) →max⊗min S2 b(I) c(J),

where I and J are guaranteed to only match integers in ranges [1, n] and [1,m],
respectively. Under these assumptions, this rule is equivalent to the following
set of non-generic rules:

S1 a(i, j) →min S2 b(i) c(j), ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be
generally reduced to simple loops.

Micro-surgery: operations that only affect inner nested objects. Such
operations improve both the crispness and the efficiency of the rules. Consider

296

a cell that contains objects o(abpq), r and a naive rule which attempts to change
the inner b to a d, if an inner p and a top–level r are also present:

S1 o(bR) →min⊗min S2 o(dR) | o(p) r.

Unless we change the “standard” application rules, this rule fails, because an
object locked as a promoter cannot be changed at the same time. We solve this
problem without changing the standard application rules, by adding an access
path to the inner objects needed. The access path is a slash delimited list of
outer objects, in nesting order, which opens an inner bag for usual rewriting
operations; these outer objects on the path are not themselves touched. For
example, this modified rule will solve the problem:

S1 o/b →min⊗min S2 o/d | o/p r.

This extension helps even more when we want to localise the changes to inner
objects of a specific outer object. For example, consider a similar operation that
needs to be applied on the innermost contents of object o(i, j)(abpq), identified
by its coordinates i, j.

S1 o(i, j)/b →min⊗min S2 o(i, j)/d | o(i, j)/p r.

If all or most objects involved share the same path, than the path could
qualify the whole rule; existing top-level objects could be qualified by usual
path conventions, e.g. in our case, r could be explicitly qualified by either of /
or ../:

o(i, j) :: S1 b →min⊗min S2 d | p ../r.
Note that the usual rulesets are just a special case of this extension, when

all rules are by default qualified with the root path /.

Note. For all modes, the instantiations are conceptually created when rules are
tested for applicability and are also ephemeral, i.e. they disappear at the end of
the step. P system implementations are encouraged to directly apply high-level
generic rules, if this is more efficient (it usually is); they may, but need not, start
by transforming high-level rules into low-level rules, by way of instantiations.

Benefits. This type of generic rules allow (i) a reasonably fast parsing and
processing of subcomponents, and (ii) algorithm descriptions with fixed size
alphabets and fixed sized rulesets, independent of the size of the problem and
number of cells in the system (often impossible with only atomic symbols).

Synchronous vs asynchronous. In our models, we do not make any syntactic
difference between the synchronous and asynchronous scenarios; this is strictly
a runtime assumption [13]. Any model is able to run in both the synchronous
and asynchronous runtime “engines”, albeit the results may differ.

As in traditional P systems, in the synchronous scenario, all rules in a step
take exactly one time unit and then all message exchanges (including loopback
messages for in-objects) are performed at the end of the step, in zero time
(i.e. instantaneously). Alternatively, but logically equivalent, we can consider
that rules in a step are performed in zero time (i.e. instantaneously) and then
all message exchanges are performed in exactly one time unit. The second
interpretation is useful, because it allows us to interpret synchronous runs as
special cases of asynchronous runs.

297

In the asynchronous scenario, we still consider that rules in a step are per-
formed in zero time (i.e. instantaneously), but then each message may take
any finite real time to arrive at the destination. Additionally, unless other-
wise specified, we also assume that messages traveling on the same directed arc
follow a FIFO rule, i.e. no fast message can overtake a slow progressing one.
This definition closely emulates the standard definition used for asynchronous
distributed algorithms [12].

Obviously, any algorithm that works correctly in the asynchronous mode will
also work correctly in the synchronous mode, but the converse is not generally
true: extra care may be needed to transform a correct synchronous algorithm
into a correct asynchronous one; there are also general control layers, such as
synchronisers, that can attempt to run a synchronous algorithm on an existing
asynchronous runtime, but this does not always work [12].

4 Multi-cell P System (synchronous)

This model is based on inter-cell parallelism and assumes that the image pixels
are distributed over a rectangular grid of cells, one cell per pixel, linked into a
graph corresponding to the “standard” 8-neighbourhood. Figure 2a describes
this layout, with arc labels, from center pixel to neighbours and from neighbours
to center pixel.

Numeric complex cells contents are given as multisets over the unary base
◦, i.e. λ = 0, ◦ = 1, ◦◦ = ◦2 = 2, ...

Each cell starts in state S0, with the following initial values:

• One (immutable) ID symbol, ι(I, J), which indicates its coordinates: I =
row number, J = column number.

• One (mutable) symbol, p(C), which indicates its current colour: C = b =
black, or C = w = white. Intuitively, p0 has colour C.

• A multiset of eight (immutable) symbols, n(X,Y), representing a “table”,
which codifies the neighbourhood relation, from the current cell’s point of
view, e.g. my neighbour X (e.g. 1=NW) knows me as neighbour Y (e.g.
5=SE):

n(1, 5) n(2, 6) n(3, 7)

n(8, 4) n(4, 8)

n(7, 3) n(6, 2) n(5, 1)

• A multiset of 28 (immutable) symbols, ψ(...), representing a “table”, which
completely defines the namesake table mentioned in Section 2, e.g.

ψ(0, 0, 0, 0, 0, 0, 0, 0, 0) . . .

ψ(0, 1, 1, 1, 1, 1, 0, 0, 1)

ψ(0, 1, 1, 1, 1, 1, 0, 1, 0) . . .

ψ(1, 1, 1, 1, 1, 1, 1, 1, 0)

298

• One (immutable) symbol, a(H), where H ∈ {λ, ◦} = {0, 1}, representing
a target checkerboard marker, which is used to determine the current
activity status:

– If H = λ = 0, then initially cells (0, 0), (1, 1) are active, and cells
(1, 0), (0, 1) are inactive.

– If H = ◦ = 1, then initially cells (0, 0), (1, 1) are inactive, and cells
(1, 0), (0, 1) are active.

• A multiset of two (immutable) symbols, η(X,Y), representing a “table”,
which codifies the checkerboard flip:

η(λ, ◦) η(◦, λ)

Other used (mutable and temporary) symbols:

• Symbol h(H) is the current cell’s activity marker and flips at each iteration
phase, using table η. The activity status is determined by testing h(...)
against the target activity marker, a(...): if both markers have the same
contents, i.e. h(H)∧a(H), then the cell is currently active; otherwise, the
cell is currently inactive.

• Symbol p(X,C) indicates that my neighbour’s X colour is C, or, intu-
itively pX = C.

The ruleset given in Figure 4, which is also schematically represented in the
flowchart of Figure 5, contains 8 states and 14 generic rules. This ruleset models
the pseudocode of Listing 1, enhanced with details required by the multi-cell
message-based distributed memory system.

Essentially, the synchronisation barriers are implicit and helped (as needed)
by idempotent rules, which only advance the state, without any content change.
The colours are exchanged by “properly timed” push notification messages,
which ensure that no “contamination” is possible between “old” and “new”
colours.

Initially, because they do not know any of their neighbours’ colours, all cells
(black and white) send their colour to all their neighbours. Later, only black
cells that turn white send their new white colour to all their black neighbours
(who might need this). This limits the number of exchanged messages to the
minimum possible. The given ruleset does not include (i) the termination check,
which could be done e.g. by using an extra master cell; nor does it include (ii)
any post-termination cleaning (here all cells end with a full set of their final
neighbours’ colours).

The Ψ rules 11 and 12 use a promoter designated (for brevity) by a meta-
syntactic abbreviation, Ψ, which is defined as follows:

Ψ = p(1, C1) p(2, C2) . . . p(8, C8)

ψ(C1, C2, . . . , C8, 1)

This rule checks the “deletion” condition of Section 2, ψ = 1, using its
namesake table and the colours received from the eight neighbours.

299

S0 →min⊗min S1 | p(w) (1)

S0 →min⊗min S11 h(IJ) | ι(I, J) (2)

S1 →max⊗min S2 (p(Y,w)) lX | n(X,Y) (3)

S2 →min⊗min S2 (4)

S11 h/(◦◦) →min⊗max S12 h/λ (5)

S11 →max⊗min S12 (p(Y, b)) lX | n(X,Y) (6)

S12 p(X,w) p(X, b) →max⊗min S13 p(X,w) (7)

S12 h(H) →min⊗min S13 h(H̄) | η(H, H̄) (8)

S13 →min⊗min S14 | h(H) a(H) (9)

S13 →min⊗min S34 (10)

S14 p(b)→min⊗min S2 p(w) | Ψ (11)

S14 →max⊗min S2 (p(Y,w)) lX | n(X,Y) Ψ (12)

S14 →min⊗min S12 (13)

S34 →min⊗min S12 (14)

Figure 4: Synchronous P ruleset for the multi-cell scenario

From the start state, S0, cells follow two separate branches: (rule 1) white
cells go to state S1; while (rule 2) black cells go to state S11 and also start to
compute their activity marker, h.

At state S1, white cells: (rule 3) send white colour notifications to all their
neighbours (all unknown at this stage); and then continue to state S2, where
(rule 4) they cycle indefinitely. This branch is missing in the high-level pseu-
docode of Listing 1, but required in our message-based distributed memory
model.

At state S11, black cells: (rule 5) collapse the content of their activity mark-
ers, h, to at most one single ◦; (rule 6) send their black colour notifications to
all their neighbours (all unknown at this stage); and then continue to state S12.

State S12 is the start of the main black cell cycle, corresponding to the while

line of Listing 1. Here, this cycle takes exactly three P steps and corresponds
to one logical algorithm iteration. At state S12, black cells: (rule 7) update
their received colour notifications, in case previous neighbouring black cells have
turned white; (rule 8) flip their activity indicator, h; and then continue to state
S13.

State S13 corresponds to the activity checking if line of Listing 1. Here,
black cells follow two separate branches: (rule 9, then branch) active black cells
continue to state S14; while (rule 10, else branch) inactive black cells continue
to state S34.

At state S14, active black cells take a decision based on the combined “dele-
tion” condition, Ψ. Active black cells that validate Ψ (if then branch of List-
ing 1): (rule 11) turn white; (rule 12) send new (white) colour notifications to
all their neighbours; and then break the cycle and continue to state S2. Ac-
tive black cells that remain black (rule 13) return to state S12 (to start a new
iteration).

300

S0

S11

S12

S13

S14

S1

S2 S12S12

S2

notify notify ;h

update;h̃

w b;h

√
h ¬h

¬Ψ

S2

idle

S34

√
Ψ: w

notify
idle

Figure 5: Schematic flowchart for the multi-cell ruleset

At state S34, inactive black cells: (rule 14) take an idempotent “idle” step,
required for proper synchronisation; and then go back to state S12 (to start a
new iteration). Note that, at state S12, black cells flip their activity indicator:
thus, previously active black cells become inactive and vice-versa.

This analysis leads to the following proposition:

Theorem 4.1. The multi-cell system, constructed and initialised as discussed
above, correctly models Guo and Hall’s parallel thinning algorithm.

Remark 4.2. For clarity, this ruleset does not include rules to check the algo-
rithm termination and then to change state to an idle final state. This can be
done in several ways; perhaps the simplest practical way is to set up a dedicated
master cell, which can centralize the number of changes of each logical iteration.

Unless such extra check is done, under the traditional termination rules, the
cells will not know the termination and continue to run their cycles, but without
changing their essential content, which is the colour.

One could investigate a more relaxed theoretical termination condition, which
could say that a system terminates when it enters an endless cycle which exactly
repeats the same cell states and contents.

Could the cells themselves detect this, running a control layer based on
a combination of a distributed termination detection algorithm with a cycle
detection algorithm, such as Floyd’s “Tortoise and Hare” algorithm [7]? This
seems to be an open question.

5 Single-cell P System

The design is similar to the multi-cell synchronous model of Section 4. A single-
cell system is automatically synchronous, so again there is no need for explicit
synchronisation barriers.

The single-cell model uses one single cell and maps each pixel (i, j) to a sub-
cellular structure (i.e. a new complex object), with a curried functor, σ(i, j)(...).

301

In the multi-cell model, each cell had its own state object, which controlled its
lifeline. In the single-cell model, we simulate these states by local symbols in
each sub-cell σ(i, j): for consistency, we replace state Si by symbol si and ensure
that each sub-cell σ(i, j) contains, at all times, exactly one such “state” symbol.
Thus, this single-cell model is state-less.

The immutable target checkerboard symbol a(H) and the immutable pre-
computed tables, n(X,Y), η(H, H̄), ψ(...), appear as top-level complex objects
inside the single cell. Each σ(i, j)(...) sub-cell contains a multiset which includes
its own mutable colour symbol p(C) and its own copies of the temporary mutable
symbols used by the multi-cell model; the previous ι(i, j) ID is integrated as σ’s
first parameter list.

The ruleset, listed in Figure 6, is similar to the ruleset of the multi-cell model
of Figure 4, but adapted to work in parallel on all σ(i, j)(...) sub-cells.

σ(I, J) :: s0 →max⊗min s1 | p(w) (1)

σ(I, J) :: s0 →max⊗min s11 h(IJ) (2)

σ(I, J) :: s1 →max⊗min s2 (3)

σ(I, J) :: s2 →max⊗min s2 (4)

σ(I, J) :: h/(◦◦)→max⊗max h/λ | s11 (5)

σ(I, J) :: s11 →max⊗min s12 (6)

σ(I, J) :: p(X,w) p(X, b)→max⊗min p(X,w) | s12 (7)

σ(I, J) :: s12 h(H)→max⊗min s13 h(H̄) | /η(H, H̄) (8)

σ(I, J) :: s13 →max⊗min s14 | h(H) /a(H) (9)

σ(I, J) :: s13 →max⊗min s34 (10)

σ(I◦, J◦) :: s14 p(b)→max⊗min s2 p(w) | Ψ′ (11)

σ(I◦, J◦) :: s14 →max⊗min s2 | Ψ′ -not required- (12)

σ(I, J) :: s14 →max⊗min s12 (13)

σ(I, J) :: s34 →max⊗min s12 (14)

Figure 6: Synchronous P ruleset for the single-cell scenario.

Essential general changes:

• All rules (except the “Ψ” rules 11 and 12, which are further discussed
below) are qualified by an access path identifying the current sub-cell,
σ(I, J) ::, which also removes the need for ι(...) promoters

• Global items are qualified by the root access path: /

• All min instantiation modes are changed to max, which ensures that all
σ(I, J) sub-cells evolve in parallel

• States Si are replaced by local symbols si, exactly one in each sub-cell
σ(I, J)

• Rules for sending inter-cell colour notification messages are omitted (as we

302

have now direct access to corresponding contents of the required “neigh-
bouring” σ(...) sub-cells).

For example, (multi-cell) rule 2 of Figure 4:

S0 →min⊗min S11 h(IJ) | ι(I, J) p(b))

is changed to:

σ(I, J)/s0 →max⊗min σ(I, J)/s11 σ(I, J)/h(IJ) | σ(I, J)/p(b)

or, equivalently, to rule 2 of Figure 6:

σ(I, J) :: s0 →max⊗min s11 h(IJ) | p(b)
Note that this rule: (i) will be instantiated once for each sub-cell σ(I, J) and
all its instances will run in parallel; (ii) uses only local σ(I, J)(...) objects, such
as si, h(...) and p(...), and there is no need for the ι(I, J) promoter, which is
directly subsumed by the sub-cell itself, σ(I, J).

Multi-cell rules 3, 5, 6, 7 and 12 of Figure 4 need special consideration.
Besides now redundant colour notifications, rule 3, 6 and 12 ensured proper state
transfers. Examining the context, we conclude that we only need corresponding
“state” transfer rules for rules 3 and 6, but not for rule 12 (which is left in the
listing, but could safely be omitted).

Rules 5 and 7 can perform multiple operations on the same sub-cell σ(I, J).
Therefore, the corresponding singleton “state” symbols, s11 and s12, are trans-
formed as promoters; subsequent rules, 6 and 8, are enough to ensure the re-
quired “state” transfers.

The “Ψ′” transformations of the original rules 11 and 12 must offer fast
access: (i) to “table” ψ, which is now global, and (ii) to the colours of “neigh-
bouring” σ sub-cells, i.e. to all σ sub-cells which have coordinates in the range
of plus/minus one from current coordinate. Therefore, these rules and all their
objects (including all objects used in the Ψ′ condition) use “custom” access
paths, where I and J represent now the coordinates of the NW neighbour (i.e.
current coordinates minus 1). Under this arrangement, rules 11 and 12 are
not applicable to border sub-cells: e.g. the “top-left” sub-cell, σ(λ, λ), cannot
match a σ(I◦, J◦) term – intuitively, because it does not have any “neighbours”
on its left or above. However, this is acceptable, under our initial simplifying
assumption that all borders pixels are white from start.

Let as recall that (multi-cell) rules 11 and 12 of Figure 4 tested the following
condition, Ψ:

Ψ = p(1, C1) p(2, C2) . . . p(8, C8)

ψ(C1, C2, . . . , C8, 1)

The colour notification rule 12 is not anymore needed, and (single-cell) rule
11 of Figure 6 tests now the following path qualified modified condition, Ψ′:

Ψ′ = /σ(I, J)/p(C1) /σ(I◦, J)/p(C2) /σ(I ◦ ◦, J)/p(C3)

/σ(I, J◦)/p(C8) /σ(I ◦ ◦, J◦)/p(C4)

/σ(I, J ◦ ◦)/p(C7) /σ(I◦, J ◦ ◦)/p(C6) /σ(I ◦ ◦, J ◦ ◦)/p(C5)

/ψ(C1, C2, . . . , C8, 1)

Theorem 5.1. The single-cell system, constructed and initialised as discussed
above, correctly models Guo and Hall’s parallel thinning algorithm.

303

6 Multi-cell P System (asynchronous)

We first transform our synchronous multi-cell P system into a system that can
also run in the asynchronous mode. Synchronous systems are easier to design,
however, synchronous messages may slow down the evolution, may create dead-
locks and may be difficult to map on Actors-based systems. For this algorithm,
we have a straightforward ad-hoc way to transform it into an asynchronous ver-
sion. Essentially, we ensure that each black cell knows exactly how many colour
notifications are expected from other black cells, so it can cycle until all its due
colour notifications are received.

Specifically, a black cells knows exactly how many colour notifications to
expect, provided that all black cells continue to notify their neighbours at each
iteration, even if they did not change colour. If I have received k black colour
notifications from neighbours that were black at the previous logical step, than,
at the next iteration, I wait until I see k = kb + kw new colour notifications,
where (i) kb come from black cells that remained black (either they were inactive
or they failed the Ψ test), and (ii) kw come from active black cells that turned
white. There is a cost for this, of course, as the cells now exchange many more
colour notifications; however, forcing a system to run synchronously would also
involve a non-negligible synchronisation cost, esp. in a true distributed setting.

The ruleset of the asynchronous version, listed in Figure 7, is similar to
the ruleset of the synchronous model of Figure 4. To enable a straightforward
comparison, we kept the original rule numbers; rules that have been expanded
have additional numbers with letter suffixes: e.g. the synchronous rule 2 was
expanded into asynchronous rules 2a and 2b.

We redefine the meaning of one symbol and we use two more, all indicating
a colour C notified from neighbour X:

• p(X,C): is now a received, but not yet recorded colour notification

• q(X,C): is a recorded p(X,C) colour notification

• r(X,C): is a temporary stage of such a colour notification (between re-
ceived and recorded)

Let us briefly discuss the new or enhanced rules of this asynchronous version,
against corresponding “old” rules for the synchronous model. Rule 2a is identical
to old rule 2 and is now complemented by rule 2b, which initialises each black
cell with 8 “received” black notifications q(X, b), X ∈ [1, 8]. As we don’t know
anything yet about our neighbours, it is safe to initially assume that all our
neighbours are black: all of them, black and white, will soon notify us their true
colours.

Old rule 7 updates our recordings, for neighbours that were recorded black
and had just notified us of their changed colour, and then goes to state S13.
In the synchronous setting, all such colour notifications arrived at the same
time. Now, in an asynchronous setting, we cannot rush to state S13, unless we
have received all colour notifications, which may arrive with arbitrary delays.
Therefore, rules 7a and 7b implement a small loop, trapping us in state S12

until we have received p colour notifications from all recorded black neighbours.
For proper recording, we first keep the updated colours in temporary r objects
and we only change these to recorded q objects, when we break out of this small
cycle and go to state S13, by rule 7c.

304

S0 →min⊗min S1 | p(w) (1)

S0 →min⊗min S11 h(IJ) | ι(I, J) (2a) (2)

S0 →max⊗min S11 q(X, b) | n(X,) (2b)

S1 →max⊗min S2 (p(Y,w)) lX | n(X,Y) (3)

S2 →min⊗min S2 (4)

S11 h/(◦◦) →min⊗max S12 h/λ (5)

S11 →max⊗min S12 (p(Y, b)) lX | n(X,Y) (6)

S12 p(X,C) q(X, b) →max⊗min S12 r(X,C) (7a) (7)

S12 →min⊗min S12 | q(, b) (7b)

S12 r(X,C) →max⊗min S13 q(X,C) (7c)

S12 h(H) →min⊗min S13 h(H̄) | η(H, H̄) (8)

S13 →min⊗min S14 | h(H) a(H) (9)

S13 →min⊗min S34 (10)

S14 p(b)→min⊗min S2 p(w) | Ψ′′ (11a) (11)

S14 →max⊗min S2 (p(Y,w)) lX | n(X,Y) Ψ′′ (12a) (12)

S14 →max⊗min S12 (p(Y, b)) lX | n(X,Y) q(X, b) (13a) (13)

S14 →min⊗min S12 (13b)

S34 →max⊗min S12 (p(Y, b)) lX | n(X,Y) q(X, b) (14a) (14)

S34 →min⊗min S12 (14b)

Figure 7: Asynchronous P ruleset for the multi-cell scenario

Rules 11a and 12a use a slightly new version of the meta-syntactic abbrevia-
tion, Ψ′′, which is now defined in terms of recorded notifications, q(...) (instead
of p(...)):

Ψ = q(1, C1) q(2, C2) . . . q(8, C8)

ψ(C1, C2, . . . , C8, 1)

Rules 13a and 14a, the new versions of rules 13 and 14, ensure that now
even black cells that remain black still send black colour notifications to their
recorded black neighbours – this is required for our local synchronisation. Rules
13b and 14b ensure that black cells still go to the loop state S12, even if they
have no black neighbours; obviously these rules are not really required: these
rules are here just to maintain full compatibility with the other versions and
the idea that the system loops until it is properly terminated.

