
WMC8

c

e d i t o r s

2
0
0
7

of the 

 MEMBRANE 

EIGHTH
 Workshop  on

 COMPUTING

Proceedings 

George Eleftherakis   Petros Kefalas   Gheorghe Paun   

^

WMC8



Eighth Workshop on Membrane Computing

(WMC8)

Thessaloniki, June 25 – June 28, 2007

George Eleftherakis, Petros Kefalas,
Gheorghe Păun
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Preface

This volume contains the papers presented at the Eighth Workshop on Mem-
brane Computing, WMC8, which has been organized in Thessaloniki, Greece,
from June 25 to June 28, 2007. The first three workshops on membrane computing
were organized in Curtea de Argeş, Romania – they took place in August 2000
(with the proceedings published in Lecture Notes in Computer Science, volume
2235), in August 2001 (with a selection of papers published as a special issue of
Fundamenta Informaticae, volume 49, numbers 1–3, 2002), and in August 2002
(with the proceedings published in Lecture Notes in Computer Science, volume
2597). The next four workshops were organized in Tarragona, Spain, in July 2003,
in Milan, Italy, in June 2004, in Vienna, Austria, in July 2005, and in Leiden, The
Netherlands, in July 2006, with the proceedings published as volumes 2933, 3365,
3850, and 4361, respectively, of Lecture Notes in Computer Science.

The 2007 edition of WMC was organized at City College, Thessaloniki, by
the South-East European Research Centre (SEERC), under the auspices of the
European Molecular Computing Consortium (EMCC). As usual in the last years, a
balanced attention was paid to both “theory” and “practice”, to mathematical and
theoretical computer science topics as well as to applications and implementations.
This is especially visible in what concerns the five invited talks, all of them included
in the present volume, delivered by Luca Bianco (Verona, Italy), Pierluigi Frisco
(Edinburgh, UK), Alberto Leporati (Milano, Italy), Andrea Maggiolo-Schettini
(Pisa, Italy), and Gheorghe Ştefan (USA).

The volume also contains the 32 accepted papers. Each of them was sub-
ject of two or three referee reports. The program committee consisted of Gabriel
Ciobanu (Iaşi, Romania), Erzsébet Csuhaj-Varjú (Budapest, Hungary), Rudolf
Freund (Vienna, Austria), Pierluigi Frisco (Edinburgh, UK), Marian Gheorghe
(Sheffield, UK), Oscar H. Ibarra (Santa Barbara, CA, USA), Petros Kefalas (Thes-
saloniki, Greece) – Co-Chair, Vincenzo Manca (Verona, Italy), Giancarlo Mauri
(Milano, Italy), Linqiang Pan (Wuhan, China), Gheorghe Păun (Bucharest, Roma-
nia) – Chair, Mario J. Pérez-Jiménez (Sevilla, Spain), Athina Vakali (Thessaloniki,
Greece).
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The Organizing committee consisted of George Eleftherakis – Chair, Konstanti-
nos Dimopoulos, Petros Kefalas, Ioanna Stamatopoulou, and Ognen Paunovski –
Secretariat.

The invited papers and a selection of regular papers, improved according to
the discussions held in Thessaloniki and additionally refereed, will be published in
a special issue of Lecture Notes in Computer Science.

Details about membrane computing can be found at the area web site (main-
tained in Milano, Italy) from http://psystems.disco.unimib.it. The workshop
web site was http://www.seerc.org/wmc8/.

The workshop was sponsored by City College, Thessaloniki, and the South-East
European Research Centre (SEERC).

Finally, we would like to thank you all, the organizing and programme commit-
tee, the invited speakers, the authors of the papers, the lecturers, the reviewers,
and all the participants. Your effort made the Eighth Workshop on Membrane
Computing (WMC8) a very successful event.

George Eleftherakis
Petros Kefalas

Gheorghe Păun
Editors



Contents

Invited Presentations

Luca Bianco:
Psim: A computational platform for metabolic P systems . . . . . . . . . . . . . . . . 1

Pierluigi Friso:
Advances in modeling the dynamics of
HIV infection with conformon-P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Alberto Leporati:
Quantum (UREM) P systems: Background, definition
and computational power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Roberto Barbuti, Andrea Maggiolo–Schettini,
Paolo Milazzo, Angelo Troina:
The calculus of looping sequences for modeling biological membranes . . . 57

Gheorghe Ştefan:
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Psim: A Computational Platform for Metabolic P
Systems

Luca Bianco

Cranfield University
Cranfield Health
Silsoe, Bedfordshire, MK45 4DT, UK
E-mail: L.Bianco@cranfield.ac.uk

Summary. Although born as unconventional models of computation, P systems can be
conveniently adopted as modelling frameworks for biological systems simulations. This
choice brings with it the advantage of producing easier to be devised and understood
models than with other formalisms. Nevertheless the employment of P systems for mod-
elling purposes demands for biologically meaningful evolution strategies as well as for
complete computational tools to run simulations on. In previous papers an evolution
strategy known as metabolic algorithm has been presented, here a simulation tool called
Psim (current version 2.4) is discussed and a case study of its application is given as well.

1 Introduction

Membranes play a prominent role in living cells [1, 20]. In fact, membranes not
only act as a separation barrier indispensable to create different environments
within cells boundaries, but they can also physically constitute a kind of “working
board” whereby enzymes can activate and perform their duties on substrates.
Other examples of the crucial role of membranes within cells are their ability to
perform selective uptakes and expulsion of chemicals as well as their being the
interface of the cell with the surrounding environment allowing communication
with neighboring cells.

P systems originate from the recognition of this important role of membranes
and, by abstracting from the functioning and structure of living cells, they provide
a novel computation model rooted in the context of formal language theory [33, 35].

P systems investigations are nowadays focused on several research lines that
make the field “a fast Emerging Research Front” in computer science (as stated by
the Institute for Scientific Information). In particular, theoretical investigations on
the power of the computational model have been carried on and important results
have been achieved so far in order to characterize the computational power of many
elements of P systems (such as objects and membranes) and, from a complexity
viewpoint, P systems have been employed as well in the solution of NP hard
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problems. For a constant up to date bibliography of P systems we refer the reader
to [39].

Parallel to these lines some more practical investigations are under way too.
These studies exploit the resemblance of P systems to biological membranes in
order to develop computational models of interesting biological systems. P sys-
tems seem to be particularly suitable to model biological systems, due to their
direct correspondence of many elements (namely membranes, objects-chemicals
and rules-reactions), even in their basic formulation, with real biological entities
building the system to be modelled. Moreover, many extensions have been pro-
posed to the standard formulation of P systems, such as some biologically relevant
communication mechanisms [28, 36, 11], energy account [37] and active membranes
[34] among others, which show the flexibility of the model. In this way, discrete
mathematical tools can be used to represent interesting biological realities to be
investigated. A further step is that of simulating all systems described in this way
to get more information about their internal regulatory mechanisms and deeper
insights into their underlying elements.

Although born as a non-conventional model of computation inspired by nature,
P systems can therefore be employed as a simulation framework in which to em-
bed the in silico simulation of interesting biological systems. The strength of this
choice is, as said, the advantage that P systems share with biological systems many
of their features and this leads to easy-to-devise and easy-to-understand descrip-
tions of the studied realities. In fact, the membrane construct in P systems has
a direct counterpart into biological membranes: objects correspond to all chemi-
cals, proteins and macromolecules swimming in the aqueous solution within the
cell and, eventually, rewriting rules represent biochemical reactions taking place
in the controlled cellular environment. Other formalisms have been employed as
modelling and simulation frameworks too, such as Π calculus [29], Petri nets [38]
and Ambient calculus [10], but in their case the very same notions of membranes,
chemicals and reactions need to be reinterpreted and immersed in the particular
representation formalism in a less immediate way.

Nevertheless, the employment of P systems as a modelling framework for bio-
logical systems posed, from a purely computational viewpoint, some new challenges
to cope with, such as the identification of suitable, biologically meaningful, strate-
gies for system evolution and the development of new automatic tools to describe,
simulate and analyze the investigated system.

In previous works a novel strategy for systems evolution, called metabolic algo-
rithm has been introduced [6, 27, 8], an hybrid (deterministic-stochastic) variant of
which has been proposed as well [5]. Other strategies of evolution are known, such
as Dynamical Probabilistic P systems [32, 31] and Multi-compartmental Gillespie’s
algorithm [30, 2].

Here we will focus on the metabolic algorithm in its deterministic version which
has been confronted with the dynamics of several systems (a collection of case
studies can also be found in [4]). Some examples of investigated systems by means
of the metabolic algorithm are the Belousov-Zhabotinsky reaction (in the Brus-
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selator formulation) [6, 8], the Lotka-Volterra dynamics [6, 27, 7, 14], the SIR
(Susceptible-Infected-Recovered) epidemic [6], the leukocyte selective recruitment
in the immune response [16, 6], the Protein Kinase C activation [8], circadian
rhythms [12] and mitotic cycles in early amphibian embryos [26]. In order to cope
with the demand of computational tools to simulate the dynamics of P systems,
we developed a first simulator called Psim [6], which has now been extended with
several new features as will be explained later on. The new version of the simulator
is freely available for download at [15].

The remaining of the discussion will firstly introduce (section 2) some theoret-
ical aspects of the simulation framework we developed and some recent advances
will be mentioned too. Section 3 will then be devoted to the newer version of the
simulator itself and a practical case study will be given as well in such a way to
show to the reader how to set up a simulation with the interface of Psim.

2 MP systems

MP systems (Metabolic P systems) [21, 26, 24, 23] are a special class of P systems
[33, 35], introduced for expressing the dynamics of metabolic (or, more gener-
ally speaking, biological) systems. Their dynamics is computed by means of a
deterministic algorithm called metabolic algorithm which transforms populations
of objects according to a mass partition principle, based on suitable generalizations
of chemical laws.

A definition of MP systems follows, as given in [4].

Definition 1 (MP system). An MP system of level n − 1 (i.e., with n ∈ N
membranes) is a construct:

Π = (T, µ,Q, R, F, q0)

in which:

• T is a finite set of symbols (or objects) called the alphabet;
• µ is the hierarchical membrane structure, constituted by n membranes, labeled

uniquely from 0 to n − 1, or equivalently, associated in a one-to-one manner
to labels from a set L of n− 1 distinct labels;

• Q is the set of the possible states reachable by the MP system. Each element
q ∈ Q is a function q : T × L −→ R, from couples objects-membranes to real
values. A value q(X, l), with X ∈ T and l ∈ L gives the amount of objects
X inside a membrane labeled l, with respect to a conventional unit measure
(grams, moles, individuals, ...);

• R is the finite set of rewriting rules. Each r ∈ R is specified according to the
boundary notation [3]. In other words, each rule r has the form αr −→ βr,
where αr, βr are strings defined over the alphabet T enhanced with indexed
parenthesis representing membranes. As an example, an hypothetical rule can
have the form: α[1β −→ γ[1δ, with α, β, γ, δ ∈ T ∗, meaning that α and β are
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respectively changed in γ and δ, where all objects within α and δ are outside
membrane labeled 1, whereas elements of β and γ are placed inside membrane
1;

• F is the set of reaction maps, each fr ∈ F is a function uniquely associated to
a rule r ∈ R, defined as fr : Q −→ R and, given a certain state q, it produces
fr(q) that is a real number specifying the strength of rule r in acquiring objects;

• q0 ∈ Q is the initial state of the system. It specifies the initial amount of all
the species throughout the various compartments of the system.

Since encodings like [9] show that the membrane structure can be flattened by
augmenting the alphabet size, the definition of the membrane structure µ is not
very important in this context and the choice to employ 0-level MP systems in
the remaining of the discussion is not limiting from a theoretical point of view.
Moreover, dealing with 0-level MP systems ends up in a easier discussion, in fact
all states q ∈ Q do not need the specification of a membrane label and in this way
they have the simpler form: q : T −→ R. For this reason, in the following whenever
the term MP system will be used, the more correct term 0-level MP system has
to be implicitly assumed.

The dynamics of MP systems has been calculated, starting from the initial state
q0 by means of an evolution strategy called metabolic algorithm [6, 27, 8], which
is substantially different from the well known non-deterministic and maximally
parallel paradigm followed by standard P systems. More precisely, the perspective
of MP systems is to model systems at a population level rather than at an objects
level. In this way, nothing can be precisely said about individuals but the investi-
gation is focused on the macroscopic dynamics which assumes a deterministic flow
in spite of individual behaviors.

2.1 The metabolic algorithm: hints

Without entering into many details (which can be found anyway in [6, 27, 8, 25]),
the metabolic algorithm is a deterministic strategy for MP systems evolution based
on mass partition among rules of all elements in the alphabet T .

In very general terms, the metabolic algorithm can be summarized in the fol-
lowing main points [26]:

• Reactants are distributed among all the rules, as the system evolves, according
to a “competition” strategy.

• If some rules compete for the same reactant, then each of them obtains a
portion of the available substance that is proportional to its reaction strength
(reactivity) in that state.

• The reactivity of a rule in a certain state measures the capability of the rule
to acquire its reactants. It is calculated by the evaluation of the reaction map
corresponding to the rule due and it depends on the state of the system, that is
defined as the concentration and localization of all substances in the considered
instant.
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• The evolution strategy determines the reaction unit of all rules, that is, the
unitary amount of substance which is dealt by the rule. The stoichiometry is
used then to obtain the consumed and/or produced amount of substances for
each rule.

An example may be useful to clarify the concepts yet introduced. Let us suppose
that in a given instant, four rules, namely r1, r2, r3 and r4 ∈ R, need molecules of
a species A (with A belonging to the alphabet T ) as reactant (see Figure 1), then
a partition strategy for A is necessary.

A

r
r

r
r 2

1

5

4

Fig. 1. Competition for object A between rules r1, r2, r4 and r5.

A real number called reactivity represents the strength of the rule (i.e. the
rule’s capability of obtaining matter to work on), given by the value assumed by
a function uniquely associated to the rule called reaction map, in the considered
state. For example, with respect to Figure 1, if we denote with a, b and c the
concentrations of species A, B,C respectively (in a state q not specified for the
sake of simplicity), then the reactivities of rules r1, r2, r4 and r5, which ask for A
molecules, can be:

f1 = 200 · a, f2 = 0.5 · a1.25 · b−1, f4 = a1.25 · (b + c)−1 and f5 = 10

where the choice of reaction maps fi, i = {1, 2, 4, 5} is completely arbitrary in
this example.

We define the quantity

KA,q =
∑

i=1,2,4,5

fi(q)

as the total pressure on A in the state q (the intuitive idea is that all reaction maps
of rules competing for a certain species give the force that pushes that species to
react).

Then, for each of the competing rules rj we consider the partial pressure (or
weight) of rj on type A as
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wA,q(rj) =
fj(q)
KA,q

(again the idea behind this is that the strongest the force pushing an element
to follow a particular reaction channel, compared to other reaction channels, the
more matter will follow that path).

Note that, in general, the quantity KX,q is defined for each couple (X, q) where
X ∈ T and q is a possible state of the system, moreover a weight wX,q(r) has to
be calculated for each triple (X, q, r) where X and q are respectively, as before, an
element of the biological alphabet and a state of the system, while r ∈ R is a rule
in which the element X appears as a reactant (i.e., according to the terminology
adopted above, X ∈ αr).

Getting back to the example discussed above, it should be easy to see that the
partial pressure of r1 on A is

wA,q(r1) =
200a

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

while the same pressure due to r2 results to be equal to

wA,q(r2) =
0.5a1.25b−1

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

and the other weights can be calculated analogously. The weights calculated so far
determine the partition factors of the amount of species A, available in the state
q, among the rules which need objects A as reactants.

Now to calculate the reaction unit of a particular rule (i.e. the amount of
reactant that can be dealt by the rule) we simply need to multiply the partial
pressure of the rule on the reactant by the real amount of reactant present into
the system at the considered state. For example, the reaction unit of rule r1 (or
equivalently, the amount of A that that can be assigned to rule r1) turns out to
be wA,q(r1) · a = 0.5a2.25b−1

200a+0.5a1.25b−1+a1.25(b+c)−1+10 .
In this way, if r1 is a rule of the form A → X, no matter what element is

represented by X ∈ T , then the amount of A associated to r1 is exactly u1 =
wA,q(r1) · a and the effect of r1’s application is the loss of u1 units of A and the
acquisition of the same number of units of X.

In the case of cooperative rules (i.e. rules with more than just one reactant)
things are a little bit more complicated since we need to take into account the
real availability of all reactants taking part to the reaction. That is, for each
X belonging to the reactants of a certain rule r we need firstly to compute the
quantities wX,q(r) ·x and, since we have to respect species availability, the reaction
unit associated to the rule is then computed as the minimum of those quantities.
If we suppose that a rule r1 has the form AAB → X, then the reaction unit

u1 = min(
1
2
wA,q(r1) · a , wB,q(r1) · b)
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where the term 1
2 in the first element of the minimum is due to the fact that A

appears twice in the stoichiometry of the rule.
In general terms, the metabolic algorithm is an effective procedure for calcu-

lating in each state of the system a reaction unit ui for all rules ri ∈ R by using a
partition strategy that employs particular functions fi associated in a 1-1 manner
to rules. After this calculation, the evolution of the system can be obtained in a
straightforward way by consuming and producing species in a quantity given by
rules’ reaction units and by following the stoichiometry of the system.

Assuming an ordering on objects and on rules, let us denote with M the m×n
stoichiometric matrix associated to an MP system having m symbols and n rules
(in which the ci,j element of M denotes the gain or the loss of the ith object due
to rule j1) and with Uq the [u1 · · ·un]T vector of the reaction units in a state of
the system q, calculated as mentioned above.

Then, as pointed out in [25] the transition from one state q to the following one
is done by means of the delta operator (∆x(q)) which is a m-sized vector giving
the variation of each species in the transition from state q to the next state q′. In
particular

∆x(q) = M × Uq

stating that the delta operator can be obtained as the product of the stoichiometric
matrix M by the reaction units vector of state q, Uq.

Since each row i of ∆x(q) gives the variation on the ith object, then if we think
of a state q as a vector containing the concentration of all the m species at the
corresponding instant, then the next state can easily be calculated as

q′ = q + ∆x(q) = q + M × Uq.

Just to exemplify the last concepts discussed, we can think about an alphabet
T = {A,B, C} and focus on a rule set comprising the following four rewriting
rules:

r1 : A B −→ C
r2 : B B −→ A
r3 : C −→ A
r4 : C −→ B

then, assuming the lexicographic order on elements of the alphabet, we can obtain
the following stoichiometric matrix:

M =



−1 1 1 0
−1 −2 0 1

1 0 −1 −1




in which, the first row corresponds to the object A and states that we lose one
conventional unit of A due to rule r1, we get one A both from rule r2 and r3 and
finally r4 does not affect A concentration at all.
1 It is the difference between the number of occurrences of the ith symbol among prod-

ucts and among reactants of jth rule.
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Then, let us suppose to be in a state q, described by the vector of concentrations
q = [10 32 20]T (i.e. we have 10 units of A, 32 of B and 20 of C) and that the
corresponding reaction units vector Uq = [7 12 5 9]T (i.e. reaction r1 moves 7 mass
units, r2 12, r3 5 and finally r4 9). In this way it is possible to calculate the next
state q′ which turns out to be described by the following vector:

q′ = q + M × Uq =




10
32
20


 +



−1 1 1 0
−1 −2 0 1

1 0 −1 −1


×




7
12
5
9


 =




20
10
13




describing the amount of all species at that particular instant.
In previous papers [26] a convenient and intuitive formalism for representing

MP systems called MP graphs has been proposed. In particular, MP graphs are
bipartite graphs describing both the stoichiometry (i.e. the shape of the rules) and
the regulative part of MP systems that need to be effectively calculated in order to
obtain the dynamics of the system (i.e. the reaction maps). According to what said
above, MP graphs represent all the information needed to simulate MP systems
by means of the metabolic algorithm. An example of MP graphs, as produced by
the simulator we developed, will be shown later on.

2.2 Generalizing the metabolic algorithm

According to the formulation of the dynamics given in the previous section, the
metabolic algorithm is a strategy that given a particular state q provides the
system with the corresponding reaction units vector Uq which is used to calculate
the transition to the state q + 1. As discussed in [25], other strategies can be
considered whose aim is to produce a reasonable mass partition among all rules of
an MP system, or in other words that give a different Uq for each state q of the
system.

This view leads to the definition of several metabolic algorithms instead of a
single one and the definition of MP systems can be generalized accordingly.

Based on the definition given in [22], Definition 1 can be easily generalized, in
very general terms, in the following way:

Definition 2 (Generalized MP systems). A 0-level (generalized) MP system
is a 6-tuple:

Π = (T, Q, R, V, q0, φ)

in which:

• T is a finite set of symbols (or objects) called the alphabet;
• V is a finite set of variables;
• Q is the set of the possible states reachable by the MP system. Each element

q ∈ Q is a function q : T ∪ V −→ R;
• R is the finite set of rewriting rules;
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• q0 ∈ Q is the initial state of the system;
• φ is the strategy of evolution, φ : Q −→ Rn with |R| = n.

Note that nothing is said about the cardinality of the set of variables V and they
are not necessarily associated in a one-one manner to rules of R. Moreover, the
strategy of evolution φ, given a state q has to be defined in such a way that it
outputs the n-tuple providing the reaction unit vector of the system, or following
the terminology used above, φ(q) = Uq.

Complete freedom is left in the implementation of the strategy of evolution,
whose only constraints are that given a state it has to provide the reaction unit
vector corresponding to that state, which will be used to calculate the evolution
of the system by means of the matrix product recalled in the previous section.
As will be mentioned in the following, the specification of a fully customizable
strategy of evolution will be one of the prominent features of the new version of
the simulator Psim that has been implemented within the MNC Group of the
University of Verona.

3 Psim

Based on the theoretical framework expressed in previous sections, a simulator
called Psim (P systems simulator) has been developed to cope with the problem
of calculating the dynamics of biological systems. An early version of Psim has been
developed previously [6], with which the newer version shares the same philosophy,
though extending some of its concepts and enhancing the simulation environment
with many features.

The present release of Psim (version 2.4) has been developed in response to
the need of an effective and easy to use tool to calculate the dynamics of MP
systems by means of the metabolic algorithm. Its implementation has moreover
followed some flexibility and extensibility principles which led to a tool that can
be easily extended and integrated with other tools. In this way Psim, thanks to
its immediate setup (nothing needs actually to be done provided a Java virtual
machine is installed on the computer that is meant to run Psim) and to the easy
user interface, can be used by people without a strong background in program-
ming and a deep knowledge in the field of computer science. On the other hand,
the extendability provided, as we will see, by means of the plugins mechanism,
allows people with stronger expertise in programming to build their own tools to
complement and integrate the main core of Psim.

Some features of this tool, which is implemented by using the Java program-
ming language, are listed below:

• friendly user interface which is born to be easy-to-use and to interact with
people not necessarily having a strong computer science background. Its im-
mediacy can be found in the input side, which can be specified by means of
a transposition of the concept of MP graphs into a point and click graphical
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interface. Moreover, the same simplicity principle holds for the output side as
well, which is basically constituted by a graph containing the temporal evolu-
tion of all the species constituting the system (both on a temporal scale and
on the phase plan space);

• plugins architecture: the interaction with the system can either be done man-
ually or by means of some specifically designed plugins which, thanks to the
plugins support offered by the simulation engine, can interact with the sim-
ulation engine itself. More specifically, three different kinds of plugins can be
devised and implemented in Java as well. Input plugins can be used to im-
plement various sources for the data to run the simulation on (let us think
to some specific pathways databases like KEGG for instance); output plugins
conversely, can be used to observe and analyze in various ways the results ob-
tained from a simulation and can therefore give some meaningful insights into
the simulated dynamics. Moreover, they can be used to export simulation data
into particular formats. Finally, experiment plugins can directly control and
intimately interact with the simulation engine, by controlling the execution
flow, checking some properties and changing some experimental conditions.
This kind of plugins can be very useful in tasks like model optimizations and
stability analysis;

• extreme flexibility. The simulation tool we propose is based on a simulation
engine which is designed to accept the definition of new evolution strategies
for the calculation of the systems dynamics. At the only price of the imple-
mentation of some specific interfaces, the developer has the chance to define
his own simulation strategies and to design a customized library of metabolic
algorithms to calculate the systems evolution;

• models portability has been implemented by using the standard XML language
and some extensions towards the SBML language are being considered too;

• cross platform applicability, thanks to the choice of Java, Psim can be run on
all platforms supporting the Java virtual machine architecture.

An aspect deserving a special emphasis here is the possibility offered by the simu-
lation engine, to specify custom evolution strategies. Getting back to the definition
of generalized MP systems, the architecture of the simulator allows the specifica-
tion of a fully customized φ function. A set of evolution strategies can be devised
by developing in Java a specific class implementing a particular interface provided
by the main engine. Several different strategies can be handled simultaneously by
the simulator that gives the chance to decide which simulation strategy employ in
the simulation process. This gives the tool a very high level of flexibility and power
as well as the plugins mechanism does. Since plugins can interact with the simu-
lation engine at a different levels, such as input, output but also at the simulation
level too, they can be used for various reasons within the simulator and this again
gives users plenty of ways to improve the system and to extend its functionalities.
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3.1 A case study

In this section we show an application of the Psim computational tool for the
simulation of the well known mitotic oscillator as found in early amphibian embryos
[18, 19, 26].

Mitotic oscillations are a mechanism exploited by nature to regulate the onset
of mitosis, that is the process of cell division aimed at producing two identical
daughter cells from a single parent. More precisely, mitotic oscillations concern
the fluctuation in the activation state of a protein produced by cdc2 gene in fission
yeasts or by homolog genes in other eukaryotes. The model here considered focuses
on the simplest form of this mechanism, as it is found in early amphibian embryos.
Here, the progressive accumulation of the cyclin protein leads to the activation of
cdc2 kinase. This activation is achieved by a bound between cyclin and cdc2 kinase
forming a complex known as M-phase promoting factor (or MPF ). The complex
triggers mitosis and degrades cyclin as well; the degradation of cyclin leads to the
inactivation of the cdc2 kinase that brings the cell back to the initial conditions
in which a new division cycle can take place.

Goldbeter [18, 19] proposed a minimal structure for the mitotic oscillator in
early amphibian embryos in which the two main entities are cyclin and cdc2 ki-
nase. According to this model, depicted in Figure 2, the signalling protein cyclin
is produced at a constant rate vi and it triggers the activation (by means of a
dephosphorylation) of cdc2 kinase, passing from the inactive form labelled M+ to
the active one, denoted by M . This modification is reversible and the other way
round is performed by the action of another kinase (not taken into account in the
model) that brings M back to its inactive form M+. Moreover, active cdc2 kinase
(M) elicits the activation of a protease X+ that, when in the active (phosphory-
lated) form (X), is able to degrade the cyclin. This activation, as the previous one,
is reversible as stated by the arrow connecting X to X+.

The set of differential equations devised by Goldbeter produces an oscillatory
behavior in the activation of the three elements M , C, X that repeatedly go
through a state in which cells enter in a mitotic cycle (see Figure 3).

The goal of the case study showed here is to obtain a description and a sim-
ulation of the very same model of mitotic oscillations by means of the simulator
Psim.

In general, there is no unique way to translate a differential equation system in
terms of a metabolic P system, therefore we choose to obtain it by the application
of the MP-ODE transformation [13]. The resulting MP system is reported here:

Π = (T, µ,R, F, q0)

where:

• The alphabet: T = {A,C, X, X+,M, M+}
• The membrane structure: µ = [0 ]0;
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Fig. 2. The mitotic oscillator model by A. Goldbeter, from [18].

Fig. 3. Dynamics of the mitotic oscillator from [18].

• The set of rules is R = {r1, r2, ..., r10}, where:
r1 : A → A C
r2 : C → X
r3 : X → λ
r4 : C → λ
r5 : C → M C
r6 : M+ → λ
r7 : M → M+

r8 : X+ → X M
r9 : M → λ
r10 : X → X+

in which all symbols have the meaning described before (and A is a kind of well
to draw substance C out from). Moreover, for every symbol in the system, we
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have introduced an inertia rule (i.e., a rule having the form Y → Y , for each
Y ∈ T to model the inertia of the system), omitted in this set of rules.

• The set of reaction maps is F = {Fr1, F r2, ..., F r10}, where:
Fr1 = k1

Fr2 = k2
x

k3+c

Fr3 = k2
c

k3+c

Fr4 = k3

Fr5 = k5
m+

(k6+c)(k7+m+)

Fr6 = k5
c

(k6+c)(k7+m+)

Fr7 = k8
1

(k9+m)

Fr8 = k10
m

(k11+x+)

Fr9 = k10
x+

(k11+x+)

Fr10 = k12
1

(k13+x)

• The initial state q0 of the single membrane system is defined by:
q0(A) = 1.3;
q0(C) = 0.01;
q0(X) = 0.01;
q0(X+) = 0.99;
q0(M) = 0.01;
q0(M+) = 0.99;

in which we deal with concentrations of species, rather than with objects, and
in this way the initial amounts are real numbers;

where, for each element of T the reaction map of inertia rules is set to 1600.
We start the modeling session by opening the Psim’s main interface showed in

Figure 4. This window allows the user to manage all the experiment’s stages. In
particular the main possible choices involve:

1. modelling the system, setting substances, initial conditions, reaction maps and
rules;

2. starting the simulation;
3. displaying output charts.

The first step to consider while setting up a system’s simulation is the speci-
fication of the corresponding MP graph. In what follows, some steps towards the
creation of an MP graph modelling the mitotic oscillator are presented.

After clicking on the New Experiment label of the File menu, a window like
the one depicted in the Figure 5 appears. This is the main window of the graphical
interface allowing the user to input in a easy way the MP graph components by
simply dragging them from the upper toolbar to the bottom white panel. This
task is performed by using the following toolbar icons:

• The blue circle: adds a new type node that stores the name of a substance, its
initial number of molar units and its inertia value (as explained in previous
papers, inertias are a way to represent the fact that not all reactants need to
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Fig. 4. The Psim’s main interface

Fig. 5. Psim’s input interface

react at a certain instant, they are a sort of resistance opposed to species to
performing reactions).

• The black circle: adds a new metabolic reaction node that represents a reaction
channel between interacting substances and stores the name of a reaction rule.

• The red rectangle: adds a new reactivity node building the regulatory part of
MP graphs. In the simulator, reactivity nodes store the reactivity map function
corresponding to the connected rule and, if necessary, a boolean guard function
for the rule activation.
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• The green triangles: add input gates and output gates nodes that identify rules
which respectively introduce new matter in the membrane or expel part of it
from the system.

After the insertion of the nodes in the white panel the user can specify their
internal parameters and connect the nodes by drawing arcs among them. The best
way to accomplish this task is to start by defining the type node parameters and
the metabolic reaction node parameters by double clicking on the corresponding
nodes and filling in the window’s field that automatically appears (Figure 6).
Importantly enough, a parser has been implemented to check the consistency of
inserted parameters and to alert the user if any irregularity arose.

Fig. 6. Insertion of the type node parameters

At this point, one can connect the type nodes and the metabolic reaction nodes
with each other by drawing arcs among them with the simple use of the mouse.
This is a very important step because it allows to represent the stoichiometric part
of the system by means of the MP graph topology (Figure 7).

As an example, let us consider the reaction r2 : C → X. Within the input
graphical interface it is represented by the R2 black circle that is connected by
means of black arcs to the C and the X blue circles, representing the corresponding
substances; the direction of the arrow represents the substance flow of the reaction.

A further modeling step is needed to add the reactivity nodes describing the
regulatory part of the system. This can be done by first linking every type node,
that affects a reaction map, with the corresponding reactivity nodes (as showed in
Figure 8). Finally the reactivity map function of every reactivity node is specified
by using the linked type nodes and the environmental measures as variables or
constants (as reported in Figure 9). Figure 8 represents the final mitotic oscillator
MP graph as produced by the Psim GUI.

This completes the modelling stage and the next logical step is to start the
simulation of the specified system. This is done by clicking on the rightmost icon
of the upper toolbar (the rightward arrow). The click causes a small window to
pop out, in which it is possible to set the number of steps the simulation will span
(Figure 10). A possible choice for this system is to run 150000 steps. By click on
the Start button the dynamics computation begins.

When the simulation is finished the system prompts that results are available
and ready to be visualized by the Psim chart visualization form (Figure 11). Using
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Fig. 7. Adding type nodes, metabolic reaction nodes and drawing arches among them

Fig. 8. An MP graph that models the mitotic oscillator

Fig. 9. Reactivity node input parameter window
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Fig. 10. Set the number of steps for the simulation to 150000

the bottom panel check boxes it is possible to decide elements to be displayed. In
the considered case oscillations of cyclin C (red line), active cdc2 kinase M (blue
line) and active protease M (green line) are displayed but the phase space plot
can be drawn as well.

Fig. 11. Oscillations of the mitotic systems as calculated by Psim.

We finally highlight an important mechanism of the Psim platform: plugins
extensibility. As already mentioned, plugins allow the user to enhance the main
Psim computing core with powerful functionalities for the data import, export,
control and analysis. An example under development is the experiment plugin that
stores the experiment state (concentration of the substances and environmental
measures) every x steps, where x is a parameter set by the user before the com-
putation starts. This plugin could save, for instance, an XML file for every state,
allowing the user to export the experiment samples in an standard way.

A software developer generates the plugin code (basically some Java classes)
relying on the Psim’s JavaDoc documentation obtainable at [15] which lists the
experiment plugin methods to be mandatorily implemented. Plugin classes are
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meant to be archived in a Jar file and placed in a proper plugins directory. Provided
this, at the following start up Psim will automatically find and load all the plugins
contained in the plugins directory. The user can find all available experiment plugin
statements in the main interface Experiment Plugin menu (Figure 4) in the form
of a list. By clicking on the relative label its possible to activate the plugin that
will be run at each step of the subsequent simulation and will save the state every
x steps chosen by the user filling in a plugin popup window.

The plugin just described yields a set of XML files but the same principles can
be extended also to the other kinds of plugins (input, output, engine plugins).

A particular mention is deserved by engine plugins that allow to implement
new simulation strategies which can be different from the metabolic algorithm
described above. This gives the simulation tool a very high flexibility as well as
extendability as discussed previously.

4 Conclusion and further work

P systems can be useful frameworks to embed biological systems models in. This
demands for some modifications to the classical definition of P systems and par-
ticularly a biologically meaningful evolution strategy is needed. In previous papers
an essentially deterministic strategy, called metabolic algorithm, for the calcula-
tion of biological systems dynamics has been provided as well as an extension of
the classic model of P systems, known as MP systems, focused on the dynamics of
bio-systems. Moreover, all data needed for the simulation of MP systems dynamics
can be provided by means of a graphical formalism known as MP graphs.

The basics of MP systems have been briefly revisited in this paper and based
on them a simulation tool called Psim has been highlighted, together with a case
study of a well known and previously investigated model of mitotic cycles in early
amphibians. Psim v. 2.4 is the latest release of the MP systems simulator developed
within the MNC Group of the University of Verona and it has very interesting
features such as the plugin mechanism and the meta-engine architecture which give
the tool an high level of extendability and personalization. In particular, plugins
can be useful to perform several tasks such as data import/export, control of the
simulation flow, output of dynamics obtained and analysis of the results among
others. Moreover, the meta-engine architecture of the simulator allows users to
define their own evolution strategies by implementing some fixed interfaces of the
simulator.

In the future we plan to enrich the core of this simulation tool by implementing
a series of plugins such as the one described above to have a snapshot of the state of
the system in particular instants. Other plugins under investigation involve some
automatic procedures for parameter estimation given suitable observations of the
reality to be modelled. Finally, we plan to employ this simulation tool for the
calculation of the dynamics of systems not already modelled and in this respect
the possibility to devise ad-hoc evolution strategies can be very important to tackle
some specific issues related with the particular reality to be modelled.
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Summary. Further results on the study of the dynamics of HIV infection with grids of
conformon-P systems are reported. This study clearly shows a subdivision in two main
phases, the first faster than the second, of the mechanism at the base of the considered
dynamics.

1 Introduction

The infection by the human immuno-deficiency virus (HIV), the cause of acquired
immunodeficiency syndrome (AIDS), has been widely studied both in the labora-
tory and with computer models in order to understand the different aspects that
regulate the virus-host interaction.

Several mathematical models have been proposed (for example [12, 18, 10]) but
all of them fail to describe some aspects of the infection. The recent model reported
by Dos Santos & Coutinho in [14], based on cellular automata, clearly shows the
different time scales of the infection and has a broad qualitative agreement to the
density of healthy and infected cells observed in vivo. However, in [15] it is noted
that this qualitative agreement is reached only if some parameters are chosen in a
small interval. If some of the parameters are chosen outside this interval, then the
model of [14] does not follow the dynamics of what is observed in vivo.

In the present paper we continue our study on the modeling of the dynamics of
HIV infection with grids of conformon-P systems started in [2]. There our model
proved to be robust than the cellular automata model of [14] to a wide range of
conditions and parameters, with more reproducible qualitative agreement to the
overall dynamics and to the densities of healthy and infected cells observed in vivo.



22 P. Frisco, D.W. Corne

2 The Modeling Platforms

2.1 Cellular automata

Cellular Automata (CA) are a regularly used platform for modeling, and are in-
creasingly explored as modeling tools in the context of natural phenomena that
exhibit characteristic spatiotemporal dynamics [16, 3]. Of interest here, for exam-
ple, are their use in modeling the spread of infection [1, 11, 14, 10, 17].

A CA consists of a finite number of cells (invariably arranged in a regular
spatial grid), each of which can be in one of a finite (typically small) number of
specific states. In the usual approach, at each time step t the status of the CA
is characterized by its state vector; that is, the state of each of the cells. In the
simplest type of CA, the state vector at time t + 1 is obtained from that at time
t by the operation of a single rule applied in parallel (synchronously) to each cell.
The rule specifies how the state of a cell changes as a function of its current state
and the states of the cells in its neighborhood (see Figure 4). In many applications,
including that addressed here, it is appropriate for the rule to be probabilistic.

The straightforward nature of the time evolution of a CA, combined with its
emphasis on local interactions, has made it an accessible and attractive tool for
modeling many biological processes.

2.2 Conformon-P systems

Conformon-P systems (cP systems) [5] have been introduced as a novel compu-
tational device (P systems are the chief systems arising in the emerging research
area of Membrane Computing [13]) whose early inspiration comes from a theoret-
ical model of the living cell.

CP systems are defined in an extremely simple way that does not limit either
their computational power, or their modeling capabilities. As a variant of P sys-
tems, they capture the dynamics of interacting processes in a novel way, using
constructs that characterize the flow of information between regions in a range
of cell-like topological structures. Moreover, their definition allows them to model
different kinds of process (a compartment defines locality in general, it is not nec-
essarily a membrane compartment in a cell) and to integrate several degrees of
abstraction in the same system.

P systems are well-defined models of parallel computational systems that have
a rich and growing base [19] of theoretical understanding of their properties.

A cP system has conformons, a name-value pair, as objects. If V is an alphabet
(a finite set of letters) and N0 is the set of natural numbers (with 0 included), then
we can define a conformon as [γ, a], where γ ∈ V and a ∈ N0, we will say that
γ is the name and a is the value of the conformon [γ, a]. If, for instance, V =
A,B, C, . . . , Z, then [A, 5], [C, 0], [Z, 14] are conformons, while [AB, 21], [C,−15],
and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form γ

n→ β, where γ, β ∈ V and n ∈ N0, and it says that a conformon
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with name γ can give n from its value to the value of a conformon having name
β. A rule can be applied only if the value of the conformon with name γ is greater
or equal to n. If, for instance, there are conformons [G, 5] and [R, 9] and the rule
G

3→ R, the application of r leads to [G, 2] and [R, 12].
The (membrane) compartments present in a cP system have a label (it is a name

which makes it easier to refer to a compartment), every label being different. Com-
partments can be unidirectionally connected to each other and for each connection
there is a predicate. A predicate is an element of the set {≥ n,≤ n | n ∈ N0}. Ex-
amples of predicates are: ≥ 5,≤ 2, etc.. A connection and its predicate are referred
as passage rules. If, for instance, there are two compartments (with labels) m1 and
m2 and there is a passage rule from m1 to m2 having predicate ≥ 4, then confor-
mons having value greater or equal to 4 can pass from m1 to m2. In a time unit
any number of conformons can move between two connected membranes as long
as the predicate of the passage rule is satisfied. Notice that we have unidirectional
passage rules that is: m1 connected to m2 does not imply that m2 is connected to
m1. Moreover, each passage rule has its own predicate. If, for instance, m1 is con-
nected to m2 and m2 is connected to m1, the two connections can have different
predicates.

A simple cP system is illustrated in Figure 1.

[X, 3] [C, 0]
[C, 0]

X
2→C C

2→X

conformons

≥ 1

≥ 3

≥ 3

interaction rules

m2

m3

labels
predicates

m1

Fig. 1. A cP system

CP systems do not work under the requirement of maximal parallelism, typical
to the majority of the models of P systems. When used as modeling platform cP
systems can be classified as stochastic descriptive dynamic discrete model based on
a discrete spatial heterogeneity. CP systems have been successfully used to model
biological processes [7, 2].

A grid of cP systems (Figure 2) is composed by cells, each cell being a simple
conformon-P system connected to some other cells, the neighborhood of the cell.

Ongoing research is establishing the computational properties of (models of)
cP systems [8, 9, 5, 6, 4].

CP systems can contain modules: groups of membranes with conformons and
interaction rules able to perform a specific task. The task performed by a module
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[C, 0]

[C, 0]
[C, 0]

Fig. 2. A grid of cP systems

can be considered atomic (i.e., completed in one time unit) in the context of the
cP system containing it. Modules allow cP systems to be scalable.

Some modules are: Splitter, Separator, Decreaser/Increaser [5]. The combina-
tion of Separators and Decreaser/Increaser allows us to define strict interaction
rule: γ(a) c→ β(b) where γ, β ∈ V, a, b, c ∈ N0, meaning that a conformon with
name γ can interact with β passing just c only if the value of γ and β before
the interaction is a and b respectively. Notice that in a strict interaction just c is
passed even if the value of γ could be decreased by any multiple of c. Interactions
of the kind γ

c→ β(b) (before the interaction γ can have any value while β has b as
value) and γ(a) c→ β (before the interaction γ has a as value while β can have any
value) can be defined, too.

3 The Process and the Models

The dynamics observed in HIV infections can be divided into three phases. Initially
the amount of virus in the host grows in an exponential way, then the viral load
drops to what is known as the “set point”. Finally the amount of virus in the host
increases slowly, accelerating near the onset of AIDS. The first two phases occur
in the first weeks following the infection; the third phase can last years. This is
plotted in Figure 3 where each unit in the x axes represent a week in time.

In [14] this process was modeled with a CA in which each cell could be in any
of four possible states: healthy, A-infected, AA-infected, and dead. In the (random)
initial configuration a cell had probability pHIV to be A-infected, otherwise it is
healthy.

The rules used in [14] are:

1. if an healthy cell has at least one A1-infected neighbor, then it becomes A1-
infected;
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Fig. 3. Typical dynamics of HIV infection.

2. if an healthy cell has not A1-infected neighbors but it has at least R A2-infected
neighbors, then it becomes A1-infected;

3. an A1-infected cell becomes A2-infected after τ time steps;
4. A2-infected cells become dead cells;
5. dead cells can become (be replaced by) healthy cells with probability prepl;
6. newly introduced healthy cells can become A1-infected with probability pinfec.

The biological reasoning behind these rules is explained in [14]. Essentially,
rules 1 and 2 model the basic spread of viral infection from cells to neighboring
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cells; rules 3-5 model the short life of an infected cell, and rule 6 models the body’s
continual replenishment of new healthy cells but maintaining a small probability
of infection.

In [14] the following parameters were chosen: pHIV = 0.05, prepl = 0.99, pinfec =
10−5, R = 5 and τ = 4. They experimented with grids of size ranging from 300×300
to 1000 × 1000, and the averaged results of 500 simulations reported in [14] on
toroidal grids ranging from 700× 700 show a qualitative agreement to the density
of healthy and infected cells observed in vivo.

In [15] it is shown that this qualitative agreement is reached only for values of
the parameters close to the ones just indicated. If either pHIV < 10−2 or pinfec is
chosen in the range 10−2 to 10−4, then the CA model of [14] does not follow the
dynamics of what is observed in vivo.

3.1 The CA model

3.2 The grid of cP system model

The main difference that our model has in respect to the one reported in [14] is that
the interaction rules are divided in two subsets:part 1 and part 2 (see Appendix
A). The rules in the two subsets differ in the probabilities associated to them.

Other differences as, for instance, the presence of pre-dead cells, exist in order
to simulate in terms of operations in a cP system some instructions of the CA
presented in [14].

Each cell can be in one of five states: 1-healthy, A-infected, AA-infected, pre-
dead, and dead (in respect to the rules in part 1) identified by the presence of the
conformons: [H, 1], [A, 1], [AA, 1], [PD, 1], and [D, 1] respectively. If, for instance,
a cell is in an healthy state, then it will contain [H, 1], [A, 0], [AA, 0], [PD, 0], and
[D, 0] (similarly for the other cases). In the initial configuration, each cell contains
the conformons [R, 1], [V, 10], [E, 0], and [W, 0] are present in an unbounded number
of copies.

In the following we consider and describe the rules in part 1.
If a cell is A-infected, then it can generate [V, 11] (meaning: if a cell is A-infected

it can generate a virus). This is performed by the rules:

1: R
1→ A(1) 2: A(2) 1→ V(10)

Notice that [V, 10] does not represent a virus, but [V, 11] does.
[V, 11] conformons can pass from a cell to any other in its neighborhood (mean-

ing: viruses can spread between cells).
An 1-healthy cell can become A-infected if it contains a virus. This is performed

by the rules:

3: V
11→ H(1) 4: H(12) 12→ A(0) 5: A(12) 11→ W(0)

An AA-infected cell can generate [E, 1] conformons. These conformons can pass
to other cells and interact such that [E, 4] conformons are created. When a [E, 4]
conformon is present in an healthy cell, then it can become A-infected.



Modeling the Dynamics of HIV Infection with Conformon-P Systems 27

This process mimics rule II in Section 3 and it is performed by:

6: R
1→ AA(1) 7: AA(2) 1→ E(0) 8: E(1) 1→ E(1) 9: E(2) 2→ E(2)

10: E
4→ H(1) 11: H(5) 5→ A(0) 12: A(5) 4→ W(0)

and by the fact that [E, 1] can pass from one cell to any other in its neighbor-
hood. From the rules 7, 8, and 9 it should be clear that only [E, 1], [E, 2], and [E, 4]
can be present in the system. Because of rule 6 an AA-infected cell can generate
[E, 1]. When two [E, 1] are present in the same cell they can interact to create
[E, 2] (rule 8) and two [E, 2] present in the same cell can interact to create [E, 4]
(rule 9). If the creation of [E, 4] took place in an healthy cell, then this cell can
become A-infected (rules 10, 11 and 12).

An A-infected cell can become AA-infected by the application of the rule:

13: A(1) 1→ AA(0)

An AA-infected cell can become dead. Before doing so it goes into the pre-
dead state in which the [V, 11], [E, 1], [E, 2], and [E, 4] conformons present in it are
removed. This is performed by the rules:

14: AA(11) 1→ PD(0) 15: V (11) 1→ PD(1) 16: E
1→ PD(1) 17: E

2→ PD(1)

18: E
4→ PD(1) 19: PD(1) 1→ D(0) 20: PD(2) 1→ W(0) 21: PD(3) 2→ W(0)

22: PD(5) 4→ W(0)

A dead cell can become 2-healthy cell by the application of the rule

23: D(1) 1→ H2(0)

The R and W conformons do not have a direct relationship with any aspect
of HIV infection. In broad terms, the R conformons can be regarded as ‘food’
molecules needed by a cell in a certain state to perform an action (for instance,
if A-infected to generate a virus). The W conformons can be regarded as ‘waste’
molecules, to which some conformons can pass part of their value. As W confor-
mons only receive values from other conformons, their initial value is not relevant
for the simulation.

The state 2-healthy, together with A2-infected, AA2-infected, 2-pre-dead, and
2-dead are managed by the rules in part 2. The rules in part 2 are similar to the
ones in part 1 but they have H2 instead of H, A2 instead of A, AA2 instead of
AA, PD2 instead of PD, and D2 instead of D.

In the diagrams related to the grid of cP systems the curve of healthy cells is
obtained adding up the number of H and H2 cells; the curve of infected cells is
obtained adding up the number of A, AA, A2 and AA2 cells; the curve of dead
cells is obtained adding up the number of D, PD, D2 and PD2 cells.

The interaction rules indicated in Appendix A can be logically divided in two
sets: state-change and internal dynamics. The state-change rules allow the cells to
pass from a state to another. For instance, rule 4 is a state change rule as when
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it is applied in a cell the state of the cell passed from 1-healthy to A-infected. The
state-change rules are: 4, 11, 13, 14, 19, 23, 27, 32, 34, 35, 40 and 44.

The remaining rules belong to internal dynamics as they do not directly effect
the state of a cell.

Differently than what done in [2], in the present study the probabilities asso-
ciated to the internal dynamics rules in phase 1 are equal to the ones in phase 2.
The probabilities of the state-change rules in phase 1 are higher than then ones in
phase 2.

Considering what we said in Section 3, rules in part 1 model the behavior of
the first two phases of the dynamics of HIV infection, while rules in part 2 model
the behavior of the third phase.

4 Experiments and Results

The simulations performed with the cP system were based on a toroidal 50×50
grid, using a Moore neighborhood (considering Figure 4 the black cell can pass
conformons to any grey cell) and with pHIV = 0.05.

Fig. 4. The Moore neighborhood.

All the 10 simulations (with different random number sequences) run for 16000
iterations and they all show a dynamics very similar to the one observed in vivo.
A typical outcome is depicted in Figure 5.

This outcome (even if run for only one kind of neighborhood and one values
of pHIV ) fits the dynamics observed in vivo better than the outcomes reported in
[2]:

the tempo of the dynamics is constant during the simulation. In [2] the dynamics
was ‘too fast’ in the later years (or ‘too slow’ in the first weeks). In the present
study 1 year corresponds to 1560 iterations. This means that phase I and phase
II (both taking place in at most 10 weeks) should correspond to 300 iterations.
In this way the 16000 iterations of out tests corresponds to a bit more than
10 years.

the percentage of healthy and infected cells in phase III is closer to what observed
in vivo than what reported in [2].

the dynamics of healthy and infected cells in phase III is not flat as in [2] but
shows a concavity similar to the one observed in vivo.
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Fig. 5. Typical outcome for grids of cP systems.

There are two major differences between the dynamics obtained by us and the
one observed in vivo:

in phase III the number of healthy cells should become equal to the one of dead
cells;

the curves followed by the number of healthy and infected cells in phase III do
not change concavity.
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5 Final Remarks

We consider the reported study still in its initial phases. In the future we will try
to better fit the dynamics obtained with grids of cP system to what observer in
vivo and we will run the tests on different neighborhoods and different values of
pHIV (as done in [2]).

Some results obtained by us indicates that the E conformons play a negligible
role in the whole dynamics. On this base we will try to simply our model in the
number of interaction rules and conformons present in it.
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4. P. Frisco. Conformon-p systems with negative values. submitted.
5. P. Frisco. The conformon-P system: A molecular and cell biology-inspired com-

putability model. Theoretical Computer Science, 312(2-3):295–319, 2004.
6. P. Frisco. Infinite hierarchies of conformon-P systems. In H. J. Hoogeboom, G. Păun,
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A Rules, links, and probabilities

part 1 part 2
label rule prob. label rule prob.

1 R
1→ A(1) 0.7071 24 R

1→ A2(1) 0.7071
2 A(2) 1→ V(10) 0.7071 25 A2(2) 1→ V(10) 0.7071
3 V

11→ H(1) 0.79 26 V
11→ H2(1) 0.79

4 H(12) 12→ A(0) 0.79 27 H2(12) 12→ A2(0) 0.0001
5 A(12) 11→ W(0) 0.79 28 A2(12) 11→ W(0) 0.79
6 R

1→ AA(1) 0.7071 29 R
1→ AA2(1) 0.7071

7 AA(2) 1→ E(0) 0.7071 30 AA2(2) 1→ E(0) 0.7071
8 E(1) 1→ E(1) 0.07071
9 E(2) 2→ E(2) 0.07071
10 E

4→ H(1) 0.79 31 E
4→ H2(1) 0.79

11 H(5) 5→ A(0) 0.79 32 H2(5) 5→ A2(0) 0.0001
12 A(5) 4→ W(0) 0.79 33 A2(5) 4→ W(0) 0.79
13 A(1) 1→ AA(0) 0.04 34 A2(1) 1→ AA2(0) 0.0001
14 AA(11) 1→ PD(0) 0.1 35 AA2(11) 1→ PD2(0) 0.00075
15 V (11) 1→ PD(1) 0.7071 36 V (11) 1→ PD2(1) 0.7071
16 E

1→ PD(1) 0.7071 37 E
1→ PD2(1) 0.7071

17 E
2→ PD(1) 0.7071 38 E

2→ PD2(1) 0.7071
18 E

4→ PD(1) 0.7071 39 E
4→ PD2(1) 0.7071

19 PD(1) 1→ D(0) 0.2 40 PD2(1) 1→ D2(0) 0.001
20 PD(2) 1→ W(0) 0.7071 41 PD2(2) 1→ W(0) 0.7071
21 PD(3) 2→ W(0) 0.7071 42 PD2(3) 2→ W(0) 0.7071
22 PD(5) 4→ W(0) 0.7071 43 PD2(5) 4→ W(0) 0.7071
23 D(1) 1→ H2(0) 0.1 44 D2(1) 1→ H2(0) 0.001

Links:
[V, 11] can pass with probability 1 from any cell to any of its neighbors; [E, 1] can
pass with probability 0.01 from any cell to any of its neighbors.
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Summary. Quantum UREM P systems constitute an attempt to introduce in Mem-
brane Computing notions and techniques deriving from quantum mechanics. As we will
see, the approach we have adopted is different from what is usually done in Quantum
Computing; in fact, we have been inspired by the functioning of some elementary opera-
tions that are used in quantum mechanics to exchange quanta of energy among quantum
systems: creation and annihilation operators. In this paper we will provide the back-
ground which has led to the current definition of quantum UREM P systems, and we
will recall some results concerning their computational power.

1 The Quest for Quantum P Systems

Membrane systems (also known as P systems) have been introduced by Gheorghe
Păun in 1998 [27] as a new class of distributed and parallel computing devices,
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain some objects (represented by symbols of an alphabet) and evolution
rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. A computation starts from an initial configuration of the system
and terminates when no evolution rule can be applied. Usually, the result of a
computation is the multiset of objects contained into an output membrane or
emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a layman–oriented introduction to
P systems see [29], whereas for a systematic introduction we refer the reader to
[28]. The latest information about P systems can be found in [32].

At the beginning of 2004, the Membrane Computing community started to
query about the possibility to define a quantum version of P systems, and hence
we started to work on the subject. A first paper [21] was presented in Palma de
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Mallorca in November 2004. There, we proposed two options: either to follow the
steps usually performed in Quantum Computing to define the quantum version
of a given computation device, or to propose a completely new computation de-
vice which is based on the most elementary operation which can be conceived in
physics: the exchange of a quantum of energy among two quantum systems. In
the former case we would have obtained yet another quantum computation device
whose computation steps are defined as the action of unitary operators, whose
computations are logically reversible, and in which there are severe constraints on
the amount of information which can be extracted from the system by measuring
its state. In the latter case, instead, we felt that a new and interesting compu-
tation device could be introduced. Indeed, after a long and careful investigation,
we decided to adopt creation and annihilation operators as the most elementary
operations which can be performed by our computation device.

It was since 2001 that several authors introduced the notion of energy in P
systems [1, 10, 31, 15, 22, 23]. Hence, we looked at the literature to find a model of P
systems that was easily transformable in a quantum computation device. Our first
choice, explored in [21], was to focus on energy–based P systems, in which a given
amount of energy is associated to each object of the system. Moreover, instances of
a special symbol e are used to denote free energy units occurring into the regions of
the system. These energy units can be used to transform objects, using appropriate
rules. The rules are defined according to conservativeness considerations. Indeed, in
[21] we proposed two different versions of quantum P systems based on this classical
model. Both versions were defined just like classical energy–based P systems, but
for objects and rules. Objects were represented as pure states in the Hilbert space
Cd, d ≥ 2, whereas the definition of rules differs between the two models. In
the former, rules are defined as bijective functions — implemented as unitary
operators — which transform the objects from the alphabet. In the latter, rules are
defined as generic functions which map the alphabet into itself. Such functions are
implemented using a generalization of the Conditional Quantum Control technique
[3], and may yield to non unitary operators (a fact which is usually seen with
suspect in traditional Quantum Computing).

However, several problems were pointed out in [21], the most serious being that
it is difficult to avoid unwanted exchanges of energy among the objects, that yield
the system to unintended states. Another difficulty was tied to the assignment of
the amount of energy to every object of the system. In the original definition of
energy–based P system, every object incorporated a different amount of energy; in
other words, the amount of energy uniquely determined the kind of object and, by
acquiring or releasing energy from the environment, one object was transformed
to another kind of object. Under this definition, we were able in [22] to simulate a
single Fredkin gate. However, in order to simulate an entire Fredkin circuit [23, 24]
we were forced to relax the definition, and allow different kinds of objects to have
the same amount of energy, otherwise the number of different kinds of objects
would have become unmanageable. Last, but not the least, we have the problem
of objects localization and control. How do we force an object to stay in a given
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region for a long time, or to move to the desired region? Indeed, one notable
feature of quantum systems is the so called “tunnel effect”, thanks to which at
every moment we have a positive probability that the object spontaneously leaves
the current region. Of course this is a problem which is generally found when
trying to control the behavior of a quantum system, but in the case of energy–
based P systems the problem is exacerbated by the fact that the objects should
move (only) as the effect of the application of a rule. This problem does not occur
with quantum UREM P systems: there the objects interact by exchanging some
amounts of energy, which are stored in quantum harmonic oscillators, but never
move nor cross any membrane.

