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Abstract—Multienvironment P systems are the base of a
general framework for modeling ecosystems dynamics. On one
hand, this modeling framework represents the structural and
dynamical aspects of real ecosystems in a discrete, modular and
compressive way. On the other hand, the inherent randomness
and uncertainty of biological systems are captured by using
probabilistic strategies. Nowadays, the simulation of these P
systems based models is fundamental for experimentation and
validation. In this paper, we introduce a new simulation al-
gorithm, called DNDP, which performs object distribution and
maximal consistency in the application of rules, that are crucial
aspects of these systems.

The paper also depicts a parallel implementation of the
algorithm, and a comparison with the existing algorithm in
PLinguaCore is provided. In order to test the performance of the
presented algorithm, several experiments (simulations) have been
carried out over four simple P systems with the same skeleton
and different number of environments.

I. INTRODUCTION

Since Gh. Păun introduced Membrane Computing in 1998
[9], this bio-inspired computing paradigm has proved to be an
active research area within Natural Computing. The aim of this
area is to define computational models which abstract from
the functioning (chemical reactions) and structure (chemical
substances, membranes and compartments) of living cells.
Devices of this model are called P systems, and they consist
of a cell-like membrane structure, in the compartments of
which are placed multisets of objects that evolve according
to given rules in a synchronous (assuming a global clock)
non-deterministic maximally parallel way.

P systems have several syntactic ingredients: a membrane
structure consisting of a hierarchical arrangement of mem-
branes embedded in a skin membrane, and delimiting regions
or compartments where multisets of objects (corresponding to
chemical substances) and sets of evolution rules (correspond-
ing to reaction rules) are placed. The skin membrane delimits
the internal region of the P system with the environment.
Every membrane has an associated label, and depending on
the P system model, also a polarization that can be modified

in the computation. P systems also have two main semantic
ingredients: their inherent parallelism and non-determinism.

Recent research works have been focused on using P sys-
tems as a modeling tool for biological phenomena, within the
framework of computational Systems Biology and Population
Dynamics [10], [1], [2], [6], [11], [12], being complementary
and an alternative to more classical approaches (i.e. ODEs,
Petri Nets, etc). They are used as a formalism for describing,
and simulating, the behavior of biological systems, with the
advantage of providing a discrete and modular formal model.

In [3], a P systems based general framework for modeling
ecosystems dynamics is presented. This computational model-
ing has been used for real ecosystems, such as the scavenger
bird in the Catalan Pyrenees [4] and the zebra mussel in
Ribarroja reservoir [3]. These P system based models are used
to study the ecosystem dynamics, analyzing the simultaneous
evolution of a high number of species. The modularity of
these models also enables to easily adding or removing new
ingredients and characteristics.

The aim of this P system based modeling tool is to help
the ecologists to adopt a priori management strategies for
the real system by executing virtual experiments. However,
since no in vivo nor in vitro implementations of P systems are
yet available, the computation and analysis of these models
is currently performed by simulators. Thus, the design of
simulators and other related software tools becomes a critical
point in the process of model validation, as well as for virtual
experimentation.

In this sense, a software tool was developed and presented in
[3]. It provides, among others, the following features: a graph-
ical user interface (users be ecologists or model designers),
definition of model and ecosystem’s parameters, execution
of simulations, creation of statistical data in form of tables,
graphs, etc. The core of this application is PLinguaCore [7], a
software library for Membrane Computing. The models are de-
fined by plain-text files using P-Lingua specification language.
The application loads that file, configures the corresponding



parameters, calls PLinguaCore to execute, and collects the
results of the simulation.

Inside the PLinguaCore library, many simulation algorithms
are defined for the different P system models. Specifically, for
probabilistic P systems, the implemented simulation algorithm
is based on binomial distribution and blocks of rules. This
simulation algorithm is efficient enough for small and medium
instance sizes, but it lacks maximal consistency application of
rules and calculation of probability functions. In this paper, we
propose a new simulation algorithm, inspired on the algorithm
presented by V. Nguyen et al. in [8], that removes the concept
of block of rules, and solves the above mentioned restrictions.
We also analyze and validate the algorithm and study the new
features and constraints.

The rest of the paper is structured as follows. Section II
describes the modeling framework based on probabilistic P
systems. Section III depicts the details of the proposed simu-
lation algorithms. In section IV we show some results by using
a toy P system, validating the algorithm. The paper ends with
some conclusions and ideas for future work.

II. THE P SYSTEM BASED FRAMEWORK

Definition 1: A multienvironment functional probabilistic P
system with active membranes of degree (q,m) with q ≥
1, m ≥ 1, taking T time units, T ≥ 1, is a tuple

(G,Γ,Σ, RE ,Π, {fr,j : r ∈ RΠ, 1 ≤ j ≤ m},
{Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})

where:
• G = (V, S) is a directed graph such that (x, x) ∈ S, for

each x ∈ V . Let V = {e1, . . . , em} whose elements are
called environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet
representing the objects that can be present in the envi-
ronments;

• RE is a finite set of communication rules between envi-
ronments of the form

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (l = 1, . . . , h)
and p(x,j,j1,...,jh)(t) ∈ [0, 1], for each t = 1, . . . , T .
If p(x,j,j1,...,jh)(t) = 1, for each t, then we omit the
probabilistic function. These rules verify the following:
? for each ej and for each x, the sum of functions

associated with the rules from RE whose left–hand
side is (x)ej coincide with the constant function
equal to 1.

