
MeCoSim: A General Purpose Software Tool for
Simulating Biological Phenomena by Means of P

Systems
I. Pérez-Hurtado #1, L. Valencia-Cabrera #2, M.J. Pérez-Jiménez #3, M.A. Colomer ∗4 , A. Riscos-Núñez #5

# Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence, University of Sevilla

Av. Reina Mercedes s/n, 41012 Sevilla, Spain
1 perezh@us.es

2 luivalcab@alum.us.es
3 marper@us.es

5 ariscosn@us.es
∗ Dpt. of Mathematics, University of Lleida

Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
4 colomer@matematica.udl.es

Abstract—In recent years, the increasing importance of the
computational systems biology is leading to an impressive growth
of the knowledge of several real-life phenomena. In this frame-
work, membrane computing is an emergent branch within natural
computing that has been succesfully used to model biological
phenomena. The study of these phenomena usually requires the
execution of virtual experiments using mechanisms of simulation,
implying the development of ad-hoc tools to simulate. However,
the advance of the research is demanding general solutions
to avoid the necessity of custom software developments for
each matter of study, when there are some common problems
to resolve. MeCoSim (Membrane Computing Simulator) is a
first step in this direction providing the users a customizable
application to generate custom simulators based on membrane
computing by simply writing a configuration file.

I. INTRODUCTION

Membrane computing is an emergent branch within natural
computing that was initiated by Gh. Păun in 1998 [7]. The
main idea is to consider biochemical processes taking place
inside living cells from a computational point of view, in a way
that give us a new non-deterministic model of computation. In
this sense, the computational devices in membrane computing
are called P systems [12].

P systems have several syntactic ingredients: a membrane
structure consisting of a hierarchical arrangement of mem-
branes embedded in a skin membrane, and delimiting regions
or compartments where sets of objects and sets of evolution
rules are placed. P systems also have two main semantics
ingredients: their inherent parallelism and non-determinism.

The objects inside the membranes can evolve according to
given rules in a synchronous (in the sense that a global clock
is assumed), parallel, and non-deterministic way. Computation
of P system is a finite or infinite sequence of instantaneous
configurations, as shown in Figure 1. Computation always
starts with an initial configuration of the system, where the

input data is encoded.

���������	
�	�����

��������

������

�����

�����	�����

�

�

�

�

���

�

�

	

�



�

����
	

����

�




�

�

�

�

Fig. 1. Structure and main components of a P system

Although most researches in P systems concentrates on
the computational power and efficiency of the devices in-
volved, lately they have been used to model biological phe-
nomena within the framework of Computational Systems
Biology. P systems provide a modelling approach to bio-
logical systems fulfilling the requirements of a good mod-
elling framework: relevance, understandability, extensibility
and computational/mathematical tractability. In this case, P
systems are used as a formalism for describing the behaviour
of the system to be modelled. Several P systems models
have been introduced to define oscillatory systems [5], signal
transduction [3], [9], gene regulation control [10], quorum
sensing [11], metapopulations [8] and population dynamics
(biological ecosystems) [2], [1].

In [1], a P system based general framework for modelling
ecosystem dynamics by means of P systems was presented.
In contrast to differential equations, P systems explicitly rep-
resent the discrete character of the quantity of components of



an ecosystem by using rewriting rules on multisets of objects
which represent the variables of the system. The inherent
stochasticity, external noise and uncertainty in cellular systems
is captured by using probabilistic strategies.

The mentioned framework allows us to study the simulta-
neous evolution of a high number of species. Furthermore, its
modularity enables the addition of new ingredients in a quite
simple way. In this sense, ecosystems are specified by means
of multienvironment P systems composed by finite number
of environments, each one containing the same membrane
structure with active membranes (where membranes play a
relevant role for the application of rules). The semantics is
probabilistic-type and it is implemented by assigning each rule
a probabilistic constant which depends on the environment and
the run time.

A simulator was presented in [1] accompanying the mod-
elling framework. It provides a flexible way to check, ex-
perimentally validate and improve computational models of
ecosystems based on P systems. Furthermore, it is possible to
change the initial parameters of the modelled ecosystems in
order to make the virtual experiments suggested by experts.
These experiments will provide results that can be interpreted
in terms of hypotheses. Finally, some of these hypotheses will
be selected by the experts in order to be checked in real
experiments.