Looking for some alternatives, we considered the model of P systems introduced
in [11], in which a non–negative integer value is assigned to each membrane. Such
a value can be conveniently interpreted as the energy of the membrane. In these
P systems, rules are assigned to the membranes rather than to the regions of the
system. Every rule has the form (ini : α, ∆e, β) or (outi : α, ∆e, β), where i is
the number of the membrane in a one-to-one labeling, α and β are symbols of the
alphabet and ∆e is a (possibly negative) integer number. The rule (ini : α, ∆e, β)
is interpreted as follows: if a copy of α is in the region immediately surrounding
membrane i, then this object crosses membrane i, is transformed to β, and modifies
the energy of membrane i from the current value ei to the new value ei + ∆e.
Similarly, the rule (outi : α,∆e, β) is interpreted as follows: if a copy of α is in
the region surrounded by membrane i, then this object crosses membrane i, is
transformed to β, and modifies the energy of membrane i from the current value
ei to the new value ei + ∆e. Both kinds of rules can be applied only if ei + ∆e is
non–negative. Since these rules transform one copy of an object to (one copy of)
another object, in [11] they are referred to as unit rules. Hence, for conciseness, this
model of P systems with unit rules and energy assigned to membranes is usually
abbreviated as UREM P systems. An important observation is that in [11] the
rules of UREM P systems are applied in a sequential way: at each computation
step, one rule is selected from the pool of currently active rules, and it is applied.
In [11] it has been proved that if we assign some local (that is, affecting only
the membrane in which they are defined) priorities to the rules then UREM P
systems are Turing complete, whereas if we omit the priorities then we do not get
systems with universal computational power: indeed, we obtain a characterization
of PsMATλ, the family of Parikh sets generated by context-free matrix grammars
(without occurrence checking and with λ-rules).

So, finally, in [20] a quantum version of UREM P systems has been introduced,
and it has been shown that such a model of computation is able to compute
every partial recursive function (that is, it reaches the computational power of
Turing machines) without the need to assign any priority between the rules of
the system. In quantum UREM P systems, the rules (ini : α, ∆e, β) and (outi :
α, ∆e, β) are realized through (not necessarily unitary) linear operators, which can
be expressed as an appropriate composition of a truncated version of creation and
annihilation operators. The operators which correspond to the rules have the form
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|β〉 〈α| ⊗ O, where O is a linear operator which modifies the energy associated
with the membrane (implemented as the state of a truncated quantum harmonic
oscillator).

In [20] also Quantum Register Machines (QRMs, for short) have been intro-
duced. It is our opinion that they could play the same role in proofs concerning
the computational power of quantum computation devices as played by classical
register machines for classical computing devices. Indeed, it has been shown in
[20] that they are able to simulate any classical (deterministic) register machine,
and hence they are (at least) Turing complete. The advantage of quantum UREM
P systems over QRMs is that, due to the locality of interactions, the operators
which correspond to the rules of the former are generally smaller than the operators
corresponding to the instructions of the latter.

Finally, in [19] we have shown that, under the assumption that an external
observer is able to discriminate a null vector from a non–null vector, the NP–
complete problem 3-SAT can be solved using quantum (Fredkin) circuits, quantum
register machines and quantum UREM P systems. Precisely, for each type of com-
putation device we have proposed a brute force technique that exploits quantum
parallelism (as well as the ability to alter quantum states by using creation and
annihilation operators) to explore the whole space of assignments to the boolean
variables of any given instance φ of 3-SAT, in order to determine whether at least
one of such assignments satisfies φ. The solutions are presented in the so-called
semi–uniform setting, which means that for every instance φ of 3-SAT a specific
computation device (circuit, register machine or UREM P system) that solves it
is built. Even if it is not formally proved, it is apparent that the proposed con-
structions can be performed in polynomial time by a classical deterministic Turing
machine (whose output is a “reasonable” encoding of the machine, in the sense
given in [16]).

In the rest of the paper we overview the basic notions of quantum mechanics
which have led to the definition of quantum UREM P systems, and the results
obtained so far about their computational power. Precisely, in section 2 we recall
some basic notions on quantum computers, and we extend them to quantum sys-
tems which are able to assume a generic number d ≥ 2 of base states. We also
introduce some operators which can be used to operate on the states of such sys-
tems; for these operators, we first give a mathematical description and then we
propose some possible physical interpretations. In sections 3 and 4 we give the
precise definitions of both classical and quantum register machines and UREM
P systems, respectively. In section 5 we prove that quantum UREM P systems
are able to compute any partial recursive function, and hence they are (at least)
as powerful as Turing machines. In section 6 we show how to build two families
of quantum register machines and quantum UREM P systems, respectively, that
solve (in the semi–uniform setting) the NP–complete decision problem 3-SAT.
The conclusions, as well as some directions for future research, are given in section
7.
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2 Quantum computers

From an abstract point of view, a quantum computer can be considered as made
up of interacting parts. The elementary units (memory cells) that compose these
parts are two–levels quantum systems called qubits. A qubit is typically imple-
mented using the energy levels of a two–levels atom, or the two spin states of a
spin–1

2 atomic nucleus, or a polarization photon. The mathematical description
— independent of the practical realization — of a single qubit is based on the
two–dimensional complex Hilbert space C2. The boolean truth values 0 and 1 are
represented in this framework by the unit vectors of the canonical orthonormal
basis, called the computational basis of C2:

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to their
two basis (also pure) states, |0〉 and |1〉, but can also exist in states which are
coherent superpositions such as ψ = c0 |0〉 + c1 |1〉, where c0 and c1 are complex
numbers satisfying the condition |c0|2 + |c1|2 = 1. Performing a measurement of
the state alters it. Indeed, performing a measurement on a qubit in the above
superposition will return 0 with probability |c0|2 and 1 with probability |c1|2; the
state of the qubit after the measurement (post–measurement state) will be |0〉 or
|1〉, depending on the outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗nC2 = C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
n times

, representing a set of n

qubits labeled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗nC2, usually written as |x1, . . . , xn〉, considered as
a quantum realization of the boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗nC2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}} is an orthonormal
basis of this space called the n–register computational basis.

Computations are performed as follows. Each qubit of a given n–register is
prepared in some particular pure state (|0〉 or |1〉) in order to realize the required
n–configuration |x1, . . . , xn〉, quantum realization of an input boolean tuple of
length n. Then, a linear operator G : ⊗nC2 → ⊗nC2 is applied to the n–register.
The application of G has the effect of transforming the n–configuration |x1, . . . , xn〉
into a new n–configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum
realization of the output tuple of the computer. We interpret such modification
as a computation step performed by the quantum computer. The action of the
operator G on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉, expressed as a lin-

ear combination of the elements of the n–register basis, is obtained by linearity:
G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that linear operators which act on

n–registers can be represented as order 2n square matrices of complex entries.
Usually (but not in this paper) such operators, as well as the corresponding ma-
trices, are required to be unitary. In particular, this implies that the implemented
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operations are logically reversible (an operation is logically reversible if its inputs
can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have d > 2
pure states. In this setting, the d–valued versions of qubits are usually called qudits
[17]. As it happens with qubits, a qudit is typically implemented using the energy
levels of an atom or a nuclear spin. The mathematical description — independent of
the practical realization — of a single qudit is based on the d–dimensional complex
Hilbert space Cd. In particular, the pure states |0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

are represented by the unit vectors of the canonical orthonormal basis, called the
computational basis of Cd:

|0〉 =




1
0
...
0
0




,

∣∣∣∣
1

d− 1

〉
=




0
1
...
0
0




, · · · ,

∣∣∣∣
d− 2
d− 1

〉
=




0
0
...
1
0




, |1〉 =




0
0
...
0
1




As before, a quantum register of size n can be defined as a collection of n qudits.
It is mathematically described by the Hilbert space ⊗nCd. An n–configuration is
now a vector |x1〉 ⊗ . . .⊗ |xn〉 ∈ ⊗nCd, simply written as |x1, . . . , xn〉, for xi run-
ning on Ld =

{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}

. An n–configuration can be viewed as the
quantum realization of the “classical” tuple (x1, . . . , xn) ∈ Ln

d . The dimension of
⊗nCd is dn and the set {|x1, . . . , xn〉 : xi ∈ Ld} of all n–configurations is an ortho-
normal basis of this space, called the n–register computational basis. Notice that
the set Ld can also be interpreted as a set of truth values, where 0 denotes falsity,
1 denotes truth and the other elements indicate different degrees of indefiniteness.

Let us now consider the set Ed =
{

ε0, ε 1
d−1

, ε 2
d−1

, . . . , ε d−2
d−1

, ε1

}
⊆ R of real

values; we can think to such quantities as energy values. To each element v ∈ Ld

we associate the energy level εv; moreover, let us assume that the values of Ed

are all positive, equispaced, and ordered according to the corresponding objects:
0 < ε0 < ε 1

d−1
< · · · < ε d−2

d−1
< ε1. If we denote by ∆ε the gap between two

adjacent energy levels then the following linear relation holds:

εk = ε0 + ∆ε (d− 1) k ∀ k ∈ Ld (1)

Notice that it is not required that ε0 = ∆ε. As explained in [21, 19], the values εk

can be thought of as the energy eigenvalues of the infinite dimensional quantum
harmonic oscillator truncated at the (d− 1)-th excited level (see Figure 1), whose
Hamiltonian on Cd is:

H =




ε0 0 . . . 0
0 ε0 + ∆ε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d− 1)∆ε


 (2)
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Fig. 1. Energy levels of the infinite dimensional (on the left) and of the truncated (on
the right) quantum harmonic oscillator

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d− 1}, is the eigenvector

of the state of energy ε0 +k∆ε. To modify the state of a qudit we can use creation
and annihilation operators on the Hilbert space Cd, which are defined respectively
as:

a† =




0 0 · · · 0 0
1 0 · · · 0 0
0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · √d− 1 0




a =




0 1 0 · · · 0
0 0

√
2 · · · 0

...
...

...
. . .

...
0 0 0 · · · √d− 1
0 0 0 · · · 0




It is easily verified that the action of a† on the vectors of the canonical ortho-
normal basis of Cd is the following:

a†
∣∣∣∣

k

d− 1

〉
=
√

k + 1
∣∣∣∣
k + 1
d− 1

〉
for k ∈ {0, 1, . . . , d− 2}

a† |1〉 = 0

whereas the action of a is:

a

∣∣∣∣
k

d− 1

〉
=
√

k

∣∣∣∣
k − 1
d− 1

〉
for k ∈ {1, 2, . . . , d− 1}

a |0〉 = 0

Using a† and a we can also introduce the following operators:
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N = a†a =




0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d− 1




aa† =




1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d− 1 0
0 0 · · · 0 0




The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d− 1, and the eigen-
vector corresponding to the generic eigenvalue k is |N = k〉 =

∣∣∣ k
d−1

〉
. This corre-

sponds to the notation adopted in [17], where the qudit base states are denoted
by |0〉 , |1〉 , . . . , |d− 1〉, and it is assumed that a qudit can be in a superposition of
the d base states:

c0 |0〉+ c1 |1〉+ . . . + cd−1 |d− 1〉
with ci ∈ C for i ∈ {0, 1, . . . , d− 1}, and |c0|2 + |c1|2 + . . . + |cd−1|2 = 1.

One possible physical interpretation of N is that it describes the number of
particles of physical systems consisting of a maximum number of d − 1 particles.
In order to add a particle to the k particles state |N = k〉 (thus making it switch
to the “next” state |N = k + 1〉) we apply the creation operator a†, while to re-
move a particle from this system (thus making it switch to the “previous” state
|N = k − 1〉) we apply the annihilation operator a. Since the maximum number of
particles that can be simultaneously in the system is d− 1, the application of the
creation operator to a full d − 1 particles system does not have any effect on the
system, and returns as a result the null vector. Analogously, the application of the
annihilation operator to an empty particle system does not affect the system and
returns the null vector as a result.

Another physical interpretation of operators a† and a, by operator N , follows
from the possibility of expressing the Hamiltonian (2) as follows:

H = ε0 I+ ∆εN = ε0 I+ ∆εa†a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + k ∆ε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1) ∆ε (resp., εk−1 = ε0 + (k − 1)∆ε) for any 0 ≤ k < d − 1 (resp.,
0 < k ≤ d − 1), while it collapses the last excited (resp., ground) state of energy
ε0 + (d− 1) ∆ε (resp., ε0) to the null vector.

The collection of all linear operators on Cd is a d2–dimensional linear space
whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}
Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z 6= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all the
other vectors of the canonical orthonormal basis of Cd to the null vector. Each
of the operators Ex,y can be expressed, using the whole algebraic structure of
the associative algebra of operators, as a suitable composition of creation and
annihilation operators, as follows:
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E i
d−1 , j

d−1
=





√
j!

(d−1)!A
d−2,d−1−j,0
a†,a† if i = 0√

j!
(d−1)!A

d−1,d−1−j,0
a,a† if i = 1 and j ≥ 1√

i!
(d−1)!

√
j!

Ad−2−i,d−1,j
a†,a† if (i = 1, j = 0 and d ≥ 3) or

(1 < i < d− 2 and j ≤ i)√
j!

(d−1)!
√

i!
Ai−1,d−1,d−1−j

a,a if (i = d− 2, j = d− 1 and d ≥ 3)
or (1 < i < d− 2 and j > i)

1√
(d−1)!j!(d−1)

Ad−1,j,0
a†,a if i = d− 2 and j ≤ d− 2

1√
(d−1)!j!

Ad−2,j,0
a,a if i = d− 1

Here we just recall, in order to keep the length of the paper under a reasonable
size, that an alternative interpretation of qudits is possible, based on the values
which can be assumed by the z component of the angular momentum of semi–
integer spin quantum systems. Also with this interpretation every linear operator,
and in particular operators Ex,y, can be realized as appropriate compositions of
spin–rising (J+) and spin–lowering (J−) operators, similarly to what we have done
with creation and annihilation operators. For the details, we refer the reader to
[21, 19].

3 Classical and Quantum Register Machines

A (classical, deterministic) n–register machine is a construct M = (n, P, l0, lh),
where n is the number of registers, P is a finite set of instructions injectively labeled
with a given set lab(M), l0 is the label of the first instruction to be executed, and
lh is the label of the last instruction of P . Registers contain non–negative integer
values. Without loss of generality, we can assume lab(M) = {1, 2, . . . ,m}, l0 = 1
and lh = m. The instructions of P have the following forms:

• j : (INC(r), k), with j, k ∈ lab(M)
This instruction increments the value contained in register r, and then jumps
to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ lab(M)
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

• m : Halt
Stop the machine. Note that this instruction can only be assigned to the final
label m.

Register machines provide a simple universal computational model. Indeed, the
results proved in [12] (based on the results established in [25]) as well as in [13]
and [14] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
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that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh with registers 1 to β
containing r1 to rβ, and all other registers being empty; if the final label cannot be
reached, then f(n1, . . . , nα) remains undefined.

A quantum n–register machine is defined exactly as in the classical case, as a
four–tuple M = (n, P, l0, lh). Each register of the machine can be associated to
an infinite dimensional quantum harmonic oscillator capable to assume the base
states |ε0〉 , |ε1〉 , |ε2〉 , . . ., corresponding to its energy levels, as described in section
2. The program counter of the machine is instead realized through a quantum
system capable to assume m different base states, from the set {|x〉 : x ∈ Lm}.
For simplicity, the instructions of P are denoted in the usual way:

j : (INC(i), k) and j : (DEC(i), k, l)

This time, however, these instructions are appropriate linear operators acting on
the Hilbert space whose vectors describe the (global) state of M . Precisely, the
instruction j : (INC(r), k) is defined as the operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(⊗r−1I
)⊗ a† ⊗ (⊗n−rI

)

with I the identity operator on H (the Hilbert space in which the state vectors of
the infinite dimensional quantum harmonic oscillators associated with the registers
exist), whereas the instruction j : (DEC(r), k, l) is defined as the operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(⊗r−1I
)⊗ |ε0〉 〈ε0| ⊗

(⊗n−rI
)
+

|pk〉 〈pj | ⊗
(⊗r−1I

)⊗ a⊗ (⊗n−rI
)

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑

j,r,k

OINC
j,r,k +

∑

j,r,k,l

ODEC
j,r,k,l

Thus OP is the global operator which describes a computation step of M . The
Halt instruction is simply executed by doing nothing when the program counter
assumes the value |pm〉. For such a value, OP would produce the null vector as a
result; however, in what follows we will add a term to OP that allows us to extract
the solution of the problem from a prefixed register when the program counter
assumes the value |pm〉.

A configuration of M is given by the value of the program counter and the
values contained in the registers. From a mathematical point of view, a configu-
ration of M is a vector of the Hilbert space Cm ⊗ (⊗nH). A transition between
two configurations is obtained by executing one instruction of P (the one pointed
at by the program counter), that is, by applying the operator OP to the current
configuration of M .

As shown in [20], QRMs can simulate any (classical, deterministic) register
machine, and thus they are (at least) computationally complete.
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4 Classical and Quantum UREM P Systems

We are now ready to focus our attention to P systems. As stated in the intro-
duction, quantum UREM P systems have been introduced in [20] as a quantum
version of UREM P systems. Hence, let us start by recalling the definition of the
classical model of computation.

A UREM P system [11] of degree d + 1 is a construct Π of the form:

Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

• A is an alphabet of objects;
• µ is a membrane structure, with the membranes labeled by numbers 0, . . . , d

in a one-to-one manner;
• e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d. In

what follows we assume that e0, . . . , ed are non–negative integers;
• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of µ;
• R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule has the form (α : a,∆e, b), where α ∈ {in, out}, a, b ∈ A, and |∆e| is
the amount of energy that — for ∆e ≥ 0 — is added to or — for ∆e < 0 — is
subtracted from ei (the energy assigned to membrane i) by the application of
the rule.

By writing (αi : a,∆e, b) instead of (α : a,∆e, b) ∈ Ri, we can specify only one
set of rules R with

R = {(αi : a, ∆e, b) : (α : a, ∆e, b) ∈ Ri, 0 ≤ i ≤ d}

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by non–deterministically
choosing one rule from some Ri and applying it (observe that here we consider
a sequential model of applying the rules instead of choosing rules in a maximally
parallel way, as it is often required in P systems). Applying (ini : a,∆e, b) means
that an object a (being in the membrane immediately outside of i) is changed into
b while entering membrane i, thereby changing the energy value ei of membrane i
by ∆e. On the other hand, the application of a rule (outi : a,∆e, b) changes object
a into b while leaving membrane i, and changes the energy value ei by ∆e. The
rules can be applied only if the amount ei of energy assigned to membrane i fulfills
the requirement ei + ∆e ≥ 0. Moreover, we use some sort of local priorities: if
there are two or more applicable rules in membrane i, then one of the rules with
max |∆e| has to be used.

A sequence of transitions is called a computation; it is successful if and only if
it halts. The result of a successful computation is considered to be the distribution
of energies among the membranes (a non–halting computation does not produce
a result). If we consider the energy distribution of the membrane structure as



44 A. Leporati

the input to be analysed, we obtain a model for accepting sets of (vectors of)
non–negative integers.

The following result, proved in [11], establishes computational completeness for
this model of P systems.

Proposition 2. Every partial recursive function f : Nα → Nβ can be computed by
a UREM P system with (at most) max{α, β}+ 3 membranes.

It is interesting to note that the proof of this proposition is obtained by simulat-
ing register machines. In the simulation, a P system is defined which contains one
subsystem for each register of the simulated machine. The contents of the register
are expressed as the energy value ei assigned to the i-th subsystem. A single object
is present in the system at every computation step, which stores the label of the
instruction of the program P currently simulated. Increment instructions are simu-
lated in two steps by using the rules (ini : pj , 1, p̃j) and (outi : p̃j , 0, pk). Decrement
instructions are also simulated in two steps, by using the rules (ini : pj , 0, p̃j) and
(outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use of priorities associated to these last
rules is crucial to correctly simulate a decrement instruction. For the details of the
proof we refer the reader to [11].

On the other hand, by omitting the priority feature we do not get systems
with universal computational power. Precisely, in [11] it is proved that P systems
with unit rules and energy assigned to membranes without priorities and with an
arbitrary number of membranes characterize the family PsMATλ of Parikh sets
generated by context–free matrix grammars (without occurrence checking and with
λ-rules).

In quantum UREM P systems, all the elements of the model (multisets, the
membrane hierarchy, configurations, and computations) are defined just like the
corresponding elements of the classical P systems, but for objects and rules. The
objects of A are represented as pure states of a quantum system. If the alphabet
contains d ≥ 2 elements then, recalling the notation introduced in section 2, with-
out loss of generality we can put A =

{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
, that

is, A = {|a〉 : a ∈ Ld}. As stated above, the quantum system will also be able to
assume as a state any superposition of the kind:

c0 |0〉+ c 1
d−1

∣∣∣∣
1

d− 1

〉
+ . . . + c d−2

d−1

∣∣∣∣
d− 2
d− 1

〉
+ c1 |1〉

with c0, c 1
d−1

, . . . , c d−2
d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply a
collection of quantum systems, each in its own state.

In order to represent the energy values assigned to membranes we must use
quantum systems which can exist in an infinite (countable) number of states.
Hence we assume that every membrane of the quantum P system has an associated
infinite dimensional quantum harmonic oscillator whose state represents the energy
value assigned to the membrane. To modify the state of such harmonic oscillator
we can use the infinite dimensional version of creation (a†) and annihilation (a)
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operators1 described in section 2, which are commonly used in quantum mechanics.
The actions of a† and a on the state of an infinite dimensional harmonic oscillator
are analogous to the actions on the states of truncated harmonic oscillators; the
only difference is that in the former case there is no state with maximum energy,
and hence the creation operator never produces the null vector. Also in this case
it is possible to express operators Ex,y = |y〉 〈x| as appropriate compositions of a†

and a.
As in the classical case, rules are associated to the membranes rather than to

the regions enclosed by them. Each rule of Ri is an operator of the form

|y〉 〈x| ⊗O, with x, y ∈ Ld (3)

where O is a linear operator which can be expressed by an appropriate composition
of operators a† and a. The part |y〉 〈x| is the guard of the rule: it makes the rule
“active” (that is, the rule produces an effect) if and only if a quantum system in
the basis state |x〉 is present. The semantics of rule (3) is the following: If an object
in state |x〉 is present in the region immediately outside membrane i, then the state
of the object is changed to |y〉 and the operator O is applied to the state of the
harmonic oscillator associated with the membrane. Notice that the application of
O can result in the null vector, so that the rule has no effect even if its guard
is satisfied; this fact is equivalent to the condition ei + ∆e ≥ 0 on the energy
of membrane i required in the classical case. Differently from the classical case,
no local priorities are assigned to the rules. If two or more rules are associated to
membrane i, then they are summed. This means that, indeed, we can think to each
membrane as having only one rule with many guards. When an object is present,
the inactive parts of the rule (those for which the guard is not satisfied) produce
the null vector as a result. If the region in which the object occurs contains two
or more membranes, then all their rules are applied to the object. Observe that
the object which activates the rules never crosses the membranes. This means that
the objects specified in the initial configuration can change their state but never
move to a different region. Notwithstanding, transmission of information between
different membranes is possible, since different objects may modify in different
ways the energy state of the harmonic oscillators associated with the membranes.

The application of one or more rules determines a transition between two con-
figurations. A halting configuration is a configuration in which no rule can be
applied. A sequence of transitions is a computation. A computation is successful
if and only if it halts, that is, reaches a halting configuration. The result of a
successful computation is considered to be the distribution of energies among the
membranes in the halting configuration. A non–halting computation does not pro-
duce a result. Just like in the classical case, if we consider the energy distribution
of the membrane structure as the input to be analyzed, we obtain a model for
accepting sets of (vectors of) non–negative integers.

1 We recall that an alternative formulation that uses spin–rising (J+) and spin–lowering
(J−) operators instead of creation and annihilation is also possible.
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5 Computational Completeness of Quantum UREM P
Systems

In this section we prove that quantum P systems with unit rules and energy
assigned to membranes are computationally complete, that is, they are able to
compute any partial recursive function f : Nα → Nβ . As in the classical case, the
proof is obtained by simulating register machines.

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed by
a quantum P system with unit rules and energy assigned to membranes with (at
most) max{α, β}+ 3 membranes.

Proof. Let M = (n, P, 1,m) be a deterministic n–register machine that computes
f . Let m be the number of instructions of P . The initial instruction of P has the
label 1, and the halting instruction has the label m. Observe that, according to
Proposition 1, n = max{α, β}+ 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers, and the
output values are expected to be in registers 1 to β at the end of a successful
computation. Moreover, without loss of generality, we may assume that at the
beginning of a computation all the registers except (eventually) the registers 1 to
α contain zero.

We construct the quantum P system

Π = (A, µ, e0, . . . , en, w0, . . . , wn, R0, . . . , Rn)

where:

• A = {|j〉 | j ∈ Lm}
• µ = [0[1]1 · · · [α]α · · · [n]n]0

• ei =





|εxi
〉 for 1 ≤ i ≤ α

|ε0〉 for α + 1 ≤ i ≤ n

0 (the null vector) for i = 0
• w0 = |0〉
• wi = ∅ for 1 ≤ i ≤ n
• R0 = ∅
• Ri =

∑m
j=1 Oij for 1 ≤ i ≤ n

where the Oij ’s are local operators which simulate instructions of the kind
j : (INC(i), k) and j : (DEC(i), k, l) (one local operator for each increment or
decrement operation which affects register i). The details on how the Oij ’s are
defined are given below.

The value contained into register i, 1 ≤ i ≤ n, is represented by the energy
value ei = |εxi〉 of the infinite dimensional quantum harmonic oscillator associated
with membrane i. Figure 2 depicts a typical configuration of Π. The skin contains
one object of the kind |j〉, j ∈ Lm, which mimics the program counter of machine
M . Precisely, if the program counter of M has the value k ∈ {1, 2, . . . , m} then
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Fig. 2. A configuration of the simulating P system

the object present in region 0 is
∣∣∣ k−1
m−1

〉
. In order to avoid cumbersome notation,

in what follows we denote by |pk〉 the state
∣∣∣ k−1
m−1

〉
of the quantum system which

mimics the program counter.
The sets of rules Ri depend upon the instructions of P . Precisely, the simulation

works as follows.

1. Increment instructions j : (INC(i), k) are simulated by a guarded rule of the
kind |pk〉 〈pj | ⊗ a† ∈ Ri.
If the object |pj〉 is present in region 0, then the rule transforms it into object
|pk〉 and increments the energy level of the harmonic oscillator contained into
membrane i.

2. Decrement instructions j : (DEC(i), k, l) are simulated by a guarded rule of
the kind:

|pl〉 〈pj | ⊗ |ε0〉 〈ε0|+ |pk〉 〈pj | ⊗ a ∈ Ri

In fact, let us assume that the object |pj〉 is present in region 0 (if |pj〉 is not
present then the above rule produces the null operator), and let us denote by
O the above rule. The harmonic oscillator may be in the base state |ε0〉 or in
a base state |εx〉 with x a positive integer.
If the state of the harmonic oscillator is |ε0〉 then the rule produces:

O( |pj〉 ⊗ |ε0〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |ε0〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |ε0〉) =
= |pl〉 ⊗ |ε0〉+ |pk〉 ⊗ 0 = |pl〉 ⊗ |ε0〉

that is, the state of the oscillator is unaltered and the program counter is set
to |pl〉.
If the state of the harmonic oscillator is |εx〉, for a positive integer x, then the
rule produces:

O( |pj〉 ⊗ |εx〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |εx〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |εx〉) =
= |pl〉 ⊗ 0 + |pk〉 ⊗ a |εx〉 = |pk〉 ⊗ |εx−1〉
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that is, the energy level of the harmonic oscillator is decremented and the
program counter is set to |pk〉.

The set Ri of rules is obtained by summing all the operators which affect (incre-
ment or decrement) register i. The Halt instruction is simply simulated by doing
nothing with the object |pm〉 when it appears in region 0.

It is apparent from the description given above that after the simulation of
each instruction each energy value ei equals the value contained into register i,
with 1 ≤ i ≤ m. Hence, when the halting symbol |pm〉 appears in region 0, the
energy values e1, . . . , eβ equal the output of the program P .

Let us conclude this section by observing that, in order to obtain computational
completeness, it is not necessary that the objects cross the membranes. This fact
avoids one of the problems raised in [21]: the existence of a “magic” quantum
transportation mechanism which is able to move objects according to the target
contained into the rule. In quantum P systems with unit rules and energy assigned
to membranes, the only problem is to keep the object |pj〉 localized in region 0, so
that it never enters into the other regions. In other words, the major problem of
this kind of quantum P systems is to oppose the tunnel effect.

It should also be evident that the proof of Theorem 1 can be modified to show
that quantum P systems are able to simulate quantum register machines. Indeed,
the notable difference between the quantum P systems described above and quan-
tum register machines is that in the latter model we modify the values contained
into registers using global operators (if a given register must not be modified then
the identity operator is applied to its state) whereas in the former model we oper-
ate locally, on a smaller Hilbert space. Hence, as it happens in classical P systems,
membranes are used to divide the site where the computation occurs into indepen-
dent local areas. The effect of each rule is local, in the sense that the rule affects
only the state of one subsystem. Due to the simulations mentioned above, we can
order these computational models with respect to their computational power, as
follows:

deterministic
register
machines

≤
quantum
register
machines

≤
quantum P systems
with unit rules and
energy assigned to
membranes

Quantum register machines can thus be used as a tool to study the computa-
tional power of other quantum models of computation, just like it happens in the
classical case.

6 Solving 3-SAT with QRMs and with Quantum UREM P
Systems

Quantum UREM P systems are not only able to compute all partial recursive
functions, like Turing machines, but they can also be very efficient computation
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devices. Indeed, in this section we show how we can solve in polynomial time
the NP–complete decision problem 3-SAT by quantum register machines and by
quantum UREM P systems. As we will see, the solution provided by quantum
UREM P systems will be even more efficient that the one obtained with QRMs.

It is important to stress that our solutions assume that a specific non–unitary
operator, built using the truncated version of creation and annihilation operators,
can be realized as an instruction of quantum register machines and as a rule of
quantum UREM P systems, respectively. The construction relies also upon the
assumption that an external observer is able to discriminate, as the result of a
measurement, a null vector from a non–null vector.

6.1 The 3-SAT problem

A boolean variable is a variable which can assume one of two possible truth values:
true and false. As usually done in the literature, we will denote true by 1 and
false by 0. A literal is either a directed or a negated boolean variable. A clause
is a disjunction of literals, whereas a 3-clause is a disjunction of exactly three
literals. Given a set X = {x1, x2, . . . , xn} of boolean variables, an assignment is a
mapping a : X → {0, 1} that associates to each variable a truth value. The number
of all possible assignments to the variables of X is 2n. We say that an assignment
satisfies the clause C if, assigned the truth values to all the variables which occur
in C, the evaluation of C (considered as a boolean formula) gives 1 as a result.

The 3-SAT decision problem is defined as follows.

Problem 1. Name: 3-SAT.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables.

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Notice that the number m of possible 3-clauses is polynomially bounded with
respect to n: in fact, since each clause contains exactly three literals, we can have
at most (2n)3 = 8n3 clauses.

In what follows we will equivalently say that an instance of 3-SAT is a boolean
formula φn, built on n free variables and expressed in conjunctive normal form,
with each clause containing exactly three literals. The formula φn is thus the
conjunction of the above clauses.

It is well known [16] that 3-SAT is an NP–complete problem.

6.2 Solving 3-SAT with quantum register machines

Let φn be an instance of 3-SAT containing n free variables. We will first show how
to evaluate φn with a classical register machine; then, we will initialize the input
registers with a superposition of all possible assignments, we will compute the
corresponding superposition of output values into an output register, and finally
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we will apply the linear operator 2n |1〉 〈1| to the output register to check whether
φn is a positive instance of 3-SAT.

The register machine that we use to evaluate φn is composed by n+1 registers.
The first n registers correspond (in a one-to-one manner) to the free variables of
φn, while the last register is used to compute the output value. The structure of
the program used to evaluate φn is the following:

φ = 0
if C1 = 0 then goto end
if C2 = 0 then goto end
...
if Cm = 0 then goto end
φ = 1

end:

where φ denotes the output register, and C1, C2, . . . , Cm are the clauses of φn. Let
Xi,j , with j ∈ {1, 2, 3}, be the literals (directed or negated variables) which occur
in the clause Ci (hence Ci = Xi,1 ∨ Xi,2 ∨ Xi,3). We can thus write the above
structure of the program, at a finer grain, as follows:

φ = 0
if X1,1 = 1 then goto end1

if X1,2 = 1 then goto end1

if X1,3 = 1 then goto end1

goto end
end1: if X2,1 = 1 then goto end2

if X2,2 = 1 then goto end2 (4)

if X2,3 = 1 then goto end2

goto end
end2: · · · · · ·

...
endm−1: if Xm,1 = 1 then goto end

if Xm,2 = 1 then goto end
if Xm,3 = 1 then goto end
φ = 1

end:

In the above structure it is assumed that each literal Xi,j , with 1 ≤ i ≤ m
and j ∈ {1, 2, 3}, is substituted with the corresponding variable which occurs in it;
moreover, if the variable occurs negated into the literal then the comparison must
be done with 0 instead of 1:

if Xi,j = 0 then goto endi
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Since the free variables of φn are bijectively associated with the first n registers
of the machine, in order to evaluate φn we need a method to check whether a given
register contains 0 (or 1) without destroying its value. Let us assume that, when
the program counter of the machine reaches the value k, we have to execute the
following instruction:

k: if Xi,j = 1 then goto endi

We translate such instruction as follows (where, instead of Xi,j , we specify the
register which corresponds to the variable indicated in Xi,j):

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

The instruction:

k: if Xi,j = 0 then goto endi

is instead translated as follows:

k: DEC(Xi,j), k + 1, endi

k + 1: INC(Xi,j), k + 2

Notice that the only difference with the previous sequence of instructions is in the
position of “endi” and “k + 2”. Moreover, the structure of the program is always
the same. As a consequence, given an instance φn of 3-SAT, the program P of
a register machine which evaluates φn can be obtained in a very straightforward
(mechanical) way.

On a classical register machine, this program computes the value of φn for a
given assignment to its variables x1, x2, . . . , xn. On a quantum register machine
we can initialize the registers with the following state:

⊗n−1H1 |0〉 ⊗ |0〉

which sets the output register φ to 0 and the registers corresponding to x1, x2, . . .,
xn to a superposition of all possible assignments. Then, we apply the global opera-
tor OP which corresponds to the program P until the program counter reaches the
value |pend〉, thus computing in the output register a superposition of all classical
results. The operator OP is built as described in section 3, with the only difference
that now it contains also the term:

|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1| =
|pend〉 〈pend| ⊗ idn ⊗

[
(|1〉 〈1|+ |1〉 〈1|) ◦ . . . ◦ (|1〉 〈1|+ |1〉 〈1|)︸ ︷︷ ︸

n times

]

which extracts the result from the output register when the program counter as-
sumes the value |pend〉. The number of times we have to apply OP is equal to the
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length of P , that is, 2 · 3m + 2 = 6m + 2: two instructions for each literal in every
clause, plus two final instructions.

Now, if φn is not satisfiable then the contents of the output register is |0〉, and
when the program counter reaches the value |pend〉 the operator OP transforms it
to the null vector. On the other hand, if φn is satisfiable then the contents of the
output register will be a superposition α0 |0〉 + α1 |1〉, with α1 6= 0. By applying
the operator OP we obtain (here |ψn〉 denotes the state of the n input registers):

OP

( |pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=

=
( |pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1| )·

· ( |pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=
= |pend〉 〈pend|pend〉 ⊗ idn |ψn〉 ⊗ 2n |1〉 〈1| (α0 |0〉+ α1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (2nα0 |1〉 〈1|0〉+ 2nα1 |1〉 〈1|1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (0 + 2nα1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ 2nα1 |1〉

that is, a non–null vector.
We can thus conclude that if an external observer is able to discriminate be-

tween a null vector and a non–null vector, and it is possible to build and apply
the operator 2n |1〉 〈1| = E1,1 = N = a†a to the output register of a QRM, then
we have a family of QRMs that solve 3-SAT in polynomial time. This solution
is given in a semi–uniform setting: in particular, the program P executed by the
QRM depends upon the instance φn of 3-SAT we want to solve.

6.3 Solving 3-SAT with Quantum UREM P Systems

In this section we finally show how to build a (semi–uniform) family of quantum
UREM P systems that solves 3-SAT. Let φn be an instance of 3-SAT containing
n free variables. The structure and the initial configuration of the P system that
determines whether φn is satisfiable is similar to what shown in Figure 2, the only
difference being that there are n + 1 subsystems instead of n.

As we have done with quantum register machines, let us start by showing how
to evaluate φn for a given assignment of truth values to its variables x1, . . . , xn.
The input values are set as the energies |εxi

〉 of the harmonic oscillators associated
with the membranes from 1 to n. The energy (eventually) associated with the skin
membrane is not used. The (n + 1)-th membrane, whose harmonic oscillator will
contain the output at the end of the computation, is initialized with |ε0〉. The
alphabet A consists of all the possible values which can be assumed by the program
counter of the QRM that evaluates φn. In the initial configuration the P system
contains only one copy of the object |p1〉, corresponding to the initial value of the
program counter, in the region enclosed by the skin membrane.

The evaluation of φn could be performed by simulating the QRM obtained
from φn as explained in the previous section. However, we can obtain a slightly
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more efficient P system as follows. We start from the program structure (4), which
can be obtained from φn in a straightforward way. Now, let us suppose we must
execute the following instruction:

k: if Xi,j = 1 then goto endi

As told above, this instruction is performed as follows in a register machine:

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

If we had to simulate these two instructions using a quantum UREM P system,
we should use the following sum of rules:

(|pendi
〉 〈pk+1| ⊗ a†

)
︸ ︷︷ ︸

k + 1: INC(Xi,j), endi

+
( |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0|+ |pk+1〉 〈pk| ⊗ a

)
︸ ︷︷ ︸

k: DEC(Xi,j), k + 1, k + 2

∈ R`

where ` = 〈i, j〉 is the index of the variable (in the set {x1, x2, . . . , xn}) which
occurs in literal Xi,j . As we can see, this operator produces the vector |pk+2〉⊗|ε0〉
if the harmonic oscillator of membrane ` is in state |ε0〉; otherwise, it produces the
vector |pendi

〉 ⊗ |ε1〉. Hence we can simplify the above expression as follows:

|pendi
〉 〈pk| ⊗ |ε1〉 〈ε1|+ |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0| =

= |pendi〉 〈pk| ⊗ a†a + |pk+2〉 〈pk| ⊗ aa†

We denote this operator by O
(1)
i,j,k. Analogously, if the instruction to be executed

is:

k: if Xi,j = 0 then goto endi

then we use the operator

O
(0)
i,j,k = |pendi

〉 〈pk| ⊗ aa† + |pk+2〉 〈pk| ⊗ a†a ∈ R`

which produces the vector |pk+2〉 ⊗ |ε1〉 if the harmonic oscillator of membrane `
is in state |ε1〉, otherwise it produces the vector |pendi

〉 ⊗ |ε0〉.
Since the value |pk+1〉 is no longer used, we can “compact” the program by

redefining the operators O
(0)
i,j,k and O

(1)
i,j,k respectively as:

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+1〉 〈pk| ⊗ a†a

O
(1)
i,j,k = |pendi〉 〈pk| ⊗ a†a + |pk+1〉 〈pk| ⊗ aa†

The “goto end” instructions in (4) can be executed as if they were if statements
whose condition is the negation of the condition given in the previous if. Hence
the two instructions:
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7: if X2,3 = 1 then goto end2

8: goto end

can be thought of as:

7: if X2,3 = 1 then goto end2

8: if X2,3 = 0 then goto end

which are realized by the operators O
(1)
2,3,7 and O

(0)
2,3,8 (to be added to membrane

〈2, 3〉). The last instruction (φ = 1) of the program can be implemented as follows:

|pend〉 〈pend−1| ⊗ a†

to be added to membrane n + 1.
For each membrane i ∈ {1, 2, . . . , n}, the set of rules Ri is obtained by summing

all the operators which concern variable xi.
Note that the formulation given in terms of quantum P systems is simpler than

the one obtained with QRMs. As usual, if we consider a single assignment to the
variables of φn then at the end of the computation we will obtain the result of the
evaluation of φn as the energy of the output membrane. Instead, if we initialize the
harmonic oscillators of the n input membranes with a uniform superposition of all
possible classical assignments to x1, x2, . . . , xn, then at the end of the computation
the harmonic oscillator of membrane n + 1 will be in one of the following states:

• |0〉, if φn is not satisfiable;
• a superposition α0 |0〉+ α1 |1〉, with α1 6= 0, if φn is satisfiable.

Once again, we add the rule:

|pend〉 〈pend| ⊗ 2n |1〉 〈1| ∈ Rn+1

to membrane n + 1 to extract the result.
We have thus obtained a family of quantum UREM P systems which solves

3-SAT in polynomial time. Also this scheme works in the semi–uniform setting:
in fact, it is immediately verified that the rules of the system depend upon the
instance φn of 3-SAT to be solved.

7 Conclusions and Directions for Future Research

In this paper we have overviewed the state of the art concerning quantum UREM
P systems. Starting from basic notions of quantum computers and quantum me-
chanics, we have seen how quantum register machines and quantum UREM P
systems can be defined.

Subsequently, we have proved that such quantum models of computation are
computationally complete, that is, they are able to compute any partial recursive
function f : Nα → Nβ . This result has been obtained by simulating classical
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deterministic register machines. Moreover, we have shown a family of QRMs and a
family of quantum UREM P systems that solve (in the semi–uniform setting) the 3-
SAT NP–complete decision problem in polynomial time. Their construction relies
upon the following assumptions: (1) an external observer is able to discriminate, as
the result of a measurement, a null vector from a non–null vector, and (2) a specific
non–unitary operator, which can be expressed using creation and annihilation
operators, can be realized as an instruction of the quantum register machine, and
as a rule of the quantum P system, respectively.

One possible direction for future research is to study the computational prop-
erties of quantum P systems which contain and process entangled objects. Another
line of research is to study the limits of the computational power of quantum P
systems by attacking harder than NP-complete problems. In particular, we conjec-
ture that EXP-complete problems can be solved in polynomial time with quantum
P systems.
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WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002, LNCS 2597, Springer–
Verlag, Berlin, 2003, pp. 247–260.

11. R. Freund, A. Leporati, M. Oswald, C. Zandron. Sequential P Systems with Unit
Rules and Energy Assigned to Membranes. In Proceedings of Machines, Computa-
tions and Universality, (MCU 2004), Saint–Petersburg, Russia, September 21–24,
2004, LNCS 3354, Spriger–Verlag, Berlin, 2005, pp. 200–210.

12. R. Freund, M. Oswald. GP Systems with Forbidding Context. Fundamenta Infor-
maticae, 49(1-3):81–102, 2002.



56 A. Leporati
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Summary. We survey the formalism Calculus of Looping Sequences (CLS) and a num-
ber of its variants from the point of view of their use for describing biological membranes.
The formalism CLS is based on term rewriting and allows describing biomolecular sys-
tems. A first variant of CLS, called Stochastic CLS, extends the formalism with stochastic
time, another variant, called LCLS (CLS with links), allows describing proteins interac-
tion at the domain level. A third variant is introduced for easier description of biological
membranes. This extension can be encoded into CLS as well as other formalisms capable
of membrane description such as Brane Calculi and P Systems. Such encodings allow ver-
ifying and simulating descriptions in Brane Calculi and P Systems by means of verifiers
and simulators developed for CLS.

1 Introduction

Cell biology, the study of the morphological and functional organization of cells, is
now an established field in biochemical research. Computer Science can help the
research in cell biology in several ways. For instance, it can provide biologists with
models and formalisms capable of describing and analyzing complex systems such
as cells. In the last few years many formalisms originally developed by computer
scientists to model systems of interacting components have been applied to Biology.
Among these, there are Petri Nets [16], Hybrid Systems [1], and the π-calculus [9,
25]. Moreover, new formalisms have been defined for describing biomolecular and
membrane interactions [2, 7, 8, 11, 21, 23]. Others, such as P Systems [17, 18],
have been proposed as biologically inspired computational models and have been
later applied to the description of biological systems.

The π–calculus and new calculi based on it [21, 23] have been particularly
successful in the description of biological systems, as they allow describing systems
in a compositional manner. Interactions of biological components are modeled as
communications on channels whose names can be passed; sharing names of private
channels allows describing biological compartments. However, these calculi offer
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very low–level interaction primitives, and this causes models to become very large
and difficult to read. Calculi such as those proposed in [7, 8, 11] give a more
abstract description of systems and offer special biologically motivated operators.
However, they are often specialized to the description of some particular kinds
of phenomena such as membrane interactions or protein interactions. Finally, P
Systems have a simple notation and are not specialized to the description of a
particular class of systems, but they are still not completely general. For instance,
it is possible to describe biological membranes and the movement of molecules
across membranes, and there are some variants able to describe also more complex
membrane activities. However, the formalism is not so flexible to allow describing
easily new activities observed on membranes without extending the formalism to
model such activities.

Therefore, we conclude that there is a need for a formalism having a simple
notation, having the ability of describing biological systems at different levels of
abstraction, having some notions of compositionality and being flexible enough to
allow describing new kinds of phenomena as they are discovered, without being
specialized to the description of a particular class of systems. For this reason in
[3] we have introduced the Calculus of Looping Sequences (CLS).

CLS is a formalism based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such as
bisimulations, which are common in process calculi. This permits to combine the
simplicity of notation of rewriting systems with the advantage of a form of com-
positionality. Actually, in [4] we have defined bisimilarity relations on CLS terms
which are congruences with respect to the operators. The bisimilarity relation may
be used to verify a property of a system by assessing its bisimilarity with a system
one knows to enjoy that property. The fact that bisimilarity is a congruence is
very important for a compositional account of behavioral equivalence.

In [5, 6], we have defined two extensions of CLS. The first, Stochastic CLS,
allows describing quantitative aspects of the modeled systems such as the time
spent by occurrences of chemical reactions. The second, CLS with links, allows
describing protein interaction more precisely at a lower level of abstraction, namely
at the domain level.

In this paper, after recalling CLS and the two mentioned extensions, we focus
on the modeling of biological membranes by means of CLS. Now, CLS does not
offer an easy representation for membranes whose nature is fluid and for proteins
which consequently move freely on membrane surfaces. For this reason, in [15] we
have defined a CLS variant, called CLS+, which introduces a new operator allowing
commutativity on membrane surfaces. We show how CLS+ can be encoded into
CLS.

In [3, 15] we have shown how Brane Calculi [7] and P Systems [18] can be
translated into CLS. Here we recall the ideas on which the translations are based.

CLS appears to allow description and manipulation of biological membranes
and, moreover, offers, via translations, verification and simulation tools to other
formalisms for membrane description.
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�L
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�L

⌋ (
�
d · e

�L
| f · g).

2 The Calculus of Looping Sequences (CLS)

In this section we recall the Calculus of Looping Sequences (CLS) and we give
some guidelines for the modeling of biological systems. CLS is essentially based on
term rewriting, hence a CLS model consists of a term and a set of rewrite rules.
The term is intended to represent the structure of the modeled system, and the
rewrite rules to represent the events that may cause the system to evolve.

2.1 Formal Definition

We start with defining the syntax of terms. We assume a possibly infinite alphabet
E of symbols ranged over by a, b, c, . . ..

Definition 1 (Terms). Terms T and sequences S of CLS are given by the fol-
lowing grammar:

T ::= S
�� �

S
�L

⌋ T
�� T | T

S ::= ǫ
�� a

�� S · S

where a is a generic element of E, and ǫ represents the empty sequence. We denote

with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator
( )L

, a parallel
composition operator | and a containment operator ⌋ . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ǫ denotes
the concatenation of zero symbols. A term can be either a sequence or a looping
sequence (that is the application of the looping operator to a sequence) containing
another term, or the parallel composition of two terms. By definition, looping and
containment are always applied together, hence we can consider them as a single

binary operator
( )L

⌋ which applies to one sequence and one term.
Brackets can be used to indicate the order of application of the operators,

and we assume
( )L

⌋ to have precedence over | . In Figure 1 we show some
examples of CLS terms and their visual representation.

In CLS we may have syntactically different terms representing the same struc-
ture. We introduce a structural congruence relation to identify such terms.
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Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, respec-
tively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
�
S1

�L
⌋ T ≡T

�
S2

�L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T�
ǫ
�L

⌋ ǫ ≡T ǫ
�
S1 · S2

�L
⌋ T ≡T

�
S2 · S1

�L
⌋ T

Rules of the structural congruence state the associativity of · and | , the com-

mutativity of the latter and the neutral role of ǫ. Moreover, axiom
(
S1·S2

)L
⌋ T ≡T(

S2 · S1

)L
⌋ T says that looping sequences can rotate. In the following, for sim-

plicity, we will use ≡ in place of ≡T .
Rewrite rules will be defined essentially as pairs of terms, with the first term

describing the portion of the system in which the event modeled by the rule may
occur, and the second term describing how that portion of the system changes
when the event occurs. In the terms of a rewrite rule we allow the use of variables.
As a consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these
are associated with the two different syntactic categories of terms and sequences,
and one is associated with single alphabet elements. We assume a set of term
variables TV ranged over by X,Y,Z, . . ., a set of sequence variables SV ranged
over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z, . . .. All
these sets are possibly infinite and pairwise disjoint. We denote by V the set of all
variables, V = TV ∪SV ∪X , and with ρ a generic variable of V. Hence, a pattern
is a term that may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
�� �

SP
�L

⌋ P
�� P | P

�� X

SP ::= ǫ
�� a

�� SP · SP
�� ex �� x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV

and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P, with Pσ we denote
the term obtained by replacing each occurrence of each variable ρ ∈ V appearing
in P with the corresponding term σ(ρ). With Σ we denote the set of all the pos-
sible instantiations and, given P ∈ P, with V ar(P ) we denote the set of variables
appearing in P . Now we define rewrite rules.
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Biomolecular Entity CLS Term

Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)

DNA strand Sequence of elements repr. genes

RNA strand Sequence of elements repr. transcribed genes

Protein Sequence of elements repr. domains
or single alphabet symbol

Molecular population Parallel composition of molecules

Membrane Looping sequence

Table 1. Guidelines for the abstraction of biomolecular entities into CLS.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→P2, where P1, P2 ∈ P, P1 6≡ ǫ and such that V ar(P2) ⊆ V ar(P1).
We denote with ℜ the infinite set of all the possible rewrite rules.

A rewrite rule P1 7→ P2 states that a term P1σ, obtained by instantiating
variables in P1 by some instantiation function σ, can be transformed into the
term P2σ. We define the semantics of CLS as a transition system, in which states
correspond to terms, and transitions correspond to rule applications.

Definition 5 (Semantics). Given a set of rewrite rules R ⊆ ℜ, the semantics of
CLS is the least transition relation → on terms closed under ≡, and satisfying the
following inference rules:

P1 7→P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2�
S
�L

⌋ T1 →
�
S
�L

⌋ T2

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the system
and by a set of rewrite rules describing all the events that may occur.

2.2 Modeling Guidelines

We describe how CLS can be used to model biomolecular systems analogously to
what done by Regev and Shapiro in [24] for the π–calculus. An abstraction is a
mapping from a real–world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, complicat-
ing, ones. In [24], Regev and Shapiro show how to abstract biomolecular systems
as concurrent computations by identifying the biomolecular entities and events of
interest and by associating them with concepts of concurrent computations such
as concurrent processes and communications. In particular, they give some guide-
lines for the abstraction of biomolecular systems to the π–calculus, and give some
simple examples.
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Biomolecular Event Examples of CLS Rewrite Rule

State change a 7→ bex · a · ey 7→ ex · b · ey
Complexation a | b 7→ cex · a · ey | b 7→ ex · c · ey
Decomplexation c 7→ a | bex · c · ey 7→ ex · a · ey | b

Catalysis c | P1 7→ c | P2

where P1 7→ P2 is the catalyzed event

State change
�
a · ex�L

⌋ X 7→
�
b · ex�L

⌋ X

on membrane

Complexation
�
a · ex · b · ey�L

⌋ X 7→
�
c · ex · ey�L

⌋ X

on membrane a |
�
b · ex�L

⌋ X 7→
�
c · ex�L

⌋ X�
b · ex�L

⌋ (a | X) 7→
�
c · ex�L

⌋ X

Decomplexation
�
c · ex�L

⌋ X 7→
�
a · b · ex�L

⌋ X

on membrane
�
c · ex�L

⌋ X 7→ a |
�
b · ex�L

⌋ X�
c · ex�L

⌋ X 7→
�
b · ex�L

⌋ (a | X)

Catalysis
�
c · ex · SP1 · ey�L

7→
�
c · ex · SP2 · ey�L

on membrane where SP1 7→ SP2 is the catalyzed event

Membrane crossing a |
�ex�L

⌋ X 7→
�ex�L

⌋ (a | X)�ex�L
⌋ (a | X) 7→ a |

�ex�L
⌋ Xex · a · ey |

�ez�L
⌋ X 7→

�ez�L
⌋ (ex · a · ey | X)�ez�L

⌋ (ex · a · ey | X) 7→ ex · a · ey |
�ez�L

⌋ X

Catalyzed a |
�
b · ex�L

⌋ X 7→
�
b · ex�L

⌋ (a | X)

membrane crossing
�
b · ex�L

⌋ (a | X) 7→ a |
�
b · ex�L

⌋ Xex · a · ey |
�
b · ez�L

⌋ X 7→
�
b · ez�L

⌋ (ex · a · ey | X)�
b · ez�L

⌋ (ex · a · ey | X) 7→ ex · a · ey |
�
b · ez�L

⌋ X

Membrane joining
�ex�L

⌋ (a | X) 7→
�
a · ex�L

⌋ X�ex�L
⌋ (ey · a · ez | X) 7→

�ey · a · ez · ex�L
⌋ X

Catalyzed
�
b · ex�L

⌋ (a | X) 7→
�
a · b · ex�L

⌋ X

membrane joining
�ex�L

⌋ (a | b | X) 7→
�
a · ex�L

⌋ (b | X)�
b · ex�L

⌋ (ey · a · ez | X) 7→
�ey · a · ez · ex�L

⌋ X�ex�L
⌋ (ey · a · ez | b | X) 7→

�ey · a · ez · ex�L
⌋ (b | X)

Membrane fusion
�ex�L

⌋ (X) |
�ey�L

⌋ (Y ) 7→
�ex · ey�L

⌋ (X | Y )

Catalyzed
�
a · ex�L

⌋ (X) |
�
b · ey�L

⌋ (Y ) 7→

membrane fusion
�
a · ex · b · ey�L

⌋ (X | Y )

Membrane division
�ex · ey�L

⌋ (X | Y ) 7→
�ex�L

⌋ (X) |
�ey�L

⌋ (Y )

Catalyzed
�
a · ex · b · ey�L

⌋ (X | Y ) 7→

membrane division
�
a · ex�L

⌋ (X) |
�
b · ey�L

⌋ (Y )

Table 2. Guidelines for the abstraction of biomolecular events into CLS.
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The use of rewrite systems, such as CLS, to describe biological systems is
founded on a different abstraction. Usually, entities (and their structures) are
abstracted by terms of the rewrite system, and events by rewriting rules. We have
already introduced the biological interpretation of CLS operators in the previous
section. Here we want to give more general guidelines.

First of all, we select the biomolecular entities of interest. Since we want to
describe cells, we consider molecular populations and membranes. Molecular pop-
ulations are groups of molecules that are in the same compartment of the cell.
Molecules can be of many types: we classify them as DNA and RNA strands, pro-
teins, and other molecules. DNA and RNA strands and proteins can be seen as
non–elementary objects. DNA strands are composed by genes, RNA strands are
composed by parts corresponding to the transcription of individual genes, and pro-
teins are composed by parts having the role of interaction sites (or domains). Other
molecules are considered as elementary objects, even if they are complexes. Mem-
branes are considered as elementary objects, in the sense that we do not describe
them at the level of the lipids they are made of. The only interesting properties
of a membrane are that it may contain something (hence, create a compartment)
and that it may have molecules on its surface.

Now, we select the biomolecular events of interest. The simplest kind of event
is the change of state of an elementary object. Then, we may have interactions be-
tween molecules: in particular complexation, decomplexation and catalysis. These
interactions may involve single elements of non–elementary molecules (DNA and
RNA strands, and proteins). Moreover, we may have interactions between mem-
branes and molecules: in particular a molecule may cross or join a membrane.
Finally, we may have interactions between membranes: in this case there may be
many kinds of interactions (fusion, division, etc. . . ).

The guidelines for the abstraction of biomolecular entities and events into CLS
are given in Table 1 and Table 2, respectively. Entities are associated with CLS
terms: elementary objects are modeled as alphabet symbols, non–elementary ob-
jects as CLS sequences and membranes as looping sequences. Biomolecular events
are associated with CLS rewrite rules. In the figure we give some examples of
rewrite rules for each type of event. The list of examples is not complete: one could
imagine also rewrite rules for the description of complexation/decomplexation
events involving more than two molecules, or catalysis events in which the cat-
alyzing molecule is on a membrane and the catalyzed event occurs in its content,
or more complex interactions between membranes. We remark that in the second
example of rewrite rule associated with the complexation event we have that one
of the two molecules which are involved should be either an elementary object
or a protein modeled as a single alphabet symbol. As before, this is caused by
the problem of modeling protein interaction at the domain level. This problem is
solved by the extension of CLS with links, called LCLS, we shall describe in the
following.
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2.3 Examples

A well–known example of biomolecular system is the epidermal growth factor
(EGF) signal transduction pathway[26, 19]. If EGF proteins are present in the
environment of a cell, they should be interpreted as a proliferation signal from
the environment, and hence the cell should react by synthesizing proteins which
stimulate its proliferation. A cell recognizes the EGF signal because it has on
its membrane some EGF receptor proteins (EGFR), which are transmembrane
proteins (they have some intra–cellular and some extra–cellular domains). One of
the extra–cellular domains binds to one EGF protein in the environment, forming
a signal–receptor complex on the membrane. This causes a conformational change
on the receptor protein that enables it to bind to another one signal–receptor
complex. The formation of the binding of the two signal–receptor complexes (called
dimerization) causes the phosphorylation of some intra–cellular domains of the
dimer. This, in turn, causes the internal domains of the dimer to be recognized by
a protein that is inside the cell (in the cytoplasm), called SHC. The protein SHC
binds to the dimer, enabling a long chain of protein–protein interactions, which
finally activate some proteins, such as one called ERK, which bind to the DNA
and stimulate synthesis of proteins for cell proliferation.

Now, we use CLS to build a model of the first steps of the EGF signaling
pathway up to the binding of the signal-receptor dimer to the SHC protein. In
the following we shall refine the model by using the LCLS extension to describe
interactions at the domain level.

