On Σ_n -definability in Arithmetic

Borrego-Díaz, J.; Fernández-Margarit, A.; Pérez-Jiménez; M.J. *

Computer Science and Artificial Intelligence University of Seville (SPAIN) E-mail:marper@cica.es

Abstract The proper subsets, X, of an \mathcal{L} -structure M whose elements are the only ones that are Σ_n -definable with parameters in X ("maximal Σ_n -definable set") are studied in this paper. Nonstandard sets are obtained which satisfies this condition. We connect them with the well know structures $K_n(M;X)$, $I_n(M;X)$. J. Paris and L. Kirby ([6]) gave a model of $\mathbf{B}\Sigma_{n+2} + \neg \mathbf{I}\Sigma_{n+2}$ that not satisfies this maximality condition. Now, another model of this theory will be given that verifies this property.

1 Introduction

Under certain assumptions, the classical structures $K_n(M;X)$ and $I_n(M;X)$ are models of induction but not collection, and collection but not induction, respectively, at the same level in the hierarchy of Arithmetic's fragments given by Paris-Kirby's diagram.

$$\mathbf{I}\Sigma_n \iff \mathbf{I}\Pi_n \iff \mathbf{L}\Pi_n \iff \mathbf{L}\Sigma_n$$
 $\mathbf{B}\Sigma_{n+1} \iff \mathbf{B}\Pi_n$
 $\mathbf{I}\Sigma_{n+1}$

Furthermore, in general,

- (a) $K_n(M;X)$ is not an initial segment of M, but their elements are the only ones Σ_n -definables with parameters in $K_n(M;X)$.
- (b) $I_n(M;X)$ is an initial segment of M, but there exists Σ_n -definable elements of $M I_n(M;X)$ with parameters in $I_n(M;X)$.

^{*}Supported by research project DGES no PB96-1345

The aim of this paper is

- To describe new structures, $J_{\Gamma}(M;X)$, that for certain models, M, of a fragment of Arithmetic verify richer properties than the above mentioned for classical structures $K_n(M;X)$ and $I_n(M;X)$.
- To give a functional description of Hájek–Pudlák's structures $H^n(M;X)$, through $J_{\Sigma_n}(M;X)$.

Finally, we conclude by proposing some open questions.

References

- [1] Clote, P.G., "Partition relations in Arithmetic," Lecture Notes in Mathematics, vol. 1130 (1983), pp. 32-68.
- [2] Fernández-Margarit, A. and Pérez-Jiménez, M.J., "Maximum schemes in Arithmetic", *Mathematical Logic Quarterly*, 40 (1994), pp. 425–430.
- [3] Graciani, M.C.; Pérez-Jiménez, M.J.; Romero, A. and Sancho, F., "Initial segment maximal Σ_n —definable sets in fragments of Arithmetic". Joint Conference of the 5th Barcelona Logic Meeting and the 6th Kurt Godel Colloquium, pp. 37-38. Barcelona (1999).
- [4] Hájek, P. and Pudlák, P., Metamathematics of First-Order Arithmetic, Springer Verlag (1993).
- [5] Kaye, R., Models of Peano Arithmetic, Oxford Logic Guides 15, Oxford (1991).
- [6] Paris, J. and Kirby, L., " Σ_n -Collection Schemas in Arithmetic," Logic Colloquium '77. North-Holland (1978), pp. 199-209.
- [7] Pérez-Jiménez, M.J., "Esquemas del máximo en la Aritmética", Ph. D, Universidad de Sevilla (1992).