The simulator has been developed in Java programming
language [15] by using the simulation core based on P-
Lingua [6], [13] and pLinguaCore [6], [14]. P-Lingua is a
programming language to define P systems in an easy-to-
learn, parametric and modular way, and pLinguaCore is a Java
library under GNU GPL license [19] which implements several
simulation algorithms for P systems. Moreover, the simulator
presented in [1] allows two different types of users: the first
one is the designer user, who is the responsible for defining,
debugging and validating the model; and the second one is the
end-user, who uses the software in order to develop virtual
experiments over the ecosystem.

One of the main problems for the mentioned simulator is
the need to design, develop and maintain several different
graphic user interfaces (GUIs), each one developed ad hoc
for each modelled ecosystem. At this moment, there are two
subversions focused on two real and relevant ecosystems, the
first one is related to an endangered species (the bearded
vulture) and the second one is related to an exotic and invasive
species (the zebra mussel). Both variants have different GUIs
but the same simulation core.

In this paper, it is presented MeCoSim, a new software
application which allows the same functionality of its prede-
cessor but enables the designer user for creating specific GUIs
through the database definition. Thus, it has been provided an
easy-to-use method for creating new ad hoc GUIs for specific
ecosystem models. In this sense, the development of the GUI
in a programming language has been avoided, delegating this
process on the designer user.

This paper is structured as follows: the protocols for ex-
perimental validation of computational models and virtual

experimentation by using software tools are discussed in
Section II. In the next section, the features of a first software
tool presented in [1] in order to simulate computational models
of ecosystems based on P systems are enumerated, as well as
the different user roles. In Section IV, MeCoSim, a general
purpose software tool for simulating biological phenomena by
means of P systems is presented, showing its main features.
A case study about a model of a ecosystem related to the
Pyreneen Chamois is presented in the next section, focusing
on the configuration of MeCoSim in order to generate a custom
simulator. Finally, in Section VI, some conclusions and future
work are discussed.

II. EXPERIMENTAL VALIDATION AND VIRTUAL
EXPERIMENTATION

The inherent randomness in the dynamics of ecosystems
makes it unfeasible the formal validation of models that
attempt to reproduce their behaviour. It is therefore necessary
an experimental validation by comparison of results generated
by simulation tools with experimental data obtained directly
from the real ecosystem.

The experimental validation protocol is extensible to any
computational model of real-life processes and includes incre-
mental debugging of the model, as shown in Figure 2.

REALLIFE PROCESS
(e.g. an ecosystem)

DATA

Carrying out
 studies/experimets

MODEL VALIDATION VALIDATED
MODEL

Inspiration

Inspiration

Run virtual 
experiments

Simulator

Fail

Success

Compare results

Fig. 2. Experimental validation protocol

The protocol is as follows:

1) The first step consists of stating the specific part of the
system one wants to model, the objectives to achieve,
the questions to be addressed and how the model will
be analysed.

2) Extraction of quantitave and qualitative data of the real-
life process to study.

3) Design of a model based on probabilistic P systems [1]
through information provided by experts and after a
process of interaction with them.

4) Development of a simulation tool to reproduce the
behaviour of the process over a period of time that has



been previously studied and which have experimental
data.

5) Comparison of the results obtained by the simulator with
the data obtained experimentally. If the margin of error
is acceptable, then it is considered that the model has
been validated experimentally. Otherwise, it will return
to step 2 in an iterative process.

The development of a software tool in order to simulate
the behaviour of the model is fundamental for validating and
debugging the model. Moreover, once a model is validated, it
is possible to use the software tool to analyze the dynamics of
the real-life process for different virtual scenarios that could
be interesting for the experts in order to formulate plausible
hypotheses, as shown in Figure 3.

VALIDATED
MODEL

Run virtual 
experiments

Simulator

HYPOTHESES FILTER REAL
 EXPERIMENTS

NEW
KNOWLEDGE

Expert

SELECTED 
HYPOTHESES

Suggest
virtual
experiments

Check results

Fig. 3. Virtual experimentation protocol

The protocol for virtual experimentation is as follows:
1) The experts on the modelled real-life process suggest

some initial scenarios in order to study the evolution of
the system.

