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Abstract. Spiking neural P systems comprise one of the main branches
of membrane computing. These systems take inspiration from the
structure and behaviour of neuronal cells within the nervous system
and have proven their ability to solve computationally hard problems
in polynomial time. The related models have become very popular in
recent years, with new variants appearing in a fast succession. Keeping
on track with this development is difficult, specially for newcomers. As
such, this chapter deals with a selection of variants of this kind of
P systems, intended to address a fistful of variants, focusing on their
diversity. Special attention should be given to fuzzy spiking neural P
systems - an extensive survey can be found in [24].

Keywords: Membrane computing, P system, Spiking neural P system,
Asynchronous SN P system, Astrocyte, Anti-spike, SN P system with
plasticity

1 Introduction

Spiking neural P systems (SN P systems, for short) are a variant of P systems,
corresponding to a shift from cell-like to neural-like architectures. They are
formally introduced in [12], and take inspiration from the way in which neurons
in the brain exchange information by means of the propagation through their
synapses of electrical impulses called action potentials or spikes.

Neurons are specialized cells characterized by their electrical excitability
and the presence of synapses. Synapses are complex membrane junctions that
interconnect neurons allowing transmission of neuronal signals among them.

3



4 H.N. Adorna et al

A neural signal is an electric pulse called action potential or spike. Neuronal
signals are typically identical, with the form of the pulse not changing as the
action potential propagates. So, neuronal signals themselves do not carry any
information. Instead, the information is encoded in the number and timing of
spikes. According to the amount of pulses received by a neuron during a period
of time, such pulses may have an inhibitory or excitatory effect over the neuron.
In the first case, the neuron does not generate any pulse in response to its input
spikes. In the excitatory case, the neuron generates a pulse, which originates at
the soma and propagates rapidly along the axon, activating synapses onto other
neurons as it goes by. There exists a refractory period associated to neurons:
even with very strong input, it is impossible to excite a second spike during or
immediately after a first one. The minimal (time) distance between two spikes
defines the refractory period of the neuron. Working as described above, a neuron
generates impulses at regular or irregular intervals, giving place to a sequence of
action potentials called spike train.

SN P systems incorporate the key elements of the structure and functioning
of neurons and synapses described above. In SN P systems, cells, called neurons
in this case, are placed in the nodes of a directed graph, called the synapse
graph. The content of any neuron consists of a number of copies of a single
object type, called spike. Every neuron may also have associated a number of
firing and forgetting rules. Firing rules allow a neuron to send information to
its neighbours by means of spikes, which are accumulated at target neurons.
Executing a firing rule involves removing a certain amount of spikes from the
neuron and emitting a spike that is replicated along the outgoing synapses and
finally stored at target neurons. This is accomplished in a two-stage process:
firstly the spikes are removed from the neuron, and after a specific period of time,
which depends on the rule, the neuron fires the output spike. During this period,
the neuron becomes “closed” (inactive): it does not accept new spikes and cannot
“fire” any (firing or forgetting) rule. The period of time is specified by a delay
parameter associated with the firing rule. On the other hand, forgetting rules
simply remove a certain amount of spikes from the neuron, with no spike being
emitted. The applicability of a rule is determined by checking the neuron content
against a regular expression associated with the rule. If more than one rule is
applicable, then one of them is non-deterministically chosen. As usually happens
in membrane systems, a global clock is assumed, which marks the evolution of
the system, thus making it work in a synchronized way. While individual neurons
works sequentially (at most one rule can be executed at any time by a neuron),
the system as a whole works in parallel, since different neurons can execute rules
simultaneously.

It is easy to see that the above model captures, in a general way, the structure
and functioning of neurons and synapses. Since in real neurons the shape and
size of pulses is not important, it is enough to have a single type of object, the
spike. Following this, the inhibitory or excitatory effect of the received impulses
over a neuron is determined by the number of spikes received over time by such
neuron so that in the model, a neuron accumulates spikes to count the number
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of received impulses. When the amount of spikes within the neuron reaches
certain levels, firing or forgetting rules become applicable. Executing a firing
rule corresponds to the case in which the impulses have an excitatory influence
over the neuron: a certain amount of spikes is removed from the neuron and
a single spike is sent along the outgoing synapses, which models the synapse
activation process. Executing a forgetting rule corresponds, in turn, with the
inhibitory scenario: spikes are removed from the neuron and no spike is sent out.