Example 6.1. Let us consider the first evolutionary steps of a cell, σ(i◦, j◦),
corresponding to the centre pixel of configuration #125 of Figure 3b. Rule 2b
initialises σ(i◦, j◦)’s contents with 8 “received” q colour notifications: q(1, b),
q(2, b), q(3, b), q(4, b), q(5, b), q(6, b), q(7, b), q(8, b), which indicate that, at the
next logical step, σ(i◦, j◦) expects 8 colour notifications (updates).

Next, all cells send their initial colours: white cells by rule 3 and black cells
by rule 6. Cell σ(i◦, j◦) cycles on state S12 until it receives 8 distinct p(X,C)

305

notifications, for X ∈ [1, 8]. For example, assume that σ receives, in order, the
following notifications (including one ahead of time from its NE neighbour # 3,
σ(i◦◦, j)): p(3, b), p(4, b), p(1, b), p(8, w), p(2, w), p(6, b), p(7, b), p(3, w), p(5, b).

Note that the receiving order is important, as σ(i◦, j◦) first considers p(3, b)
and keeps p(3, w) for the next logical iteration. Then, as all expected notifica-
tions have been received, and σ(i◦, j◦)’s contents will finally record the following
colours: q(1, b), q(2, w), q(3, b), q(4, b), q(5, b), q(6, b), q(7, b), q(8, w), p(3, w).

Next, σ(i◦, j◦) will proceed to check its activity marker, and, if active, will
test the Ψ′′ condition on its received notifications, q, and decide to remain black;
in any case its will send again black colour notifications to all its neighbours,
either by rule 13 or by rule 14; etc. Note the ahead-of-time received notification
from its NE neighbour, p(3, w), is now already waiting to be processed.

7 Actors Emulation

Traditional Actor systems can run efficiently on multi-cores, and there are novel
extensions that extend Actors to heterogeneous platforms, involving clusters of
nodes, with both CPU multi-core and GPU many-cores facilities. Therefore,
mapping P systems to Actor based systems may prove to be a very promising
emulation path.

Actor messaging is typically asynchronous, although some systems do also
support some sort of synchronous messaging; for more details, please see the
mentioned Actors references, and, specifically for F#, Syme’s monograph [24].

A straightforward (but not the most efficient) Actors mapping of the asyn-
chronous multi-cell model uses one actor for each cell (pixel) σ. All contents of
σ become local variables in the corresponding actor. All P systems messaging,
i.e. all colour notifications, is implemented as asynchronous messaging between
actors. In F#, the lifetime of an actor is described by a sequence of mutually tail
recursive async monad instances. A straightforward (but, again, not the most
efficient) implementation of the ruleset maps each state to an async returning
function. Leaving aside (as it would require too much additional space) part of
the setup and a few other practical details, Figures 8 and 9 suggest the essential
structure of such a cell actor.

A straightforward Actors mapping of the single-cell model uses one actor for
each sub-cell (pixel) σ(i, j). In this design, local contents of σ(i, j) become local
variables in the corresponding actor. All other top-level objects become global
objects, accessible to all actors in the emulation. Because of these global shared
objects, this is not a pure actor design, but, if properly designed, it can be both
correct and efficient. Also, in this scenario, there need not be any messaging
between actors, so actors can be replaced by more mundane tasks. However, if
there are no messages that could be used for synchronisation, the system needs
synchronisation barriers, as indicated in Section 2.

An interesting design (not developed yet) can combine these two designs,
multi-cell and single-cell, for P system models and for their actor based imple-
mentations. One could partition the image in smaller rectangles and allocate
sub-images to actors, perhaps distributed on different nodes or using different
computing devices, such as CPUs vs GPUs. Such a partitioned design could be
efficient for processing very large images, when running on heterogeneous clus-
ters; however, it could also improve the efficiency on single multi-core nodes, by

306

type Colour = | White = 0 | Black = 1 | None = 2

type ReceivedColour = int ∗ Colour

let N = [| 0 ; 5 ; 6 ; 7 ; 8 ; 1 ; 2 ; 3 ; 4 |]
let DI = [| 0 ; −1; 0 ; 1 ; 1 ; 1 ; 0 ; −1; −1 |]
let DJ = [| 0 ; −1; −1; −1; 0 ; 1 ; 1 ; 1 ; 0 |]

let neighbour (i : int , j : int , x : int) =
(i + DI . [x] , j + DJ . [x])

type Pixe lActor = option<MailboxProcessor<ReceivedColour>>

let N1 = 100
let N2 = 100

Figure 8: Simplified cell/pixel actor setup.

reducing the numbers of actors and thus eliminating some housekeeping over-
head.

8 Conclusions

We present three membrane computing models for a complex image processing
task – image skeletonisation: (i) a synchronous model using one cell per pixel and
relying on inter-cell parallelism; (ii) an asynchronous model using one cell per
pixel and relying on inter-cell parallelism; (ii) a (synchronous) model using one
single cell, with one sub-cellular object per pixel, relying on intra-cell parallelism.

All three models are crisp, use reasonably small fixed-sized alphabets and
rulesets, and are closely inter-related by way of almost mechanical translations.
This experience has enabled us to further validate our complex objects proposal
and enhance it with a “micro-surgery” facility, very useful for nested objects.
The proposed models can be straightforwardly translated and implemented in
a functional language with an Actors library.

Further work needs to be done to investigate the possible automation of
these translations: (i) between multi-cell and single-cell P systems; (ii) from
synchronous to asynchronous P systems; (iii) from P systems to Actors. Also,
further work seems necessary to study heterogeneous designs, mixing ideas from
multi-cell, single-cell, synchronous and asynchronous designs.

This study also suggests a couple of open questions: (i) to investigate partial
asynchronous versions of similar algorithms and their merits (with respect to
quality of results and runtime performance); (ii) to investigate an efficient dis-
tributed termination detection control layer, which is adequate for this algorithm
(and other similar non-diffusing algorithms); possibly combining a distributed
termination algorithm with a cycle detection algorithm.

Acknowledgments. Thanks to Zhengping Wang and to the anonymous
reviewers for their most valuable comments and suggestions.

307

References

[1] G. Agha. An algebraic theory of Actors and its application to a simple
object-based language. In In Ole-Johan Dahls Festschrift, volume 2635 of
LNCS, pages 26–57. Springer, 2004.

[2] T. Bălănescu, R. Nicolescu, and H. Wu. Asynchronous P systems. Inter-
national Journal of Natural Computing Research, 2(2):1–18, 2011.

[3] D. Dı́az-Pernil, F. Peña-Cantillana, and M. A. Gutiérrez-Naranjo. A par-
allel algorithm for skeletonizing images by using spiking neural P systems.
Neurocomputing, 115:81–91, 2013.

[4] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. A faster P solution for the
Byzantine agreement problem. In M. Gheorghe, T. Hinze, and G. Păun,
editors, Conference on Membrane Computing, volume 6501 of Lecture Notes
in Computer Science, pages 175–197. Springer-Verlag, Berlin Heidelberg,
2010.

[5] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. P systems and the Byzantine
agreement. Journal of Logic and Algebraic Programming, 79(6):334–349,
2010.

[6] H. ElGindy, R. Nicolescu, and H. Wu. Fast distributed DFS solutions
for edge-disjoint paths in digraphs. In E. Csuhaj-Varjú, M. Gheorghe,
G. Rozenberg, A. Salomaa, and G. Vaszil, editors, Membrane Computing,
volume 7762 of Lecture Notes in Computer Science, pages 173–194. Springer
Berlin Heidelberg, 2013.

[7] R. W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, Oct.
1967.

[8] G. Gimelfarb, R. Nicolescu, and S. Ragavan. P systems in stereo match-
ing. In P. Real, D. Dı́az-Pernil, H. Molina-Abril, A. Berciano, and
W. Kropatsch, editors, Computer Analysis of Images and Patterns, vol-
ume 6855 of Lecture Notes in Computer Science, pages 285–292. Springer
Berlin Heidelberg, 2011.

[9] G. Gimelfarb, R. Nicolescu, and S. Ragavan. P system implementation
of dynamic programming stereo. Journal of Mathematical Imaging and
Vision, 47(1-2):13–26, 2013.

[10] Z. Guo and R. W. Hall. Parallel thinning with two-subiteration algorithms.
Commun. ACM, 32(3):359–373, Mar. 1989.

[11] C. Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8(3):323 – 364, 1977.

[12] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[13] R. Nicolescu. Parallel and distributed algorithms in P systems. In M. Ghe-
orghe, G. Păun, G. Rozenberg, A. Salomaa, and S. Verlan, editors, Mem-
brane Computing, CMC 2011, Revised Selected Papers, volume 7184 of

308

Lecture Notes in Computer Science, pages 35–50. Springer Berlin / Heidel-
berg, 2012.

[14] R. Nicolescu, G. Gimelfarb, J. Morris, R. Gong, and P. Delmas. Regularis-
ing ill-posed discrete optimisation: Quests with P systems. Fundam. Inf.,
131(3-4):465–483, 2014.

[15] R. Nicolescu, F. Ipate, and H. Wu. Programming P systems with complex
objects. In A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozen-
berg, and A. Salomaa, editors, 14th Conference on Membrane Computing,
Revised Selected Papers, volume 8340 of Lecture Notes in Computer Sci-
ence, pages 280–300. Springer, 2013.

[16] R. Nicolescu, F. Ipate, and H. Wu. Towards high-level P systems program-
ming using complex objects. In A. Alhazov, S. Cojocaru, M. Gheorghe, and
Y. Rogozhin, editors, 14th International Conference on Membrane Comput-
ing, CMC14, Chişinău, Moldova, August 20-23, 2013, Proceedings, pages
255–276. Institute of Mathematics and Computer Science, Academy of Sci-
ences of Moldova, Chişinău, 2013.

[17] R. Nicolescu and H. Wu. BFS solution for disjoint paths in P systems. In
C. Calude, J. Kari, I. Petre, and G. Rozenberg, editors, Unconventional
Computation, volume 6714 of Lecture Notes in Computer Science, pages
164–176. Springer Berlin Heidelberg, 2011.

[18] R. Nicolescu and H. Wu. New solutions for disjoint paths in P systems.
Natural Computing, 11:637–651, 2012.

[19] R. Nicolescu and H. Wu. Complex objects for complex applications. Ro-
manian Journal of Information Science and Technology, (to appear), 2014.

[20] F. Peña-Cantillana, A. Berciano, D. Dı́az-Pernil, and M. A. Gutiérrez-
Naranjo. Parallel skeletonizing of digital images by using cellular automata.
In M. Ferri, P. Frosini, C. Landi, A. Cerri, and B. D. Fabio, editors, CTIC,
volume 7309 of Lecture Notes in Computer Science, pages 39–48. Springer,
2012.

[21] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Mem-
brane Computing. Oxford University Press, Inc., New York, NY, USA,
2010.

[22] R. Reina-Molina and D. Dı́az-Pernil. Bioinspired parallel 2D or 3D skele-
tonization. IMAGEN-A, 3(5):41–44, 2013.

[23] R. Reina-Molina, D. Dı́az-Pernil, and M. A. Gutiérrez-Naranjo. Cell com-
plexes and membrane computing for thinning 2D and 3D images. In
M. A. M. del Amor, G. Păun, I. Pérez-Hurtado, and F. J. Romero-Campero,
editors, Tenth Brainstorming Week on Membrane Computing, volume 1 of
RGNC REPORT, pages 91–110. Universidad de Sevilla, 2012.

[24] D. Syme, A. Granicz, and A. Cisternino. Expert F# 3.0. Apress, Berkely,
CA, USA, 3rd edition, 2012.

309

[25] H. Wu. Minimum spanning tree in P systems. In L. Pan, G. Păun, and
T. Song, editors, Proceedings of the Asian Conference on Membrane Com-
puting (ACMC2012), pages 88–104, Wuhan, China, 2012. Huazhong Uni-
versity of Science and Technology.

[26] H. Wu. Distributed Algorithms in P Systems. PhD thesis, The University
of Auckland, Auckland, New Zealand, 2014.

310

let Se tP ixe l (i : int , j : int , p : Colour) =
MailboxProcessor<ReceivedColour >. S ta r t (fun inbox −>

let h = ref 0
let P = Array . c r e a t e 8 Colour . None
let Q = Array . c r e a t e 8 Colour . Black

let rec S0 () = async {
match p with
| Colour . White −>

return ! S1 ()
| −>

h := i + j
return ! S11 ()

}

and S11 () = async {
while ! h >= 2 do

h := ! h − 2
for x = 1 to 8 do

let n = neighbour (i , j , x)
P i x e l s . [f s t n , snd n] . Value . Post (N . [x] , p)

return ! S12 ()
}

and S12 () = async {
let R = Array . c r e a t e 8 Colour . None

for x = 1 to 8 do
i f P . [x] <> Colour . None then

Q. [x] <− Colour . None
R . [x] <− P . [x]

while Array . e x i s t s (fun c −> c = Colour . Black) Q do
let ! m = inbox . Receive ()
match m with
| (x , c) when Q. [x] = Colour . Black −>

Q. [x] <− Colour . None
R . [x] <− c

| (x , c) −> // Q. [x] = Colour . None
P . [x] <− c

for x = 1 to 8 do
i f R . [x] <> Colour . None then

Q. [x] <− R . [x]

return ! S13 ()
}

// . . .

S0 ())

Figure 9: Simplified cell/pixel actor body.

311

312

Causal nets for geometrical
Gandy–Păun–Rozenberg machines

Adam Obtułowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-656 Warsaw, Poland

A.Obtulowicz@impan.pl

Abstract. An approach to the computational complexity beyond the
known complexity measures of the consumed time and space of compu-
tation is proposed. The approach focuses on the chaotic behavior and
randomness aspects of computational processes and is based on a repre-
sentation of these processes by causal nets.

1 Introduction

A certain new approach to the investigations of the computational complexity
of abstract systems allowing some unrestricted parallelism of computation is
proposed, where the computational processes realized in a discrete time with a
central clock by these systems are represented by causal nets similar to those
in [4] and related to causal sets in [1].

The representation of computational processes by causal nets is aimed to
provide an abstraction from those features of computational processes which do
not have a spatial nature such that the abstraction could make visible some new
aspects of the processes like an aspect of chaotic behavior or a fractal shape.

The aspects of a chaotic behavior and a fractal shape inspired by the research
area of dynamics of nonlinear systems [20] regarding an unpredictability of the
behavior of these systems1 could suggest an answer to the following question
formulated in [21]: Is the concept of randomness, founded in the concept of ab-
sence of computable regularities, the only adequate and consistent one? In which
direction, if any, should one look for alternatives?

The answers may have an impact on designing pseudorandom number gener-
ators, cf. [23], [24], applied in statistics, cryptography, and Monte Carlo Method.

The proposed approach is aimed to provide a possibly uniform precise math-
ematical treatment of causal nets and related concepts which could serve for
measuring of complexity of computational processes by a use of graph dimen-
sions [13] and network fractal dimensions [19], [7], [8] in parallel to measuring
complexity of random strings in [11] by Hausdorff dimension.

The proposed approach concerns the investigations of abstract computing
devices which are geometrical Gandy–Păun–Rozenberg machines.
1 unpredictability due to sensitive dependence on initial conditions—an important
feature of deterministic transient chaos [20] often having fractal shape.

313

The geometrical Gandy–Păun–Rozenberg machines are some modifications
of the known Gandy–Păun–Rozenberg machines [14], [15].

The assumption that the sets of instantaneous descriptions of geometrical
Gandy–Păun–Rozenberg machines are skeletal sets of finite directed graphs to-
gether with the features of machine local causation rewriting rules provide a
natural construction of causal nets representing computational processes.

2 Geometrical Gandy–Păun–Rozenberg machines

We refer the reader to Appendix A and Appendix B (quoting the main defi-
nitions of [14], [15]) for unexplained notions and notation concerning labelled
directed graphs, Gandy–Păun–Rozenberg machines (briefly G–P–R machines),
and generalized G–P–R machines.

We recall the main difference between G–P–R machines and generalized
G–P–R machines:

– the auxiliary rules of the G–P–R machines are not specified and for every
G–P–R machineM with its transition function FM and for every instanta-
neous description G ofM the instantaneous description FM(G) is a colimit
of the gluing diagram DG determined by the set P`(G) of maximal applica-
tions of the machine rewriting rules to G.

– the generalized G–P–R machines are equipped with auxiliary rules besides
the rewriting rules and for every generalized G–P–R machine M with its
transition function FM and for every instantaneous description G ofM the
instantaneous description FM(G) is a colimit of the generalized gluing dia-
gram DG determined by both the machine rewriting rules and the auxiliary
rules.

Definition 2.1. We define a simple geometrical G–P–R machine and a strict
geometrical G–P–R machine to be the modifications of a G–P–R machine and
a generalized G–P–R machine, respectively, such that

– in both cases of a simple and a strict machine we assume that
• the set of labels of vertices of the directed graphs belonging to the set

of instantaneous descriptions of a given machine is a one element set or
equivalently these graphs are not labelled at all, an analogous assump-
tion concerns the graphs appearing in the machine rewriting rules and
auxiliary rules,

• for every machineM there exists a natural number n > 0 such that for
every graph G belonging to the set of instantaneous descriptions of M
the set V (G) of vertices of G is a set of ordered n-tuples of elements
of Q•, where Q• is the set of rational numbers, if necessary, extended to
the recursive real numbers which are linear combinations of

√
2,
√
3, etc.

with rational coefficients (hence we use the adjective ‘geometrical’),

314

– in the case of a simple machine we impose a strenghtening that the graphs
belonging to the set of instantaneous descriptions of the machine or ap-
pearing in the conclusions of the machine rewriting rules are not necessarily
isomorphically perfect graphs.

Theorem. For both cases of a simple and of a strict geometrical G–P–R ma-
chine if the set of its instantaneous description is a recursive set, then the tran-
sition function of the machine is a computable function.

Proof. We prove the theorem for the case of a simple geometrical G–P–R ma-
chineM with its transition function FM.

The following assignments are computable:

– the assignment to a finite gluing diagram its colimit constructed as in Ap-
pendix A in the domain of finite directed graphs,

– the assignment to an instantaneous description G of M the set P`(G) of
maximal applications of the rewriting rules ofM,

– the assignment to an instantaneous description G of M the gluing dia-
gram DG which is determined by P`(G) in an effective way.

Hence the assignment to an instantaneous description G of M the result of
the construction of a colimit of the gluing diagram DG is also computable as-
signment. Therefore an effective search of that unique instantaneous description
G′ = FM(G) which is isomorphic to the above result of the construction of a
colimit of the gluing diagram DG suffices for reaching FM(G) in an effective way.
This effective search is provided by the assumption that the set of instantaneous
descriptions of the machine M is a recursive set. Thus the transition function
FM is a computable function.

The proof of the theorem for the case of strict geometrical G–P–R machines
is similar to the above proof.

Examples 2.1 (The simulation of cellular automata). The generalized
G–P–R machine MSGL in [15] is an example of a strict geometrical G–P–R
machine, whereMSGL simulates the spatial and temporal behavior of a cellular
automaton identified with the eastern expansion fragment of Conway’s Game of
life.

We show now an example of a simple geometrical G–P–R machine which is
aimed to simulate the behavior of one-dimensional cellular automaton with two
cell states 0, 1 and with the rule 30 given by the formula

ai−1 xor (ai or ai+1),

cf. [23], [24], where xor is ‘exclusive or’. This simple geometrical G–P–R machine,
denoted byM30, is defined in the following way.

The instantaneous descriptions and the rewriting rules of M30 are defined
by using the finite directed graphs clnx (for an integer n and x ∈ {0, 1, !,∅})
corresponding to the single cells for x ∈ {0, 1, !}, where clnx are such that:

315

– the graph cln∅ is the square

(n, 1) // (n+ 1, 1)

(n, 0) //

OO

(n+ 1, 0)

OO

together with the loop
(
(0, 0), (0, 0)

)
in the case n = 0, and with the path

from (n+1, 0) to (n, 1) containing three intermediate vertices (n+1− i
4 ,

i
4)

with {1, 2, 3},
– the graph clnx for x ∈ {0, 1, !} consists of:
• the graph cln∅ as a subgraph,
• the edge

(
(n, 0), (n + 1 − x+1

4 , x+1
4)
)
for x ∈ {0, 1}, indicating that the

graph clnx corresponds to a cell in state x and called an edge indicating
a state of a cell,

• the edge
(
(n, 0), (n+ 1− 3

4 ,
3
4)
)
for x =!.

An instantaneous description of M30 is that graph G which is the graph
union (cf. Appendix A)

cli! ∪
(⋃

i<k<j

clkxk

)
∪ clj!

for some integers i < −1, j > 1 and for some family clkxk (i < k < j) with
xk ∈ {0, 1} for all integers k such that i < k < j.

The rewriting rules ofM30 are given by

– cl1i ∪ cl2j ∪ cl3k ` cl1∅ ∪ cl2ρ(i,j,k) ∪ cl3∅ for {i, j, k} ⊆ {0, 1}, where ρ(i, j, k) =
i xor (j or k),

– cl2! ∪ cl3j ∪ cl4k ` cl1! ∪ cl2ρ(0,0,j) ∪ cl3ρ(0,j,k) ∪ cl4∅ for {j, k} ⊆ {0, 1},
– cl1i ∪ cl2j ∪ cl3! ` cl1∅ ∪ cl2ρ(i,j,0) ∪ cl3ρ(j,0,0) ∪ cl4! for {i, j} ⊆ {0, 1},
– the identity rule • 0 ` • 0, where • 0 is the graph with single vertex

0 and with single edge which is a loop.