We model the EGFR,EGF and SHC proteins as the alphabet symbols EGFR,
EGF and SHC, respectively. The cell is modeled as a looping sequence (represent-
ing its external membrane), initially composed only by EGFR symbols, containing
SHC symbols and surrounded by EGF symbols. The rewrite rules modeling the
first steps of the pathway are the following:

EGF |
(
EGFR · x̃

)L
⌋ X 7→

(
CMPLX · x̃

)L
⌋ X (R1)

(
CMPLX · x̃ · CMPLX · ỹ

)L
⌋ X 7→

(
DIM · x̃ · ỹ

)L
⌋ X (R2)

(
DIM · x̃

)L
⌋ X 7→

(
DIMp · x̃

)L
⌋ X (R3)

(
DIMp · x̃

)L
⌋ (SHC | X) 7→

(
DIMpSHC · x̃

)L
⌋ X (R4)

Rule R1 describes the binding of a EGF protein to a EGFR receptor protein
on the membrane surface. The result of the binding is a signal-receptor com-
plex denoted CMPLX. Rule R2 describes the dimerization of two signal-receptor
complex, the result is denoted DIM . Rule R3 describes the phosphorylation (and
activation) of a signal-receptor dimer, that is the replacement of a DIM symbol
with a DIMp symbol. Finally, rule R4 describes the binding of an active dimer
DIMp with a SHC protein contained in the cytoplasm. The result is a DIMpSHC

symbol placed on the membrane surface.
A possible initial term for the model in this example is given by a looping

sequence composed by some EGFR symbols, containing some SHC symbols and
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with some EGF symbols outside. A possible evolution of such a term by means of
application of the given rewrite rules is the following (we write on each transition
the name of the rewrite rule applied):

EGF | EGF |
(
EGFR · EGFR · EGFR · EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→ EGF |

(
EGFR · CMPLX · EGFR · EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→

(
EGFR · CMPLX · EGFR · CMPLX

)L
⌋ (SHC | SHC)

(R2)
−−−→

(
EGFR · DIM · EGFR

)L
⌋ (SHC | SHC)

(R3)
−−−→

(
EGFR · DIMp · EGFR

)L
⌋ (SHC | SHC)

(R4)
−−−→

(
EGFR · DIMpSHC · EGFR

)L
⌋ SHC

We show another example of modeling of a biomolecular system with CLS,
that is the modeling of a simple gene regulation process. This kind of processes
are essential for cell life as they allow a cell to regulate the production of proteins
that may have important roles for instance in metabolism, growth, proliferation
and differentiation.

The example we consider is as follows: we have a simple DNA fragment con-
sisting of a sequence of three genes. The first, denoted p, is called promoter and
is the place where a RNA polymerase enzyme (responsible for translation of DNA
into RNA) binds to the DNA. The second, denoted o, is called operator and it is
the place where a repressor protein (responsible for regulating the activity of the
RNA polymerase) binds to the DNA. The third, denoted as g, is the gene that
encodes for the protein whose production is regulated by this process.

When the repressor is not bound to the DNA, the RNA polymerase can scan
the sequence of genes and transcribe gene g into a piece of RNA that will be later
translated into the protein encoded by g. When the repressor is bound to the
DNA, it becomes an obstacle for the RNA polymerase that cannot scan any more
the sequence of genes.

The CLS model of this simple regulation process is a follows. The sequence of
genes is represented as the CLS sequence p · o · g, the RNA polymerase enzyme
as polym, the repressor protein as repr, and the piece of RNA obtained by the
translation of gene g as rna. The rewrite rules describing the process are the
following:

polym | p · x̃ 7→ pp · x̃ (R1)

repr | x̃ · o · ỹ 7→ x̃ · ro · ỹ (R2)

pp · o · x̃ 7→ p · po · x̃ (R3)

x̃ · po · g 7→ x̃ · o · pg (R4)

x̃ · pg 7→ polym | rna | x̃ · g (R5)

Rules R1 and R2 describe the binding of the RNA polymerase and of the
repressor to the corresponding genes in the DNA sequences. The results of these
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bindings are that the symbols representing the two genes are replaced by pp and
ro, respectively. Rules R3, R4 and R5 describe the activity of the RNA polymerase
enzyme in the absence of the repressor: it moves from gene p to gene o in rule R3,
then it moves from gene o to gene g in rule R4, and finally it produces the RNA
fragment and leaves the DNA in rule R5. Note that, in order to apply rule R3, the
repressor must be not bound to the DNA.

The only possible evolution of a term representing an initial situation in which
no repressors are present is

polym | p · o · g
(R1)
−−−→ pp · o · g

(R3)
−−−→ p · po · g

(R4)
−−−→ p · o · pg

(R5)
−−−→ polym | rna | p · o · g

that represent the case in which the RNA polymerase enzyme can scan the DNA
sequence and transcribe gene g into a piece of RNA. When the repressor is present,
instead, a possible evolution is

polym | p · o · g
(R1)
−−−→ pp · o · g

(R2)
−−−→ pp · ro · g

and it corresponds to a situation in which the repressor stops the transcription of
the gene by hampering the activity of the RNA polymerase.

3 Two Extensions of CLS

In this section we describe two extensions of CLS. The first, Stochastic CLS, allows
describing quantitative aspects of the modeled systems, such as the time spent by
occurrences of chemical reactions. The second, CLS with links, allows describing
protein interaction more precisely at a lower level of abstraction, namely at the
domain level.

3.1 Stochastic CLS

In CLS only qualitative aspects of biological systems are considered, such as their
structure and the presence (or the absence) of certain molecules. As a consequence,
on CLS models it is only possible to verify properties such as the reachability of
particular states or causality relationships between events. It would be interesting
to verify also properties such as the time spent to reach a particular state, or
the probability of reaching it. To face this problem, in [6] we have developed a
stochastic extension of CLS, called Stochastic CLS, in which quantitative aspects,
such as time and probability are taken into account.

The standard way of extending a formalism to model quantitative aspects
of biological systems is by incorporating the stochastic framework developed by
Gillespie with its simulation algorithm for chemical reactions [12] in the semantics
of the formalism. This has been done, for instance, for the π–calculus [20, 22]. The
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Fig. 2. Simulation result of the regulation process: number of RNA molecules over time.

idea of Gillespie’s algorithm is that a rate constant is associated with each chemical
reaction that may occur in the system. Such a constant is obtained by multiplying
the kinetic constant of the reaction by the number of possible combinations of
reactants that may occur in the system. The resulting rate constant is then used
as the parameter of an exponential distribution modeling the time spent between
two occurrences of the considered chemical reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as a
Continuous Time Markov Chain (CTMC), and consequently it allows verifying
properties of the described system by means of analytic means and by means of
stochastic model checkers.

In Stochastic CLS, incorporating Gillespie’s stochastic framework is not a sim-
ple exercise. The main difficulty is counting the number of possible reactant combi-
nations of the chemical reaction described by a rewrite rule. This means counting
the number of different positions where the rewrite rule can be applied, by taking
into account that rules may contain variables. We have defined the Stochastic CLS
in [6], and showed how to derive a CTMC from the semantics of a system modeled
in Stochastic CLS. This allows performing simulation and verification of properties
of the described systems, for instance by using stochastic model checkers, such as
PRISM [13].
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Let us consider the simple regulation process we modeled with CLS in Sec-
tion 2.3. We now extend the CLS model by including a kinetic constant in each
rewrite rule. The result is a Stochastic CLS model. In order to make the model a
little more realistic we add two rewrite rules describing the unbinding of the RNA
polymerase and of the repressor from the DNA. Hence, the rewrite rules of the
Stochastic CLS model are the following:

polym | p · x̃
0.1
7−→ pp · x̃ (R1)

pp · x̃
2

7−→ polym | p · x̃ (R1’)

repr | x̃ · o · ỹ
1

7−→ x̃ · ro · ỹ (R2)

x̃ · ro · ỹ
10
7−→ repr | x̃ · o · ỹ (R2’)

pp · o · x̃
100
7−→ p · po · x̃ (R3)

x̃ · po · g
100
7−→ x̃ · o · pg (R4)

x̃ · pg
30
7−→ polym | rna | x̃ · g (R5)

We developed a simulator based on Stochastic CLS, and we used it to study
the behavior of the regulation process. In particular, we performed simulations
by varying the quantity of repressors and we observed the production of RNA
fragments in each case. The initial configuration of the system is given by the
following term

repr | . . . | repr︸ ︷︷ ︸
n

| polym | . . . | polym︸ ︷︷ ︸
100

| p · o · g

and we performed simulations with n = 0, 10, 25 and 50. The results of the simu-
lations are shown in Figure 2. By varying the number of repressors from 0 to 50
the rate of transcription of the DNA into RNA molecules decreases.

3.2 CLS with Links (LCLS)

A formalism for modeling proteins interactions at the domain level was developed
in the seminal paper by Danos and Laneve [11], and extended in [14]. This formal-
ism allows expressing proteins by a node with a fixed number of domains; binding
between domains allow complexating proteins. In this section we extend CLS to
represent proteins interaction at the domain level. Such an extension, called Cal-
culus of Linked Looping Sequences (LCLS), is obtained by labeling elementary
components of sequences. Two elements with the same label are considered to be
linked.

To model a protein at the domain level in CLS it would be natural to use a
sequence with one symbol for each domain. However, the binding between two
domains of two different proteins, that is the linking between two elements of two
different sequences, cannot be expressed in CLS. To represent this, we extend CLS
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by labels on basic symbols. If in a term two symbols appear having the same label,
we intend that they represent domains which are bound to each other. If in a term
there is a symbol with a label and no other symbol with the same label, we intend
that the term represents only a part of a system we model, and that the symbol
will be linked to some other symbol in another part of the term representing the
full model.

As membranes create compartments, elements inside a looping sequence cannot
be linked to elements outside. Elements inside a membrane can be linked either
to other elements inside the membrane or to elements of the membrane itself. An
element can be linked at most to another element.

As an example, we model in LCLS the first steps of the EGF pathway described
before. We model the EGFR protein as the sequence RE1 ·RE2 ·RI1 ·RI2 where RE1

and RE2 are two extra–cellular domains and RI1 and RI2 are two intra–cellular
domains. The membrane of the cell is modeled as a looping sequence which could
contain EGFR proteins. Outside the looping sequence (i.e. in the environment)
there could be EGF proteins, and inside (i.e. in the cytoplasm) there could be
SHC proteins. Rewrite rules modeling the pathway are the following:

EGF |
(
RE1 · x̃

)L
⌋ X 7→

(
sRE1 · x̃

)L
⌋ X (R1)

(
sRE1 · RE2 · x · y · x̃ · sRE1 · RE2 · z · w · ỹ

)L
⌋ X 7→

(
sRE1 · R

1
E2 · x · y · sRE1 · R

1
E2 · z · w · x̃ · ỹ

)L
⌋ X (R2)

(
R1

E2 · RI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X 7→

(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X (R3)

(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X 7→

(
R1

E2 · PRI1 · x̃ · R1
E2 · PRI1 · ỹ

)L
⌋ X (R4)

(
R1

E2 · PRI1 · RI2 · x̃ · R1
E2 · PRI1 · RI2 · ỹ

)L
⌋ (SHC | X) 7→

(
R1

E2 · PRI1 · R
2
I2 · x̃ · R1

E2 · PRI1 · RI2 · ỹ
)L

⌋ (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain RE1

with sRE1 as a result. Rule R2 represents that when two EGFR proteins activated
by proteins EGF occur on the membrane, they may bind to each other to form a
dimer (shown by the link 1). Rule R3 represents the phosphorylation of one of the
internal domains RI1 of the dimer, and rule R4 represents the phosphorylation of
the other internal domain RI1 of the dimer. The result of each phosphorylation is
pRI1. Rule R5 represents the binding of the protein SHC in the cytoplasm to an
internal domain RI2 of the dimer. Remark that the binding of SHC to the dimer
is represented by the link 2, allowing the protein SHC to continue the interactions
to stimulate cell proliferation.
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Let us denote the sequence RE1·RE2·RI1·RI2 by EGFR. By starting from a cell
with some EGFR proteins on its membrane, some SHC proteins in the cytoplasm
and some EGF proteins in the environment, a possible evolution is the following:

EGF | EGF |
(
EGFR·EGFR·EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→ EGF |

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·sRE1 ·RE2 ·RI1 ·RI2

)L
⌋ (SHC | SHC)

(R2)
−−−→

(
sRE1 ·R

1
E2 ·RI1 ·RI2 ·sRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R3)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·RI2 ·sRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R4)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·RI2 ·sRE1 ·R

1
E2 ·pRI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R5)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·R

2
I2 ·sRE1 ·R

1
E2 ·pRI1 ·RI2 ·EGFR

)L
⌋ (SHC2 | SHC)

4 CLS and Membranes

What could seem strange in CLS is the use of looping sequences for the description
of membranes, as sequencing is not a commutative operation and this do not
correspond to the usual fluid representation of membranes in which objects can
move freely. What one would expect is to have a multiset or a parallel composition
of objects on a membrane. In the case of CLS, what could be used is a parallel
composition of sequences. To address this problem, we define an extension of CLS,
called CLS+, in which the looping operator can be applied to a parallel composition
of sequences, and we show that we can translate quite easily CLS+ models into
CLS ones.

4.1 Definition of CLS+

Terms in CLS+ are defined as follows.

Definition 6 (Terms). Terms T , branes B, and sequences S of CLS+ are given

by the following grammar:

T ::= S
∣∣ (

B
)L

⌋ T
∣∣ T | T

B ::= S
∣∣ S | S

S ::= ǫ
∣∣ a

∣∣ S · S

where a is a generic element of E. We denote with T the infinite set of terms, with

B the infinite set of branes, and with S the infinite set of sequences.

The structural congruence relation of CLS+ is a trivial extension of the one
of CLS. The only difference is that commutativity of branes replaces rotation of
looping sequences.
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Definition 7 (Structural Congruence). The structural congruence relations

≡S, ≡B and ≡T are the least congruence relations on sequences, on branes and

on terms, respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡B S2

B1 | B2 ≡B B2 | B1 B1 | (B2 | B3) ≡B (B1 | B2) | B3 B | ǫ ≡B B

S1 ≡S S2 implies S1 ≡T S2

B1 ≡B B2 implies
(
B1

)L
⌋ T ≡T

(
B2

)L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T
(
ǫ
)L

⌋ ǫ ≡ ǫ

Now, to define patterns in CLS+ we consider an additional type of variables
with respect of CLS, namely brane variables. We assume a set of brane variables
BV ranged over by x, y, z, . . ..

Definition 8 (Patterns). Patterns P , brane patterns BP and sequence patterns
SP of CLS+ are given by the following grammar:

P ::= SP
∣∣ (

BP
)L

⌋ P
∣∣ P | P

∣∣ X

BP ::= SP
∣∣ SP | SP

∣∣ x

SP ::= ǫ
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E, and X,x, x̃ and x are generic elements of

TV,BV, SV and X , respectively. We denote with P the infinite set of patterns.

As usual, rewrite rules are pairs of patterns.

Definition 9 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ PP , P1 6≡ ǫ and such that V ar(P2) ⊆
V ar(P1). We denote with ℜ the infinite set of all the possible rewrite rules.

Now, differently from CLS, we have that a rule such as a | b 7→ c could be
applied to elements of a looping sequence. For instance, a | b 7→ c can be applied

to the term
(
a | b

)L
⌋ d so to obtain the term

(
c
)L

⌋ d. However, a rule such

as
(
a
)L

⌋ b 7→ c still cannot be applied to elements of a looping sequences, as((
a
)L

⌋ b
)L

⌋ c is not a CLS+ term.
The rules that can be applied to elements of a looping sequence are those

having the form (B1, B2) with B1, B2 ∈ B. We call these rules brane rules and
we denote as ℜB ⊂ ℜ their infinite set. Now, in the semantics of CLS+ we have
to take into account brane rules and allow them to be applied also to elements of
looping sequences. Hence, we define the semantics as follows.
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Definition 10 (Semantics). Given a set of rewrite rules R ⊆ ℜ, and a set of

brane rules RB ⊆ R, such that (R \ RB) ∩ ℜB = ∅, the semantics of CLS is the

least transition relation → on terms closed under ≡, and satisfying the following

inference rules:

(P1, P2) ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2(
B

)L
⌋ T1 →

(
B

)L
⌋ T2

(BP1, BP2) ∈ RB BP1σ 6≡ ǫ σ ∈ Σ

BP1σ →B BP2σ

B1 →B B2

B | B1 →B B | B2

B1 →B B2(
B1

)L
⌋ T →

(
B2

)L
⌋ T

where →B is a transition relation on branes, and where the symmetric rules for

the parallel composition of terms and of branes are omitted.

In the definition of the semantics of CLS+ we use an additional transition
relation →B on branes. This relation is used to describe the application of a brane
rule to elements of a looping sequence. As usual, a CLS+ model is composed by
a term, representing the initial state of the modeled system, and a set of rewrite
rules.

In the following section we show that CLS+ models can be translated into CLS
models. The translation into CLS is compositional and preserves the semantics of
the model.

4.2 Translating CLS+ into CLS

The first step of the translation of a CLS+ model into CLS is a preprocessing
procedure. For each brane rule (BP1, BP2) in the CLS+ model, we add to the

set of rules of the model a new rule, namely (
(
BP1 | x

)L
⌋ X,

(
BP2 | x

)L
⌋ X).

This new rule is redundant in the model, as every time it can be applied to a
CLS+ term, also the original one can be applied with the same result. However,
the translation we are going to define will translate the original rule into a CLS
rule that will be applicable only inside looping sequences, or at the top level of the
term, and will translate the new rule into a CLS rule applicable only to elements
that compose a looping sequence.

Now, the translation of CLS+ into CLS consists mainly of an encoding func-
tion, denoted {[·]}, which maps CLS+ patterns into CLS patterns. This encoding
function will be used to translate each rewrite rule of the CLS+ model into a
rewrite rule for the corresponding CLS model, and to translate the term repre-
senting the initial state of the system in the CLS+ model into a CLS term for the
corresponding CLS model.

The encoding function for CLS+ patterns is defined as follows. We assume a
total and injective function from brane variables into a subset of term variables
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that are never used in CLS models. More easily, we assume brane variables to
be a subset of the term variables of CLS. Moreover, we assume in and out to be
symbols of the alphabet E never used in CLS models.

The encoding follows the “ball–bearing” technique described by Cardelli in
[7]. Intuitively, every CLS+ looping sequence is translated into a couple of CLS
looping sequences, one contained in the other, with the brane patterns of the CLS+
looping sequence between the two corresponding CLS looping sequences.

Definition 11 (Encoding Function). The encoding function {[·]} maps CLS+

patterns into CLS patterns, and is given by the following recursive definition:

{[SP ]} = SP

{[X]} = X

{[
(
BP

)L
⌋ P ]} =

(
out

)L
⌋ (BP |

(
in

)L
⌋ {[P ]})

{[P1 | P2]} = {[P1]} | {[P2]}

A CLS rewrite rule is obtained from each CLS+ rewrite rule of the trans-
lated model by applying the encoding function to the two patterns of the rule.
More precisely, given a CLS+ rule P1 7→ P2, the corresponding CLS rule is(
in

)L
⌋ ({[P1]} | X) 7→

(
in

)L
⌋ ({[P2]} | X) where X is a term variable

that does not occur in P1 and P2. For example, by applying the encoding to the
two patterns of the CLS+ rewrite rule

R = b · x | c 7→ b · x

we obtain

R{[·]} =
(
in

)L
⌋ (b · x | c | X) 7→

(
in

)L
⌋ (b · x | X) .

The encoding of a CLS+ term into a CLS term is as follows: given a CLS+

term T the corresponding CLS term is
(
in

)L
⌋ {[T ]}. In this case we have that

the encoding function never encounters variables. Consider, as an example, the
following CLS+ term:

T = a |
(
c | d | b · b | d

)L
⌋ d

the corresponding CLS term is as follows:

T{[·]} =
(
in

)L
⌋ (a |

(
out

)L
⌋ (c | d | b · b | d |

(
in

)L
⌋ d))

Now, it is easy to see that R can be applied to T , because parallel components
in the looping sequence can be commuted, and the result of the application is

T ′ = a |
(
b · b | d | d

)L
⌋ d
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but the corresponding CLS rewrite rule R{[·]} cannot be applied to T{[·]}. However,
we have that R ∈ RB, and hence, by the preprocessing phase described above, we
have that also

R′ =
(
b · x | c | x

)L
⌋ X 7→

(
b · x | x

)L
⌋ X

is a rule of the CLS+ model. By translating rule R′ we obtain

R′
{[·]} =

(
in

)L
⌋ (

(
out

)L
⌋ (b · x | c | x |

(
in

)L
⌋ X) | Y ) 7→

(
in

)L
⌋ (

(
out

)L
⌋ (b · x | x |

(
in

)L
⌋ X) | Y )

that can be applied to T{[·]}. The result of the application is

(
in

)L
⌋ (a |

(
out

)L
⌋ (b · b | d | d |

(
in

)L
⌋ d))

that corresponds exactly to the encoding of T ′.

4.3 CLS, Brane Calculi and P Systems

Brane Calculi are a family of process calculi specialized in the description of mem-
brane activity, and they allow associating processes with membranes of a mem-
brane structure. Each process is composed by actions whose execution has an
effect on the membrane structure. Some examples of actions are phagocytosis (a
membrane engulfs another one), exocytosis (a membrane expels another one), and
pinocytosis (a new membrane is created inside another one). These three actions
are enough to define the simplest of Brane Calculi, namely the PEP calculus.
Other actions, such as fusion of membranes and mitosis can be used to define dif-
ferent calculi of the family. Moreover, extensions of Brane Calculi allow describing
interactions with molecules and complexes, such as letting them enter and exit
membranes.

We have given a sound and complete encoding of the PEP calculus into CLS
in [3, 15]. Here, to recall shortly the encoding technique, we give a very simple
example of PEP system and we show its translation into CLS. The PEP system
we consider is the following

φ(| ⋄ |) ◦ φ⊥(0)(| ⋄ |)

representing two adjacent membranes φn(| ⋄ |) and φ⊥
n (0)(| ⋄ |) (◦ denotes juxtapo-

sition) both containing nothing of relevant (what is between brackets (| |) is the
content of the membrane and ⋄ is the null system). The processes associated with
the two membranes are φ and φ⊥(0), respectively, representing two complemen-
tary phagocytosis actions: the first says that the membrane it is associated with
can be engulfed by another membrane, and the second that the membrane it is
associated with can engulf another membrane, that will be surrounded by another
new membrane whose associated process is the parameter of the action (in this
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case it is the idle process 0). Hence, in accordance with the semantics of the PEP
calculus, we have that the only transition that can be performed by the system is
the following, leading to a system that is equivalent to the null system ⋄:

φ(| ⋄ |) ◦ φ⊥(0)(| ⋄ |) → 0(|0(|0(| ⋄ |)|)|) ≡ ⋄

By applying the encoding to the system we obtain the following CLS term T :

act · circ · e · brane · b · φ · a · 0 · a · b · 0 · e · brane · d · φ⊥ · c · 0 · c · 0 · c · d · 0

where act is a sort of program counter that precedes the symbol representing the
next action to be executed, symbol circ represents ◦, symbol brane represents a
membrane (| |), symbols φ and φ⊥ represent the corresponding actions, symbol
0 represents the idle process and symbols a, b, c, d and e are used as separators
of actions and parameters. The translation consists also of a set of CLS rewrite
rules to be applied to terms obtained by the encoding of PEP systems. Such a
set of rewrite rules does not depend on the encoded PEP system, hence it is
always the same. By applying rewrite rules, the long sequence obtained from the
encoding is transformed into a hierarchy of looping sequences corresponding to the
membrane hierarchy in the original PEP system, then rewrite rules are applied that
correspond to the semantics of the actions occurring in the processes associated
with membranes.

Hence, by means of application of rewrite rules, the result of the encoding of
the PEP system may evolve as follows (where →∗ represents a sequence of rewrite
rule applications):

T → act · brane · b · φ · a · 0 · a · b · 0 | act · brane · d · φ⊥ · c · 0 · c · 0 · c · d

→∗
(
act · φ · a · 0 · a

)L
⌋ act · 0 |

(
act · φ⊥ · c · 0 · c · 0 · c

)L
⌋ act · 0

→
(
act · 0

)L
⌋ (act · 0|

(
act · 0

)L
⌋

(
act · 0

)L
⌋ act · 0)

→∗ act · 0

Differently from Brane Calculi, P Systems (in their most common formulation)
do not allow describing complex membrane activities such as phagocytosis and
exocytosis. However, they are specialized in the description of reactions between
molecules which are placed in a compartment of a complex membrane structure.

A P System is a membrane structure (a nesting of membranes) in which there
could be multisets of objects representing molecules. A set of multiset rewrite
rules is associated with each membrane, and describe the reactions that may occur
between the molecules contained in the membrane. The result of the application
of a rewrite rule can either remain in the same membrane, or exit the membrane,
or enter an inner membrane. Priorities can be imposed on rewrite rules, meaning
that some rules can be applied only if some others cannot, and it is possible for a
membrane to dissolve and release its content to in the environment.

A peculiarity of P Systems is that rewrite rules are applied in a fully–parallel
manner, namely in one step of evolution of the system all rules are applied as many
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times as possible (to different molecules), and this is one of the main differences
with respect to CLS in which at each step one only rewrite rule is applied. We
show that P Systems can be translated into CLS, and that the execution of a (fully
parallel) step of a P System is simulated by a sequence of steps in CLS. A variant
of P Systems, called Sequential P Systems, in which rules are applied sequentially
is described in [10]. We do not consider the translation of this variant into CLS as
it would be quite trivial and of little interest.




�

	

�1

abb

r1 : a → (ab, here)

r2 : ab → (c, out)

Fig. 3. A simple example of P System.

To recall the encoding technique, we give a simple example of P System and we
show its translation into CLS. We focus on the translation of multiple parallelism,
hence we consider a P System (depicted in Figure 3) consisting of a single mem-
brane with only two rules, without priorities and without membrane dissolutions.
We give a simplified translation: more details can be found in [15].

The alphabet of objects in the considered P System is {a, b, c}. A multiset of
objects from this alphabet is represented by a CLS term as follows: let na, nb and
nc be the number of occurrences of a, b and c in the multiset, respectively, then

a ·

na︷ ︸︸ ︷
1 · . . . · 1 | b ·

nb︷ ︸︸ ︷
1 · . . . · 1 | c ·

nc︷ ︸︸ ︷
1 · . . . · 1

is the term representing the multiset. We choose this representation as it allows
us checking whether an object is absent, by checking whether the corresponding
symbol if followed by zero 1s. An empty multiset is represented as a | b | c.

The CLS term obtained by the translation of the considered P System is the
following:

(
1
)L

⌋ (Check | a · 1 | b · 1 · 1 | c | r1 | r2 |
(
next

)L
⌋ (a | b | c))

where the membrane of the P System is represented by a looping sequence com-
posed by the membrane label (in this case 1). Inside the looping sequence there
is a Check symbol representing the current state of the system, the translation of
the multiset of objects of the membrane, two symbols r1 and r2 corresponding to
the evolutionary rules of the membrane, and an empty multiset surrounded by a
looping sequence next. This empty multiset is used to store temporary information
on the result of the application of evolutionary rules.
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The CLS rewrite rules obtained by the encoding of the considered P System
are the follwing:

(
1
)L

⌋ (X | Check | a·1·x̃ | r1) 7→
(
1
)L

⌋ (X | Check | a·1·x̃ | r1 ·1) (C1)

(
1
)L

⌋ (X | Check | a | r1) 7→
(
1
)L

⌋ (X | Check | a | r1 ·0) (C2)

(
1
)L

⌋ (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2 ·1) (C3)

(
1
)L

⌋ (X | Check | a | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Run | a | r1 ·z | r2 ·0) (C4)

(
1
)L

⌋ (X | Check | b | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Run | b | r1 ·z | r2 ·0) (C5)

(
1
)L

⌋ (X | Run | a·1·x̃ | r1 · 1 |
(
next

)L
⌋ (Y | a·ỹ | b·z̃)) 7→

(
1
)L

⌋ (X | Run | a·x̃ | r1 · 1 |
(
next

)L
⌋ (Y | a·1·ỹ | b·1·z̃)) (R1)

(
1
)L

⌋ (X | Run | a·1·x̃ | b·1·ỹ | r2 · 1 |
(
next

)L
⌋ (Y | c·z̃)) 7→

(
1
)L

⌋ (X | Run | a·x̃ | b·ỹ | r2 · 1 |
(
next

)L
⌋ (Y | c·1·z̃)) (R2)

(
1
)L

⌋ (X | Run | a | r1 ·1) 7→
(
1
)L

⌋ (X | Run | a | r1 ·0) (R3)

(
1
)L

⌋ (X | Run | a | r2 ·1) 7→
(
1
)L

⌋ (X | Run | a | r2 ·0) (R4)

(
1
)L

⌋ (X | Run | b | r2 ·1) 7→
(
1
)L

⌋ (X | Run | b | r2 ·0) (R5)

(
1
)L

⌋ (X | Run | r1 ·0 | r2 ·0) 7→
(
1
)L

⌋ (X | Update | r1 ·0 | r2 ·0) (R6)

(
1
)L

⌋ (X | Update | x · x̃ |
(
next

)L
⌋ (Y | x·1 · ỹ)) 7→

(
1
)L

⌋ (X | Update | x·1 · ỹ · x̃ |
(
next

)L
⌋ (Y | x)) (U1)

(
1
)L

⌋ (X | Update |
(
next

)L
⌋ (a | b | c)) 7→

(
1
)L

⌋ (X | Check |
(
next

)L
⌋ (a | b | c)) (U2)

Rules (C1)–(C5) describe the steps performed by the system while it is in
Check state: the objective of this phase is to test whether each evolutionary rule
is applicable or not. When all rules have been tested, the systems moves into a state
called Run, whose steps are given by the application of rules (R1)–(R6). In this
second phase, evolutionary rules previously identified as applicable are actually
applied, and the result of the application is stored inside the looping sequence
next. Finally, when no evolutionary rule is further applicable, the system moves
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into a state called Update, in which the content of the looping sequence next is
used to reset the multiset of objects of the membrane by applying rule (U1)–(U2).
When this update operation has been performed, the system moves back to the
Check state.

5 Conclusions

We have surveyed the formalism CLS and a number of its variants from the point
of view of its use for describing biological membranes. Verification and simulation
tools have been developed for CLS and its variants and can be used to study
properties of membrane systems. Via translations, these tools can be used to study
systems described by other formalisms such as Brane Calculi and P Systems,
capable of describing biological membranes.
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Summary. The Connex technology is presented as a possible way to implement effi-
ciently membrane computations in Silicon environment. The opportunity is offered by
the recent trend of promoting the parallel computation as a real competitor on the
consumer market. The Connex environment has an integral parallel architecture, which
is introduced and its main performances are presented. Some suggestions are provided
about how to use the Connex environment as accelerator for membrane computation.

1 Introduction

The computation model of membrane computing can be supported by a specific
physical environment or by non-specific, on-Silicon parallel architectures. The sec-
ond way is investigated from the view point of the Connex technology: a highly
integrated parallel machine.

Membrane computing summary:

The membrane computing model is based on multi-set rewriting rules applied on
a membrane structure populated with objects belonging to a finite alphabet. The
potential degree of parallelism is very high in P systems because in each step all
possible rules are applied (see details in [Păun ’02]).

Connex environment summary:

The Connex technology has an intensive integral parallel architecture [Ştefan ’06d].
The first embodiment of this technology (see [Ştefan ’06c]) targets the high def-
inition TV market, but the chip CA1024 can be used also as a general purpose
machine for data intensive computing. Application in graphics, data mining, neural
network [Andonie ’07], and communication are efficiently supported by the Connex
technology. Then, why not for membrane computing!
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The Intel study:

Because, since 2002 the clock speed of the processor has improved less than
20%/year, after a long period characterized by around 50%/year, the promise
of parallel computing starts to fascinate in a special way. Intel published semi-
nal studies (see [Dubey ’05], [Borkar ’05]) about the next generation of parallel
computers. The future processors will contain multi- or maybe many–processors
optimized for the magic triad of Recognition – Mining – Synthesis (RMS).
The main problem for this promised development is to find the way to program
efficiently the next generation of parallel machines. New programming languages
or more sophisticated computation models are needed to fructify the opportuni-
ties offered by the new coming parallel computation technologies. In this context
membrane computing could play a very promising role.

The Berkeley study:

Rather than starting from the market opportunities, as Intel did with the RMS do-
mains, the Berkeley approach [Asanovic ’06] starts from their “13 dwarfs” (dense
linear algebra, sparse linear algebra, spectral methods, . . . finite state machines)
identified as parallel computational patterns able to cover almost all the appli-
cations for the next few decades. While Intel takes into consideration a continuous
transition from multi- to many-processors, the Berkeley approach is oriented from
the start toward the many-processor systems working on data-intensive compu-
tation applications. Here is also the place for membrane computation if a good
representation will be developed.

Application oriented vs. functionally oriented parallel architectures:

A complex, intense and general purpose application means usually a multi-
threaded approach. In contrast with it, there are functions involving data intense
computations. By the rule, multi-processors are involved in the first case (because
they are able to exploit thread-level parallelism), and many-processors are needed
in the second case. A multi-processor has usually a MIMD architecture, rarely a
SIMD architecture, and never a MISD type one. For a many-processor machine
the architecture must be shaped starting from a functional approach, and by the
rule involves all the special forms of possible parallelism.

Our functional approach:

The integral parallel architecture (IPA) is a parallel architecture derived start-
ing from the computational model of partial recursive functions [Kleene ’36]. The
Turing machine model has been successfully used to ground various sequential
computing architectures. Because the functional approach of Kleene is more re-
lated with circuits (which are intrinsic parallel structures) we consider there is a
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better fit between the functional recursive model and the parallel computation.
The composition rule provides the best starting point to develop parallel architec-
tures able to support efficiently the other two rules: the primitive recursion and the
minimalization. If the 13 dwarfs will be able to cover the RMS domains, maybe
then an IPA will be enough powerful to cover efficiently the 13 computational
patterns emphasized by the seminal work done at Berkeley. A three level hierar-
chy results. It is topped by application domains (RMS), mediated by computational
patterns (the 13 dwarfs), and grounded on various IPAs.

In the following sections the idea of IPA and the Connex environment are
introduced in order to offer various suggestions for a membrane computing accel-
erator. Membrane computing being an intrinsic parallel computational model has
the chance to open new ways toward the efficient use of parallel machines.

2 Integral Parallel Architecture (IPA)

Various taxonomies were proposed for parallel computations (see [Flynn ’72]
[Xavier & Iyengar ’98]). All of them tell us about different forms of parallelism. We
can discuss about many forms only when we use the parallel approach to accelerate
specific computations. But, when a real complex and intensive computation must
pe done, sometimes we can not use only one form of parallelism. Actual compu-
tations involve usually all possible forms. For example, using Flynn’s taxonomy,
MIMD or SIMD machines can be defined, but it is not so easy to define MIMD or
SIMD application domains.

General purpose or even application domain oriented parallel machines must
be able to perform all the forms of parallelism, no matter how these forms are
segregated. We propose in the following a new taxonomy and a way to put together
all the resulting forms of parallelism in order to solve efficiently data intensive
computations.

2.1 Parallelism and Partial Recursiveness

We claim that the most suggestive classic computational model for defining par-
allel architectures is the model of partial recursive functions, because the rules
defining it have direct correspondences in circuits – the intrinsic parallel support
for computation.

Composition & basic parallel structures

The first rule, of composition, provides the basic parallel structures to be used
in defining all the forms of parallelism. Let be m n-ary functions hi(x0, . . . xn−1),
for i = 0, 1, . . . m − 1, and an m-ary function g(y0, . . . ym−1). Using them the the
composition rule is defined as computing the following function:

f(x0, . . . xn−1) = g(h0(x0, . . . xn−1), . . . hm−1(x0, . . . xn−1))
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The associated physical structure (containing simple circuits or simple program-
mable machines) is represented in Figure 1.

h0 h1 hm−1

g

?? ?

?

? ? ?

x0, x1, . . . xn−1

out = f(x0, x1, . . . xn−1)

Fig. 1. The physical structure associated to the composition rule. The compo-
sition of the function g with the functions h0, . . . , hm−1 implies a two-level system. The
first level, performing in parallel m computations, is serially connected with the second
level which performs a reduction function.

The following four particular, but meaningful forms (see Figure 2) can be
emphasized:

1. data parallel composition: with n = m, each function hi = h depends on
a single input variable xi, for i = 0, 1, . . . n − 1, and g performs the identity
function (see Figure 2a). Being given an input vector containing n scalars:

X = {x0, x1, . . . , xn−1}

the result is another vector:

{h(x0), h(x1), . . . , h(xn−1)}

2. speculative composition: with n = 1, i.e. x0 = x, (see Figure 2b), and g
performs the identity function. It computes a vector of functions:

H = [h0(x), . . . hn−1(x)]

on the same scalar input x, generating a vector of results:

H(x) = {h0(x), h1(x), . . . , hn−1(x)}

3. serial composition: with n = m = 1 (see Figure 2c). A “pipe” of two different
machines receives a stream of n scalars as input:

< X >=< x0, x1, . . . , xn−1 >
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g(x0, . . . xn−1)

? ? ?

d.
?

x0 x1 xn−1

g(x0, . . . xn−1)

x

f(x)

?

c.

h

?

g

?

h(x0) h(x1) h(xn−1)
? ? ?

h h h

x0 x1

? ? ?
xn−1

a.
? ? ?

h1(x)h0(x) hn−1(x)

h0 h1 hn−1

? ? ?

x

b.

Fig. 2. The four simple forms of composition. a. Data parallel composition. b.
Speculative composition. c. Serial composition. d. Reduction composition.

and provides another stream of scalars

< f(x0), f(x1), . . . , f(xn−1) > .

In the general case the function f(x) is a composition of more than two func-
tions h and g. Thus, the function f can be expressed as a vector of functions
F receiving as input a data stream < X >:

F = [f0, . . . fp−1]

(in Figure 2c F = [h, g])
4. reduction composition: for each hi performing the identity function (see

Figure 2d), receives a vector {x0, . . . , xn−1} as input and provides the scalar,
g(x0, . . . xn−1) (it transforms a stream of vectors into a stream of scalars).

Concluding, the composition rule provides the context of defining computation
using the following basic concepts:

scalar : x
vector : X = {x0, x1, . . . , xn−1}
stream : < X >=< x0, x1, . . . , xn−1 >
function : f(x)
vector of functions :

• F = [f0, . . . fp−1] applied on streams
• F(x) = [f0(x), . . . fp−1(x)] applied on scalars.

Using the previous features all the requirement for the next two rules (primitive
recursion, minimalization) are fulfilled.



86 Gh. Ştefan

Primitive recursive rule

There are two ways to implement in parallel the primitive recursive rule. In both
cases a lot of data is supposed available to be computed, i.e. there are vector or
streams of data as inputs for a primitive recursive function.

The primitive recursive rule computes the function f(x, y) using the rule:

f(x, y) = h(x, f(x, y − 1))

where: f(x, 0) = g(x). This rule can be translated in the following serial composi-
tion:

f(x, y) = h(x, h(x, h(x, . . . h(x, g(x)) . . .)))

If the function f(x, y) must be computed for the vector of scalars X =
{y0, y1, . . . , yn−1}, then a data parallel structure is used. Each machine will com-
pute, using a local data loop, the function f(x, yi) in max(y0, y1, . . . , yn−1) “cy-
cles”.

If the function f(x, y) must be computed for a stream of scalars, a time parallel
structure is used. A “pipe” of n machines will receive in each “cycle” a new scalar
from the stream of scalars. If y > n, then a data loop can be closed from the output
of the pipe to its input.

Minimalization

Minimalization has also two kinds of parallel solutions: one using data parallel
structures and another using time parallel structures.

The minimalization rule assumes

f(x) = min(y)[m(x, y) = 0]

i.e., the value of f(x) is the minimum y for which m(x, y) = 0.
The first, “brute force” implementation uses the speculative structure repre-

sented in Figure 2b, where each block computes a function which returns a pair
containing a predicate and a scalar:

hi = {(m(x, i) = 0), i}
after which reduction step (using a structure belonging to the class represented in
Figure 2d) selects the smallest i from all pairs having the form {1, i}, if any, that
were generated on the previous speculative composition level (all pairs of the form
{0, i} are ignored).

The second implementation occurs in time-parallel environments where spec-
ulation can be used to speed-up the pipe processing. Reconfigurable pipes can
be conceived and implemented using special reduction features distributed along
a pipe. Let be a pipe of functions described by the function vector:

P = [f0(x), . . . fp−1(x)]
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where yi = fi(x), for i = 0, . . . p− 1. The associated reconfigurable pipe means to
transform the original pipe characterized by:

P = [. . . fi(yi−1), . . .]

into a pipe characterized by:

P = [. . . fi(yi−1, . . . yi−s), . . .]

where: fi(yi−1, . . . yi−s) is a function or a program which decides in each step the
variable to be involved in the current computation, selecting (which is one of the
simplest reduction functions) one variable of {yi−1, . . . yi−s}. The maximum degree
of speculation is s.

2.2 Functional Taxonomy of Parallel Computing

According to the previously identified simple form of compositions (see Figure 2)
we propose a functional taxonomy of parallel computation. We will consider the
following types of parallel processing:

data-parallel computing : uses operators that take vectors as arguments and re-
turns vectors, scalars (by reduction operations) or streams (input values for
time-parallel computations); it is very similar to a SIMD machine

time-parallel computing : uses operators that take streams as arguments and re-
turns streams, scalars, or vectors (input values for data-parallel computations):
it is a kind of MIMD machine which works to compute only one function (while
a true MIMD performs multi-threading)

speculative-parallel computing : with operators that take scalars as arguments and
return vectors reduced to scalars using selection (used mainly to speed up time-
parallel computations); this contains a true MISD-like structure (completely
ignored in the current multi-processing environments).

An IPA is a parallel architecture featured with all kinds of parallelism.

2.3 IPA & Market Tendencies

The market tendencies emphasized in the Intel approach and based on Berke-
ley’s dwarfs demand for an IPA. IPA is a many-core (not multi-core) architecture
designed to support data intensive computations. It is supposed to work as an ac-
celerator in a mono- or multi-core environment. For all the computational patterns
emphasized in the Berkeley’s view an IPA provides efficient solutions. Even for the
13th dwarf – Finite State Machine – the speculative- & time-parallel aspects of an
IPA provides a solution. (Berkeley’s view claims that “nothing helps”.)

The need for solving real hard applications promotes IPA as an efficient actual
solution.
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3 The Connex System

3.1 Structural description

The first embodiment of an IPA is the Connex System. It is part of CA1024
chip produced by Connex Technology Inc1. The Connex System contains mainly
an array of 1024 PEs working as a data parallel sub-system, DPS, a stream
accelerator machine containing 8 PEs (the time parallel sub-system, TPS).
DPS is driven by an instruction sequencer, S, used to broadcast in each clock
cycle the same instruction toward each PE from DPS. An input output controller,
IOC, feeds DPS with data and sends out the results from it. An interconnection
fabric allows DPS and TPS to communicate with each other and with the other
components of the chip. S and IOC interact using interrupts. They are both simple
stack machines with their own data and program memory.

The Connex System uses also other components on the chip to be interfaced
with the external world. They are: a MIPS processor acting as a local host, PCI
interface to the external host, and a DDR interface to the external memory.

TPS receives streams of data under the control of the local host, and sends the
results into the external memory. DPS receives the data vectors from the external
memory and sends back the results in the same place. Thus, the two parallel
machines communicate usually through the content of the external memory. A
data stream is converted into a vector of data, and vice versa, by the programs,
run by Host and IOC, used to control the buffers organized in the external memory.

3.2 General performances

The first embodiment of the Connex Architecture is designed for 130nm standard
process technology, and has the following general performances:

• clock frequency: fCK = 200 MHz
• area for the Connex System: ∼ 70 mm2

• 200 GOPS (OP is a 16-bit simple operation; no multiplication, division or
floating point)

• > 60 GOPS/Watt
• > 2 GOPS/mm2

• internal bandwidth: 400 GB/sec
• external bandwidth: 3.2 GB/sec, involving an additional 2 Watt

3.3 Specific performances

The first application domain investigated in the Connex environment is of High
Definition TV (HDTV). We estimated 80% of the computational power of the
Connex System is necessary to decode in real time two H.264 HDTV streams.
Some figures referring to specific functions in HDTV domains follow:
1 From the moment the title of this paper was announced the name of the company

changed in BrightScale Inc..
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Output

Input

Controller

CONNEX

SYSTEM

Fig. 3. The Connex System.

• 8× 8 DCT: 4.2 clock cycle (0.066 clock cycle/pixel)
• 8× 8 IDCT: 4.9 clock cycle (0.077 clock cycle/pixel)
• 4× 4 SAD: 0.04 clock cycle (0.0025 clock cycle/pixel)

Graphics is another application domain. A preliminary investigation for an
image having the complexity characterized by:

• dynamic images having 10,000 triangles, each covering an average of 100 pixels,
one-half being obscured by other triangles

• ambient and diffuze illumination model
• 1920 x 1080 display screen, at 30 frames per second

provides the following figures:

• uses 6.6 GOPS = 3.3% of the total computational power of the Connex System
• and 390 MB/sec = 12.2% of the total external bandwidth of the CA1024 chip.
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For linear algebra domain we present here only the computation of the dot
product for vectors of up to 1024 components. Two cases are estimated:

• for vectors having as components 32-bit floats:
150 clock cycle (> 1.3 MDot Product/sec)

• for vectors having as components 16-bit signed integer:
28 clock cycle (∼ 7 MDot Product/sec)

The neural network domain is also targeted as an application domain. A
preliminary estimation is done in [Andonie ’07]: 5 Giga Connection Updates per
Second (about 17 times faster than the fastest specialized chip on the market:
Hitachi WSI).

All these estimations are very encouraging for those who are looking for using
the Connex environment as an accelerator for membrane computation.

4 An IPA: The Connex Architecture

The IPA of the Connex System is described in the following two subsections. The
vector section describes the architecture of the data parallel sub-system, and the
stream section is devoted to describe the time parallel sub-system.

4.1 Vector section

The main physical resources of the Connex System are represented in Figure 4
and are described also in the following pseudo-Verilog form:

// Scalar vectors & the index veector
reg [15:0] svec_000[0:1023],

svec_001[0:1023],
...
svec_255[0:1023],
ixVect[0:1023] ;

initial
ixVect = {0, 1, 2, ... 1023}; // 16-bit scalars

// Boolean vectors
reg bvec_0[0:1023] ,

bvec_1[0:1023] ,
...
bvec_7[0:1023] ,
selVect[0:1023] ; // it is used only as variable

// Scalars
reg [31:0] scalar[0:1023] ;

// Flag vectors
wire cryFlag[0:1023] ,

zeroFlag[0:1023],
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Fig. 4. The vector variables of the data parallel subsystem. If the execution
is conditioned by AND(bvector0, bvector1), then only column1, ... column1022 of
scalars can be involved in computation.

eqFlag[0:1023] ,
gtFlag[0:1023] ,
... ;

The Boolean vectors are used to select the active components of the scalar
vectors. The where construct is a sort of “spatial if”.

// ’where’ construct
where BooleanOP(booleanVect_i, booleanVect_j, ...) {

svect_k = ScalarOP(svect_p, svect_q, ...),
bvect_r = xxxFlag;

elsew {
...
}
}

Here is an example of how this construct can be used:

where AND(bvect_2, OR(bvect_0, bvect_5)) {
svect_034 = ADD(svect_012, svect_078, svect_002),
bvect_3 = cryVect;
}

elsew {
svect_034 = ADD(svect_022, svect_222),
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bvect_3 = cryVect;
}

It is executed by the Connex System as follows:

selVect = OR(bvect_0, bvect_5);
selVect = AND(bvect_2, selVect);
for(i=0; i<1024; i=i+1)
if (selVect[i]) {

svect_034[i] = ADD(svect_012[i], svect_078[i]),
bvect_3[i] = cryVect[i];

svect_034[i] = ADD(svect_034[i], svect_002[i]),
bvect_3[i] = OR(cryVect[i], bvect_3[i]);

}
else {svect_034[i] = ADD(svect_022[i], svect_222[i]),

bvect_3[i] = cryVect[i];
}

There are two distinct ways to generate selections. One is pattern based. It
starts from the index vector. Here is an example:

/* Pattern based selection example (each other of 4 bit in selVect
will be set on 1)*/

svect_000 = ixVect;
svect_000 = AND(svect_000, 16’b11);
svect_000 = XOR(svect_000, 16’b11), selVect = zeroFlag;

The second way to make a selection is to start from the data contained in the
scalar vector.

// Patternless (data dependent) selection example:
svect_070 = SUB(svect_070, 16’b10011001), selVect = gtFlag;

Usually, any operation specified by one line, having the form:

svect_xyz = ScalarOp(...), bvect_q = BooleanOP(...);

is executeable in one clock cycle. (Exceptions are specified. For example MULT(...)
is executed in 9 clock cycles for 16-bit signed integers, and in 10 clock cycles for
unsigned integers.)

4.2 Stream section

The stream section of the Connex System receives the input stream < X > and
sends back the output stream < Z >, where:

<X> = <x_0, ... x_(p-1)>
<Z> = <z_0, ... z_(q-1)>
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with p = q or p 6= q.
The function of the two-dimension pipe (n × w) is specified by the function

vector F, as follows:

F = [func_0, ... func_7];
func_i(y_(i-1), y_(i-2), ... y_(i-w)) = y_i;

where: func i is the program executed by PEi. It could be a one instruction
looping program, if the pipe “advances” in each clock cycle, or a s-instruction
loop for pipe propagation executed at each s clock cycles. Each PE can have the
associated program using variables generated by the previous w PEs. The degree
of speculation is w.

Let be, as an example, the following partially defined computation:

...
x = ...
y = y[15] ? y + (x + c1) : y + (x + c2);
...

Where c1 and c2 are constants. The associated function vector is:

F = [... func_i(...),
func_(i+1)(y_i),
func_(i+2)(y_i),
func_(i+3)(y_(i-1), y_(i-2)), ...];

where:

...
y_i = ...;
y_(i+1) = y_i + c1;
y_(i+2) = y_i + c2;
y_(i+3) = y_(i+3)[15] ? y_(i+3) + y_(i+1) : y_(i+3) + y_(i+2);
...

The output of the processing element PEi works as input for both, PEi+1 and
PEi+2. The processing element PEi+3 receives the input variables from the previ-
ous two machines PEi+1 and PEi+2. The second constant dimension of the pipe
allows these “shortcuts” which accelerate the computation.

4.3 Putting together the vector section and the stream section

The two sections of the IPA interact through the content of the external memory.
In the external memory a vector or a stream have the same representation. Thus,
depending on the source or on the destination, an array of data can be interpreted
as a vector or as a stream.

Data exchange between the vector section (DPS) and the stream section (TPS)
is done by executing one of the two operation:
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X <= <Y>; // stream to vector transfer
<X> <= Y; // vector to stream transfer

where:

X = {x_0, ... x_(n-1)};
<X> = <x_0, ... x_(n-1)>;
Y = {y_0, ... y_(n-1)};
<Y> = <y_0, ... y_(n-1)>;

because the destination and the source must have the same dimension n.

5 How to Use Connex to Accelerate Membrane Computing

The key is the representation. The big amount of parallel resources of the Connex
architecture can be activated only if an appropriate representation of membrane is
adopted. Follow some simple suggestions. The functionality used in these proposals
are described in Appendix A.

The first suggestion:

Using the formal definition from [Pǎun ’0x] (see pag. 11), the content of a mem-
brane system can have associated an n-component vector which contains an m-
component list (with n ≥ m). For example (see Fig. 3 in [Pǎun ’0x]):

[[[<w_3>]<w_2>]<w_1>]... =
[[[a f c] ] ]...

where each symbol is represented by a 2-byte word, (index, ASCII code), as
follows:

(1,[) (2,[) (3,[) (0,a) (0,f) (0,c) (3,]) (2,]) (1,]) ...

For this first suggestion, only the square parenthesis are indexed, and all the objects
are represented with the index having the value 0.

The sets of rules (R1, R2, . . .) are represented inside the program run by the
sequencer S. Thus, the list representing the membrane system will evolve as follows:

(00) [[[a f c] ] ]... =>
(01) [[[a b f f c] ] ]... => // in 11 clock cycles
(02) [[[a b b f f f f c] ] ]... => // in 15 clock cycles
(03) [[b b b f f f f f f f f c ] ]... => // in 27 clock cycles
(04) [[d d d f f f f c ] ]... => // in 10 clock cycles
(05) [[d e d e d e f f c ] ]... => // in 10 clock cycles
(06) [d e d e d e d f c ]... => // in 10 clock cycles
(07) [d d d d f c ] e e e... => // in 15 clock cycles
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The degree of parallelism is not big enough in each cycle during the previously
described computation. Only in step (04) all the three bs were substituted by ds in
parallel (in 2 clock cycles). The parallelism is also involved in searching different
symbols such as [, ], a, f. On the other hand, all the insertions asked by the
evolution rules are performed sequentially.

The performance of the implementation can be increased only by changing the
representation of the membrane system.

The second suggestion:

Another way to represent the membrane system is to use indexes also for objects.
The most significant byte of each vector component is used to tell us how many ob-
jects of the kind indicated by the other byte are represented. The same membrane
system have now the following content:

(1,[) (2,[) (3,[) (1,a) (1,f) (1,c) (3,]) (2,]) (1,]) ...

For the same rules applied results the following evolution of the system:

[[[1a 1f 1c] ] ]... =>
[[[1a 1b 2f 1c] ] ]... => // in 5 clock cycles
[[[1a 2b 4f 1c] ] ]... => // in 5 clock cycles
[[3b 8f 1c ] ]... => // in 10 clock cycles
[[3d 4f 1c ] ]... => // in 7 clock cycles
[[3d 3e 2f 1c ] ]... => // in 8 clock cycles
[4d 3e 1f 1c ]... => // in 8 clock cycles
[4d 1f 1c ] 3e... => // in 5 clock cycles

Now applying the rule f → ff is executed by simply doubling the index associated
to f. The same for the rule d → de. For the rule ff → f the index is divided.
The main effects are: the representation is kept smaller and the execution time is
reduced more than two times.

The degree of parallelism remains small because the application supposes to
work only in one membrane at a time. It will be improved if many membranes
having the same rules are processed in the same time.

The third suggestion:

The degree of parallelism increases if on the lowest level more similar membranes
are defined. Let us make a little more complex the example presented in [Pǎun 0x]
(see Fig. 3). Suppose on the lowest level there are two membranes ([1a 1f 1c]
and [2a 1f 1c]) with the initial content a little different, but working governed
by the same rules. Results the following evolution:

[[[1a 1f 1c] [2a 1f 1c] ] ]... =>
[[[1a 1b 2f 1c] [2a 2b 2f 1c] ] ]... => // in 5 clock cycles
[[[1a 2b 4f 1c] [2a 4b 4f 1c] ] ]... => // in 5 clock cycles
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[[3b 8f 1c 6b 8f 1c ] ]... => // in 10 clock cycles
[[3d 4f 1c 6d 4f 1c ] ]... => // in 7 clock cycles
[[3d 3e 2f 1c 6d 6e 2f 1c ] ]... => // in 8 clock cycles
[4d 3e 1f 1c 7d 6e 1f 1c]... => // in 8 clock cycles
[4d 1f 1c 7d 1f 1c ] 9e... => // in 10 clock cycles

The execution time has very little increased (only in the last step). It is obvious
that having 3 or more low level membranes the degree of parallelism will increase
correspondingly.

The performance can be increased more if the rules are integrated in or as a
vector representation. In the previous examples the rules were applied sequentially
because they were “known” only by the program issued by the sequencer S. The
sequencer must know only to apply rules defined inside the Connex Array in an
appropriate manner.

6 Concluding Remarks

Functional vs. Flynn’s taxonomy

Our functional taxonomy works better in many-processor environment, while
Flynn’s taxonomy fits better the multi-processor environment. The functional tax-
onomy supposes three different types equally involved in defining a high perfor-
mance architecture, while Flynn’s taxonomy proposes also three kinds of parallel
machines, only one of them being (MIMD) considered as an effective efficient so-
lution for real machines (see [Hennessy ’07]).

Limited non-determinism

The physical resources added for the speculative mechanism are used to support
a sort of limited non-deterministic computation inside an IPA.

Can we accelerate molecular computing in vector environment?

The vector section of an IPA can be used to accelerate molecular computation if
appropriate representations are imagined. Molecular computing has a huge poten-
tial for data parallelism and vector processing is a special kind of data parallel
computation. The main problem is to reformulate the molecular approach to fit
with the restrictions and promises imposed/offered by the vector computation.
The Connex System has also some additional features helping the implementa-
tion of specific search functions, very helpful for rewriting rule based processing.
Various insert and delete capabilities can be used for the same purpose.

An efficient P-Architecture is slightly different from the current
Connex Architecture

Although the Connex environment is helpful for investigating molecular computing
based applications, there are needed few specific features in order to obtain a
market efficient environment.
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Why not a P-language?

A very useful intermediary step toward the definition of a marketable environment
for this new computation model is providing a P-language. Working with the basic
definition of P-systems is not enough flexible for solving real and complex problems.
Using a high level type language and developing for it a specific environment will
speed-up the work for a specific membrane platform.
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Summary. It is known that symport/antiport P systems with two membranes and min-
imal cooperation can generate any recursively enumerable sets of natural numbers using
exactly one superfluous object in the output membrane, where the output membrane is
an elementary membrane. In this paper we consider symport/antiport P systems where
the output membrane is the skin membrane. In this case we prove an unexpected char-
acterization: symport/antiport P systems with two membranes and minimal cooperation
generate exactly the recursively enumerable sets of natural numbers. The question about
power of purely symport P systems with two membranes and minimal cooperation where
the output membrane is the skin membrane is still open.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communication
rules assigned to membranes, first were introduced in [21]; symport rules move
objects across a membrane together in one direction, whereas antiport rules move
objects across a membrane in opposite directions. These operations are very pow-
erful, i.e., P systems with symport/antiport rules have universal computational
power with only one membrane, e.g., see [12], [15], [13].
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A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules, with respect to
the development of computational completeness results improving descriptional
complexity parameters as the number of membranes and cells, respectively, the
weight of the rules and the number of objects can be found in [1].

For instance, in [3] one obtains the exact characterization of NRE for sym-
port/antiport P systems with three membranes and minimal cooperation and for
corresponding purely symport P systems.

In [5] one shows that if some P system with two membranes and with minimal
cooperation, i.e., a P system with symport/antiport rules of weight one or a P sys-
tem with symport rules of weight two, generates a set of numbers containing zero,
then this set is finite. After that one proves that P systems with symport/antiport
rules of weight one can generate any recursively enumerable set of natural numbers
without zero (i.e., they are computationally complete with just one superfluous
object remaining in the output membrane at the end of a halting computation).
The same result is true also for purely symport P systems of weight two. Therefore,
one superfluous object is both necessary and sufficient in case of two membranes.

The question about precise characterization of computational power of sym-
port/antiport P systems (purely symport P systems) with two membranes and
minimal cooperation is still open.