SN P systems specified above were originally introduced in [12], collectively
known as classic SN P system models. Since their introduction, many variants
of SN P systems have been developed and their computational properties were
studied. The remainder of this chapter is structured as follows. Firstly, the formal
definition of the classic SN P systems is reviewed. Next, some interesting variants
are presented, dealing with asynchronous SN P systems, astrocytes, anti-spikes
and SN P systems with plasticity. Finally, a brief summary of useful references
dealing with theoretical results is included.

2 Classical Spiking Neural P Systems

The definition of classic spiking neural P systems [12] is as follows.

Definition 1. An SN P system of degree m ≥ 1 is a construct of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a denotes spike);
2. σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri) where:

– ni ≥ 0 is the initial number of spikes contained in σi;
– Ri is a finite set of rules of the two following forms:

(1) E/ac → a; d, with E a regular expression over O, c ≥ 1, d ≥ 0;
(2) as → λ, with s ≥ 1 and the restriction as /∈ L(E) for any rule of

type (1) E/ac → a; d ∈ Ri;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ n is the
synapse graph, which defines synapses among neurons;

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons respectively;

The rules of type (1), with the form E/ac → a; d, are called standard firing
(or spiking) rules. The term standard refers to the fact that only one copy of spike
appears in the right hand side of the rule, which corresponds to the biological
interpretation in the last section. For simplicity, we will refer to them simply
as firing rules. As mentioned above, E is a regular expression over O. When
L(E) = ac, the rule can be written as ac → a; d. On the other hand, d is a
non-negative integer known as delay. When d = 0, the rule can be written as
E/ac → a. If both L(E) = ac and d = 0, the rule can be written as ac → a.
Finally, the rules of type (2), with the form as → λ, are called forgetting rules.
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As usually happens in other P system variants, each neuron has a label.
Notation σi is used to refer to a neuron labelled by i. Synapses are denoted by
(i, j), representing a synapse from σi (called the source neuron) to σj (called the
target neuron).

Graphical representation of an SN P system usually consists in a directed
graph describing the initial structure of the system: the nodes correspond to
neurons and are labelled after them, while directed arcs correspond to synapses
and model the spikes flow. Within neurons, initial number of spikes and rules
are drawn. The output neuron is represented with an outgoing synapse which is
not connected to any other neuron of the system, meaning that it is connected
to the environment. Accordingly, the input neuron is represented with an
ingoing synapse which is not connected to any other neuron, meaning that the
environment is connected to it. Fig. 1 shows a basic example.

Fig. 1. A simple SN P system.

In what follows, we specify the semantics of SN P systems. SN P systems are
synchronized devices. A global clock is assumed, which marks the functioning of
the system. SN P systems operate in a non-deterministic maximally parallel way
with the following specific feature: at any time instant t, each neuron operates
sequentially, since at most only one of the applicable rules over the neuron is
applied, which is non-deterministically chosen from the set of applicable rules
for the neuron at time instant t. Nevertheless, neurons, as a whole, operate
in parallel, since all the neurons with a selected applicable rule fire their rules
simultaneously.

Given a neuron σi containing ak spikes, with k ≥ 0, at a time instant t, it
is said that a firing rule E/ac → a; d ∈ Ri is applicable over σi at t if and only
if the following conditions hold: (a) σi is not executing any rule; (b) k ≥ c; and
(c) ak ∈ L(E). Given a neuron σi containing ak spikes, with k ≥ 0, at a time
instant t, it is said that a forgetting rule as → λ is applicable over σi at t if and
only if the following conditions hold: (a) σi is not executing any rule; and (b)
k = s. Moreover, whenever a neuron is closed executing a firing rule, the rest of
(firing/forgetting) rules are disabled.
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A neuron checks for applicable rules whenever it receives new spikes or
completes a rule execution. Applicable rules are also said to be active or enabled.
Neurons having applicable (active, or enabled) rules are said to be active or
enabled. It is possible for two firing rules E1/a

c
1 → a; d1 and E2/a

c
2 → a; d2

belonging to Ri to become simultaneously applicable, since L(E1) ∩ L(E2) 6= ∅.
On the other hand, when a forgetting rule as → λ belonging to Ri becomes
active, only that rule can be applied, since (a) as /∈ L(E) for any firing rule
E/ac → a; d belonging to Ri; and (b) the number of spikes in σi must be equal
to s. When a neuron has more than one applicable rule at instant t, one, and
only one, is non-deterministically selected to be applied.