2) The initial parameters that determine the hypothetical
scenario for each virtual experiment are configured in
the software tool through the GUI and the correspond-
ing simulations are performed through the execution
of simulation algorithms. The results provide plausible
hypotheses about the evolution of the real-life process
for some specific initial conditions.

3) The experts filter the obtained hypotheses, discarding
those considered less plausible.

4) In some cases where possible, the selected hypotheses
will be confirmed through real experiments.

III. A SOFTWARE TOOL FOR EXPERIMENTAL VALIDATION
AND VIRTUAL EXPERIMENTATION

In [1] a software tool was presented that simulates the
modelled ecosystems. It provides two operating modes, each
of them addressed to a specific user type: the end-user and the
designer user. The program allows several types of actions for
each user category.

On the one hand, the end-user does not need to know any-
thing about membrane computing, and the program behaves
as a black box for him. The goal of the end-user is to develop
virtual experiments on the ecosystem and, for this purpose,
the program allows the next actions:

• Initialization of parameter values of the ecosystem.
• Selection of the number of years to simulate.
• Selection of the total number of simulations per year.
• Saving/loading the values of initial parameters to/from

files.
• Execution of simulations.
• Generation of statistical results by means of graphics.
• Saving the results to files.
Note that the name of parameters are specified by the

designer user (through a spreadsheet, as it will be mentioned
in section IV), but the values of such parameters need to be
provided by the end-user, either directly through the interface
or by loading a file.

With these actions, the end-user can modify the initial
conditions of the ecosystem and run simulations, and then
collect the results interactively in graphics files. For each
simulated year, a number of simulations are produced and the
average values as well as the standard deviation are saved. The
graphics are saved in png format and the initial parameters of
the ecosystem are saved in binary files with .ec2 extension. In
Figure 4, the graphics user interface is shown.

Fig. 4. A simulation tool

Transparently to the end-user, the program instantiates in
each simulation a P system exhibiting the behavior of the
ecosystem with the initial parameters entered for each sim-
ulation.

The designer user is responsible for specifying, debugging
and validating the family of P systems used by the program.
We can say that validation is performed experimentally, by
comparing simulation results with actual data obtained from
the ecosystem. Each simulated year corresponds to a number
of computational steps of the P system, with this information
also entered by the designer user.

The specification of the family of P systems in order to
model a specific ecosystem is written in a P-Lingua file. The



files codifying computational models in P-Lingua have .pli
extension.

The program offers the designer the same actions as it does
to the end-user, plus some additional actions to facilitate the
debugging process:

• Edition of P-Lingua files.
• Compilation of P-Lingua files.
• Simulation step by step.
• Selection of the number of computational steps per year.
The application is cross-platform and it has been developed

in Java programming language along with the Swing graphical
environment [20] by using the following libraries:

• pLinguaCore [14], which is responsible for processing
P-Lingua files and performing simulations.

• Colt [16], which is responsible for generating random
numbers.

• JDom [17] for processing XML files.
• JFreeChart [18], which is responsible for generating the

graphics after each simulation.
The pLinguaCore library implements different simulation

algorithms for multienvironment funcional-extended proba-
bilistic P systems with active membranes, providing a good
efficiency.

IV. MECOSIM: A GENERAL PURPOSE APPLICATION TO
SIMULATE VIRTUAL EXPERIMENTS BASED ON MEMBRANE

COMPUTING

In section II we explained the necessity of making virtual
experiments to model and analyze the dynamics of ecosystems
and, as shown in Figure 2, there is a protocol to experimentally
validate a model. The third step in this protocol required the
development of a simulation tool to make this validation.

As justified in Section III, in order to make the referred
validation, in [1] it was presented a software tool that has
been successfully used to simulate the following ecosystems:

1) Scavenger Birds in the Catalan Pyrenees (Spain).
2) Zebra mussel in the reservoir of Ribarroja (Spain).
Both models of ecosystems implied the development of

ad-hoc specific purpose applications, based in the structure
introduced in Section III. If we would need to analyze other
ecosystem, the previous protocol establish the necessity of de-
veloping another software tool to cover the specific necessities
of the problem domain, with different factors, input data, etc.

However, the referred specific tools share the same sim-
ulation core (pLinguaCore) to simulate the dynamics of the
ecosystems and the same method to define P systems (P-
Lingua). And what is more, this core provides algorithms
that are not exclusive for ecosystems, including simulation
algorithms for probabilistic P systems with active membranes,
stochastic P systems and others.