• Π = (Γ, µ,RΠ) where
– µ is a membrane structure consisting of q mem-

branes, with the membranes injectively labeled with
0, . . . , q − 1. The skin membrane is labeled with
0. We also associate electrical charges from the set
{0,+,−} with membranes; and

– RΠ is a finite set of evolution rules of the form r :
u[ v ]αi → u′[ v′ ]α

′

i where u, v, u′, v′ ∈M(Γ), i ∈
{0, 1, . . . , q − 1}, and α, α′ ∈ {0,+,−};

• For each r ∈ RΠ and for each j, 1 ≤ j ≤ m, fr,j is a
computable function whose domain is {1, 2, . . . , T} and
its range is contained in [0, 1], verifying the following:
? For each u, v ∈ M(Γ), i ∈ {0, . . . , q − 1} and α ∈
{0,+,−}, if r1, . . . , rz are the rules from RΠ whose
left–hand side is u[v]αi , then

∑z
j=1 frj (t) = 1, for

each t, 1 ≤ t ≤ T .
• For each j (1 ≤ j ≤ m), M0j , . . . ,Mq−1,jare strings

over Γ, describing the multisets of objects initially placed
in the q regions of µ.

A multienvironment probabilistic functional extended P sys-
tem with active membranes of degree (q,m) taking T time
units

(G,Γ,Σ, RE ,Π, {fr,j : r ∈ RΠ, 1 ≤ j ≤ m},
{Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})

can be viewed as a set of m environments e1, . . . , em linked
between them by the arcs from the directed graph G. Each
environment ej contains a functional probabilistic P system
with active membranes of degree q, each of them with the
same skeleton, Π, and such that M0j , . . .Mq−1,j describe
their initial multisets.

When a communication rule between environments

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

is applied, object x pass from ej to ej1 , . . . , ejh possibly
modified into objects y1, . . . , yh, respectively. In any moment
t, 1 ≤ t ≤ T , at which an object x is in environment ej , one
and only one rule will be applied according to its probability
which is given by p(x,j,j1,...,jh)(t).

We assume that a global clock exists, marking the time
for the whole system (for its compartments), that is, all
membranes and the application of all rules are synchronized.

The tuple of multisets of objects present at any moment in
the m environments and at each of the regions of the P systems
located within them, and the polarizations of the membranes
in each P system, constitutes a configuration of the system
at that moment. At the initial configuration of the system we
assume that all environments are empty and all membranes
have a neutral polarization.

The P system can pass from one configuration to another by
using the rules from R = RE ∪

⋃m
j=1RΠj as follows: at each

transition step, the rules to be applied are selected according to
the probabilities assigned to them, and all applicable rules are
simultaneously applied and all occurrences of the left–hand
side of the rules are consumed, as usual.

III. BINOMIAL BLOCK BASED SIMULATION ALGORITHM

In this section we describe the first simulation algorithm
developed for the model presented in [3], multienvironment



probabilistic P systems. It is available in the current release
of PLinguaCore library [7], and it is implemented following
a strategy based on the binomial distribution and blocks of
rules.

Let us consider a multienvironment probabilistic functional
extended P system with active membranes of degree (q,m)
with q ≥ 1, m ≥ 1, taking T time units, T ≥ 1, Π =
(Γ,Σ, G,RE ,Π, {fr,j : r ∈ RΠ, 1 ≤ j ≤ m}, {Mij : 0 ≤
i ≤ q − 1, 1 ≤ j ≤ m}), as defined in section II, where
{fr,j : r ∈ RΠ, 1 ≤ j ≤ m} are constant functions with
range in [0, 1]. The computation of the system is a sequence
of configurations Ct, 0 ≤ t ≤ T constructed by the application
of rules from R = RE ∪

⋃m
j=1RΠj .

The algorithm presented below shows the pseudocode of the
binomial block based simulation algorithm. Roughly speaking,
it is divided into two main phases: selection and execution. In
the first one, the rules are selected, determining the number
of times that they will be applied in the simulated step,
according to their left-hand sides and the available objects
in the configuration. In the second phase, the chosen rules are
applied the elected number of times by adding the multisets of
the right-hand side to the configuration, and possibly changing
the polarization of membranes.

Let us now describe the algorithm in detail.
The input data for selection phase consists of the configu-

ration in time t, Ct, and the set of defined rules R. The output
data of this stage is a multiset of the form Rsel = {〈r, nr〉},
where r ∈ R and nr ∈ N is the number of times to be
executed. Note that only in the execution phase, the right-
hand side of rules are added to the configuration. Adding new
objects before finishing selection phase leads to inconsistent
states, since the simulation would select and execute rules from
different transitions of the system.

The selection mechanism starts from the assumption that
rules in R can be classified into blocks of rules having the
same left-hand side, following the definitions 2 and 3 below.
Recall that, according to the semantics of the model, the
sum of probabilities of all the rules from a block is always
equal to 1 – in particular, rules with probability equal to 1
form individual blocks. Note that rules with overlapping (but
different) left-hand sides are classified in different blocks.