The graphs cl2j and cl3j appearing in the middle of the premises of the above
rules are called the centers of these rules, respectively.

The one-dimensional cellular automata in [23], [24] and small Turing ma-
chines in [7], [8] can be simulated by simple G–P–R machines constructed in a
similar way to the machineM30.

Example 2.2 (generation of the contours of the iterations of fractals). We show
a simple geometrical G–P–R machine whose single rewriting rule serves for gen-
erating the contours of the iterations of Sierpiński gasket. This machine, denoted
byMSierp is defined in the following way.

Let ∆ be a directed graph given by

V (∆) =
{
(0, 0), (12 ,

√
3
2), (1, 0)

}
,

E(∆) =
{
((0, 0), (1, 0)), ((0, 0), (12 ,

√
3
2)), ((1, 0), (12 ,

√
3
2))

}
.

316

The graph ∆ is a contour of an equilateral triangle.
The instantaneous descriptions ofMSierp are graphs ∆n (for a natural num-

ber n ≥ 0) defined inductively by

∆0 =
(
V (∆), E(∆) ∪ {((0, 1), (0, 1))}

)
,

∆n+1 =
⋃

i∈{1,2,3}
fi(∆n),

where f1, f2, f3 are functions forming the iterated function system for Sierpiński
gasket, cf. [18] and Appendix C, and for a directed graph G with V (G) ⊂ Q•×Q•
fi(G) is a graph such that

V (fi(G)) =
{
fi(v) | v ∈ V (G)

}
,

E(fi(G)) =
{
(fi(v), fi(v

′)) | (v, v′) ∈ E(G)
}
.

A unique rewriting rule ofMSierp is of the form

∆1 ` ∆2.

The graphs ∆n (n > 0) are the contours of the iterations of Sierpiński gasket.
The similar simple G–P–R machines can be constructed for some other frac-

tals determined by iteration function system, e.g. 3D Sierpiński gasket.

3 Causal nets of geometrical G–P–R machines

We propose some precise mathematical treatment of those concepts which ex-
press or explicate certain aspects and features of the computational processes
realized by geometrical G–P–R machines and which can be investigated within
‘experimental mathematics’ by an analysis (sometimes heuristic) of the plots il-
lustrating those concepts. The plots could be generated by computers like in [24].

Definitions 3.1. For both cases of a simple or of a strict geometrical G–P–R
machineM and an initial instantaneous description G ofM we define an event
with respect to G to be an ordered pair (v, i) with v ∈ V (F iM(G)) for a natural
number i ≥ 0, where F0

M(G) = G. Then we define a full causal relation ≺G
with respect to G to be a binary relation defined on the set Ev(G) of events with
respect to G given by

(v, i) ≺G (v′, i′) iff i′ = i+ 1 and there exists h ∈ P`(F iM(G))

such that v ∈ V (im(h)) and v′ ∈ V (im(qh)) for the h-th canonical injection
qh : RM(dom(h)) → F i+1

M (G) into the colimit of the gluing diagram DFiM(G)

in the simple case and of the generalized gluing diagram DFiM(G) in the strict
case, where RM(dom(h)) is the conclusion of the rewriting rule with the premise
dom(h). Thus the ordered pair NG = (Ev(G),≺G) is called a full causal net of
M with respect to G.

317

The proper subnets of the full causal net NG with respect to G correspond
to various aspects and features of the computation ofM starting with G.

For instance, in the case of Example 2.2 it is worth to consider a causal net
N gr
G of growth with causal growth relation ≺gr

G given by

(v, i) ≺gr
G (v′, i′) iff i′ = i+ 1 with (v, i) ≺G (v′, i′) and both v and v′

are new in F iM(G) and in F i+1
M (G), respectively, whenever i > 0,

otherwise v′ is new in F i+1(G),

where a vertex x is new in FkM(G) if x ∈ V (FkM(G)) and x /∈ V (Fk−1M (G)) for
k > 0.

In the case of the machine in Example 2.2 the projection of N gr
∆0

into the
phase space Q• ×Q• yields Sierpiński gasket which is a fractal.

In the case of Examples 2.1 it is worth to consider a causal net N act
G of

activity with causal relation ≺act
G of activity given by

(v, i) ≺act
G (v′, i′) iff i′ = i+ 1 with (v, i) ≺G (v′, i′) and both v and v′

are the targets of the edges indicating the states

of the cells in F iM(G) and in F i+1
M (G), respectively.

For the geometrical G–P–R machines simulating one-dimensional cellular
automata like the machineM30 in Examples 2.1 one defines the causal net N stc

G

of strict changes with the causal relation ≺stc
G of strict changes given by

(v, i) ≺stc
G (v′, i′) iff i′ = i+ 1 and there exists h ∈ P`(F iM(G))

such that h(v1) = v and qh(v2) = v′ for those v1, v2 which are such that
v1 is a vertex of the center of the rule dom(h) ` RM(dom(h))

and both v1, v2 are the targets of the edges indicating the state
of a cell in the premise and in the conclusion of the rule, respectively.

Thus N stc
G is a subnet of N act

G , moreover, in the case of M30 the plots for
the one-dimensional cellular automaton with the rule 30 in [23], [24] illustrate
appropriate nets N stc

G .
The nets N stc

G (G ∈ SM) coincide with space-time diagrams in [7], [8], where
these diagrams are subject of the investigations of computational complexity by
using fractal dimension.

The transitive closures ≺∗G, (≺xG)∗ (x ∈ {gr, act, stc}) give rise to causal sets
CG = (Ev(G),≺∗G) and CxG = (Ev(G), (≺xG)∗) (x ∈ {gr, act, stc}) whose logical
aspects can be approached like in physics [12] or like in concurrency theory [2].

The investigations of machineMSierp defined in Example 2.2 suggest another
approach to the idea of a causal net of a computation of a geometrical G–P–R
machine which is introduced in the following definitions.

318

Definitions 3.2. For both cases of a simple or of a strict geometrical G–P–R
machineM and an initial instantaneous description G ofM we define a rule ap-
plication event with respect to G to be an ordered pair (h, i) with h ∈ P`(F iM(G))
for a natural number i ≥ 0, where F0

M(G) = G. Then we define a rule appli-
cation causal relation �app

G with respect to G to be a binary relation defined on
the set Evapp(G) of the rule application events with respect to G given by

(h, i) �app
G (h′, i′) iff i′ = i+ 1 and im(h) is a subgraph of im(qh′)

for the h′-th canonical injection qh′ : RM(dom(h′)) → F i+1
M (G) into the col-

imit of the gluing diagram DFiM(G) in the simple case and of the general-
ized gluing diagram DFiM(G) in the strict case. Thus the ordered pair N app

G =

(Evapp(G),�app
G) is called a causal net of the rule application events with respect

to G.
For natural numbers n > 0 the restrictions ofN app

G to n, denoted byN app
G � n,

are the ordered pairs (Evapp(G) � n,�app
G � n) with Evapp(G) � n = {(h, i) ∈

Evapp(G) | i ≤ n}, where �app
G � n is the restriction of �app

G to Evapp(G) � n.

Lemma 3.1. MachineMSierp is such that for every rule application event (h, i)
with respect to ∆0 with i ≥ 0 there exists a unique ordered triple (h1, h2, h3) of
elements of P`(F i+1

MSierp(∆0)) such that the following condition holds:

(α) (hj , i+ 1) �app
∆0

(h, i) and hj = fj ◦ h for all j ∈ {1, 2, 3},

where f1, f2, f3 form the iteration function system for Sierpiński gasket, cf. Ap-
pendix C, and ◦ denotes the composition of functions.

Proof. We prove the lemma by induction on i.

Corollary 3.1. Causal net N app
∆0

of the rule application events with respect to
∆0 for machineMSierp is isomorphic to the (ternary) tree T whose vertices are
finite strings (including empty string) of digits in {1, 2, 3}, the edges are ordered
pairs (Γj, Γ) for a finite string Γ and a digit j ∈ {1, 2, 3}, where the graph
isomorphism iz : T→ N app

∆0
is defined inductively by

– iz(empty string) = (id∆0
, 0), where id∆0

is the identity graph homomorphism
on ∆0,

– iz(Γj) = (h′, length(Γ) + 1) for a unique h′ which is the j-th element of a
unique ordered triple which satisfies the condition (α) for that h for which
iz(h) = (h, length(Γ)).

Proof. The corollary is a consequence of Lemma 3.1.

Corollary 3.2. Machine MSierp is such that for every rule application event
(h, i) with respect to ∆0 for i ≥ 0 the unique ordered triple (h1, h2, h3) of el-
ements of P`(F i+1

MSierp(∆0) satisfying the condition (α) for h determines a di-
rected multi-hypergraph G(h,i) (see Appendix A) whose set of hyperedges is the set

319

{(h1, i+1), (h2, i+1), (h3, i+1)}, the set of vertices is the union ⋃
1≤j≤3

V (im(hj))

and the source and target functions s, t are given by

s((hj , i+ 1)) = {hj((0, 0)), hj((1, 0))},
t((hj , i+ 1)) = {hj((12 ,

√
3
2))} for all j ∈ {1, 2, 3}.

Moreover, for every rule application event (h, i) with respect to ∆0 for i ≥ 0 the
directed multi-hypergraph G(h,i) is isomorphic to the directed multi-hypergraph
G(id∆0

,0).

Proof. The corollary is a consequence of Lemma 3.1.

Remark 3.1. The directed multi-hypergraph G(h,i) in Corollary 3.2 could model
some interaction between the rule application events in the computation process
ofMSierp starting with ∆0 and represented by N app

∆0
. This interaction could be

a gluing pattern understood as in the main theorem of [16].

Remark 3.2. Since the multi-hyperedge membrane systems SSierpn in [16] for
n ≥ 0 are aimed to display the self-similar structure of (the iterations of) Sier-
piński gasket by using isomorphisms of directed multi-hypergraphs and net N app

∆0

represents the computation process of machineMSierp starting with ∆0, one can
see (in the light of Corollaries 3.1 and 3.2) that the self-similar structure (or form)
of the contours of the iterations of Sierpiński gasket coincides2 with (or simply
is) the process of their generation by machineMSierp. This coincidence is similar
to the coincidence of Nautilus shell, illustrated in Fig. 1 in [22], with the process
of its growth.

Final Remark 3.3. The author expects that the geometrical G–P–R machines
and their extensions to higher dimensions could provide the mathematical foun-
dations for the atomic basis of biological symmetry and periodicity3 due to An-
tonio Lima-da-Faria [9]. These foundations could explicate the links of cellular
automata approach to complexity in biology in S. Wolfram’s A New Kind of
Science with Evolution without selection [10] pointed out by B. Goertzel in his
review of A New Kind of Science in [6].

Open problem One can define geometrical G–P–R machines whose instan-
taneous descriptions are finite graphs with vertices labelled by multisets and
the machine rewriting rules contain multiset rewriting rules like in membrane
computing [17].

How to extract in the case of these machines the counterparts of causal nets
to be subject of measuring uncertainty via fractal dimension like e.g. in [7], [8].
2 by Corollaries 3.1 and 3.2 the restrictions N app

∆0
� n together with the directed

hypergraphs G(h, i) provide a construction of multihyperedge membrane systems
(with the restrictions N app

∆0
� n as their underlying trees) isomorphic to SSierp

n .
3 selfsimilarity characterized in terms of geometrical G–P–R machines like inMSierp

case could be a counterpart of spatial periodicity with respect to both time and scale
changes.

320

Appendix A. Graph-theoretical and category-theoretical
preliminaries

A [finite] labelled directed graph over a set Σ of labels is defined as an ordered
triple G = (V (G), E(G), `G), where V (G) is a [finite] set of vertices of G, E(G) is
a subset of V (G)× V (G) called the set of edges of G, and `G is a function from
V (G) into Σ called the labelling function of G. We drop the adjective ‘directed’
if there is no risk of confusion.

A homomorphism of a labelled directed graph G over Σ into a labelled directed
graph G′ over Σ is an ordered triple (G,h : V (G) → V (G′),G′) such that h is a
function from V (G) into V (G′) which satisfies the following conditions:

(H1) (v, v′) ∈ E(G) implies (h(v),h(v′)) ∈ E(G′) for all v, v′ ∈ V (G),
(H2) `G′(h(v)) = `G(v) for every v ∈ V (G).

If a triple h = (G,h : V (G) → V (G′),G′) is a homomorphism of a labelled
directed graph G over Σ into a labelled directed graph G′ over Σ, we denote this
triple by h : G → G′, we write dom(h) and cod(h) for G and G′, respectively,
according to category theory convention, and we write h(v) for the value h(v).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an embed-
ding of G into G′, denoted by h : G � G′, if the following condition holds:

(E) h(v) = h(v′) implies v = v′ for all v, v′ ∈ V (G).

An embedding h : G � G′ of labelled directed graphs G,G′ over Σ is an
inclusion of G into G′, denoted by h : G ↪→ G′, if the following holds:

(I) h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is a labelled subgraph of a
labelled directed graph G′ over Σ if there exists an inclusion h : G ↪→ G′ of
labelled directed graphs G,G′ over Σ.

For an embedding h : G � G′ of labelled directed graphs G,G′ over Σ we
define the image of h, denoted by im(h), to be a labelled directed graph Ĝ over Σ
such that V (Ĝ) =

{
h(v) | v ∈ V (G)

}
, E(Ĝ) =

{
(h(v), h(v′)) | (v, v′) ∈ E(G)

}
,

and the labelling function `Ĝ of Ĝ is the restriction of the labelling function `G′
of V (G′) to the set V (Ĝ), i.e., `Ĝ(v) = `G′(v) for every v ∈ V (Ĝ).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an iso-
morphism of G into G′ if there exists a homomorphism h−1 : G′ → G of labelled
directed graphs over Σ, called the inverse of h, such that the following conditons
hold:

(Iz1) h
−1(h(v)) = v for every v ∈ V (G),

(Iz2) h(h
−1(v)) = v for every v ∈ V (G′).

We say that a labelled directed graph G over Σ is isomorphic to a labelled
directed graph G′ over Σ if there exists an isomorphism h : G → G′ of labelled
graphs G,G′ over Σ.

321

For an embedding h : G � G′ of labelled directed graphs G,G′ over Σ we
define a homomorphism ḣ : G → im(h) by ḣ(v) = h(v) for every v ∈ V (G). This
homomorphism ḣ is an isomorphism of G into im(h), called an isomorphism
deduced by h.

For a labelled directed graph G over Σ, the identity homomorphism (or sim-
ply, identity of G), denoted by idG , is the homomorphism h : G → G such that
h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is an isomorphically perfect
labelled directed graph over Σ if the identity homomorphism idG is a unique
isomorphism of labelled directed graph G into G.
Lemma A.1. Let G be an isomorphically perfect labelled directed graph over Σ
and let h : G → G′, h′ : G → G′ be two isomorphisms of labelled graphs G,G′
over Σ. Then h = h′.

We say that a set or a class A of labelled directed graphs over Σ is skeletal
if for all labelled directed graphs G,G′ in A if they are isomorphic, then G = G′.

A gluing diagram D of labelled directed graphs over Σ is defined by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center
of D,

— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family gli (i ∈ I − {∆}) of gluing conditions which are sets of ordered

pairs such that
(i) gli ⊆ V (G∆)× V (Gi) for every i ∈ I − {∆},
(ii) (v, v′) ∈ gli implies `G∆(v) = `Gi(v

′) for all v ∈ V (G∆), v′ ∈ V (Gi), and
for every i ∈ I − {∆},

(iii) for every i ∈ I − {∆} if gli is non-empty, then there exists a bijection

bi : L(gli)→ R(gli)

for L(gli) = {v | (v, v′) ∈ gli for some v′} and R(gli) = {v′ | (v, v′) ∈ gli
for some v} such that

{
(v, bi(v)) | v ∈ L(gli)

}
= gli.

For a gluing diagram D of labelled directed graphs over Σ we define a cocone
of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of labelled directed
graphs over Σ (here cod(hi) = G for every i ∈ I) such that

h∆(v) = hi(v
′)

for every pair (v, v′) ∈ gli and every i ∈ I − {∆}.
A cocone qi : Gi → G̃ (i ∈ I) of D is called a colimiting cocone of D if for

every cocone hi : Gi → G (i ∈ I) of D there exists a unique homomorphism
h : G̃ → G of labelled directed graphs G̃,G over Σ such that h(qi(v)) = hi(v) for
every v ∈ V (Gi) and for every i ∈ I. The labelled directed graph G̃ is called a
colimit of D, the homomorphisms qi (i ∈ I) are called canonical injections and
the unique homomorphism h is called the mediating morphism for hi : Gi → G
(i ∈ I).

For a gluing diagram D one constructs its colimit G̃ in the following way:

322

— V (G̃) = ⋃
i∈I

(Vi × {i}), where
V∆ = V (G∆) for the center ∆ of D,
Vi = V (Gi)−R(gli) for every i ∈ I − {∆},

— E(G̃) = ⋃
i∈I

Ei, where

E∆ =
{(

(v,∆), (v′, ∆)
)
| (v, v′) ∈ E(G∆)

}
for the center ∆ of D,

Ei =
{(

(v, i), (v′, i)
)
| (v, v′) ∈ E(Gi) and {v, v′} ⊆ Vi

}

∪
{(

(v,∆), (v′, ∆)
)
| (v, v′′) ∈ gli, (v

′, v′′′) ∈ gli,

and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′
}

∪
{(

(v,∆), (v′, i)
)
| v′ ∈ Vi, (v, v′′) ∈ gli and (v

′′, v′) ∈ E(Gi) for some v′′
}

∪
{(

(v, i), (v′, ∆)
)
| v ∈ Vi, (v′, v′′) ∈ gli and (v, v

′′) ∈ E(Gi) for some v′′
}

for every i ∈ I − {∆},
— the labelling function `G̃ is defined by `G̃((v, i)) = `Gi(v) for every (v, i) ∈

V (G̃).
The definition of a colimiting cocone of a gluing diagram D provides that any

other colimit of D is isomorphic to the colimit of D constructed above. Hence
one proves the following lemma.

Lemma A.2. Let D be a gluing diagram of labelled graphs over Σ. Then for
every colimiting cocone qi : Gi → G (i ∈ I) of D if i′ 6= i′′, then

(
V (im(qi′))− V (im(q∆))

)
∩
(
V (im(qi′′))− V (im(q∆))

)
= ∅

for all i′, i′′ ∈ I−{∆}, where ∆ is the center of D and the elements of nonempty
V (im(qi)) − V (im(q∆)) with i 6= ∆ are ‘new’ elements and the elements of
V (im(q∆)) are ‘old’ elements.

A generalized gluing diagram D of labelled directed graphs over Σ is defined
by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center
of D,

— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family glij ((i, j)) ∈ I × (I − {∆}) and i 6= j) of gluing conditions which

are such that
• the set I∆ = I with families Gi (i ∈ I) and gl∆i (i ∈ I − {∆}) form a

gluing diagram D∆ with ∆ as the center of D∆,
• for every i ∈ I−{∆} the set Ii = I−{∆} with families Gi (i ∈ I−{∆})

and glij (j ∈ I − {i,∆}) form a gluing diagram Di with i as the center
for Di,

• the following conditions hold:
(G1) R(gl

∆
i) ∩ L(glij) = ∅ for all i, j with {i, j} ⊂ I − {∆} and i 6= j,

(G2) (glij)
−1 = glji for all i, j with {i, j} ⊂ I − {∆} and i 6= j, where for

Q ⊂ A×B
(Q)−1 =

{
(x, y) ∈ B ×A | (y, x) ∈ A×B}.

323

For a generalized gluing diagram D of labelled directed graphs over Σ we
define a cocone of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of
labelled directed graphs over Σ (here cod(hi) = G for every i ∈ I) such that for
every i ∈ I the sub-family hj : Gj → G (j ∈ Ii) is a cocone of the diagram Di.

For a generalized gluing diagram D a colimiting cocone of D, a colimit of D,
the canonical injections, and the mediating morphism are defined in the same
way as for a gluing diagram, e.g. a cocone qi : Gi → G̃ (i ∈ I) of D is called a
colimiting cocone of D if for every cocone hi : Gi → G (i ∈ I) of D there exists
a unique homomorphism h : G̃ → G of labelled directed graphs G̃,G over Σ such
that h(qi(v)) = hi(v) for every v ∈ V (Gi) and for every i ∈ I.

Lemma A.3. Let D be a generalized gluing diagram with finite set I of its
indexes and with center ∆, such that the following condition holds:

(G3) for all i, i′, j ∈ I − {∆} if i 6= i′, then L(glji) ∩ L(glji′) = ∅.
Then one constructs a colimit of D to be a labelled directed graph G̃ which

is determined by an arbitrary nonrepetitive sequence i1, . . . , in0 of elements of
I − {∆} = {i1, . . . , in0} and which is defined in the following way:

— V (G̃) =
⋃
i∈I

(Vi×{i}), where V∆ = V (G∆), Vi1 = V (Gi1)−R(gl∆i1), for every
k with 1 < k ≤ n0

Vik = V (Gik)−
(
R(gl∆ik) ∪

⋃

1≤m<k
L(glikim)

)
,

— E(G̃) =
⋃
i∈I

Ei, where E∆ =
{
((v,∆), (v′, ∆)) | (v, v′) ∈ E(G∆)

}
,

for every i ∈ I − {∆}
Ei = E1

i ∪ E2
i ∪ E3

i ∪ E4
i for

E1
i =

{
((v, i), (v′, i)) | {(v, i), (v′, i)} ⊂ V (G̃) and (v, v′) ∈ E(Gi)

}
,

E2
i =

{
((v, k), (v′, j)) | {(v, k), (v′, j)} ⊂ V (G̃), i /∈ {k, j} ⊂ I,

(v, v′′) ∈ glki , (v′, v′′′) ∈ glji , and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′
}
,

E3
i =

{
((v, i), (v′, j)) | {(v, i), (v′, j)} ⊂ V (G̃), i 6= j ∈ I,

(v′, v′′) ∈ glji , and (v, v′′) ∈ E(Gi) for some v′′
}
,

E4
i =

{
((v, j), (v′, i)) | {(v, j), (v′, i)} ⊂ V (G̃), i 6= j ∈ I,

(v, v′′) ∈ glji , and (v′′, v′) ∈ E(Gi) for some v′′
}
,

— the labelling function `
G̃

is defined by `
G̃
((v, i)) = `Gi(v) for every (v, i) ∈

V (G̃).

