
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

SPIKING NEURAL P SYSTEMS: AN EARLY SURVEY

GHEORGHE PĂUN

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

MARIO J. PÉREZ-JIMÉNEZ

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: marper@us.es

ARTO SALOMAA

Turku Center for Computer Science – TUCS

Lemminkäisenkatu 14, 20520 Turku, Finland
asalomaa@utu.fi

Spiking neural P systems were introduced in the end of the year 2005, in the aim of in-
corporating in membrane computing the idea of working with unique objects (“spikes”),
encoding the information in the time elapsed between consecutive spikes sent from a
cell/neuron to another cell/neuron. More than one dozen of papers where written in the
meantime, clarifying many of the basic properties of these devices, especially related to
their computing power.

The present paper quickly surveys the basic ideas and the basic results, presenting a
complete to-date bibliography, and also giving a completing result related to the normal
forms possible for spiking neural P systems: we prove that the indegree of such systems
(the maximal number of incoming synapses of neurons) can be bounded by 2 without
losing the computational completeness.

A series of research topics and open problems are formulated.

Keywords: spiking neuron, membrane computing, P system, register machine, semilinear
set, normal form, Chomsky hierarchy

2000 Mathematics Subject Classification: 68Q10, 68Q42, 68Q45

1. Introduction; A Quick Overview of the Literature

Spiking neural P systems (SN P systems, for short) were introduced in [13] in the aim

of defining computing models based on ideas specific to spiking neurons, currently

much investigated in neural computing (see, e.g., [7], [15], [16]). The resulting models

1



2 Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa

are a variant of tissue-like and neural-like P systems from membrane computing

(see [19] and the up-to-date information at the web site [24]), with very specific

ingredients and way of functioning.

Very shortly, an SN P system consists of a set of neurons (cells, consisting of only

one membrane) placed in the nodes of a graph and sending signals (spikes, denoted

in what follows by the symbol a) along synapses (edges of the graph). Thus, the

architecture is that of a tissue-like P system, with only one kind of objects present

in the cells. The objects evolve by means of spiking rules, which are of the form

E/ac → a; d, where E is a regular expression over {a} and c, d are natural numbers,

c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that ak ∈ L(E)

can consume c spikes and produce one spike, after a delay of d steps. This spike is

sent to all neurons to which a synapse exists outgoing from the neuron where the

rule was applied. We will give details in Section 2. There also are forgetting rules,

of the form as → λ, with the meaning that s ≥ 1 spikes are forgotten, provided

that the neuron contains exactly s spikes. We say that the rules “cover” the neuron,

all spikes are taken into consideration when using a rule. (This is another major

difference with respect to usual P systems, where a sub-multiset of the multiset of

objects is “rewritten” by each applied rule.) The system works in a synchronized

manner, i.e., in each time unit, each neuron which can use a rule should do it,

but the work of the system is sequential in each neuron: only (at most) one rule is

used in each neuron. One of the neurons is considered to be the output neuron, and

its spikes are also sent to the environment. The moments of time when a spike is

emitted by the output neuron are marked with 1, the other moments are marked

with 0. This binary sequence is called the spike train of the system – it might be

infinite if the computation does not stop.

In the spirit of spiking neurons, the result of a computation is encoded in the

distance between consecutive spikes sent into the environment by the (output neuron

of the) system. (This idea, of taking the distance between two events as the result

of a computation, was already considered for symport/antiport and for catalytic P

systems in [1].) In [13] only the distance between the first two spikes of a spike train

was considered, then in [21] several extensions were examined: the distance between

the first k spikes of a spike train, or the distances between all consecutive spikes,

taking into account all intervals or only intervals that alternate, all computations

or only halting computations, etc.

Systems working in the accepting mode were also considered: a neuron is desig-

nated as the input neuron and two spikes are introduced in it, at an interval of n

steps; the number n is accepted if the computation halts.

Two main types of results were obtained: computational completeness in the

case when no bound was imposed on the number of spikes present in the system,

and a characterization of semilinear sets of numbers in the case when a bound was

imposed.

Another attractive possibility is to consider the spike trains themselves as the

result of a computation, and then we obtain a (binary) language generating device.



Spiking Neural P Systems: An Early Survey 3

We can also consider input neurons and then an SN P system can work as a trans-

ducer. Such possibilities were investigated in [22]. Languages – even on arbitrary

alphabets – can be obtained also in other ways: following the path of a designated

spike across neurons, as proposed in [4] (this essentially resembles the trace lan-

guages investigated for usual P systems, see [19] and [24]), or generalizing the form

of rules. Specifically, one uses rules of the form E/ac → ap; d, with the meaning

that, provided that the neuron is covered by E, c spikes are consumed and p spikes

are produced, and sent to all connected neurons after d steps (such rules are called

extended). Then, with a step when the system sends out i spikes, we associate a

symbol bi, and thus we get a language over an alphabet as many symbols as the

number of spikes simultaneously produced. This case was investigated in [6].