Definition 2: Given a rule r ∈ RΠ of the form
r : u[v]αh → u′[v′]α

′

h :
• The left-hand side of the rule r is defined as LHS(r) =
u[v]αh , corresponding to the multiset u in the parent
membrane of h, the multiset v in the membrane h, and
the membrane h with charge α.

• The right-hand side of the rule r is defined as RHS(r) =
u′[v′]α

′

h , corresponding to the multiset u′ in the parent
membrane of h, the multiset v′ in the membrane h, and
the membrane h with charge α′.

Definition 3: Two rules r1 and r2 have the same left-hand
side if LHS(r1) = u1[v1]α1

h1
, LHS(r2) = u2[v2]α2

h2
and the

following holds:
• h1 = h2 and α1 = α2

• the strings v1 and v2 (resp. u1 and u2) represent the same
multiset of objects placed in the region h1 (resp. in the
parent region of h1).

The rules selection mechanism iterates through the ran-
domly ordered set of blocks of rules, and within each block,
rules are selected in a maximal way (i.e. they will consume
as many objects from the configuration as possible). More
precisely, given a block, the number of times that a rule r
is applied is determined according to a binomial distribution
B(N, pr) (see definition 4 below) where N is the number of
copies of the multisets in LHS(r) contained in the configu-
ration, and pr is the probability associated with r.

Definition 4: In probability theory, the binomial distribution
B(n, p) is the discrete probability distribution of the number
of successes in a sequence of n independent Bernoulli ex-
periments (success/failure experiment), each of which yields
success with probability p.

In order to guarantee that we do not consume more re-
sources than what it is available, after determining the number
of applications for the first rule of the block (Nr = B(N, pr)),
the first parameter of the binomial distribution is reduced so
that for the next rule the maximum number of applications
matches the available objects (N ← N − Nr). This is done
for all rules in the block (randomly ordered) except for the last
one, which skips the binomial distribution and takes directly
all the remaining applications. It is worth noting that this
process is equivalent to calculating a multinomial distribution
(definition 5).

Definition 5: In probability theory, the multinomial distri-
bution M(n, p1, p2, . . . , pk),

∑k
i=1 pi = 1 is a generalization

of the binomial distribution, where each independent exper-
iment can have k > 0 different results. The output of this
function is composed by ni variables, with 1 ≤ i ≤ k, and∑k
i=1 ni = n.
When the selection phase finishes, it returns the multiset

Rsel containing the applicable rules and the number of times
they will be executed in the simulated step. Execution phase
iterates through the selected rules, and adds the corresponding
right-hand sides to the configuration (taking into account the
number of applications).

Next we show the pseudocode for the binomial block based
algorithm.

Input: A multienvironment functional P system with active
membranes of degree (q,m) with q ≥ 1, m ≥ 1, taking T
time units, T ≥ 1.

1: for t← 0 to T − 1 do
2: Rsel ← Selection-phase (Ct, R)
3: Ct+1 ← Execution-phase (Ct, Rsel)
4: print Ct+1

5: end for

Selection phase
1: Rules from R = RE ∪RΠj , 1 ≤ j ≤ m are classified into

sets (blocks) Bl so that all the rules belonging to a block
have the same left-hand side.



2: Let Fb(N, p) be a function that returns a random natural
number using the binomial distribution B(N, p).

3: A random order on the family of all blocks of rules is
considered.

4: for all blocks of rules Bl = {r1, . . . , rs}, according to
the selected random order do

5: A random order to the rules {r1, . . . , rs} is selected
6: Let us suppose that the common left-hand side is

u [v]αh and their respective probabilistic constants are
cr1 , . . . , crs

7: The highest number N is computed so that uN appears
in the parent membrane of h and vN appears in mem-
brane h (only if the charge is α) in the configuration
Ct.

8: if N > 0 then
9: d ← 1

10: for k ← 1 to s− 1, according to the selected order
do

11: crk ←
crk
d

12: nrk ← F (N, crk)
13: N ← N − nrk
14: q ← 1− crk
15: d ← d ∗ q
16: end for
17: nrs ← N
18: for k ← 1 to s do
19: Ct ← Ct − nrk ∗ LHS(rk)
20: Rsel ← Rsel ∪ 〈rk, nrk〉
21: end for
22: end if
23: end for
24: return Rsel

Execution phase
1: for all 〈r, n〉 ∈ Rsel do
2: if n > 0 then
3: Ct ← Ct + n ∗RHS(r)
4: Update charges of membranes from Ct using

RHS(r)
5: end if
6: end for
7: Ct+1 ← Ct
8: return Ct+1

This simulation algorithm is useful for the majority of
models, such as [4], [3]. However, it has several disadvantages
that restricts the P systems models to be correctly simulated:

• It needs to classify the rules by their left-hand side.
The creation of blocks of rules, with the restriction that
probabilities have to sum 1, leads to simulate only models
with rules distributed in this special way.

• It does not handle rules with intersections on their
left-hand side (object competition). Rules with common
objects but not the same left-hand side are classified
in different blocks, so the common objects will be not
distributed since these blocks are maximally executed.