Given a neuron σi containing ak spikes, with k ≥ 1, at a time instant t, the
application of an active firing rule r ≡ E/ac → a; d ∈ Ri over σi at t implies the
following: (1) at instant t, neuron σi fires rule r and c spikes are removed from σi
immediately, so that k− c spikes are left in the neuron; (2) if d ≥ 1, from instant
t to t+ d− 1, σi becomes closed and cannot accept incoming spikes, that is, any
spike sent to σi in the interval [t, t+ d− 1] is lost; (3) at instant t+ d, neuron σi
becomes open (it accepts incoming spikes) and, simultaneously, it emits a spike
(or simply spikes), which is replicated onto the outgoing synapses and sent to
the target neurons (spikes reach the target neurons immediately); and (4) at
instant t+ d+ 1 neuron σi can check again for applicable rules.

Given a neuron σi containing ak spikes, with k ≥ 1, at a time instant t, the
application of an active forgetting rule r ≡ as → λ ∈ Ri over σi at t implies
the following: (1) at instant t, neuron σi fires rule r and s spikes are removed
from σi immediately, so that k − s are left in the neuron, that is, the neuron
becomes empty, since k = s; and (2) at instant t+ 1 neuron σi can check again
for applicable rules.

It is worth pointing out that when applying a firing rule with no delay (d = 0),
the involved neuron is never actually closed: it fires (removing the corresponding
spikes) and spikes (sending out a spike) at same instant t, also accepting incoming
spikes arriving at that instant t. It is important to distinguish between the terms
firing, the action of starting a rule application, and spiking, the action of sending
out a spike. Neurons applying a firing rule both fire and spike (because of this
firing rules are also called spiking rules), while neurons applying a forgetting rule
fire, but do not spike.

In what follows, we define the concepts of configuration, transition step and
computation for SN P systems.

A configuration of an SN P system Π at instant i with i ≥ 0, denoted by Ci, is
an instantaneous description ofΠ at that time instant. A configuration describes,
for each neuron in the system, the number of spikes contained in such neuron
and the number of time instants left for neuron to become open (zero if already
open). The initial configuration of Π is defined as C0 = 〈n1/0, n2/0, . . . , nm/0〉,
meaning that in the initial configuration all the neurons of Π are open.

A transition step (or simply step) of an SN P system Π at instant i, with
i ≥ 1, is the state transition of Π from configuration Ci−1 to Ci, denoted by
Ci−1 ⇒ Ci. The transition step is performed by selecting and applying rules
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in a synchronous maximally parallel way as described above. Usually, the term
transition step i is used to refer to the transition step taking place at instant i.

A computation C of an SN P system Π is any (finite or infinite) sequence of
configurations starting from the initial configuration C0 such that the i-th term
(i ≥ 1) of the sequence is obtained from the previous one in one transition step.
In this way, computation C is denoted as C = C0 ⇒ C1 ⇒ C2 ⇒ . . . . If the
sequence is infinite, the computation is said to be a non-halting computation.
If the sequence is finite, the computation is said to be a halting computation.
The last term of a halting computation is a halting configuration, that is, a
configuration where all neurons are open and no rules can be applied.

SN P systems can work as number accepting devices, number generating
devices, number computing devices and decision problems solvers. For additional
information we refer the reader to [21]. Regarding the output of the system, many
possibilities exist, such as the number of spikes contained in the output neuron,
the number of times that the output neuron spikes, or the difference between
the first two time instants when the output neuron spikes.