Interpreting the result of the computation as the sequence of terminal symbols
sent to the environment, one shows that P systems with two membranes and
symport rules of weight two or symport/antiport rules of weight one generate all
recursively enumerable languages [6].

In this paper we show that P systems with minimal symport/antiport with
two membranes characterize NRE when we consider the output in the skin
membrane rather than the elementary membrane.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we refer
to [26]. We just list a few notions and notations: N denotes the set of natural
numbers (i.e., of non-negative integers). V ∗ is the free monoid generated by the
alphabet V under the operation of concatenation and the empty string, denoted by
λ, as unit element; by NRE, NREG, and NFIN we denote the family of recursively
enumerable sets, regular sets, and finite sets of natural numbers, respectively. For
k ≥ 1, by NkRE we denote the family of recursively enumerable sets of natural
numbers excluding the initial segment 0 to k − 1. Particularly, N1RE = {N ∈
NRE | 0 /∈ N}. The families of recursively enumerable sets of vectors of natural
numbers are denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [11], [1]) is a construct
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M = (d,Q, q0, qf , P ) , where

• d is the number of counters, and we denote D = {1, ..., d};
• Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, ..., f},
• q0 ∈ Q is the initial state,
• qf ∈ Q is the final state, and
• P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i 6= f, k ∈ D (“increment” -instruction). This
instruction increments counter k by one and changes the state of the system
from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i 6= f, k ∈ D (“decrement” -instruction). If the
value of counter k is greater than zero, then this instruction decrements it by
1 and changes the state of the system from qi to ql. Otherwise (when the value
of counter k is zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 6= f, k ∈ D (“test for zero” -instruction). If
the value of counter k is zero, then this instruction changes the state of the
system from qi to ql. Otherwise (the value stored in counter k is greater than
zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton, and it
can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0

with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers. If k = 1, then by N(M) we denote
the corresponding numeric set generated by M .

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [23]; comprehensive information can be found in the P systems web page,
[30].

A P system with symport/antiport rules is a construct

Π = (O,µ, w1, . . . , wk, E, R1, . . . , Rk, i0), where

1. O is a finite alphabet of symbols called objects;
2. µ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;
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3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with the
region i (delimited by membrane i);

4. E ⊆ O is the set of objects that appear in the environment in an infinite
number of copies;

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated with
membrane i; these rules are of the forms (x, in) and (y, out) (symport rules)
and (y, out; x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of a membrane of µ that identifies the corresponding output
region.

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden. A
rule (x, out) ∈ Ri permits the multiset x to be moved from region i into the outer
region. A rule (y, out; x, in) permits the multisets y and x, which are situated in
region i and the outer region of i, respectively, to be exchanged. It is clear that a
rule can be applied if and only if the multisets involved by this rule are present in
the corresponding regions. The weight of a symport rule (x, in) or (x, out) is given
by |x|, while the weight of an antiport rule (y, out; x, in) is given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is ob-
tained by applying the rules in a non-deterministic maximally parallel manner.
Specifically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify the
objects placed inside the regions. Initially, each region i contains the correspond-
ing finite multiset wi, whereas the environment contains only objects from E that
appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number that is obtained by counting all
objects present in region i0. Given a P system Π, the set of natural numbers
computed in this way by Π is denoted by N(Π). If the multiplicity of each object
is counted separately, then a vector of natural numbers is obtained, denoted by
Ps(Π), see [23].

By NOPm(syms, antit) we denote the family of sets of natural numbers gener-
ated by P systems with symport/antiport rules with at most m > 0 membranes,
symport rules of size at most s ≥ 0, and antiport rules of size at most t ≥ 0. In the
papers on P systems, following [23], i0 is assumed to be an elementary membrane.
In this paper we will write NskinOPm(syms, antit) if i0 is the skin membrane. Any
unbounded parameter m, s, t is replaced by ∗. If t = 0, then we may omit antit.
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3 Main result

Theorem 1. NskinOP2(sym1, anti1) = NRE.

Proof. We simulate a counter automaton M = (d,Q, q0, qf , P ). Recall that M
starts with empty counters. We also suppose that all instructions from P are
labeled in a one-to-one manner with elements of {1, . . . , n} = I, n is a label of the
halt instruction and I ′ = I \{n}. We denote by I+, I−, and I=0 the set of labels for
the “increment” -, “decrement” -, and “test for zero” -instructions, respectively.
We also use the following notation: C = {ck}, k ∈ D and Q′ = Q \ {q0}.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2 ]2 ]1, w1, w2, E,R1, R2, 1),
O = E ∪ {L, T1, T2, P2, J1, J2, J3} ∪ {bj | j ∈ I} ∪ {dj | j ∈ I ′},
E = Q′ ∪ C ∪ {aj | j ∈ I} ∪ {a′j , ej | j ∈ I ′} ∪ {J0, P1} ∪ {Fi | 0 ≤ i ≤ 9},

w1 = q0LJ1J2J3,

w2 = T1T2P2

∏

j∈I

bj

∏

j∈I′
dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i = 1, 2.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a symbol

qi ∈ Q and also the value of all counters, represented by the number of occurrences
of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these parts.
The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

The parts of the computations illustrated in the following describe different
phases of the evolution of the P system. For simplicity, we focus on explaining
a particular phase and omit the objects that do not participate in the evolution
at that time. Each rectangle represents a membrane, each variable represents a
copy of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will evolve
(will be moved) are written in boldface. The labels of the applied rules are written
above the symbol ⇒.
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1. START.
We use the following idea: in our system we have a symbol L which moves

from region 1 to the environment and back in an infinite loop. This loop may be
stopped only if all stages are completed correctly.

R1,s = {1s1 : (L, out), 1s2 : (L, in)}.
R2,s = ∅.

Notice that some rules are never executed during a correct simulation: applying
them would lead to an infinite computation. To help the reader, we will underline
the labels of such rules in the description below.

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}
∪ {1r2 : (qf , out; an, in)}
∪ {1r3 : (bj , out; a′j , in) | j ∈ I ′}
∪ {1r4 : (aj , out;J0, in), 1r5 : (J1, out; bj , in) | j ∈ I}
∪ {1r6 : (J0, out;J1, in)}
∪ {1r7 : (a′j , out; ck, in) | (j : qi → ql, ck+) ∈ P}
∪ {1r8 : (a′j , out) | j ∈ I− ∪ I=0}
∪ {1r9 : (dj , in) | j ∈ I+ ∪ I=0}
∪ {1r10 : (ck, out; dj , in) | (j : qi → ql, ck−) ∈ P}
∪ {1r11 : (J3, out; dj , in) |∈ I−}
∪ {1r12 : (J3, out;J1, in)}
∪ {1r13 : (dj , out; ej , in) | j ∈ I ′}
∪ {1r14 : (ej , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}
∪ {1r15 : (bn, out; F0, in)}
∪ {1r16 : (#, out), 1r17 : (#, in)}.

R2,r = {2r1 : (bj , out; aj , in), 2r2 : (aj , out; J2, in) | j ∈ I}
∪ {2r3 : (aj , out;J1, in) | j ∈ I}
∪ {2r4 : (dj , out; a′j , in) | j ∈ I ′}
∪ {2r5 : (a′j , out; ck, in) | (j : qi → ql, ck = 0) ∈ P}
∪ {2r6 : (a′j , out; ej , in) | j ∈ I=0}
∪ {2r7 : (a′j , out;J1, in) | j ∈ I=0}
∪ {2r8 : (ej , out; dj , in) | j ∈ I=0}
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∪ {2r9 : (ej , out;J1, in) | j ∈ I=0}
∪ {2r10 : (dj , in) | j ∈ I+ ∪ I−}
∪ {2r11 : (a′j , out) | j ∈ I+ ∪ I−}
∪ {2r12 : (J2, out; bj , in) | j ∈ I ′}
∪ {2r13 : (J2, out; J1, in), 2r14 : (#, out;J0, in)}.

First of all, we mention that if during the phase RUN object J3 comes to
the environment by rules 1r11, 1r12 (Scenario 0), it remains there forever and
cannot move object L to region 2 (during the phase END), thus to stop the infinite
loop. So, the computation never halts.

Let us explain the synchronization of aj coming to the environment and bj

leaving the environment: the first one brings J0 into region 1 while the latter
brings J1 into the environment; then rule 1r6 returns J0 and J1 to their original
locations.

If aj comes to the environment without bj leaving it or bj is in region 1 or 2
at that moment (it is possible after applying rules 2r3, 2r7, 2r13), J1 remains in
region 1 (or 2) and J0 comes to region 1 and after that in region 2 by rules 1r4,
2r14 (Scenario 1), thus causing an endless computation since 1r16 and 1r17 are
always applicable.

If bj leaves the environment without aj coming there, J0 remains in the envi-
ronment and J1 comes there (Scenario 2), so 1r12 is applied and J3 comes to
the environment. The computation never halts, see scenario 0.

Scenario 3 takes place when two symbols aj and symbol bj , j ∈ I appear in
region 1 and in the environment accordingly. In this case rules 1r4,1r5 will be
applied, and rule 1r4 two times. Thus, two symbols J0 appear in region 1 and rule
2r14 will be applied eventually. The computation never halts, see scenario 1.

We also mention that applying rule 1r11 causes scenario 0 (this is a case of
modeling a “decrement”-instruction, there is no ck in region 1); applying 2r5 leads
to scenario 3 (this is a case of modeling a “test for zero”-instruction, there is some
ck in region 1), and applying 2r7 and 2r9 eventually causing scenario 1. Therefore,
in order for a computation to halt, no underlined rules should be applied.

We will now consider the “main” line of computation. We explain the behavior
of simulating the instruction (j : qi → ql, ckγ). Index s stands for any possible
instruction associated to state ql.

“Increment” -instruction:

qlajasa
′
jejckJ0 qiJ1J2J3 bjdj# ⇒1r1 qlqiasa

′
jejckJ0 ajJ1J2J3 bjdj# ⇒2r1

qlqiasa′jejckJ0 bjJ1J2J3 ajdj# ⇒1r3,2r2 qlqiasbjejckJ0 a′jJ1ajJ3 J2dj#

⇒1r4,1r5,2r4 qlqiajasejckJ1 bjdjJ0J3 J2a′j# (A)
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⇒1r6,1r13,2r11,2r12 qlqiajasdjckJ0 J1J2a′jejJ3 bj# ⇒1r7,1r9,1r14

qiajasa
′
jejJ0 qldjJ1J2J3ck bj# ⇒1r1,2r10 qlqiaja

′
jejJ0 asJ1J2J3ck bjdj#

In that way, qi is replaced by ql and ck is moved from the environment into region
1. Notice that symbols aj , bj , a′j , dj , ej , J0, J1, J2 have returned to their original
positions. Symbol dj returns to region 2 in the first step of the simulation of the
next instruction (the last step of the illustration).

“Decrement” -instruction:

(i) There is some ck in region 1:

We consider configuration (A) above with symbol ck in region 1.

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r11,2r12

qlqiajasdjJ0 J1J2a′jejJ3ck bj# ⇒1r8,1r10,1r14 qiajasa
′
jejckJ0 qlJ1J2J3dj bj#

⇒1r1,2r10 qlqiaja
′
jejckJ0 asJ1J2J3 bjdj#

In the way described above, qi is replaced by ql and ck is removed from region 1
to the environment. Notice that symbols aj , a′j , bj , dj , ej , J0, J1, J2 have returned
to their original positions. Symbol dj returns to region 2 in the first step of the
simulation of the next instruction (the last step of the illustration).

(ii) There is no ck in region 1:

Again we start with configuration (A).

qlqiajasejJ1 bjdjJ0J3 J2a′j#

⇒1r6,1r13,2r11,2r12 qlqiajasdjJ0 J1J2a′jejJ3 bj# ⇒1r8,1r11,1r14

Now rule 1r11 will be applied, leading to an infinite computation (see scenario 0).

“Test for zero” -instruction:
qi is replaced by ql if there is no ck in region 1, otherwise a′j in region 2

exchanges with ck in region 1 and the computation will never stop.
(i) There is no ck in region 1:

We consider configuration (A) above.
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qlqiajasejJ1 bjdjJ0J3 J2a′j# ⇒1r6,1r13,2r12 qlqiajasdjJ0 J1J2ejJ3 a′jbj#

⇒1r9,2r6 qlqiajasJ0 djJ1J2J3a′j ejbj# ⇒1r8,2r8 qlqiajasa
′
jJ0 ejJ1J2J3 bjdj#

⇒1r14 qiajasa
′
jejJ0 qlJ1J2J3 bjdj#

In this case, qi is replaced by ql. Notice that symbols aj , a′j , bj , dj , ej , J0, J1, J2

have returned to their original positions.

(ii) There is some ck in region 1:
Consider configuration (A) with object ck in region 1:

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r5,2r12

Now applying rule 2r5 leads to an infinite computation.

qlqiajasasa
′
sdjJ0J0 J1J2a′jejJ3 bjbsck# ⇒1r8,1r9,1r14

qiajasasa
′
ja
′
sejJ0J0 qldjJ1J2J3 bjbsck# ⇒1r1,1r13

qlqiajasa
′
ja
′
sdjJ0J0 asejJ1J2J3 bjbs# ⇒1r14,2r1

qiajasa
′
ja
′
sejJ0J0 bsqlJ1J2J3 asdj# ⇒1r1,1r3,2r2

qlqiaja
′
jbsejJ0J0 asasa′sJ1J2J3 dj#

So, scenario 3 takes place and the computation never halts.

3. END.

R1,f = {1f1 : (T1, out; F1, in)} ∪ {1f2 : (Fi, out; Fi+1, in) | 1 ≤ i ≤ 8}
∪ {1f3 : (T2, out; P1), 1f4 : (P2, out), 1f5 : (F0, out; P2, in)}.

R2,f = {2f1 : (T1, out; F0, in), 2f2 : (F0, out), 2f3 : (T2, out;F0, in)}
∪ {2f4 : (P1, in), 2f5 : (P1, out;J1, in), 2f6 : (P1, out;J2, in)}
∪ {2f7 : (P1, out; J3, in), 2f8 : (J3, out;L, in), 2f9 : (P2, out; F9, in)}.

Once the counter automaton reaches the final state, qf is in region 1 and it
exchanges with object an (rule 1r2) and object F0 will be moved to region 1 in
several steps (rules 1r15).

It takes T1 and T2 to region 1, in either order. The duty of T2 is to bring P1

from the environment to region 2, where P1 pumps objects J1, J2, J3 from region 1
to region 2. If on the previous steps of simulation of counter automaton M object
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J3 was moved to the environment (by rules 1r11, 1r12), scenario 0 takes place
and the computation never halts, as there is only one possibility to stop an infinite
loop with object L, i.e. to move it to region 2 by rule 2f8.

T1 starts a chain of exchanges of objects Fi, as a result object F9 will be
moved to region 1 and then object P2 will be moved to the environment, where
it pumps object F0 to the environment. So, at the end of the computation there
are only objects ck, k ∈ D in region 1. The entire simulation shows the inclusion
N(Π1) ⊇ N(M).

The converse inclusion also holds because the system may only halt if it has
correctly simulated a computation of the counter automaton (according to the
design of the system) from state q0 to state qf , while if behavior of M is not sim-
ulated correctly, then the computation never halts and hence does not contribute
to N(Π1). This shows that P systems with two membranes and symport/antiport
rules of weight one with the output in the skin membrane generate all recursively
enumerable sets of natural numbers. Since the power of such systems cannot exceed
that of Turing machines, the statement of the theorem is an equality. ut

4 Conclusions

In this paper we prove the new result that any recursively enumerable set of nat-
ural numbers is generated by symport/antiport P systems with two membranes
and minimal cooperation where the output membrane is the skin membrane. It
contrasts with the previous result where an elementary membrane is used as the
output membrane, where at least one superfluous object is necessary in the out-
put membrane in order to get universality. Thus we answered the question of
Francesco Bernardini about computational power of symport/antiport P systems
with two membranes and minimal cooperation where the output membrane is
the skin membrane. The question about power of purely symport P systems with
two membranes and minimal cooperation where the output membrane is the skin
membrane is still open.
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Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.) Lecture Notes in
Computer Science 3365 (2005) 161–177.

4. A. Alhazov, Yu. Rogozhin: Minimal Cooperation in Symport/Antiport P Sys-
tems with One Membrane. Third Brainstorming Week on Membrane Computing
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Summary. We investigate the problem of reaching a configuration from another config-
uration in mobile membranes, and prove that the reachability can be decided by reducing
it to the reachability problem of a version of pure and public ambient calculus without
the capability open.

1 Introduction

Membrane systems (called also P systems) are introduced by Gh.Păun in [8, 9]
as a class of parallel computing devices inspired by biology. The definition of
this computing model starts from the observation that any biological system is
a complex hierarchical structure, with a flow of materials and information which
underlies their functioning. The membrane computing deals with the evolution of
systems composed by objects, rules and membranes nested in other membranes.
The P systems with mobile membranes [5] is a model which expresses mobility by
the movement of membranes in such a system. The movement is given mainly by
two operations: exocytosis and endocytosis.

Ambient calculus is a formalism introduced in [3] to describe concurrent and
mobile computation. In contrast with other formalisms for mobile processes such
as the π-calculus [7] (whose computational model is based on the notion of com-
munication), the ambient calculus is based on the notion of movement. An ambient
is a named location, and represents a unit of movement. Ambients mobility is
controlled by the capabilities in, out, and open; the mobile ambients describe the
migration of processes between certain boundaries.

The membrane systems and mobile ambients have similar structures and com-
mon concepts. Both have a hierarchical structure, work mainly with a notion of
location, and are used to model various aspects on the distributed systems. The
distributed features of mobile ambients are described in [3], and distributed algo-
rithms for membrane systems are presented in [4].
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In this paper we investigate the problem of reaching a certain configuration in
mobile membranes starting from a given configuration. We prove that reachability
in mobile membranes can be decided by reducing it to the reachability problem of
a version of pure and public ambient calculus from which the open capability has
been removed. In [1] it is proven that the reachability for this fragment of ambient
calculus is decidable by reducing it to marking reachability for Petri nets, which
is proven to be decidable in [6].

The structure of the paper is as follows. In Section 2 we present the mobile
membrane systems, whereas in Section 3 we present a version of pure and public
mobile ambients without the capability open. The core of the paper is represented
by Section 4, where we investigate the reachability problem for mobile membranes.
Conclusions and references end the paper.

2 Mobile Membranes Systems

Definition 1. A mobile membrane system is a construct∏
= (V ∪ V , H ∪H, µ, w1, . . . , wn, R), where:

1. n ≥ 1 (the initial degree of the system);
2. V ∪ V is an alphabet (its elements are called objects), where V ∩ V = ∅;
3. H ∪H is a finite set of labels for membranes, where H ∩H = ∅;
4. µ is a membrane structure, consisting of n membranes, labeled (not necessarily

in a one-to-one manner) with elements of H;
5. w1, w2, . . . , wn are multisets of objects placed in the n membranes of the system;
6. R is a finite set of developmental rules, of the following forms:

a) a↓→ a↓ a↓, for a↓∈ V , a↓∈ V ; replication rule
The objects a↓ are used to create new objects a↓ without being consumed.

b) a↑→ a↑ a↑, for a↑∈ V , a↑∈ V ; replication rule
The objects a↑ are used to create new objects a↑ without being consumed.

c) [ a↓ ]h [ ]a → [ [ ]h ]a, for a, h ∈ H, a↓∈ V ; endocytosis
An elementary membrane labeled h enters the adjacent membrane labeled
a, under the control of object a↓. The labels h and a remain unchanged
during this process; however the object a↓ is consumed during the operation.
Membrane a is not necessarily elementary.

d) [ [ a↑ ]h ]a → [ ]h [ ]a, for a, h ∈ H, a↑∈ V ; exocytosis
An elementary membrane labeled h is sent out of a membrane labeled a,
under the control of object a↑. The labels of the two membranes remain
unchanged; the object a↑ of membrane h is consumed during the operation.
Membrane a is not necessarily elementary.

e) [ ]h → [ ]h[ ]h for h ∈ H, h ∈ H division rules

An elementary membrane labeled h is divided into two membranes labeled
by h and h having the same objects.
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In 3, H ∩H = ∅ states that the membranes having labels from the set H can
participate only in rules of type (e). Similarly, V ∩ V = ∅ in 2 states that the
objects from V can participate only in rules of type (a) and (b)

The rules are applied using the following principles:

1. In biological systems molecules are divided into classes of different types. We
make the same decision here and split the objects into four classes: a ↓ - objects
that control the endocytosis, a ↑ - objects that control the exocytosis, and a ↓,
a ↑ - objects that produce new objects from the first two classes without being
consumed.

2. All the rules of type (c), (d) are applied in parallel, non-deterministically choos-
ing the rules, the membranes, and the objects, but in such a way that the
parallelism is maximal; this means that in each step we apply a set of rules
such that no further rule of type (c), (d) can be added to the set, no further
membranes and objects can evolve at the same time.

3. The membrane a from each rules of type (c), (d) is said to be passive, while
the membrane h is said to be active. In any step of a computation, any object
and any active membrane can be involved in at most one rule, but the passive
membranes are not considered involved in the use of rules (hence they can be
used by several rules at the same time as passive membranes).

4. When a membrane is moved across another membrane, by endocytosis or ex-
ocytosis, its whole content (its objects) are moved.

5. If a membrane is divided, then its content is replicated in the two new copies.
6. The skin membrane can never be divided.
7. Not all the rules of type (a), (b), (e) are applied whenever it is possible; we

choose non-deterministically whether the rules of these types are applied.

According to these rules, we get transitions among the configurations of the
system. For two mobile membrane systems M and N we say that M reduces to
N if there is a sequence of rules applicable in the membrane system M in order
to obtain the membrane system N .

3 Mobile Ambients

We describe a variant of pure and public mobile ambients (mobile ambients in
which communication and name restriction are omitted); more details can be found
in [1]. Given an infinite set of names N (ranged over by m,n, . . . ), we define the
set A of mobile ambients (denoted by A, A′, B, . . . ) together with their capabilities
(denoted by C, C ′, . . . ) as follows:

C ::= in n | out n Capabilities
A ::= A | B | C. A | n[ A ] | !A Processes

A movement C. A is provided by the capability C, followed by the execution of
process A. An entry capability in n instructs the surrounding ambient to enter a
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sibling ambient labeled by n, while an exit capability out n intructs the surround-
ing ambient to exit its parent ambient labeled by n. An ambient n[ A ] represents
a bounded place labeled by n in which a process A is executed. A |B is a par-
allel composition of processes A and B. The process !A denotes the unbounded
replication of process A.

Processes of this calculus are grouped into equivalence classes, up to trivial
syntactic restructuring, by the following structural congruence relation, ≡, which
is the least congruence satisfying the following requirements:

A |B ≡ B |A A ≡ B implies A |A′ ≡ B |A′
(A |B) |A′ ≡ A | (B |A′) A ≡ B implies !A ≡!B
A ≡ A A ≡ B implies n[A] ≡ n[B]
A ≡ B implies B ≡ A A ≡ B implies C.A ≡ C.B
A ≡ B, B ≡ A′ implies A ≡ A′

The operational semantics of the mobile ambients is defined in terms of a reduction
relation ⇒ by the following axioms and rules:
Axioms:
(In) n[ in m.A | A′ ] | m[ B ] ⇒ m[ n[ A | A′ ] | B ] ;
(Out) m[ n[ out m.A | A′ ] | B ] ⇒ n[ A | A′ ] | m[ B ] ;
(Repl) !A ⇒ A | !A .
Rules:

(Comp) A ⇒ A′
A | B ⇒ A′ | B (Amb) A ⇒ A′

n[ A ] ⇒ n[ A′ ]

(Struc) A ≡ A′, A′ ⇒ B′, B′ ≡ B
A ⇒ B .

The Axioms represent the one-step reductions for in and out, and the unfold-
ing of replication. The Rules propagate reduction across ambient nesting, parallel
composition and allow the use of equivalence during reduction. The In and Out
rules are applied as soon as possible in a maximal parallel manner. We denote by
⇒∗ the reflexive and transitive closure of the binary relation ⇒.

4 Reachability Problem

In this section we prove that the problem of reaching a configuration (membranes
and objects) starting from a certain configuration is decidable for the special class
of mobile membranes systems introduced in Section 2.

Theorem 1. For two arbitrary mobile membranes M1 and M2, it is decidable
whether M1 reduces to M2.

The main steps of the proof are as follows:

1. we reduce mobile membranes systems to pure and public mobile ambients
without the capability open.
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2. we show that the reachability problem for two arbitrary mobile membranes
can be expressed as the reachability problem for the corresponding mobile
ambients.

3. we use the result that the reachability problem is decidable for a fragment of
pure and public mobile ambients without the capability open.

The following subsections are devoted to the proof of Theorem 1.

4.1 From Mobile Membranes to Mobile Ambients

We use the following translation steps:

1. any object a↓ is translated into a capability in a;
2. any object a↑ is translated into a capability out a;
3. any object a↓ is translated into a replication !in a
4. any object a↑ is translated into a replication !out a
5. a membrane h is translated into an ambient h
6. an elementary membrane h is translated into a replication !h[ ] where all the

objects inside membrane h are translated into capabilities in ambient h using
the above steps.

A correspondence exists between the rules from mobile membranes and the reduc-
tion rules from mobile ambients as follows:

- rule (c) corresponds to rule (In)
- rule (d) corresponds to rule (Out)
- rules (a), (b), (e) correspond to instances of rule (Repl)

If we start with a mobile membrane system M , we denote by T (M) the mobile
ambient obtained using the above translation steps. For example, starting from the
membrane system M = [m↓ m↑]n[ ]m we obtain T (M) = n[in m | out m] | m[ ].

Proposition 1. For mobile membrane systems M and N , M reduces to N by
applying one rule if and only if T (M) reduces to T (N) by applying only one
reduction rule.

Proof (Sketch). Since M reduces N by applying one rule, then one of the rules
of type (a), . . . , (e) is applied. We treat only the case when a rule of type (a) is
applied, the others being treated in a similar manner.

If a rule a↓→ a↓ a↓ is applied, only one object from the membrane system
M is used, namely a↓, to create a new object a↓, thus obtaining the membrane
system N . By translating the membrane system M into T (M) we have that a↓ is
translated in !in a. By applying the reduction rule corresponding to (a) (namely
the rule (Repl)) to !in m, then we have that !in a ⇒!in a | in a, namely a new
capability in a is created. We observe that T (a↓) = in a, which means that the
obtained mobile ambient is in fact T (N).

According to Proposition 1 the reachability problem for mobile membranes can be
reduced to a similar problem for mobile ambients.
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4.2 From Mobile Ambients to Petri Nets

After translating the mobile membranes into a fragment of mobile ambients known
to be decidable, we present for our fragment of mobile ambients the algorithm used
in [1] to translate mobile ambients into a fragment of Petri nets, which is known
to be decidable from [6]. The fragment of mobile ambients used here is a subset of
the fragment of mobile ambients used in [1] and the difference is provided by the
extra-rule !A ⇒!A | !A used in [1].

We observe that applying a reduction rule over a process either increases the
number of ambients or leaves it unchanged. The only reduction rule that increases
the number of ambients when applied is the rule (Repl), while the other reduction
rules leave the number of ambients unchanged. If we reach process B starting from
process A, then the number of ambients of process B is known. Therefore, we can
use this information to know how many times the reduction rule (Repl) is applied
to replicate ambients. A similar argument does not hold for capabilities as they
can be consumed by the reduction rules (In) and (Out).

An ambient context C is a process in which may occur some holes (denoted by
¤). Starting from this observations we split a process into two parts: one will be
a context containing ambients, whereas the other one will be a process without
ambients.

In order to uniquely identify all the occurrences of replication, ambient, capa-
bility or hole ¤ within an ambient context or a process, we introduce a labeling
system. Using a countable set of labels, we say that a process A or an ambient
context C is well-labeled if any label occurs at most once in A or C . We denote
by Amb(C) the multiset of ambients occurring in an ambient context C.

I) labeled Transition System

For the reachability problem A ⇒∗ B, we denote by CA a well-labeled ambient
context and with θA a mapping from the set of holes in CA to some labeled processes
without replicable ambients such that θA(CA) is well-labeled, and θA(CA) = A
ignoring labels.

A labeled transition system LA,B describes all possible reductions for the con-
text CA: this includes reductions of replications and capabilities contained in CA

and in the processes associated with the holes of the context. The states of the
labeled transition system LA,B are associative-commutative equivalent classes of
ambient contexts, and for simplicity, we often identify a state as one of the repre-
sentatives of its class.

We define a mapping θLA,B
which extends the mapping θA. Initially, LA,B

contains (the equivalence class of) CA as a unique state and we have θLA,B
= θA.

We present in what follows the construction steps of θLA,B
, where cap stands for

in or out:

1. for any ambient context C from LA,B and for any labeled capability capwn in C
if this capability can be executed using one of the rules (In) or (Out) leading
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to some ambient context C′, then the state C′ and a transition from C to C′
labeled by capwn are added to LA,B .

2. for any ambient context C from LA,B and for any labeled replication !w in C
such that the reduction rule (Repl) is applied, we define the ambient context
C′ as follows: C′ is identical to C except that the subcontext !wCa in C is replaced
by !wCa | γ(Ca) in C′; the mapping γ relabels Ca with fresh labels, such that C′
is well-labeled. If Amb(C′) ⊆ Amb(B) then the state C′ and a transition from
C to C′ labeled by !w is added to LA,B . Additionally, we define θ′LA,B

as an
extension of θLA,B

such that for all ¤w′ in Ca we have:
(i) θ′LA,B

(γ(¤w′)) and θLA,B (¤w′) are identical ignoring labels,
(ii) labels in θ′LA,B

(γ(¤w′)) are fresh in the currently built transition sys-
tem LA,B

(iii)θ′LA,B
(γ(¤w′)) is well-labeled.

As a final step, we set θLA,B
to be θ′LA,B

.
3. for any ambient context C from LA,B and for any labeled hole ¤w in C and

for any capability capwn in the process θLA,B
(¤w), we consider the ambient

context Cm identical to C except that ¤w in C has been replaced by ¤w | capwn
in Cm. If this capability capwn can be consumed in Cm using one of the rules
(In) or (Out) leading to some ambient context C′, then the state C′ and a
transition from C to C′ labeled by capwn are added to transition system LA,B .

4. for any ambient context C from LA,B and for any labeled hole ¤w in C asso-
ciated by θLA,B

with a process of the form !w
′
A′, if the replication !w

′
can be

reduced in the process θLA,B
(C) using the rule (Repl), then for any replication

!w
′′

in θLA,B
(¤w), a transition from C to itself, labeled by !w

′′
is added to LA,B .

In step 2 the reduction of a replication contained in the ambient context by
means of the rule (Repl) is done only when the number of ambients in the resulting
process is smaller than the number of ambients in the target process B, namely
Amb(C′) ⊆ Amb(B). This requirement is crucial as it implies that the transition
system LA,B has only finitely many states.

As an example, we give in Figure 1 the labeled transition system associated
with the process n[!1in m.!2out m] | m[ ] (we omit in this process unnecessary
labels). We use the labeled replications !1 and !2 to distinguish between different
replication operators which appear in the process.

We observe that the labeled transitions in LA,B for replications and capabilities
from an ambient context correspond to reductions performed on processes. As
shown in steps 3 and 4 the transitions applied for any capabilities or replications
associated with the holes are independently of the fact that they are effectively at
this point available to perform a transition.
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II) From Processes Without Ambients to Petri Nets

In what follows we show how to build a Petri net from a labeled process without
ambients. We denote by E(E) the set of all multisets that can be built with elements
from the set E.

We recall that a Petri net is given by a 5-tuple (P,Pi, T , P re, Post) with

• P a finite set of places;
• P ⊆ Pi a set of initial places;
• T a finite set of transitions;
• Pre, Post : T → E(P) mappings from transitions to multisets of places.

We say that an ambient-free process is rooted if it is of the form capwn.A′ or of
the form !wA′. We define PNA′ the Petri net associated with some rooted process
A′ as follows: places for PNA′ are precisely rooted subprocesses of A′, and A′ itself
is the unique initial place. Transitions are defined as the set of all capabilities inwn,
outw

′
n and replications !w occurring in A′. Finally, Pre and Post are defined for

all transitions as follows:

• Pre(capwn) = {capwn} and Post(capwn) = ∅ if capwn is a place in PNA′ .
• Pre(capwn) = {capwn.(A1 | . . . | Ak)} and Post(capwn) = {A1 | . . . | Ak} if

capwn.(A1 | . . . | Ak) is a place in PNA′ (A1 | . . . | Ak being rooted processes).
• Pre(!w) = Pre(!w) = {!wA′}, Post(!w) = {!wA′, A′} and Post(!w) = {!wA′} if

!wA′ is a place in PNA′ .

For !1in m.!2out m, we obtain the Petri net given in Figure 2.
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We will denote by PN¤w the Petri net PN(θLA,B
(¤w)), that is, the Petri net

corresponding to the rooted ambient-free process associated with ¤w by θLA,B
. In

what follows we show how to combine the transition system LA,B and the Petri
nets PN¤w into one single Petri net.

III) Combining the Transition System and Petri Nets

We first turn the labeled transition system LA,B into a Petri net PNL =
(PL,Pi

L, TL, P reL, PostL) with:

• PL a set of states of LA,B ;
• Pi

L a singleton set containing the state corresponding to CA, the ambient con-
text of A;

• TL the set of transitions of the form (s, l, s′), with
– s and s′ states from LA,B ;
– l transition from s to s′ in LA,B .

• Pre(t) = s and Post(t) = {s′}, for all transitions t = (s, l, s′).

We define the Petri net PNA,B = (PA,B ,Pi
A,B , TA,B , P reA,B , PostA,B) as:

• places (resp. initial places) from PNA,B are the union of places (resp. initial
places) of PNL and of each of the Petri nets PN¤w (for ¤w occurring in one
of the states of LA,B).

• transitions of PNA,B are precisely the transitions of PNL.
• The mappings PreA,B and PostA,B are defined for all transitions t = (a, f, b):

(i) PreA,B(t) = {a} and PostA,B(t) = {b}, if f does not occur as a transition
in any PN¤w (for ¤w occurring in one of the states of LA,B)

(ii) PreA,B(t) = {a} ∪ Pre¤w(f) and PostA,B(t) = {b} ∪ Post¤w(f), if f is a
transition of PN¤w (Pre¤w(resp. Post¤w) being the mapping Pre (resp.
Post) of PN¤w).

4.3 Deciding Reachability

We recall that for a Petri net PN = (P,Pi, T , P re, Post), a marking m is a
multiset from E(P ). A transition t is enabled by a marking m if Pre(t) ⊆ m.
Executing an enabled transition t for a marking m gives a marking m′ defined as
m′ = (m\Pre(t))∪Post(t) (where \ stands for the multiset difference). A marking
m′ is reachable from m if there exists a sequence m0, . . . ,mk of markings such that
m0 = m, mk = m′ and for each mi,mi+1, there exists an enabled transition for
mi whose execution gives mi+1.

Theorem 2 ([6]). For all Petri nets P , for all markings m,m′ for P , one can
decide whether m′ is reachable from m.
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For the reachability problem A ⇒∗ B over ambients, we consider the Petri net
PNA,B and the initial marking mA defined as mA = Pi

A,B . In Figure 3 is depicted
the initial marking for the process n[!1in m.!2out m] | m[ ] as a combination of the
labeled transition system from Figure 1 and the Petri net from Figure 2.

It should be noticed that for any marking m reachable from mA, m contains
exactly one occurrence of a place from PL. Roughly speaking, to any reachable
marking corresponds exactly one ambient context. Moreover, the execution of one
transition in the Petri net PNA,B simulates a reduction from ⇒.

We define now MB , the set of markings of PNA,B corresponding to B. Intu-
itively, a marking m belongs to MB if m contains exactly one occurrence C of a
place from PL (that is, representing some ambient context) and in the context C,
the holes can be replaced with processes without ambients to obtain B. Each of
the processes without replication must correspond to a marking of the sub-Petri
net associated with the hole it fills up. MB is defined as the set of markings m for
PNA,B satisfying:

(i) in m there exists exactly one ambient context Cm;
(ii) ignoring labels, σm(Cm) is equal to B modulo associative-commutative, for the

substitution σm from holes ¤w occurring in Cm to processes without ambients
defined as: σm(¤m) = P1 | . . . | Pk for {P1, . . . , Pk} the multiset corresponding
to the restriction of m to the places of PN¤w

(iii)for all holes ¤w occurring in some state of the transition system LA,B but not
in Cm, the restriction of m to places of PN¤w is precisely the set of initial
places from PN¤w .

We adapt the results presented in [1] to a restricted fragment of mobile ambients.

Proposition 2. For a Petri net PNA,B, there are only finitely many markings
corresponding to the process B, and their set MB can be computed.
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The translation correctness is ensured by the following result.

Proposition 3. For all processes A,B we have that A ⇒ B if and only if there
exists a marking from MB such that mB is reachable from mA in PNA,B.

Using the Proposition 3 and Theorem 2, we can decide whether an ambient A
can be reduced to an ambient B.

Theorem 3. For two arbitrary ambients A and B from our restricted fragment,
it is decidable whether A reduces to B.

5 Conclusions

In this paper we have investigated the problem of reaching a configuration in
mobile membranes starting from another configuration. In order to do this we use
[1] where the reachability problem for a fragment of ambient calculus is proven
to be decidable, namely the pure and public ambient calculus except the open
capability. The same problem is tackled in [2], but the authors do not take into
account the replication of ambients, which is used to simulate the division rules in
mobile membranes. We proved that the reachability can be decided by reducing
this problem to the reachability problem of a version of pure and public ambient
calculus from which the open capability has been removed.
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Summary. A model of P systems with symport / antiport rules is given in terms of
hypernets, a generalization of a class of hierarchical Petri nets introduced for modeling
mobility inside the nets-within-nets paradigm. The hierarchical structure of a P system
is reflected by the associated hypernet, where molecules are modeled by unstructured
agents (simple tokens) and membranes by agents. Each agent is modeled by a net which
may contain in its places unstructured agents or other agents. Agents can exchange tokens
with their sub- or super-agents and thus the hierarchy may change. The main result of
the paper shows a correspondence between reachable configurations of the P system and
reachable hypermarkings of the related hypernet, in such a way that if the P system
can evolve from one configuration to another one then in the hypernet there exists a
corresponding transformation of hypermarkings.

1 Introduction

In recent years the notion of system of mobile agents has gained importance in
computer science and engineering. These systems are formed by agents which
move around a space, interacting with each other. Often, these agents are pieces
of software traveling across a network of hosts, where they can be executed in
a local environment. Such a development has led to envisage formal models in
which one can represent mobile agents, their environment, and their interactions.
Since agents move and run in parallel with others, concurrency theory is a natural
framework in which to look for adequate models.

In 1986, Valk proposed a kind of Petri nets in which tokens can be nets, which
can be moved across the places of a hosting net, possibly interacting with it (see
[15]). Building on this idea, hypernets were defined in [1]. A hypernet is formed by
agents, each modeled by a Petri net. In a given configuration, each agent, except
one, is also a token residing in a place of another agent (the exception consists in
the highest level agent, which acts as an environment for all others). The relation
? Partially supported by MIUR and CNR - IPI PAN.
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of containment can dynamically change as an effect of firing transitions; agents
can exchange their sub-agents by forming so called consortia.

The hierarchy of agents in a hypernet resembles the hierarchy of membranes
in a P system, and the mechanism of consortia can be seen as a way to exchange
molecules across a membrane. This idea is the subject of the present paper, where
we define a translation from P systems with symport/antiport rules to a class of
hypernets. Such class is a generalization of the class defined in [1]. The main idea
of this translation is quite simple: each membrane and each individual molecule
in the P system is represented by an agent in the hypernet. Molecule agents are
unstructured, that is, they are simple tokens, like in usual nets, and can only
be passively moved by the active components. Membrane agents, viceversa, are
nets, with places that can contain molecule agents, and places that can contain
other membrane agents. Consortia correspond to rules of the P system, whereby
molecules can be exchanged across a membrane.

It should be noted that hypernets would allow, in themselves, movement of
membrane agents, so that the hierarchical structure of membranes could change.
This capability is not exploited here, since we deal with P systems where only
molecules move around, but might be useful in modeling more general kinds of
systems.

In this paper, we are not interested in the computational aspects of the theory
of P systems, but rather focus on modeling aspects. Consequently, we compare the
two models on the basis of their reachable configurations.

After recalling the basic definitions related to the class of P systems with
symport/antiport rules (Section 2), we define hypernets in Section 3. Section 4
shows how to build a hypernet from a P system, and states in which sense the
two models can be considered as equivalent. Finally, in Section 5, we draw some
considerations, and suggest possible developments.

2 P Systems with Symport/Antiport Rules

Many kinds of membrane systems have been investigated during the last years.
One of the most studied variant of the general model of P systems was introduced
in [10] under the name of systems with symport/antiport rules. Those terms came
from two membrane transport mechanisms. Whereas the term symport stands for
the biological process by which two molecules pass together across a membrane,
when the two molecules pass simultaneously, but in the opposite direction, the
process is called antiport.

The class of membrane systems with symport/antiport rules is a class of purely
communicating P systems, where the objects involved in the computation only
pass through membranes. This means that the objects involved never change and
a sort of conservation law for objects is observed during the entire evolution of the
system.
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Many results on this kind of P systems, especially about their computational
power, can be found in [11],[7],[8],[4]. Here we provide a simplified version of the
definition of P system with symport/antiport rules supplied by Păun [12].

2.1 Formal definition

Formally, we define a P system with symport/antiport rules (of degree m), as a
construct of the form

Π = (O, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm),

where:

• O is the (finite and non empty) alphabet of objects
• the membrane structure µ = (N, E, i) is a rooted tree underlying Π, where

N = {1, 2, . . . , m} is the set of nodes and each node in N defines a membrane
of Π. The set E ⊆ N×N defines the edges. For each node j ∈ N , the membrane
associated to the node j contains all the membranes associated to the children
of j. i is the root of the tree and hence the skin membrane (the outermost
membrane of the system)

• w1, w2, . . . , wm are multisets over O representing the objects present in the
regions 1, 2, . . . , m of the membrane structure µ in the initial configuration of
the system (in the following, multisets will be described either by strings, with
exponents denoting the multiplicity of elements, or by the usual characteristic
function of multisets) where the

• R1, R2, . . . , Rm are finite sets of evolution rules associated with the membranes
of µ. Moreover we impose Ri = ∅, where i is the skin of the membrane structure.
This clause ensures that the external membrane is impermeable and hence the
total number of objects involved in the computation is finite (and constant);
this is required if we want to build hypernets with a finite number of agents

In the following we often use the term molecule when referring to an object in
a membrane of the P system.

As said above, each rule governs the communication through a specific mem-
brane and can be of two kinds, symport rule or antiport rule. A symport rule is
of the form (u, in) or (u, out), where u is a multiset over O, stating that all the
objects of u pass together through a membrane, entering in the former case and
exiting in the latter. For example, in a membrane i, after the application of the
symport rule (u, in), the multiset associated to this membrane will contain all the
objects previously present, plus the objects present in u. The multiset associated
to the membrane that contains i, will contain all the objects previously present,
minus those in u. Similarly, an antiport rule is of the form (u, out; v, in), where u
and v are multisets over O, stating that when u exits, at the same time, a multiset
v must enter the membrane.

The P system described above evolves from configuration to configuration by
the application of a multiset of rules in each membrane. Formally, a configuration
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is a tuple C = (v1, v2, . . . , vm) and C
R̂⇒ C ′ denotes that C evolves into C ′ due to

the application of R̂, where R̂ = (R̄1, R̄2, . . . , R̄m) is a multi-rules vector applicable
to C and R̄j is a multiset over Rj .

The evolution of the system is non-deterministic and maximally parallel: at
each step, the configuration changes by applying a maximal multiset of rules,
chosen in a non deterministic way; the rules must be all applicable without mutual
interferences in the current configuration.

i

j

r
3
=(ab2,in)

r
4
=(a,out)

w
j
=a2

w
i
=ab3

r
1
=(b,out)

r
2
=(a2,out)

Fig. 1. Fragment of a symport/antiport P system

2.2 Example

Fig. 1 shows a fragment of a P system with symport rules. The system depicted here
consists of two nested membranes: j, the inner membrane, and i, the outer one,
which we assume to be a membrane contained in a larger membrane structure.
The set of rules of i is Ri = {(b, out), (a2, out)}, and the set of rules of j is
Rj = {(ab2, in), (a, out)}. In the same way we define the initial multisets of objects
wi = ab3 and wj = a2.

In this configuration the rules r1, r3, r4 are enabled and a multi-rules vector can
be built with this rules in a maximally parallel manner, i.e.: the multi-rules vector
R̂ = ({r1}, {r3, r4, r4}) is applicable to the initial configuration. Note that other
multi-rules vectors can be applied to the same configuration. The application of R̂
leads to a new state where the objects in the membrane i are a2 and the objects
in the membrane j are ab2.

3 Hypernets

In this section we introduce a generalization of Petri hypernets [1] that for simplic-
ity we call also here hypernets. A hypernet is defined by a fixed set of agents, each
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agent is modeled by a net and can manipulate other agents as tokens, while being
manipulated as token by another agent at the same time. This yields a hierarchy
of agents. The highest level agent acts as an environment for all other agents, these
latter are located each one in some place of another agent. Agents can exchange
tokens with their sub- or super-agents and thus the hierarchy may change.

In what follows we first define the structure of hypernets giving the definition
of agent and of hypernet, then we define the behavior of hypernets, and at the end
of the section we illustrate hypernets on an example modeling the P system given
in Subsection 2.2 as it will be discussed in Section 4.

3.1 Structure of hypernets

An agent is modeled by a Petri net, a bipartite oriented graph, whose nodes are
of two types: places and transitions. Places are partitioned into two disjoint sets:
the set of local places, which are locations in which other agents can stay, and
the set of virtual places, which represent communication channels along which
agents exchange tokens each others. Places and transitions are interconnected by
weighted oriented arcs, which define how many tokens are taken away from an
input place and how many are put into an output place, when a transition fires.
For each transition the sum of the weights of the input arcs must be equal to the
sum of the weights of the output arcs. In this way the amount of tokens will not
change while transitions fire. Moreover, to each triple of interconnected elements
place-transition-place it is assigned, by a function φA, a value which defines, in a
way compatible with the arc weights, the number of tokens which flow along the
path identified by the triple. In other words, φA defines how the tokens taken away
from an input place of a transition will be distributed into the output places, when
the transition will fire; and this distribution will be the same for each occurrence
of the same transition. For basic definitions and notions on Petri nets, see, for
example, [14].

Definition 1. An agent is a tuple A = (PA ∪ VA, TA, FA, φA), where (PA ∪
VA, TA, FA) is a, possibly empty, finite Petri net in which :

• PA is the set of local places and VA is the set of virtual places, (or communi-
cation places), with PA ∩ VA = ∅;

• TA is the set of transitions;
• the function FA : ((VA ∪ PA)× TA)∪ (TA × (VA ∪ PA)) −→ N defines the flow,

assigning a weight to each arc identified by the pair of elements x, y such that:
FA(x, y) > 0, in such a way that : ∀t ∈ TA,

∑
p∈•t FA(p, t) =

∑
p∈t• FA(t, p),

where p ∈ •t iff FA(p, t) > 0 and p ∈ t• iff FA(t, p) > 0;

and the function φA : (VA ∪ PA)× TA × (VA ∪ PA) −→ N defines the paths , i.e.:
the triples (p, t, q) such that: φA(p, t, q) > 0, by assigning a weight to them in such
a way that:

∀p ∈ •t, FA(p, t) =
∑

q∈t• φA(p, t, q)
∀q ∈ t•, FA(t, q) =

∑
p∈•t φA(p, t, q)
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In the following (p, t, q) ∈ φA iff φA(p, t, q) > 0, moreover, given a subset of
agents X ⊆ N , we use the following notation: PX =

⋃
A∈X PA, VX =

⋃
A∈X VA,

TX =
⋃

A∈X TA, φX =
⋃

A∈X φA.
A hypernet is defined by a set of agents and by a relation ∆. Agents have

disjoint sets of places. A transition may belong to different agents, modeling syn-
chronous interaction among them. Transitions connected to virtual places model
interchanges of tokens among sub-/super-agents. Said output paths the path end-
ing with a virtual place and input paths the ones starting with a virtual place, the
relation ∆ identifies communication channels by defining, for a given transition
belonging to different agents, a correspondence (output path - input path) in a
way compatible with path weights.

Definition 2. Let N = {A1, A2, . . . , An} be a family of agents, and let So =
{(p, t, v) ∈ φA|A ∈ N and v ∈ VA} and Si = {(v, t, q) ∈ φA|A ∈ N and v ∈ VA}
be the sets of output paths and input paths, respectively. (Note that a path can
be both an output and an input path.)

A hypernet is a pair H = (N ,∆), where

• The agents in N have disjoint sets of places:

∀Ai, Aj ∈ N , (PAi ∪ VAi) ∩ (PAj ∪ VAj ) = ∅;
• and ∆ ⊆ So × Si is a relation which associates, for a given transition, output

paths to input paths with the same weight and belonging to different agents,
i.e.:
∀t ∈ TN , ∀(p, t, q) ∈ φAi and ∀(p′, t, q′) ∈ φAj such that Ai, Aj ∈ N :
((p, t, q), (p′, t, q′)) ∈ ∆ ⇒ Ai 6= Aj and φAi

(p, t, q) = φAj
(p′, t, q′).

Definition 3. Let N = {A1, A2, . . . , An} be a family of agents. A map M :
{A2, . . . , An} −→ PN , assigning to each agent different from A1 the local place in
which is located, is a hypermarking of N iff, considering the relation ↑M⊆ N ×N
defined by : Ai ↑M Aj ⇔ M(Ai) ∈ PAj

, then the graph 〈N , ↑M〉 is a tree with
root A1.

Definition 4. A marked hypernet is a pair (H,M) where H is a hypernet and
M is a hypermarking defining the initial configuration.

In a configuration the system results hierarchically structured. The highest
level agent A1, the root of the tree describing the hierarchy, plays the role of the
environment containing all the other agents. The relation of containment between
agents, and then the hierarchical structure, can change as an effect of firing tran-
sitions as formalized in the following subsection.

3.2 Behaviour of hypernets

Let H = (N ,∆), with N = {A1, A2, . . . , An}, be a hypernet.
A consortium is a set of interconnected active agents, cooperating in performing

a transition t, moving other passive agents along the paths containing t.
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Definition 5. A consortium is a tuple Γ = (t, τ, δ, γ) where:

• t ∈ TN is the name of the consortium,
• τ ⊆ {A ∈ N|t ∈ TA}, τ 6= ∅, is the non empty set of active agents. To this set

we can associate φτt
= {(p, t, q) ∈ φτ | p, q ∈ Pτ ∪ Vτ}, the set of paths of the

agents τ containing the transition t.
• δ defines a bijective correspondence between output paths containing t and input

paths containing t of active agents, without contradicting the relation ∆. Let
φo,τt = φτt ∩ So and φi,τt = φτt ∩ Si. If φo,τt 6= ∅, δ : φo,τt −→ φi,τt is a
bijection such that: ∀s ∈ φo,τt

, δ(s) = s′ ⇒ (s, s′) ∈ ∆, while if φo,τt
= ∅, then

δ is the empty map. Note that δ relates paths belonging to different agents.
• The passive agents which are moved when the consortium occurs are selected

through the map γ. Let C ⊆ N\A1 be a chosen set of passive agents , then
γ : C −→ φτt\Si is surjective and associates as many passive agents to each
path containing t and belonging to an active agent as the weight of the path
itself, i.e.: ∀s ∈ φτt

\Si, |γ−1(s)| = φN (s). Note that an agent can be active
and passive at the same time.

Moreover the following conditions must be satisfied:

• the set of active agents τ is a minimal one, in the sense that the agents in τ
must be each other interconnected through the interaction t, i.e.:
the undirected graph G1 = (τ, E1) is connected,
where E1 = {(Ai, Aj) | Ai, Aj ∈ τ and ∃ si ∈ φAi , ∃ sj ∈ φAj : δ(si) = sj}
and

• the undirected graph G2 = (τ ∪ C, E2) is acyclic,
where E2 connects Ai to Aj if Ai will be put inside Aj through t, i.e.: considered
the recursively defined map δ∗ : φτt −→ φτt such that

δ∗(s) =
{

s if s /∈ φo,τt

δ∗(δ(s)) otherwise

E2 = {(Ai, Aj)|δ∗(γ(Ai)) ∈ φAj , Ai ∈ C, Aj ∈ τ}.

The intuition behind the last condition of the previous definition is the follow-
ing. By subsequent applications of the map δ it is possible to construct chains of
paths interrelated through paths with only virtual places. However, the meaningful
chains are the one which starts with a path with a real input place, the one from
which an agent will be taken out, and ends with a path with a real output place,
the one in which the agent will be put into. The last condition requires that these
chains are not closed.

In [2] it is proven that chains containing a real place can be prolonged to finite
chains containing at most two real places, one in an input path and one in an
output path.
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Definition 6. Let H = (N ,∆) be a generalized hypernet and M be a hypermark-
ing.

A consortium Γ = (t, τ, δ, γ) is enabled in M , denoted M[Γ 〉, iff the following
two conditions hold

• ∀A ∈ C, γ(A) = (p, t, q) ⇒M(A) = p
• ∀Ai, Aj ∈ τ , ∀s ∈ So ∩ φAi

, δ(s) ∈ φAj
⇒ Ai ↑M Aj ∨Aj ↑M Ai

If M[Γ 〉, then the occurrence of Γ leads to the new hypermarking M′, denoted
M[Γ 〉M′, such that ∀A ∈ N :

M′(A) =
{M(A) if A /∈ C;

q if A ∈ C and δ∗(γ(A)) = (p, t, q).

It is possible to prove [2] that M′ is a hypermarking, i.e.: that the class of
hypermarkings of a hypernet is closed under the occurrence of a consortium.

Two consortia Γ1 = (t1, τ1, δ1, γ1) and Γ2 = (t2, τ2, δ2, γ2) are independent iff
the maps γ1 and γ2 select two different sets of passive agents, i.e.: iff C1 ∩C2 = ∅

If two independent consortia are both enabled in a hypermarking M then they
can concurrently occur in M.

Let ΓH be the set of possible consortia in H. A set of consortia U ⊆ ΓH is a
step enabled in a hypermarking M, denoted M[U〉 , iff

• ∀Γi, Γj ∈ U , Γi and Γj are independent,
• ∀Γi ∈ U , M[Γi〉

If M[U〉, then the occurrence of the step U leads to the new hypermarking
M′, denoted M[U〉M′, such that ∀A ∈ N :

M′(A) =
{M(A) if ∀Γi ∈ U , A /∈ Ci;

q if ∃Γi ∈ U : (A ∈ Ci and δ∗i (γi(A)) = (p, ti, q)).

U is a maximal step enabled in M, and its occurrence yields M′, iff M[U〉M′

and ∀U ′ ⊃ U : not(M[U ′〉).
In [2] it is shown how it is possible to associate to each hypernet a 1-safe net

in such a way that there is a strict correspondence between their behaviors, i.e.,
in terms of Petri net theory, in such a way that the case graph of the 1-safe net is
isomorphic to the transition system generated by the reachable hypermarkings of
the hypernet.

Since 1-safe nets are a basic class model in Petri net theory, this translation
shows that hypernets are well rooted inside the theory of Petri nets.

3.3 Example

The Fig. 2 shows the structure of two hypernet’s agents. The unfilled circles are
local places while the filled ones are virtual places. The agent Aj is nested in the
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agent Ai, in fact M(Aj) = ai
j , so Aj ↑M Ai. Moreover we assume u1, u2, u3, u4 to

be unstructured agents such thatM(u1) = M(u2) = M(u3) = bi andM(u4) = ai.
Now consider the consortium Γ = (r3, τ, δ, γ) where

• the set of active agents is τ = {Ai, Aj},
• the bijection δ builds two communication channels between Ai and Aj gluing

two pair of paths: δ(ai, r3, ā
i) = (āj , r3, a

j) and δ(bi, r3, b̄
i) = (b̄j , r3, b

j),
• the set of passive agents is C = {u1, u2, u4} and γ(u1) = γ(u2) = (bi, r3, b̄

i)
and γ(u4) = (ai, r3, ā

i).

The consortium Γ is valid and enabled in the initial hypermarking. When Γ occurs
the system reaches a new hypermarking M′ where M′(u1) = M′(u2) = bj and
M′(u4) = aj . Note that the agents u1, u2, u4 pass through the communication
channels established by δ from the agent Ai to the agent Aj .

4 Membrane Systems as Hypernets

Our goal in this section is to show how a P system with symport/antiport rules
and with an impermeable external membrane can be modeled as a hypernet.

In the following, we write i / j to mean that membrane i is directly contained
in membrane j.

Let Π = (O, µ, w1, . . . , wm, R1, . . . , Rm) be a P system of degree m, with sym-
port/antiport rules. We assume that 1 is the outer membrane, with no rules, so
that R1 = ∅.

The hypernet associated to Π will be denoted by H = (N ,∆). The hypernet H
contains one agent for each membrane, and one agent for each individual molecule
in Π. Notice that, in the P-systems we handle, molecules are neither created nor
deleted.

Let W =
∑m

i=1 wi. W is a multiset giving the total number of objects for each
type in the system. Define

MOL = {(x, i)|x ∈ O ∧ 1 ≤ i ≤ W (x)}
For each (x, i) in MOL, we define an unstructured agent in the hypernet H.

N = {A1, A2, . . . , Am} ∪MOL

Agent Ai corresponds to membrane i of the P system. It has one place for each
membrane directly contained in i, and one for each type of molecule; moreover, it
has one virtual place for each type of molecule, to be used in exchanging tokens.

Pi = {ai
j |j / i} ∪ {xi|x ∈ O}

Vi = {x̄i|x ∈ O}
The set of transitions of agent Ai has one transition for each rule in membrane i,
and one for each rule in membranes directly contained in i.
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Ti = {r|r ∈ Ri} ∪ {r|r ∈ Rj ∧ j / i}

We now turn to define the flow function and the paths for agent Ai.

• For each rule r = (u, in) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (x̄i, r) = F (r, xi) = φ((x̄i, r, xi)) = u(x)

• For each rule r = (v, out) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄i)) = v(x)

Let j / i. Then,

• For each rule r = (u, in) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄
i)) = u(x)

• For each rule r = (v, out) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (x̄i, r) = F (r, xi) = φi((x̄i, r, xi)) = v(x)

Define now the ∆ relation. For all i, j such that i / j:

∀r = (u, in) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)
∀r = (u, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xi, r, x̄i)∆(x̄j , r, xj)

∀r = (u, in; v, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)
∀r = (u, in; v, out) ∈ Ri,∀x ∈ O : v(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)

The initial hypermarking M reflects the initial configuration of Π. Membrane
agents are placed according to the hierarchical structure of Π:

∀i ∈ {2, . . . ,m} : M(Ai) = aj
i iff i / j

All agents (x, k) corresponding to molecules are initially distributed in the corre-
sponding places xi in membrane agents so that a place xi contains wi(x) unstruc-
tured agents of type (x, k).