Proof. Since by (G3) for all i ∈ I − {∆} and v ∈ V (Gi) − Vi there exists a
unique ordered pair (v∗, i∗) ∈ V (G̃) such that (v∗, v) ∈ gli

∗

i , one defines the i-th
component qi : Gi → G̃ (i ∈ I − {∆}) of colimiting cocone by

qi(v) = (v, i)if v ∈ Vi, (v∗, i∗)otherwise. �

324

Lemma A.4. Let D be a generalized gluing diagram with finite set I of its
indexes and with center ∆, such that the condition (G3) holds and let qi : Gi → G
(i ∈ I) be a colimiting cocone of D. Then for every H ⊆ I − {∆} if

⋂

i∈H

(
V (im(qi))− V (im(q∆))

)
6= ∅,

then H has at most two elements and if H = {i, i′} with i 6= i′, then glii′ is
nonempty.

Proof. The lemma is a consequence of Lemma A.3 and the fact that two different
colimits of a generalized gluing diagram are always isomorphic labelled graphs.

For two directed graphs G1 = (V (G1), E(G1)), G2 = (V (G2), E(G2)), we
define their union by

G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

We introduce the following new concepts.
By a directed multi-hypergraph we mean a structure G given by its set E(G)

of hyperedges, its set V (G) of vertices and the source and target mappings

sG : E(G)→ P(V (G)), tG : E(G)→ P(V (G))

such that V (G) together with
{
(V1,V2) | sG(e) = V1 and tG(e) = V2 for some e ∈ E(G)

}

form a directed hypergraph as in [5], where P(X) denotes the set of all subsets
of a set X.

We say that two directed multi-hypergraphs G,G′ are isomorphic if there
exist two bijections h : V (G)→ V (G′), h′ : E(G)→ E(G′) such that

sG′(h
′(e)) = {h(v) | v ∈ sG(e)} and tG′(h′(e)) = {h(v) | v ∈ tG(e)}

for all e ∈ E(G).

Appendix B

We recall an idea of a Gandy–Păun–Rozenberg machine, briefly G–P–R machine,
introduced in [14].

The core of a G–P–R machine is a finite set of rewriting rules for certain
finite directed labelled graphs, where these graphs are instantenous descriptions
for the computation process realized by the machine.

The conflictless parallel (simultaneous) application of the rewriting rules of a
G–P–R machine is realized in Gandy’s machine mode (according to Local Cau-
sation Principle, cf. [3]), where (local) maximality of “causal neighbourhoods”
replaces (global) maximality of, e.g. conflictless set of evolution rules applied

325

simultaneously to a membrane structure which appears during the evolution
process generated by a P system [17]. Therefore one can construct a Gandy’s
machine from a G–P–R machine in an immediate way, see [14].

For all unexplained terms and notation of category theory and graph theory
we refer the reader to Appendix A.

Definition B.1. A G–P–R machine M is determined by the following data:

— a finite set ΣM of labels or symbols ofM,
— a skeletal set SM of finite isomorphically perfect labelled directed graphs

over Σ, which are called instantenous descriptions ofM,
— a function FM : SM → SM called the transition function ofM,
— a function RM : PREMM → CONCLM from a finite skeletal set PREMM

of finite isomorphically perfect labelled directed graphs over ΣM onto a
finite skeletal set CONCLM of finite isomorphically perfect labelled directed
graphs over ΣM such that RM determines the set

R̃M = {P ` C |P ∈ PREMM and C = RM(P)}

of rewriting rules of M which are identified with ordered pairs r = (Pr, Cr),
where the graph Pr ∈ PREMM is the premise of r and the graph Cr =
RM(Pr) is the conclusion of r,

— a subset IM of SM which is the set of initial instantaneous descriptions
of M.

The above data are subject of the following conditions:

1) V (G) ⊆ V (FM(G)) for every G ∈ SM,
2) V (G) ⊆ V (RM(G)) for every G ∈ PREMM,
3) the rewriting rules ofM are applicable to SM which means that for every
G ∈ SM the set

P`(G) =
{
h |h is an embedding of labelled graphs over Σ

with dom(h) ∈ PREMM and cod(h) = G
such that for every embedding h′ of labelled graphs over Σ

with dom(h′) ∈ PREMM and cod(h′) = G
if im(h) is a labelled subgraph of im(h′), then h = h′

}

of maximal applications4 h of the rules dom(h) ` RM(dom(h)) of M in
places im(h) is such that the following conditions hold:
(i) V (G) = ⋃

h∈P`(G)
V (im(h)), E(G) = ⋃

h∈P`(G)
E(im(h)),

4 with respect to the relation of being a labelled subgraph which can be treated as a
natural priority relation between the applications of the rewriting rules

326

(ii) for all h1, h2 ∈ P`(G) the equation `Gh1 (ḣ
−1
1 (v)) = `Gh2 (ḣ

−1
2 (v)) holds

for every v ∈ V (im(h1))∩ V (im(h2)), where `Gh1 , `Gh2 are the labelling
functions of Gh1 = RM(dom(h1)), Gh2 = RM(dom(h2)), respectively,
and ḣ−11 , ḣ−12 are the inverses of isomorphisms induced by the embed-
dings h1, h2, respectively.

(iii) FM(G) is a colimit of a gluing diagram DG constructed in the following
way (the construction of DG is provided by (ii)):
• the set I of indexes of DG is such that I = P`(G) ∪ {∆}, where
∆ /∈ P`(G) is the center of DG ,

• the family Gi (i ∈ I) of labelled graphs of DG is such that Gh =
RM(dom(h)) for every h ∈ P`(G), and G∆ is such that V (G∆) =
V (G), E(G∆) = ∅, and the labelling function `G∆ is such that pro-
vided by (ii)

`G∆(v) = `Gh(ḣ
−1(v))

for every v ∈ V (im(h)) and every h ∈ P`(G), where ḣ−1 is the
inverse of the isomorphism ḣ induced by the embedding h,

• the gluing conditions glh (h ∈ P`(G)) of DG are defined by

glh =
{
(v, ḣ−1(v)) | v ∈ V (im(h))

}

for every h ∈ P`(G), where ḣ−1 is the inverse of the isomorphism ḣ
induced by embedding h,

(iv) the following equations hold:

V (FM(G)) =
⋃

i∈I
V (im(qi))

and E(FM(G)) =
⋃

i∈I
E(im(qi))

for the canonical injections qi : Gi → FM(G) (i ∈ I) forming a colimit-
ing cocone of the diagram DG defined in (iii),

(v) the canonical injection q∆ : G∆ → FM(G) is an inclusion of labelled
graphs, where ∆ is the center of DG and q∆ is ∆-th element of the
colimiting cocone in (iv).

Thus FM(G) is the result of simultaneous application of the rules dom(h) `
RM(dom(h)) in the places im(h) for h ∈ P`(G), where one replaces simultane-
ously im(h) by im(qh) in G for h ∈ P`(G), respectively.

A finite sequence
(
F iM(G)

)n
i=0

is called a finite computation ofM, the num-
ber n is called the time of this computation, and FnM(G) is called the final
instantaneous description for this computation if

F0
M(G) = G ∈ IM, Fn−1M (G) 6= FnM(G), and FM(FnM(G)) = FnM(G),

where F iM(G) is defined inductively: F iM(G) = FM
(
F i−1M (G)

)
.

For a computation
(
F iM(G)

)n
i=0

its space is defined by

space(M,G) = max{the number of elements of V (F iM(G)) | 0 ≤ i ≤ n}

327

for G ∈ IM, where intuitively space(M,G) is understood as the size of hardware
measured by the number of indecomposable processors5 used in the computa-
tions.

We recall the following definition from [15].

Definition B.2. A generalized G–P–R machine M is defined by the following
data:

— the sets ΣM, SM, IM and the functions RM : PREMM → CONCLM,
FM : SM → SM, where SM, PREMM, CONCLM are skeletal sets of
finite isomorphically perfect labelled directed graphs over ΣM, the sets
ΣM, PREMM, CONCLM are finite sets, the condition 2) holds for RM,
and IM is a subset of SM;

— besides the function RM defining rewriting rules there is enclosed a new
function RaM : PREMa

M → CONCLaM, where PREMa
M, CONCLaM are

finite skeletal sets of finite isomorphically perfect labelled directed graphs

over ΣM and RaM defines auxiliary gluing rules P
a
` C (P ∈ PREMa

M, C =
RaM(P)) for defining common parts of the boundaries of new compartments
appearing in a step of an evolution process;

— the above data are subject of the following conditions:
A) for every G ∈ PREMa

M we have V (G) ⊆ V (RaM(G)), the set P`(G)
defined as in 3) satisfies 3)(ii), and there exists a generalized gluing
diagram D〈G〉, called gluing pattern determined by G, such that
a1) the set I〈G〉 of indexes of D〈G〉 is a set {∆} ∪ İ〈G〉 with ∆ being the

center of D〈G〉, İ〈G〉 ⊆ P`(G), and ∆ /∈ İ〈G〉;
a2) the family of graphs Gi (i ∈ I〈G〉) of D〈G〉 is such that V (G∆) =

V (G), E(G∆) = ∅, and Gh = RM(dom(h)) for h ∈ İ〈G〉;
a3) the gluing conditions gl∆i (i ∈ İ〈G〉) are such that gl∆i = gli for gli

defined as in 3)(iii) for the gluing diagram DG ;
a4) RaM(G) is a colimit of D〈G〉 with gluing conditions glij ({i, j} ⊆ İ〈G〉

and i 6= j) such that they are unique together with İ〈G〉 to make
RaM(G) a colimit of D〈G〉;

B) for every G ∈ SM the following conditions hold:
b1) for P`a(G) defined as in 3) with PREMM replaced by PREMa

M and
for every h ∈ P`a(G) and gluing pattern D〈dom(h)〉 determined by
dom(h) the set SCPh = {h ◦ h′ |h′ ∈ İ〈dom(h)〉}, called the scope
of gluing pattern D〈dom(h)〉 in place h, is a subset of P`(G) defined
as in 3) for G and PREMM, where ◦ denotes the composition of
homomorphisms of graphs;

b2) the set P`(G) defined in 3) satisfies conditions 3)(i), (ii);
b3) the graph FM(G) is a colimit of a generalized gluing diagram DG

such that
5 The indecomposable processors coincide with urelements appearing in those Gandy
machines which represent G–P–R machines in [14].

328

(β1) the set I of indexes of DG is the same as the set of indexes of
DG given in 3)(iii), i.e. I = P`(G) ∪ {∆},

(β2) the family of graphs Gi (i ∈ I) of DG is the same as of DG
defined in 3)(iii),

(β3) the gluing condition gl∆i is gli defined in 3)(iii) for every i ∈
I − {∆},

(β4) for all h1, h2 with {h1, h2} ⊆ I − {∆} and h1 6= h2 if there
exists h ∈ P`a(G) for which {h1, h2} ⊆ SCPh, then the gluing
condition glh1

h2
of DG is the gluing condition gl

h′1
h′2

of the gluing
pattern determined by dom(h) for h′1, h′2 such that h ◦ h′1 = h1
and h ◦ h′2 = h2,

(β5) if there does not exist h ∈ P`a(G) such that {h1, h2} ⊆ SCPh
for h1, h2 as in (β4), then the gluing condition glh1

h2
of DG is

defined to be the empty set;
b4) the colimiting cocone qi : Gi → FM(G) (i ∈ I) of DG is such that

(β6) the conditions 3)(iv) and (v) hold with DG replaced by DG ,
(β7) for every at least two element subset H of I − {∆} such that

⋂

i∈H

(
V (im(qi))− V (im(q∆))

)
6= ∅

there exists h ∈ P`a(G) such that H is a subset of SCPh of
gluing pattern determined by dom(h).

The gluing conditions glij of DG defined in (β4), (β5) determine common parts
of the boundaries of new compartments appearing in a step of an evolution
process.

Appendix C

Basing on [18] we present the iterated function systems whose attractors are
Koch curve and Sierpiński gasket, respectively. These iterated function systems
consist of the bijections from R2 onto R2 (R2 denotes the set of ordered pairs of
real numbers) described in terms of matrices as follows:

— for Koch curve

fKoch
1 (x) =

[
1/3 0
0 1/3

]
x scale by 1/3

fKoch
2 (x) =

[
1/6 −

√
3/6√

3/6 1/6

]
x+

[
1/3
0

]
scale by 1/3, rotate by 60◦

fKoch
3 (x) =

[
1/6

√
3/6

−
√
3/6 1/6

]
x+

[
1/2√
3/6

]
scale by 1/3, rotate by −60◦

fKoch
4 (x) =

[
1/3 0
0 1/3

]
x+

[
2/3
0

]
scale by 1/3

329

— for Sierpiński gasket

fSierp1 (x) =

[
1/2 0
0 1/2

]
x scale by 1/2

fSierp2 (x) =

[
1/2 0
0 1/2

]
x+

[
1/2
0

]
scale by 1/2

fSierp3 (x) =

[
1/2 0
0 1/2

]
x+

[
1/4√
3/4

]
scale by 1/2

References

1. Bolognesi T., Causal sets from simple models of computation, Int. Journal of Un-
conventional Computing 6 (2010), pp. 489–524.

2. Diekert V., Gastin P., From local to global temporal logic over Mazurkiewicz traces,
Theoretical Computer Science 356 (2006), pp. 126–135.

3. Gandy R., Church’s thesis and principles for mechanisms, in: The Kleene Sympo-
sium, eds. J. Barwise et al., North-Holland, Amsterdam 1980, pp. 123–148.

4. Gacs P., Levin L. A., Causal nets or what is a deterministic computation, Infor-
mation and Control 51 (1981), pp. 1–19.

5. Gallo, G., Longo, G., Pallottino, S., Nguyen, S., Directed hypergraphs and applica-
tions, Discrete Appl. Math. 42 (1993), pp. 177–201.

6. Goertzel B., Review of A New Kind of Science,
http://www.goertzel.org/dynapsyc/2002/WolframReview.htm

7. Joosten J. J., Soler-Toscano F., Zenil H., Fractal dimension of space-time diagrams
and the runtime complexity of small Turing machines, Electronic Proceedings of
Theoretical Computer Science 128 (2013), pp. 29–30.

8. Joosten J. J., Soler-Toscano F., Zenil H., Fractal dimension versus computational
complexity, arXiv: 1309.1779v2 [cs.CC], 24 Mar 2014.

9. Lima-de-Faria A., Atomic basis of biological symmetry and periodicity, BioSystems
43 (1997), pp. 115–135.

10. Lima-de-Faria A., Evolution Without Selection. Form and Function by Autoevolu-
tion, Elsevier, Amsterdam, 1988.

11. Lutz J. H., The dimensions of individual strings and sequences, Information and
Computation 187 (2003), pp. 49–79.

12. Markopoulou F., The internal description of a causal set: what the universe looks
like from inside, arXiv: gr-gc/9811053v2, 18 Nov 1999.

13. Nowotny T., Requardt M., Dimension theory of graphs and networks, J. Phys. A
Math. Gen. 31 (1998), pp. 2447–2463.

14. Obtułowicz A., Randomized Gandy–Păun–Rozenberg machines, in: Membrane
Computing, Lecture Notes in Computer Science 6501, Springer, Berlin, 2011,
pp. 305–324.

15. Obtułowicz A., Generalized Gandy–Păun–Rozenberg machines for tile systems and
cellular automata, In: Conference on Membrane Computing 2011, Lecture Notes
in Computer Science 7184, Springer, Berlin, 2012, pp. 314–322.

16. Obtułowicz A., In search of a structure of fractals by using membranes as hyper-
edges, In: Conference on Membrane Computing 2013, Lecture Notes in Computer
Science 8340, Springer, Berlin, 2014, pp. 301–307.

330

17. Păun G., Rozenberg G., Salomaa A., The Oxford Handbook of Membrane Comput-
ing, Oxford, 2009.

18. Riddle L., Classic iterated function system, Sierpiński gasket,
http://ecademy.agnesscott.edu/˜lriddle/ifs/siertri/siertri.htm

19. Rozenfeld H. D., Gallos L. K., Song Ch., Makse H. A., Fractal and transfractal
scale-free networks, Encyclopedia of Complexity and System Science, Springer,
2009, pp. 3924–3943.

20. Strogatz S. H., Nonlinear Dynamics and Chaos, Perseus Books Publ., LLC, 1994.
21. Volchan S. B., What is a random sequence, Amer. Math. Monthly 109 (2002), pp.

46–63.
22. Weibel E. R., Design of biological organisms and fractal geometry, in: Fractals

in Biology and Medicine, ed. T. F. Nonnenmacher et al., Springer, Basel, 1994,
pp. 68–85.

23. Wolfram, S., Random sequence generated by cellular automata, Advances in Appl.
Math. 7 (1986), pp. 123–169.

24. Wolfram, S., A New Kind of Science, Wolfram Media, 2002.

331

332

P System Computational Model as Framework
for Hybrid (Membrane-Quantum)

Computations?

Yurii Rogozhin, Artiom Alhazov, Lyudmila Burtseva, Svetlana Cojocaru,
Alexandru Colesnicov, and Ludmila Malahov

Institute of Mathematics and Computer Science
5 Academiei st., Chisinau, Republic of Moldova, MD-2028

artiom@math.md, luburtseva@gmail.com, Svetlana.Cojocaru@math.md,

acolesnicov@gmx.com, lmalahov@gmail.com

Abstract. This work presents a hybrid model of high performance com-
putations, representing the P system framework with additional quan-
tum functionalities. This model is supposed to take advantages of both
biomolecular and quantum paradigms and to overcome some of their
inherent limitations. We extend a recently proposed formal model of
interface between a membrane system and quantum sub-systems. The
problem of finding the longest common subsequence for a set of strings
is exhibited as an example.
Key words: Models of Computation, Parallelism and Concurrency, Quan-
tum Computing, Biomolecular Computing, P Systems

1 Introduction

This research concerns the capability of the P system computational model [4] to
provide a framework for hybrid calculating, employing additional functionality
from a quantum model.

The first hybrid computational model by joining membrane- and quantum-
approaches was proposed in the paper of A. Leporati [2] where QUREM (Quan-
tum Unit Rules and Energy assigned to Membranes) P systems were introduced.
Keeping the main frame of P systems, QUREM P systems change objects and
rules: objects are represented as pure states of a quantum system, and rules
are quantum operators. The result is a hybrid computation device, a membrane
system with quantum operations, but computation itself is provided only by
quantum formalism.

We propose our edition of hybrid computation model that keeps the entire
expressivity of P systems. Classical P system formalism serves as the framework
providing computations by elements of other models as well as communications
between elements of different nature.

? The authors acknowledge the project STCU 5384 awarded by the Scientific and
Technology Center in Ukraine.

333

In [6], we introduced the first version of our hybrid computation model.
There, two types of membranes coexist: classical membranes and quantum mem-
branes, the latter containing a quantum device inside. During the further re-
search this conception has been extended by adding capability to perform quan-
tum computations to any membrane.

To formulate quantum functionality incorporated in the proposed hybrid
model, we use the classical scheme of quantum device [7]. Particular methods
of quantum computation, which form the quantum functionality of the hybrid
model, are selected according to the requirements of each problem being solved.

Proposed hybrid computations have to support data passing from the P sys-
tem (macro) level to quantum (micro) level and back. The communication pro-
cess is heart of hybrid computation model because it provides access to a different
computational structure rather then just cloning existing ones. The communi-
cation is implemented by P system objects corresponding to the basis states of
each initial and resulting qubit of the quantum device. The appearance of such
objects in the membrane starts the quantum computation.

In [6] one presented hybrid solutions of two problems: SAT and image re-
trieval. In [5], the graph isomorphism problem was approached in the hybrid
framework.

In this paper we will demonstrate the process of hybrid computation on the
problem of finding the longest common subsequence for a set of strings that was
selected because of its hard computation class, and suitability to be decomposed
to different computational levels.

2 Hybrid Computational Model

2.1 Membrane Level of the Hybrid Model

We use standard membrane systems, or P systems, which consist of a hi-
erarchy of membranes. We do not restrict ourselves by one specific variant of
P systems selecting it in relation to the solved problem. For instance, two hy-
brid systems were presented in [6], one based on transitional non-cooperative P
systems with atomic inhibitors, and the other based on tissue P systems with
symport/antiport. In the present paper, we use P systems with active mem-
branes as our membrane framework.

The investigated model will additionally suppose that, in any membrane,
the apparition of some specific objects (quantum data, or quantum triggers)
starts a quantum calculation. The said data are available as initial state of the
quantum registers. After its termination the quantum calculation produces an-
other specific objects (quantum results) inside the membrane. From the P system
point of view, the quantum calculation is a step, or several steps, of the mem-
brane calculation.

During quantum calculations in a membrane, application of P system rules to
this membrane should be prohibited. Some aspects of this need more research.
For example, division of a working quantum membrane would contradict the
no-cloning theorem.

334

2.2 P Systems with Active Membranes

Definition 1. A P system with active membranes (without non-elementary mem-
brane division) of initial degree d ≥ 1 is a tuple Π = (O,H, µ,w1, · · · , wd, R),
where
– O is a non-empty finite alphabet of objects,
– H is a finite set of membrane labels;
– µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by a bracketed expression) consisting of d membranes labeled (not necessarily
injectively) by elements of H;

– wi, for every i ∈ H mentioned in µ, are strings over O, describing the initial
multisets of objects placed in the d regions of µ;

– R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another at-
tribute called polarization, which can be one of elements of set E. For the pur-
poses of the present paper, E = {0, 1, 2}.