3 Spiking Neural P Systems Variants

In this section, we discuss some interesting variants that are obtained from classic
SN P systems by extending/restricting their syntactical elements or changing the
way in which the system operates, that is, their semantics.

3.1 Asynchronous SN P Systems

In this subsection, we discuss some variants of SN P systems working in
asynchronous mode. In this mode, neurons with applicable rules at a given
computation step may choose not to fire. The “choosing mechanism” may vary,
giving place to several asynchronous SN P systems variants.

Asynchronous SN P systems From both mathematical and neurological
points of view, it is rather natural to consider asynchronous SN P systems
(ASNPS, for short) [7]. In such systems, a global clock, marking the time for
all neurons, is still present, but neurons work asynchronously in the following
way: the application of rules in each neuron is not obligatory, that is, if a neuron
has one or more enabled rules at a given instant, it may (non-deterministically)
choose whether or not to fire one of them. If the neuron does not fire, new spikes
can come into the neuron rendering some of the previously applicable rules non-
applicable. If a rule is still applicable through successive time instants, it can be
selected to fire at any time, independently of how much time has passed. Taking
this into account, the concepts of configuration, transition step and computation
can be defined in a similar way to classic SN P systems.
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Limited Asynchronous SN P systems In ASNPS, there is no restriction
imposed on the number of successive time instants that a neuron can hold an
enabled rule. Nevertheless, from the biological point of view, it is natural to
consider a bound imposed on the number of time units that an enabled rule
remains unfired, since in nature given a long enough time interval, an enabled
chemical reaction will conclude within this interval.

Taking into consideration such biological motivation, limited asynchronous
SN P systems (LASNPS, for short) were introduced in [19]. In such systems, a
global bound b ≥ 2 (imposed on all rules) is specified in such a way that if one
(and only one) rule in neuron σi is enabled at step t and neuron σi receives no
spike from step t to step t+ b− 2, then this rule can and must be applied at a
step in the next time interval b (that is, at a non-deterministically chosen step
from t to t+b−1). If the enabled rule in neuron σi is not applied, and neuron σi
receives new spikes, making the rule non-applicable, the computation continues
in the new circumstance (maybe other rules are enabled now). If more than one
rule is applicable, the neuron non-deterministically chooses and fires one of them
in the interval t to t+ b− 1.

Additionally, there is a special remark with respect to the functioning of
LASNPS not explicitly given in [19]: whenever a neuron σi has to check for new
applicable rules, the count regarding the number of steps that neuron σi has been
holding the execution of its applicable rules is reset. Let us recall from classic
SN P systems that neuron σi has to check for new applicable rules whenever it
receives new spikes of completing a rule execution. The remark described above
implies that, at any instant t, any applicable rule of a given neuron σi has been
waiting to be applied the same amount of time.

In LASNPS, a configuration is described by the number of spikes present in
each neuron, the number of time units for neurons to become open as well as the
time that has elapsed for each rule since it became applicable. Transition steps
are carried out in a similar way to classic SN P systems, but according to the
limited asynchronous firing mechanism described above. Regarding the output
of the system, the following applies: since an enabled rule at instant t can be
applied at any moment in the time interval t to t+ b− 1 (that is, in the b steps
starting from t), a variable spike train can be produced. Consequently, defining
the result of a computation as the number of steps between two consecutive spikes
(as usual in synchronous systems) is useless. So, the result of a computation is
usually defined as the total number of spikes sent into the environment by the
output neuron.

Asynchronous SN P Systems with Local Synchronization In an ASNPS,
neurons (asynchronously) fire their rules in an independent way with respect
to each other. Nevertheless, from the biological point of view, it is natural
to consider the interrelation between neurons in terms of synchronicity. In
a biological neural system, neurons involved in carrying out some specific
functioning synchronously cooperate with each other to achieve their goals.
Groups of neurons like this can exhibit different topologies, such as motifs with 4-
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5 neurons and communities with 12-15 neurons. On the other hand, non-related
neurons in terms of functionality work in an independent or asynchronous way.