In order to state the exact relation between the dynamics of a P system Π and
the dynamics of the corresponding hypernet H, we need to define two relations.
The first defines a correspondence between configurations of Π and hypermarkings
of H. The other defines a correspondence between steps of Π and maximal steps
of H. Define

Conf = {(v1, . . . , vm)|
m∑
1

vi =
m∑
1

wi}

as the set of all potential configurations of Π with the same number and type of
molecules as the initial configuration. Define HM as the set of all hypermarkings
of H.
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Let M : {A1, . . . , Am} ∪ MOL → P be an element of HM, where P is the
set of all local places of H, and C = (v1, . . . vm) ∈ Conf , where vi : O → N.
We also need some auxiliary definition. By I(x, i,M) we denote the set of agents
representing molecules of type x hosted in the corresponding place of agent Ai in
M.

I(x, i,M) = {(x, i)|(x, i) ∈ MOL ∧M((x, i)) = xi}
Definition 7. The hypermarking M simulates configuration C (denoted by M∼
C) iff

1. M(Ai) ∈ Pj iff i / j, for i ∈ {2, . . . ,m}
2. |I(x, i,M)| = vi(x)

Notice that ∼ is a partial surjective function: each configuration of Π has at
least one corresponding hypermarking. The hypermarkings corresponding to one
given configuration differ only for the distribution of molecules of the same kind
in membrane agents. These molecules are identical in the P system, while their
corresponding agents are distinguished.

We now define a correspondence between maximal steps in the P system and
maximal steps of consortia in the hypernet. This correspondence is based on an-
other one, associating single rules and consortia.

Let r be a rule of membrane i in Π. By construction, the associated hypernet
has two transitions labeled by r, one in the agent corresponding to i, and one in the
agent corresponding to the membrane containing i; assume it is j. A consortium
simulating the execution of r involves i and j as active agents, and a number of
passive agents taken from MOL.

We consider here an antiport rule r = (u, in; v, out), where u and v are multiset
on O. Symport rules can be seen as special cases where either u or v is the empty
multiset.

Definition 8. Let Γ = (r, τ, δ, γ) be a consortium. Then Γ ∼ r iff the following
conditions hold.

1. τ = {Ai, Aj}
2. The output paths involved in Γ are either of the form (yi, r, ȳi) if v(y) > 0, or

of the form (xj , r, x̄j) if u(x) > 0.
3. The function δ is defined by

δ((yi, r, ȳi)) = (ȳj , r, yj)

δ((xj , r, x̄j)) = (x̄i, r, xi)

4. Let Z = {z ∈ MOL|z = (x, k)∧ γ(z) = (xj , r, x̄j)}; then |Z| = u(x)
5. Let Z = {z ∈ MOL|z = (y, k)∧ γ(z) = (yi, r, ȳi)}; then |Z| = v(y)

A transition in a P system is a multiset of independently executable rules. Let
R =

⋃m
i=1 Ri be the set of all rules of Π, and ρ : R → N be a multiset of rules.

A set U of consortia in H simulates ρ (denoted by U ∼ ρ) if, for each r ∈ R,
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U contains ρ(r) consortia which simulate r, and the consortia in U are pairwise
independent.

We are now ready to state the main result of this section. The following lemma
states that any change of configuration in Π can be simulated by a set of mutually
independent consortia in H. Let Π be a P-system with symport and antiport rules,
such that 1 is the outer membrane with R1 = ∅, and H = (N ,∆) be the associated
hypernet, with initial hypermarking M.

Lemma 1. Let C be a configuration of Π, and ρ be a multiset of rules, enabled at
C, with C

ρ⇒ C ′. Then, for all M∈ HM,

M∼ C ⇒ ∃U ⊆ ΓH : U ∼ ρ, M[U〉M′, M′ ∼ C ′

Notice that the consortia forming U can always be chosen to be pairwise indepen-
dent. From this lemma, one can prove, by induction from the initial configuration,
that the evolution of the P system can be simulated by the hypernet.

4.1 Example

Fig. 2, already discussed above (Section 3) as a generic hypernet, shows the frag-
ment of the hypernet corresponding to the P system of Fig. 1. The two membranes
i and j are modeled by the agents Ai (Fig. 2(a)) and Aj (Fig. 2(b)). The local
place ai

j ∈ Pi, which contains (as token) the agent Aj , reflects the fact that the
membrane j is nested inside i, while the local places ai, bi represent the presence
of molecules a and b respectively, inside the agent Ai (this is also true for aj , bj

and the membrane j). Then {r1, r2, r3, r4} ⊆ TN are transitions built from the
evolution rules of the membrane system. The initial hypermarking matches the
initial configuration of the P system.

5 Conclusions

In this paper we have considered P systems with symport/antiport rules and we
have shown how they can be modeled by a class of hierarchical Petri net systems,
a generalization of hypernets [1].

The hierarchical structure of the P system is reflected by the agents’s hierarchy
of the hypernet, where molecules are modeled by unstructured agents (hence empty
nets or simple tokens) and membranes by agents, nets which may contain in their
places unstructured agents or other agents.

The exchange of molecules through a membrane of a P system, as defined
by a symport or an antiport rule, corresponds to a consortium involving two ac-
tive agents, that represent the two nested membranes which exchange each other
passive unstructured tokens (molecules).

The main result, as given in Section 4, states a correspondence between reach-
able configurations of the P system and reachable hypermarkings of the related
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hypernet. If the P system can evolves from a configuration to another one as the
result of the application of a multi-rules vector, then in the hypernet exists an as-
sociated set of consortia transforming a hypermarking, corresponding to the first
configuration, and another corresponding to the second one.

A translation, that takes a hypernet and returns a 1-safe Petri net (one of
the basic models in Petri net theory) such that the case graphs of the latter is
isomorphic to the transition system generated by the execution of consortia of the
former, has been shown in [2]. This transformation proves that hypernets are well
rooted in net theory. In [9] a definition of non sequential processes for hypernets
was given. This can be used to derive an alternative semantics for P systems based
on a purely causal dependency notion.

In the literature other works have investigated the relation between P system
and Petri nets [6], [13], [5]. It is a matter of future work a deeper comparison with
these approaches and with other computational models, inspired by biological
membranes and derived from calculi of concurrency and mobility, as for example
those proposed by Cardelli [3].

Hypernets allow movement of structured agents from one level to another one,
so that the hierarchy of agents may change. In terms of P systems, this means
to consider movements of membrane agents. This capability is not exploited here,
however it would be interesting in future to study the modeling of P systems with
active membranes [12].
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Francisco José Romero-Campero3, Neil Walkinshaw2

1 Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

2 Department of Computer Science
The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
m.gheorghe@dcs.shef.ac.uk, n.walkinshaw@dcs.shef.ac.uk

3 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
fran@us.es

Summary. This paper investigates a hybrid approach to modelling molecular interac-
tions in biology. Some computer science models are presented, namely, P systems, π-
calculus and Petri nets, and two tools, Daikon, used initially in reverse-engineering, and
PRISM, a probabilistic model checker. All these approaches are investigated for their
complementary role in modelling which is illustrated through a simple case study.

1 Introduction

In the last decade there has been a great interest in using theoretical computer
science models in biology, based on different paradigms (process algebras, cellular
automata, Lindenmayer systems, Petri nets, Boolean functions, P systems, etc.)
with the aim of providing an understandable, extensible and computable mod-
elling framework while keeping the needed formalisation to perform mathematical
analysis. Every such model covers certain aspects of a system and combining two or
more leads to obtaining a better and more powerful modelling approach. In order
to include quantitative and qualitative aspects, there have been suggested various
variants of certain models with new features like: Petri nets [10, 22], stochastic
π-calculus [28] and stochastic P systems [19].

In this paper we investigate the concerted use of different methods that will
reveal a new vision on modelling biological systems by combining different comple-
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mentary approaches. This is quite different from the hybrid approach discussed by
[1] where it is shown how to switch between deterministic and stochastic behaviour.

Section 2 introduces the three modelling approaches used in the paper: P sys-
tems, pi-calculus and Petri nets, as well as Daikon tool and a simple example
involving a regulatory network that will be modelled within each approach. Sec-
tion 3 presents Daikon’s findings and the analysis of the invariants provided. The
following two sections show how PRISM and a Petri net tool are used in order
to confirm some of the properties suggested by Daikon analysis. The final section
summarises our findings.

2 Modelling Paradigms

In this section we will present three modelling approaches, namely P systems, π-
calculus, Petri nets. A simple case study will be used to illustrate the approach.
This example will be written directly into the three modelling paradigms men-
tioned above, P systems, π-calculus and Petri nets and will be executed with a
simulator dedicated to P systems. In this way we will show how the same problem
is modelled with different paradigms and consequently will be able to point out
to specific characteristics of these approaches that are used for the same purpose.
A system of differential equations will be also associated to this example and the
results obtained will be compared to the stochastic behaviour exhibited by the P
system simulator. In the next three sections we will be using a tool called Daikon
to reveal certain properties of our models as they appear through data sets gen-
erated by simulators, and two tools, namely PRISM and PIPE, that are used to
analyse and verify properties identified by Daikon.

The aim of this investigation is not to study the relationships between the
results produced by using differential equations and those generated by P systems.
This has been already considered for a special class of P systems working in a
deterministic manner according to a metabolic algorithm [7]. In this study we
will be using differential equations only as a substitute for real data in order to
illustrate our approach that allows us to ”guess” certain properties of the model
and then to verify whether they hold or not as general properties or just only
happens to be true for the instances generated by simulation.

Nowadays ordinary differential equations (ODE) constitute the most widely
used approach in modelling molecular interaction networks in cell systems. They
have been used successfully to model kinetics of conventional macroscopic chem-
ical reactions. Nevertheless the realisation of a reaction network as a system of
ODEs is based on two assumptions. First, cells are assumed to be well stirred
and homogeneous volumes so that concentrations do not change with respect to
space. Whether or not this is a good approximation depends on the time and
space scales involved. In bacteria it has been shown that molecular diffusion is
sufficiently fast to mix proteins. This is not the case in eukaryotic cells where the
volume is considerably bigger and it is structured in different compartments like
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nucleus, mitochondria, golgi body, etc. The second basic assumption is that chem-
ical concentrations vary continuously over time. This assumption is valid if the
number of molecules of each species in the reaction volume (the cell or the subcel-
lular compartment) are sufficiently large and the reactions are fast. A sufficiently
large number of molecules is considered to be at least thousands of molecules; for
hundreds or fewer molecules the continuous approach is questionable.

Writing and solving numerically a system of ODE describing a chemical reac-
tion network can be largely automated. Each species is assigned a single variable
X(t) which represents the concentration of the species at time t. Then, for each
molecular species, a differential equation is written to describe its concentration
change over time due to interactions with other species in the system. The rate of
each reaction is represented using a kinetic rate law, which commonly depends on
one or more rate constants. Exponential decay law, mass action law and Michaelis-
Menten dynamic are the most widely used kinetic mechanisms. Finally in order to
solve the system of ODEs we must impose a set of initial condition representing
the initial concentration of the species.

Due to the limitations of ODEs to handle cellular systems with low number of
molecules and spatial heterogeneity, some computational approaches have recently
been proposed. In what follows we disccuss three different approaches, P systems,
π-calculus and Petri nets.

2.1 P systems

Membrane computing is an emergent branch of natural computing introduced by
Gh. Păun in [18]. The models defined in this context are called P systems. In the
sequel we will use membrane computing and P systems with the same meaning.
Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects and strings which evolve
according to given rules. Recently P systems have been used to model biologi-
cal phenomena within the framework of computational systems biology presenting
models of oscillatory systems [6], signal transduction [19], gene regulation control
[20], quorum sensing [27] and metapopulations [21]. In this respect, P systems
present a formal framework for the specification and simulation of cellular sys-
tems which integrates structural and dynamic aspects in a comprehensive and
relevant way while providing the required formalisation to perform mathematical
and computational analysis.

In the original approach of P systems the rules are applied in a maximally par-
allel way. This produces two inaccuracies: the reactions represented by the rules
do not take place at the correct rate, and all time steps are equal and do not rep-
resent the time evolution of the real system. In order to solve these two problems
stochastic P systems were introduced in [19].

Definition 1. A stochastic P system is a construct
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Π = (O, L, µ,M1,M2, . . . , Mn, R1, . . . , Rn)

where:

• O is a finite alphabet of symbols representing objects;
• L is a finite alphabet of symbols representing labels for the compartments;
• µ is a membrane structure containing n ≥ 1 membranes labelled with elements

from L;
• Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of membrane

i with li ∈ L, the label of this membrane, wi ∈ O∗ a finite multiset of objects
and si a finite set of strings over O;

• Ri, for each 1 ≤ i ≤ n, is a finite set of rewriting rules associated with mem-
brane i, of one of the following two forms:
• Multiset rewriting rules:

obj1 [ obj2 ]l
k−→ obj′1 [ obj′2 ]l (1)

with obj1, obj2, obj
′
1, obj

′
2 ∈ O∗ some finite multisets of objects and l a label

from L. A multiset of objects, obj is represented as obj = o1 + o2 + · · · + om

with o1, . . . , om ∈ O.
These rules are multiset rewriting rules that operate on both sides of mem-
branes, that is, a multiset obj1 placed outside a membrane labelled by l and a
multiset obj2 placed inside the same membrane can be simultaneously replaced
with a multiset obj′1 and a multiset obj′2, respectively.
• String rewriting rules:

[ obj1 + str1; . . . ; objp + strp ]l
k−→

[ obj′1 + str′1,1 + . . . str
′
1,i1 ; . . . ; obj

′
p + str′p,1 + . . . str′p,ip

]l (2)

A string str is represented as follows str = 〈s1.s2. · · · .si〉 where s1, . . . , si ∈ O.
In this case each multiset of objects objj and string strj, 1 ≤ j ≤ p, are replaced
by a multiset of objects obj′j and strings str′j,1 . . . str′j,ij

.
The stochastic constant k is used to compute the propensity of the rule by
multiplying it by the number of distinct possible combinations of the objects
and substrings present on the left-side of the rule with respect to the current
contents of membranes involved in the rule. The propensity associated with each
rule is used to compute the probability and time needed to apply it.

Cellular systems consisting of molecular interactions taking place in different
locations of living cells are specified using stochastic P systems as follows. Different
regions and compartments are specified using membranes. Each molecular species
is represented by an object in the multiset associated with the region or compart-
ment where the molecule is located. The multiplicity of each object represents the
number of molecules of the molecular species represented by the object. Strings
are used to specify the genetic information encoded in DNA and RNA. Molecular
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interactions, compartment translocation and gene expression are specified using
rewriting rules on multisets of objects and strings - see Table 1.

In stochastic P systems [19] constants are associated with rules in order to
compute their probabilities and time needed to be applied according to Gillespie
algorithm. This approach is based on a Monte Carlo algorithm for stochastic simu-
lation of molecular interactions taking place inside a single volume [8]. In contrast
to this, in P systems we have a membrane structure delimiting different compart-
ments (volumes), each one with its own set of rules (molecular interactions) and
multiset of objects and strings (molecules). In this respect, a scheduling algorithm
called the Multicompartmental Gillespie algorithm [19] is used so that each com-
partment evolves according to a different Gillespie algorithm. In this point our
approach differs from other computational approaches which run a single Gillespie
algorithm across the whole system without taking into account the compartmen-
talised cellular structure [10, 28].

Biochemistry P System

Compartment Region defined by a membrane

Molecule Object

Molecular Population Multiset of objects

Biochemical Transformation Rewriting rule

Compartment Translocation Boundary rule

Table 1. Modelling Principles in P Systems

We illustrate our approach with a biomolecular system consisting in positive,
negative and constitutive expression of a gene. Our model includes the specifi-
cation of a gene, its transcribed RNA, the corresponding translated protein and
activator and repressor molecules which bind to the gene producing an increase
in transcription rate or prevent the gene from being transcribed, respectively. The
bacterium where the system is located is represented using a membrane. The sto-
chastic constants used in our model are taken from the gene control system in the
lac operon in E. coli [2, 13, 14]. In this case transcription and translation have been
represented using rewriting rules on multisets of objects, a more detailed descrip-
tion of the concurrent processes of transcription and translation using rewriting
rules on strings is presented in [20]. The P systems model is formally defined in
Figure 1. It consists of one single compartment labelled b, with no strings, and con-
sequently using only multiset rewriting rules. The model refers to three distinct
initial conditions, denoted by multisets M0,i, and corresponding to constitutive
expression, positive and negative regulations, respectively. Simulations of consti-
tutive expression and positive regulation case studies are presented in Figure 2
using a tool available at [30]. A set of ordinary differential equations and their
associated graphs, modelling the same examples, are provided in Figure 3. The
ODE model is not used here to show its relationship to the previous P systems
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approach, but to provide a set of data that normally is taken through biological
experiments. This will only be used to provide data measurements that will help
identifying and validating properties of the P systems model.

Π = ({gene, rna, protein, act, rep, act-gene, rep-gene}, {b}, [ ]b, (b, Mi, ∅),
{r1, . . . , r9})

Initial multisets: M0,1 = gene; M0,2 = gene + act... + act and
M0,3 = gene + rep... + rep where act and rep occur 10 times each.
Rules:

r1 : [ gene ]b
c1−→ [ gene + rna ]b c1 = 0.347 min−1

r2 : [ rna ]b
c2−→ [ rna + protein ]b c2 = 0.174 min−1

r3 : [ rna ]b
c3−→ [ ]b c3 = 0.347 min−1

r4 : [ protein ]b
c4−→ [ ]b c4 = 0.0116 min−1

r5 : [ act + gene ]b
c5−→ [ act-gene ]b c5 = 6.6412087 molec−1min−1

r6 : [ act-gene ]b
c6−→ [ act + gene ]b c6 = 0.6 s−1

r7 : [ act-gene ]b
c7−→ [ act-gene + rna ]b c7 = 3.47 min−1

r8 : [ rep + gene ]b
c8−→ [ rep-gene ]b c8 = 6.6412087 molec−1min−1

r9 : [ rep-gene ]b
c9−→ [ rep + gene ]b c9 = 0.6 min−1

Fig. 1. P system model of gene expression.
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Fig. 2. Constitutive expression and positive regulation.

2.2 π-calculus

The π-calculus approach was introduced as a formal language to describe mobile
concurrent processes [17]. It is now a widely accepted model for interacting sys-
tems with dynamically evolving communication topology. The π-calculus has a
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dr

dt
= c1 − c3r + c7

act

act + K
where K is the Michaelis-Menten constant

dp

dt
= c2r − c4p
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Fig. 3. Constitutive and positive expression using ODE model.

simple semantics and a tractable algebraic theory. Starting with atomic actions
and simpler processes, complex processes can be then constructed. The process
expressions are defined by guarded processes, parallel composition P |Q, nondeter-
ministic choice P + Q, replication !P , and a restriction operator (νx)P creating a
local fresh channel x for a process P . Different variants have been used to model
molecular interactions [28]. A π-calculus specification of our system is provided by
Figure 4. As usual for this type of modelling approach, each chemical element will
be represented as a process and its definition will refer to all possible interactions
of it. The initial process may be any of S0,i. The process called gene defines all
possible interactions of a constitutive reaction, producing messenger RNA, a posi-
tive regulation, leading to a complex denoted by act-gene, or negative regulation,
that gets the complex rep-gene. This process definition corresponds in a P sys-
tems model to rules r1, r5 and r8. In this way we can see, at least syntactically,
similarities and differences between the two modelling approaches for expressing
chemical interactions. More about the use of both P systems and π-calculus to
model chemical interactions is provided by [26].

Biochemistry π-calculus

Compartment Private communication channel

Molecule Process

Molecular Population Systems of communicating processes

Biochemical Transformation Communication channel

Compartment Translocation Extrusion of a private channel’s scope

Table 2. Modelling Principles in π-calculus
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Initial processes: S0,1 = gene; S0,2 = gene | act | . . . | act and
S0,3 = gene | rep | . . . | rep
Processes:
gene := τc1 .( gene | rna ) + ac5?.act-gene + rc8?.rep-gene
rna := τc2 .( rna | protein ) + τc3 .0
protein := τc4 .0
act := ac5 !.0
act-gene := τc6 .( act | gene ) + τc7 .( act-gene | rna )
rep := rc8 !.0
rep-gene := τc9 .( rep | gene )

Fig. 4. π-calculus model of gene expression.

2.3 Petri nets

Petri nets are a mathematical and computational tool for modelling and analysis
of discrete event systems typically with a concurrent behaviour. Petri nets offer
a formal way to represent the structure of a discrete event system, simulate its
behaviour, and prove certain properties of the system. Petri nets have applications
in many fields of system engineering and computer science. Here we only recall
some basic concepts of Petri nets and refer to the current literature [9, 23, 24, 25]
for details regarding the theory and applications of Petri nets. In particular, we
focus only on a specific class of Petri nets called place-transition nets or PT-nets,
for short.

Informally, a PT-net is a directed graph formed by two kinds of nodes called
places and transitions respectively. Directed edges, called arcs, connect places to
transitions, and transitions to places; each arc has associated a weight. Thus, for
each transition, one identifies a set of input places, the places which have at least
one arc directed to that transition, and a set of output places, the places which
the outgoing arcs of that transitions are directed to. Then, a non-negative integer
number of tokens is assigned to each place; these numbers of tokens define the state
of the PT-net also called the marking of the PT-net. In a PT-net, a transition is
enabled when the number of tokens in each input place is greater than or equal to
the weight of the arc connecting that place to the transition. An enabled transition
can fire by consuming tokens from its input places and producing tokens in its
output places; the number of tokens produced and consumed are determined by
the weights of the arcs involved. The firing of a transition can be understood as
the movement of tokens from some input places to some output places.

More precisely, we give the following definition.

Definition 2. A PT-net is a construct N = (P, T, W,M0) where: P is a finite set
of places, T is a finite set of transitions, with P∩T = ∅, W : (P×T )∪(T×P ) → N
is the weight function, M0 is a multiset over P called the initial marking, and L
is a location mapping.
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PT-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares, and an arc (x, y) is added between x and y if
W (x, y) ≥ 1. These arcs are then annotated with their weight if this is 2 or more.

Given a PT-net N , the pre- and post-multiset of a transition t are respectively
the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P , |p|preN (t) =
W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is called a marking,
is any multiset over P ; in particular, for every p ∈ P , |p|M represents the number
of tokens present inside place p. A transition t is enabled at a marking M if the
multiset preN (t) is contained in the multiset M . An enabled transition t at marking
M can fire and produce a new marking M ′ such that M ′ = M−preN (t)+postN (t)
(i.e., for every place p ∈ P , the firing transition t consumes |p|preN (t) tokens and
produces |p|postN (t) tokens).

In order to reason about some basic properties, it is convenient to introduce a
matrix-based representation for PT-nets. Specifically, let N = (P, T, W,M0) be a
PT-net and let π : P → |P | and τ : T → |T | be two bijective functions. We call
place j the place p with π(p) = j, and we call transition i the transition t with
τ(t) = i. Then, a marking M is represented as a |P | vector which contains in each
position j the number of tokens currently present inside place j. The incidence
matrix of N is the |T | × |P | matrix A such that, for every element aij of A,
aij = |π−1(j)|postN (τ−1(i))| − |π−1(j)|preN (τ−1(i))| (i.e., aij denotes the change in
the number of tokens in place j due to the firing of transition i). A control vector
u is a |T | vector containing 1 in position i to denote the firing of transition i, 0
otherwise. Thus, if a particular marking Mn is reached from the initial marking
M0 through a firing sequence u1, u2, . . . , un of enabled transitions, we obtain

Mn = M0 + AT ·
n∑

k=1

uk

which represents the reachable-marking equation.
The aforementioned representation of a PT-net N allows us to introduce the

notions of P-invariants and T-invariants. P-invariants are the positive solutions
of the equation A · y = 0; the non-zero entries of a solution y represents the set
of places whose total number of tokens does not change with any firing sequence
from M0. T-invariants instead are the positive solutions of the equation AT ·x = 0;
a solution vector x represents the set of transitions which have to fire from some
marking M to return to the same marking M . Then, a PT-net is said to be bounded
if there exists a |P | vector B such that, for all marking M reachable from M0, we
have M ≤ B; a PT-net is said to be alive if, for all marking M reachable from
M0, there exists at least one transition enabled at marking M .

As pointed out in [10, 22], a PT-net model for a system of molecular interactions
can be obtained by representing each molecular species as a different place and
each biochemical transformation as a different transition. Tokens inside a place
can then be used to indicate the presence of a molecule in certain proportions.
This modelling approach is summarised in Table 3. Thus, a biochemical system is
represented as a discrete event system whose structural properties are useful for
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Biochemistry PT-net

Molecule Place

Molecular Population Marking

Biochemical Transformation Transition

Reactant Input Place

Product Output Place

Table 3. Modelling Principles in PT-nets.

drawing conclusions about the behaviour and structure of the original biochemical
system [22]. For instance, P-invariants determine the set of molecules whose total
net concentrantions remain unchanged during the application of certain biochem-
ical transformations; T-invariants instead indicate the presence of cyclic reactions
which lead to a condition where some reactions are in a state of continuous opera-
tion. Also, the property of liveness is useful to determine the absence of metabolic
blocks which may hinder the progress of the biochemical system.

Finally, we recall that it was shown in [4, 15, 16] how to transform a P system
into a corresponding PT-net. This is done by considering a transition for each
rule in the P system that has the left-hand side of the rule as pre-multiset and
the right-hand side of the rule as post-multiset. In particular, in order to model
the localisation of rules and objects inside the membranes, one considers in the
corresponding PT-net a distinct place for each object possibly present inside a
membrane. Thus, the transformation of objects inside the membranes and the
communication of objects between membranes is mapped into the movement of
tokens between places of a PT-net. This translation is briefly illustrated in Table 4.
Thus, we have a direct way for obtaining a PT-net representation of a given P

P System PT-net

Object a inside membrane i Place ai

Multiplicity of an object Number of tokens inside a place

Rule Transition

Left-hand side of a rule Input places

Right-hand side of a rule Output places

Table 4. Translation of a P system into a PT-net.

system model that offers us the possibility of analysing the P system model in
terms of PT-net properties. We illustrate this approach by showing in Figure 5
the PT-net translation of the P system model of Figure 1.

Clearly, we have that transition ri corresponds to rule ri, 1 ≤ i ≤ 9. For the
PT-net of Figure 5, if we set M0 as intial marking, where M0 contains one token
in the place gene, then we have only consitutive expression; if we set M0 as having
one token in gene and n in act with n ≥ 1, then we have positive regulation; if we
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Fig. 5. PT-net representation of gene positive and negative regulation.

set M0 with one token in gene and m in rep with m ≥ 1, then we have negative
regulation. The incidence matrix for PT-net of Figure 5 is reported in Appendix 1
together with its P-invariants and T-invariants. The relevance of these invariants
with respect to this specifc case study is discussed in Section 5. These are obtained
by using PIPE [29], a freely available Petri net tool. As well as this, PIPE allows us
to check for the properties of boundedness and liveness (i.e, absence of deadlock).

2.4 Daikon tool

Daikon [5] is a tool that was initially developed to reverse-engineer specifications
from software systems. The specifications are in terms of invariants, which are rules
that must hold true at particular points as the program executes. To detect in-
variants the program is executed multiple times and the values of the variables are
recorded at specific points (e.g., the start and end of a program function). Daikon
infers the invariants by attempting to fit sets of predefined rules to the values
of program variables at every recorded program point. Usually the most valuable
invariants are preconditions, postconditions and system invariants. These specify
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the conditions that must hold between variables before a function is executed,
after a function has finished executing, and throughout the program execution
respectively. As a trivial example, a precondition for the function div(a, b) that
divides a by b would be b ≥ 0. Daikon provides about 70 predefined invariants [5],
such as x > y, a < x < b, y = ax + b, and can also be extended to check for new
user-supplied invariants.

The idea of using a set of executions to infer rules that govern system behaviour,
as espoused by Daikon, is particularly useful in the context of biological models.
The ability to automatically infer invariants from model simulations is useful for
the following reasons: (1) obvious invariants will confirm that the model is behaving
as it should, (2) anomalous invariants can indicate a fault in the model and its
parameter values or (3) could even suggest novel, latent relationships between
model variables.

3 Finding functional relationships in raw (wet real) data:
Data analysis using Daikon

This section demonstrates the use of Daikon to discover relationships between vari-
ables in the output from P system simulations of the gene regulation model. The
aim is to identify invariants that govern model behaviour for negative, constitutive
and positive gene regulation. Here we select a sample of the generated invariants
and show how they relate to the high-level functionality of the system, and how
they can be of use for further model analysis. Invariants are only useful if they
are representative of a broad range of model behaviour. A single simulation can
usually not be considered to be representative, especially if the model is non-trivial
and contains stochastic behaviour. For this analysis the model was simulated 30
times, ten times for negative, constitutive and positive regulation respectively.

Using Daikon to generate invariants from simulation output is relatively
straightforward. It takes as input two files, one of which declares the types of
invariants that are of interest, along with the set of relevant variables for each
type of invariant. The other file contains the variable values from model simula-
tions, and lists them under their respective declared invariants. In our case the
output is in the form of a linear time series, where variable values are provided
for t = 0...n time points in the simulation. To analyse this with Daikon, the
declaration file contains the three invariant types described above (preconditions,
postconditions and system invariants), along with the key model variables under
each type (gene, act-gene, rep-gene, rna, prot, rep, act). The data trace file maps
any variable values at t = 0 to the preconditions, the relationship between every
pair of variables t and t−1 to the postconditions, and the variable values for every
value of t to the system invariants. To guarantee accurate invariants, the data
trace has to be constructed from a set of simulations that can be deemed to be
sufficiently representative of the system’s behaviour.

Figure 6 contains a sample of the invariants that were discovered. These provide
a number of insights into the behaviour of the system that would be difficult to
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Positive Negative Constitutive

Pre-conditions gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= 0

act = 10

gene = 1
rna = prot

= rep-gene
= act
= act-gene
= 0

rep = 10

gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= act

= 0

Post-condtions (prot = 0) →
(orig(prot) = 0)
(rna = 0) → (gene = 0)
(orig(rna) = 0) → (gene =
0)
gene ≤ rna
(prot = 0) → (gene = 0)

(rna = 0) → (orig(act-

gene = 0)

act = orig(act)
= orig(act-gene)

rna < orig(rep)
rep > orig(prot)

(prot = 0) →
(orig(prot) = 0)
gene = orig(gene)
rep = orig(rep)

Invariants gene = one of {0, 1}
rep = rep-gene

= 0
0 ≤ rna ≤ 24
0 ≤ prot ≤ 205
act = one of {9, 10}
act-gene = one of {0, 1}
(gene ∧ act-gene) = 0

(rna = 0) → (prot = 0)

gene = one of {0, 1}
act = act-gene

= 0
rna = one of {0, 1}
rep = one of {9, 10}
rep-gene =
one of {0, 1}
prot =
one of {0, 1, 2, 3}
(gene ∧ rep-gene) = 0
rna < rep

rep > prot

rep = rep-gene
= act
= act-gene
= 0

gene = 1
0 ≤ rna ≤ 7
0 ≤ prot ≤ 32

rna ≥ rep

Fig. 6. Invariants discovered by Daikon

ascertain from passively observing the simulations. Here we provide an overview
of some of these results.

The preconditions show precisely which model parameters are altered for the
positive, negative and constitutive sets of simulations. For all simulations, gene
starts off as active, and all other variables are zero, apart from the activators
variable act for positive and the repressors variable rep for negative regulation.

The postconditions provide a number of insights into the dynamics of the model
because they summarise the rules that govern the change in variable values for
every single time-step. For positive regulation we learn that the number of proteins
will never decrease back to zero throughout the simulation (protein can only be
zero if it was already zero at the previous value of t), and that the gene must
become active to produce rna, which can only happen when act-gene becomes 1.
For negative regulation it shows that the amount of activators remain constantly
zero. For constitutive regulation, similarly to positive regulation, the number of
proteins can never decrease to zero.

The invariants are rules that hold throughout the entire simulation. These
usually cover the range of values a variable can hold, e.g., gene can either be
on or off for positive or negative regulation, but is constantly on for constitutive
regulation, or the number of proteins is always between zero and 205 for positive
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regulation. It also points out rules that can sometimes be fundamental to the
behaviour of the model. For example, in positive regulation act-gene and gene can
never be on at the same time, which makes sense because act-gene is responsible
for activating the gene when it is not active. The same holds for rep-gene and
gene in negative regulation. In positive regulation it also points out that, without
any rna, there can be no proteins.

These rules provide a number of useful insights into the behaviour of the model,
many of which are expected, but some of which may either be anomalous or might
identify relationships that had not been previously considered. As an example,
the preconditions, which simply summarise the input parameters, are obviously
expected, but in practice identified that a small number of our experimental sim-
ulations had been mistakenly executed with the wrong parameter values (the pre-
condition for positive regulations stated act = one of {9, 10, 19, 20} instead of just
9 and 10). Rules such as rna ≥ rep in constitutive regulation and rep > prot in
positive regulation are obviously statistically justified by the simulations, but had
not been considered explicitly. New rules like these are useful seeds for further
experimentation and analysis, and the following section will show how we have
investigated these novel properties with the PRISM model checker.

4 PRISM analysis of the system

Most research in systems biology focuses on the development of models of differ-
ent biological systems in order to be able to simulate them, accurately enough
such as to be able to reveal new properties that can be difficult or impossible to
discover through direct experiments. One key question is what one can do with
a model, other than just simulate trajectories. This question has been considered
in detail for deterministic models, but less for stochastic models. Stochastic sys-
tems defy conventional intuition and consequently are harder to conceive. The
field is widely open for theoretical advances that help us to reason about systems
in greater detail and with finer precision. An attempt in this direction consists
of using model checking tools to analyse in an automatic way various properties
of the model. Probabilistic model checking is a formal verification technique. It is
based on the construction of a precise mathematical model of a system which is to
be analysed. Properties of this system are then expressed formally using temporal
logic and analysed against the constructed model by a probabilistic model checker.
Our current attempt uses a probabilistic symbolic model checking approach based
on PRISM (Probabilistic and Symbolic Model Checker) [11, 12]. PRISM sup-
ports three different types of probabilistic models, discrete time Markov chains
(DTMC), Markov decision processes (MDP) and continuous time Markov chains
(CTMC). PRISM supports systems specifications through two temporal logics,
PCTL (probabilistic computation tree logic) for DTMC and MDP and CSL (con-
tinuous stochastic logic) for CTMC.

In order to construct and analyse a model with PRISM, it must be specified in
the PRISM language, a simple, high level, state-based language. The fundamental
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components of the PRISM language are modules, variables and commands. A
model is composed of a number of modules which can interact with each other. A
module contains a number of local variables and commands.

The values of these variables at any given time constitute the states of the
module. The space of reachable states is computed using the range of each variable
and its initial value. The global state of the whole model is determined by the local
state of all modules.

The behaviour of each module is described by a set of commands. A command
takes the form:

[ action ] g → λ1 : u1 + · · ·+ λn : un;

The guard g is a predicate over all the variables of the model. Each update ui

describes the new values of the variables in the module specifying a transition of
the module. The expressions λi are used to assign probabilistic information, rates,
to transitions.

The label action placed inside the square brackets are used to synchronise
the application of different commands in different modules. This forces two or
more modules to make transitions simultaneously. The rate of this transition is
equal to the product of the individual rates, since the processes are assumed to be
independent.

The main components of a P system are a membrane structure consisting of a
number of membranes that can interact with each other, an alphabet of objects
and a set of rules associated to each membrane. These components can easily be
mapped into the components of the PRISM language using modules to represent
membranes, variables to describe the alphabet and commands to specify the rules.

A PRISM specification of our system is provided in Appendix 2. Appendix 3
shows the probability that some molecules concentrations will reach certain values
at steady state. The ranges of values provided by Daikon represent an indication
of possible levels for various molecular concentrations, but in order to know the
likely values around steady states, PRISM provides a set of properties that help
in this respect. For example, for positive regulation, Daikon provides the range
0 to 24, for rna molecules, but PRISM shows that values between 0 and 15 are
more likely to be obtained than values greater than 15, and values over 20 are very
unlikely to be reached. These values are also confirmed by the graphs provided by
differential equations and P system simulator.

Other properties, suggested by Daikon analysis, like rna < rep, prot < rep,
are also validated by PRISM by showing they take place with a higher probability
for values of rep less than 5 - see Appendix 4. The average or expected behaviour
of the stochastic system is also provided and this is very close to ODE behaviour.



154 F. Bernardini et al.

5 Petri net analysis of the system

In this section we will show how different invariants will emerge from the analysis
of the Petri net and how Daikon hypotheses are formally verified or new problems
are formulated.

T-invariants in Appendix 1 show that:

• If we fire transition r1 and then transition r3, the current marking of the
newtork remains unchanged because we first produce a molecule of rna and
then we consume it; the same happens if we first fire transition r7 and than
transition r3, or if we first fire transition r2 and then transition r4 (i.e., we
first produce a molecule of protein and then we consume it);

• The operation of binding the activator to the gene and its de-binding are one
the reverse of the other, hence firing transition r5 followed by transition r6 (or
vice versa) has no effect on the current marking; these two transitions consitute
a continuous loop;

• The operation of binding the repressor to the gene and its de-binding are one
the reverse of the other, hence firing transition r8 followed by transition r9 (or
vice versa) has no effect on the current marking; these two transitions consitute
a continuous loop.

P-invariants computed by PIPE, in Appendix 1, for some initial marking with
one element in gene, n in act and m in rep, where n,m ≥ 0 show that:

• the gene is always present and it can assume three different states: gene, act-
gene, and rep-gene; these three states are mutually exclusive; in the case of
constitutive expression (i.e, n = m = 0), we have M(gene) = 1 indicating that
the gene is always present - this confirms Daikon invariant gene = 1; in the
case of positive regulation (i.e., n ≥ 1 and m = 0), we have M(gene) + M(act-
gene) = 1 indicating two mutually exclusive states - this confirms Daikon
invariant gene ∧ act-gene = 0; in the case of negative regulation (i.e., m ≥ 1
and n = 0, we have M(gene) + M(rep-gene) = 1 indicating two mutually
exclusive states - this confirms Daikon invariant gene ∧ rep-gene = 0;

• for positive regulation, the number of activator molecules cannot be increased
but can be decreased only by 1 - similar invariant is found by Daikon;

• for negative regulation, the number of repressor molecules cannot be increased
but can be decreased only by 1 - similar invariant is found by Daikon.

PIPE also shows that the network is not bounded but it is alive. In fact, gene
is always present and we can keep firing transition r1 to increase indefinitely the
amount of rna. The liveness here comes from the above invariant and shows that
the system will be working forever. The boundedness instead produces a result that
apparently contradicts PRISM findings, where the probability that the number of
rna’s is greater than 7 is almost 0! This comes from the fact that PIPE uses a non-
deterministic system instead of a probabilistic one considered by PRISM and P
system simulator. It will be interesting to check this property with a probabilistic
Petri net tool.
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6 Conclusions

In this paper we have investigated the concerted use of different methods, and
shown how these can provide complementary insights into different facets of biolog-
ical system behaviour. Individual modelling techniques have their own respective
benefits and usually excel at reasoning about a system from a particular per-
spective. This paper shows how these benefits can be leveraged by using different
modelling techniques in concert.

As a case study, we have constructed a P system model of a small gene expres-
sion system and produced equivalent specifications using Petri net and π-calculus
approaches. Simulations of the P system model were analysed by Daikon (to iden-
tify potential rules that govern model output), and some of the most interesting
suggested rules were checked using the PRISM probabalistic model checker. The
Petri net model was analysed with PIPE, a general Petri net analysis tool. The
results show how analysis results from different models of the same system are
useful for the purposes of both validating and improving each other.

The gene expression model was chosen because it is manageable, and thus
forms a useful basis for a case study to compare different modelling techniques.
Our future work will apply the techniques shown in this paper to a larger and more
realistic case study. This should provide further insights into the benefits that arise
in modelling increasingly complex systems when the modeller is increasingly reliant
upon the use of various automated tools to study the model behaviour.
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APPENDIX 1

Transpose of the incidence matrix for PT-net of Figure 5:

r1 r2 r4 r3 r5 r7 r6 r8 r9
gene 0 0 0 0 -1 0 1 -1 1
rna 1 0 0 -1 0 1 0 0 0
protein 0 1 -1 0 0 0 0 0 0
act 0 0 0 0 -1 0 1 0 0
act-gene 0 0 0 0 1 0 -1 0 0
rep 0 0 0 0 0 0 0 -1 1
rep-gene 0 0 0 0 0 0 0 1 -1

which shows the variations on the number of tokens determined by each transition.
T-invariants obtained in PIPE:

r1 1 0 0 0 0
r2 0 1 0 0 0
r4 0 1 0 0 0
r3 1 0 0 1 0
r5 0 0 1 0 0
r7 0 0 0 1 0
r6 0 0 1 0 0
r8 0 0 0 0 1
r9 0 0 0 0 1

P-invariants computed by PIPE for some initial marking contains one token in
gene n in act and m in rep, with n,m ≥ 0:

gene 1 0 0
rna 0 0 0 M(gene) + M(act-gene) + M(rep-gene) = 1
protein 0 0 0 M(act) + M(act-gene) = n
act 0 1 0 M(rep) + M(rep-gene) = m
act-gene 1 1 0
rep 0 0 1
rep-gene 1 0 1

APPENDIX 3

Ranges of molecules

P = ? [ true U <= T rna > bound ]

P = ? [ true U <= T protein > bound ]
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APPENDIX 2

// Gene expression control

// Model is stochastic

stochastic

// Bounds to the number of molecules

const int rna_bound;

const int protein_bound;

const int number_activators;

const int number_repressors;

const int initact;

const int initrep;

// Stochastics constants associated with each command/rule/molecular interaction

const double c1 = 0.347; // [ gene ]_b -c1-> [ gene + rna ]_b

const double c2 = 0.174; // [ rna ]_b -c2-> [ rna + protein ]_b \\

const double c3 = 0.347; // [ rna ]_b -c3-> [ ]_b

const double c4 = 0.0116; // [ protein ]_b -c4-> [ ]_b

const double c5 = 6.6412087; // [ act + gene ]_b -c5-> [ actgene ]_b

const double c6 = 0.6; // [ actgene ]_b -c6-> [ act + gene ]_b

const double c7 = 3.47; // [ actgene ]_b -c7-> [ actgene + rna ]_b

const double c8 = 6.6412087; // [ rep + gene ]_b -c8-> [ repgene ]_b

const double c9 = 0.6; // [ repgene ]\_b -c9-> [ rep + gene ]_b

// Module representing a bacterium

module bacterium

gene : [ 0 .. 1 ] init 1;

actgene : [ 0 .. 1 ] init 0;

repgene : [ 0 .. 1 ] init 0;

act : [ 0 .. 1 ] init initact;

rep : [ 0 .. 1 ] init initrep;

rna : [ 0 .. rna_bound ] init 0;

protein : [ 0 .. protein_bound ] init 0;

// [ gene ]_b -c1-> [ gene + rna ]_b

[ ] gene = 1 & rna < rna_bound -> c1 : (rna’ = rna + 1);

// [ rna ]_b -c2-> [ rna + protein ]_b

[ ] rna > 0 & protein < protein_bound -> c2*rna : (protein’ = protein + 1);

// [ rna ]_b -c3-> [ ]_b

[ ] rna > 0 -> c3*rna : (rna’ = rna - 1);

// [ protein ]_b -c4-> [ ]_b

[ ] protein > 0 -> c4*protein : (protein’ = protein - 1);

// [ act + gene ]_b -c5-> [ actgene ]_b

[ ] act = 1 & gene = 1 -> c5*number_activators : (gene’ = 0) & (act’ = 0) & (actgene’ = 1);

// [ actgene ]_b -c6-> [ act + gene ]_b

[ ] actgene = 1 & act = 0 -> c6 : (actgene’ = 0) & (act’ = 1) & (gene’ = 1);

// [ actgene ]_b -c7-> [ actgene + rna ]_b

[ ] actgene = 1 & rna < rna_bound -> c7 : (rna’ = rna + 1);

// [ rep + gene ]_b -c8-> [ repgene ]_b

[ ] rep = 1 & gene = 1 -> c8*number_repressors : (gene’ = 0) & (rep’ = 0) & (repgene’ = 1);

// [ repgene ]_b -c9-> [ rep + gene ]_b

[ ] repgene = 1 & rep = 0 -> c9 : (repgene’ = 0) & (rep’ = 1) & (gene’ = 1);

endmodule

Constitutive regulation

rna <= 7

rna >= 0

prot <= 32

prot >= 0
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Positive regulation

rna <= 24

rna >= 0

prot <= 205

prot >= 0
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Negative regulation

rna one of { 0, 1 }

prot one of { 0, 1, 2, 3 }
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APPENDIX 4

Relationship between the number of repressors
and rna and protein molecules.

rna < rep

rep > prot

P = ? [ true U<=T rna > rep ]

P = ? [ true U<=T protein > rep ]
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Expected number of molecules

R = ? [ I = T ]



164 F. Bernardini et al.

Other invariants

P = ? [ true U gene = actgene ] ⇒ Result: 0.0

P = ? [ true U gene = repgene ] ⇒ Result: 0.0
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cosmin@ieat.ro, cornel@ieat.ro

2 Romanian Academy, Institute of Computer Science
Blvd. Carol I nr.8, 700505 Iaşi
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Summary. Starting from Shannon theory of information, we present the case of pro-
ducing information in the form of multisets, and encoding information using multisets.
We rewiew the entropy rate of a multiset information source and we derive a formula for
the information content of a multiset. We then study the encoder and channel part of
the system, obtaining some results about multiset encoding length and channel capacity.

1 Motivation

The attempt to study information sources which produce multisets instead of
strings, and ways to encode information on multisets rather than strings, originates
in observing new computational models like membrane systems which employ
multisets [5]. Membrane systems have been studied extensively and there are plenty
of results regarding their computing power, language hierarchies and complexity.
However, while any researcher working with membrane systems (called also P
systems) would agree that P systems process information, and that living cells
and organisms do this too, we are unaware of any attempt to precisely describe
natural ways to encode information on multisets or to study sources of information
which produce multisets instead of strings. One could argue that, while some of
the information in a living organism is encoded in a sequential manner, like in
DNA for example, there might be important molecular information sources which
involve multisets (of molecules) in a non-trivial way.

A simple question: given a P system with one membrane and, say, 2 objects a

and 3 objects b from a known vocabulary V (suppose there are no evolution rules),
how much information is present in that system? Also, many examples of P systems
perform various computational tasks. Authors of such systems encode the input
(usually numbers) in various ways, some by superimposing a string-like structure
on the membrane system [1], some by using the natural encoding or unary numeral
system, that is, the natural number n is represented with n objects, for example,

⋆ This work has been partially supported by the research grant CEEX 47/2005
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an. However, just imagine a gland which uses the bloodstream to send molecules to
some tissue which, in turn, sends back some other molecules. There is for sure an
energy and information exchange. How to describe it? Another, more general way
to pose that question is: what are the natural ways to encode numbers, and more
generally, information on multisets, and how to measure the encoded information?

If membrane systems, living cells and any other (abstract or concrete) multiset
processing machines are understood as information processing machines, then we
believe that such questions should be investigated. According to our knowledge,
this is the first attempt of such an investigation. We start from the idea that a
study of multiset information theory might produce interesting, useful results at
least in systems biology; if we understand the natural ways to encode information
on multisets, there is a chance that Nature might be using similar mechanisms.

Another way in which this investigation seems interesting to us is that there
is more challenge in efficiently encoding information on multisets, because they
constitute a poorer encoding media compared to strings. Encoding information
on strings or even richer, more organized and complex structures are obviously
possible and have been studied. Removing the symbol order, or their position
in the representation as strings can lead to multisets carrying a certain penalty,
which deserves a precise description. Order or position do not represent essential
aspects for information encoding; symbol multiplicity, a native quality of multisets,
is enough for many valid purposes. We focus mainly on such “natural” approaches
to information encoding over multisets, and present some advantages they have
over approaches that superimpose a string structure on the multiset. Then we
encode information using multisets in a similar way as it is done using strings.

There is also a connection between this work and the theory of numeral systems.
The study of number encodings using multisets can be seen as a study of a class
of purely non-positional numeral systems.

2 Entropy rate of an Information Source

Shannon’s information theory represents one of the great intellectual achievements
of the twentieth century. Information theory has had an important and significant
influence on probability theory and ergodic theory, and Shannon’s mathematics is
a considerable and profound contribution to pure mathematics.

Shannon’s important contribution comes from the invention of the source-
encoder-channel-decoder-destination model, and from the elegant and general solu-
tion of the fundamental problems which he was able to pose in terms of this model.
Shannon has provided significant demonstration of the power of coding with delay
in a communication system, the separation of the source and channel coding prob-
lems, and he has established the fundamental natural limits on communication. As
time goes on, the information theoretic concepts introduced by Shannon become
more relevant to day-to-day more complex process of communication.
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2.1 Short Review of Shannon Information Theory

We use the notions defined in the classical paper [6] where Shannon has formulated
a general model of a communication system which is tractable to a mathematical
treatment.

Consider an information source modelled by a discrete Markov process. For
each possible state i of the source there is a set of probabilities pi(j) associated to
the transitions to state j. Each state transition produces a symbol corresponding to
the destination state, e.g. if there is a transition from state i to state j, the symbol
xj is produced. Each symbol xi has an initial probability p

i∈1..n
corresponding to

the transition probability from the initial state to each state i.
We can also view this as a random variable X with xi as events with probabil-

ities pi, X =

(
x1 x2 · · · xn

p1 p2 · · · pn

)
.

There is an entropy Hi for each state. The entropy rate of the source is defined
as the average of these Hi weighted in accordance with the probability Pi of
occurrence of the states:

H(X) =
∑

i

PiHi = −
∑

i,j

Pipi(j) log pi(j) (1)

Suppose there are two symbols xi, xj and p(i, j) is the probability of the suc-
cessive occurrence of xi and then xj . The entropy of the joint event is

H(i, j) = −
∑

i,j

p(i, j) log p(i, j)

The probability of symbol xj to appear after the symbol xi is the conditional
probability pi(j).

Remark 1. The quantity H is a reasonable measure of choice or information.

String Entropy

Consider an information source X which produces sequences of symbols selected
from a set of n independent symbols xi with probabilities pi. The entropy formula
for such a source is given in [6]:

H(X) =

n∑

i=1

pilogb

1

pi
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2.2 Multiset Entropy

We consider a discrete information source which produces multiset messages (as
opposed to string messages). A message is a multiset of symbols, and a multiset is
a string equivalence class. The entropy rate of such a source is proved to be zero
in [7]:

H(Xmultiset) = lim
n→∞

1

n
H({Xi}

n

i=1) = 0

Information content

The information content of an outcome (multiset) x is h(x) = log 1
P (x) . See [4].

Let be k ∈ N and X =

(
x1 x2 . . . xn

p1 p2 . . . pn

)
a random variable and x =

xm1
1 xm2

2 . . . xmn

n a multiset over symbols from X, with
∑n

i=1 mi = k, then the
probability of the outcome x is given by the multinomial distribution(

k

m1,m2, . . . ,mn

)∏n

i=1 pmi

i
:

P [x = (m1,m2, . . . ,mn)] =
(
∑n

i=1 mi)!∏n

i=1 mi!

n∏

i=1

pmi

i

So, the information content of the multiset x is:

h(x = xm1
1 xm2

2 . . . xmn

n ) = log
1

P [x]
= log

(
1/

(
∑n

i=1 mi)!∏n

i=1 mi!

n∏

i=1

pmi

i

)
=

= log

∏n

i=1 mi!

(
∑n

i=1 mi)!
∏n

i=1 pmi

i

3 Multiset Encoding and Channel Capacity

After exploring the characteristics of a multiset generating information source,
we move to the channel part of the communication system. Properties of previ-
ously developed multiset encodings are analyzed in [2, 3]. The capacity of multiset
communication channel is derived based on Shannon’s definition and also on the
capacity theorem. Please note that one can have a multiset information source and
a usual sequence-based encoder and channel. All the following combinations are
possible:

3.1 String Encoding

We shortly review the results concerning the string encoding.
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Source/Encoder Sequential Multiset

Sequential [6] this paper

Multiset this paper this paper

Table 1. Source/Encoder types

Encoding Length

We have a set of symbols X to be encoded, and an alphabet A. We consider the
uniform encoding. Considering the length l of the encoding, then X = {xi =
a1a2 . . . al|aj ∈ A}.

If pi = P (xi) = 1
n
, then we have

H(X) =
n∑

i=1

1

n
logb(n) = logb(n) ≤ l

It follows that n ≤ bl. For n ∈ N, n − bx = 0 implies x0 = logbn and so
l = ⌈x0⌉ = ⌈logbn⌉.

Channel Capacity

Definition 1. [6] The capacity C of a discrete channel is given by

C = lim
T→∞

log N(T )

T

where N(T ) is the number of allowed signals of duration T .

Theorem 1. [6] Let b
(s)
ij

be the duration of the sth symbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to log W where

W is the largest real root of the determinant equation:

∣∣∣∣∣
∑

s

W−b
(s)
ij − δij

∣∣∣∣∣ = 0

where δij = 1 if i = j, and zero otherwise.

3.2 Multiset Encoding

We present some results related to the multiset encoding.
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Encoding Length

We consider a set X of N symbols, an alphabet A, and the length of encoding l,

therefore:
X = {xi = an1

1 an2
2 . . . anb

b
|
∑b

j=1 nj = l, aj ∈ A}

Proposition 1. Non-uniform encodings over multisets are shorter than uniform

encodings over multisets.

Proof. Over multisets we have
1. for an uniform (all the encoding representation have the same length l)

encoding: N ≤ N(b, l) =

〈
b

l

〉
=

(
b + l − 1

l

)
= (b+l−1)!

l!(b−1)! =
Q

b−1
i=1 (l+i)

(b−1)! . If x0 is the

real root of n −
Q

b−1
i=1 (x+i)

(b−1)! = 0 then l = ⌈x0⌉.

2. for non-uniform encoding: N ≤ N(b+1, l−1) =

〈
b + 1
l − 1

〉
=

(
b + l − 1

l − 1

)
=

(b+l−1)!
(l−1)!b! =

Q
b−1
i=0 (l+i)

b! = l

b

Q
b−1
i=1 (l+i)

(b−1)! = l

b
N(b, l). Let x′

0 be the real root of n −Q
b−1
i=0 (x+i)

(b−1)! = 0 then l′ = ⌈x′
0⌉.

From n − N(b, x0) = 0 and n −
x
′

0

b
N(b, x′

0) = 0 we get N(b, x0) =
x
′

0

b
N(b, x′

0).
In order to prove l > l′ ⇐⇒ x0 > x′

0, let suppose that x0 ≤ x′
0. We have x′

0 >

b (for sufficiently large numbers), and this implies that N(b, x0) ≤ N(b, x′
0) <

x
′

0

b
N(b, x′

0). Since this is false, it follows that x0 > x′
0 implies l ≥ l′.

Channel Capacity

We consider that a sequence of multisets is transmitted along the channel. The
capacity of such a channel is computed for base 4, then some properties of it for
any base are presented.

Multiset channel capacity in base 4

In Figure 1 we have a graph G(V,E) with 4 vertices V = {S1, S2, S3, S4} and
E = {(i, j) | i, j = 1..4, i ≤ j} ∪ {(i, j) | i = 4, j = 1..3}

In Theorem 1 we get b
(ak)
ij

= tk because we consider that the duration to
produce ak is the same for each (i, j) ∈ E. The determinant equation is

∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 W−t4

0 W−t2 − 1 W−t3 W−t4

0 0 W−t3 − 1 W−t4

0 0 0 W−t4 − 1

∣∣∣∣∣∣∣∣
= 0

If we consider tk = t, then the equation becomes(
1 −

1

W t

)4

= 0, and Wreal = 1. Therefore C = log4 1 = 0.
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Fig. 1. Multiset channel capacity

Multiset channel capacity in base b

Theorem 2. The multiset channel capacity is zero, C = 0.

Proof. First approach

The first method for computing the capacity is using the definition from [6].

C = lim
T→∞

log N(T )

T
= lim

T→∞

log N(b, T )

T
=

= lim
T→∞

log

〈
b

T

〉

T
= lim

T→∞

1

T
log

(b + T − 1)!

T !(b − 1)!

Using Stirling’s approximation log n! ≈ n log n − n we obtain

C = lim
T→∞

1

T
(log(b + T − 1)! + log T ! + log(b − 1)!) =

= lim
T→∞

1

T
((b + T − 1) log(b + T − 1) − T log T − (b − 1) log(b − 1)) =

= lim
T→∞

b − 1

T
log

(
1 +

T

b − 1

)
+ lim

T→∞
log

(
1 +

b − 1

T

)
= 0

Second approach

Using 1, the determinant equation for a multiset encoder is:
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∣∣∣∣∣∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 · · · W−tb

0 W−t2 − 1 W−t3 · · · W−tb

0 0 W−t3 − 1 · · · W−tb

...
...

...
...

...
0 · · · 0 W−tb−1 − 1 W−tb

0 0 0 · · · W−tb − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Proposition 2. If tk = t, then the determinant equation becomes

(
1 −

1

W t

)b

= 0. (2)

The capacity C is given by C = logb W , where W is the largest real root of the
equation (2). Considering x = W−t, then we have

W =
1

t
√

x
⇒ C = −

1

t
logb x. (3)

Since we need the largest real root W then we should find the smallest positive
root x of the equation (1 − x)b = 0 ⇒ x = 1 ⇒ C = 0.

4 Conclusion

Based on Shannon’s classical work, we derive a formula for the information con-
tent of a multiset. Using the definition and the determinant capacity formula, we
compute the multiset channel capacity. As future work we plan to further explore
the properties of multiset-based communication systems, and compare these to
similar results for string-based communication systems.
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Summary. P systems are a biologically inspired model introduced by Gheorghe Păun
with the aim of representing the structure and the functioning of the cell. P systems are
usually equipped with the maximal parallelism semantics; however, since their introduc-
tion, some alternative semantics have been proposed and investigated.

We propose a semantics that describes the causal dependencies occurring between
the reactions of a P system. We investigate the basic properties that are satisfied by such
a semantics. The notion of causality turns out to be quite relevant for biological systems,
as it permits to point out which events occurring in a biological pathway are necessary
for another event to happen.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Păun with the definition of P systems in [22, 23, 24]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially of
automata, languages and complexity theoretic tools.