• It does not check the consistency of charges in the
selection of rules. As seen in section II, rules are executed
in a maximally consistent way. If there are rules changing
the charge of a membrane, and others changing to a
different one, they cannot be executed in the same step.
Fixing one value to the charge, all the rules consistent to
it must, if possible, be executed.

• It does not evaluate probabilistic functions related to
rules. Only constant probabilities are considered, what
is not the case of the new P systems based models

These constraints lead to develop new simulation algo-
rithms, looking for flexibility on the semantics to simulate
(i.e. do not restrict blocks of rules) and providing supplemen-
tary features for the new requirements of models (maximal
consistency and probabilistic functions).

IV. DND-P SIMULATION ALGORITHM

A. Inspiration: Direct Non-deterministic Distribution algo-
rithm (DND)

The algorithm to develop has to solve the restrictions
mentioned above: classification of rules, object competition,
maximal consistency and calculation of probability functions,
and possibly improve the performance. In order to solve the
first two points, the algorithm should work with the rules
individually without classifications and blocks, and also to
assure the object distribution to the rules (according to the
probabilities) and maximal execution.

In [8], V. Nguyen et al. introduce an algorithm performing
non-deterministic, maximally parallel object distribution for
transition P systems and its hardware implementation. As-
suming that it is possible to have more than one solution to
the object distribution problem, several approaches are also
analyzed:
• Indirect approaches: These approaches consider both so-

lutions and non-solutions to the problem in the searching
process. For example, the Incremental Approach con-
structs a solution starting from a non-solution.

• Direct approaches: These approaches consider only so-
lutions in the exploration process. For example, the
Direct Non-deterministic Distribution algorithm (DND)
constructs an object distribution in one step, with a
possible second step to fix the maximal parallelism. In
order to do that, the algorithm executes two phases:

– Forward phase: it is a loop iterating the rules of a
region in a random order, choosing a random value
for each and storing it for the next rules that can
have intersections.

– Backward phase: it is a loop iterating the rules of
such region in the previous random order, checking
if there exists more applications to the rules, and
assigning that number to each.

It can be considered that the forward phase implements a
non-deterministic object distribution, and the backward phase
makes the maximal parallelism, both selecting the rules in-
dividually (without using blocks). Therefore, the idea of the



DND algorithm is suitable for solving the restriction of blocks
of rules and object competition in probabilistic P systems.

B. Direct Non-deterministic Distribution with probabilities
algorithm (DND-P)

In this section we describe the pseudocode of our pro-
posed simulation algorithm for multienvironment functional
P systems with active membranes. It is called DNDP, which
comes from the inspiration on the algorithm DND [8], and the
extension for probabilities.

Similarly to the previous algorithm (section III), the transi-
tions of the P system are simulated in two phases, selection
and execution, in order to synchronize the consumption and
creation of objects. However, selection is divided in two
micro-phases. The first one calculates a multiset of consistent
applicable rules. The second changes the multiplicity of the
rules in the previous multiset to assure maximal application,
obtaining a multiset of maximally consistent applicable rules.

Before selecting and executing rules, some previous calcula-
tions are required. For each environment j, a set of rules (Dj),
one per each environment, is constructed by using a random
order. It is of the form: rules from RE applied to the environ-
ment, and rules from RΠ whose probabilities are non zero, and
that are applied according to the charges of membranes in the
corresponding configuration and environment. Finally, a new
feature is provided in this initialization procedure, which is that
the probabilities of rules are recalculated for each moment t.

In the first selection phase, a multiset of consistent appli-
cable rules, R1

sel, is calculated. For each environment, rules
from Dj are processed in a iterative process where the rules
are selected a number of times, updating the configuration with
the left-hand side. In this loop, two copies of the configuration
are needed: one to be updated each time that a rule is selected
(removing the left-hand side) and the original one before
starting the process. They are called C ′t and Ct respectively.
Suppose that the rules in R1

sel = {< r1, n1 >,< r2, n2 >
, . . . , < rx, nx >} have been selected before processing the
rule r. Then, r is selected if:
• The application of the rule r is consistent with the

application of the previously selected rules. Assuming
that rule r is of the form ur[vr]

αr
hr
→ u′r[v

′
r]
α′
r

hr
, if there

exists a selected rule < ri, ni >∈ R1
sel, ri = ui[vi]

αi
hi
→

u′i[v
′
i]
α′
i

hi
such that hr = hi and α′r 6= α′i, then the rule

is considered non consistent, and so, discarded to be
applied.

• The number of applications of r in the auxiliary configu-
ration C ′t is greater than 0. If one rule < ri, ni >∈ R1

sel

has common objects with r in the left-hand side, the
total amount of applications in C ′t has been (possibly)
decreased ni times, so the rule r will use the rest
of objects in the configuration. In this way, the object
competition is solved by serializing the selection of rules.
Note that the rules are randomly chosen, so that for each
simulation, the first rule trying to get objects will be
different.