These reasons introduce the necessity of providing a general
solution to make virtual experiments based on models of
different ecosystems and other real-life biological phenomena
within the framework of membrane computing. The increasing

importance of Computational and Systems Biology is demand-
ing general solutions to avoid the necessity of developing new
ad-hoc software tools for each new phenomena or problem to
study.

MeCoSim (Membrane Computing Simulator) try to make
a move towards this direction, introducing a general purpose
application to make virtual experiments inside the framework
of membrane computing, avoiding ad-hoc developments of
specific tools for each particular scenario or biological phe-
nomena/problem to study.

In this sense, experimental validation will suffer a change,
replacing the development of a simulation tool for the sim-
ple configuration of a file with the particular necessities of
the specific scenario. This significantly reduces the time-to-
market to validate a computational model based on P systems.
Consequently, this allows us to advance faster the analysis of
biological phenomena by means of P Systems.

To make this process possible, MeCoSim provides an ap-
plication that offers the user the capabilities of the mentioned
tools of Section III (designer and end-user capabilities) for
different modelling scenarios. Thus, it delegates to the designer
the task of configuring/customizing the application for each
specific scenario.

To summarize, MeCoSim offers to the users (designer
and end-user) a highly customizable simulators generator to
apply simulation algorithms for P systems modelling several
scenarios object to study. Thus, MeCoSim is a final product
that avoid the necessity of ad-hoc GUI development per each
scenario, introducing enough flexibility to permit the designer
user to generate a simulator adapted to the scope of the domain
of study of the end-user, with the inputs, parameters and
outputs he need.

The process to adapt MeCoSim to each scenario requires
the definition of a configuration file. The structure of the
file is provided to the designer user in order to configure
the custom simulator he wants to generate. After that, the
file is processed by MeCoSim, that loads it in an embed
database and generates the custom simulator that complies
with the information introduced by the designer user. With this
simple task done by the designer and without any software
development, the end-user will get a custom simulator for
his specific domain problem or case study. A change in the
original model structure (desired structure of inputs, outputs or
parameters) will be reflected in the simulator with the simple
change of the configuration file and its reload in MeCoSim.

The configuration file permits the introduction of the fol-
lowing information:

• General data about the simulator (custom simulator name,
number of years to simulate, paths to .ec2 and .pli files,
among others).

• Tabs hierarchy in the main window (visual organizative
elements to structure the inputs and outputs in the simu-
lator).

• Input tables configuration (information about the input
tables to enter the information of the studied phenomena).



• Parameters configuration (information about parameters
to use during the simulation).

• Output elements configuration (information about ta-
bles/graph to show from the output of the simulation).

The designer user will fill the required information in this file
through the use of a spreadsheet (OpenOffice.org Calc [22],
Microsoft Excel [21], etc.), and the resulting file will be
introduced in MeCoSim. The simulator generator will read
the information in the configuration file through the use of the
Jakarta POI Library [23] (this library permit reading/writing
speadsheet files, including formula evaluation support), that
will load this info into a SQLite embed database [24]. SQLite
offers an Application Programming Interface (API) with the
advantages of a relational database, permitting the use of
standard SQL queries, but with an inner engine that integrates
with the calling application, increasing the efficiency, and
a simple file that contains the definition and inner data of
the tables it use. The access to this database is done by an
implementation [25] of the standard persistence engine JPA
2.0 of Java.

V. A CASE STUDY: MODELLING AND SIMULATING THE
ECOSYSTEM OF PYRENEAN CHAMOIS BY MEANS OF P

SYSTEMS USING MECOSIM

The modelling of a biological system is usually complicated,
taking into account the most important factors involved and the
relationships between them. Computational models based on P
system offers significant advantages: modularity, parallelism,
and no limitation on the number of interrelated variables that
evolve in parallel. These properties make them very attractive
for modelling complex ecosystems. There are some aspects
common to most ecosystems such as:

• They are formed by a large number of species.
• The life cycle of the organisms includes some basic

processes such as: feeding, growth, reproduction and
death.

• The cycles can be considered annually.
• The evolution often depends on the environment factors,

such as climatic factors, soil factors, etc.
• The natural dynamics can be modified by means of

human activities.
These common features to all ecosystems have led to the
definition of an appropriate modelling framework based on
P systems and it has been applied to two relevant real
ecosystems [1].