Membrane systems are based upon the notion of membrane structure, which
is a structure composed by several cell-membranes, hierarchically embedded in a
main membrane called the skin membrane. A plane representation of a membrane
structure can be given by means of a Venn diagram, without intersected sets and
with a unique superset. The membranes delimit regions and we associate with
each region a set of objects, described by some symbols over an alphabet, and a
set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules, which
can modify the objects to obtain new objects and send them outside the membrane
or to an inner membrane. The evolution rules are applied in a maximally parallel
manner: at each step, all the objects which can evolve should evolve.

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the result
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of the computation is defined to be the number of objects in a specified membrane
(or expelled through the skin membrane). If a computation never halts (i.e. one
or more object can be rewritten forever), then it provides no output.

Since their introduction, plenty of variants of P systems have been introduced,
and a lot of research effort has been carried out, expecially concerned with the
study of the expressivity and the universality of the proposed models and with the
ability to solve NP-complete problems in polynomial time.

The aim of this work is to start an investigation of the causal dependencies
arising in among reactions occurring in P systems. The main motivation for this
work comes from system biology, as the understanding of the causal relations
occurring between the events of a complex biological pathway could be of precious
help, e.g., for limiting the search space in the case some unpredicted event occurs.

In this paper we concentrate on P systems with cooperative rules, namely
systems whose evolution rules are of the form u → v, representing the fact that
the objects in u are consumed and the objects in v are produced.

The study of causal semantics in concurrency theory is quite old. For example,
the study of a causal semantics for process algebras dates back to the early nineties
for CCS [20] (see, e.g., [13, 11, 18]), and to the mid nineties for the π-calculus [21]
(see, e.g., [3, 5, 14, 15]).

To the best of our knowledge, the only other works that deal with causality in
bio-inspired calculi with membranes and compartments are the following. In [7] a
causal semantics for the Mate/Bud/Drip Brane Calculus [9] is proposed. In [17]
a causal semantics for Beta Binders [26, 27] – based on the π-calculus semantics
and on the enhanced operational semantics approach of [15] – is defined. One of
the main differences between Beta Binders on one side, and Brane Calculi and P
systems on the other side, is that the membrane structure in Beta Binders is flat,
whereas in Brane Calculi and in P systems the membranes are nested to form a
hierarchical structure.

The paper is organized as follows. After providing some basic definitions in Sec-
tion 2, in Section 3 we define (cooperative) P systems. Section 4 recalls a detailed
definition of maximal parallelism semantics that will be used in the following to
provide a comparison between the causal and the maximal parallelism semantics.
Section 5 is devoted to the definition of the causal semantics; after an informal
introduction, a formal definition is provided, and finally some result on the prop-
erties enjoyed by the causal semantics are given. Section 6 reports some conclusive
remarks.

2 Basic Definitions

In this section we provide some definitions that will be used throughout the paper.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
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multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multisets m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S
while ⊕ denotes their multiset union, i.e., m⊕m′(s) = m(s)+m′(s). The operator
\ denotes multiset difference: (m \ m′)(s) = if m(s) ≥ m′(s) then m(s) − m′(s)
else 0. The scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)).
The cardinality of a multiset is the number of occurrences of elements contained
in the multiset: |m| = ∑

s∈S m(s).

The powerset of a set S is defined as P(S) = {X | X ⊆ S}.
Definition 2. Let m be a finite multiset over S and X ⊆ S. The multiset m|X
is defined as follows: for all s ∈ S, m|X(s) = m(s) if s ∈ X, and m|X(s) = 0
otherwise.

Definition 3. A string over S is a finite (possibly empty) sequence of elements in
S. Given a string u = x1 . . . xn, the length of u is the number of occurrences of
elements contained in u and is defined by |u| = n.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S.

Given a string u = x1 . . . xn and i such that 1 ≤ i ≤ n, with (u)i we denote the
i-th element of u, namely, (u)i = xi.

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as
follows: for all s ∈ S, mu(s) = |{i | xi = s ∧ 1 ≤ i ≤ n}|. With abuse of notation,
we use u to denote also mu.

Definition 4. With S × T we denote the Cartesian product of sets S and T , with
×nS, n ≥ 1, we denote the Cartesian product of n copies of set S and with ×n

i=1Si

we denote the Cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn. The ith
projection of (x1, . . . , xn) ∈ ×n

i=1Si is defined as πi(x) = xi, and lifted to subsets
X ⊆ ×n

i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.
Given a binary relation R over a set S, with Rn we denote the composition of

n instances or R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 P Systems

We recall the definition of catalytic P systems without priorities on rules. For a
thorough description of the model, motivation, and examples see, e.g., [8, 12, 22,
23, 24]. To this aim, we start with the definition of membrane structure:

Definition 5. Given the alphabet {[, ]}, the set MS is the least set inductively
defined by the following rules:

• [ ] ∈ MS
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• if µ1, µ2, . . . , µn ∈ MS, n ≥ 1, then [µ1 . . . µn] ∈ MS

We define the following relation over MS: x ∼ y iff the two strings can be
written as x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and y = [1. . . [3. . .]3 . . . [2. . .]2 . . .]1 (i.e.,
if two pairs of parentheses that are neighbors can be swapped together with their
contents).

The set MS of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ∼∗.

We call a membrane each matching pair of parentheses appearing in the mem-
brane structure. A membrane structure µ can be represented as a Venn diagram,
in which any closed space (delimited by a membrane and by the membanes imme-
diately inside) is called a region of µ.

Definition 6. A P system (of degree d, with d ≥ 1) is a construct

Π = (V, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0), where:

1. V is a finite alphabet whose elements are called objects;
2. µ is a membrane structure consisting of d membranes (usually labelled with i

and represented by corresponding brackets [i and ]i, with 1 ≤ i ≤ d);
3. w0

i , 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;
they represent multisets of objects present in the regions of µ at the beginning
of computation (the multiplicity of a symbol in a region is given by the number
of occurrences of this symbol in the string corresponding to that region);

4. Ri, 1 ≤ i ≤ d, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . , d of µ; these evolution rules are of the form u → v, where u
and v are strings from (V × {here, out, in})∗;

5. i0 ∈ {1, . . . , d} specifies the output membrane of Π.

The membrane structure and the multisets represented by w0
i , 1 ≤ i ≤ d, in Π

constitute the initial state1 of the system. A transition between states is governed
by an application of the evolution rules which is done in parallel; all objects, from
all membranes, which can be the subject of local evolution rules have to evolve
simultaneously.

The application of a rule u → v in a region containing a multiset m results in
subtracting from m the multiset identified by u, and then in adding the multiset
defined by v. The objects can eventually be transported through membranes due
to the targets in and out (we usually omit the target here).

The system continues parallel steps until there remain no applicable rules in
any region of Π; then the system halts. We consider the number of objects from
V contained in the output membrane i0 when the system halts as the result of the
underlying computation of Π.
1 Here we use the term state instead of the classical term configuration because we will

define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.
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We introduce a couple of functions on membrane structures that will be useful
in the following:

Definition 7. Let µ be a membrane structure consisting of d membranes, labelled
with {1, . . . , d}.

Given two membranes i and j in µ, we say that i is contained in j if the
surface delimited by the perimeter of i in the Venn diagram representation of µ is
contained inside the perimeter of j.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in i.

The partial function father : {1, . . . , d} → {1, . . . , d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1, . . . , d} → P({1, . . . , d}) returns the set of children
of a membrane.

For example, take µ = [1[2[3 ]3]2 [4 ]4]1; then, father(2) = father(4) = 1,
father(3) = 2 and father(1) is undefined; moreover, children(4) = ∅ and
children(1) = {2, 4}.

4 Maximal Parallelism Semantics for P Systems

In order to compare the classical maximal parallelism semantics with the causal
semantics, in this section we recall a detailed definition of the computation of a P
system, proposed in [4], where a maximal parallelism evolution step is represented
as a (maximal) sequence of simple evolution steps, which are obtained by the
application of a single evolution rule.

Throughout this section, we let Π = (V, µ,w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a P

system.
To represent the states of the system reached after the execution of a non

maximal sequence of simple evolution rules, we introduce the notion of partial
configuration of a system. In a partial configuration, the contents of each region is
represented by two multisets:

• The multiset of active objects contains the objects that were in the region at
the beginning of the current maximal parallelism evolution step. These objects
can be used by the next simple evolution step.

• The multiset of frozen objects contains the objects that have been produced in
the region during the current maximal parallelism evolution step. These objects
will be available for consumption in the next maximal parallelism evolution
step.

Definition 8. A partial configuration of Π is a tuple ((w1, w̄1), . . . , (wd, w̄d)) ∈
×d(V ∗ × V ∗).

We use ×d
i=1(wi, w̄i) to denote the partial configuration above.

The set of partial configurations of Π is denoted by ConfΠ . We use γ, γ′, γ1, . . .
to range over ConfΠ .
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In the above definition, w1, . . . , wd represent the active multisets, whereas
w̄1, . . . , w̄d represent the frozen multisets.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 9. A configuration of Π is a partial configuration ×d
i=1(wi, w̄i) satis-

fying the following: w̄i = ∅ for i = 1, . . . , d.
The initial configuration of Π is the configuration ×d

i=1(w
0
i , ∅) .

The size of a partial configuration is the number of active objects contained in
the configuration.

Definition 10. Let γ = ×d
i=1(wi, w̄i) be a partial configuration. The size of γ is

#(γ) =
∑d

i=1 |wi|.
The execution of a simple evolution rule is formalized by the notion of reaction

relation, defined as follows:

Definition 11. The reaction relation 7→ over ConfΠ × ConfΠ is defined as fol-
lows:

×d
i=1(wi, w̄i) 7→ ×d

i=1(w
′
i, w̄

′
i) iff there exist k, with 1 ≤ k ≤ d, an evolution

rule u → v ∈ Rk and a migration string ρ ∈ {1, . . . , d}|v| such that

• u ⊆ wk

• w′k = wk \ u
• ∀i : 1 ≤ i ≤ d and i 6= k implies w′i = wi

• ∀j : 1 ≤ j ≤ |v| the following holds:
– if π2((v)j) = here then (ρ)j = k
– if π2((v)j) = out then (ρ)j = father(k)2

– if π2((v)j) = in then (ρ)j ∈ children(k)3

• ∀i, 1 ≤ i ≤ d : w̄′k = w̄k ⊕
⊕

1≤j≤|v|,(ρ)j=k(v)j

Note that the size of a configuration represents an upper bound to the length
of the sequences of reactions starting from that configuration. Hence, infinite se-
quences of reactions are not possible.

Proposition 1. Let γ be a configuration. If γ 7→n γ′ then n ≤ #(γ).

The heating function heated transforms the frozen objects of a configuration
in active objects, and will be used in the definition of the maximal parallelism
computation step.

Definition 12. Let ×d
i=1(wi, w̄i) be a partial configuration of Π.

The heating function heated : ConfΠ → ConfΠ is defined as follows:
heated(×d

i=1(wi, w̄i)) = ×d
i=1(wi ⊕ w̄i, ∅)

2 As ρ ∈ {1, . . . , d}|v|, this implies that father(k) is defined.
3 This implies that children(k) is not empty.
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Now we are ready to define the maximal parallelism computational step Z⇒:

Definition 13. The maximal parallelism computational step Z⇒ over (nonpartial)
configurations of Π is defined as follows: γ1 Z⇒ γ2 iff there exists a partial config-
uration γ′ such that γ1 7→+ γ′, γ′ 67→ and γ2 = heated(γ′).

An operational semantics for P systems with maximal parallelism semantics
has been defined for P systems in [1, 2, 10]. The main difference w.r.t. our ap-
proach is concerned with the fact that, while in this Section a maximal parallelism
computational step is defined as a maximal sequence of reactions, in [1, 2, 10] no
notion of reaction is provided, and the notion equivalent to the maximal parallelism
computational step is defined directly by SOS rules [25]. A detailed comparison of
the two approaches is beyond the scope of the present paper and deserves further
investigation.

5 A Causal Semantics for P Systems

In this section we provide a causal semantics for cooperative P systems. To define
a causal semantics, we follow the approach used in [18] for CCS, and in [3] for the
π-calculus.

5.1 An informal explanation

The idea consists in decorating the reaction relation with two pieces of information:

• a fresh name k, that is associated to the reaction and it is taken from the set
of causes K;

• a set H ⊆ K, containing all the names associated to the already occurred
reactions, that represent a cause for the current reaction.

To keep track of the names of the already occurred reactions that may represent
a cause for the reactions that may happen in the future, we introduce a notion
of causal configuration that associates to each object an information on its causal
dependencies. As in [3], for the sake of clarity we only keep track of the so called
immediate causes, as the set of general causes can be reconstructed by transitive
closure of the immediate causal relation. We will provide more explanation on this
point with an example in the following part of the paper.

Now we start with an informal introduction of causality in P systems. Consider
the following system with a unique membrane:

Π1 = ({a, b, c, d, e, f}, [1 ]1, ae, {a → bc, c → d, e → f}, 1).

If we consider the reaction relation 7→ defined in the previous section, we have
that the system Π1 can perform either a reaction obtained by the application of
the rule a → bc followed by a reaction obtained by the application of rule e → f ,
or a sequence of two reactions where the application the rule e → f is followed by
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the application of a → bc. The applications of the two rules are independent, in
the sense that all the objects consumed by both the rules are already present in
the initial configuration. Hence, the two rules can be applied in the same maximal
parallelism step, and no one of the rules is causally dependent on the other one.

Consider now the system

Π2 = ({a, b, c, d, e, f}, [1 ]1, a, {a → bc, c → d, e → f}, 1),

obtained from Π1 by removing object e from the initial state. In this case, only
rule a → bc can be applied. After the application of such a rule, an instance of
object c is created by the application of rule a → bc. Now, a further reduction step
can be performed, consisting in applying rule c → d. However, the applications of
the two rules a → bc and c → d cannot be swapped, and the two rules cannot be
applied in the same maximal parallelism computational step. This is because the
object c consumed by rule c → d has been produced by rule a → bc. In this case,
we say that the reduction step consisting in the application of rule c → d causally
depends on the reduction step consisting in the application of rule a → bc.

If we consider again system Π1, we have that, after the application of the two
rules a → bc and e → f , the rule c → e can be applied, and it is caused by the
application of rule a → bc.

We would like to note that the causal semantics is in some sense “finer” than the
maximal parallelism step semantics, as it permits to identify exactly which rule(s)
represent a cause for the execution of another rule. Consider, e.g., the system

Π3 = ({a, b, c, d, e, f}, [1 ]1, ae, {a → bc, cf → d, e → f}, 1).

According to the maximal parallelism semantics, the two systems cannot be dis-
tinguished, as both can perform a maximal parallelism step containing two rules
(i.e., {a → bc, e → f}), followed by a maximal parallelism step containing a sin-
gle rule (resp. {c → d} for Π1 and {cf → d} for Π3). On the other hand, if we
consider the causal semantics, we have that the application of rule c → d in Π1

causally depends only on one of the two rules applied in the previous maximal
parallelism step, i.e., a → bc, whereas the application fo the rule cf → d in Π3

causally depends on both the rules applied in the previous maximal parallelism
step.

5.2 The formal definition of causal semantics

In this section we provide a formal definition of the notions introduced in the
previous section.

Let K be a denumerable set of cause names, disjoint from the set V of objects.
Throughout this section, we let Π = (V, µ,w0

1, . . . , w
0
d, R1, . . . , Rd, i0) be a P

system.
To be able to define the set of causes of a reaction, we proceed in the following

way: we associate a fresh (i.e., never used before) cause name to each reaction
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performed in the system. Then, each instance of object in a configuration of the
system is decorated with the causal name of the reaction that produced it, or with
∅ if the object is already present in the initial configuration.4 To keep track of such
causal information, we introduce the notion of causal configuration fo a system.

Definition 14. A causal configuration of Π is a tuple z1, . . . , zd, where zi ∈ (V ×
P(K))∗ for i = 1, . . . , d.

We use ×d
i=1zi to denote the causal configuration above.

The set of causal configurations of Π is denoted by CConfΠ .
We use γ, γ′, γ1, . . . to range over CConfΠ .5

Let w0
i = oi,1oi,2 . . . oi,ni for i = 1, . . . , d. The initial causal configuration of Π

is the configuration ×d
i=1(oi,1, ∅)(oi,2, ∅) . . . (oi,ni

, ∅) .

For example, ((a, ∅)(e, ∅)) represents the initial causal configuration of the P
system Π1 in the previous subsection, and ((b, k1)(c, k1)(e, ∅)) represents another
configuration of Π1, reached after the firing of rule a → bc (for the sake of clarity
we omit the surrounding braces if the set of causes is a singleton).

Now we are ready to define the causal semantics for P systems. We write
γ

h;H−−→ γ′ to denote the fact that system Π in configuration γ performs an action
– to which we associate the cause name h – that is caused by the (previously
occurred) actions whose action names form the set H. The cause name h is a fresh
name: this means that it has not been used yet in the current computation.

The execution of an evolution rule is formalized by the notion of causal reaction
relation.

Before providing the definition of causal reaction relation, we need some aux-
iliary definitions.

Definition 15. The function drop : (V × P(K))∗ → V ∗ removes the causality
information:

drop(ε) = ε
drop((o,H)w) = o drop(w)

The function drop is extended to configurations in the obvious way:

drop(×d
i=1zi) = ×d

i=1drop(zi)

The function causes : V ×P(K))∗ → P(K) produces the set of causal labels in
a string:

causes(ε) = ∅
causes((o,H)w) = H ∪ causes(w)

4 For homogeneity with other classes of P systems, actually we decorate each object with
a – possibly empty – set of cause names, even if, in the class of P systems considered
in this paper, a single cause name is sufficient.

5 With abuse of notation, we use γ, γ′, γ1, . . . to denote both partial configurations and
causal configurations. It will be clear from the context to which kind of configuration
we are referring to.
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The function deco : V ∗ → V ×P(K))∗ decorates each object in a string with a
given set of causal labels:

deco(ε,H) = ∅
deco(ow, H) = (o,H)deco(w, H)

Definition 16. The causal reaction relation
h;H−−→ over CConfΠ × CConfΠ is

defined as follows:
×d

i=1zi
h;H−−→ ×d

i=1z
′
i iff there exist k, with 1 ≤ k ≤ d, a string w ∈ (V ×P(K))∗,

an evolution rule u → v ∈ Rk and a migration string ρ ∈ {1, . . . , d}|v| such that

• u = drop(w)
• H = causes(w)
• w ⊆ zk

• z′k = zk \ w ⊕ deco(v, {h})
• ∀j : 1 ≤ j ≤ |v| the following holds:

– if π2((v)j) = here then (ρ)j = k
– if π2((v)j) = out then (ρ)j = father(k)6

– if π2((v)j) = in then (ρ)j ∈ children(k)7

• ∀i, 1 ≤ i ≤ d and i 6= k: z′i = zi ⊕
⊕

1≤j≤|v|,(ρ)j=i((v)j , h)

5.3 Properties of the causal semantics

The causal semantics for the class of P systems considered in this paper enjoys
some nice properties.

The first property is the retrievability of the maximal parallelism step seman-
tics from the causal semantics. According to such a property, there is no loss of
information when moving from the maximal parallelism to the causal semantics,
as we can reconstruct the maximal parallelism semantics of a system by looking
at its causal execution:

Theorem 1. ×d
i=1(wi, ∅) Z⇒ ×d

i=1(w
′
i, ∅) is a maximal parallelism computational

step if and only if there exist γ, γ′ ∈ CConf(Π), h1, . . . , hn, H1, . . .Hn such that

• drop(γ) = ×d
i=1(wi, ∅)

• drop(γ′) = ×d
i=1(w

′
i, ∅)

• γ
h1;H1−−−−→ . . .

hn;Hn−−−−→ γ′

• hi 6∈ Hj for all i, j: 1 ≤ i, j ≤ n

• if there esist h,H such that γ′
h;H−−→ then there exists i such that 1 ≤ i ≤ n and

hi ∈ H

The other property is the so-called diamond property, stating that if two non-
causally related actions can happen one after the other, then they can happen also
in the other order, and at the end they reach the same system.
6 As ρ ∈ {1, . . . , d}|v|, this implies that father(k) is defined.
7 This implies that children(k) is not empty.
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Theorem 2. If γ
h1;H1−−−−→r1γ

′ h2;H2−−−−→r2γ
′′ and h1 6∈ H2 then there exists a causal

configuration γ′′′ such that γ
h2;H2−−−−→r2γ

′′′ h1;H1−−−−→r1γ
′′.

6 Conclusion

In this paper we tackled the problem of defining a causal semantics for a basic class
of P systems. We think that the study of the causal dependencies that arise between
the actions performed by a system is of primary importance for models inspired by
the biology, because of its possible application to the analysis of complex biological
pathways.

This paper represents a first step in this direction, but a lot of work remains
to be done. For example, if we move to other classes of membrane systems, such
as, e.g., P systems with promoters and inhibitors, we have to deal with more in-
volved causal relations among reactions, and it could happen that some of the
properties enjoyed by the causal semantics for basic P systems presented in this
work no longer hold. Another interesting research topic is the investigation of the
causal semantics for classes of P systems whose membrane structure is dynamically
evolving (e.g., we can consider dissolution rules, duplication, gemmation or either
brane-like operations). Once we have completed the definition of a causal seman-
tics for systems with an evolving structure, we will start investigating the causal
dependencies arising in biological pathways involving membranes, such as, e.g.,
the LDL Cholesterol Degradation Pathway [19], that was modeled in P systems
in [6].
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Summary. In this paper we approach the problem of the hierarchical clustering through
membrane computing. A specific P system with external output is designed for each
boolean matrix associated with a finite set of individuals. The computation of the sys-
tem allows us to obtain one of the possible classifications in a non-deterministic way.
The amount of resources required in the constructions is polynomial in the number of
individuals and the number of characteristics analyzed.

1 Introduction

Researchers develop a lot of investigation that depend on many factors and this
makes their study very complex. In order to simplify and make the problems more
tractable it is necessary to group individuals with similar characteristics. The
individuals are characterized by a high number of properties so the grouping is
not a simple task. The clustering methods appear with the purpose of establishing
a methodology with a statistical base in order to obtain the groupings of the
individuals according to their degree of similarity.

There are different methods of ranking the groups of individuals. In order to
simplify it we can consider two types, the nonhierarchical clustering and the hier-
archical clustering. In a nonhierarchical clustering homogenous groups are formed
without establishing relations among them; in the hierarchical clustering the in-
dividuals are grouped in levels. The inferior levels are contained in the superior
levels. The hierarchical clustering is the most used and it is dealt with in this
paper.
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Hierarchical clustering refers to the formation of a recursive clustering of the
individuals by means of the partitions P0, P1, . . . , Pm of the set of N individuals
with 1 ≤ m ≤ N−1. The partition P0 consists of N groups each one of them formed
by a single individual. The groups that form this partition join progressively until
arriving at the last partition, Pm, that consists of a single group formed by all the
individuals. In each step the two most similar groups are joined according to a
previously established criterion.

Researchers use the clustering to characterize and to order a vast amount
of information on the variability of population of individuals. These populations
are grouped in more or less homogenous clusters based on their properties. This
methodology has been applied in fields as diverse as Medicine, Biology, classifica-
tion of words, of the fingerprints, artificial intelligence... Recently the clustering
has been applied to the classification of musical genre [13], to predict essential
hypertension [12], in the classification of material planning and control systems
[9], in the classification of the ocean color [1], in the classification of the plants
gens [14].

The different groups obtained by means of the classification are characterized
by different levels of the measured variables. These values allow us to give com-
mon properties of the individuals belonging to the same group. To have established
groups allows us to identify the most similar cluster of a new individual. The char-
acteristics measured of the individuals can be qualitative variables or quantitative
variables. In most cases we are only interested in the presence or absence of certain
qualitative characteristics. So in this paper we make a hierarchical clustering using
dichotomizing variables by means of membrane computing.

In this paper the problem of hierarchical clustering is approached with the
framework of cellular computing with membranes. It is interesting because allows
us treated some statistics topics with this new models of computation. The amount
of used resources is polynomial in the number of individuals and the number of
characterizes analyzed without increasing the complexity of the classical clustering
algorithms.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [7], [15], [8], [6].

2 Overview

2.1 Hierarchical Clustering

In order to obtain a hierarchical clustering we need a set of observations or indi-
viduals that we define as follows:

Definition 1. A k–set Ω over a metric space (E, d), with d(E × E) ⊆ N, is a
subset of Ek.

The hierarchical clustering needs a finite k-set Ω with N elements, Ω =
{ω1, . . . , ωN}. The elements of the set Ω are called individuals or observations
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and their components in the k-tuple are denoted characteristics or variables. The
values of the individuals can be represented in matrix form:

PNk =




ω11 ω12 · · · ω1k

ω21 ω22 · · · ω2k

· · ·
ωN1 ωN2 · · · ωNk




where ωij is the value of the j-th variable of the individual i.
The objective of any clustering is to group the individuals in similar groups

whose members are all close to one another with various dimensions being mea-
sured. It will be necessary to establish criteria in order to measure the similarity
between individuals and similarity between groups. Evidently, the clustering that
is obtained will depend on the similarity function that is chosen. This function is
called similarity and it is defined as follows [10].

Definition 2. A similarity over a finite k–set Ω = {ω1, . . . , ωN} is a function s
of Ω ×Ω in R+ that verifies

• s is symmetric, that is ∀(ωi, ωj) ∈ Ω ×Ω : s(ωi, ωj) = s(ωj , ωi)
• ∀ωi, ωj ∈ Ω with i 6= j : s(ωi, ωi) = s(ωj , ωj) ≥ s(ωi, ωj)

In this paper we work with dichotomizing variables, in particular their val-
ues are denoted by 0 and 1. One of the similarities most used for dichotomizing
variables is the similarity of Sokal and Michener [2] and it is defined by:

∀ωi, ωj ∈ Ω : s′(ωi, ωj) =
1
k
·

k∑
r=1

(1− |ωir − ωjr|) (1)

where ωi = {ωi1, . . . , ωik}.

In this paper the similarity that we use is a modification of the previous one.
This similarity represents the number of coincidences in the number of total char-
acteristics and it is defined as follow:

∀(ωi, ωj) ∈ Ω ×Ω : s(ωi, ωj) =
k∑

r=1

(1− |ωir − ωjr|) (2)

We use this similarity because it is easier to implement with P systems and the
result obtained is the same as we obtain with the similarity of Sokal and Michener.

In the case of the hierarchical clustering the groupings follow a hierarchy formed
by partitions. The partitions are formed in a recursive manner. We start with as
many clusters as individuals, in each iteration the partition is obtained joining the
two closest clusters. This process is done until we obtain a single set formed by
all the individuals. The partitions obtained P0, P1, . . . , Pm verify P0 ⊆ P1 ⊆ P2 ⊆
. . . ⊆ Pm with 1 ≤ m ≤ N − 1 and the sets that form the partitions are called
clusters.
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Next we define the necessary mathematical concepts in the hierarchical clus-
tering [11].

Definition 3. Let Ω = {ω1, . . . , ωN} the k-set of N individuals to classify. A
subset H of the parts of Ω, H ⊆ P(Ω), is a hierarchy over Ω if it verifies:

• Ω ∈ H
• {ω} ∈ H (∀ω ∈ Ω)
• If h ∩ h′ 6= ∅ ⇒ h ⊂ h′ or h′ ⊂ h (∀h, h′ ∈ H)
• ⋃{h′ | h′ ∈ H, h′ ( h} ∈ {h, ∅} (∀h ∈ H)

The elements of H are called clusters.
If h1, . . . , hp ∈ H with Ω = h1 ∪ . . . ∪ hp then the set {h1, . . . , hp} is a clustering.

In order to construct a hierarchy it is necessary to have a similarity between
individuals and another function that measures the similarity between clusters.
The second function is called the aggregation index.

Definition 4. A symmetrical and nonnegative application
δ : P(Ω)× P(Ω) → R is called aggregation index between clusters if it verifies:

• ∀h1, h2 ∈ P(Ω) : δ(h1, h2) ≥ 0
• ∀h1, h2 ∈ P(Ω) : δ(h1, h2) = δ(h2, h1)

There are several aggregation indices [4] that depend on the similarity s chosen.
In this paper we use the aggregation index based on the minimum [5] defined by:

δ(h1, h2) = min{s(ωi, ωj) | ωi ∈ h1, ωj ∈ h2} (3)

If a hierarchy has associated an index that measures the homogeneity degree
between the individuals belonging to the same cluster it is called indexed hierarchy.
We refer to this index by the hierarchical index.

Definition 5. An indexed hierarchy is a pair (H, f) where H is a hierarchy and
f is an application H over R+ such that:

• f({ω}) = k (∀ω ∈ Ω)
• ∀h′ ∈ H : h ( h′ ⇒ f(h) > f(h′)

The hierarchical index is always obtained by means of the aggregation index.
In this paper we define the hierarchical index of a new cluster h obtained from the
union of two clusters h = h1 ∪ h2, by means of f(h) = δ(h1, h2).
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An algorithm for the construction of an indexed hierarchy

The algorithms that are used to obtain an indexed hierarchy have the same struc-
ture, the only differences in them is the way to compute the similarities between
clusters [3].

The input of this algorithm is the k-set Ω and the aggregation index δ. The
output is an indexed hierarchy (H, f).

1 Place each individual of Ω in its own cluster (singleton), creating the list of
clusters L = P0

L = P0 = {S1 = {ω1}, S2 = {ω2}, . . . , SN = {ωN}}

In this moment δ({ωi}, {ωj}) = s(ωi, ωj) and f({ωi}) = k (1 ≤ i < j ≤ N)
2 Find the two closest clusters Si, Sj with 1 ≤ i < j ≤ N , which will form a new

class Si = Si ∪ Sj .
3 Remove Sj from L.
4 Compute the aggregation index, by equation (3), between all the pair of clusters

in L.
5 Go to step 2 until there is only one set remaining.

Remark: If at step 2 there are more than one possibility, then one of them is chosen
at random so the hierarchy obtained is not unique.

3 Hierarchical Clustering of a Group of Individuals

3.1 Designing a P System

The goal of this paper is to obtain one hierarchical clustering of a k-set Ω, of N
different individuals by means of the cellular computing with membranes. We con-
sidered each individual ωi ∈ Ω by a k-tuple of dichotomizing variables, Ω ⊆ {0, 1}k

which is denoted by ωi = (ωi1, ωi2, . . . , ωik). The similarity between individuals
that we use is the following:

s(ωi, ωj) =
k∑

t=1

(1− |ωit − ωjt|)

This similarity measures the number of equal components between two indi-
viduals.

Let PNk = (ωij)1≤i≤N,1≤j≤k be the matrix formed by the k values of N indi-
viduals to classify. We define the P system of degree N with external output,

Π(PNk) = (Γ (PNk), µ(PNk),M1,M2, . . . ,MN−1,MN , R, ρ)

associated with the matrix PNk, as follows:
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• Working alphabet:

Γ (PNk) = {ejs, djs : 1 ≤ j ≤ N, 1 ≤ s ≤ k} ∪ {as, bs : 1 ≤ s ≤ k} ∪
{Sij , Cij : 1 ≤ i < j ≤ N} ∪ {βi : 0 ≤ i ≤ k − 2} ∪
{αijt, Xijt : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1} ∪ {γi : 1 ≤ i ≤ N} ∪
{εi : 0 ≤ i ≤ 3k − 2} ∪ {ηi : 0 ≤ i ≤ (N − 1)(3k − 1)} ∪ {]}

• Membrane structure: µ(PNk) = [N [1 ]1 [2 ]2 . . . [N−1 ]N−1 ]N .
• Initial multisets:

Mi = {a(N−i)ωis
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1} ∪

{b(N−i)(1−ωis)
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1} ∪

{eωjs

js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N} ∪
{d(1−ωjs)

js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N} ; 1 ≤ i ≤ N − 1

MN = {γN , ε0, η0};
• The set R of evolution rules consists of the following rules:

– Rules in the skin membrane labeled N :
r0 = {ε0 → ε1β0} ∪ {εi → εi+1 : 1 ≤ i ≤ 3k − 2 ∧ i 6= k}∪

{ηi → ηi+1 : 0 ≤ i ≤ (N − 1)(3k − 1)− 1}

ru = {βu−1S
k−u
ij → αij(k−u) : 1 ≤ i < j ≤ N} 1 ≤ u ≤ k − 1

r′u = {βu−1 → βu} 1 ≤ u ≤ k − 1

r′k−1 = {η(N−1)(3k−1) → (], out)}

rk = {εkγqαijt → εk+1X
q−2
ijt γq−1(Xijt, out) : 2 ≤ q ≤ N,

1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1}

r′k = {εk → εk+1}

rk+1 = {XijtSipSjp → CipXijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSipSpj → CipXijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpiSpj → CpiXijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}

rk+2 = {XijtSip → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSjp → Xijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpi → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}

rk+3 = {Cij → Sij : 1 ≤ i < j ≤ N}∪
{ε3k−1X

q−2
ijt γq−1 → ε1β0γq−1 : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1}

r′k+3 = {ε3k−1 → ε1β0}
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– Rules in the membrane labeled i {1 ≤ i ≤ N − 1} :
rk+4 = {asejs → (Sij , out) : 1 ≤ s ≤ k, i + 1 ≤ j ≤ N}

rk+5 = {bsdjs → (Sij , out) : 1 ≤ s ≤ k, i + 1 ≤ j ≤ N}

• The partial order relation ρ over R consists of the following priority relations:
– Priority relation on the membrane labeled i with 1 ≤ i ≤ N − 1: ρi = ∅
– Priority relation on the skin membrane labeled N :

ρN = {r1 > r′1 > r2 > r′2 > . . . > rk−1 > r′k−1} ∪ {rk > r′k}∪
{rk+1 > rk+2 > rk+3 > r′k+3}

3.2 An Overview of Computations

At the beginning of a computation the membrane labeled i, with 1 ≤ i ≤ N − 1,
contains the objects as, bs, ejs, djs with 1 ≤ s ≤ k and i + 1 ≤ j ≤ N . In this
membrane the presence or absence of the objects as, bs encode the values of the
individual ωi. If the value of ωis is equal to 1 we have the object as and if the
value ωis is equal to 0 we have the object bs.

The objects ejs, djs with a ≤ s ≤ k and i < j ≤ N are also in this membrane,
and they codify the values of the k components of the individuals ωj . If the value
of the component s is 1, i.e. ωjs = 1 then the membrane i contains the object ejs,
if ωjs = 0 then the membrane i contains the object djs.

Initially, the skin membrane contains the objects γN , ε0 and η0. The evolution
of the object γN allows us to know the number of clusters in any configuration
of the P system: when the object γi appears, then the individuals are grouped in
i clusters. We use the object ε0 in order to synchronize in 3k − 1 steps the loop,
that allows us to unite two clusters with maximum similarity. The object η0 is a
counter used to stop the P system in the configuration (3k− 1)(N − 1) sending in
the environment the object ].

In the initial configuration the only rules that can be applied in membrane
labeled i with 1 ≤ i ≤ N − 1 are rk+4, rk+5, that send the objects Sij with
1 ≤ i < j ≤ N to the skin membrane. The multiplicity of these objects allows
us to know the similarity between individuals of the set Ω, that is the number
of equal components between these individuals. In this configuration the rule r0

constructs the object β0.

¿From this configuration the computation of the P system is formed by loops
of 3k−1 steps. Each one of these loops is formed by two very differentiated stages.
The first stage is formed by k steps and begins with the object β0. In these steps
the object Sij with maximum multiplicity is selected encoding the maximum sim-
ilarity between the clusters i and j. In the k-th step of the loop the rule rk creates
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the objects Xijt in the skin membrane and sends a copy to the environment. This
object represents the clusters that have the highest similarity, t, that can be joined
to form a new cluster. Moreover, in this step the object γq is transformed in the
object γq−1, encoding the fact that two clusters have been joined.

The second stage is formed by 2k − 1 steps. In the skin membrane there are
the objects Xijt meaning that a new cluster i is formed by the union of the
previous clusters i, j. The rules rk+1, rk+2, rk+3 calculate the similarities between
new cluster i and the other clusters, this information is kept in the multiplicity of
the objects Sip.

In the (3k− 1)-th step of the loop the rule rk+3 transforms the object ε3k−1 in
the objects β0 and ε1 that allow us to go to the top of the loop.

The first partition consist of N singletons; in each loop two clusters are joined
so it is necessary N − 1 loops to obtain the last partition that consists of a cluster
containing all N individuals. Therefore the loop repeats N − 1 times and the rule
r′k−1 is applied finalizing the P system.

3.3 Formal Verification

In this section we are going to show that the P system Π(PNk) is non-deterministic,
but, in spite of this for any computation we will obtain a solution of the clustering
problem.

First of all, let us list the necessary resources to construct the P system Π(PNk)
from the matrix PNk.

• Size of the alphabet: Θ(N2 · k).
• Sum of the sizes of initial multisets: Θ(N · k).
• Maximum of rules’ lengths: Θ(N).
• Number of rules: Θ(k ·N3).
• Number of priority relations: Θ(k2 ·N6).
• Cost of time: Θ(N · k).

Bearing in mind the recursive description of the rules and that the amount of
resources is polynomial in N, k, it is possible to construct the system Π(PNk) from
the matrix PNk by means of a Turing machine working in polynomial time.

Given a computation C of the P system Π(PNk), for each p ∈ N we denote by
Cp the configuration of the P system obtained after the execution of p steps. For
each level l ∈ {1, 2, . . . , N}, we denote by Cp(l) the multiset of objects contained
in the membrane labeled l in the configuration Cp.

The following result proves that in the configuration C1, the multiplicity of
the object Sij , ∀1 ≤ i < j ≤ N , represents the similarity between the individual
ωi = (ωi1, . . . , ωik) and the individual ωj = (ωj1, . . . , ωjk).
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Proposition 1. Let C an arbitrary computation of the P system. If
t
(1)
ij = max{t : St

ij ∈ C1(N)} ∀i, j, t (1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1)

then t
(1)
ij =

∑k
s=1(1− | ωis − ωjs |).

Proof. In the initial configuration we have

C0(i) = {a(N−i)ωis
s , b(N−i)(1−ωis)

s , e
ωjs

js , d
(1−ωjs)
js | i ≤ j ≤ N, ωis ∈ {0, 1}}

with 1 ≤ i ≤ N − 1.
The only rules that can be applied are rk+4 and rk+5.The rule rk+4 is only

possible to apply when the component s of the individuals ωi and ωj is equal 1.
The rule rk+5 is only applied when the component s of the individuals ωi and ωj

is equal 0.
Whenever one of these rules is applied the object Sij goes out to the skin

membrane. Then in C1(N) the multiplicity of the objects Sij will coincide with the
number of equal components between the individuals ωi and ωj , i.e. | ωis−ωjs |= 0.
Therefore the multiplicity of the objects Sij is

t
(1)
ij =

k∑
s=1

(1− | ωis − ωjs |)

that is, t
(1)
ij corresponds to the similarity between the individuals ωi and ωj . ¤

From now on we denote the maximum multiplicity of the objects Sij in the
step one of the n-th loop of the computation by

t
(n)
ij = max{t : St

ij ∈ C1+(n−1)(3k−1)(N)}
In the following proposition we prove that each 3k − 1 steps is constructing

the object β0 so this object is in the skin of all the configurations of the type
1 + n(3k − 1) with 1 ≤ n ≤ N − 2. Moreover we prove in what configuration the
object εj with 1 ≤ j ≤ 3k − 1 appears.

The objects β0 and ε1 determine the moment that the loop starts and the
object ε3k−1 determines when the loop finishes.

Proposition 2. For each n (0 ≤ n ≤ N − 2), we have:

a) β0 ∈ C1+n(3k−1)(N)

b) If 1 ≤ j ≤ 3k − 1 then εj ∈ C1+n(3k−1)+(j−1)(N)

Proof. We prove this proposition by induction on n.
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• For n = 0, it is necessary to verify that β0 ∈ C1(N), and εj ∈ Cj(N), ∀ 1 ≤ j ≤
3k − 1.
In the initial configuration we have ε0 ∈ C0(N) that allows us to apply one of
the rules r0 in order to obtain ε1, β0 ∈ C1(N), so a) is proved for n = 0.
In the following k−1 steps the rules r0 will be applied transforming the object
ε1 until we obtain the object εk ∈ Ck(N). In this configuration if there are
the objects αijt, γq ∈ Ck(N) the rule rk will be applied, or the rule r′k will be
applied. In both cases εk evolves to εk+1 ∈ Ck+1(N).
In the successive configurations the rule r0 transforms the objects εj ∈ Cj(N),
k + 1 ≤ j ≤ 3k − 2 until we obtain the object ε3k−1 ∈ C3k−1(N).

• Let us suppose the hypothesis for 0 ≤ n < N − 2. Then, we will show that
εj ∈ C1+(n+1)(3k−1)+(j−1)(N), ∀ 1 ≤ j ≤ 3k − 1 and β0 ∈ C1+(n+1)(3k−1)(N).
By induction hypothesis ε3k−1 ∈ C1+n(3k−1)+(3k−1−1)(N) = C(n+1)(3k−1)(N).
If in this configuration there is some object Xijt the rules rk+3 will be applied
and in the other case the rule r′k+3 will be applied. In both cases the object
ε3k−1 is transformed in ε1, β0 ∈ C1+(n+1)(3k−1)(N). So that a) is proved.

Applying k − 1 times the rules r0 we obtain ∀ 1 ≤ j ≤ k that the object
εj ∈ C1+(n+1)(3k−1)+(j−1)(N). In the configuration C1+(n+1)(3k−1)+(k−1)(N) the
object εk is transformed in the object εk+1 ∈ C1+(n+1)(3k−1)+k(N) by means
of one of the rules rk or r′k. Then applying the rules r0 successively we obtain
∀ k + 1 ≤ j ≤ 3k − 1 that the object εj ∈ C1+(n+1)(3k−1)+(j−1)(N).

¤

Remark: According to Proposition 2 we have:
εk ∈ C1+n(3k−1)+k−1(N) = Ck+n(3k−1)(N) ∀n 0 ≤ n ≤ N − 2

Corollary 1. The objects Xijt are sent to the environment at moments of the type
C1+n(3k−1)+k with 0 ≤ n ≤ N − 2.

Proof. The only rule that sends some object Xijt to the environment is the rule
rk. In order to be able to apply this rule the object εk is necessary, that verifies
εk ∈ C1+n(3k−1)+k−1(N) with 0 ≤ n ≤ N − 2 by Proposition 2.

Therefore the objects Xijt can only be sent to the environment in the following
configuration, that is Xijt ∈ C1+n(3k−1)+k(env). ¤

Proposition 3. The configuration C(N−1)(3k−1) sends to the environment the halt
object ].

Proof. Applying (N − 1)(3k− 1) times the rule r0 the object η0 ∈ C0(N) is trans-
formed to η(N−1)(3k−1) ∈ C(N−1)(3k−1)(N). In this configuration the rule r′k−1

sends the halt object ] to the environment. ¤
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In the following result we prove that it is only possible to modify the environ-
ment in the k-th step of the loop.

Corollary 2. Let C be an arbitrary computation of the P system. For each
0 ≤ n ≤ N − 2 the following assertions hold:

a) For each r (1 + n(3k − 1) < r < 1 + n(3k − 1) + k) we have:

Cr(env) = C1+n(3k−1)(env)

b) For each r (1 + n(3k − 1) + k < r < 1 + n(3k − 1) + 3k − 1) we have:

Cr(env) = C1+n(3k−1)+k(env)

Proof. ¿From Proposition 3 the only rule that sends some objects to the envi-
ronment before the halting configuration is the rule rk. From Corollary 1 this
rule sends the objects Xijt to the environment in the configuration C1+n(3k−1)+k.
Therefore, for each r ∀r 1 + n(3k − 1) < r < 1 + n(3k − 1) + k, Cr(env) =
C1+n(3k−1)(env) and ∀r 1 + n(3k − 1) + k < r < 1 + n(3k − 1) + 3k − 1
Cr(env) = C1+n(3k−1)+k(env) concluding the proof of a) and b). ¤

In the following results we will prove that in each loop one object Xijt is
sent to the environment. If a loop exists that doesn’t send any object Xijt to the
environment in all the following loops no more objects are sent to the environment.
Therefore a configuration always exists from which any object Xijt is not sent to
the environment.

Firstly we prove that if in the k-th step of the loop the rule rk is not possible
to be applied then in the following loop it is not possible to apply this rule either.
This is because the objects Sij do not exist in the skin membrane.

Proposition 4. For each n (0 ≤ n ≤ N − 2) if the rule rk cannot be applied in
the configuration C1+n(3k−1)+k−1, then it cannot be applied in the configuration
C1+(n+1)(3k−1)+k−1.

Proof. In order to apply the rule rk it is necessary to have the objects εk, γq and
αijt. According to Proposition 2 εk ∈ C1+n(3k−1)+k−1(N) for any n.

With the object γq only the rules rk and rk+3 are applied, this object never
disappears, so it always remains in the skin membrane.

The object αijt is produced by means of the rule ru (1 ≤ u ≤ k − 1). In order
to apply this rule it is necessary to have the object βu−1 and some object Sij . The
object βu−1 is produced by means of the rules r′1, r

′
2, . . . , r

′
u−1.

Therefore if in the configuration C1+n(3k−1)+k the rule rk cannot be applied, it
is because the object αijt does not exist, then the objects Sij ∈ C1+n(3k−1)(N) do
not exist.

¿From the configuration C1+n(3k−1)+k−1 to the configuration C1+(n+1)(3k−1)+k−1

in the skin membrane the only rule that can produce the objects Sij is the rule
rk+3. To apply this rule, the objects Cij are necessary, that are produced in the
rule rk+1 from the objects Sij . As the objects Sij do not exist the rule rk+1 cannot
be applied. ¤
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The following result proves that if the environment in the k-th step of the loop
n + 1 is equal to the environment in the k-th step of the loop n then the environ-
ment is the same until the halting configuration.

Corollary 3. For each n (0 ≤ n ≤ N − 2) if

C1+n(3k−1)+k(env) = C1+(n+1)(3k−1)+k(env)

then for each n′ (n ≤ n′ ≤ N − 2) we have

C1+n(3k−1)+k(env) = C1+n′(3k−1)+k(env)

Proof. We prove by induction that

C1+(n+j)(3k−1)+k(env) = C1+(n+j+1)(3k−1)+k(env) ∀j(0 ≤ j ≤ N − n− 3)

• The case base, j = 0, corresponds to the hypothesis of the corollary, so
C1+n(3k−1)+k(env) = C1+(n+1)(3k−1)+k(env).

• We suppose true for the cases 0 ≤ j < N − n− 3. Let us show that the result
is true for j + 1.
By induction hypothesis we have

C1+(n+j)(3k−1)+k(env) = C1+(n+j+1)(3k−1)+k(env)

that is, in the previous configuration to these it has not been able to send
any object to the environment, that is the rule rk has not been possible to
apply. By Proposition 4 if in the configuration C1+(n+j+1)(3k−1)+k−1 cannot be
applied the rule rk in the configuration C1+(n+j+2)(3k−1)+k−1 cannot be applied
either. Therefore it is not possible to send any object to the environment and
C1+(n+j+1)(3k−1)+k(env) = C1+(n+j+2)(3k−1)+k(env). ¤

We are going to prove that a loop always exists from any object Xijt is sent to
the environment, so it is not possible to apply the rule rk.

Corollary 4. For each computation C there exists an unique object νC (1 ≤ νC ≤
N − 2) such that in the configuration C1+(νC−1)(3k−1)+k the rule rk is applicable
and in the configuration C1+(νC)(3k−1)+k the rule rk is not applicable.

Proof. By Proposition 4 and by Corollary 3 if in the configuration C1+(νC)(3k−1)+k−1

the rule rk is not applicable, then for each j (νC ≤ j ≤ N − 2) we have
C1+νC(3k−1)+k(env) = C1+j(3k−1)+k(env).
Therefore, the rule rk is not applicable in any configuration of the type C1+j(3k−1)+k−1,
∀j νC ≤ j ≤ N − 2. ¤

The following result allows us to give a meaning to the value t of the object
Xijt.
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Proposition 5. Let C be an arbitrary computation of the P system and let the
object X

injnt
(n)
injn

that is sent to the environment by the rule rk in the configuration
C(k+1)+n(3k−1)−1. Then, we have

t
(n)
injn

= max{t | St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N}

Proof. As the rule rk is applicable in the configuration C(k+1)+n(3k−1)−1 then
α

injnt
(n)
injn

∈ C(k+1)+n(3k−1)−1. The object α
injnt

(n)
injn

is obtained from the applica-

tion of one of the rules r
k−t

(n)
injn

over the object S
t
(n)
injn

ij , where t
(n)
injn

is the maximum

of the multiplicities of the objects Sij . If another t′ > t
(n)
injn

exists then the rule
rk−t′ will be applied and so the rule r

k−t
(n)
injn

has not been applied. ¤

The following result proves that the maximum multiplicity to the objects Sij

pertaining to the skin membrane in any loop n is always greater or equal to the
multiplicity the objects Sij of the following loop n + 1.

Proposition 6. Let wn = max{t : St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N}, with

0 ≤ n ≤ N − 2. Then wn ≥ wn+1, for each n.

Proof. If wn = max{t : St
ij ∈ C1+n(3k−1)(N)}, in the following configura-

tions C1+n(3k−1) the rule r0 is applied successively and the rules with priority
r′1, r

′
2, . . . , r

′
wn−1, rwn until arriving at the configuration C1+n(3k−1)+wn

. The ob-
ject Sij is not used in the rules r′1, r

′
2, . . . , r

′
wn−1. For Proposition 5 in the rule

rwn is used the object Sij that have the maximum multiplicity equal to wn. By
this rule the object Sij is eliminated by the membrane labeled by N , therefore
wn ≥ max{t : St

ij ∈ C1+n(3k−1)+wn
(N)}.

From this configuration the rule r0 is applied k−wn times until we obtain the
object εk. In these configurations the objects Sij do not evolve.

• If wn 6= 0, then in the configuration C1+n(3k−1)+k−1 when the rule rk+1 is
applied the information of some objects Sij is sent to the object Cij and later
this information is transformed in the object Sij by means of the rule rk+3.
The rule rk+2 deletes some objects Sij , so the multiplicity of these objects
never increases, it is only possible to decrease. After that the rule r0 is applied
since to arrive at the configuration C1+(n+1)(3k−1).
So, wn+1 = max{t : St

ij ∈ C1+(n+1)(3k−1)(N)} ≤ wn.
• If wn = 0, then the objects Sij do not belong to the skin membrane and by

Proposition 4 it is not possible to produce any object Sij , so: wn+1 = max{t :
St

ij ∈ C1+(n+1)(3k−1)(N)} = 0. ¤

Remark: According to Proposition 6 we obtain t1 ≥ t2 ≥ . . . ≥ tn.

By the following result we show that if a loop goes out to the environment an
object of the type Xijt, then in the following loop the objects Sij , Si′j , Sji′ ,



198 M. Cardona et al.

i′ /∈ {i, j} disappears from the skin membrane. That is, at the moment that two
clusters {i, j} are joined a new class i is formed and all the objects Si′j′ that have
subscript j disappear.

Proposition 7. Let C be an arbitrary computation of the P system. Let

X
i1j1t

(1)
i1j1

, X
i2j2t

(2)
i2j2

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env), with 1 ≤ n ≤ νC

If Sij ∈ C1+n(3k−1)(N) then

a) (i, j) /∈ {(i1, j1), . . . , (in, jn)}.
b) {i, j} ∈ {1, . . . , N} − {j1, . . . , jn}.
Proof. We prove the result by induction on n.

• For n=1.
If in the configuration Ck the rule rk sends the object X

i1j1t
(1)
i1j1

to the environ-

ment, then by Proposition 6 in the configuration C
k−t

(1)
i1j1

with 1 ≤ t
(1)
i1j1

< k the

rule r
k−t

(1)
i1j1

has had to apply so the objects Si1j1 have disappeared. Therefore

the objects Sij ∈ C1+(3k−1)(N) verify that (i, j) /∈ {(i1, j1)}.
In the following configurations when we apply the rule rk+1 the pairs of objects
(Si1p, Sj1p), (Si1p, Spj1), (Spi1 , Spj1) are transformed respectively to the objects
Ci1p, Ci1p, Cpi1 , these objects do not have the subscript j1. After that the rule
rk+2 is applied in order to eliminate the objects
Si1p, Sj1p, Spi1 , Spj1 ∈ C1 that have not been eliminated in the previous con-
figurations. By these rules all the objects Sij with {i, j} ∩ {i1, j1} 6= ∅ have
disappeared.
After that when we apply the rule rk+3 the objects Cij , i1 ∈ {i, j} are trans-
formed in the objects Sij , i1 ∈ {i, j}. Therefore if the objects Sij ∈ C1+(3k−1)

then (i, j) /∈ {(i1j1)}, {i, j} ∈ {1, . . . , N} − {j1}.

• Let us suppose the proposition holds for 1 ≤ n < νC . Let us show that the the
result is held for n + 1.
If the object X

in+1jn+1t
(n+1)
in+1jn+1

∈ Ck+n(3k−1)(env) by Proposition 6 in the

configuration C
k−t

(n+1)
in+1jn+1

+n(3k−1)
with 1 ≤ t

(n+1)
in+1jn+1

< k the rule r
k−t

(n+1)
in+1jn+1

has had to apply and the objects Sin+1jn+1 have disappeared. Therefore the
objects Sij ∈ C1+(n+1)(3k−1)(N) verify that (i, j) /∈ {(in+1, jn+1)}, by induction
hypothesis (i, j) /∈ {(i1, j1), . . . , (in, jn)} then
(i, j) /∈ {(i1, j1), . . . , (in+1, jn+1)}.
In the following configurations when we apply the rule rk+1 the pairs of objects
(Sin+1p, Sjn+1p), (Sin+1p, Spjn+1), (Spin+1 , Spjn+1) are transformed respectively
in the objects Cin+1p, Cin+1p, Cpin+1 , these objects do not have the subscript
jn+1. After that the rule rk+2 is applied in order to eliminate the objects
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Sin+1p, Sjn+1p, Spin+1 , Spjn+1 ∈ C1+n(3k−1) that have not been eliminated in the
previous configurations, with these two rules all the objects Sij with {i, j} ∩
{in+1, jn+1} 6= ∅ have disappeared.
When we apply the rule rk+3 the objects Cij , in+1 ∈ {i, j} are transformed in
the objects Sij , in+1 ∈ {i, j}.
So if Sij ∈ C1+(n+1)(3k−1)(N) then
(i, j) /∈ {(in+1jn+1)}, {i, j} ∈ {1, . . . , N} − {jn+1}.
And by the induction hypothesis Sij ∈ C1+(n+1)(3k−1)(N)
(i, j) /∈ {(i1j1), . . . , (injn)}, {i, j} ∈ {1, . . . , N} − {j1 . . . jn} therefore
(i, j) /∈ {(i1j1), . . . , (in+1jn+1)}, {i, j} ∈ {1, . . . , N} − {j1 . . . jn+1}
concluding the proof of b). ¤

In the following proposition we study how the multiplicities of the objects Sij

changed at the moment that two clusters joined.

Proposition 8. Let C be an arbitrary computation of the P system. Let us sup-
posse that X

i1j1t
(1)
i1j1

, X
i2j2t

(2)
i2j2

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env) with 1 ≤ n ≤ νC,

and t
(n)
ij = max{t : St

ij ∈ C1+n(3k−1)}. Then,

• If in /∈ {i, j} then t
(n+1)
ij = t

(n)
ij . That is, the multiplicity of the objects Sij is

the same in the configurations C1+n(3k−1) and C1+(n+1)(3k−1).
• If 1 ≤ in < jn < p ≤ N then t

(n+1)
inp = min{t(n)

inp, t
(n)
jnp}. That is, the multiplic-

ity of the objects Sinp corresponds to the minimum multiplicity of the objects
Sinp, Sjnp.

• If 1 ≤ in < p < jn ≤ N then t
(n+1)
inp = min{t(n)

inp, t
(n)
pjn
}. That is, the multiplic-

ity of the object Sinp corresponds to the minimum multiplicity of the objects
Sinp, Spjn .

• If 1 ≤ p < in < jn ≤ N then t
(n+1)
pin

= min{t(n)
pin

, t
(n)
pjn
}. That is, the multiplic-

ity of the object Spin corresponds to the minimum multiplicity of the objects
Spin , Spjn .

Proof. For the proof of Proposition 7 when we apply the rule rk+1 in the con-
figuration Ck+(n−1)(3k−1) the pairs of objects (Sinp, Sjnp), (Sinp, Spjn

), (Spin
, Spjn

)
are transformed respectively in the objects Cinp, Cinp, Cpin

. Therefore the num-
ber of objects Cinp, Cinp, Cpin are the same respectively of the pairs of the ob-
jects (Sinp, Sjnp), (Sinp, Spjn), (Spin , Spjn). After that the rule rk+2 is applied in
order to eliminate the objects Sinp, Sjnp, Spin , Spjn ∈ C1+(n−1)(3k−1) that have
not been eliminated in the previous configurations. So the multiplicity of the ob-
jects Cinp, Cinp, Cpin is respectively equal to min{t(n)

inp, t
(n)
jnp}, min{t(n)

inp, t
(n)
pjn
}, and

min{t(n)
pin

, t
(n)
pjn
}. When we apply the rule rk+3 the objects Cij are transformed in

the objects Sij . ¤

Next, we define how the partition of the individuals is formed from the objects
sent to the environment.
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Definition 6. Given a computation C of the P system we denote the succession of
partitions of the set of the individuals by ∆C

0 , ∆C
1 , . . . ,∆C

θ . These partitions are
constructed recursively as follows:

The initial partition is formed by the initial individuals,
∆C

0 = {B0
q1
0
, . . . , B0

qN
0
} with q0

i = i y B0
i = {ωi} ≡ {i}

The partition ∆C
1 is constructed from the object X

i1j1t
(1)
i1j1

∈ Ck+1(env) with

1 ≤ i1 < j1 ≤ N as follows:

As {q1
0 , . . . , qN

0 } = {1, . . . , N} then {i1, j1} ⊆ {q1
0 , . . . , qN

0 }.
If i1 = qu

0 , j1 = qs
0 with 1 ≤ u < s ≤ N , then the new cluster is

B1
qu
1

= B0
qu
0
∪B0

qs
0

with qu
1 = qu

0 and

B0
qs
0

/∈ ∆C
1

B1
l = B0

l for l ∈ {q1
0 , . . . , qN

0 } − {qu
0 , qs

0}
Then the new partition obtained is ∆C

1 = {B1
q1
1
, . . . , B1

qN−1
1

}

In a recursive manner we obtain the partition ∆C
n+1 as follows:

¿From the objectsX
i1j1t

(1)
i1j1

, . . . Xinjntinjn
(n) ∈ C(k+1)+(n−1)(3k−1)(env) the parti-

tion ∆C
n = {Bn

q1
n
, . . . , Bn

qN−n
n

} have been obtained and in the configuration C(k+1)+n(3k−1)

the object X
in+1jn+1t

(n+1)
in+1jn+1

with 1 ≤ in+1 < jn+1 ≤ N is sent to the environment.

