
Handling Languages with Spiking Neural P

Systems with Extended Rules

Haiming Chen1, Tseren-Onolt Ishdorj3, Gheorghe Păun2,3,
Mario J. Pérez-Jiménez3

1Computer Science Laboratory, Institute of Software
Chinese Academy of Sciences

100080 Beijing, China
chm@ios.ac.cn

2Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3Research Group on Natural Computing
Department of Computer Science and AI

University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain

tseren@yahoo.com, gpaun@us.es, marper@us.es

November 18, 2006

Abstract

We consider spiking neural P systems with spiking rules allowed to
introduce zero, one, or more spikes at the same time. A tool-kit for com-
puting (some) operations with languages generated by such systems is
provided. Computing the union of languages is easy. However, comput-
ing the concatenation or the intersection with a regular language is not
so easy. A way to compute weak encoding is also provided. The main re-
sults of the computing power of the obtained systems are then presented,
when considering them as number generating and as language generating
devices. In particular, we find direct characterizations of finite and recur-
sively enumerable languages (without using any squeezing mechanism, as
it was necessary in the case of restricted rules).

1



1 Introduction

We combine here two ideas recently considered in the study of the spiking neural
P systems (in short, SN P systems) introduced in [3], namely the extended rules
from [5] and the string generation from [1].

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)
along synapses (edges of the graph), under the control of firing rules. One
neuron is designated as the output neuron of the system and its spikes can exit
into the environment, thus producing a spike train. Two main kinds of outputs
can be associated with a computation in an SN P system: a set of numbers,
obtained by considering the number of steps elapsed between consecutive spikes
which exit the output neuron, and the string corresponding to the sequence of
spikes which exit the output neuron. This sequence is a binary one, with 0
associated with a step when no spike is emitted and 1 associated with a step
when a spike is emitted.

The case of SN P systems as number generators was investigated in several
papers, starting with [3], where it is proved that such systems are Turing com-
plete (hence also universal, because the proof is constructive; universality in a
rigorous framework was investigated in [5]). In turn, the string case is investi-
gated in [1], where representations of finite, regular, and recursively enumerable
languages were obtained, but also finite languages were found which cannot be
generated in this way.

Here we consider an extension of the rules, already used in [5], namely we
allow rules of the form E/ac

→ ap, with the following meaning: if the content of
the neuron is described by the regular expression E, then c spikes are consumed
and p are produced and sent to the neurons to which there exist synapses leaving
the neuron where the rule is applied (more precise definitions will be given in
the next section). Thus, these rules cover and generalize at the same time both
spiking rules and forgetting rules as considered so far in this area – with the
mentioning that we do not also consider here a delay between firing and spiking,
because in the proofs we never need such a delay.

In Section 3 we present constructions of SN P systems for computing some
usual operations with languages: union, concatenation, weak coding, intersec-
tion with regular languages. Computing the union of languages is easy, but
computing the concatenation or the intersection with a regular language is not
so easy. A way to compute weak encoding is also provided. The main results of
the computing power of these systems are recalled in Section 4. As expected,
the use of extended rules allows much simpler constructions for the proof of uni-
versality in the case of considering SN P systems as number generators. More
interesting is the case of strings produced by SN P systems with extended rules:
we associate a symbol bi to a step when the system sends i spikes into the
environment, with two possible cases – b0 is used as a separated symbol, or it
is replaced by λ (sending no spike outside is interpreted as a step when the
generated string is not grown). The first case is again restrictive: not all mini-
mal linear languages can be obtained, but still results stronger than those from

2



[1] can be proved in the new framework because of the possibility of removing
spikes under the control of regular expressions. The freedom provided by the
existence of steps when we have no output makes possible direct characteriza-
tions of finite and recursively enumerable languages (not only representations,
modulo various operations with languages, as obtained in [1] for the standard
binary case).

References

[1] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string
languages generated by spiking neural P systems. Proc. Fourth Brainstorm-

ing Week on Membrane Computing, vol. I, Sevilla, 2006, 169–193. Available
at [9].

[2] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez. Spiking neural P
systems with extended rules. Proc. Fourth Brainstorming Week on Mem-

brane Computing, vol. I, Sevilla, 2006, 241–265. Available at [9].

[3] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Funda-

menta Informaticae, 71, 2-3 (2006), 279–308.

[4] M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, NJ, 1967.

[5] A. Păun, Gh. Păun: Small universal spiking neural P systems. BioSystems,
to appear, 2006.

[6] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neu-
ral P systems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

[7] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 vol-
umes. Springer-Verlag, Berlin, 1997.

[8] A. Salomaa: Formal Languages. Academic Press, New York, 1973.

[9] The P Systems Web Page: http://psystems.disco.unimib.it.

3