Taking into consideration such biological motivation, asynchronous SN P
systems with local synchronization (ASNPSLS, for short) were introduced in
[22]. In an ASNPSLS, synchronous interrelations between neurons are described
via a family of sets denoted by Loc. Each element of the family is a set of locally
synchronous neurons, that is, neurons that work synchronously with each other.
As such, each element of Loc is called a locally synchronous set (ls-set, for short).
A neuron can be placed in zero, one or more ls-sets. Given an ASNPSLS with m
neurons σ1, σ2, . . . , σm, the family Loc can be formally defined in the following
way:

Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}),
where P({σ1, σ2, . . . , σm}) is the power set of {σ1, σ2, . . . , σm}.

In an ASNPSLS, the behaviour of individual neurons is similar to classic
asynchronous SN P systems: at any instant t, a neuron with enabled rules non-
deterministically choose whether or not to fire one of such rules. Nevertheless,
neurons in the same ls-set fire in a synchronous way: if an enabled neuron within
a ls-set locj fires, then all neurons in locj that have enabled rules must fire at
that instant t. As such, it is possible that all neurons from locj remain unfired
even if they have enabled rules, i.e., all neurons from locj may remain still, or
all neurons from locj with enabled rules fire at a same step. Hence, neurons
work asynchronously at the global level, while working synchronously within
each ls-set.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic ASNPS taking into account the locally
synchronous firing mechanism described above.

3.2 SN P Systems with Hybrid Astrocytes

In what follows, we discuss a variant of classic SN P systems taking inspiration
from one important biological element existing in the nervous system structure,
the astrocyte.

Astrocytes, also known collectively as astroglia, are characteristic star-shaped
glial cells in the brain and spinal cord that connect to neighbouring synapses.
An astrocyte connects to a synapse in the space between the presynaptic
and postsynaptic terminals giving place to the so-called “tripartite synapse”
[1], with one single astrocyte being able to connect to different synapses in
this way. Astrocytes propagate intercellular Ca+2 waves over long distances in
response to stimulation and, similarly to neurons, release transmitters (called
gliotransmitters) in a Ca+2 -dependent manner. Moreover, within the dorsal horn
of the spinal cord, activated astrocytes have the ability to respond to almost all
neurotransmitters [9] and, upon activation, release a multitude of neuroactive
molecules that influences neuronal excitability. That is, astrocytes can sense the
neuronal activity related with their attached synapses and carry out a synaptic
modulation in an excitatory or inhibitory way. Other important functionalities
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of astrocytes include biochemical support of endothelial cells that form the
blood-brain barrier, provision of nutrients to the nervous tissue, maintenance
of extracellular ion balance, and a role in the repair and scarring process of
the brain and spinal cord following traumatic injuries. Because of all of the
above, astrocytes constitute an important area of research within the field of
neuroscience and, consequently, they are also an interesting element to take
inspiration from regarding the membrane computing paradigm.

In SN P systems with astrocytes, new syntactical ingredients are introduced
to model astrocytes. One astrocyte can be attached to one or more synapses
and one synapse can be attached to zero, one or more astrocytes. Synapses
attached to a given astrocyte are said to be controlled by the astrocyte. An
astrocyte senses the spike traffic passing along its controlled synapses and can
have an excitatory or inhibitory influence on such traffic. In general, excitatory
influence implies allowing the spike traffic to go along the controlled synapses,
while the inhibitory influence implies destroying such traffic, with the spikes
being removed from the system. When a synapse is controlled by two or more
astrocytes, spike traffic passing along such synapse only survives when every
controlling astrocyte has an excitatory influence on the synapse. In this way,
when neurons spike, outgoing spikes are transmitted along synapses and reach
target neurons unless they are intercepted by astrocytes.

Several variants of SN P systems with astrocytes have been defined and
studied. We here will deal one of them, SN P systems with hybrid astrocytes
(SNPSHA, for short).

SNPSHA were introduced in [18]. In these systems, an astrocyte shows an
excitatory or inhibitory influence on controlled synapses by comparing the spike
traffic on such synapses against a threshold associated with the astrocyte. Since
these astrocytes can show either an excitatory or inhibitory influence, they are
called hybrid astrocytes within the scope of this work (note that they are not
called like this in [18]).