By Proposition 7, {in+1, jn+1} ∈ {1, . . . , N}−{j1, j2, . . . , jn} therefore in+1 <
jn+1 and {in+1, jn+1} ⊆ {q1

n, . . . , qN−n
n }.

By construction of the partition it is verified {q1
n, . . . , qN−n

n } ⊂ {1, . . . , N} and
we have {j1, j2, . . . , jn} ∩ {q1

n, . . . , qN−n
n } = ∅.

Let in+1 = qu
n, jn+1 = qs

n with 1 ≤ u < s ≤ N , then the new cluster is
Bn+1

qu
n+1

= Bn
qu

n
∪Bn

qs
n

with qu
n+1 = qu

n

Bn
qs

n
/∈ ∆C

n+1

Bn+1
l = Bn

l with l ∈ {q1
n, . . . , qN−n

n } − {qu
n, qs

n}
Then ∆C

n+1 = {Bn+1
q1

n+1
, . . . , Bn+1

qN−n−1
n+1

}

Theorem 1. Let C be an arbitrary computation of the P system. Let us suppose

that S
t
(n)
ij

ij ∈ C1+n(3k−1)(N) and S
t
(n)
ij +1

ij /∈ C1+n(3k−1)(N), with 1 ≤ n ≤ νC. Then,

t
(n)
ij is the minimum similarity between any pair of individuals pertaining to Bn−1

i ∪
Bn−1

j . That is, t
(n)
ij corresponds to the aggregation index between the groups Bn−1

i

and Bn−1
j :

t
(n)
ij = min{t′ : St′

i′j′ ∈ C1(N), St′+1
i′j′ /∈ C1(N) : i′, j′ ∈ Bn

i ∪Bn
j }

Proof. We prove the theorem by induction on n.
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• For n = 0.
By Proposition 1 if S

t
(0)
ij

ij ∈ C1(N) then t
(0)
ij corresponds to the similarity be-

tween individuals i, j.

• Let us suppose it is certain for n with 1 ≤ n < νC .

• Let us show that the theorem is held for n + 1.
In the configuration C(k+1)+(n−1)(3k−1) the partition ∆C

n = {Bn
q1

n
, . . . , Bn

qN−n
n

} is
obtained and in the configuration C(k+1)+n(3k−1) the object Xin+1jn+1t

in+1j
(n+1)
n+1

with 1 ≤ in+1 < jn+1 ≤ N is sent to the environment, then:

– For Proposition 8 if in+1 /∈ {i, j} then t
(n+1)
ij = t

(n)
ij . By the induction

hypothesis t
(n)
ij is the aggregation index between the groups i, j and for the

definition 6, Bn+1
i = Bn+1

i , Bn+1
j = Bn+1

j , then the theorem is true.

– For Proposition 8 we have t
(n+1)
in+1j = min{t(n)

in+1j , t
(n)
jn+1j} and by induction

hypothesis t
(n)
in+1j , t

(n)
jn+1j corresponds to the minimum similarity between any

pair of individuals pertaining respectively to Bn−1
in+1

∪ Bn−1
j , Bn−1

jn+1
∪ Bn−1

j .

Therefore t
(n+1)
in+1j is the minimum of these two similarities and Bn

in+1
=

Bn−1
in+1

∪ Bn−1
jn+1

then it is verified that the minimum similarity between any
pair of individuals pertaining to Bn

in+1
∪Bn

j . ¤

The following result proves that if in the configuration C(k+1)+(n−1)(3k−1) the
object X

injnt
(n)
injn

goes out to the environment, then when we form the partition

∆C
n the similarities between two individuals obtained in each set of ∆C

n are always
greater or equal than t

(n)
injn

.

Proposition 9. Let C be an arbitrary computation of the P system. Let us sup-
pose that in the configuration C(k+1)+(n−1)(3k−1), with 0 ≤ n ≤ νC − 1, the
object X

injnt
(n)
injn

is sent to the environment, and the new partition is ∆C
n =

{Bn
q1

n
, . . . , Bn

qN−n
n

}. Then, the hierarchical index of the cluster Bn
in

is t
(n)
injn

, and

the hierarchical index of the rest of clusters ∆C
n − {Bn

in
} is greater or equal to

t
(n)
injn

.

Proof. We prove this result by induction on n.
For Definition 6, ∆C

0 = {{ω1}, . . . , {ωN}} and f({ωi}) = k with 1 ≤ i ≤ N .

• For n = 1.
∆C

1 = {B1
q1
1
, . . . , B1

qN−1
1

} with Bi1 = {ωi1 , ωj1} and Bj = {ωj}, ∀j 6= i1.

Then f(Bj) = k with j 6= i1

and f(Bi1) = t
(1)
i1j1

because s(ωi1 , ωj1) = t
(1)
i1j1

≤ k − 1.



202 M. Cardona et al.

• We suppose that is true for any 1 ≤ n ≤ νC . Let us show that the result holds
for n + 1.
In the configuration C(k+1)+n(3k−1) the rule rk sends the object X

in+1jn+1t
(n+1)
in+1jn+1

to the environment, where t
(n+1)
in+1jn+1

is the similarity between the clusters in+1

and jn+1. By construction of the P system t
(n+1)
in+1jn+1

≤ tn and the partition is
∆C

n+1 = {Bn+1
q1

n+1
, . . . , Bn+1

qN−n−1
n+1

} for Definition 6:

– If in+1, jn+1 ∈ Bn
ql

n
then Bn+1

ql
n+1

= Bn
ql

n
and for induction hypothesis

f(Bn+1
ql

n+1
) = t

(n)
injn

≥ t
(n+1)
in+1jn+1

.

– If Bn+1
in+1

= Bn
in+1

∪Bn
jn+1

and δ(Bn
in+1

, Bn
jn+1

) = t
(n+1)
in+1jn+1

, then

f(Bn+1
in+1

) = t
(n+1)
in+1jn+1

. ¤

Proposition 10. The P system Π(PNk) allows us to find a hierarchical clustering.

Proof. ¿From the partition ∆C
0 , ∆C

1 , . . . , ∆C
θ according to Definition 6 we can

obtain an indexed hierarchy P0, P1, . . . , Pm with 1 ≤ m ≤ N − 1.
By Proposition 9 all partitions ∆C

n have a hierarchical index tn = t
(n)
injn

and we
denoted by (∆C

0 , t0), (∆C
1 , t1), . . . , (∆C

θ , tθ) with
t0 > t1 = t2 = . . . tp1 > tp1+1 = . . . = tp2 > . . . > tpm

= . . . = tθ.
In order to construct the partition P0, P1, . . . , Pm we do the following steps:

– P0 = ∆0 = {{ω1}, {ω2}, . . . , {ωN}}.
– The partitions ∆1, . . . , ∆p1 have associated a hierarchical index equal to t1 so

P1 = ∆p1 .
– The partitions ∆p1+1, . . . , ∆p2 have associated a hierarchical index equal to tp2

so P2 = ∆p2 .
– And successively until we have one of the following situations:

– if ∆θ has a hierarchical index tθ = k − 1 then Pm = ∆θ = Ω.
– if ∆θ has a hierarchical index tθ < k − 1 then Pm−1 = ∆θ and Pm = Ω.

¤

4 Conclusions

One of the central issues when we have a set of individuals characterized by a
k-tuple is to obtain a cluster that allows us to group similar individuals.

In this paper we propose a non-deterministic P system with external output to
obtain a hierarchical clustering. This P system gives one of the possible solutions
to the problem. We give an efficient (semi-uniform) solution to the problem of clus-
tering in the framework of the cellular computing with membranes. The solution
is semi-uniform because for each matrix formed by the values of the individuals,
a specific P system with external output is designed. The solution is efficient, be-
cause it is polynomial in order of the number of N individuals and of the number
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of k characteristics. The amount of resources initially required to construct the
system is quadratic in N and k.

The mechanisms of the formal verification of P systems are often a very hard
task. So to have new examples is always interesting, in order to find systematic
processes of formal verification in a model of computation oriented to machines, like
the cellular model. The paper also provides a new example of formal verification
of P systems designed to solve a problem, following a specific methodology valid
in some cases as those considered in the paper.
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Summary. This paper gives a version of the parallel bitonic sorting algorithm of
Batcher, which can sort N elements in time O(log2 N). When applying it to the 2D
mesh architecture, two indexing functions are considered, row-major and shuffled row-
major. Some properties are proved for the later, together with a correctness proof of
the proposed algorithm. Two simulations with P systems are proposed and discussed.
The first one uses dynamic communication graphs and follows the guidelines of the mesh
version of the algorithm. The second simulation requires only symbol rewriting rules in
one membrane.

1 Introduction

P systems, introduced in [19], are powerful computational models, with non-
deterministic as well as parallel features. Deterministic P systems can be also
considered, and the power of their parallel features compared against the power
of other computational models which enjoy parallelism. Along this line we refer
to previous work, which relates P systems with parallel networks of processors,
functioning according to the SIMD paradigm (Single Instruction Multiple Data
machines), in [8], [9], for shuffle-exchange networks, and in [6] for 2D mesh net-
works. The comparison was approached by designing P systems which simulate
the functioning of a specific architecture, when solving a specific problem. In [7]
the general features of this type of approach were abstracted, giving a “blueprint”
for the design of a class of deterministic P sytems, with dynamic communication
graphs, which simulate a given parallel architecture, functioning to implement a
given algorithm.

Among the choices to be made for the problem to solve, the static sorting im-
poses itself, being a central theme in computer science. Although it is well known
that comparison-based sorting algorithms require at least O(N log N) comparisons
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to sort N items, performing many comparisons in parallel can reduce the sorting
time. This paper analyses the bitonic sorting algorithm, one of the fastest parallel
sorting algorithms where the sequence of comparisons is not data-dependent. The
bitonic sorting network was discovered by Batcher [3], who also discovered the net-
work for odd-even sort. These were the first networks capable of sorting N elements
in time O(log2 N). Stone [24] maps the bitonic sort onto a perfect-shuffle inter-
connection network, sorting N elements by using N processors in time O(log2 N).
Siegel [23] shows that bitonic sort can also be performed on the hypercube in
time O(log2 N). The shuffled row-major indexing formulation of bitonic sort on
a mesh-connected computer is presented by Thompson and Kung [25]. They also
show how the odd-even merge sort can be used with snakelike row-major indexing.
Nassimi and Sahni [16] present a row-major indexed bitonic sort formulation for
a mesh with the same performance as shuffled row-major indexing.

Static sorting algorithms have been developped and proposed also in the P
systems area. Among the first approaches, made independently, we mention [2]
and [4], [5]. The problem of sorting with P systems occupies Chapter 8, [1], of the
monograph [10].

We analyze in this paper a version of the bitonic sorting algorithm of Batcher,
and its implementation on the 2D mesh architecture. Section 2 introduces the
mesh topology and the model of computation. In 2.2 we begin the formal study
of indexing functions, and we stress their importance for the passing to a network
architecture. (Some similar work has been done in [12] and [13], but we develop our
own formalism.) In 2.3 we present the algorithm, and the main result, Theorem
1, whose Corrolary is the correctness proof of the algorithm. Other results in
this subsection, like Lemma 3, and the Remarks, are subsequently used to prove
assertions about the algorithm, and, in Section 3, about the simulations with P
systems.

Section 3 is devoted to the presentation of two different simulations of the algo-
rithm with P systems. The first simulation uses dynamic communication graphs,
as in [7]. A generative approach to the sequence of graphs used to communicate
values between the membranes is a novel feature. The second simulation, uses only
one membrane, and symbol rewriting rules.

2 Preliminaries: The bitonic sort on the 2D-mesh

2.1 Model of Computation

The presentation of the bitonic sort on the 2D-mesh architecture is made here
based mainly on the paper [25]. It is the same algorithm as in [21], but with
more emphasis on the routings necessary to compare elements situated at greater
distances on the mesh. Also, some restrictions imposed in [25], will be elimi-
nated, or re-examined, since they were dictated by their explicit connection to
the ILLIAC IV-type parallel computer. In general, our references to parallel ma-
chines/architectures will be at the level of generalization to be found for instance
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in [21]. We also found it useful to formalize properly some aspects related to the
indexing function.

Let us assume as in [25] that we have a parallel computer with N = n × n
identical processors, disposed in a 2D-mesh structure. A processor is connected to
all of its four vertical or horizontal neighbors, except for the processors situated
on the perimeter, which have at most two or three neighbors, as no “wrap-around
connections“ are permitted.

Another assumption is that it is a SIMD (Single Instruction Multiple Data)
machine. During each time unit, a single instruction is executed by a set of proces-
sors. In what follows, only two processor registers and two instructions are needed.
For inter-processor data moves, we will use a routing instruction which copies the
value of a register to a register of a neighbor processor. The second instruction is
the internal comparison between the values of the two registers of a processor.

We define tR the time for one-unit distance routing step, and tC the time
required for one comparison step. Concurrent data movement is allowed, as long
as it is in the same direction; also any number of parallel comparisons can be made
simultaneously.

2.2 The sorting problem and indexing functions

We assume to have an indexing function on the processors that is a one-to-one
mapping from {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} onto {0, 1, . . . , N − 1} and that
initially N integers are loaded in the N processors. Therefore the sorting problem
is defined as moving the jth smallest element to the processor indexed by j, for
all j ∈ {0, 1, . . . N − 1}.

Let I : {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} −→ {0, 1, . . . , N − 1} denote an
indexing function. Two indexing schemes are the following:

(i) Row-major indexing. This is illustrated in Figure 1, and we denote it by I =
RM .

(ii)Shuffled row-major indexing. This is illustrated in Figure 2, and we denote it
by I = sRM .

In order not to make the notation cumbersome, we let the same letter, say
i, stand for an integer in {0, 1, . . . , n − 1}, and for its binary representation as
a string. For n = 2k, as the case will be, i will be a binary string of length k.
Whenever necessary, we complete with zeroes (obviously, to the left) to obtain
strings of the same length. (When we refer to bits of such a string, we count from
1 to n, starting from right to left, such that the “first” bit will be that of the least
significant digit, and so forth. However, when we write such a string, we will write
it with bits numbered from right to left.)

Consider the following definitions:

Definition 1. The row-major indexing function RM is defined by RM(i, j) = ij,
where in the right hand-side we have denoted by ij the string concatenation of the
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0000
0

0001
1

0010
2

0011
3

0100
4

0101
5

0110
6

0111
7

1000
8

1001
9

1010
10

1011
11

1100
12

1101
13

1110
14

1111
15

00 01 10 11

00

01

10

11

Fig. 1. Row-major indexing scheme for a 4× 4 mesh

binary representations of the integers i and j, after they have been brought to the
same length.

More precisely, for every k, we have the bijections

RMk : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1},
defined by

RMk(i1i2 · · · ik, j1j2 · · · jk) = i1i2 · · · ikj1j2 · · · jk.

Let sh (from ’shuffle’) stand generically for the family of bit-shuffle functions
shk : {0, 1, . . . , 22k − 1} −→ {0, 1, . . . , 22k − 1}, defined by

shk(i1i2 · · · ikj1j2 · · · jk) = i1j1i2j2 · · · ikjk.

This is a bijection, with the obvious inverse

ushk(i1j1i2j2 · · · ikjk) = i1i2 · · · ikj1j2 · · · jk,

where ush comes from ’un-shuffle’. In the following we will drop the index k
whenever it is clear from the context.

Definition 2. The shuffled row-major indexing function sRM is defined by sRM(i, j) =
sh(ij), where in the right hand-side we have denoted by ij the string concatenation
of the binary representations of the integers i and j, after they have been brought
to the same length, and sh is the appropriate bit-shuffle function.

More precisely, for every k, we have the bijections

sRMk : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1},
defined by

sRMk(i1i2 · · · ik, j1j2 · · · jk) = shk(i1i2 · · · ikj1j2 · · · jk) =

= i1j1i2j2 · · · ikjk.
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Fig. 2. Shuffled row-major indexing scheme for a 4× 4 mesh

Lemma 1. For every i, j1, j2 ∈ {0, 1, . . . , 2k − 1} with j1 < j2, we have that
sRM(i, j1) < sRM(i, j2). Analogously, for every i1, i2, j ∈ {0, 1, . . . , 2k − 1} with
i1 < i2, we have that sRM(i1, j) < sRM(i2, j).

Proof. The proof is immediate, from the definition of sRM . ¤

Let us consider the following general definition:

Definition 3. We call indexing function on the 2k × 2k mesh a bijection

Ik : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1}.

The problem of sorting on a 2k × 2k mesh is obviously related to an in-
dexing function I: given a family of values (Pij)ij , to sort them means to sort
the corresponding ’linear’ family (PI(i,j))I(i,j), i.e., to find the permutation σk of
{0, 1, . . . , 22k − 1} such that (PσI(i,j))σI(i,j) is ascending (or descending).

Furthermore, when designing or implementing sorting algorithms on the 2D
mesh, through an indexing function I they will be translated into algorithms for
sorting a linear set, (PI(i,j))I(i,j). But, the linear version of the algorithm, for
sorting say an array 〈P0, . . . , P22k−1〉, has to be such that its translation into 2D-
mesh operations be admissible. By this last word we mean to obey certain rules
for the functioning of the 2D mesh as a network of processors. One such rule
is the possibility of a processor to communicate only with its neighbours. Other
rules may involve simultaneous communication with neighbours: a processor may
communicate with two neighbours simultaneously, provided they are on the same
line or column, and that, if the same register is involved, the old value is read and
communicated while the new value is written. Still further rules may involve the
parallel functioning of the network: communications in parallel may be allowed
only if either only lines or only columns are involved at one parallel step.

The above mentioned restrictions can be formulated in a formal manner, lead-
ing to a notion of good indexing function, but this is beyond the scope of this
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paper. Let us just say for now, that, if the linear version of the algorithm performs
a comparison between Pr and Ps, then PI−1(r) and PI−1(s) must be neighbours in
the 2D mesh topology. Since the linear version of the algorithm is also parallel,
whole pairs of families must be mapped by I−1 into adjacent families, and the last
ones are naturally the adjacent lines or columns of the mesh. This justifies to a
certain degree results present in this paper such as Lemma 3.

The choice of the indexing function Ik = sRMk provides the connection be-
tween the bitonic sorting algorithm as presented in [21] and the bitonic sorting
network of [14] and Figure 3.

Let us also note that both RMk
−1 and sRMk

−1 are easy to compute. For a
linear index r = i1i2 · · · ikj1j2 · · · jk,

RMk
−1(r) = RMk

−1(i1i2 · · · ikj1j2 · · · jk) =

= (i1i2 · · · ik, j1j2 · · · jk) = (r div 2k, r mod 2k),

and similarly for sRMk
−1.

2.3 The bitonic sorting algorithm

In Batcher’s bitonic sorting network [3] of order n, the input is a bitonic se-
quence a of n/2 increasing elements followed by n/2 decreasing elements. These
two sequences are merged by first applying n/2 comparators to a0 and an/2, a1

and a(n/2)+1, ... an/2 and an−1. This first-phase partitions the elements into two
bitonic sequences of n/2 smaller elements and of n/2 larger elements. These two
bitonic sequences are further sorted by applying two bitonic merging networks of
size n/2 to each sequence. A bitonic sorting network for 16 elements appears in
Figure 3.

Lemma 2. [3] Given a bitonic sequence 〈a1, a2, . . . , a2n〉 the following hold.

1. d = 〈min{ai, an+i}n
i=1〉 = 〈min{a1, an+1},min{a2, an+2}, . . . , min{an, a2n}〉 is

bitonic.
2. e = 〈max{ai, an+i}n

i=1〉 = 〈max{a1, an+1},max{a2, an+2}, . . . , max{an, a2n}〉
is bitonic.

3. max(d) < min(e).

By an abuse of notations, we shall refer to a sequence of processors as
the sequence of integers stored in one designated register A of the proces-
sors at a certain moment. Similarly, we shall use min / max{Pi, Pj} meaning
min / max{Pi[A], Pj [A]} and refer to such operations as a comparison and inter-
change of values between processors Pi and Pj .

We shall give a generic algorithm for Batcher’s bitonic sorter on an array
〈P0, . . . , P22k−1〉 of processors, independent of the indexing function used. The
algorithm (as illustrated in Figure 3 for k = 2) will consist of 2k stages, num-
bered from 1 to 2k. After each Stage i, the sequence 〈P2ij , . . . , P2ij+2i−1〉 with
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Stage 1 Stage 2 Stage 3 Stage 4
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Fig. 3. A bitonic sorting network of size 16

0 ≤ j ≤ 2k−i − 1 will be an ascending sequence for all j even, and a descending
sequence, for all j odd.

Input: an array 〈P0, . . . , P22k−1〉 of processors
Output: the sequence 〈P0, . . . , P22k−1〉 is ascending

Stage(i)
for t ← i downto 1 do

// compare processors with indices differing on bit t
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
Merge(2tj, 2tj + 2t − 1, order)

end

Bitonic-Sort
for i ← 1 to 2k do

Stage(i)

end
Algorithm 1: Bitonic sort on an array of 22k processors

Given a bitonic sequence of processors 〈P1, P2, . . . , P2n〉, by Merge(1, 2n, ascending)
we mean an operation which yields the sequence:
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〈min{P1, Pn+1}, min{P2, Pn+2}, . . . , min{Pn, P2n},

max{P1, Pn+1}, max{P2, Pn+2}, . . . , max{Pn, P2n}〉.
Analogously, a call to Merge(1, 2n, descending) produces

〈max{P1, Pn+1}, max{P2, Pn+2}, . . . , max{Pn, P2n},

min{P1, Pn+1}, min{P2, Pn+2}, . . . , min{Pn, P2n}〉.
Theorem 1. After each Stage i, the sequence 〈P2ij , . . . , P2ij+2i−1〉, 0 ≤ j ≤ 2k−i−
1 will be an ascending sequence for all j even, and a descending sequence, for all
j odd.

Proof. We shall reason by induction on i. For the base case i = 1 it is immediate
that the statement holds. Now let the statement be true for i and show that is it
also true for i + 1.

First, t = i + 1 and 0 ≤ j ≤ 2k−i−1 − 1. The sequence S for the i + 1 case can
be written as

S = 〈P2i+1j , . . . , P2i+1j+2i−1〉 =

〈P2i2j , . . . , P2i2j+2i−1, P2i(2j+1), . . . , P2i(2j+1)+2i−1〉.
From the induction hypothesis, we have that the sub-sequence

S1 = 〈P2i2j , . . . , P2i2j+2i−1〉

is ascending as 2j is even for any j, and that

S2 = 〈P2i(2j+1), . . . , P2i(2j+1)+2i−1〉

is descending as 2j +1 is odd for any j. Therefore, the whole sequence S is bitonic.
At this point we apply the Merge operation on S, and get S′ = S′1S

′
2.

By Lemma 2 we have that S′1 and S′2 are both bitonic. Moreover, when doing
an ascending merge, max(S′1) < min(S′2) and when doing a descending merge,
min(S′1) > max(S′2). This ensures that the two sequences are relatively ordered
and can be sorted independently in parallel.

For 1 ≤ t < i+1 the Merge operations are the same as in a merging network.
We note that for all 2i+1j ≤ l < 2i+1(j + 1), l div 2i+1 = j and therefore all
subsequent Merge operations for t < i + 1 on these processors will have the same
order as when t = i + 1. ¤

Corollary 1. Given a sequence 〈P0, . . . , P22k−1〉 of processors, Algorithm 1 is cor-
rect.

Proof. The proof is immediate by Theorem 1. At Stage k we have j = 0 and hence
the sequence 〈P0, . . . , P22k−1〉 is ascending. ¤
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Lemma 3. Given a 2k × 2k 2D-mesh indexed with the function sRM and using
Algorithm 1, for any two processors x = 2tj + l and y = 2tj + l + 2t−1, with
0 ≤ l ≤ 2t−1 − 1, 1 ≤ t ≤ i, and 0 ≤ j ≤ 2k−t − 1, which compare and interchange
values inside a call of the form Merge (2tj, 2tj +2t−1, order), the following hold:

(i) the binary representations of x and y differ only on bit t;
(ii)if t is even then x and y reside on the same vertical line of the mesh; if t is

odd they are on the same horizontal line;
(iii)the distance on the mesh between x and y is 2dt/2e−1;
(iv)all processors situated on the same line between x and y are involved in the

same Merge operation (i.e., have indices between 2tj and 2tj + 2t − 1).

Proof. (i) Since x = 2tj + l and l ≤ 2t−1 − 1, we have that l contributes to bits 1
to t− 1 and that 2tj contributes to bits t+1 to 2k. Therefore bit t of x is 0. Simi-
larly, since y = x+2t−1, bit t of y is 1, and all other bits are the same as those of x.

(ii) We apply the ’un-shuffle’ function to x and y and get ush(x) = i1j1 and
ush(y) = i2j2. By the definition of sRM we have that the i is the row index, while
j is the column index. From i) we have that x and y differ on bit t, and hence the
following two cases hold: t is even and i1 6= i2, j1 = j2, or t is odd and i1 = i2,
j1 6= j2. In the first case x and y are on the same column, and in the latter, they
are on the same row.

(iii) Using the notations above, let us assume that t is even and i1 6= i2,
j1 = j2. If x and y differ on bit t, then i1 and i2 will differ on bit t/2, and therefore
|i1 − i2| = 2t/2−1. From ii) x and y are on the same line of the mesh and the
distance between them is |i1 − i2| = 2t/2−1. Similarly, when t is odd and i1 = i2,
j1 6= j2, we have that j1 and j2 differ on bit dt/2e. As before, the distance between
x and y is 2dt/2e−1.

(iv) Consider again the case t even and i1 6= i2, j1 = j2. We have to show
that for all numbers i with i1 ≤ i ≤ i2, we have 2tj ≤ sRM(i, j1) ≤ 2tj + 2t − 1.
But since i1 ≤ i ≤ i2, form Lemma 1, we have that x ≤ sRM(i, j1) ≤ y, which
concludes our proof as 2tj ≤ x and y ≤ 2tj + 2t − 1. Analogously for t odd. ¤

2.4 Applying the bitonic sorting algorithm to the 2D-mesh

Thompson and Kung [25], and Orcutt [18] showed that Batcher’s bitonic sorting
algorithm can be applied to sorting on a mesh-connected parallel computer, once
the indexing function is chosen. In [25] it is noted that a necessary condition for
optimality is that a comparison-interchange on the jth bit be no more expensive
than the (j + 1)th bit, for all j. From (iii) of Lemma 3 we have that the “shuffled
row-major” indexing scheme satisfies such condition, and leads to a complexity of
(14(n− 1)− 8 log n)tR + (2 log2 n + log n)tC .

The algorithm for a 4× 4 is illustrated below and in Figure 4, where by “well
ordered” we reffer to the corresponding comparison directions from Figure 3.
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Fig. 4. Bitonic sorting algorithm applied on a 4× 4 2D-mesh, using shuffled row-major
indexing
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Stage 1 Bitonic sort on pairs of adjacent 1× 1 matrices by the comparison inter-
change indicated, result: “well ordered” 1× 2 matrices. Time: 2tR + tC .

Stage 2 Bitonic sort on 1× 2 matrices, result: 2× 2 matrices. Time: 4tR + 2tC .
Stage 3 Bitonic sort on 2× 2 matrices, result: 2× 4 matrices. Time: 8tR + 3tC .
Stage 4 Bitonic sort on the two 2× 4 matrices. Time: 12tR + 4tC .

At each stage of Algorithm 1, we have a comparison and interchange of values
between two processors. We have seen in Lemma 3 that using the sRM indexing
function, these two processors will sit on the same vertical or horizontal line of the
mesh. In the cases when they are not directly connected, they will have to route
their values through neighbour processors, residing on the shortest path between
(i.e., the line of the mesh on which they are placed). At each Stage i, we will
have a comparison and interchange between processors whose indices differs only
on bit t, with 1 ≤ t ≤ i. Keeping in mind the parallel structure of our machine,
the merging operation becomes a merging of square or rectangular portions of the
mesh. Therefore, using the sRM indexing, the Merge operation defined previously
becomes a Merge operation on sub-arrays of processors situated on the same line
of the mesh. We denote such operation compare-interchange.

For a better understanding of the way a call Merge (2tj, 2tj + 2t − 1, order)
(1 ≤ i ≤ 2k, 1 ≤ t ≤ i, 0 ≤ j ≤ 2k−t − 1) is translated to the 2k × 2k mesh
topology, we shall make the following observations:

Remark 1. The portion of the mesh will have dimensions 2t−dt/2e × 2dt/2e (i.e.,
2t−dt/2e rows and 2dt/2e columns). This is true since 2t processors are involved in
the Merge and from Lemma 3 the maximal length of the sub-arrays involved in
the Merge situated on the same line is 2 · 2dt/2e−1.

Remark 2. For t even, we have a merging of square portions of the mesh of size
2t/2 × 2t/2 and the compare interchange operations are done between processors
residing on the same column of the mesh, For t odd we have a merging of rectan-
gular portions of the mesh of size 2dt/2e−1 × 2dt/2e, and the compare interchange
operation are done between processors residing on the same row of the mesh.

Let us see what are the necessary routings for the case for t = 1 (the proces-
sors are directly connected since 2dt/2e−1 = 1). Consider a call of the form
Merge(x, x + 1, order) Let processors Px and Px+1 have the two registers de-
noted by A and B. Then the first instruction performed is a routing from Px[A] to
Px+1[B]. Next, perform a comparison operation in processor Px+1, and store the
minimum/maximum in register B. Finally, route back to Px the value of the B
register of Px+1, with a total time is 2tR + tC . The pseudo-code is written below,
where by compare(Px+1, ascending|descending) we understand an internal com-
parison in processor Px+1, which places the minimal/maximal value in register B.
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Input: index x and sorting order order
Output: the sequence 〈Px, Px+1〉 is ordered w.r.t. order

route(Px[A], Px+1[B])
compare(Px+1, order)
route(Px+1[B], Px[A])

Algorithm 2: Compare-interchange operation for adjacent processors

Let us now see what is the case when we have to merge an array a of 2i proces-
sors situated on the same line of the mesh, indexed from 0 to 2i − 1, and such
that Pa[j] is neighbour with Pa[j+1] for all 0 ≤ j < 2i − 1. The basic idea is that
we have to shift the values of the first half of the array in the B registers of the
second half, perform a comparison operation in parallel in these processors, and
then shift back the minimal/maximal values. Hence a total time of 2itR + tC .

Input: array of indices a, integer i, and sorting order order
Output: the sequence 〈Pa[0], Pa[1], . . . , Pa[2i−1]〉 is ordered w.r.t. order

compare-interchange(a, i, order)
forall j ← 0 to 2i−1 − 1 in parallel do

// route left one unit in the B registers
route(Pa[j][A], Pa[j+1][B])

for k ← 1 to 2i−1 − 1 do
// shift the values to the second half of the array
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k][B], Pa[j+1+k][B])

forall j ← 2i−1 to 2i − 1 in parallel do
// compare internally
compare(Pa[j], order)

for k ← 2i−1 − 1 downto 1 do
// shift back the results
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k+1][B], Pa[j+k][B])

forall j ← 0 to 2i−1 − 1 in parallel do
// final routing back in the A registers
route(Pa[j+1][B], Pa[j][A])

end

Algorithm 3: Compare-interchange operation for an array of neighbour proces-
sors situated on the same line of the mesh
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3 Modeling with membranes

Given the embedded parallel structure of a P system, modeling a 2D-mesh is a
natural and straightforward approach. In what follows, we will present two such
systems.

3.1 A P system with dynamic communication of 2D-mesh type

The first P system we introduce is along the same general lines as the model pro-
posed in [6]. For each processors Pi, i ∈ {0, 1, . . . , 22k−1} we will have an associated
membrane which we denote i. The two registers A and B of each processors are
coded by two different symbols, say a and b. The number of occurrences of a rep-
resents the value of the A register, and analogously for b. Similarly to tissue-like P
systems, we will have a collection of elementary membranes, connected by certain
graphs, at certain moments of their evolution in time. The graphs we will consider
will be sub-graphs of the total graph of the 2D-mesh network, also sub-graphs of
the identity graph of the 2D-mesh network.

Basically, we have to model:

– Patterns of specific internal processing in each processor: these will be modeled
by symbol rewriting rules.

– Patterns of communication between processors.

In a slightly different manner from [8] or [9], we shall refer to the communica-
tion graph associated to a given architecture with the following conventions: the
vertices of the graph are the processors, and the edges (in our case not oriented as
communications between processors are both ways) are the network connections
characteristic of the architecture.

In the case of the 2k × 2k 2D-mesh with the sRM indexing function, let Gtotal

be the underlying communication graph composed of all edges necessary to the
architecture. We introduce the following notation for the set of vertices of Gtotal:

V (Gtotal) = {0, 1, . . . , 22k − 1}.

Hence, the set of edges is

E(Gtotal) = {(sRM(i, j), sRM(i, j + 1), ) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 2}
⋃

{(sRM(i, j), sRM(i + 1, j)) | 0 ≤ i ≤ 2k − 2, 0 ≤ j ≤ 2k − 1}.
Note that at a certain step of the sorting algorithm not all edges are involved

in communication. Therefore we shall call active sub-graphs of Gtotal those graphs
containing only such edges. We introduce also the identity graph, with

V (Id) = {0, 1, . . . , 22k − 1},

E(Id) = {(sRM(i, j), sRM(i, j)) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 1}
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for modeling internal processing steps.
As in [6], the P system which we shall consider in the sequel, departs from the

classical P systems in two respects:

– The connections between individual membranes of a P system, µ, which was a
tree-like structure of membranes (see [19]), and which in tissue-like P systems
becomes a graph structure, is now, a sequence of graphs.

– The rules of a P system, usually associated to membranes, will now be associ-
ated to communication graphs between membranes.
a) We simulate the internal computations performed by a subset of processors

by the action of symbol or object rewriting rules, at work simultaneously
inside the corresponding subset of membranes. We will associate such rules
to the corresponding active subsets of Id.

b) We simulate the exchange of data performed by the processors with com-
munication rules (symport/antiport rules) between membranes. The com-
munication rules will be associated to the active sub-graphs of Gtotal.

In order to describe the evolution of a P system which simulates the behavior
of the bitonic sorting algorithm in the 2D-mesh architecture, we will use pairs
[graph, rules]. We have graph a sub-graph of Gtotal or Id and rules a mapping
from the set of all edges of graph, E(graph), to the set of all symbol/object
rewriting rules for routing or comparison operations.

Let Rµ be the finite sequence of pairs [graph, rules] which simulates Algorithm
1, such that: (i) if E(graph) ⊆ E(Id) then its rules are rewriting rules; (ii) if
E(graph) ⊆ E(Gtotal) then its rules are communication rules.

In order to give such a sequence, we have to closely follow Algorithm 1. In a
very intuitive manner, for every Stage(i), 1 ≤ i ≤ 2k , and for every comparison
on bit t, i ≥ t ≥ 1 we will have a sequence of graphs. From Lemma 3, the Merge
operations executed in parallel in Algorithm 1 involve disjoint sub-matrices of the
mesh and have the same length, therefore they can also be executed in parallel
when implementing them on a 2D-mesh or P system.

To be more precise, let us analyse a call of the form Merge(2tj, 2tj + 2t −
1, order). From Remarks 1-2 we know that the dimensions of the sub-matrix of
the mesh involved in the Merge are 2dt/2e×2t−dt/2e. Hence the maximal sequence
of processors situated on the same line which compare and interchange values in
a Merge operation has length 2dt/2e. Using the observations made on Algorithm
3, for each Merge operation, we will need a sequence of 2dt/2e + 1 graphs. The
first 2dt/2e−1 route values in the destination membranes for comparison, then we
have an application of the identity graph Id for internal comparisons, and another
sequence of 2dt/2e−1 graphs to route back the results. Another important aspect is
that for a comparison on bit t, the processors which compare values are the same
at every stage, only that the order is different. Therefore, we will have the same
communication graphs for routing operations, only that the pair [Id, rules] will be
different at each Stage(i).
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Let us denote as below the projection of the first and second argument of
sRM−1. These represent the row and column indices, respectively, of a processors
indexed with r ∈ {0, 1, . . . , 22k − 1}.

sRM−1
row, sRM−1

col : {0, 1, . . . , 22k − 1} → {0, 1, . . . 2k − 1}
Then, the right / down neighbors of r (defined whenever possible) are:

right(r) = sRM(sRM−1
row(r), sRM−1

col (r) + 1)

down(r) = sRM(sRM−1
row(r) + 1, sRM−1

col (r))

In order to give an algorithm independent of the parity of bit t, denote (when-
ever possible):

nextt(r) =

{
right(r), if t odd;
down(r), if t even.

Remark 3. The indices of the first processors on every line l (i.e., the smallest
indices on every line l) in a Merge(2tj, 2tj+2t−1, order) are sRM(sRM−1

row(2tj)+
l, sRM−1

col (2
tj)), with 0 ≤ l ≤ 2t−dt/2e − 1.

Consider two adjacent processors Px and Py which need to interchange val-
ues. The three possible routing operations are: route(Px[A], Py[B]), route(Px[B],
Py[B]), route(Px[B], Py[A]). The implementation with rewriting and communi-
cation rules of the first operation follows the lines: rewrite a → a∗ into membrane
x, apply the communication rule (a∗, out) along the edge (x, y), which transports
all the a∗ symbols from membrane x into y, and then in membrane y rewrite a∗

back to the desired symbol, in this case a∗ → b. We give below a specification of
a sequence [graph, rules] accomplishing this routing operation.

[Id1, rules1], [G, rules], [Id2, rules2], such that (rAB)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {a → a∗},
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(a∗, out)},
Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {a∗ → b}.

Similarly, an operation route(Px[B], Py[A]) is specified as:

[Id1, rules1], [G, rules], [Id2, rules2], such that (rBA)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {b → b∗},
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b∗, out)},
Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {b∗ → a}.
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In the case of a route(Px[B], Py[B]), only one communication graph is needed.
The reason for not having supplementary rewritings is that such routings are done
in parallel. The value from Px[B] is routed to Py[B] in parallel with the routing
of Py[B] to a B register of a neighbor processors. Hence the number of symbols b
in membrane y is the desired one Px[B].

[G, rules], such that (rBB)
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b, out)}.

Consider now an internal comparison operation in processor Px, compare(Px,
order) which places max(Px[A], Px[B]) in register B if the order is ascending, or
in register A if the order is descending. This can be formalised as:

[Id′, rules], such that Id′ ⊆ Id, (x, x) ∈ E(Id′), (C)

rules((x, x)) =

{
{ab → ab, a → b, b → b}, if order is ascending,
{ab → ab, a → a, b → a}, if order is descending.

For all s = 0, 2dt/2e−1−1 denote with Gt
s (sub-graphs of Gtotal) the communication

graphs which simulate all parallel routing operations when comparing of bit t, in
Algorithm 1.

From the above considerations and the steps illustrated in Algorithm 3, we in-
troduce the following algorithms: Algorithm 4 to generate the edges of a communi-
cation graph, and Algorithm 5 to generate sub-graphs of the Id where comparisons
are to be performed:

Input: integers k, t
Output: communication graphs Gt

s, for all s = 0, 2dt/2e − 1

set all E(Gt
s) ← ∅

for j ← 0 to 22k−t − 1 do
// for every Merge operation
for l ← 0 to 2t−dt/2e − 1 do

// for every line in the Merge operation
for s ← 0 to 2dt/2e−1 − 1 do

// for each communication graph
node = sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj) + s)
for q ← 1 to 2dt/2e−1 do

// add the 2dt/2e−1 edges
E(Gt

s) ← E(Gt
s)∪{(node, nextt(node))}

node = nextt(node)

Algorithm 4: Generating all communication graphs Gt
s to compare on bit t
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Input: integers k, t
Output: internal processing graphs Idt

set all E(Idt) ← ∅
for j ← 0 to 22k−t − 1 do

// for every Merge operation
for l ← 0 to 2t−dt/2e − 1 do

// for every line in the Merge operation
node = sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj) + 2dt/2e−1)
for q ← 1 to 2dt/2e−1 do

E(Idt) ← E(Idt) ∪ {(node,node)}
node = nextt(node)

Algorithm 5: Generating internal processing graphs Idt to compare on bit t

Let us denote with Gµ the sequence of graphs simulating the algoritm. Then
Gµ can be obtained also algoritmically, using Algorithm 6:

set Gµ ← λ
for i ← 1 to 2k do

// compare interchange on bit t
for t ← i downto 1 do

// route to the second half
for s ← 0 to 2dt/2e−1 − 1 do

Gµ ← Gµ ·Gt
s

// compare internally
Gµ ← Gµ · Idt

//route back to the first half
for s ← 2dt/2e−1 − 1 downto 0 do

Gµ ← Gµ ·Gt
s

Algorithm 6: Generating the sequence of graphs Gµ for simulating the bitonic
sorting algoritm on the 2k × 2k 2D mesh

where by λ we denote the empty sequence, and by “·” we denote the concate-
nation of two sequences.

The above algorithms could be easily modified to produce a the finite se-
quence Rµ of pairs [graph, rules] which simulates Algorithm 1. Keeping in mind
the way routing and comparison operations are transformed into communication
and rewriting rules of a P system (rAB, rBA, rBB, C), every time when adding
an edge (x, y) to a graph G (subgraph of Gtotal or Id), the appropriate image
rules((x, y)) should be specified.
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3.2 Bitonic sorting in one membrane

We propose here a simulation of the bitonic sorting, which uses only one mem-
brane. We will use (cooperative) symbol rewriting rules. The cooperation will be
’minimal’, i.e., of degree two, since we follow closely the algorithm, and thus the
whole process is based on comparators.

Consider an alphabet with 22k symbols, V = {v0, v1, · · · v22k−1}. We will call
it the primary alphabet.

We will consider also auxiliary alphabets, which we will specify in the sequel,
in order to achieve sorting by rewritings.

We want to sort in ascending order the sequence of distinct integers

〈x0, x1, · · ·x22k−1〉,

codified over V as the multiset

w = v0
x0v1

x1 · · · v22k−1
x22k−1 .

We want to design a P system which, by rewritings acting in a maximal parallel
manner and competing for objects, produces, from the initial configuration w, the
configuration

wf = v0
σ(x0)v1

σ(x1) · · · v22k−1
σ(x22k−1),

where σ is the permutation which yeilds the total order, i.e., such that σ(x0) <
σ(x1) < · · · < σ(x22k−1).

Consider the alphabet V as ordered, by the natural order given by the indices,
and let v = v0v1 · · · v22k−1 be the alphabet word (see [1]), i.e., the word obtained
by concatenating the letters of V in their natural order. We call extended alphabet
words over V , all words in V ∗ in which all the letters appear in their natural order.
Note that both w and wf , the initial and the final configuration of our P system,
are extended alphabet words. Actually, all the intermediate configurations over V
will be of this type.

Let Mj(u) denote the multiplicity of letter vj in a word u ∈ V ∗. Then

w = v0
x0v1

x1 · · · v22k−1
x22k−1 = v0

M0(w) · · · v22k−1
M22k−1(w).

Consider first the case n = 2 (k = 0). We have 2 integers codified over {v0, v1}
as an extended alphabet word. Consider the auxiliary alphabets

• {a, b}, for writing sources of a comparator
• {c+, d+}, for writing targets of a ⊕-comparator
• {c−, d−}, for writing targets of a ª-comparator

Consider the rules:

C⊕ = {v0 → a, v1 → b} ∪ {ab → c+d+, a → d+, b → d+} ∪ {c+ → v0, d
+ → v1}.
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The first group rewrites all v0s to as and v1s to bs, the second group performs
the comparison and produces the ascending order, and the last group rewrites back
into the original alphabet. We have the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c+min(x0,x1)d+max(x0,x1) → v0
min(x0,x1)v1

max(x0,x1).

Similarly, the rules:

Cª = {v0 → a, v1 → b} ∪ {ab → c−d−, a → c−, b → c−} ∪ {c− → v0, d
− → v1},

achieve a descending comparator, generating the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c−
max(x0,x1)d−

min(x0,x1) → v0
max(x0,x1)v1

min(x0,x1).

Lemma 4. On a two-letter alphabet, starting from an initial configuration w =
v0

x0v1
x1 , by applying rules in C⊕ we obtain wf such that (Mi(wf ))i is ascending,

and by applying rules in Cª we obtain wf such that (Mi(wf ))i is descending. ¤
Note that rules C⊕ simulate a Merge(0, 1,+), and Cª a Merge(0, 1,−).
We now want to simulate a whole family of merge operations done in parallel.
We take 2 auxiliary alphabets, S+ and S− to codify sources of + or − com-

parators, and another pair, T+ and T−, to codify outputs (targets) of + or −
comparators. We label them in a bijective correspondence with V .

S+ = {s0
+, · · · s+

22k−1
},

T+ = {t0+, · · · t+
22k−1

},
and similarly for −. (For the time being, only 4 copies of the initial alphabet.
We will probably need 4 different copies for every stage, in order to keep them
independent.)

At Stage (1) we have to simulate Merge(2j, 2j + 1, order), for all 0 ≤ j ≤
22k−1 − 1, where order = + for all j even, and order = − for all j odd.

This is equivalent to:

• Rewrite all symbols of V into start symbols for appropriate comparators, using
the sets of rules

{v2j → s2j
+, v2j+1 → s2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}∪
∪{v2j → s2j

−, v2j+1 → s2j+1
− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.

• Apply in parallel the rewritings of symbols which correspond to the simulations
of the comparators:

{s2j
+s2j+1

+ → t2j
+t2j+1

+, s2j
+ → t2j+1

+, s2j+1
+ → t2j+1

+ |

0 ≤ j ≤ 22k−1 − 1 , j even}
⋃

∪{s2j
−s2j+1

− → t2j
+t2j+1

−, s2j
− → t2j

−, s2j+1
− → t2j

− |
0 ≤ j ≤ 22k−1 − 1 , j odd}.
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• Rewrite back all symbols of T ’s into V .

{v2j ← t2j
+, v2j+1 ← t2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}∪

∪{v2j ← t2j
−, v2j+1 ← t2j+1

− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.
The general scheme is as follows:
Input: an extended alphabet word w over V
Output: the extended alphabet word wf over V , such that 〈Mi(wf )〉i is

ascending

Sim-Stage(i)
for t ← i downto 1 do

Take 4 extra copies of the start and the terminal alphabets, S+
t , S−t ,

T+
t , T+

t , different for each value of t. For t’s smaller than i we can
re-use the alphabets of previous stages.
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
// Simulate the calls Merge(2tj, 2tj + 2t − 1, order)
(WF) Rewrite all symbols in V with the appropriate symbol in
S+

t ∪ S−t .
(C) Apply the rewritings which simulate the appropriate
comparators.
(WB) Rewrite back all symbols in T+

t ∪ T−t to symbols of V .

end

Sim-Bitonic-Sort
for i ← 1 to 2k do

Sim-Stage(i)

end
Algorithm 7: Simulating bitonic sort on an alphabet of 22k letters V

The calls to Merge(2tj, 2tj + 2t − 1, order) are equivalent to parallel calls to
Merge(x, y, order), where x and y are like in Lemma 3. The same result ensures
us that, both the rewritings which feed the comparators, and the rewritings which
implement the comparators can be done in parallel. For Merge(x, y, order = −),
we use

{sx
−sy

− → tx
−ty

−, sx
− → tx

−, sy
− → tx

−}.
We propose the following sets of rules for simulating iteration t at Sim-

Stage(i):

(WF)Rewritings to S’s, with ∗ =

{
+, if 2tj div 2i is even,
−, if 2tj div 2i is odd,

{vx → sx
∗ ∈ St

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.



Simulating the Bitonic Sort on a 2D-mesh with P Systems 225

(C)Rewritings which simulate the comparators, for appropriate pairs of indices:

{sx
+sy

+ → tx
+ty

+, sx
+ → ty

+, sy
+ → ty

+ |
x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1},

{sx
−sy

− → ty
−tx

−, sx
− → tx

−, sy
− → tx

− |
x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1}.

(WB)Rewritings from T ’s:

{vx ← tx
∗ ∈ Tt

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.

4 Conclusions and open problems

We have presented a bitonic sorting algorithm which can be implemented on a 2D
mesh of processors. The dependence between its performance and the choice of the
indexing function still remains to be fully explored. However, we believe that we
have proved some results which explain the choice of sRM as a “good” indexing
function.

We have not yet found in the literature a formal proof of the correctness of
bitonic sorting, an equivalent, or an analogue of our Theorem 1.

Much work remains to be done concerning the proposed simulations with P
systems. The first simulation, derived in a “straightforward” manner from the
functioning of the algorithm on the mesh, is inspired from work in [6], [8], [9],
and [7], where the general framework was abstracted. It introduces a generative
approach to the sequence of communication graphs, a feature to be explored in
subsequent work. The second one is at the opposite pole: it requires no routings
of values at all, just an appropriate codification of the symbols. It is in this area
that other versions of the algorithm could be implemented, independent of the
topology of a given structure, and the parallel features of the P systems can be
compared against those of other computational devices.
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Summary. We continue the investigation of P colonies introduced in [7], a class of
abstract computing devices composed of independent agents, acting and evolving in a
shared environment.

We decrease the number of agents needed to computational completeness of P colonies
with one and two objects inside each agent, respectively, owing some special restrictions
to the type of programs. We characterize the generative power of the partially blind
machine by the generative power of special P colonies.

1 Introduction

P colonies were introduced in paper [7] as formal models of a computing de-
vice inspired by membrane systems and by grammar systems called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent
is represented by a collection of objects embedded in a membrane. The number
of objects inside the agent is the same for each one of them. The environment
contains several copies of a basic environmental object denoted by e. The number
of the copies of e is unlimited.

A set of programs is associated with each agent. The program determines
the activity of the agent by rules. In every moment all the objects inside of the
agent are being evolved (by an evolution rule) or transported (by a communication
rule). The third type of the rules used is a checking rule. This type of the rules
sets the priority between two rules.

The computation starts in the initial configuration specified in the definition.
Using their programs the agents change themselves and by the environment they
can affect the behavior of the other agents. In each step of the computation,
each agent with at least one applicable program nondeterministically chooses one
of them and executes it. The computation halts when no agent can apply any of its
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programs. The result of the computation is the number of some specific objects
present at the environment at the end of the computation.

There are several different ways how to define the beginning of the computation.
(1) At the beginning of computation the environment and all agents contain only
copies of object e. (2) All the agents can contain various objects at the beginning
of computation - the agents are in different initial states.
(3) The initial state of the environment is nonempty - the environment contains
initial ”parameters” for future computation, the agents start with e-s.

In [4, 6, 7] the authors study P colonies with two objects inside the agents. In
this case programs consist of two rules, one for each object. If the former of these
rules is an evolution and the latter is a communication or checking, we talk about
restricted P colonies. If we allow also another combination of the types of the rules,
we obtain non-restricted P colonies. The restricted P colonies with the checking
rules are computationally complete [3, 4]. Activities carried out in the field of mem-
brane computing are currently numerous and they are available also at [11].

In the present paper we start with definitions in Section 2.
In Section 3 we will deal with P colonies with one object inside each agent. In

recent paper [1] there was shown, that at most seven programs for each agent as
well as five agents guarantees the computational completeness of these P colonies.
In the preset paper we look for the generative power of P colonies with less than
five agents. Two results are achieved in this direction. First, we show, that four
agents are enough for computational completeness of P colonies. The second result
gives a lower bound for the generative power the P colonies with two agents. Even
a restricted variant of these P colonies is at least as powerful as the partially blind
register machines.

Restricted P colonies are studied in Section 4. It is known that one agent
is sufficient to obtain computational completeness of restricted P systems with
checking rules. If no checking rules are used in the restricted P colonies then we
need two agents to prove the universal computational power of those P colonies.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory.

We use NRE to denote the family of the recursively enumerable sets of natural
numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (includ-
ing the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of ob-
jects V is denoted by V ◦. The set V ′ is called the support of M and denoted
by supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M , denoted by
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|M |, is defined by |M | =
∑

a∈V f(a). Any multiset of objects M with the set of
objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′ with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same M , and ε represents the empty multiset.

2.1 P colonies

We briefly recall the notion of P colonies. A P colony consists of agents and envi-
ronment. Both the agents and the environment contain objects. With every agent
the set of program is associated. There are two types of rules in the programs.
The first type, called the evolution, is of the form a → b. It means that object a
inside of the agent is rewritten (evolved) to the object b. The second type of rules,
called a communication, is in the form c ↔ d. When this rule is performed, the ob-
ject c inside the agent and the object d outside of the agent change their places,
so, after execution of the rule d appears inside the agent and c is placed outside
of the agent.

In [6] the ability of agents is extended by checking rules. These rules give to
the agents an opportunity to opt between two possibilities. They have form r1/r2.
If the checking rule is performed, the rule r1 has higher priority to be executed
as the rule r2 has. It means that the agent checks the possibility to use rule r1.
If it can be executed, the agent has to use it. If the first rule cannot be applied,
the agent uses the second one.

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic object of the colony,
• f ∈ A is the final object of the colony,
• VE is a multiset over A− {e},
• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

– Oi is a multiset over A, it determines the initial state (content) of the agent,
|Oi| = k,

– Pi = {pi,1, . . . , pi,ki} is a finite multiset of programs, where each program
contains exactly k rules, which are in one of the following forms each:
· a → b, called an evolution rule,
· c ↔ d, called a communication rule,
· r1/r2, called a checking rule; r1, r2 are an evolution or a communication

rules.

An initial configuration of the P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation, it is given by Oi

for 1 ≤ i ≤ n and by VE . Formally, the configuration of P colony Π is given
by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents all the objects
placed inside the i-th agent and wE ∈ (A− {e})∗ represents all the objects in the
environment different from the object e.
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In the paper parallel model of P colonies will be studied. At each step of the
parallel computation each agent tries to find one program to use. If the number
of applicable programs is higher than one, the agent nondeterministically chooses
one of them. At one step of computation the maximal possible number of agents
are active.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To express derivation step formally we introduce following four functions for
the agent using the rule r of program p ∈ P with objects w in the environment:

For rule r being a → b, c ↔ d and c ↔ d/c′ ↔ d′, respectively, and for multiset
w ∈ V ◦ we define:

left (a → b, w) = a
right (a → b, w) = b
export (a → b, w) = ε
import (a → b, w) = ε

left (c ↔ d,w) = ε
right (c ↔ d,w) = ε
export (c ↔ d,w) = c
import (c ↔ d,w) = d

left (c ↔ d/c′ ↔ d′, w) = ε
right (c ↔ d/c′ ↔ d′, w) = ε
export (c ↔ d/c′ ↔ d′, w) = c
import (c ↔ d/c′ ↔ d′, w) = d

}
for |w|d ≥ 1

export (c ↔ d/c′ ↔ d′, w) = c′

import (c ↔ d/c′ ↔ d′, w) = d′

}
for |w|d = 0 and |w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let
α (p, w) = ∪r∈pα (r, w).

A transition from a configuration to another is denoted as
(w1, . . . , wn; wE) ⇒ (w′1, . . . , w

′
n; w′E) , where the following conditions

are satisfied:

• There is a set of program labels P with |P | ≤ n such that
– p, p′ ∈ P , p 6= p′, p ∈ lab (Pj) implies p′ /∈ lab (Pj),
– for each p ∈ P , p ∈ lab (Pj), left (p, wE) ∪ export (p, wE) = wj , and⋃

p∈P

import (p, wE) ⊆ wE .

• Furthermore, the chosen set P is maximal, that is, if any other program
r ∈ ∪1≤i≤nlab (Pi), r /∈ P , is added to P , then the conditions above are not
satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let w′j = right (p, wE) ∪ import (p, wE) . If there is no p ∈ P with p ∈ lab (Pj) for
some j, 1 ≤ j ≤ n, then let w′j = wj and moreover, let

w′E = wE −
⋃

p∈P

import (p, wE) ∪ ⋃
p∈P

export (p, wE) .

A configuration is halting if the set of program labels P satisfying the conditions
above cannot be chosen to be other than the empty set. A set of all possible halting
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configurations is denoted by H. With a halting computation we can associate a
result of the computation. It is given by the number of copies of the special symbol
f present in the environment. The set of numbers computed by a P colony Π is
defined as

N (Π) =
{
|vE |f | (w1, . . . , wn, VE) ⇒∗ (v1, . . . , vn, vE) ∈ H

}
,

where (w1, . . . , wn, VE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Given a P colony Π = (A, e, f, VE , B1, . . . , Bn) the maximal number of
programs associated with the agents in P colony Π is called the height of P colony
Π. The degree of P colony Π is the number of agents in P colony Π. The third
parameter characterizing a P colony is the capacity of P colony Π describing the
number of the objects inside each agent.

Let us use the following notations:
NPCOLpar(k, n, h) for the family of all sets of numbers computed by P colonies
working in parallel, using no checking rules and with:

- the capacity at most k,
- the degree at most n and
- the height at most h.

If we allow checking rules the family of all sets of numbers computed by P colonies
is denoted by NPCOLparK. If the P colonies are restricted, we replace the deno-
tation to NPCOLparR and NPCOLparKR, respectively.

2.2 Register machines

In this paper we want to characterize the size of the families NPCOLpar(k, n, h)
comparing them with the recursively enumerable sets of numbers. To achieve this
aim we use the notion of a register machine.

Definition 2. [8] A register machine is the construct M = (m,H, l0, lh, P ) where:
- m is the number of registers,
- H is the set of instruction labels,
- l0 is the start label, lh is the final label,
- P is a finite set of instructions injectively labeled with the elements

from the set H.

The instruction of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the

instruction (labeled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct.
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The register machine M computes a set N(M) of numbers in the following way:
it starts with all registers empty (hence storing the number zero) with the instruc-
tion labeled l0 and it proceeds to apply the instructions as indicated by the labels
(and made possible by the contents of registers). If it reaches the halt instruction,
then the number stored at that time in the register 1 is said to be computed by M
and hence it is introduced in N(M). (Because of the nondeterminism in choosing
the continuation of the computation in the case of ADD-instructions, N(M) can
be an infinite set.) It is known (see e.g.[8]) that in this way we can compute all
sets of numbers which are Turing computable.

Moreover, we call a register machine partially blind [5], if we interpret a sub-
tract instruction in the following way: l1 : (SUB(r); l2; l3) - if in register r there
is value different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r there is stored zero when attempting to
decrement register r, then the program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers store value zero.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRMpb. The partially blind register machine accepts a
proper subset of NRE.