The rules are of the following kinds:

(a) [a→ u]
e
h, a ∈ O, u ∈ O∗, h ∈ H, e ∈ E.

Object evolution rules. They can be applied inside a membrane labeled h
with polarization e and containing an occurrence of the object a; the object
a is rewritten into the multiset w (i.e., a is removed from the multiset in h
and replaced by all objects in u).

(b) a[]
e
h
→ [b]

e′

h
, a, b ∈ O, h ∈ H, e, e′ ∈ E.

Send-in communication rules. They can be applied to a membrane labeled h
with polarization e and such that the external region contains an occurrence
of the object a; the object a is sent into h becoming b and, simultaneously,
the polarization of h is changed to e′.

(c) [a]
e
h
→ []

e′

h
b, a, b ∈ O, h ∈ H, e, e′ ∈ E.

Send-out communication rules. They can be applied to a membrane labeled
h with polarization e and containing an occurrence of the object a; the object
a is sent out from h to the outside region becoming b and, simultaneously,
the polarization of h is changed to e′.

(d) [a]
e
h
→ b, a, b ∈ O, h ∈ H, e ∈ E.

Dissolution rules. They can be applied to a membrane labeled h with polar-
ization e and containing an occurrence of the object a; the membrane h is
dissolved and its contents is released in the surrounding region, simultane-
ously changing an occurrence of a into b.

(e) [a]
e
h → [b]

e′

h [c]
e′′

h , a, b, c ∈ O, h ∈ H, e, e′, e′′ ∈ E.
Elementary division rules. They can be applied to a membrane labeled h
with polarization e, containing an occurrence of the object a, but having no
other membrane inside (an elementary membrane); the membrane is divided
into two membranes with the same label h and polarizations e′ and e′′; the
object a is replaced, respectively, by b and c, while the other objects are
copied to both membranes.

335

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the polarizations, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following principles:

Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane any number of evolution rules
can be applied simultaneously). The application of rules is maximally parallel: no
further rules can be applied to the idle objects and membranes. If not indicated
otherwise, we assume the standard semantics of application of P system rules.

A computation halts when no rules are applicable at some step.

In this paper, we consider P systems with input. We include the input sub-
alphabet Σ ⊆ O and the input region i0 in the tuple specifying the P system. The
computation starts after some input multiset of objects from Σ is added to the
input region. As the result of a halting computation, the contents of a dedicated
region is usually taken; sometimes, only a specific sub-alphabet is considered,
and sometimes multiple regions are considered.

2.3 Quantum Level of the Hybrid Model

We suppose a standard quantum device available for quantum calculations.
The quantum device contains qubits organized in quantum registers. It works
in three steps: non-quantum (classical) initialization of qubits when they are
set in base states; quantum transformation when the qubits are not observed;
non-quantum (classical) measurement that produces the observable result.

Several restrictions are imposed over the quantum device. After the initial-
ization and after the measurement each qubit is in one of base states |0〉, or
|1〉. During quantum calculation a qubit may be in the superposition of both
states, or it may be entangled with other qubits. The initial data and the result
are regarded as non-negative integers in binary notation. The quantum transfor-
mation is linear and reversible. The general rule is that arguments and results
are kept in different quantum registers. Another general condition is that the
ancillary qubits were not entangled with the argument and the result after the
calculation.

The construction of a quantum computer shown in Fig. 1 guarantees this.
Indices show the dimensionality: the device implements the calculation of integer
function f : [0, 2N − 1] → [0, 2M − 1]. We may omit the index when we do not
focus on the dimensionality. Vf is a quantum implementation of function f , and

V†f = V−1f is the inverse transformation. It uses R ancillary qubits |w〉. Register
|z〉 is initialized by quantum data that appeared in the membrane and made the
quantum calculation to start. In the hybrid scheme below, quantum registers are
initialized through the input objects Ik,b, where b = 0, 1 is a binary value of the
kth qubit in |z〉.

336

|y〉M

|x〉N

|w〉R

|z〉K

Vf

|f(x)〉M

CM

|ψx,z〉N+R+K−M

|f(x)〉M

V†
f

|y ⊕ f(x)〉M

|x〉N

|w〉R

|z〉K

Fig. 1. Quantum calculation; initialization and measurement are not shown, indices
denote the number of qubits in registers

2.4 Communication: Input/Output Signals and Triggering

We now focus on discussing the particularities of the hybrid model, namely, on
the interaction between the biological sub-system and the quantum sub-system.

We now define the hybrid system as a tuple

β = (Π,T, T ′, HQ, QN , QM , Inp,Outp, t, qh1
, · · · , qhm

).

Here, Π is a P system, and HQ = {h1, · · · , hm} is a subset of membrane labels in
Π used for quantum calculations. T is a trigger and T ′ is the signal on obtaining
the quantum result. Sub-systems qh1

, · · · , qhm
are the quantum sub-systems as-

sociated to the corresponding membranes from HQ. The rest of the components
of the tuple defining β specify the interaction between Π and qhj , 1 ≤ j ≤ m.

For simplicity we assume that the running time quantum sub-systems of the
same type is always the same. To keep this time general, we include a timing
function t : HQ → N: the quantum computation in a sub-system of type qhj

takes
t(hj) membrane steps. It is an open general question how to calculate the timing
of quantum calculation with respect to the timing of membrane calculation. We
could use as the first rough estimation that quantum calculation takes three steps
of membrane calculation (initialization, quantum transformation, measurement).

The input size (in qubits) for quantum systems is given by QN : HQ → N.
The output size (in bits) for quantum systems is given by QM : HQ → N.

We would like to define the behavior of β in all possible situations, so we
introduce the trigger T ∈ O, where O is the alphabet of Π. The work of a quan-
tum sub-system of type qhj starts whenever T appears inside the corresponding
membrane. Note that we said qhj

us a type of a quantum sub-system, because
in general there may be multiple membranes with label hj containing quan-
tum sub-systems with the same functionality. The quantum state is initialized
by objects from Inp(hj) = {Ok,hj ,b | 1 ≤ k ≤ QN (hj), b ∈ {0, 1}} ∪ {T}, so
Inp : HQ → 2O is a function describing the input sub-alphabet for each type of
quantum sub-system, the meaning of object Ok,hj ,b being to initialize bit k of
input by value b. We require that the set of rules satisfies the following condition:
any object that may be sent into a membrane labeled hj must be in Inp(hj).

If some bit k is not initialized, then the default value 0 is assumed. If multiple
objects initialize bit k, say, (Ok,hj ,0)s(Ok,hj ,1)t, then the k-th qubit is set to

337

the state 1√
s2+t2

(s |0〉 + t |1〉). This technique is restricted: we can not produce

entangled states. If some objects are sent to a quantum membrane without the
trigger, we assume they wait there until the trigger arrives.

The output of quantum sub-systems is returned to the membrane system
in the form of objects from Outp(hj) = {Rk,hj ,b | 1 ≤ k ≤ QM (hj), b ∈
{0, 1}} ∪ {T ′}, the meaning of object Rk,hj ,b being that the output bit k has
value b. In case of one-bit output, we often denote it yes and no.

The result of a quantum sub-system is produced in the membrane together
with object T ′.

There are two possibilities to synchronize quantum and membrane levels. We
can use a timing function and to wait for the quantum result by organizing the
corresponding delay in membrane calculations, or we can wait for appearance
of the resulting objects, or the trigger T ′. For completeness, our model provides
both possibilities. The topic needs further investigations.

The problem of some alternative evolution of the objects leading to the input
into the quantum sub-system input can be always solved using a wrapper mem-
brane (an extra membrane around the membrane used for quantum calculation),
where the only rules applicable to the objects in it would be passing the input
in, and passing the output out, if needed.

Another possible use of the wrapper membranes is to merge the input/output
objects of the quantum sub-systems from objects of types Ok,hj ,b and Rk,hj ,b into
objects of types Ok,b and Rk,b, where the proper handling depending on hj is
done during their passage into/outside the wrapper membrane.

2.5 Initialization of the Quantum Device

Before the quantum calculation starts, each qubit is to be set in one of basis
states |0〉1, or |1〉1. The measurement operation is embedded in the quantum
device; it is used after calculation, so we can apply it to our qubits.

As we use the measurement before the calculation, the qubits collapse in the
basis states. Measurement is irreversible, therefore it is a classical operation.

Now we are to set qubits in initial states. For example, if we want to set them
in the state |0〉, we are to check the state of each qubits and invert |1〉. This is
not a quantum transformation.

Usually, all qubits are initially set to |0〉1. (Several quantum algorithms use
different initial values though.) In our case, we will use non-quantum tools to
prepare the state |x〉 |y〉 |z〉 |w〉 = |0〉N |0〉M |z0〉K |0〉R. Here z0 is the number
that entered the quantum membrane and initiated the process. Classical (non-
quantum) initialization ends here.

We provide qubits of our quantum device with the possibility to be initialized
in some non-base states 1√

s2+t2
(s |0〉 + t |1〉). This is made by an appropriate

one-qubit quantum transformation that should be performed before any other
calculations.

338

For example, many quantum algorithms suppose that all qubits from register
|x〉 are at once transformed by one-qubit Hadamard transformation

H =
1√
2

(
1 1
1 −1

)

If |x〉 was set to |0〉 then each qubit of |x〉 is set in the state 1√
2
(|0〉 + |1〉).

As the result, register |x〉 gets the state

|x〉 =
1

2N/2

∑

0≤i<2N

|i〉 ,

that corresponds to a uniform superposition of all possible values of argument
x. Application of the transformation Vf will then produce all possible values of
f(x) (quantum parallelism).

Configuration of quantum device depends on parameters of a specific prob-
lem. Implementation of such dependence is sometimes called compilation. It is
possible to delegate all such operation to membrane level, or to include them
inside quantum device. They can be performed even at preparatory stage for the
membrane level. Another variant is to consider these operations as an intermedi-
ate level of the system between membrane and quantum levels. The initialization
of quantum device will also be a part of this level. It is logical as the initialization
should be performed at the appearance of trigger T . We aim these problems for
further research.

3 Finding the Longest Common Subsequence

3.1 Problem Formulation and Approach

The problem is given by strings u1, · · · , un ∈ V ∗, V = {a1, · · · , ak}. We assume
without restricting generality that the first string is not longer than any other.
We should find a string u0 with the following properties:
1. u0 is a subsequence of each ui, 1 ≤ i ≤ n;
2. u0 is the longest string satisfying the previous property.

We consider the following way of solving the problem. Membrane division
is used to consider the possible subsequences of the first string. The quantum
sub-systems are used to verify if the candidate strings are subsequences of all
other input strings. Delay is organized in order for the candidate strings to be
considered in the longest-to-shortest order. If a solution is found in some mem-
brane, then a signal goes to the skin, is replicated and sent into the membranes
verifying the candidates to stop the process. The delay was chosen as a compro-
mise in order not to slow down the overall system too much, while preventing
most of unnecessary computations for shorter strings after a solution is found.

339

3.2 P System

In the construction of our membrane framework, we use numbers n and ni = |ui|,
1 ≤ i ≤ n. The strings are represented by symbols from Σ = {aj,l,0,0 | 1 ≤ j ≤
n1, 1 ≤ l ≤ k} ∪ {bi,j,l,0 | 2 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ l ≤ k} as follows: the
string representing the input multiset is

win =
∏

1≤j≤n1

(aj,l,0,0 | u1[j] = al)
∏

2≤i≤n, 1≤j≤ni

(bi,j,l,0 | ui[j] = al).

Let K = dlog2 ke be the number of bits needed to encode one symbol of V ,
and let N = dlog2 (n1 + 1)e be the number of bits needed to represent a number
between 0 and n1, inclusive.

We construct the following hybrid system.

β = (Π,T, T ′, HQ = {2}, QN , QM , Inp,Outp, t, q2), where

QN (2) = N +K
∑n

j=1
nj , QM (2) = 1, Outp(2) = {yes, no, T ′}, t(2) = 3,

Inp(2) = {T} ∪ {Ik,b | 0 ≤ k ≤ N +K
∑n

t=1
nt, 0 ≤ b ≤ 1},

q2 is a quantum system checking whether the first string

is a subsequence of other strings, and

Π = (O,Σ, µ = [[]
0
2
[]

0
3

]
0
1
, w1, w2, w3, R, 2)

is a P system with active membranes, where Σ is defined above, and

O = {dj , sj | 0 ≤ j ≤ n1} ∪ {yes, yes′, no, o, p′1, p′0, T ′} ∪ Inp(2)

∪ {cj,t | 0 ≤ j ≤ n1 + 1, 0 ≤ t ≤ j} ∪ {ct, c′t | 0 ≤ t ≤ n1} ∪ {pt | −1 ≤ t ≤ 5n1}
∪ {aj,l,s,t | 1 ≤ j ≤ n1, 1 ≤ l ≤ k, 0 ≤ s ≤ j, 0 ≤ t ≤ s}
∪ {bi,j,l,s, ej,l | 1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ l ≤ k, 1 ≤ s ≤ n1 + 1},

w1 = λ, w2 = d0c0,0, w3 = s0,

and the set R is the union of the following rule groups (presented together with
their explanations): generation, counting, building subsequences, input for the
quantum sub-systems, and stopping.

Generation

G1. [dj]
e
2
→ [dj+1]

0
2
[dj+1]

1
2
, 0 ≤ j ≤ n1 − 1, 0 ≤ e ≤ 1.

Membrane 2 is divided n1 times, each division representing the choice whether
the subsequent symbol of the first string is selected for the candidate common
subsequence.

G2. [dn1]
e
2
→ []

0
2
o, 0 ≤ e ≤ 1.

Then the polarization is set to 0. Object o is not used in the system, it is only
given because it is required by the types of the rules of P systems with active
membranes.

340

1 s j n1

u1 = × X
��
× X
��

X
��

× al

1 t

Fig. 2. Illustration of indices j, l, s, t appearing in objects aj,l,s,t: string u1 has symbol
al in position j; position s is being considered, and t symbols have been chosen for the
candidate subsequence. Indices j, l, s have similar meaning for symbols bi,j,l,s, except
j refers to a position in ui, while s refers to a position in u1.

Counting
C1. [cj,t → cj+1,t+e]

e
2, 0 ≤ j ≤ n1, 0 ≤ t ≤ j, 0 ≤ e ≤ 1.

Subscript t counts the number of selected (by setting the polarization to 1)
symbols, out of j symbols of the first string considered.

C2. [cn1+1,t → ctp5(n1−t)]
0
2
, 0 ≤ t ≤ n1.

Remember the size of a chosen subsequence and initialize the delay counter.
C3. [pt → pt−1]

0
2
, 1 ≤ t ≤ 5n1.

Delay the computation for the number of steps equal to 5 times the number
of not selected symbols. In this way, the candidate strings are considered the
longest to the shortest, until a common subsequence is found. These rules can
be disabled if the polarization is switched to 2.

C4. [p0 → p−1p′1]
0
2
.

C5. [p−1]
0
2
→ []

1
2
o.

Set the polarization to 1. In the next step, the input will be prepared for the
quantum sub-system.

C6. [p′1 → p′0]
0
2
.

C7. [p′0]
1
2 → []

0
2o.

The next step after having set the polarization to 1, it is again reset to 0
(simultaneously with initializing the quantum sub-system).

Building subsequences
B1. [aj,l,s,t → aj,l,s+1,t+e]

e
2
,

1 ≤ j ≤ n1, 1 ≤ l ≤ k, 0 ≤ s ≤ j − 1, 0 ≤ t ≤ s, 0 ≤ e ≤ 1.
In the group aj,l,s,t of objects, the third subscript ranges over the positions

of the first string, while the last subscript keeps track of the number of symbols
chosen.

B2. [aj,l,j,t → b1,t+1,l,j+1]
1
2
, 1 ≤ j ≤ n1, 1 ≤ l ≤ k, 0 ≤ t ≤ s.

The j-th symbol of the first string is chosen as the t-th symbol of the candi-
date subsequence.

B3. [aj,l,j,t → λ]
0
2, 1 ≤ j ≤ n1, 1 ≤ l ≤ k, 0 ≤ t ≤ s.

The symbol is not chosen; the object representing it is erased.
B4. [bi,j,l,s → bi,j,l,s+1]

e
2
, 1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ l ≤ k, 1 ≤ s ≤ n1.

Wait until the rest of the subsequence is chosen. These rules also apply to
the input representing the other strings, synchronizing them.

341

Input for the quantum sub-systems
I1. [bi,j,l,n1+1 → f(i, j, l)]

1
2
, 2 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ l ≤ k, where

f(i, j, l) = I
K(j−1+

i−1∑
t=2

nt)+1,g(l,0)
· · · I

K(j−1+
i−1∑
t=2

nt)+K,g(l,K−1)
, 2 ≤ i ≤ n,

f(1, j, l) = ej,lI
K(j−1+

n∑
t=2

nt)+1,g(l,0)
· · · I

K(j−1+
n∑

t=2
nt)+K,g(l,K−1)

,

where g(l, b) = b(l − 1)/2bcmod2 is the b-th bit of binary representation of
number l − 1.

I2. [ct → c′tTf(1, t+ 1, 0) · · · f(1, n1, 0)F (t)]
1
2

where

F (t) = I
K(

n∑
t=1

nt),g(t+1,0)
· · · I

K(
n∑

t=1
nt)+N−1,g(t+1,N−1)

.

The total number of input objects passed to a quantum sub-system (besides

the trigger T) is N +K
n∑

t=1
nt.

Stopping
S1. [sj → sj+1sj+1]

0
3
, 0 ≤ j ≤ n1 − 1.

2n1 copies of object sn1
are produced.

S2. [yes→ yes′]
0
2
.

We make sure that the computation is not stopped (a longer string not found
yet). We do not use the trigger T ′ produced together with yes.

S3. [yes′]
0
2
→ []

1
2
yes.

The polarization is set to 1.
S4. [c′t]

1
2
→ []

1
2
ct.

The object is sent out storing the length of the found common string.
S5. ct[]

0
3 → [ct]

1
3.

One object ct enters membrane labeled 3, switching its polarization to make
sure this is done once.

S6. [ct]
1
3
→ c′t.

The object is primed again, dissolving membrane labeled 3, releasing objects
sn1

into the skin.

S7. sn1 []
0
2
→ [o]

2
2
.

Objects sn1 enter all membranes labeled 2, with polarization 0, stopping the
computations there by setting the polarization to 2.

S8. [c′t]
0
1
→ []

1
1
ct.

Object ct is sent out to the environment, representing the length of the longest
common subsequence.

The system described above solves the longest common subsequence problem.
The length of this subsequence is sent out, stored in one object, while all longest
subsequences (there may be a large number of them) are represented in the
elementary membranes with polarization 1.

342

It is worth noticing that, similarly to the approach used in [6], the construc-
tion is made in such a way that all input data for the quantum sub-system is
produced simultaneously and all qubits are initialized, so the construction does
not require a trigger to synchronize the input; we have included it in rule I2 just
to comply with the presented model.

3.3 Quantum Calculation

The quantum calculation needed to unveil if one string is a subsequence of
other(s) is thoroughly described in [3]. The algorithm is a modification of well-
known Grover search algorithm. It uses the techniques originally introduced
by Grover: a query operator that marks the state encoding the element being
searched by changing its phase, followed by an amplitude amplification of the
marked state. The state can be detected with non negligible probability by iter-
ating this process several times. We do not focus on details in this paper.

4 Conclusion

This work continues the presentation of hybrid computational model that com-
bines in the framework of membrane computation elements of others (for today,
only quantum) approaches. In current research, the detailing of P system frame-
work construction and functionality is provided, and interaction of membrane
and quantum levels are described.

To obtain true hybrid computation the proposed hybrid model has to pro-
vide mutual accepting of input/output by computation models of different nature
and even different (macro/micro) levels. We presented, in the current paper, the
communication scheme in detail. The technique includes both P system and
quantum tools. P system formalism as the framework of hybrid model provides
converting multisets to quantum registers contents and back procedure. Quan-
tum computation ends with measurement, which prepare the registers content
for uploading back in P system.

Since the main reason of proposing of hybrid computational model was prac-
tical needs of several domains delivering hard tasks, we develop our model inter-
dependently with its application to solution of selected set of such type problems.
One of them was used as illustrative example in this work.

Basing on implemented solutions of several problems, we extract the common
feature that makes hybrid computation possible. Solving tasks of this type mostly
supposes generating of candidates lists that then will be used for comparison to
pattern applying Grover search in the quantum device. In our further research,
we plan to generalize these steps of solution both for P system and quantum
devices.

The distribution of work between levels of hybrid system depends on the
problem to be solved and may vary. In this paper we mostly use membrane
replication to overpass the problem complexity while in [6] the power of quantum
formalism was exploited. It would be interesting to combine both sources of

343

computational power to aim, for example, the Σp
2 computational complexity

class.

References

1. A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov, L. Malahov: An Approach
to Implementation of Hybrid Computational Paradigm. The Third Conference of
Mathematical Society of the Republic of Moldova, IMCS-50, 2014, accepted.

2. A. Leporati: P Systems with a Quantum-like Behavior: Background, Definition, and
Computational Power. In: Lecture Notes in Computer Science 4860, 2007, 32–53.

3. P. Mateus, Y. Omar: Quantum Pattern Matching, arXiv:quant-ph/0508237v1
4. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
5. Yu. Rogozhin, A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov, L. Malahov:

Hybrid (Membrane-Quantum) Model of High Performance Computations in Solving
Problems of Computer Algebra Domain, in preparation.

6. Yu. Rogozhin, A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov, L. Malahov:
Solving Problems in Various Domains by Hybrid Models of High Performance Com-
putations. Computer Science Journal of Moldova 22, 1(64), 2014, 3–20.