Hybrid astrocytes are graphically represented as diamond-shaped figures,
with a number inside corresponding to the threshold and lines connected to
their controlled synapses (see [18]). An example is shown in Fig. 2.

A hybrid astrocyte can be formally defined in the form asti = (synasti , ti),
where synasti is the set of synapses controlled by the astrocyte asti, ti ∈ N is the
threshold of the astrocyte asti. Semantics of SNPSHA follows from the classic
model, but incorporating hybrid astrocytes behaviour. For an astrocyte astj , let
us assume that there are k spikes in total passing along the synapses in synastj at
an instant t. Then a) if k > tj , the astrocyte astj has an inhibitory influence on
the neighbouring synapses, and the k spikes are simultaneously suppressed (that
is, the spikes are removed from the system); b) if k < tj , the astrocyte astj has
an excitatory influence on the neighbouring synapses, all spikes survive and get
to their destination neurons, reaching them simultaneously; and c) if k = tj , the
astrocyte astj non-deterministically chooses an inhibitory or excitatory influence
on the neighbouring synapses. It is possible that two or more astrocytes control
the same synapse. In this case, only if all the controlling astrocytes have an
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Fig. 2. A spiking neural P system with a hybrid astrocyte.

excitatory influence on the synapse the spikes passing along such synapse can
survive and pass to the destination neurons; if one of these astrocytes has
an inhibitory influence on the synapse, then the spikes along this synapse are
suppressed and removed from the system. Note that in the systems constructed
in [18] two astrocytes never control the same synapse.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems.

3.3 SN P Systems with Anti-spikes

In what follows, we discuss a variant of SN P systems that addresses the
inhibitory nature of some neural impulses by introducing an additional object
type, the anti-spike, denoted by a and somewhat named after anti-matter. Anti-
spikes are present in neurons and participate in firing and forgetting rules, along
with usual spikes. Spikes and anti-spikes cannot exist simultaneously in the same
neuron, since they annihilate each other, as an implicit rule of the form aa→ λ
exists in every neuron. This model was introduced in [17]. Its definition is as
follows.

Definition 2. An SN P system with anti-spikes of degree m ≥ 1 is a construct
of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a, a} is the alphabet (a is called spike, a is called anti-spike);
2. σ1, σ2, . . . σm are neurons of the form σi = (ni, Ri) where:

– ni ≥ 0 is the initial number of spikes contained in σi;
– Ri is a finite set of rules of the following forms:

(0) aa→ λ,
(1) E/bc → b′; d with E a regular expression over {a} or over {a} (but

not over a and a simultaneously),



Taking the Pulse of SN P Systems: a Quick Survey 13

(2) bs → λ with s ≥ 1 and bs /∈ L(E) for any rule of type (1) in Ri;
verifying that (b, b′) ∈ {(a, a), (a, a), (a, a), (a, a)};

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ n is the
synapse graph, defining the synapses among neurons;

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons respectively;
5. for any rule of type (1) E/bc → b′; d ∈ Ri, if i = out then b′ = a.

Semantics of SN P systems with anti-spikes follows from the classic model,
with the following remarks:

– Rules of type (0) are annihilation rules. They are implicitly defined in every
neuron of the system, so they are not specified when describing the model.
A rule of type (0) is applied with top-most priority in a maximal way,
taking zero time units to apply whenever the neuron receives spikes or anti-
spikes. Consequently, spikes and anti-spikes cannot exist together in the same
neuron.

– Rules of types (1) and (2) are firing and forgetting rules involving spikes
and/or anti-spikes, respectively. Applicability and application for these
rules are defined as in the classic model, with the peculiarity that regular
expressions may involve spikes or anti-spikes (but not both) and that spikes
and anti-spikes may be consumed/produced when applying the rules.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems. With respect to the input
and output of the system, only spikes are allowed to be entered into/sent out of
the system.

3.4 SN P Systems with Structural Plasticity

In [3,6], an SN P system variant inspired by the biological feature known as
neural plasticity was introduced, in particular, the so-called structural plasticity,
with two main mechanisms: (1) synaptogenesis and synapse deletion, and (2)
synaptic rewiring [2]. Systems belonging to this variant are called Spiking Neural
P systems with structural plasticity (SNPSP systems, for short). SNPSP systems
variant is a response to the open problem D in [20] where “dynamism” only for
synapses is to be considered. SNPSP systems are distinct from related variants
such as HSNP systems in [8] and the SNP systems in [16,23].