Following, a case study is discussed: the dynamics of the
Pyrenean Chamois in the Catalan Pyrenees (Spain). It is a
small ungulate living in the Catalan Pyrenees, it attracts a
great interest, not only from a hunting standpoint, but also
naturalistic and touristic. At present the existing population in
the Pyrenees is estimated at about 53,000 individuals. The
status of the species has not always been so favorable, in
the late 60s the population decreased down to the edge of
extinction due to indiscriminate hunting. Fortunately National
Hunting Reserves managed by the regional administration
were created in order to save the species.

The Pestivirus disease has a very important impact at the
social and economic scale in the Pyrenees. The media have
publicised the different epidemics extensively as they occur,
reflecting the concerns of local communities, the Government
of Catalonia, ranchers, hiking groups, conservationists and
hunters. The suspension of Pyrenean chamois hunting in the
affected areas has led to major loss of economic income. This
loss is due not only to the lack of direct income through
payment of hunting licences, but also by the disappearance
of the indirect income (ecoturism) that hunters and their
guests bring out. Last but not least, we must highlight the
considerable ecological impact of the sudden disappearance
of this herbivore in the affected areas. Despite the detailed
studies currently being carried out, the resulting consequences
in the ecosystem are still unclear.

The computational model based on P systems for the
dynamics of the Pyreneen Chamois in the Catalan Pyrenees
is presented in [4]. In this section, we discuss the process of
editing a MeCoSim configuration file in order to generate a
custom simulator for the mentioned model, such a software
tool has been used in [4] in order to simulate and debug the
model.

To fill the cited configuration file, the designer uses a
spreadsheet, introducing the following information:

• General Data.
The designer user introduces an application identifier and
an application name to define the ecosystem object to
study, as well as the paths to the .ec2 and .pli files,
the number of years to simulate, the total number of
simulations to generate and the computational steps per
year. He also introduces the mode to use in the program
(designer or end-user).

• Tabs Hierarchy (Figure 5).

Fig. 5. Tabs Hierarchy

The designer establishes the desired structure of tabs
to contain the input and output views of the system to
simulate.

• Input tables (Figure 6).
The designer lists the tables to include in the application
to contain the data of the ecosystem, specifying the
identifiers of the tabs in which the tables will be put,



Fig. 6. Input tables

the number of columns, the initial rows and an indicative
meaning if the content of the table must be saved into
the data file.

• Table columns configuration (Figure 7)

Fig. 7. Table columns configuration

For each table, there must be listed the set of columns,
including an identifier, a name, a tool-tip to show when
the user pass the mouse over each column of the table
and a boolean value indicating if the data of the column
is editable or not.

• P-Lingua parameters (Figure 8)

Fig. 8. P-Lingua parameters

In the parameters tab, the designer lists the sets of
parameters to use in the simulation of the model, with
their name, value and up to 4 indexes for each parameter
to produce final parameters to serve as part of the input
of the simulation.

When the designer user of the P system has introduced the
required information in the configuration file, it can be loaded
into the general purpose application, generating the custom

simulator that matches the specific necessities of the designer
and end-user.

The custom simulator will show the input tables which
permit the end-user to introduce the data for the development
of virtual experiments as shown in Figure 9.

Fig. 9. MeCoSim: A custom simulator

From the input data and the parameters introduced in
the configuration file, the custom application will simulate
the virtual experiments and will show the outputs of the
simulation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a general purpose ap-
plication that experimentally validates computational mod-
els of biological phenomena based on P systems and to
simulate virtual experiments over the models. The last few
years have witnessed an impressive growth of several disci-
plines associated with Systems Biology. The understanding
of biological phenomena frequently requires computational
methods to complement the experimental research, increasing
the knowledge of the phenomena under study. This leads
to researchers developing ad-hoc simulators to run virtual
experiments. However, for research to keep advancing apace
we require a general simulation solution, this will avoid the
situation where the same problems are solved again and again
for the development of each custom software.

MeCoSim makes the first steps in this direction by providing
users with a customizable application to generate custom
simulators of computational models by means of P systems.
To to generate a new custom simulator thee user simply writes
a configuration file.