Once a rule is selected (because it is consistent with the
rest of selected rules and it is applicable), a random number
of applications is calculated. In this version, this number
is generated by using a binomial distribution. However, the
function can be changed in order to use other probability distri-
butions without any repercussion to the code. It is considered
that the number of times to apply the rule depends on the
associated probability and on the initial number of applications
in Ct, according to the multinomial distribution. For example,
consider a rule rx with probability px, and rule ry with py ,
both with the same left-hand side, and px + py = 1. Also
consider that the total amount of instances of the left-hand
side is N . For the rule rx, the number of applications will be
calculated by B(N, px) = Nx, so that there are N ′ = N−Nx
instances left. If we calculate the number for ry as B(N ′, py),
then it is not a real multinomial distribution. The correct
calculation would be B(N, py) = Ny . When Ny is greater
than the amount of objects left (Ny > N ′), the maximum
amount will be directly assigned (Ny = N ′).

When the binomial random number generator returns 0, the
corresponding rule is added to a multiset called R2

sel. This
multiset is used to give a new chance to the rules to be selected
when applying maximality in the second phase. However, it
has to be handled in a special way at this phase. The rule
cannot reserve the change of a membrane charge since it
has not be actually selected. Hence, R1

sel is the multiset of
consistent rules selected a number of times greater than 0,
and R2

sel is the multiset of rules selected 0 times.
In the second selection phase, the consistent applicable

rules are checked again in order to achieve maximality. Only
consistent rules are considered, and they are taken from
Rsel = R1

sel ∪ R2
sel. If one rule r ∈ Rsel has a number of

applications (N ) different to 0 in C ′t, this number will be
assigned directly to the rule r. In order to fairly distribute the
objects among the rules, they are iterated in order with respect
to the probabilities. Moreover, one rule from the multiset R2

sel

can be checked, so it is possible that other rule from R1
sel,

inconsistent to this one, has been previously selected. In this
case, the consistent condition has to be tested again.

Finally, execution phase is similar to the binomial algorithm.
It will iterate all the rules in R1

sel (maximal applicable con-
sistent rules), and it will add the right-hand side of them to
the configuration C ′t. At the end of the process, C ′t is actually
the next configuration: the left-hand side of rules has been
removed in the first and second selection phases, and the right-
hand side of rules is added in the execution stage.

Next, the pseudocode for the DNDP algorithm is depicted.
Input: A multienvironment functional P system with active
membranes of degree (q,m, n) with q ≥ 1, m ≥ 1, n ≥ 1,
taking T time units, T ≥ 1, and a natural number K ≥ 1.

1: for t ← 0 to T − 1 do
2: Ct ← configuration of the system at the moment t
3: C ′t ← Ct
4: Initialization
5: First selection phase. It generates a multiset of consis-

tent applicable rules.



6: Second selection phase. It generates a multiset of max-
imally consistent applicable rules.

7: Execution of selected rules.
8: Ct+1 ← C ′t
9: end for

Initialization
1: RΠ ← ordered set of rules of Π
2: for j ← 1 to m do
3: RE,j ← ordered set of rules from RE related to the

environment j
4: Aj ← ordered set of rules from RE,j whose probability

at the moment t is > 0
5: Mj ← ordered set of pairs 〈label, charge〉 for all the

membranes from Ct contained in the environment j
6: Bj ← ∅
7: for each 〈h, α〉 ∈Mj (following the considered order)

do
8: Bj ← Bj∪ ordered set of rules u[v]αh ← u′[v′]βh

from RΠ whose probability at the moment t is greater
than 0 for the environment j

9: end for
10: end for
First selection phase (consistency)

1: for j ← 1 to m do
2: R1

sel,j ← the empty multiset
3: R2

sel,j ← the empty multiset
4: Dj ← Aj ∪Bj with a random order
5: for each r ∈ Dj (following the considered order) do
6: if r is consistent with the rules in R1

sel,j then
7: N ′ ← max{number of times that r is applicable

to C ′t}
8: if N ′ > 0 then
9: if pr,j(t) = 1 then

10: n← N ′

11: else
12: N ← max{number of times that r is applica-

ble to Ct}
13: n← Fb(N, pr,j(t))
14: if n > N ′ then
15: n← N ′

16: end if
17: end if
18: if n > 0 then
19: C ′t ← C ′t − n · LHS(r)
20: R1

sel,j ← R1
sel,j ∪ {< r, n >}

21: else
22: R2

sel,j ← R2
sel,j ∪ {< r, n >}

23: end if
24: end if
25: end if
26: end for
27: end for
Second phase of rules selection (maximal-
ity)

1: for j ← 1 to m do

2: Rsel,j ← R1
sel,j + R2

sel,j with an order by the rule
probabilities, from highest to lowest

3: for each < r, n >∈ Rsel,j (following the selected
order) do

4: if n > 0 ∨ (r is consistent with the rules in R1
sel,j)

then
5: N ′ ← max{number of times that r is applicable to

C ′t}
6: if N ′ > 0 then
7: R1

sel,j ← R1
sel,j ∪ {< r,N ′ >}

8: C ′t ← C ′t −N ′ · LHS(r)
9: end if

10: end if
11: end for
12: end for
Execution of selected rules

1: for each < r, n >∈ R1
sel,j do

2: C ′t ← C ′t + n ·RHS(r)
3: Update the electrical charges of C ′t according to

RHS(r)
4: end for

C. A parallel implementation

In this section we provide an implementation to the pseu-
docode following the imperative programming paradigm. We
have included this implementation in the pLinguaCore library
in order to evaluate it.