Other extensions were proposed in [11] and [10], where several output neurons

were considered, thus producing vectors of numbers, not only numbers. A detailed

typology of systems (and generated sets of vectors) is investigated in the two papers

mentioned above, with classes of vectors found in between the semilinear and the

recursively enumerable ones.

The proofs of all computational completeness results known up to now in this

area are based on simulating register machines. Starting the proofs from small uni-

versal register machines, as those produced in [14], one can find small universal SN

P systems (working in the generating mode, as sketched above, or in the computing

mode, i.e., having both an input and an output neuron and producing a number

related to the input number). This idea was explored in [18] and the results are as

follows: there are universal computing SN P systems with 84 neurons using stan-

dard rules and with only 49 neurons using extended rules. In the generative case,

the best results are 79 and 50 neurons, respectively. Of course, these results are

probably not optimal, hence it is a research topic to improve them.

In the initial definition of SN P systems several ingredients are used (delay,

forgetting rules), some of them of a general form (general synapse graph, general

regular expressions). As shown in [9], rather restrictive normal forms can be found,

in the sense that some ingredients can be removed or simplified without losing the

computational completeness. For instance, the forgetting rules or the delay can be

removed, while the outdegree of the synapse graph can be bounded by 2, and the

regular expressions from firing rules can be of very restricted forms.

The dual problem, of the indegree bounding, was formulated as an open problem

in [9]. We solve here this problem, proving, like in the case of the outdegree, that

again a normal form holds true: systems with indegree two are computationally

complete.

In the next section we will introduce the spiking neural P systems, then (Sec-

tion 3) we will give some examples, also introducing in this way other ways of

using them (generating strings, considering traces). Section 4 presents some results,

without proofs, illustrating the computing power of these devices. Section 5 gives

the indegree normal form mentioned above. Further remarks and, mainly, further

research topics are mentioned in Section 6.



4 Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa

References

[1] M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-related outputs of computations
in P systems. Proc. Third Brainstorming Week on Membrane Computing, Sevilla,
2005, RGNC Report 01/2005, 107–122.

[2] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In [8], Vol. I, 169–194.

[3] H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems. In
[8], Vol. I, 195–206.

[4] H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages generated by
spiking neural P systems. In [8], Vol. I, 207–224, and Proc. DCFS2006, Las Cruces,
NM, June 2006.

[5] H. Chen, T.-O. Ishdorj, Gh. Păun: Computing along the axon. In [8], Vol. I, 225–240.
[6] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems

with extended rules. In [8], Vol. I, 241–265.
[7] W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-

ticity. Cambridge Univ. Press, 2002.
[8] M.A. Gutiérrez-Naranjo et al., eds.: Proceedings of Fourth Brainstorming Week on

Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006.
[9] O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth: Nor-

mal forms for spiking neural P systems. In [8], Vol. II, 105–136.
[10] O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural P

systems. In Pre-proceedins of Seventh Workshop on Membrane Computing, WMC7,
Leiden, The Netherlands, July 2006.

[11] O.H. Ibarra, S. Woodworth, F. Yu, A. Păun: On spiking neural P systems and par-
tially blind counter machines. In Proceedings of Fifth Unconventional Computation

Conference, UC2006, York, UK, September 2006.
[12] M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking neural

P systems: Traces and small universal systems. In Proceedings of 12th DNA Based

Computing Conference, DNA12, Seul, June 2006.
[13] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-

maticae, 71, 2-3 (2006), 279–308.
[14] I. Korec: Small universal register machines. Theoretical Computer Science, 168 (1996),

267–301.
[15] W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-

cessing of TELEMATIK, 8, 1 (2002), 32–36.
[16] W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
[17] M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
[18] A. Păun, Gh. Păun: Small universal spiking neural P systems. In [8], Vol. II, 213–234.
[19] Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
[20] Gh. Păun: Languages in membrane computing. Some details for spiking neural P

systems. In Proceedings of Developments in Language Theory Conference, DLT 2006,
Santa Barbara, CA, June 2006.

[21] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., to appear (also available at [24]).

[22] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural
P systems. Submitted 2005.

[23] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-
Verlag, Berlin, 1997.

[24] The P Systems Web Page: http://psystems.disco.unimib.it.