7. C.P. Williams: Explorations in Quantum Computing. Springer, 2008.

344

Expressing Workflow and Workflow Enactment
using P Systems

Rohit Verma, Tanveer Ahmed, and Abhishek Srivastava

Department of Computer Science and Engineering
Indian Institute of Technology Indore, India

Email: {phd12110101, phd12120101, asrivastava}@iiti.ac.in

Abstract. Workflow can be viewed as an abstract term for purpose-
ful collection of smaller subprocesses (work-items) for solving a bigger
scientific or business problem. The recent advances in technology has
enabled a decentralized and elastic execution of these work-items on dis-
tributed computing devices. We investigate elastic, decentralize, parallel
and distributed methods of workflow enactment. We present a novel for-
mal notation of the modern workflows. The main result of this research
is a generic notation of workflows and their enactment, utilizing for-
mal definitions of P systems. This research shows how complex modern
workflows can be represented by using simpler membrane structures and
evolution rules.

Keywords: Membrane computing; P systems; Workflow; Elastic computing

1 Introduction

Today various businesses and communities have designed several products and
services that can be used together in collaboration to achieve some common task.
Workflow technology makes collaboration of these distributed services flexible
and efficient [8]. Service-oriented computing paradigm has made these loosely
coupled, distributed, decentralized services to work in parallel. The multitude of
these services by various business and scientific community has lead to the new
concept of Elastic Computing in services and workflow execution. Further, the
autonomy of these services have enabled decentralized realization of workflow,
thus removing several bottlenecks such as scalability, reliability and fault toler-
ance (involved due to single point of failure of centralized execution management
of the workflow).

Workflow is an abstract term used to describe the tasks or steps required to
execute in the move to achieve a common goal. The execution of these tasks or
steps (also known as work-items) are distributed and decentralized in nature,
thus involves flow of information among various executional resources offered by
organizations or people. While in execution, the computing resource requirement
by the workflows might change due to unplanned requests, user interventions,
change in execution environments. That requires a flexible and elastic resource

345

provisioning. Recent advancements in the technology [5, 9] has enabled elastic
computing resource provisioning in workflows.

Inspired by this, we take a closer look at the decentralized and elastic business
or scientific workflows. We regard this workflow as the synchronous collection
of independent work-items collaborating to achieve a common goal. These indi-
vidual work-items are the part of the business or scientific processes which are
automated by the autonomous services provided by them. In elastic enactment
of workflows, extra computing resources can be provisioned or deprovisioned as
per the need and makes the execution resources elastic at run time. In a decen-
tralized environment, each service executing a work-item is autonomous and is
responsible for this elastic provisioning. We are using membrane systems (also
known as P systems) [11] [12] to provide a formal notation of such workflows
and their enactment. P system is the best suitable approach for providing formal
notation for the enactment of these decentralized, distributed, autonomous and
parallel workflows. Membrane system is a new class of distributed and parallel
computing devices, inspired from the cell-structures introduced by Păun (2000).
To the best of our knowledge, we are first to explore the possibilities of workflow
enactment using membrane systems.

Instead of solving some particular problem, we propose a generic membrane
system based framework for modeling and providing formal notation for the
entire workflow execution, with special focus on the autonomous and elastic
provisioning of computing resources. We propose to use Membrane Computing
for providing a formal notation and generic framework for decentralized and
elastic workflow enactment. Membrane computing paradigm is based on P Sys-
tem or Membrane systems and is motivated by the way nature computes at the
cellular level. The fundamental features that are used in computing model are:
Membrane structure, Evolutionary Rules and Objects. The workflow is repre-
sented as a main membrane which is a finite cell-structure consisting of other
cell membranes (work-items), also called the skin. Membranes are the regions
representing the process-steps or work-items. These membranes determine the
regions where the evolutionary rules can be placed. These evolutionary rules are
unique to each membrane (work-item) and are the set of functionalities which
a work-item would perform in the move to execute the workflow. Any workflow
execution would start from an initial configuration and would be executed suc-
cessfully when no further rules can be applied. The term P system, membrane
system and membrane computing will be used interchangeably in this paper.

The main contributions of this paper are: (1) A novel formal notation for
decentralized and distributed workflow enactment, with autonomous and elastic
provisioning of computing resources. (2) A generic notation for various workflows
ranging from business workflows (control oriented), scientific workflows (resource
intensive) to mobile workflows.

The rest of this paper is organised as follows. In Section 2 we recalls the defi-
nition of membrane computing and formal P system notation, together with our
proposed formal workflow definition. In Section 3 membrane oriented workflow
definition is discussed. Furthermore, we discussed about the formal notation of

346

workflow from membrane perspective, solution of workflow pattern by P systems
and novel features of proposed P system. In Section 4, we presented related work
in the field of workflow. Finally, conclusion and future scope of the research is
discussed in Section 5

2 Background

2.1 Membrane Computing Paradigm

Membrane computing paradigm is a new class of distributed and parallel com-
puting devices introduced by Gheorghe Păun (2000) [11] [12]. Membrane com-
puting is based on the membrane systems (or P systems) and is motivated by the
way nature computes at the cellular level. P systems have been evolved inspired
by the fact that biological membranes have strong relevance to the computing
devices.

Fig. 1. Membrane Structure

A membrane structure is graphically represented by a Venn diagram as shown
in Figure 1 [12], where a membrane may contain other membranes. The mem-
brane structure is a hierarchical arrangement of membranes that are embedded
in the skin membrane separating the inner membranes from external environ-
ment. Elementary Membranes are the membranes that do not have any other
membrane inside. The membranes and the regions delimited by them are labeled
with positive integers to address them distinctly. Furthermore, each region con-
tains a multi-set of objects and a set of evolution rules.

Formal Definition of P system: A membrane structure (as shown in Fig-
ure 1) can be represented by a string of matching parenthesis as in:

[1[2]2[3]3[4[5]5[6]6]4]1

347

Definition 1: The formal basic (there are multiple definitions) definition of
Membrane system (Π) according to Gheorghe Păun [11], is as follows:

Π = (O, T,C, µ, w1, w2....wm, R1, R2....Rm, i0)

where:

i) O is the set of all objects.
ii) T is the output alphabet and T ⊆ O.

iii) C is set of catalysts and C ∩ T = ∅.
iv) µ is the membrane structure consisting of m membranes.
v) w1, w2....wm are the multisets of objects over O with the regions 1,2,....m

of µ.
vi) R1, R2....Rm are the evolutionary rules over O for each of the m membranes.
vii) i0, m ∈ i0 represent the label of the output region.

Membrane Operations:
Before proceeding any further, we must outline the specialized operations [2]

of the membrane computing paradigm. These operations are mandatory in the
move to enact the workflow. Few of these operations are:

Fig. 2. Special Membrane Operations

Dissolution: Membrane dissolution operation indicates the realization of an ac-
tivity by a membrane. The rule is depicted in (i) part of Figure 2. This is exem-
plified in evolution rule (1). In contrast to the dissolution rule, a creation rule
signals the creation of a new membrane, that is depicted in (2).

[1[S1
a]S1

]1 → [1b]1δ (1)

[1b]1 → [1[S1
a]S1

]1 (2)

348

Division and Merge: The division rule of P systems, is also applied towards work-
flow enactment. This rule is particularly useful in cases where elastic execution
of a ‘process-step’ takes precedence. This rule depicts the forking of a membrane
(work-item) into multiple membranes (work-items) carrying the same dataset
and evolution rules (as of parent membrane). Part (ii) of the Figure 2 and the
rule (3) states the division of membrane and reverse of division operation states
the merging of two membrane.

[1[S1a]S1]1 → [1[S2b]S2 [S3c]S3]1 (3)

Endocytosis: Endocytosis is a concept that is important to dynamically update
the execution order of a workflow. The operation is shown in the Figure 2. This
operation is depicted via the evolution rule (4):

[1[S1a]S1 [S2]S2]1 → [1[S2 [S1b]S1]S2]1 (4)

2.2 Workflow Definition

Workflow is the computerised facilitation or automation of a business process,
in whole or part [7]. Workflow is often associated with business processes of an
organization. However, workflow is also useful in other fields such as scientific
computations. In scientific workflows, various computational tasks are processed
in a specific order to solve a scientific problem. To proceed with the workflow
execution, there are several constructs available in literature. In broad sense,
workflow specification may have different perspectives [13]:

– Control flow perspective describes the flow of execution order among different
tasks and work-items of a workflow. The control flow can be specified follow-
ing certain basic patterns, such as: Sequence, Parallel Split, Synchronization
(AND-join), Exclusive Choice (Decision), Merge.

– Data flow perspective deals with the flow of processing data needed to execute
a workflow. This may include a business document or an object supplied to
the workflow, local variables generated at the time of execution of individual
work-items.

– Resource flow perspective provides the necessary infrastructure requirements
needed for an efficient workflow execution. The requirement may range from
human provided services to machine based physical resources.

Furthermore these workflow specifications can be sub-categorized into: Ab-
stract Workflow and Concrete Workflow [3]. An abstract workflow specifies the
solution of the problem along with the input data, but without containing any
means for actual execution. In contrast, a concrete workflow specify the mapping
between physical resources, responsible for executing (such as services provided
by machines or human) the abstract work-items.

Definition 2: The workflow can be formally specified as:

W = (F,D, T,R)

349

where:

i) F is the set of functions or work-items in the workflow.
ii) D is the working dataset, where data di,j is intermediate input for fj pro-

duced by fi, where di,j ∈ D and fi, fj ∈ F .
iii) T is the set of transformation rules depicting data and control flow depen-

dencies.
iv) R is the set of physical resources required to realize work-items F .

A workflow W is represented as the set of work-items f1, f2, f3, ...fk ∈ F
having working dataset di,j where i, j ≤ k. When fi does not have a predecessor,
it is called as the initiating work-item finit and when fi does not have any
successor, it is called a terminating work-item fterm. dinit,i is initial data set
given as input for starting the workflow and dj,term is the output produced as the
result of the workflow enactment. d(1,2,3,...k−1),k shows merging of various data
input at fk. In a special case, di,j | j = 0, intermediate result is not consumed by
any other work-item f ∈ F . ti,j ∈ T is the transformation rule applied in order
to progress the execution from fi to fj . r(l,m,n) ∈ R is the resource executing fl
work-item with n instances of the resource with id m. In next section, we discuss
about the membrane oriented workflow definition and enactment.

3 Membrane Oriented Workflow Definition

The advancements in the field of distributed computing (such as cloud com-
puting, peer-to-peer computing, mobile computing etc.) have enabled several
providers to offer services for the realization of workflow in distributed, decen-
tralized and automated manner. These providers are also equipped with the
technologies to provide the services elastically. The term “elastic” here stands
for the dynamic provisioning of computing resources for the services. Today tech-
nology has enabled the workflow executor to specify the computational resource
requirements along with the workflow. However formal notation of the same are
lagging. Our aim in this paper is to propose a generic framework along with the
formal notation using P systems for depicting the decentralized, autonomous
and elastic enactment of the workflows. We focus on defining and executing the
workflows using P systems. Our definition and execution relies on the membrane
vision of every “work-item” or “process step” involved in a workflow. In our ap-
proach, the membrane represents the service executing a work-item along with
the data they process and possess, control-flow information, resource allotment
information in form of evolution rules of membranes. In proposed work, the
following types of evolution rules are considered:

i) Data-flow rules: Rules describing the flow of data for executing the workflow.
ii) Control-flow rules: Rules describing the flow of execution control for coordi-

nation among the various services executing the work-items of the workflow.
iii) Resource-provision rules: Rules describing the computing resource allotment

during the execution of a workflow.

350

Proposed P system is able to depict the “elasticity”, “parallelism” and “de-
centralization” in the workflow enactment :

– “Elasticity” of the computing resources is achieved using evolution rules
membrane division and membrane merging. The new membrane ‘forked’ due
to membrane division will inherit the dataset and evolution rules of its par-
ent. While the membrane merging will take place only for the membranes
depicting the same behavior in terms of dataset and evolution rules. (Dis-
cussed in detail in section 3.4)

– “Parallelism” of various work-items can be easily depicted by any of the
P system. As membranes in the P system are autonomous and executes in
parallel. Hence, P systems are best suitable for formalizing workflow and
their execution.

– “Decentralization” in the workflow enactment is achieved by using object.
We use objects in proposed P system for the communication. These com-
munication carry intermediate data and global data needed for executing a
work-item. We assume that there are multiple copies of objects available to
the membranes.

3.1 Workflow Definition from Membrane Perspective

Membranes has inspired us to solve the problem of distributed, decentralized
and elastic workflow enactment using P system. The membranes are the na-
ture’s way of executing a workflow at cellular level. This has motivated us to
envision real world workflow enactment from membrane’s perspective. As the
membrane in the cellular bodies functions autonomously, reproduces itself with-
out any central control, similarly a workflow should be realized in decentralized
and elastic manner. P system has provided mathematical base for the realization
of this vision. From membrane computing’s perspective, we propose a novel and
generic definition for the workflow:

Definition 3: A workflow with n work-items is a construct Π:

Π = (V,C, µ, (w1, R1, R
′
1, t1)...(wi, Ri, R

′
i, ti), i0)

where:

- V is multiset of all objects.

- C is the set of catalyst and catalyst do not occur in ti.

- µ is the membrane structure consisting of i membranes: [n[n−1...]n−1]n.

- wi ∈ V is the multiset of initial contents of region i of µ.

- Ri is the set of data-flow rules.

- R′i is the set of resource provision and and control-flow.

- ti is the multiset of final contents of region i of µ.

- i0 is the label of regions.

351

In the above definition, we have introduced the notation of a specialized

operator, the dependency operator, denoted as
(Details)−−−−−−−−→

Dependency
. This operator gives

a sense of determinism in the P system. It is utilized while provisioning resources
or resolving control dependencies.

With regard to control flow, the operator specifies the dependency among

membranes. This control dependency is shown as
<MembraneList>−−−−−−−−−−−−→

Control
, where <

MembraneList > are the list of membranes that must be executed (or dissolved)
first for the execution of the present evolution rule. Proposed dependency oper-
ator separate the control rules from the rest of the evolution rules and provides
synchronization in workflow execution. For example:

[1[S1a]S1 [S2b]S2 [S3c]S3]1
S2,S3−−−−−→

Control
[1[S1a]S1 e f]1δ (5)

The above rule states that S2, S3 should be executed prior to the S1, though
all the three membranes S1, S2, S3 are same level. It is a known fact that all the
membranes at same level (part of the same parent membrane 1) get executed
in parallel and in a non-deterministic manner. However, while accomplishing a
workflow few membranes are required to be restricted from execution (in case
of synchronization). In such scenarios, the proposed symbol gives a certain level
of determinism and restricts few of the membranes from execution.

In case of resource provision rules, dependency operator states the depen-
dency of resources for enacting a work-item. Resource dependency is of the form
<Dependencyparameter>−−−−−−−−−−−−−−−−−→

Resource
. Proposed operator enables the specification of the re-

sources requirements for a work-item, along with the workflow definition. Depen-
dency operator enables the elastic workflow execution under predefined resource
requirements (as in the case of most of the modern pay-as-you-go technologies
e.g. cloud computing) (Resource dependency is discussed in detail in Section 3.3).
To the best of our knowledge, we are the first to classify the data flow, control
flow and resource flow perspectives in a low level formal workflow definition.

Few of the features (of the proposed formal notation) apart from the discussed
elasticity, parallelism and decentralization are:

– Reliable Data Exchange: This is usually achieved by stable communica-
tion. In proposed definition, this stable communication and data exchange
is shown by inter-membrane communication via object passing.

– Heterogeneous Environment: Our approach of workflow states the workflow
definition and workflow enactment at the abstract layer. The execution level
details for the enactment, such as executing resources are open ended. These
execution resources could be web services, computing devices, mobile devices
or human.

– Fault Tolerance: Our approach is fault tolerant for workflow enactment. A
failed membrane may produce erroneous result that could be rejected by the
next membrane in workflow. Hence, resulting in the redundant execution of
the membrane. However, a more sophisticated function can be introduced

352

Rollback(Π,Cv). Rollback function is able to trace back to last valid config-
uration Cv of the P system Π.

Before proceeding any further, first we must justify the proposed definition for
a workflow. In proposed definition, V is the multiset of all the objects including
initial input to the workflow, intermediate processing dataset etc. C also termed
as the catalyst is the set of all the dataset and conditions that remain in the
membrane after the execution. The catalyst does not add to the final contents
or result, they help in faster execution of the work-item. µ is the set of all the
membranes or work-items with the resources in the workflow. wn is the initial
state of the membranes with which they start executing. tn is the final content of
the membrane once its execution is completed. Hence, for defining the workflow
enactment in terms of P system, these are the minimal required elements. In
the move to execute membranes or work-items on the resources, evolution rules
are required. The definition shows two types of evolution rules: Rn - Data Rules
and R′n - Resource Provision and control flow Rules. Expressive power of P
systems enables them to specify both data-flow and control-flow rules in a single
evolution rule.

Fig. 3. A Simple Workflow and its Membrane Representation

Figure 3 represents a simple workflow and its corresponding membrane rep-
resentation in a graphical manner. The same workflow can also be represented
as:

[1[S5 [S4 [S3]S3 [S2]S2 [S1 [0]0]S1]S4]S5]1 (6)

353

3.2 Solving Workflow Pattern using Membrane Computing

There are various workflow patterns [4] which we have solved using the P sys-
tems, mainly utilizing membrane evolution rules. Few of the basic patterns are:

Sequence: Any work-item in the workflow is executed only after the completion of
its predecessor work-item. Evolution rules depicting the sequence pattern involve
dissolution operation after each successful enactment of a work-item/membrane
(as shown in rule (7), (8), (9)).

[1[S3
[S2

[S1
a]S1

]S2
]S3

]1 → [1[S3
[S2
b]S2

]S3
]1δ (7)

[1[S3
[S2
b]S2

]S3
]1 → [1[S3

c]S3
]1δ (8)

[1[S3c]S3]1 → [1d]1δ (9)

Fig. 4. Sequential Execution of Work-items

Parallel Split: A parallel split is the point in a workflow where, a single work-item
feeds the data/control flow to multiple work-items. These multiple work-items
execute in parallel. Rule (10), (11) shows the parallel split:

[1[S1a]S1 [S2]S2 [S3]S3]1 → [1[S2b]S2 [S3b]S3]1δ (10)

[1[S2b]S2 [S3b]S3]1 → [1 c d]1 (11)

Fig. 5. Parallel Split of Work-items

Synchronization: Synchronization in the workflow is the point when multiple
parallel work-items converge onto a single work-item. A condition involved here
is that all the parallel multiple work-items (that are converging) should have
been executed only once by following a certain order. Rules (12), (13), (14), (15)
shows the synchronization pattern:

[1[S1
a]S1

[S2
b]S2

[S3
c]S3

[S4
]S4

]1
S1−−−−−→

Control
[1[S2

b]S2
[S3
c]S3

[S4
d]S4

]1δ (12)

354

[1[S2b]S2 [S3c]S3 [S4 d]S4]1
S2−−−−−→

Control
[1[S3c]S3 [S4 d e]S4]1δ (13)

[1[S3c]S3 [S4 d e]S4]1 → [1[S4 d e f]S4]1δ (14)

[1[S4 d e f]S4]1 → [1 g]1δ (15)

Fig. 6. Synchronization of Work-items

Exclusive Choice: This workflow pattern is to specify the decision condition,
where one of the several incoming work-items is chosen based on some condition.
Rule (16) states that service S4 accepts d from the predecessor services S1, S2,
S3, where d is satisfying certain condition, which is not satisfied by e and f .
Here k1 ≥ d ≥ k2 where k1 and k2 are integers.

[1[S1
a]S1

[S2
b]S2

[S3
c]S3

[S4
]S4

]1 → [1[S4
d]S4

e f]1δ∣∣∣∣ d := {k1 ≥ x ≥ k2 | x ∈ {a, b, c}} and e 6= d and f 6= d
(16)

Fig. 7. Exclusive Choice from Work-items

Simple Merge: Merge pattern specifies that two or more work-items are converg-
ing onto a single work-item without any synchronization.

[1[S1
a]S1

[S2
b]S2

[S3
]S3

]1 → [1[S2
b]S2

[S3
d]S3

]1δ (17)

[1[S2
b]S2

[S3
d]S3

]1 → [1[S3?
f]S3?

e]1δ (18)

[1[S3?
f]S3?

e]1 → [1 g e]1δ (19)

355

Rules (17), (18) and (19) shows the merging of work-items S1 and S2 in work-
item S3. Rule (18) has the dissolution and division of S3, this states the non-
parallel execution of work-items S2 and S1. (Symbol ? is used to show the mem-
brane left after division and dissolution).

3.3 Resource-Oriented Workflow Enactment

The present technology has enabled a client to specify the process steps as well
as resource dependencies at the same time. As pay-as-you-go models, such as
cloud computing, are becoming more popular, the client has the ability to spec-
ify the type of resources, the exact specifications, the requirement and several
others needed to successfully execute a workflow. These resource requirements
are depicted by resource provision rules Ri, (as shown in the definition 3). We

propose to use the symbol
(S,r,o)−−−−−−→

Resource
for specifying need of the requester:

Resource Dependency: Any work-item requires a physical resource such as ser-
vice, physical devices etc. for execution. In our case, a membrane may depend
on other membranes for the execution. For example, requester might need to
execute the work-item on a specific membrane/resource. The symbol S shows
the dependency on S for executing an evolution rule.

Resources Requirement: The symbol r states two types of requirements: Qualita-
tive and Quantitative. Qualitative requirements are the non-functional require-
ments for the resource S, such as reliability requirement and other QoS (Quality
of Service) parameters. While the quantitative requirements are the functional
requirements (r) such as memory requirements, processor requirement, number
of parallel threads of execution.

Resource Ownership: The symbol o shows the ownership requirement of the re-
source. In case of shared resources, the requirement depicts the dedicated need
for a resource. This specifies the requirement for the ownership change of the
shared resource.