The key aspect of this implementation is the provided
parallel solution. Considering that in the left-hand side of
rules, only one environment is affected, the selection of rules
can be executed in parallel for each environment, without
compromising the concurrency. However, the selection of rules
have to be synchronized, so that the execution phase cannot
start before finishing the selection in every environment.

First, the set of rules is processed. For each transition and for
each environment, a list of applicable rules to the configuration
is constructed, according only to the membrane charge in the
left-hand side. When these lists are completed, they are used
to fill an array (one per environment), called Dj , of triples
< rule, probability, number−applications >. At this point,
the probabilities of rules are calculated using the associated
function, and stored in the triple with the corresponding rule.
The construction of this array, assigning a random order,
corresponds to the set of rules Dj defined in the pseudocode.

Furthermore, a boolean array B, with one entry per mem-
brane, is used to check the consistency of rules in a efficient
way. In the pseudocode, the consistency condition is assured
by testing each rule with the rest of the previously selected.
In this implementation, each time that a rule r = u[v]αh →
u′[v′]α

′

h is selected a number of times greater than 0, the value
in B for the active membrane h is set to true (B[h]← true).
Moreover, the charge is changed in C ′t. Then, if an inconsistent
rule is checked, it can be seen by B that a rule has reserved
the change of the membrane charge, that is stored in C ′t.

The first selection phase works directly with the array Dj , so
it is a loop using a shuffle iterator (an index that takes random



values between 0 and maxk). Like in the pseudocode, after
checking the consistency condition, the number of applications
is calculated. If it is non-zero, the binomial distribution is
applied, getting a number n. When the rule is processed, n is
stored in the corresponding triple, which is changed by the last
one (maxk) in order to do not select again. In the case that the
rule is inconsistent or not applicable, it has to be discarded.
That is, the rule is changed by the last one (maxk) as before,
but also changed with the last selected rule (maxDj ), avoiding
to be processed in the second phase.

At the end of the first selection phase, Dj corresponds
to the consistent applicable rules, both with zero and non-
zero selected numbers (Rsel). The second selection phase is
similar to the one depicted in the pseudocode. It iterates the
rules in Dj , according to the order given by probabilities,
to fix the number of applications of each one by checking
the consistency and maximality. The algorithm ends with the
execution phase, which adds the right-hand side of rules to
C ′t.

Next we show the algorithm that simulates a computation
of a functional multienvironment probabilistic P system with
active membranes of grade (q,m), with q ≥ 1, m ≥ 1, using
T time units. (Γ,Σ, G,RE ,Π, {fr,j : r ∈ RΠ, 1 ≤ j ≤
m}, {Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})
The algorithm must receive the following input parameters:
• The initial configuration of the system, C0.
• The sets of rules RE y RΠ.
• The values q, m y T .
• The set of functions {fr,j : r ∈ RΠ, 1 ≤ j ≤ m}.

The following computable functions are considered for random
number generation:
• Fb(N, p) is a function that returns a random natural

number n ∈ {0, . . . , N}, according to the binomial
distribution B(N, p), where N ∈ {0, . . . , 264} and p ∈
{R∩ [0, 1]}. Real numbers are encoded in floating point
(float) with a precision of 32 bits.

• Fu(N) is a function that returns a random natural number
n ∈ {0, . . . , N−1}, according to the uniform distribution
U(N), where N ∈ {1, . . . , 264}.

Procedure DNDP (C0, RE , RΠ, q, m, T , K, {fr,j : r ∈
RΠ, 1 ≤ j ≤ m})

1: {LR,E,j , LRΠ,j,h,α : 1 ≤ j ≤ m, 0 ≤ h ≤ q − 1, α ∈
{−, 0,+}} ← Initialization(RE , RΠ, q, m)

2: for t← 0 to T − 1 do
3: C ′t ← Ct
4: for j ← 1 to m do
5: Throw new thread Selection-execution(j, t, C ′t, Ct,

LR,E,j , {LRΠ,j,h,α 0 ≤ h ≤ q − 1, α ∈ {−, 0,+}},
q, m, K, {fr,j : r ∈ RΠ})

6: end for
7: Barrier-synchronization {All threads wait until every-

one reaches this point}
8: Ct+1 ← C ′t
9: print Ct+1

10: end for

Thread Selection-execution (j, t, C ′t, Ct, LR,E,j ,
{LRΠ,j,h,α 0 ≤ h ≤ q − 1, α ∈ {−, 0,+}}, q, m, K,
{fr,j : r ∈ RΠ})

1: Dj ,maxDj , B ← Initialize-selection-phase(j, t, C ′t, Ct,
LR,E,j , {LRΠ,j,h,α 0 ≤ h ≤ q − 1, α ∈ {−, 0,+}}, q, m,
K, {fr,j : r ∈ RΠ})

2: Dj ,maxDj , B ← Selection-first-phase(j, Dj , maxDj ,
B, K, C ′t, Ct)

3: Dj ,maxDj , B ← Selection-second-phase(j, Dj , maxDj ,
B, C ′t)

4: Barrier-synchronization {
All threads wait until everyone reaches this point}

5: Execution(j,Dj ,maxDj ,C
′
t)