We have designed a mechanism that avoids having a
software developer write software tools to execute virtual
experiments complying with the users requirements. Thus the
designer can concentrate on the task of writing the configura-
tion file to customize the general purpose application in order
to generate a custom/specific simulator. The next step will be
to facilitate the task of the designer by providing mechanisms
to apply many combinations of different formula over the
input data he writes. This will enrich the possible uses of



the simulator and make the task of the designer significantly
easier.

The focus must be in the automation of effort thus permit-
ting the designer to focus on producing the correct P system
design to suit real-life process the end-user wishes to study.

Keeping in mind the previous idea, we will attempt to
integrate MeCoSim with other formats and applications like
SBML, CellDesigner and other interesting tools. This is ap-
plying the principle that underlies Systems Biology: the whole
is greater than the sum of the parts to software development
by integrating different tools and efforts. By establishing good
interfaces between them we will produce more powerful tools
to provide the community better mechanisms to increase the
global knowledge.

ACKNOWLEDGEMENT

The authors acknowledge the support of the project
TIN2009–13192 of the Ministerio de Educación y Ciencia
of Spain, cofinanced by FEDER funds, and the support of
the “Proyecto de Excelencia con Investigador de Reconocida
Valı́a” of the Junta de Andalucı́a under grant P08-TIC04200.

REFERENCES

[1] M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado,
M.J. Pérez-Jiménez, D. Sanuy. A Computational Modeling for Ecosys-
tems Based on P Systems. Natural Computing, online version
(http://dx.doi.org/10.1007/s11047-010-9191-3).

[2] M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A P system based model of an ecosystem of some
scavenger birds. Lecture Notes in Computer Science, 5957 (2010), 182-
195.

[3] S. Cheruku, A. Păun, F.J. Romero-Campero, M.J. Pérez-Jiménez, O.H.
Ibarra. Simulating FAS-induced apoptosis by using P systems. Progress
Natural Science, 4 17 (2007), 424-431.

[4] M.A. Colomer, S. Lavı́n, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, D. Sanuy, E. Serrano, L. Valencia-Cabrera. Studying
the evolution of Pyrenean Chamois (Rupicapra pyrenaica pyrenaica) by
using P systems. Accepted paper at 11th Conference on Membrane
Computing.

[5] F. Fontana, L. Bianco, V. Manca. P systems and the modeling of
biochemical oscillations. Lecture Notes in Computer Science, 3850
(2006), 199-208.

[6] M. Garcı́a-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. Lecture
Notes in Computer Science, 5957 (2010), 264-288.

[7] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61, 1 (2000), pp. 108–143, and Turku Center for Computer
Science-TUCS Report No 208.

[8] D. Pescini, D. Besozzi, G. Mauri, C. Zandron. Dynamical probabilistic
P systems. International Journal of Foundations of Computer Science,
1 17 (2006), 183-195.

[9] M.J. Pérez-Jiménez, F.J. Romero-Campero. P systems, a new computa-
tional modelling tool for systems biology.Transactions on computational
systems biology VI. Lecture Notes in Bioinformatics 42220 (2006),
176–197.

[10] M.J. Pérez-Jiménez, F.J. Romero-Campero. Modelling gene expression
control using P systems: The lac operon, a case study. Biosystems 3 91
(2008), 438-457.

[11] F.J. Romero-Campero, M.J. Pérez-Jiménez. A model of the Quorum
Sensing system in Vibrio Fischeri using P systems. Artificial Life, 14 1
(2008), 95–109.

[12] P systems web page http://ppage.psystems.eu
[13] The P-Lingua website http://www.p-lingua.org/
[14] The pLinguaCore library website

http://www.p-lingua.org/wiki/index.php/PLinguaCore
[15] The Java web page http://www.java.com/
[16] The Colt library website http://acs.lbl.gov/ hoschek/colt/

[17] The JDom library website http://www.jdom.org/
[18] The JFreeChart library website http://www.jfree.org/jfreechart/
[19] GNU GPL License http://www.gnu.org/licenses/gpl.html
[20] The Java Swing classes

http://java.sun.com/javase/6/docs/technotes/guides/swing/
[21] Microsoft Excel http://office.microsoft.com/
[22] OpenOffice.org Calc http://www.openoffice.org/
[23] Jakarta POI library http://poi.apache.org/
[24] SQLite database http://www.sqlite.org/
[25] The Eclipse Integrated Development Environment

http://www.eclipse.org/