Contrary to classic SN P systems, in SNPSP systems a new class of rules,
called plasticity rules, are used instead of forgetting rules. Plasticity rules can
be defined as follows: E/ac → αk(i,Nj), where c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1,
1 ≤ j ≤ |Ri|, and Nj ⊆ {1, . . . ,m} (let us recall that m stands for neuron
number). On the other hand, while in SNPSP systems spiking rules are still
present, no delays are considered.

In order to describe plasticity rules semantics, the following notation is
introduced: given a neuron σi, we denote pres(i) = {j|(i, j) ∈ syn} and
pos(i) = {j|(j, i) ∈ syn} as the sets of neuron labels having σi as presynaptic
and postsynaptic neuron, respectively. Plasticity rules are applied as follows. If at
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instant t neuron σi has b ≥ c spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri

can be applied. The set N is a collection of neurons to which σi can connect
to (synapse creation) or disconnect from (synapse deletion) using the applied
plasticity rule. The rule consumes c spikes and performs one of the following
processes, depending on α: (a) if either α = + and N − pres(i) = ∅ or α = −
and pres(i) = ∅, then there is nothing more to do, (c spikes are consumed
but no synapse is created or removed); (b) for α = + : if |N − pres(i)| ≤ k,
deterministically create a synapse to every σl, l ∈ Nj − pres(i); if however
|N − pres(i)| > k, then non-deterministically select k neurons in N − pres(i),
and create one synapse to each selected neuron; (c) for α = − : if |pres(i)| ≤ k,
deterministically delete all synapses in pres(i); if however |pres(i)| > k, then
non-deterministically select k neurons in pres(i), and delete each synapse to the
selected neurons; and (d) if α ∈ {±,∓} : create (respectively, delete) synapses
at instant t and then delete (respectively, create) synapses at instant t+ 1. Only
the priority of application of synapse creation or deletion is changed, but the
application is similar to α ∈ {+,−}. The neuron remains open in the interval
[t, t+ 1], i.e. the neuron can continue receiving spikes. However, the neuron can
only apply another rule at instant t+ 2.

An important remark is that for σi applying a rule with α ∈ {+,±,∓},
creating a synapse always involves an embedded sending of one spike when
σi connects to a neuron. This single spike is sent at the instant when the
synapse creation is applied. Whenever σi attaches to σj using a synapse during
synapse creation, we have σi immediately transferring one spike to σj . Note that
the application of rules in neurons are synchronized, that is, a global clock is
assumed.

A system state or configuration is denoted 〈s1, . . . , sm〉 where si, 1 ≤ i ≤ m,
is the number of spikes contained in σi, along with neuron connections based on
the synapse graph syn, from where pres(i) and pos(i) can be derived, for a given
σi. The initial configuration is 〈n1, . . . , nm〉, with the possibility of syn = ∅.
The concepts of transition step and computation can be defined in a similar way
to classic SN P systems.

4 Theoretical Results Reference

In what follows, some useful references regarding theoretical results involving
the discussed SN P systems variants in this chapter are presented. A good
set of useful general references can be found in [10]. Further results on these
SN P systems variants can be obtained from: Normal forms [11]; General
computational power [13,14,15]; Asynchronous mode [7,19,22]; Hybrid astrocytes
[18] and Anti-spike [17]; Structural plasticity [3,4,5,6].
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8. Gutiérrez-Naranjo, M., Pérez-Jiménez, M.: Hebbian learning from spiking neural
P systems view. In: et al., D.C. (ed.) WMC9. LNCS, vol. 5391 (2009)

9. Haydon, P.G.: Glia: listening and talking to the synapse. Nature Reviews
Neuroscience 2(3), 185–193 (2001)
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20. Păun, G., Pérez-Jiménez, M.: Spiking neural P systems. recent results, research
topics. In: et al., A.C. (ed.) Algorithmic Bioprocesses (2009)
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