Function Selection-first-phase (j, Dj , maxDj , B, K, C ′t,
Ct)

1: maxk ← maxDj

2: while maxk > 0 do
3: i ← Fu(maxk)
4: < r, p, n > ← Dj [i]
5: if Is-consistent(r,j,Bj ,C ′t) then
6: N ′ ← Count-applications(r,j,C ′t)
7: if N ′ > 0 then
8: if p = 1 then
9: ni ← N ′

10: else
11: N ← Count-applications(r,j,Ct)
12: ni ← Fb(N, p)
13: if ni > N ′ then
14: ni ← N ′

15: end if
16: end if
17: if ni > 0 then
18: Remove-left-hand-rule-objects(r,j,ni,C ′t)
19: Update-charge(r,j,B,C ′t)
20: n ← n+ ni
21: end if
22: Swap(Dj ,i,maxk − 1)
23: maxk ← maxk − 1
24: else
25: Swap(Dj ,i,maxk − 1)
26: Swap(Dj ,maxk − 1,maxdj − 1)
27: maxk ← maxk − 1
28: maxDj ← maxDj − 1
29: end if
30: else
31: Swap(Dj ,i,maxk − 1)
32: Swap(Dj ,maxk − 1,maxdj − 1)
33: maxk ← maxk − 1
34: maxDj ← maxDj − 1
35: end if
36: end while
37: return Dj , maxDj , B



Function Selection-second-phase (j, Dj , maxDj , B, C ′t)
1: Sort triples of the form < r, p, n > from and to Dj , from

0 to maxDj , in decrement order by p.
2: for i ← 0 to maxDj do
3: < r, p, n >← Dj [i]
4: if n > 0 ∨ Is-consistent(r,j,Bj ,C ′t) then
5: N ′ ← Count-applications(r,j,C ′t)
6: if N ′ > 0 then
7: n ← n+N ′

8: Remove-left-hand-rule-objects(r,j,N ′,C ′t)
9: if n = 0 then

10: Update-charge(r,j,B,C ′t)
11: end if
12: end if
13: end if
14: end for
15: return Dj , maxDj , B

Procedure Execution (j, Dj , maxDj , C ′t)

1: for i ← 0 to maxDj do
2: < r, p, n >← Dj [i]
3: if n > 0 then
4: Add-left-hand-rule-objects(r,j,n,C ′t)
5: end if
6: end for

Function Initialization (RE , RΠ, q, m)

1: for j ← 1 to m do
2: The set of rules of the form

(x)ej
p(x,j,j1,...,js)−−−→ (x1)ej1 , . . . , (xs)ejs ⊆ RE is

ordered lexicographically with respect of x, x1, . . . , xs.
3: Be LRE ,j the list of rules with the previous order.
4: end for
5: for h ← 0 to q − 1 do
6: for all α ∈ {−, 0,+} do
7: The set of rules of the form u[v]αh → u′[v′]α

′

h ⊆
RΠj is ordered lexicographically with respect of
u, v, u′, v′.

8: Be LRΠ,j,h,α the list of rules with the previous order.
9: end for

10: end for
11: return {LR,E,j , LRΠ,j,h,α 0 ≤ j ≤ m − 1, 0 ≤ h ≤

q − 1, α ∈ {−, 0,+}}

Function Initialize-selection-phase (j, t, C ′t, Ct, LR,E,j ,
{LRΠ,j,h,α 0 ≤ h ≤ q − 1, α ∈ {−, 0,+}}, q, m, K,
{fr,j : r ∈ RΠ})

1: Dj ← New array of triples < rule −
id, float, integer >, representing <
rule, probability, selection−number > respectively, of
size:

∑q−1
h←0maximumα∈{−,0,+}{Length(LRΠ,j,h,α

)}+
Length(LRE,j )

2: maxDj ← 0

3: for h ← 0 to q − 1 do
4: α ← charge of membrane h in environment j, from

Ct
5: for all r ∈ LRΠ,j,h,α

do
6: p ← fr,j(t)
7: if p > 0 then
8: Dj [maxDj ] ← < r, p, 0 >
9: maxDj ← maxDj + 1

10: end if
11: end for
12: Bj [h] ← false
13: end for
14: for all r ∈ LRE,j do
15: p ← p(x,j,j1,...,js)(t)
16: if p > 0 then
17: Dj [maxDj ] ← < r, p, 0 >
18: maxDj ← maxDj + 1
19: end if
20: end for
21: return maxDj , Dj , Bj

Function Is-consistent (r, j, B, C)

1: check ← true
2: if r is of the form u[v]αh → u′[v′]α

′

h then
3: β ← charge of membrane h in Πj ∈ C
4: if B[h] = true ∧ α′ 6= β then
5: check ← false
6: end if
7: end if
8: return check

Function Count-applications (r, j, C)

1: if r is of the form (x)ej
p(x,j,j1,...,js)−−−→ (x1)ej1 , . . . , (xs)ejs

then
2: n ← multiplicity of object x in environment ej ∈ C
3: else if r is of the form u[v]αh → u′[v′]α

′

h then
4: n ← minimum value such that un appears in the

multiset of the upper compartment of h in Πj ∈ C
and vn appears in the multiset of h in Πj ∈ C