Suppose a sequential workflow comprises of three work-items S1, S2, S3. Work-
flow will only be realized when the second work-item S2 satisfy additional qual-
itative requirements (x1, x2, x3) (e.g. x1 = OS: Linux, x2 = RAM: 2GB, x3 =
MEM: 50GB). Moreover, for the execution purpose ownership of the resource
should be given to first work-item S1. This can be shown in rule (20):

[1[S3 [S2 [S1a]S1]S2]S3]1
(S,r,o)−−−−−−→

Resource
[1[S3 [S2 b]S2]S3]1δ

∣∣∣∣ S ∈ {S2}, r ∈ {x1, x2, x3}, o ∈ {S1}
(20)

356

3.4 Elastic Workflow Enactment

Elastic workflow enactment is the unique feature of our model. There has been
several work on workflow execution in the literature, however, to the best of
our knowledge we are the first to investigate this through membrane comput-
ing paradigm. Elastic execution enables the workflow for dynamic procurement
of computing resources. This enables the pay-as-you-go models of current tech-
nologies on the workflow enactment as well as the load balancing by dynamic
provisioning of computing resources. We propose to use membrane division rule
for depicting elasticity in the formal notation of workflow.

Consider a membrane is executing a resource intensive task. In the middle of
the execution, the load-indicator sensed that new computing resource must be
provisioned in order to balance the load. Such a scenario can be shown by evo-
lution rule comprising of membrane devision. Furthermore, the advancements
in technology has enabled these computing resources to procure extra resources
as per requirement. In the proposed work, the membrane is divided into mul-
tiple membrane depicting the behavior of dynamic provisioning of computing
resource. All the child membranes, resulting from membrane division, have the
same set of objects and evolution rules. Hence, children membrane mimics the
behavior of the parent membrane.

Suppose a workflow comprises of three work-items S1, S2, S3. Work-item S2

is resource intensive and require two extra replica of it. This can be shown using
the resource dependency operator with quantitative resource requirements.

[1[S3
[S2

[S1
a]S1

]S2
]S3

]1
(S,r,o)−−−−−−→

Resource
[1[S3

[S2
b]S2

[S′
2
b]S′

2
[S′′

2
b]S′′

2
]S3

]1δ
∣∣∣∣ S ∈ {S2}, r ∈ {3}, o ∈ {S1}

(21)

4 Related Work

There are numerous techniques available in the literature on workflow manage-
ment and enactment. However, decentralized workflow enactment and dynamic
resource provisioning in workflow is rarely targeted. In related work section, we
present a brief discussion on these techniques and models.

Fernandez et al [6] propose executing a workflow using the chemical paradigm.
Similar to our work, the authors used a decentralized environment, however,
they used a centralized shared memory (hence, the authors suffered from scala-
bility issues). Moreover, they kept the services fixed to execute the work-items,
with no provision of dynamic adaptations. Further, the issues of elasticity is not
addressed in this work. Another work by Caeiro et al [1] discuss about the dy-
namic workflow enactment using chemical analogy. The authors presents a gen-
eralized notion of workflow representation using HOCL (Higher Order Chem-
ical Language). Another work by Németh et al [10] present modern workflow
execution on large scale computing devices and propose an enactment model

357

using gamma calculus. In [14] Weske discuss about the different aspects of flex-
ible workflow management and presents workflow schema using object-oriented
approach. There are several literature available on workflow specifications by
Leymann et. al. [8], Hollingsworth [7], Aalst et.al. [13], Weske [14].

However, discussed work lacks an important feature of today’s modern work-
flow, that is elasticity. Elastic execution of the workflow and its formal notation
is not yet discussed and investigated. To the best of our knowledge we are the
first to look into elastic execution of the workflow from membrane computing
paradigm perspective.

5 Conclusion and Future Work

In this paper, we introduced the membrane computing paradigm for workflow
enactment. We presented a generic workflow model for various types of work-
flows ranging from business, scientific, mobile, cloud etc. The proposed model is
specially designed for distributed, decentralized and elastic execution of work-
flow. Our model is closely related to the actual realization of workflow on the
real computing resources. Furthermore, we proposed dependency specific oper-
ators for the workflow enactment notation: Resource Dependency Operator and
Control Dependency Operator. Moreover, we discussed these operators in detail.
Along with this, we discussed a prospective fault tolerant function “Rollback”.

The future work include extension of the proposed model for case specific
scenario such as volatile mobile environment. Also, to study the behavior of
dynamic and faulty resources on the workflow. Finally, include various real world
faults and errors in the move to make the notation fault tolerant and robust.

Acknowledgment

The authors would like to thank fellow colleagues, to help with the technical
issues and fruitful discussion on the various aspects of Membrane Computing.
We would also like to thank G. Păun and all the people in research community
for sharing their research works.

References

1. Caeiro, M., Németh, Z., Priol, T.: A chemical model for dynamic workflow coordi-
nation. In: Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on. pp. 215–222. IEEE (2011)

2. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of membrane computing,
vol. 17. Springer (2006)

3. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn,
K., Lazzarini, A., Arbree, A., Cavanaugh, R., et al.: Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing 1(1), 25–39 (2003)

4. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1), 5–51 (2003)

358

5. Dornemann, T., Juhnke, E., Freisleben, B.: On-demand resource provisioning for
BPEL workflows using amazon’s elastic compute cloud. In: Cluster Computing
and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Symposium on.
pp. 140–147. IEEE (2009)

6. Fernandez, H., Tedeschi, C., Priol, T.: A chemistry-inspired workflow management
system for a decentralized workflow execution. In: IEEE Transactions on Services
Computing. vol. PP, pp. 1–1 (2013)

7. Hollingsworth, D.: The workflow reference model. Workflow Management Coalition
Document Number TC00-1003 (1995)

8. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall (2000)

9. Lin, C., Lu, S.: SCPOR: An elastic workflow scheduling algorithm for services
computing. In: Service-Oriented Computing and Applications (SOCA), 2011 IEEE
International Conference on. pp. 1–8. IEEE (2011)

10. Németh, Z., Pérez, C., Priol, T.: Distributed workflow coordination: molecules and
reactions. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International. pp. 8. IEEE (2006)

11. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

12. Păun, G., Pérez-Jiménez, M.J.: Membrane computing: Brief introduction, recent
results and applications. BioSystems 85(1), 11–22 (2006)

13. Van Der Aalst, W.M., Ter Hofstede, A.H.: Yawl: yet another workflow language.
Information systems 30(4), 245–275 (2005)

14. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: System Sciences, 2001. Proceedings of the 34th
Annual Hawaii International Conference on. pp. 10. IEEE (2001)

359

360

Fault Diagnosis Models for Electric Locomotive
Systems Based on Fuzzy Reasoning Spiking

Neural P Systems

Tao Wang1, Gexiang Zhang1 and Mario J. Pérez-Jiménez2 ?

1School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 610031, P.R. China

email: wangtaocdu@gmail.com, zhgxdylan@126.com
2Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla, Sevilla, 41012, Spain

email: marper@us.es

Abstract. This paper discusses the application of fuzzy reasoning spik-
ing neural P systems with real numbers (rFRSN P systems) to fault di-
agnosis of electric locomotive systems. Relationships among breakdown
signals and faulty sections in subsystems of electric locomotive systems
are described in the form of fuzzy production rules firstly and then fault
diagnosis models based on rFRSN P systems for these subsystems are
built according to these rules. Fuzzy production rules for diagnosing elec-
tric locomotive systems are abstracted via the analysis of fault diagnosis
models for subsystems and the causality among faulty sections, faulty
subsystems and electric locomotive systems. Finally, a diagnosis model
based on rFRSN P systems for electric locomotive systems is proposed.

Keywords: fuzzy reasoning spiking neural P system, fault diagnosis,
electric locomotive system, real number, SS4 electric locomotive systems

1 Introduction

Membrane computing, introduced by Gh. Păun in [1], is a class of distributed
parallel computing models inspired by the structure and functioning of living
cells, as well as from the way the cells are organized in tissues or higher order
structures. Spiking neural P systems (SN P systems), introduced in [2] in the
framework of membrane computing, is a new class of computing devices which
are inspired by the neurophysiological behavior of neurons sending electrical
impulses (spikes) along axons to other neurons. Since then, SN P systems have
become a hot topic in membrane computing [3]-[21], among which there are
several investigations focus on the use of SN P systems and their variants to
solve engineering problems in power systems [18]-[21].

? Corresponding author.

361

In [18], fuzzy reasoning spiking neural P systems with real numbers (rFRSN P
systems) were presented to fulfill diagnosis knowledge representation and reason-
ing. The merits of rFRSN P systems lie in visually describing fuzzy production
rules in a fuzzy diagnosis knowledge base and effectively modeling the relation-
ships among breakdown signals and faulty sections as well as representing and
handling fuzzy knowledge/information. To extend application areas of SN P sys-
tems and rFRSN P systems, this paper discusses the application of rFRSN P
systems to fault diagnosis of Shaoshan4 (SS4) electric locomotive systems. In
this paper, electric locomotive systems always indicate SS4 electric locomotive
systems.

Electric locomotive systems are composed of several subsystems with differ-
ent functions; meanwhile, these subsystems consist of lots of sections. Thus, a
locomotive system can be viewed as a hierarchical tree structure of sections and
subsystems [22,23]. To build fault diagnosis models based on rFRSN P systems
for different subsystems, relationships among breakdown signals and faulty sec-
tions in subsystems are abstracted and described in the form of fuzzy production
rules firstly. Then, fault diagnosis models for these subsystems are built accord-
ing to these rules. According to analyzing the causality among faulty sections,
faulty subsystems and SS4 electric locomotive systems, fuzzy production rules
for diagnosing electric locomotive systems are abstracted and then a diagnosis
model based on rFRSN P systems for SS4 electric locomotive systems is pro-
posed. Moreover, it is worth pointing out that rule neurons in rFRSN P systems
used in this paper are extended according to the problem to be solved. In other
words, rFRSN P systems used in this paper contained three types of rule neu-
rons, i.e., GENERAL, AND and OR, while the ones in [18] only contain two
types: AND and OR.

The remainder of this paper is organized as follows. Section 2 gives prelimi-
naries of this work. The fault diagnosis models for key subsystems and electric
locomotive systems are presented in Section 3. Conclusions are finally drawn in
Section 4.

2 Preliminaries

In this section, we briefly review the basic concepts of fuzzy reasoning spiking
neural P systems with real numbers (rFRSN P systems) [18]. Here, only the
necessary prerequisites are introduced.

Definition 1 : An rFRSN P system of degree m ≥ 1 is a construct Π =
(O, σ1, . . . , σm, syn, in, out), where:

(1) O = {a} is a singleton alphabet (a is called spike);
(2) σ1, . . . , σm are neurons, of the form σi = (θi, ci, ri), 1 ≤ i ≤ m, where:

(a) θi is a real number in [0, 1] representing the potential value of spikes
(i.e. value of electrical impulses) contained in neuron σi;

(b) ci is a real number in [0, 1] representing the fuzzy truth value corre-
sponding to neuron σi;

362

(c) ri represents a firing (spiking) rule contained in neuron σi with the form
E/aθ → aβ , where E is the firing condition and its form will be specified
below, θ and β are real numbers in [0, 1];

(3) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤
m, is a directed graph of synapses between the linked neurons;

(4) in, out ⊆ {1, 2, . . . ,m} indicate the input neuron set and the output neuron
set of Π, respectively.

In rFRSN P systems, each neuron associates with either a fuzzy proposition
or a fuzzy production rule, and ci ∈ [0, 1] is used to express truth value of this
fuzzy proposition or confidence factor (CF) of this fuzzy production rule. Each
neuron contains only one firing (spiking) rule, of the form E/aθ → aβ , where
E = an is called the firing condition and n is the number of input synapses from
other neurons to the neuron. The firing condition E = an means that the spiking
rule, E/aθ → aβ , contained in neuron σi, can be applied if and only if neuron σi
contains at least n spikes, otherwise, the rule cannot be enabled until n spikes
are received. For neuron σi, if its firing rule is applied, then its pulse value θi is
consumed (removed) and a new spike with value β is produced in σi. Once the
spike with value β is emitted from neuron σi, each neuron σj with (i, j) ∈ syn
immediately receives this spike.

Moreover, the definitions of neurons and pulse values are extended. Specifi-
cally, in rFRSN P systems, the neurons are extended to four types, i.e., propo-
sition neurons and three kinds of rule neurons: GENERAL, AND and OR,
and the pulse value contained in each neuron is no longer the number of spikes
represented by a real value, but a real number in [0, 1] representing the potential
value of spikes contained in neuron σi. For neuron σi, if θi > 0, then the neuron
contains a spike with pulse value θi; otherwise, their neuron contains no spike
and its pulse is 0. For different types of neurons, their definitions and the op-
erations for pulse values are different. Since GENERAL rule neurons is a new
type in this paper, we described its definition as follows and more details about
other three types of neurons can be found in the work [18].

Definition 2 : A GENERAL rule neuron is associated with a fuzzy production
rule which has only one proposition in the antecedent part of the rule. Such a
neuron is represented by a rectangle, as shown is Fig. 1.

A GENERAL rule neuron has only one presynaptic proposition neuron and
one or more postsynaptic proposition neurons. If a GENERAL rule neuron re-
ceives a spike from its presynaptic proposition neuron and its firing condition
is satisfied, then the neuron fires and produces a new spike with the potential
value β = θ ∗ c, where β, θ and c are real numbers in [0, 1].

3 Fault Diagnosis Models for Electric Locomotive
Systems Based on rFRSN P Systems

In this section, fault diagnosis models based on rFRSN P systems for SS4 elec-
tric locomotive systems and their main subsystems, i.e., main circuit systems,

363

 !cR

 !
aa

!
a

c !" #

 !"

a

 !"

!
!

!

!
!

!

GENERAL
 !cR

GENERAL

Fig. 1. A GENERAL rule neuron (a) and its simplified form (b).

 !"#$%&#'!(#()($&*"'

+,+$")+'-.+'/.0!$+

1.&2'#&%#0&$'+,+$")'

-.+'/.0!$+

3(4"%'+055!,'+,+$")'

-.+'/.0!$+

6%.#$&(2'.27'8%.9&2:'

+,+$")'-.+'/.0!$+

;('#0%%"2$'&2'

5.2$(:%.5-

<(2$.#$(%'

8%".97(42'

=<>?@A'&250$'

8%".97(42'

=<BB@A'

8%".97(42

1.&2'$%.#$&(2'

&2*"%$(%'8%".97(42'

3-.+"'#0%%"2$'

+"2+(%'&2(5"%.$&(2

Fig. 2. A hierarchial tree structure of components in an SS4 electric locomotive system

power supply systems, traction and breaking systems, are proposed. Since an
SS4 electric locomotive system can be viewed as a hierarchial tree structure of
subsystems and sections shown in Fig. 2, we can build the diagnosis models from
leaves to the top (that is, the root) of the tree. Thus, we firstly build the models
for subsystems and then analyze these models and relationships among an elec-
tric locomotive system, its subsystems and faulty sections in these subsystems.
Finally, a fault diagnosis model for SS4 electric locomotive systems is proposed.

3.1 A fault diagnosis model for the main circuit systems

Fuzzy production rules (Rules 1 to 16), describing the relationships between
breakdown signals detected and candidate faulty sections, for main circuit sys-
tems of electric locomotives are described as follows, where CF is an empirical
value representing the certainty (confidence) factor of a rule, P1, . . . , P18 are
propositions whose meanings are shown in Table 1. According to these fuzzy
production rules, a fault diagnosis model based on rFRSN P systems for main
circuit systems Π1 is built, as shown in Fig. 3. Π1 = (O, σ1, . . . , σ34, syn, in, out)
where

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . , σ18 are proposition neurons associated with propositions P1, . . . , P18,

respectively;
(3) σ19, . . . , σ28, σ30, . . . , σ34 are GENERAL rule neurons associated with fuzzy

production rules R1, . . . , R10, R12, . . . , R16, respectively; σ29 is an OR rule
neuron associated with fuzzy production rule R11;

364

Table 1. Meaning of each proposition in fuzzy production rules for main circuit systems

P1 pantograph bounce P10 nonlinear resistor sparkwear

P2 mechanical part damaged P11 coil/main contact sparkwear

P3 scratching of pantograph P12 contact in poor contact

P4 insulating oil damp P13 no current in pantograph

P5 cooling system breakdown P14 traction transformer breakdown

P6 transformer internal breakdown P15 pulling motor inoperation

P7 electrical strength reduction P16 circuit breaker inoperation

P8 electromotor overload P17 contactor breakdown

P9 isolating switch sparkwear P18 main circuit breakdown

(4) syn = {(1, 19) , (2, 20), (3, 21), (4, 22), (5, 23), (6, 24), (7, 25), (8, 26), (9, 27),
(10, 28), (11, 29), (12, 29), (13, 30), (14, 31), (15, 32),(16, 33),(17, 34),(19, 13),
(20 , 13),(21, 13), (22, 14), (23, 14), (24, 14), (25, 15), (26, 15), (27, 16), (28, 16),
(29, 17), (30, 18), (30, 15), (31, 18), (31, 15), (32, 18),(33, 15),(34, 18)};

(5) in = {σ1, . . . , σ12}, out = {σ18}.

Rule 1: IF P1 THEN P13 (CF=0.95)
Rule 2: IF P2 THEN P13 (CF=0.85)
Rule 3: IF P3 THEN P13 (CF=0.9)
Rule 4: IF P4 THEN P14 (CF=0.8)
Rule 5: IF P5 THEN P14 (CF=0.85)
Rule 6: IF P6 THEN P14 (CF=0.8)
Rule 7: IF P7 THEN P15 (CF=0.95)
Rule 8: IF P8 THEN P15 (CF=0.8)
Rule 9: IF P9 THEN P16 (CF=0.95)
Rule 10: IF P10 THEN P16 (CF=0.9)
Rule 11: IF P11 OR P12 THEN P17 (CF=0.9)
Rule 12: IF P13 THEN P15 AND P18(CF=1.0)
Rule 13: IF P14 THEN P15 AND P18(CF=0.9)
Rule 14: IF P15 THEN P18 (CF=0.9)
Rule 15: IF P16 THEN P15 (CF=0.85)
Rule 16: IF P17 THEN P18 (CF=0.85)

3.2 A fault diagnosis model for the power supply systems

Fuzzy production rules (Rules 1 to 13), describing the relationships between
breakdown signals detected and candidate faulty sections, for power supply sys-
tems of electric locomotives are described as follows, where CF is an empirical
value representing the certainty (confidence) factor of a rule, P1, . . . , P17 are
propositions whose meanings are shown in Table 2. According to these fuzzy

365

!

"

#

$

%

&

'

(

!
R

 !

"
R

 !
R

 !

"
R

 !

R

R

R

 !

"
R

 !

 "

 #
R

 !

 "
R

R

 !

"
P

P

P

P

P

P

P

P

P

 !
P

P

 !
P

 !
P

 !
P

 !
P

 !
P

 !
P

 !

 "
R

R

 !
R

 !
R

 !
P

 !

 "

#
R

 !

 "

 #

 $

 %

 &

 '

!(

!)

!

!!

!"

Fig. 3. A fault diagnosis model based on rFRSN P systems for the main circuit systems

production rules, a fault diagnosis model based on rFRSN P systems for power
supply systems Π2 is built, as shown in Fig. 4. Π2 = (O, σ1, . . . , σ30, syn, in, out)
where

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . , σ17 are proposition neurons associated with propositions P1, . . . , P17,

respectively;
(3) σ18, . . . , σ21, σ23, σ24, σ26, . . . , σ30 are GENERAL rule neurons associated

with fuzzy production rules R1, . . . , R4, R6, R7, R9, . . . , R13, respectively; σ22
is an OR rule neuron associated with fuzzy production rule R5; σ25 is an
AND rule neuron associated with fuzzy production rule R8;

(4) syn = {(1, 18) , (2, 19), (3, 20), (4, 21), (5, 22), (6, 23), (7, 24), (8, 25), (9, 26),
(10, 27), (11, 22), (12, 28), (13, 25), (14, 29), (16, 30),(18, 17),(19, 10),(20, 10),
(21, 11),(22, 12), (23, 14), (23, 13), (24, 13), (25, 15), (26, 16), (27, 17), (27, 11),
(27, 13), (27, 14), (28, 14), (28, 17), (29, 16), (30, 17)};

(5) in = {σ1, . . . , σ9}, out = {σ15, σ17}.

Rule 1: IF P1 THEN P17 (CF=0.9)
Rule 2: IF P2 THEN P10 (CF=0.8)
Rule 3: IF P3 THEN P10 (CF=0.85)
Rule 4: IF P4 THEN P11 (CF=0.9)
Rule 5: IF P5 OR P11 THEN P12 (CF=0.85)
Rule 6: IF P6 THEN P13 AND P14 (CF=0.8)

366

Table 2. Meaning of each proposition in fuzzy production rules for power supply
systems

P1 main traction invertor breakdown P9 fan breakdown

P2 current collector breakdown P10 DC750V input breakdown

P3 locomotive current collector breakdown P11 110V DC/DC chopper inoperation

P4 110V DC/DC chopper breakdown P12 DC110V breakdown

P5 110V accumulator breakdown P13 280V DC/DC chopper inoperation

P6 auxiliary inverter breakdown P14 auxiliary inverter inoperation

P7 280V DC/DC chopper breakdown P15 DC280V breakdown

P8 280V accumulator breakdown P16 fan inoperation

P17 main traction invertor inoperation

!

"

#

$

%

&

'

(

!
R

 !

"
R

R

 !
R

 !

"
R

 !

R

R

R

 !

"
R

 !

 "

 #
R

 !

 "
R

R

R

P

P

P

P

P

P

P

P

P

 !
P

P !

P

 !
P

 !
P

 !
P

 !
P

 !
P

 !

 "

#$

##

#%

#&

#'

#(

#)

#!