5: end if
6: return n

Procedure Remove-left-hand-rule-objects (r, j, n, C)

1: if r is of the form (x)ej
p(x,j,j1,...,js)−−−→ (x1)ej1 , . . . , (xs)ejs

then
2: Remove the multiset xn from environment ej ∈ C
3: else if r is of the form u[v]αh → u′[v′]α

′

h then
4: Remove the multiset un from the multiset of the parent

membrane of h in Πj ∈ C
5: Remove the multiset vn from the multiset of membrane

h in Πj ∈ C
6: end if



Procedure Update-charge (r, j, C)

1: if r is of the form u[v]αh → u′[v′]α
′

h then
2: Assign α′ to the electrical charge of membrane h in

Πj ∈ C
3: end if

Procedure Swap (D, i, j)

1: aux ← D[i]
2: D[i] ← D[j]
3: D[j] ← aux

Procedure Add-left-hand-rule-objects (r, j, n, C)

1: if r is of the form (x)ej
p(x,j,j1,...,js)−−−→ (x1)ej1 , . . . , (xs)ejs

then
2: Add the multisets xn1 , . . . , x

n
s to the environments

ej1 , . . . , ejs ∈ C, respectively.
3: else if r is of the form u[v]αh → u′[v′]α

′

h then
4: Add the multiset u′n to the multiset of the parent

membrane of h in Πj ∈ C
5: Add the multiset v′n from the multiset of membrane h

in Πj ∈ C
6: end if

V. PERFORMANCE EVALUATION

In order to test the performance of our parallel implemen-
tation, we have created four simple P systems with the same
skeleton, that has no biological meaning.

The four test P systems are multienvironment functional-
probabilistic P systems with active membranes of degrees
(2, 2), (4, 2), (8, 2) and (16, 2) (2 membranes per P system,
and only varying the number of environments per each) with
electrical charges (0,+,−), of the following form:

Π = (G,Γ, µ,R, T, {fr : r ∈ R},M1,M2)

, where:
• G is a empty graph because RE = φ.
• Γ = {a, b, x, y, z, r, fi, gi : 1 ≤ i ≤ 1000}
• µ = [[]2]1 is the membrane structure.

– M1 = {a232} ∪ {fi, gi : 1 ≤ i ≤ 1000}
– M2 = {b232}

• The rules R to apply are:

r1 ≡ a, fi[b]02
0.8−−−→ a, fi[b, x]02, 1 ≤ i ≤ 1000

r2 ≡ a, fi[b]02
0.2−−−→ a, fi[b, y]02, 1 ≤ i ≤ 1000

r3 ≡ a, gi[b]02
0.9−−−→ a, gi[b, z]

0
2, 1 ≤ i ≤ 1000

r4 ≡ a, gi[b]02
0.1−−−→ a, gi[b, r]

0
2, 1 ≤ i ≤ 1000

These four P systems have been simulated using PLingua-
Core with the three available implementations written in Java:
binomial block based (binomial in short), DNDP sequential
and DNDP parallel algorithms. The simulations have been
executed in a computer with an Intel core2 Quad Q9550
system running at 2.83GHz with 4GB of main memory, and
using Ubuntu Linux Server 8.04 with the Java Virtual Machine
1.6.0.

Figure 1 shows the simulation time for the three implemen-
tations simulating the example depicted above. It can be seen
that the DNDP sequential code is a little bit faster than the
binomial one. As the complexity of the P system increments
(in this example, the number of environments), the DNDP
reaches better performance. In this experiment, we report up
to 1,07x of speedup for the P system with 16 environments.

Furthermore, the parallel implementation of the DNDP
algorithm has a better overall performance than the other two.
Using a 4 cores based computer, the Java Virtual Machine
distributes the threads (assigned to each environment of the
system) among them. In this way, for the P system with 16
environments, we report a 1,72x of speedup with respect to
the DNDP sequential, and 1,84x with the binomial.
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Fig. 1. Simulation time of the three different implementations in a 4 cores
based computer

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a novel algorithm for mul-
tienvironment functional probabilistic P systems with active
membranes. The new applications of this model to the field
of Population (Ecosystems) Dynamics leads to search for new
and efficient algorithms.

We have presented the previous algorithm, called binomial
block based algorithm, and studied the deficiencies in the
simulation. Then, we have based on the idea presented by
V. Nguyen et al. [8] in order to improve it. Finally, we have
developed an algorithm, called DNDP, performing object dis-



tribution, maximal consistency and calculation of probability
functions. A parallel implementation is also provided.

The algorithm DNDP is divided in two phases, one for
selection and other for execution of rules. The first phase
is also divided in other two micro phases, a first selection
phase which generates a consistent set of applicable rules,
and a second selection phase that changes the previous set
for maximal application.

We show that this algorithm solvents the restrictions pre-
sented in the previous one, and also achieves better perfor-
mance thanks to the parallel implementation. However, the
algorithm needs to be more flexible. If the model to be
simulated does not have normalized probabilities for object
competition, the simulator would need to perform the normal-
ization automatically.

Moreover, the models are increasing in complexity, so that
efficient and parallel implementations have to be developed.
We will study to use parallel architectures, such as GPGPUs
and CUDA [5], to speedup the simulation.
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