#"

%$

Fig. 4. A fault diagnosis model based on rFRSN P systems for the power supply
systems

Rule 7: IF P7 THEN P13 (CF=0.95)

Rule 8: IF P8 AND P13 THEN P15 (CF=0.85)

Rule 9: IF P9 THEN P16 (CF=0.9)

Rule 10: IF P10 THEN P11 AND P13 AND P14 AND P17 (CF=0.85)

Rule 11: IF P12 THEN P14 AND P17 (CF=0.8)

Rule 12: IF P14 THEN P16 (CF=0.95)

Rule 13: IF P16 THEN P17 (CF=0.9)

367

3.3 A fault diagnosis model for the traction and braking systems

Fuzzy production rules (Rules 1 to 10), describing the relationships between
breakdown signals detected and candidate faulty sections, for traction and brak-
ing systems of electric locomotives are described as follows, where CF is an empir-
ical value representing the certainty (confidence) factor of a rule, P1, . . . , P16 are
propositions whose meanings are shown in Table 3. According to these fuzzy pro-
duction rules, a fault diagnosis model based on rFRSN P systems for traction and
braking systemsΠ3 is built, as shown in Fig. 5.Π3 = (O, σ1, . . . , σ26, syn, in, out)
where

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . , σ16 are proposition neurons associated with propositions P1, . . . , P16,

respectively;
(3) σ17, σ18, σ23, . . . , σ26 areGENERAL rule neurons associated with fuzzy pro-

duction rules R1, R2, R7, . . . , R10, respectively; σ20, . . . , σ22 are OR rule neu-
rons associated with fuzzy production rules R4, . . . , R6, respectively;

(4) syn = {(1, 17) , (2, 18), (3, 19), (4, 19), (5, 19), (6, 20), (7, 20), (8, 21), (9, 22),
(10, 23), (11, 22), (12, 24), (13, 25), (14, 26), (15, 21),(17, 16),(18, 16),(19, 13),
(20, 14), (21, 16),(22, 16), (23, 16), (24, 16), (25, 15), (26, 16)};

(5) in = {σ1, . . . , σ12}, out = {σ16}.

Rule 1: IF P1 THEN P16 (CF=0.85)
Rule 2: IF P2 THEN P16 (CF=0.8)
Rule 3: IF P3 OR P4 OR P5 THEN P13 (CF=0.9)
Rule 4: IF P6 OR P7 THEN P14 (CF=0.95)
Rule 5: IF P8 OR P15 THEN P16 (CF=0.9)
Rule 6: IF P9 OR P11 THEN P16 (CF=0.8)
Rule 7: IF P10 THEN P16 (CF=0.7)
Rule 8: IF P12 THEN P16 (CF=0.85)
Rule 9: IF P13 THEN P15 (CF=0.95)
Rule 10: IF P14 THEN P16 (CF=0.75)

3.4 A fault diagnosis model for the electric locomotive systems

From Fig. 3 to Fig. 5, we know that if there is no current in pantograph or
traction transformers breakdown or pulling motors inoperation or contactors
breakdown, then the main circuit system of electric locomotive systems has
faults; if DC750V input breakdown or fan inoperation or main traction invertor
breakdown or DC110V breakdown, then the power supply system of electric lo-
comotive systems has faults; if DC750V input breakdown or fan inoperation or
main traction invertor breakdown or DC110V breakdown, then the power supply
system of electric locomotive systems has faults; if the main traction invertor
breakdown or DC110V breakdown or control source converter plate breakdown
or main protective relay breakdown or traction power controller breakdown or
A/D breakdown or 25/5V breakdown or linear electromotor inoperation or phase

368

Table 3. Meaning of each proposition in fuzzy production rules for traction and braking
systems

P1 DC110V breakdown P9 main protective relay breakdown

P2 control source converter plate breakdown P10 traction power controller breakdown

P3 U-phase current sensor breakdown P11 A/D breakdown

P4 W-phase current sensor breakdown P12 25/5V breakdown

P5 V-phase current sensor breakdown P13 more than one among P3, P4 and P5 happen

P6 first linear electromotor group breakdown P14 linear electromotor inoperation

P7 second linear electromotor group breakdown P15 phase current sensor inoperation

P8 main traction invertor breakdown P16 traction and braking system inoperation

!

"

#

$

%

&

'

(

!
R

 !

"
R

R

 !

"
R

 !

"
R

R

 !

"
R

 !

"
R

R

P

P

P

P

P

P

P

P

P

 !
P

 !
P

 !
P

 !
P

 !
P

 !

 !
P

 !

 "

 #

$%

$

$$

$&

$'

$(

 %
R

 !

""

""
P

Fig. 5. A fault diagnosis model based on rFRSN P systems for the traction and braking
systems

current sensor inoperation, then the traction and braking system of electric lo-
comotive systems has faults.

369

!

"

#

$

%

&

'

(

!
R

 !

"
R

 !

 "

 #

!
P

P

P

P

P

P

P

P

P

 !
P

P !

P
 !
P

 !
P

 !

 !
P

 !

 !
P

 !

 !
P !

 !
P

R

R

 !

 !
P

 !

 "

 #

Fig. 6. A fault diagnosis model based on rFRSN P systems for the electric locomotive
systems

For an electric locomotive system, if one or more than one of its subsystems
(main circuit systems, power supply systems, and traction and braking systems)
have faults, then this electric locomotive system has faults. According to the
analysis, fuzzy production rules (Rules 1 to 4) for electric locomotive systems are
described as follows, where CF is an empirical value representing the certainty
(confidence) factor of a rule, P1, . . . , P19 are propositions whose meanings are
shown in Table 4. According to these fuzzy production rules, a fault diagnosis
model based on rFRSN P systems for electric locomotive systems Π4 is built, as
shown in Fig. 6. Π4 = (O, σ1, . . . , σ23, syn, in, out) where

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, . . . , σ19 are proposition neurons associated with propositions P1, . . . , P19,
respectively;

(3) σ20, . . . , σ23 are OR rule neurons associated with fuzzy production rules
R1, . . . , R4, respectively;

(4) syn = {(1, 20) , (2, 20), (3, 20), (4, 20), (5, 21), (6, 21), (7, 21), (7, 22), (8, 21),
(8, 22), (9, 22), (10, 22), (11, 22), (12, 22), (13, 22), (14, 22), (15, 22), (16, 23),
(17, 23), (18, 23), (20, 16), (21, 17),(22, 18), (23, 19)};

(5) in = {σ1, . . . , σ15}, out = {σ19}.

Rule 1: IF P1 OR P2 OR P3 OR P4 THEN P16 (CF=0.95)

Rule 2: IF P5 OR P6 OR P7 OR P8 THEN P17 (CF=0.95)

Rule 3: IF P7 OR P8 OR P9 OR P10 OR P11 OR P12 OR P13 OR P14 OR

P15 THEN P18 (CF=0.95)

Rule 4: IF P16 OR P17 OR P18 THEN P19 (CF=0.98)

370

Table 4. Meaning of each proposition in fuzzy production rules for electric locomotive
systems

P1 no current in pantograph P10 main protective relay breakdown

P2 traction transformer breakdown P11 traction power controller breakdown

P3 pulling motor inoperation P12 A/D breakdown

P4 contactor breakdown P13 25/5V breakdown

P5 DC750V input breakdown P14 linear electromotor inoperation

P6 fan inoperation P15 phase current sensor inoperation

P7 main traction invertor breakdown P16 main circuit system has faults

P8 DC110V breakdown P17 power supply system has faults

P9 control source converter plate breakdown P18 traction and braking system has faults

P19 electric locomotive systems has faults

4 Conclusions

In this study, rFRSN P systems are applied in fault diagnosis of electric loco-
motive systems. This study focuses on offering the causality among breakdown
signals, faulty sections, faulty subsystems and faulty electric locomotive systems
in the form of fuzzy production rules, processing fault information by syntactical
ingredients of rFRSN P systems and proposing fault diagnosis models based on
rFRSN P systems for SS4 electric locomotive systems and their subsystems.
These models can visually and efficiently describe relationships among break-
down signals detected and candidate faulty sections or faulty systems. This work
is an important theoretical basis for proposing a novel bio-inspired method for
fault diagnosis of electric locomotive systems by using rFRSN P systems. To test
and verify the practical implementation and scalability of the proposed method,
our future work include proposing diagnosis algorithms for the models proposed
in this paper and model reduction algorithms for the models used in specific
cases, and doing plenty of comparison experiments based on a tool to demon-
strate its usefulness.

Acknowledgment

This work is supported by the National Natural Science Foundation of China
(61170016, 61373047, 61170030), the Program for New Century Excellent Talents
in University (NCET-11-0715) and SWJTU supported project (SWJTU12CX008).
The last author acknowledges the support of the project TIN 2012-3734 of the
Ministerio de Economı́a y Competitividad of Spain.

371

References

1. Gh. Păun, “Computing with membranes,” J. Comput. Syst. Sci., 61(1), 108-143
(2000)

2. M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,” Fund. Inform.,
71(2-3), 279-308 (2006)

3. Gh. Păun, M. J. Pérez-Jiménez, and G. Rozenberg, “Spike train in spiking neural
P systems,” Int. J. Found. Comput. Sci., 17(4), 975-1002 (2006)

4. H. Chen, T.-O. Ishdorj, Gh. Pǎun, and M. J. Pérez-Jiménez, “Handling languages
with spiking neural P systems with extended rules,” Romanian J. Inform. Sci.
Technol., 9(3), 151-162 (2006)

5. R. Freund, M. Ionescu, and M. Oswald, “Extended spiking neural P systems with
decaying spikes and/or total spiking,” Int. J. Found. Comput. Sci., 19(5), 1223-1234
(2008)

6. M. Cavaliere, O.H. Ibarra, Gh. Pǎun, O. Egecioglu, M. Ionescu, and S. Woodworth,
“Asynchronous spiking neural P systems,” Theor. Comput. Sci., 410(24-25), 2352-
2364 (2009)

7. L. Q. Pan and Gh. Păun, “Spiking neural P systems: an improved normal form,”
Theor. Comput. Sci., 411(6), 906-918 (2010)

8. L. Q. Pan and X. X. Zeng, “Small universal spiking neural P systems working in
exhaustive mode,” IEEE Trans. on Nanobiosci., 10(2), 99-105 (2011)

9. V. P. Metta, K. Krithivasan and D. Garg, “Spiking neural P systems with anti-spikes
as transducers,” Rom. J. Inf. Sci. Tech., 14(1), 20-30 (2011)

10. M. Ionescu, G. Păun, M. J. Pérez-Jiménez and A. Rodŕıguez-Patón, “Spiking neu-
ral P systems with several types of spikes,” Int. J Comput. Commun., 71(2-3),
648-656 (2011)

11. X. Y. Zhang, B. Luo, X. Y. Fang and L. Q. Pan, “ Sequential spiking neural P
systems with exhaustive use of rules,” BioSystems, 108: 52-62 (2012)

12. F. George, C. Cabarle, H. N. Adorna, M. A. Mart́ınez, and M. J. Pérez-Jiménez,
“Improving GPU simulations of spiking neural P systems,” Rom. J. Inf. Sci. Tech.,
15(1), 5-20 (2012)

13. G. C. Francis and N. A. Henry, “On structures and behaviors of spiking neural P
systems and Petri nets,” Int. Conf. on Membrane Computing, pp. 145-160 (2012)

14. T. Song, L. Q. Pan and Gh. Pǎun, “Asynchronous spiking neural P systems with
local synchronization,” Inform. Sciences, 219, 197-207 (2013)

15. K. Q. Jiang, T. Song and L. Q. Pan, “Universality of sequential spiking neural P
systems based on minimum spike number,” Theor. Comput. Sci., 499, 88-97 (2013)

16. G. X. Zhang, H. N. Rong, F. Neri and Mario J. Pérez-Jiménez, “An optimiza-
tion spiking neural P system for approximately solving combinatorial optimization
problems,” Int. J. Neural Syst., 24(5), 1-15 (2014)

17. J. Wang, P. Shi, H. Peng, Mario J. Pérez-Jiménez, and Tao Wang, “Weighted fuzzy
spiking neural P system,” IEEE Trans. Fuzzy Syst., 21(2), 209-220 (2013)

18. H. Peng, J. Wang, M. J. Pérez-Jiménez, H. Wang, J. Shao, and T. Wang, “Fuzzy
reasoning spiking neural P system for fault diagnosis,” Inform. Sciences, 235, 106-
116 (2013)

19. G. J. Xiong, D. Y. Shi, L. Zhu, and X. Z. Duan, “A new approach to fault diagnosis
of power systems using fuzzy reasoning spiking neural P systems,” Math. Probl.
Eng., http://dx.doi.org/10.1155/2013/815352, 2013.

20. T. Wang, G. X. Zhang, H. N. Rong, and M. J. Pérez-Jiménez, “Application of fuzzy
reasoning spiking neural P systems to fault diagnosis,” Int. J Comput. Commun.,
2014. (Accepted)

372

21. M. Tu, J. Wang, H. Peng, and P. Shi, “Application of adaptive fuzzy spiking neural
P systems in fault diagnosis of power systems,” Chinese J. Electron, 23(1), 87-92
(2014)

22. C. Y. Zhang, “Research on fault diagnosis method of electric locomotive systems
based on petri net (M.S Degree Thesis),” Central South University, Changsha,
China, 2010.

23. Y. S. Zhang and L. J. Zhu, “Shaoshan4 locomotive,” Chinese Railway Publishing
House, Beijing, China, 2001.

373

374

Graph Cluster Analysis by Lattice based P
System with Conditional Rules

Jie Xue and Xiyu Liu

Shandong Normal University, Shandong Jinan 250014, CHINA

Graph clustering is the task of grouping the vertices of the graph into clusters
taking into consideration the edge structure of the graph, which is widely used
in data transformation, network analysis etc [1]. Several algorithms are provided
in dealing with graph clustering. However, when the graphs become massive,
these algorithms exhibit polynomial or exponential complexity, which make the
problem being more challenging. Benefit from the parallelism of P system [2], we
present a new P system named lattice based P system with conditional rules(LC
P) with the thought of SCAN and k-nearest algorithm for clustering unweighted
and weighted graph. Experiment on dolphin social network shows the effective-
ness of our algorithm.

The lattice based P system with conditional rules(LC P) is a construct:

Π = (O,A,C, p, ω1, ..., ωm, R
s, Rl, i0) (1)

Where, V is an alphabet; A is a set of variables with real values; C is a set
of conditions on rules; P is partial ordered membrane structure of m degree:
(σ1, σ2) ≺ τ , (σ1, σ2) � τ , which is the same as [3]; ω1, ..., ωm, represents a
multiset of strings over Vi[Aj]; for a given i and a set of variables from A, with
an initial value; i0 is the output membrane; Rs stands for (σ1, σ2) ≺ τ ordered
rules with the following form:
[(a[xa] : ca, b[xb] : cb), up; (e[xe], f [xf]), in]S

→ [c[xc], in; d[xd] : cd, down|(σ1, σ2) ≺ τ]
[a[xa], out; b[xb], in|σ1 ≺ τ], [b[xb], out; c[xc], in|σ2 ≺ τ]
{xa, xb, xc, xd, xe, xf} ∈ A, {a, b, c, d, e, f} ∈ V , {ca, cb, cc, cd, ce, cf} ∈ C.

a[xa] and b[xb] from σ1 and σ2 transform into c[xc] and go up to τ under the
condition ca and cb; simultaneously d[xd] from τ transforms to e[xe] into σ1 and
f [xf] into σ2 under cd. If ca, cb and cd are not satisfied, the rule can not execute.

Rl stands for (σ1, σ2) � τ ordered rules with the following form:
[(a[xa] : ca, b[xb] : cb), down; (e[xe], f [xf]), in]I
→ [c[xc], in; d[xd] : cd, up|(σ1, σ2) � τ]
[a[xa], out; b[xb], in|σ1 � τ], [b[xb], out; c[xc], in|σ2 � τ]
{xa, xb, xc, xd, xe, xf} ∈ A, {a, b, c, d, e, f} ∈ V , {ca, cb, cc, cd, ce, cf} ∈ C.

a[xa] and b[xb] from σ1 and σ2 transform into c[xc] and go down to τ under
the condition ca and cb; simultaneously d[xd] from τ transforms to e[xe] up to
σ1 and f [xf] up to σ2 under cd. If ca, cb and cd are not satisfied, the rule can
not execute.

0 Research is supported by the Natural Science Foundation of China(No.61170038),
the Natural Science Foundation of Shandong Province(No.ZR2011FM001)

375

2

The computation starts with a[xa] in cells with condition ca on xa. The stable,
halting status and output of the P system is the same as cell-like P system in
maximum.

Structural clustering algorithm for network(SCAN) has good scalability on
clustering large graphs [1]. Given an undirected graph, G = (V,E), for a vertex,
µ ∈ V , the neighborhood of µ is χ(µ) = {ν|(µ, ν) ∈ E} ∪ {µ}. The similarity
between two vertexes µ and ν is:

δ(µ, ν) =
χ(µ) ∩ χ(ν)√
|χ(µ)||χ(ν)|

(2)

For a vertex, µ ∈ V , the ε-neighborhood of µ is Nε(µ) = {ν ∈ χ(µ)|δ(µ, ν) ≥
ε}. µ ∈ V is a core vertex if |Nε(µ)| ≥ µ, where µ is a popularity threshold.
SCAN grows clusters from core vertices. If a vertex ν is in the ε-neighborhood of
a core µ, then, ν is assign to the same cluster as µ. The lattice based P system
with conditional rules for SCAN is constructed as: O = {eij , Aij , Ni, Rij , α, β},
1 ≤ i ≤ n, 1 ≤ j ≤ n, A = {δij , ci|1 ≤ i ≤ n, 1 ≤ j ≤ n}, C = {δij , δhk ≥ ε; ci ≥
θ}, p =�. ωσ1

= ωσ2
= α, ωτ = eij [δij]. In membrane computing, all objects

numbers are integer. To adapt it, we amplify δij into δij ∗ 10.
R1 = [eij [δij], out;α, in|σ1 � τ], R2 = [ehk[δhk], out;α, in|σ2 � τ]
R31 = [(eij [δij], ehk[δhk] : δij , δhk ≥ ε), up; (Aij , Ahk), in]S

→ [NiNjNhNk, in;α, down|(σ1, σ2) � τ]
R32 = [(eij [δij] : δij ≥ ε, out;AijNiNj , in|σ1 � τ]
R41 = [(Aik, Aij), up; (β, β), in]S → [RikRij , in;Ni[ci] : ci ≥ θ, down|(σ1, σ2) � τ]
R42 = [(Aik, λ), up; (β, β), in]S → [Rik, in;Ni[ci] : ci ≥ θ, down|(σ1, σ2) � τ]
R43 = [(λ,Aij), up; (β, β), in]S → [Rij , in;Ni[ci] : ci ≥ θ, down|(σ1, σ2) � τ]

Membrane structure is (σ1, σ2) � τ . At the first step, two copies of {eij [δij]}
are sent into σ1 and σ2 by R1 and R2. α is sent to τ simultaneously. If the
similarity of two points is larger than ε, they are neighbors. R3 changes neighbors
into Aij and produce Ni. All edges will go through rule R3 and produce multiple
numbers of Ni. When the number of Ni arrives at θ, R4 is triggered. i is the
core points of a cluster, all A with i as the first subscript are set as a member
of cluster i and change into Rij .

SCAN algorithm takes n steps to complete the computation at least. Where-
as, the whole process is completed in n/2 + dmax/2 of SCAN designed by LC P
system. k-nearest based algorithm by LC P system is researched as well. Time
complexity is within [k2 + 1, k+ 1]. Traditional algorithm consumes O(n), k ≤ n.
LC P system based SCAN and k-nearest algorithms reduce time complexity.

References

[1]Han, Jiawei and Kamber, Micheline, Data Mining, Third Edition: Concepts and
Techniques, Elsevier, 2012.

[2]Păun G, Rozenberg G, and Salomaa A., Membrane Computing, Oxford University
Press, New York, 2010.

[3]Jie Xue, Xiyu Liu, Lattice Based Communication P Systems with Applications in
Cluster Analysis, Soft Computing, 2013:1-16, DOI 10.1007/s00500-013-1155-y.

t376

Author Index

A
Adorna, H. 153
Ahmed, T. 25, 345
Alhazov, A. 41, 61, 71, 99, 117, 333
Aman, B. 41, 129

B
Bakir, M.B. 135
Burtseva, L. 333

C
Cabarle, F.G. 153
Cienciala, L. 3, 155
Ciencialová, L. 155
Cojocaru, S. 333
Colesnicov, A. 333
Csajbók, Z.E. 283
Csuhaj-Varjú, E. 7, 129

F
Freund, R. 41, 61, 71, 99, 117, 129

G
Garćıa-Quismondo, M. 169
Gazdag, Z. 191, 205
Gheorghe, M. 7
Grützmann, K. 217
Gutiérrez-Naranjo, M.A. 191, 205

H
Höckner, B. 217
Hayat, S. 217
Hinze, T. 217

I
Ipate, F. 135
Ivanov, S. 99, 235

K
Kolonits, G. 205
Konur, S. 135
Krithivasan, K. 267

L
Langer, M.. .155
Leporati, A. 19, 251

Liu, X. 375

M
Malahov, L.. .333
Manzoni, L. 19, 251
Mart́ınez-Del-Amor, M.A.169
Mauri, G. 19, 251
Metta, V.P. 267
Mierla, L. 135
Mihálydeák, T. 283

N
Nicolescu, R.. .287
Niculescu, I. 135

O
Obtulowicz, A. .313

P
Pérez-Jiménez, M.J. 11, 169, 361
Perdek, M.. .155
Porreca, A.E. 19, 251

R
Raghuraman, S. 267
Rogozhin, Y.. .333

S
Sauer, P.. .217
Srivastava, A. 25, 345

V
Vaszil, G. 7
Verlan, S. 117
Verma, R. 25, 345

W
Wang, T. 361
Wiedermann, J. 15

X
Xue, J. 375

Z
Zandron, C. 19, 251
Zhang, G.. .361

377