3 P colonies with one object inside the agent

In this Section we analyze the behavior of P colonies with only one object inside
each agent of P colonies. This gives that every program is formed by only one rule,
either an evolution or a communication.

If all the agents have their programs with evolution rules, the agents ”live only
for themselves” and do not communicate with the environment.

In [1] following results was proved:
– NPCOLparK(1, ∗, 7) = NRE.
– NPCOLparK(1, 5, ∗) = NRE
The number of agents in the second result can be decreased:

Theorem 1. NPCOLparK(1, 4, ∗) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating initial label l0. After generating
symbol l0 this agent stops and it can start its activity only by using a program
with communicating rule. Two agents will cooperate in order to simulate the ADD
and SUB instructions.

Let us consider an m-register machine M = (m,H, l0, lh, P ) and present
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony Π = (A, e, f, ∅, B1, . . . , B4) with:
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– alphabet A = {l, l′|l ∈ H}∪
∪ {Ei, E

′
i, Fi, F

′
i , F

′′
i | for each li ∈ H}∪

∪ {ai|1 ≤ i ≤ m} ∪ {e, d,m, C},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M we take agent B1 = (e, P1) with
a set of programs:

P1 :
1 : 〈e → l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need one more agent to generate some special object d. In every pair of
steps the agent B2 places one copy of d to the environment.

P2 :
3 : 〈e → d〉 , 4 : 〈d ↔ C/d ↔ e〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of P colony Π only agents B1, B2 can apply its
programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 3
2. l0 d e e 4
3. l0 e e e d 2 3
4. d d e e l0

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3) there are two agents B3

and B4 in P colony Π. These agents help each other to add one copy of object ar

and object l2 or l3 to the environment.
P3 P3 P4 P4

5 : 〈e ↔ l1〉 , 11 : 〈E′
1 → l′2〉 , 15 : 〈e ↔ E1〉 , 21 : 〈e ↔ l′2〉 ,

6 : 〈l1 → E1〉 , 12 : 〈E′
1 → l′3〉 , 16 : 〈E1 → E′

1〉 , 22 : 〈e ↔ l′3〉 ,
7 : 〈E1 ↔ d〉 , 13 : 〈l′2 ↔ e〉 , 17 : 〈E′

1 ↔ e〉 , 23 : 〈l′2 → l2〉 ,
8 : 〈d → L1〉 , 14 : 〈l′3 ↔ e〉 , 18 : 〈e ↔ L1〉 , 24 : 〈l′3 → l3〉 ,
9 : 〈L1 ↔ E′

1/L1 → m〉 , 19 : 〈L1 ← ar〉 , 25 : 〈l2 ↔ e〉 ,
10 : 〈m → d〉 , 20 : 〈ar ↔ e〉 , 26 : 〈l3 ↔ e〉 ;

The agent B3 consumes the object l1, changes it to E1 and places it to the envi-
ronment. The agent B4 borrows E1 from the environment and gives a little altered
(to E′

1) back. B3 rewrites the object d to some Li. If this Li has the same index
as E′

i placed in the environment, the computation can go to the next phase. If
indices of Li and Ei are different the agent B3 tries to generate another Li. If
the computation gets over this checking step, B3 generates the helpful object l′2 or
l′3 and places it to the environment. The agent B4 exchanges it for ”valid label” l2
or l3.

An instruction li : (ADD(r), lj , lk) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.
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configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lia
u
r dv 4 5

2. d e li e au
r dv+1 3 6

3. d d Ei e au
r dv+1d 4 7

4. d e d e Eia
u
r dv+1 3 8 15

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

5. d d Li Ei au
r dv+1 4 16

6. d e Li E′
i au

r dv+2 3 17
7. d d Li e E′

ia
u
r dv+2 4 9

8. d e E′
i e Lia

u
r dv+3 3 11 or 12 18

9. d d l′j Li au
r dv+3 4 13 19

10. d e e ar l′ja
u
r dv+4 3 20

11. d d e e l′ja
u+1
r dv+4 4 21

12. d e e l′j au+1
r dv+5 3 23

13. d d e lj au+1
r dv+5 4 25

14. d e e e lja
u+1
r dv+6

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the next programs are intro-
duced in the sets P1, P3 and in the set P4:
P3 P3 P1 P4

27 : 〈e ↔ l1〉 , 33 : 〈F ′′1 → l′3〉 , 36 : 〈d ↔ F1〉 , 41 : 〈e ↔ l′2〉 ,
28 : 〈l1 → F1〉 , 34 : 〈l′2 ↔ e〉 , 37 : 〈F1 → F ′1〉 , 42 : 〈e ↔ l′3〉 ,
29 : 〈F1 ↔ d〉 , 35 : 〈l′3 ↔ e〉 ; 38 : 〈F ′1 ↔ ar/F ′1 → F ′′1 〉 , 43 : 〈l′2 → l2〉 ,
30 : 〈d ↔ F ′1〉 , 39 : 〈ar → d〉 , 44 : 〈l′3 → l3〉 ,
31 : 〈F ′1 → l′2〉 , 40 : 〈F ′′1 ↔ d〉 , 45 : 〈l2 ↔ e〉 ,
32 : 〈d ↔ F ′′1 〉 , 46 : 〈l3 ↔ e〉

Agent B4 starts simulation of executing SUB-instruction l1, the agent B1 checks
whether there is a copy of the object ar in the environment or not and gives this
information (F ′1 - there is some ar; F ′′1 - there is no object ar in the environment)
to the environment.

An instruction li : (SUB(r), lj , lk) is simulated by the following sequence of
steps. When the value in counter r is zero:
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configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lid
v 4 27

2. d e li e dv+1 3 28
3. d d Fi e dv+1d 4 29
4. d e d e Fid

v+1 36 3
5. Fi d d e dv+2 37 4
6. F ′i e d e dv+3 38 3
7. F ′′i d d e dv+3 40 4
8. d e d e F ′′i dv+3 3 32
9. d d F ′′i e dv+4 4 33
10. d e l′k e dv+5 3 35
11. d d e e l′kdv+5 4 42
12. d e e l′k dv+6 3 44
13. d d e lk dv+6 4 46
14. d e e e lkdv+7

When register r stores value different from zero:

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lia
u
r dv 4 27

2. d e li e au
r dv+1 3 28

3. d d Fi e au
r dv+1d 4 29

4. d e d e Fia
u
r dv+1 36 3

5. Fi d d e au
r dv+2 37 4

6. F ′i e d e au
r dv+3 38 3

7. ar d d e Fia
u−1
r dv+3 39 4 30

8. d e F ′i e au−1
r dv+5 3 31

9. d d l′j e au−1
r dv+5 4 34

10. d e e e l′ja
u−1
r dv+6 3 41

11. d d e l′j au−1
r dv+6 4 43

12. d e e lj au−1
r dv+7 3 45

13. d d e e lja
u−1
r dv+7

(5) The halting instruction lh is simulated by agent B3 with subset of programs:

P3

47 : 〈e ↔ lh〉 , 48 : 〈lh → C〉 , 49 : 〈C ↔ e〉 .
The agent consumes the object lh and in the environment there is no other

object lm. This agent places one copy of the object C to the environment and stops
working. In the next step the object C is consumed by the agent B3. No agent
can start its work and computation halts. The execution of halting instruction lh
stops all agents in P colony Π:



236 L. Cienciala, L. Ciencialová, A. Kelemenová

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lhdv 4 47
2. d e lh e dv+1 3 48
3. d d C e dv+1d 4 49
4. d e e e Cdv+1 3
5. d d e e Cdv+2 4
6. d C e e dv+3 - - - - - - - - - - - - - - -

P colony Π correctly simulates computation in the register machine M .
The computation of Π starts with no object ar placed in the environment
in the same way as the computation in M starts with zeros in all the registers.
The computation of Π stops if the symbol lh is placed inside the corresponding
agent in the same way as M stops by executing the halting instruction labeled
lh. Consequently, N(M) = N(Π) and because the number of agents equals four,
the proof is complete. ut
Theorem 2. NRMpb ⊆ NPCOLpar(1, 2, ∗).
Proof. Let us consider a partially blind register machine M with m registers. We
construct a P colony Π = (A, e, f, VE , B1, B2) simulating a computation of the
register machine M with:

- A = {J, J ′, V, Q} ∪ {li, l′i, l′′i , Li, L
′
i, L

′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

- f = a1,
- Bi = (Oi, Pi), Oi = {e}, i = 1, 2

The sets of programs are as follows:
(1) For initializing the simulation:
P1 : P1 : P2 :
1 : 〈e → J〉 , 3 : 〈J → l0〉 , 5 : 〈e ↔ J〉 ,
2 : 〈J ↔ e〉 , 4 : 〈Q → Q〉 , 6 : 〈J → J ′〉 ,

7 : 〈J ′ ↔ e〉 ;
At the beginning of the computation the first agent generates the object l0 (the la-
bel of starting instruction of M). It generates some copies of object J . The agent
B2 exchange them by J ′.

configuration of Π

B1 B2 Env P1 P2

1. e e 1 −
2. J e 2 or 3 −
3. e e J 1 5
4. J J 2 or 3 6
5. l0 J ′ 8 or 24 or 34 7
6. ? e J ′

(2) For every ADD-instruction l1 : (ADD(r), l2, l3) P1 and P2 contain:
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P1 : P1 : P2 :
8 : 〈l1 → l′1〉 , 14 : 〈L1 ↔ E1〉 , 18 : 〈e ↔ l′1〉 ,
9 : 〈l′1 ↔ J ′〉 , 15 : 〈L1 → Q〉 , 19 : 〈l′1 → E1〉 ,

10 : 〈l′1 → Q〉 , 16 : 〈E1 → l2〉 20 : 〈E1 ↔ e〉 ,
11 : 〈J ′ → L′′1〉 , 17 : 〈E1 → l3〉 21 : 〈e ↔ L1〉
12 : 〈L′′1 → L′1〉 , 22 : 〈L1 → ar〉
13 : 〈L′1 → L1〉 , 23 : 〈ar ↔ e〉

When there is object l1 inside agent B1, the agent rewrites it to one copy of l′1 and
the agent sends it to the environment. The agent B2 borrows E1 from the envi-
ronment and returns E′

1 back.
The agent B1 rewrites the object J ′ to some Li. The first agent has to generate

it in three steps to wait till the second agent generates the symbol E′
i and places it

to the environment. If this Li has the same index as E′
i placed in the environment,

the computation can go to the next phase. If the indices of Li and Ei are different,
the agent B1 generates Q and the computation never stops. If the computation
gets over this checking step, B1 generates object l2 or l3.

configuration of Π

B1 B2 Env P1 P2

1. l1 e J ′ 8 −
2. l′1 e J ′ 9 or 10 −
3. J ′ e l′1 11 18
4. L′′1 l′1 12 19
5. L′1 E1 13 20
6. L1 e E1 14 or 15 −
7. E1 e L1 16 or 17 21
8. l2 L1 8 or 24 or 34 22
9. ? ar 9 or 25 or 35 23
10. ? e ar

(3) For every SUB-instruction l1 : (SUB(r), l2, l3) there are subsets of programs
in P1 and P2:

P1 : P1 : P2 :
24 : 〈l1 → l′′1 〉 , 28 : 〈V ↔ l′′′1 〉 , 31 : 〈l′′1 ↔ e〉 ,
25 : 〈l′′1 ↔ ar〉 , 29 : 〈l′′′1 → l2〉 , 32 : 〈l′′1 → l′′′1 〉 ,
26 : 〈l′′1 → Q〉 , 30 : 〈l′′′1 → l3〉 33 : 〈l′′′1 ↔ e〉 ,
27 : 〈ar → V 〉 ,

In the first step the agent checks if there is any copy of ar in the environment (for
zero in register r). In the positive case it rewrites ar to V , in the other case l′′1 is
rewritten to Q and the computation will never halt. At the end of this simulation
the agent B1 generates object l2 or l3.
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configuration of Π

B1 B2 Env P1 P2

1. l1 e ar 24 −
2. l′′1 e ar 25 or 26 −
3. ar e l′′1 27 31
4. V l′′1 − 32
5. V l′′′1 − 33
6. V e l′′′1 28 −
7. l′′′1 e 29 or 30 −
8. l2 e

configuration of Π

B1 B2 Env P1 P2

1. l1 e 24 −
2. l′′1 e 26 −
3. Q e 4
4. Q e

(4) For halting instruction lh there are programs in sets P1 and P2:
P1 : P2 : P2 :
34 : 〈lh ↔ J ′〉 , 39 : 〈e ↔ lh〉 , 43 : 〈Lh ↔ ar〉 , 1 < r ≤ m

35 : 〈J ′ → Lh〉 , 40 :
〈
lh → lh

〉
, 44 : 〈ar ↔ e〉

36 : 〈lh → Q〉 , 41 :
〈
lh ↔ e

〉
,

37 : 〈Lh → Lh〉 , 42 : 〈e ↔ Lh〉
38 :

〈
Lh ↔ lh

〉
,

By using these programs, the P colony finishes the computation in the same way
as the partially blind register machine halts its computation. Programs with labels
43 and 44 in P2 check value zero stored in all except the first one registers.

all counters r, 1 < r ≤ m store zero

configuration of Π

B1 B2 Env P1 P2

1. lh e J ′ 34 or 36 −
2. J ′ e lh 35 39
3. Lh lh 37 40
4. Lh lh 37 41
5. LH e lh 38 −
6. lh e Lh − 42
7. lh Lh − −

content of some counter r, 1 < r ≤ m is
different from zero

configuration of Π

B1 B2 Env P1 P2

1. lh e J ′ar 34 or 36 −
2. J ′ e lhar 35 39
3. Lh lh ar 37 40
4. Lh lh ar 37 41
5. LH e lhar 38 −
6. lh e Lhar − 42
7. lh Lh ar − 43
8. lh ar Lh − 44
9. lh Lh ar − 43

P colony Π correctly simulates any computation of the partially blind register
machine M . ut

4 On computational power of restricted P colonies without
checking

For restricted P colonies Following results are known from the literature:
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• NPCOLparKR(2, ∗, 5) = NRE in [2, 7],
• NPCOLparR(2, ∗, 5) = NPCOLparKR(2, 1, ∗) = NRE in [4].

Theorem 3. NPCOLparR(2, 2, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony Π = (A, e, f, Ve, B1, B2) simulating the computations of register ma-
chine M with:

- A = {G} ∪ {li, l′i, l′′i , l′′′i , l′′′′i , li, li, li, li, Li, L
′
i, L

′′
i , Fi | li ∈ H} ∪

∪ {ar | 1 ≤ r ≤ m},
- f = a1,
- Bj = (Oj , Pj), Oj = {e, e}, j = 1, 2

At the beginning of the computation the first agent generates the object l0 (the
label of starting instruction of M). Then it starts to simulate instruction labeled
l0 and it generates the label of the next instruction. The sets of programs are as
follows:

(1) For initializing of the simulation there is one program in P1:
P1

1 : 〈e → l0; e ↔ e〉
The initial configuration of Π is (ee, ee, ε). After the first step of computation

(only the program 1 is applicable) the system enters configuration (l0e, ee, ε).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the programs:
P1

2 : 〈e → ar; l1 ↔ e〉 , 3 : 〈e → G; ar ↔ l1〉 ,
4 : 〈l1 → l2; G ↔ e〉 , 5 : 〈l1 → l3; G ↔ e〉

When there is object l1 inside the agent, it generates one copy of ar, puts it to
the environment and generates the label of the next instruction (it nondetermin-
istically chooses one of the last two programs 4 and 5)

configuration of Π

B1 B2 Env P1 P2

1. l1e ee ax
r 2 −

2. are ee l1a
x
r 3 −

3. Gl1 ee ax+1
r 4 or 5 −

4. l2e ee ax+1
r G

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added
to sets P1 and P2:
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P1 P1

6 : 〈l1 → l′1; e ↔ e〉 12 :
〈
l1 → l2; e ↔ L′′1

〉

7 : 〈e → l′′1 ; l′1 ↔ e〉 13 :
〈
l1 → l3; e ↔ L1

〉

8 : 〈e → l′′′1 ; l′′1 ↔ e〉 14 :
〈
L′′1 → l2; l2 ↔ e

〉

9 : 〈l′′′1 → l′′′′1 ; e ↔ e〉 15 :
〈
L1 → F3; l3 ↔ e

〉

10 :
〈
l′′′′1 → l1; e ↔ e

〉
16 :

〈
e → l3; F3 ↔ l3

〉

11 :
〈
l1 → l1; e ↔ e

〉
17 :

〈
l3 → l3; l3 ↔ e

〉

P2

18 : 〈e → L1; e ↔ l′1〉
19 : 〈l′1 → L′1; L1 ↔ l′′1 〉
20 : 〈l′′1 → L′′1 ; L′1 ↔ ar〉
21 : 〈ar → e;L′′1 ↔ L1〉
22 : 〈L1 → e; e ↔ e〉
23 : 〈l′′1 → e; L′1 ↔ F3〉
24 : 〈F3 → e; e ↔ e〉

At the first phase of the simulation of the SUB instruction the first agent
generates object l′1, which is consumed by the second agent. The agent B2 generates
symbol L1 and tries to consume one copy of symbol ar. If there is any ar, the agent
sends to the environment object L′′1 and consumes L1. After this step the first agent
consumes L′′1 or L1 and rewrites it to l2 or l3. The objects x, x and x are used for
a synchronization of the computation in both agents and for storing information
about the state of the computation.

Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores value zero :
configuration of Π

B1 B2 Env P1 P2

1. l1e ee ax
r 6 −

2. l′1e ee ax
r 7 −

3. l′′1e ee l′1a
x
r 8 18

4. l′′′1 e L1l
′
1 l′′1ax

r 9 19
5. l′′′′1 e L′1l

′′
1 L1a

x
r 10 20

6. l1e L′′1ar L1L
′
1a

x−1
r 11 21

7. l1e eL1 L′′1ax−1
r 12 22

8. l2L
′′
1 ee ax−1

r 14 −
9. l2e ee ax−1

r l2

If the register r stores nonzero value:
configuration of Π

B1 B2 Env P1 P2

1. l1e ee 6 −
2. l′1e ee 7 −
3. l′′1e ee l′1 8 18
4. l′′′1 e L1l

′
1 l′′1 9 19

5. l′′′′1 e L′1l
′′
1 L1 10

6. l1e L′1l
′′
1 L1 11

7. l1e L′1l
′′
1 L1 13

8. l3L1 L′1l
′′
1 15 −

9. F3e L′1l
′′
1 l3 16 −

10. l3l3 L′1l
′′
1 F3 17 23

11. l3e F3e l3L
′
1 2 or 6

or none

24

12. ?? ee l3L
′
1

(4) For halting instruction lh no program is added to the sets P1 and P2.
P colony Π correctly simulates all computations of the register machine M

and the number contained on the first register of M corresponds to the number of
copies of the object a1 present in the environment of Π. ut
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5 Conclusions

We have shown that the P colonies with capacity k = 2 and without checking
programs with height at most 2 are computationally complete. In Section 3 we
have shown that the P colonies with capacity k = 1 and with checking/evolution
programs and 4 agents are computationally complete.

We have verified also that partially blind register machines can be simulated
by P colonies with capacity k = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity k = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

Remark 1. This work has been supported by the Grant Agency of Czech Republic
grants No. 201/06/0567 and by IGS SU 32/2007.
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Summary. We introduce the networks of Mealy multiset automata, and study their
computational power. The networks of Mealy multiset automata are computationally
complete.

1 Learning from Molecular Biology

Systems biology represents a new cross-disciplinary approach in biology which has
only recently been made possible by advances in computer science and technology.
As it is mentioned in [10], it involves the application of experimental, theoretical,
and modelling techniques to the study of biological organisms at all levels. Adding
new abstractions, discrete models and methods able to help our understanding of
the biological phenomena, systems biology may provide predictive power, useful
classifications, new paradigms in computing and new perspectives on the dynamics
of various biological systems.

Recent promising work [1] employs automata theory as an efficient tool of
describing and controlling gene expression (a small automaton is encoded by DNA
strands and then it is used in logical control of gene expression).

In [2], we present a way of interaction between gene machine and protein ma-
chine, namely the process of making proteins, in abstract terms of Mealy automata,
transformation semigroup and abstract operations.

The Mealy automaton proposed as a formal model of the genetic message
translation is a minimal one that accepts the mRNA messages and terminates the
translation process (according to [9], there are no appropriate formalism for the
process of translation).

However molecular biology ”deals” not only with sequences, but also with mul-
tisets. The biological cells are ”smart” enough to put together at work sequences
and multisets of atoms and molecules, so if we try to get models from their func-
tioning, we should not restrict ourselves in dealing only with sequential machines
(like classical automata). To deal with multisets, the main approach is given by
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membrane systems [11]. There is also introduced and studied an automata-like
machine to work with multisets [7], i.e. multiset automaton. At a first glance, it
seams that they are nothing else but weighted automata with weights in the semi-
ring of positive integers. In [8] it is proven that such automata (weighted automata
with weights in the semiring of positive integers) has the same power as finite au-
tomata (accepts only regular languages). In fact, a careful reader should remark
that a multiset automaton is not a sequential machine, and it is not working with
sequences of multisets as in the case of weighted automata. A multiset automaton
accepts, together with a sequence of multisets, an entire class, namely the class
of that sequence obtained by ”abelianization” (as an example, together with the
sequence, say aab, it accepts aba and baa). In this manner, multiset automata
become very powerful (see [7], for details). Mealy multiset automata, [3], can be
viewed as the corresponding Mealy machine. We study some of their (co)algebraic
properties in [3] and [4] and we connect this properties with various aspects of
their behaviour. In [5], we organize them in a P machine, in order to simulate a
P system. However the biological systems are not always organized in an hierar-
chical manner. This means that we also have to organize sets of Mealy multiset
automata in networks. In order to obtain the computing power for networks of such
automata, we relate them to neural P systems, proving that networks of Mealy
multiset automata are computationally complete.

2 Networks of Mealy Multiset Automata

In order to define networks of Mealy multiset automata, we can connect these
automata in many ways, having both parallel and serial connections. In [3] we
define the restricted direct product of MmA for the parallel case, and the cascade
product for a serial connection. See, also, the appendix for details.

2.1 Mealy Multiset Automata

Roughly speaking, an Mealy multiset automata (MmA) consists of a storage lo-
cation (a box for short) in which we place a multiset over an input alphabet and
a device to translate the multiset into a multiset over an output alphabet. We
have a detection head that detects whether or not a given multiset appears in the
multiset available in the box. The multiset is removed from the box whenever it
is detected, and the automaton inserts a multiset over the output alphabet (or
a marked symbol if the output alphabet is the same) that can not be viewed by
the detection head. This automaton stops when no further move is possible. We
say that the sub-multiset read by the head was translated to a multiset over the
output alphabet. We give here only the definitions and the properties that we need
for networks of MmA. For more informations see [3] or [4]. From the formal point
of view, a Mealy multiset automaton is a construct A = (Q, V, O, f, g, q0) where

1. Q is a finite set, the set of states;
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2. q0 ∈ Q is special state, which is both initial and final;
3. V is a finite set of objects, the input alphabet ;
4. O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;
5. f : Q× N 〈V 〉 → P(Q) is the state-transition (partial) mapping ;
6. g : Q× N 〈V 〉 → P(N 〈O〉) is the output (partial) mapping.

If | f(q, a) |≤ 1 we say thatA is Q- deterministic and if | g(q, a) |≤ 1 our automaton
is O-deterministic.

An MmA A receives a multiset in its box, and processing this multiset it
passes through different configurations. It starts with a multiset from N 〈V 〉 and
ends with a multiset from N 〈V ∪O〉. A configuration of A is a triple (q, α, β̄)
where q ∈ Q,α∈ N 〈V 〉, β̄∈ N 〈O〉. We say that a configuration (q, α, β̄) passes to
(s, α − a, β̄ + b̄) (or, that we have a transition between those configurations) if
there is a ⊆ α such that s ∈ f(q, a), b̄ ∈ g(q, a). We denote this by (q, α, β̄) `
(s, α−a, β̄ + b̄). We also denote by `∗ the reflexive and transitive closure of `. We
could alternatively define a configuration to be a pair (q, α) where α ∈ N 〈V ∪O〉
and the transition relation is (q, α) ` (s, α − a + b̄), with the same conditions as
above.

2.2 Networks of automata

The formal description of a network of Mealy multiset automata is not intuitive.
On the other hand, these networks could be very powerful, so we think that they
deserve our attention. We can consider several variants of such networks. Some of
them can have no inter-communication and, in this case, the network is, in fact,
a bigger MmA. The same remark can be done if we have only MmA connected
in a serial manner, without any ramifications (as we have seen in the previous
subsections). The case that we consider in this paper is inspired by the defini-
tion of neural P systems (nP systems). Neural P systems are defined in [11] as
a computing model inspired by the network of cells. Each cell has a finite state
memory, and processes multisets of symbol (impulses); it can send some impulses
(called excitations) to the neighbouring cells. It is proved that such networks are
rather powerful: they can simulate Turing machine using a small number of cells,
every cell having in a small number of states. It is also proved that, in appropri-
ate organization, such a network can solve in linear time the Hamiltonian Path
Problem.

We consider a set of MmA that can communicate by means of some commu-
nication channels. All of them have the same input alphabet V , and their boxes
contain an input multiset over V (they can also have an empty multiset ε as input).
The output alphabet has a “real” part O of output alphabet, and a “specific” part
used for communication. The specific part is, in fact, a Cartesian product between
the input alphabet V and the set of targets T (the set of the indexes of the MmA
forming the net). We can also have a special MmA to collect in its box the result
of the computation (i.e. a multiset over O) for such a network. Alternatively, we
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can consider as result of the computation the tuple of multisets obtained in the
box of every MmA of the net.

Definition 1. A network of Mealy multiset automata (shortly, nMmA) is a con-
struct N = (V, O, {Ai}i=1,n , {Λi}i=1,n , B) where:

• V = {a1, a2, ..., am} is a finite set of objects, the input alphabet ;
• O is the output alphabet such that O ∩ V = ∅;
• Ai = (Qi, V, O, fi, gi, s0,i) are MmA’s connected in the network. Their output

alphabets are of the form O = O ∪ (V × T ), where T = {1, 2, ..., n};
• B is a box where N “receives” the output multiset. Depending on features

that we consider for the net, B can be a specific box of a specific MmA in the
network, or B can be the Cartesian product of all the boxes.

• Λi : N
〈
O

〉 → (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
all the A′i, i ∈ T .

A computation starts with some input multisets w0,i in the boxes of the MmA’s
that are in their initial states, s0,i; then we have a big step given by a translation
(made by the MmA’s, in fact by their restricted direct product

∧n
i=1Ai) and a

communication (done by {Λi}) - a kind of “parallel cascade product”, since every
MmA is in cascade with the restricted direct product of itself and the other MmA.

A configuration of the network is of the form (s, w), where s = (s1, s2, ..., sn)
with si ∈ Qi is the global state, and w = (w1, ..., wn) where wi ∈ N 〈O〉 ∪ N 〈V 〉.

A transition between configurations is denoted by (s, w) ` (s′, w′) and is defined
in the following manner:

s′ = (s′1, s
′
2, ..., s

′
n), where s′i ∈ fi(si, ai) with ai ∈ N 〈V 〉; we allow some of the

a′s to be ε if in the corresponding MmA there is no transition.
w′ = Λ1(b1) + Λ2(b2) + ... + Λn(bn) + (w1 − a1, w2 − a2, ..., wn − an), where

bi ∈ gi(si, ai).
A network of MmA can be used in various modes. We can use it as a generative

system, looking to the number of output objects that we find in the boxes (without
considering the final state for the MmA). It can be used also to compute functions
from N 〈V 〉 to N 〈O〉. An example of such a network used as a generative system
could clarify these aspects:

Example 1. Let
N = (V, O, {Ai}i=1,3 , {Λi}i=1,3 , B1)

where:

• V = {a} is the input alphabet;
• O = {b} is the output alphabet b 6= a;
• Ai = ({si} , V, O, fi, gi, si), are the MmA’s connected in the network.

Their output alphabet is O = {b, (a, 1), (a, 2), (a, 3)}
• B1 is the box where N “receives” the output multiset.
• Λi : N

〈
O

〉 → (N 〈O〉 ∪N 〈V 〉)3 are the communication mappings associated to
all the Ai, i ∈ T = {1, 2, 3}.
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We describe now the mappings. The transition mappings are

• fi(si, a) = si, i = 1, 3;

The output mappings:

• g1(s1, a) ∈ {b, (a, 2) + (a, 3)}, so is a nondeterministic mapping;
• g2(s2, a) = (a, 1);
• g3(s3, a) = (a, 1)

The communication mappings:

• Λ1(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (nb + k1a, k2a, k3a))
• Λ2(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε))
• Λ3(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε))

Since A1 has a nondeterministic output mapping, the behaviour of our network
is nondeterministic. We denote the global state by s = (s1, s2, s3). We start our
computation from (s, (a, ε, ε)) Applying the restricted direct product we can obtain
(s, (b, ε, ε)) or (s, (ε, a, a)).

In the first case we obtain one b, so we generate 1. In the second case, the
computation continues with communication, and we obtain (s, (a + a, ε, ε) =
(s, (2a, ε, ε), and, again, we have various possibilities to choose. Anyway, it should
be clear now that we can generate any number of b′s, so N can generate every
positive integer.

In order to study the computational power of nMmA, we are trying to simulate
neural-like P systems. To be more specific, we try to simulate the neural P systems
working in minimal mode and replicative manner. To keep the paper self-contained,
we remember some facts about neural P systems and adapt the notations from
[11].

3 Neural P Systems

The former tissue P systems were called neural-like P systems in [11]. We start with
the classical definition, and later we adapt the notation to our needs. We consider
a class of networks of membranes inspired by the way the neurons cooperate to
process impulses in the complex net established by synapses. A possible model
of this symbol processing machinery can be given by a network of membranes,
each of them containing a multiset of objects and a state according to which the
objects are processed. The membranes can communicate along “axons” channels.
We make some minor modifications to the original notations, having in mind that
in the Mealy multiset automata we distinguish between multisets and strings that
could represent them (since we can deal with two kinds of behaviours, a global
one and a sequential one). We also restrict our presentation of neural P systems
working in minimal mode and replicative manner.
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Definition 2. A neural P system (nP system) of degree m ≥ 1 is a construct

Π = (V, σ1, σ2, ..., σm, syn, iout),

where

1. V is a finite non-empty alphabet (of objects);
2. syn ⊆ {1, 2, ..., m} × {1, 2, ..., m} (synapses among cells);
3. iout ∈ {1, 2, ..., m} indicates the output cell ; we can put iout = 1;
4. σ1, σ2, ..., σm are cells of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

• Qi is a finite set (of states);
• Ri is a finite set of rules of the form sw → s′(x + ygo + zout), where s, s′ ∈ Qi,

w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉 , zout ∈ N 〈V × {out}〉, with the restriction
that zout = ε for all i different from 1.

The objects that appears in the left hand multiset w of the rule sw → s′w′ are
called impulses, while those from w′ are called excitations.

An m-tuple of the form (s1w1, s2w2, ..., smwm) is called a configuration of Π.
Using the rules defined above, we can define transitions among the configurations
of the system. To this end, there are considered three modes of processing the
impulse-objects and three modes of transmitting excitation-objects from one cell to
another one. As we already mention, we restrict ourselves to the minimal processing
mode.

Notations: Vgo = {(a; go) | a ∈ V }, Vout = {(a; out) | a ∈ V }, and Vtot =
V ∪ Vgo ∪ Vout. For s, s′ ∈ Qi, x ∈ N 〈V 〉 and y ∈ N 〈Vtot〉, we write

sx ⇒min s′y iff sw → s′w′ ∈ Ri, w ⊆ x and y = (x− w) ∪ w′.
In this case, only one occurrence of the multiset from the left-hand side of a rule
is processed, being replaced by the multiset from the right-hand of the rule, and
at the same time changing the state of the cell.

We also write sx ⇒min sx for s ∈ Qi and x ∈ N 〈V 〉 whenever there is no
rule sw → s′w′ ∈ Ri such that w ⊆ x. This encodes the case when a cell cannot
process the current objects in a given state (it can be “unblocked” after receiving
new impulses from the cells which are active and can send objects to it).

Now, recall that the multiset w′ from a rule sw → s′w′ contains symbols from
V , but also symbols of the form (a, go) (or, in the case of the cell 1, of the form
(a, out)). Such symbols are sent to the cells related by synapses to the cell σi where
the rule sw → s′w′ is applied, according to various manners of communication. As
we already mention it, we choose the replicative manner, i.e. each symbol a from
(a, go) appearing in w′, it is sent to each of the cells σj such that (i; j) ∈ syn.

In order to formally define the transition among the configurations of Π, some
further notations are needed. For a multiset w over Vtot, we consider the projections
on V , Vgo and Vout, namely prV (w); prVgo(w), and prVout(w) (see [11] for details).
For a node i in the graph defined by syn, the ancestors and the successors of
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node i are denoted by anc(i) = {j | (j, i) ∈ syn} and succ(i) = {j | (i, j) ∈ syn},
respectively.

Each transition lasts one time unit, and the network is synchronized: a global
clock define the passage of time for all the cells.

For two configurations C1 = (s1w1, ..., smwm) and C2 = (s′1w”1, ..., s
′
mw”m)

we write C1 ⇒ C2 if there are w′1, ..., w
′
m in N 〈Vtot〉 such that

siwi ⇒ s′iw
′
i, 1 ≤ i ≤ m

and
w”i = prV (w′i) +

∑

j∈anc(i)

prVgo
(w′j)

Obviously, objects are always sent to a cell i only from its ancestors, namely from
cells j such that a direct synapse exists from j to i. In the case of the cell 1, we
remove from w′1 all the symbols a ∈ V which appear in w′1 in the form (a, out).
If during a transition a cell does nothing (no rule is applicable to the available
multiset of objects in the current state), then the cell waits until new objects are
sent to it from its ancestor cells.

A sequence of transitions among the configurations of Π is called a computation
of Π. A computation ending in a configuration where no rule in no cell can be
used is called a halting computation. The result of a halting computation is the
number of objects in the output cell 1 (or sent to the environment from the output
cell 1). We denote by N(Π) the set of all natural numbers computed in this way
by a system Π. We denote by NOnPm,r(coo) the family of sets N(Π) computed
by all cooperative neural-like P systems with at most m ≥ 1 cells, each of them
using at most r ≥ 1 states. When non-cooperative systems are used, we write
NOnPm,r(ncoo) for the corresponding family of sets N(Π).

3.1 Computational power

We denote by NRE the family of Turing computable sets of natural numbers.
Following [11], we mention that the minimal mode of using the rules turns out

to be computationally universal.If we consider the apparently weak neural-like P
systems, then the fact that we obtain universality even in the non-cooperative case
when using the mode min of applying the rules is rather unexpected. The same
result holds true also when using cooperative rules. Among the results presented
in [11] we mention here only those for minimal mode and for replicative manner.

Theorem 1. NOnP2,5(ncoo) = NRE.

For the cooperative rules, the number of states can be decreased.

Theorem 2. NOnP2,2(coo) = NRE.
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4 Universality of the Networks

In order to obtain the generative power of a network of MmA, we give the following
result.

Theorem 3. Any nP System working in min mode and replicative manner can be
simulated by a network of MmA (possibly nondeterministic).

Proof. Let Π = (V, σ1, σ2, ..., σm, syn, 1) be an nP system with its components
described as in the previous section. We remind that σ1, σ2, ..., σm are cells of the
form σi = (Qi, si,0, wi,0, Ri) (1 ≤ i ≤ m), where Qi is a finite set (of states) and
Ri is a finite set of rules of the form sw → s′(x + ygo + zout) with s, s′ ∈ Qi,
w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉, zout ∈ N 〈V × {out}〉 (with the restriction that
zout = ε for all i different from 1).
We can build a nMmA N = (V, O, {Ai}i=1,m , {Λi}i=1,m , B1) where:

- the output alphabet O is Vout;
- Ai = (Qi, V, O, fi, gi, s0,i) is the MmA simulating the activity of cell σi. The

output alphabets are of the form O = O ∪ (V × T ), where T = {1, 2, ..., m};
- B1 is the box where N collects the output multisets;
- Λi : N

〈
O

〉 → (N 〈O〉 ∪ N 〈V 〉)n are the communication mappings associated
to Ai, i ∈ T .

Consider a rule sw → s′(x + ygo + zout) from Ri. We can simulate this rule
with fi and gi by defining them in the following manner:

- fi(s, w) = s′;
- gi(s, w) = (zout + x + k1(y, 1) + k2(y, 2) + ... + km(y,m)),

with the following restrictions in gi:
* if i 6= 1, then zout = ε;
* if there is no synapse from σi to σj , we define kj = 0, else kj = 1.

In this manner we can also simulate the replicative manner of applying the rules,
since y is marked to be send to all the cells having synapse from σi.

It is easy to see that we have a transition (s1w1, ..., smwm) ⇒ (s′1w”1, ..., s
′
mw”m)

in Π if and only if ((s1, s2, ..., sn), (w1, ..., wn)) ` ((s′1, s
′
2, ..., s

′
n), (w”1, ..., w”n))

As an immediate consequence of this result we get the following

Theorem 4. Nondeterministic networks of Mealy multiset automata are univer-
sal.

Proof. We already know that NOnP2,2(coo) = NRE. Applying the previous the-
orem we obtain that the generative power of a nondeterministic network of MmA
is NRE. Therefore the nondeterministic network of MmA is universal.

Therefore a network of Mealy multiset automata is able to simulate Turing
machines, and so it is computationally complete. The number of cells and states
sufficient to characterize the power of Turing machines is rather small.

P systems are simulated on a network of computers [6]. It would be interesting
to see whether such an implementation can be related to the network of Mealy
multiset automata.
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Appendix

Behaviour of MmA

For some of the categorical properties of MmA’s, as well as behaviour and bisim-
ulation relation, we refer to [3] and [4]. Behaviour is often appropriately viewed
as consisting of both dynamics and observations, which have to do with change of
states and partial access to states, respectively. The main advantage of an MmA
is that it has an output function that can play the main role in observability, i.e.
we do not have to construct an other machine to describe the MmA’ s behaviour.

Definition 3. Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The gen-
eral behaviour of a state q ∈ Q is a function beh(q) assigning to every multiset
α∈N 〈V 〉 the output multiset obtained after consuming α starting from q.

When talking about the behaviour, we consider a specific order of consuming
multisets, i.e. in terms of strings of multisets.

A certain feature for MmA is that the behaviour is always finite because we
can not go further after consuming the given multiset. On the other hand, since
the outputs go back into the box, it is possible that we can not track the sequence
of intermediate states. If we are interested only on the outcome of the machine,
then we should not take care of the intermediate states, and if the input multiset
is partially consumed, it should be of interest the state where the MmA arrives in
order to (possible) provide the box with a supplementary multiset in order to make
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the initial one a consumed multiset. These considerations lead us to the following
definition.

Definition 4. Let A = (Q,V, O, f, g) be a Mealy multiset automaton. The se-
quential behaviour of a state q ∈ Q is a function seqbeh(q) that assigns to every
multiset α∈N 〈V 〉 all the sequences of the output multisets obtained after consum-
ing α starting from q.

Example 2. Suppose that we have the following sequence of transitions (q, α, ε) `
(q1, α− a1, b1) ` (q2, α− a1 − a2, b1 + b2) ` ... ` (qn, α− a1 − ...− an, b1 + ... + bn)
and MmA stops. Then beh(q)(α) = b1 + ... + bn and seqbeh(q)(α) 3 b1...bn.
Moreover, b1 + ... + bn belongs to N 〈O〉, while b1...bn belongs to (N 〈O〉)∗.
Consider the canonical inclusion i : N 〈O〉 → (N 〈AO〉)∗ and the identity map
id : N(O) → N(O). By the universal property of the free monoid, we know that
there exists a unique homomorphism of monoids IO : (N 〈O〉)∗ → N 〈O〉 defined
by IO(b1...bn) = b1 + ... + bn such that IO ◦ i = id. Since id is onto, it follows that
I is onto, and so, applying the isomorphism theorem for monoids, we obtain that
(N 〈O〉)∗/kerIO w N 〈O〉.
Proposition 1. For all the states q of a Mealy multiset automaton we have

IO ◦ seqbeh(q) = beh(q).

If q, q′ are two bisimilar states (see [3] for details), they have the same sequential
behaviour seqbeh(q) = seqbeh(q′). This implies that they also have the same
behaviour beh(q) = beh(q′). We can define (since the reciprocal it is not true) a
weaker equivalence relation:

q ≈ q′ ⇔ beh(q) = beh(q′)

Proposition 2. We have q ≈ q′ ⇔ (∀)α ∈ N 〈V 〉:(seqbeh(q), seqbeh(q′)) ∈
kerIO.

Since this relation is independent of the order of consuming resources from the box,
we call it output conservative equivalence. The importance of this equivalence is
given mainly by the idea of consuming and producing resources. The resource prob-
lem appears to be of interest when we consider the parallel/concurrent processes.
In this manner we overpass the sequential framework previously represented by
seqbeh.

Restricted direct product of Mealy multiset automata

Let Ai = (Qi, V,O, fi, gi), and Bi their corresponding boxes, i = 1, n, a finite
family of Mealy multiset automata. We can connect them in parallel in order to
obtain a new MmA defined by A =

∧n
i=1Ai = (×n

i=1Qi, V, On, f, g), called the
restricted direct product of Ai, where:
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• f((q1, q2, ..., qn), a) = (f1(q1, a), f2(q2, a), ..., fn(qn, a)),
• g((q1, q2, ..., qn), a) = (g1(q1, a), g2(q2, a), ..., gn(qn, a)),
• box of A is the disjoint union

⊔n
i=1 Bi of {Bi | i = 1, n},

• a configuration of A is a triple (q, α, β̄), where q = (q1, q2, ..., qn), α =
(α1, α2, ..., αn), and β̄ = (β̄1, β̄2, ..., β̄n),

• the transition relation of A: (q, α, β̄) ` (s, α − a, β̄ + b̄) iff si ∈ fi(qi, ai) and
b̄i ∈ gi(qi, ai) for all i ∈ 1, n.

The cascade product of Mealy multiset automata

The cascade product is useful to describe a serial connection, and provide also
some results in decompositions of such machines in irreducible ones.

Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two Mealy multiset au-
tomata. In order to connect them, we need a multiset mapping linking the output
of one of them to the input of the other. This can be done using a N-homomorphism
from N 〈O′〉 to N 〈V 〉 (this homomorphism can be obtained by using a mapping
from O′ to V ). We denote by Λ : N 〈O′〉 → N 〈V 〉 this homomorphism. Then we
can define a mapping Ω : Q′ × N 〈V ′〉 → N 〈V 〉 by Ω(q′, a′) = Λ(g′(q′, a′)).

• This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ , gΩ)

where fΩ((q, q′), a′) = (f(q, Ω(q′, a′)), f ′(q′, a′)), and
gΩ((q, q′), a′) = g(q, Ω(q′, a′)), for all a′ ∈ N 〈V ′〉 , (q, q′) ∈ Q×Q′.

• The transition relation becomes ((q, q′), α′, β̄) ` ((s, s′), α′ − a′, β̄ + b̄) if there
is a′ ⊆ α′ such that (s, s′) = fΩ((q, q′), a′) and b̄ = gΩ((q, q′), a′), where
a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

We can alternatively define the transition relation by

((q, q′), α′, β̄) ` ((s, s′), α′ − a′, β̄ + b̄)

if there is a′ ⊆ α′ such that s=f(q, Λ(g′(q′, a′))), s′=f ′(q′, a′), b̄=g(q, Λ(g′(q′, a′))),
where a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, β̄ ∈ N 〈O〉. The graphical representation of
the cascade product is given in the following figure:

In order to obtain the behaviour of a network of MmA’s, we should also con-
sider the behaviour of the cascade product. Roughly speaking, the two types of
behaviour depends mainly on the corresponding behaviours of A′. On the other
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hand, when we have a cascade product, the observable part is strongly connected
with the observations that could be made after we pass through A. We may also
emphasize the decisive role played by the connection homomorphism given by Λ.
We have the following result:

Theorem 5. Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two MmA’s,
AΩA′ their cascade product, and (q, q′) a state of this product. The behaviour
of (q, q′) is beh((q, q′)) = beh(q) ◦ Λ ◦ beh(q′).

If we want to get the sequential behaviour starting from beh((q, q′)) = beh(q) ◦
Λ ◦beh(q′), then (I, I′) ◦ seqbeh((q, q′)) = (I ◦ seqbeh(q)) ◦Λ ◦ (I′ ◦ seqbeh(q′)).
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Summary. Event structures are formal models for parallel and nondeterministic sys-
tems. The use of the event structures defines formally where and how the parallelism and
nondeterminism appear in systems. We study the event structure for membrane systems,
considering both the causality and the conflict relations. We investigate how an event
structures can be associated to an parallel evolution step. Two cases are considered: first
the rules are applied over strings, and then rules are applied over multisets. We show that,
if we apply the standard procedure of extracting event structures from labelled transition
systems, then the meanings for event and causality are different for the two cases. The
commutativity in the case of multisets introduces some “false” causalities which must be
removed in order to capture the right parallelism of the membrane systems.

1 Introduction

Membrane systems [5] describe a computation mechanism inspired by cellular
biology. Parallelism and nondeterminism represent the essential features of the
membrane computation. Membrane computation is strongly parallel and nonde-
terministic mainly due to its way of applying the rules of a membrane to its
objects. The rules associated with a compartment are applied to the objects from
that compartment in a (maximally) parallel way, and the rules are chosen in a
non-deterministic manner. Moreover, all compartments of the system evolve at
the same time, and so we have two levels of parallelism.

In this paper we study the nature of parallelism and nondeterminism of the
membrane systems in terms of a widely recognized formal model for parallelism
and nondeterminism, namely in terms of event structures [7].

According to [6], the models for concurrency are classified according to the fol-
lowing criteria: whether they can represent the structure of systems or just their
behaviours; whether they can faithfully take into account the difference between
parallel and sequential computation (interleaving or non-interleaving model); and

⋆ This work has been supported by the research grant CEEX 47/2005, Romania
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whether they can represent the branching structure of processes related to nonde-
terministic choices (linear or branching time model). Event structures are chosen
to represent the non-interleaving and branching-time models, and so they model
the true concurrency (parallelism) and nondeterminism.

2 Event Structures

In event-based models, a system is represented by a set of events (action occur-
rences) together with some structure on this set, determining the causality rela-
tions between the events. The causality between actions is expressed by a partial
order, and the nondeterminism is expressed by a conflict relation on actions. For
every two events d and e it is specified either whether one of them is a prerequisite
for the other, whether they exclude each other, or whether they may happen in
parallel. The behaviour of an event structure is formalized by associating to it a
family of configurations representing sets of events which occur during (partial)
runs of the system.

A parallel (concurrent) step is simultaneously executing several rules, each of
them producing events which end up in the resulting event configuration. These
steps are presumably cooperating to achieve a goal, and so they are not totally
independent. They synchronize at certain points, and this is reflected in the events
produced.

There are many levels of granularity at which one might describe the events
that occur as a process executes. At the level of the components from which the
system is composed, computation consists of events which reflect the rules. At
a higher level, the system might be viewed in terms of parallel executions of its
components. Thus, when we talk about the events which occur within a system, it
is understood that we know the granularity of the representation, and that events
are encoded to this granularity (degree of precision).

Definition 1 (Event Structure).
An event structures is a triple (E,≤,#) where

• E is a set of events,

• ≤ ⊆ E × E is a partial order, the causality relation,

• # ⊆ E × E is an irreflexive and symmetric relation, the conflict relation,

satisfying the principle of conflict heredity:
∀e1, e2, e3 ∈ E. e1 ≤ e2 ∧ e1#e3 ⇒ e2#e3.

A more detailed presentation of event structures can be found in [8].

2.1 Event Structure Associated to a Labelled Transition System

There are many cases when the operational semantics of a system is given by
means of a labelled transition system (lts) describing all possible sequential com-
putations. In order to study the concurrency properties, we must determine the
event structure defined by such a labelled transition system.



What is an Event for Membrane Systems? 257

Let (S,−→, L, s0) be a transition system, where S is the set o states, −→ is the
transition relation consisting of triples (s, ℓ, s′) ∈ S × L × S, often written as

s
ℓ
−→ s′, L is the set of labels (actions), and s0 is the initial state. A (sequential)

computation is a sequence s0
ℓ1−→ s1 . . .

ℓn−→ sn such that (si−1, ℓi, si) ∈ −→.

Definition 2 (Events in a lts).
Let ∼ be the smallest equivalence satisfying: if (s, ℓ1, s1), (s, ℓ2, s2), (s1, ℓ2, s3),
(s2, ℓ1, s3), ∈ −→ and (ℓ1 6= ℓ2 or s1 6= s2), then (s, ℓ1, s1) ∼ (s2, ℓ1, s3).
An event is a ∼-equivalence class written as [s, ℓ, s′].

Intuitively, two transitions are equivalent iff they are occurrences of the same
event. The relation ∼ can be easier understood from the following picture:

s

s1
�

ℓ 1

s2

ℓ
2

-

s3
�

ℓ 1
ℓ
2

-

We have two events which may occur in any order, i.e., the two events are concur-
rent.

Definition 3 (Configuration in a lts).
A configuration is a multiset of events [si−1, ℓi, si] corresponding to a computation

s0
ℓ1−→ s1 . . .

ℓn−→ sn.

Since all computations start from s0, each prefix of a configuration is also a
configuration.

Theorem 1 (Event Structure of a lts). [4]

(S,−→, L, s0) can be organized as an event structure.

Proof (Sketch). The event structure (E,<,#) is defined by:

• E is the set of events as defined in Definition 2;
• e1 < e2 if every configuration which contains e2 also contains e1;
• e1 # e2 if there is no configuration containing both e1 and e2.
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Example 1. The events defined by the lts in Figure 1 are:

E1 = {(s0, ℓ1, s1)} E4 = {(s1, ℓ2, s4), (s3, ℓ2, s5)}

E2 = {(s0, ℓ2, s2)} E5 = {(s2, ℓ1, s6)}

E3 = {(s1, ℓ3, s3), (s4, ℓ3, s5)} E6 = {(s4, ℓ1, s6)}

A configuration describe a (partial) computation expressed in terms of events. This
lts defines the following configurations:

E1 E2 E5

E2 E1 E3 E4

E1 E3 E1 E4 E3

E1 E4 E1 E4 E6

We have E1 < E3 because any configuration containing E3 also contains E1. Since
any occurrence of E3 is always after an occurrence of E1, it follows that there is
causal relationship between the two events. We get E1 < E4 < E6 and E2 < E5

in a similar way.
Since there is no a configuration containing both E1 and E2, it follows that there is
a conflict between the two events, i.e., E1 #E2. We get E1 #E5, E2 #E3, E2 #E4,
E2 #E6, E5 #E3, E5 #E4, and E5 #E6 in a similar way.

s0

s1

�

ℓ1

s2

ℓ
2

-

s3

�

ℓ3

s4

ℓ
2

-

s5

�

ℓ3
ℓ
2

-

s6

ℓ1

?

ℓ
1

-

Fig. 1. A lts example
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3 Event Structure of an Evolution Step

We assume that the reader is familiar with membrane systems (see [5] for a detailed
presentation). A membrane structure and their contents, represented as multisets
of objects, identify a configuration of a P system. By a nondeterministic and paral-
lel use of rules, the system can pass to another configuration; such a step is called
a transition. A sequence of transitions constitutes a computation. Because of the
nondeterminism of the application of rules, starting from an initial configuration,
we can get several successful computations.

Membrane computation is strongly parallel and nondeterministic mainly due to
its way of applying the rules of a membrane to its objects. The rules associated with
a compartment are applied to the objects from that compartment in a (maximally)
parallel way, and the rules are chosen in a non-deterministic manner. We consider
here only membrane systems with a single membrane.

Example 2. Let us consider a simple membrane consisting of the following three
rules

ℓ1 : a → b

ℓ2 : b → a

ℓ3 : ab → d

and having the content aabc. We investigate the space of all sequential rewritings
corresponding to the application of rules in the evolution step aabc

mpr

⇒ bbac in
order to discover the events of this step. The exact definitions for

mpr

⇒ is given in
the next subsections.

3.1 Non-commutative Case

We first assume that the sequential rewritings are executed over non-commutative
words (strings).

A context is a string of the form w •w′, where w,w′ are strings of objects, and
• is a special symbol. Each rewriting step wuw′ → wvw′ is uniquely determined by
the context w•w′ and the rule ℓ : u → v. Therefore the transition (wuw′, ℓ, wvw′) =

wuw′ ℓ
−→ wvw′ is denoted by (w • w′, ℓ).

The maximal parallel rewriting over strings is defined as follows: w
mpr

⇒ w′ if and
only if there are ℓ1, . . . , ℓn, ℓi : ui → vi (i = 1, n) such that w = w0u1w1 . . . unwn,
w′ = w0v1w1 . . . vnwn and w0w1 . . . wn irreducible (no rule can be applied).

We consider first an example. The space of all sequential rewritings for the
evolution step of Example 2 is represented in Figure 2.a.

By Definition 4, we have the following three independent events:

A = {(•abc, ℓ1), (•bbc, ℓ1), (•bac, ℓ1), , (•aac, ℓ1)}

B = {(a • bc, ℓ1), (b • bc, ℓ1), (b • ac, ℓ1), , (a • ac, ℓ1)}

C = {(aa • c, ℓ2), (ab • c, ℓ2), (bb • c, ℓ2), , (ba • c, ℓ2)}.
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aabc aabc

babc
�

ℓ1

abbc

ℓ1

?

aaac

ℓ
2

-

bbbc

ℓ1

?�

ℓ1

baac
�

ℓ1ℓ
2

-

abac

ℓ1

?

ℓ
2

-

bbac

ℓ1

?�

ℓ1
ℓ
2

-

bbac

({A, B, C}, ∅, ∅)

?

a) b)

Fig. 2. Lts corresponding to aabc
mpr
⇒ bbac

Each event corresponds to the application of a certain evolution rule at a cer-
tain position in the string. The resulting event structure corresponds very well to
the following description: distribute the object to the rules and then apply the
evolutions rules in parallel. The parallel execution of all involved evolution rules
is possible because the corresponding events are independent (no causalities, no
conflicts). Figure 2.b represents the fact that bbac is obtained from aabc using the
computation space described by the event structure ({A,B,C}, ∅, ∅). Any permu-
tation of A,B,C is a computation (in terms of event structures) in this space.

We give now the formal definition for the event structure associated to a mpr-
step over strings.

Definition 4. The labelled transition system associated to w
mpr

⇒ w′ is given by all

the sequential rewritings starting from w and ending in w′. The event structure

ES(w,w′) associated to w
mpr

⇒ w′ is the event structure associated to its labelled

transition system.

Theorem 2. The event structure ES(w,w′) = (E,<,#) associated to w
mpr

⇒ w′

consists of only independent events, i.e., < = ∅ and # = ∅.

Proof. We have w
mpr

⇒ w′ iff w = w0u1w1 . . . unwn, w = w1v1w2 . . . vnwn, ℓi :
ui → vi is an evolution rule, for i = 1, . . . , n, and w1 . . . w0w1 . . . wn is irreducible.
The conclusion of the theorem follows by the fact that [w0 . . . • wi . . . wn, ℓi] is a
configuration (any of events can occur first).
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3.2 Commutative Case

We assume now that the sequential rewritings are executed over commutative
words (multisets).

We write w =c w′ if and only if w′ is obtained from w by a permutation of
the objects, i.e., w and w′ are equal modulo commutativity. Let [w] denote the
=c-equivalence class of w, i.e., [w] = {w′ | w =c w′}.

A context is a string of the form [•w], where w is a multiset of objects, and
• is a special symbol. It is easy to see now that the position of • in a context
is not important, and therefore we write • at the beginning. Each rewriting step
[uw] → [vw] is uniquely determined by the context [•w] and the rule ℓ : u → v.

Therefore the transition ([uw], ℓ, [vw]) = [uw]
ℓ
−→ [vw] is denoted by ([•w], ℓ).

The maximal parallel rewriting over multisets is defined as follows: [w]
mpr

⇒ [w′]
iff there are ℓ1, . . . , ℓn, ℓi : ui → vi (i = 1, n) such that [w] = [u1 . . . unr], [w′] =
[v1 . . . vnr and r is irreducible (no rule can be applied).

Again we start with an example. The space of all rewritings for the evolution
step in Example 2 is:

[aabc]

[babc]
�

ℓ 1

[aaac]

ℓ
2

-

[bbbc]
�

ℓ 1

[baac] = [aabc]
�

ℓ 1
ℓ
2

-

[bbac] = [babc]
�

ℓ 1
ℓ
2

-

We also have three events, but they are not totally independent:

A = {([•abc], ℓ1), ([•aac], ℓ1)}

B = {([•bbc], ℓ1), ([•bac], ℓ1)}

C = {([•abc], ℓ2), ([•bac], ℓ2), ([•bbc]ℓ2)}

A < B

An event corresponds now to the application of an evolution rule at an arbitrary
position. The position in strings cannot be used anymore to distinguish between
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events. Moreover, between the events A and B we have a causal dependency: B

may occur only after A. In fact, A can be read as “the first application of the
evolution rule ℓ1” and B as “the second application of the evolution rule ℓ1”. We
notice that the use of commutativity law changes dramatically the meaning of an
event.

Definition 5. The labelled transition system associated to [w]
mpr

⇒ [w′] is given by

all the sequential rewritings starting from [w] and ending in [w′].

Theorem 3. The event structure (E,<,#) associated to the labelled transition

system defined by [w]
mpr

⇒ [w′] has the following properties:

• [[•w1], ℓ1] < [[•w2], ℓ2] if and only if ℓ1 = ℓ2, [[•w1], ℓ1] corresponds to the i-th

application of the rule ℓ1, [[•w2], ℓ1] corresponds to the j-th application of the

rule ℓ1, and i < j;

• # = ∅.

“Maximal parallel” means “no causal dependency” between the application
of the rules. We may conclude either that working with multisets is not a good
solution at this granularity, namely it is not possible to determine all the parallel
rules applied in a mpr-step, or the procedure which determines the event structure
from a lts finds “false” causalities for the particular case when the states are given
by multisets. We believe that the later one is true; the causality relation given by ·-
th application of a rule (when it is applied more than once) is artificial. Therefore
we remove the false causal dependency in the definition of the event structure
associated to a mpr-step.

Definition 6. The event structure associated to [w]
mpr

⇒ [w′] is ES([w], [w′]) =
(E, ∅, ∅), where (E,<, ∅) is the event structure associated to the labelled transition

system defined by [w]
mpr

⇒ [w′].

4 Event Structure of a Membrane

In this section we determine the event structure given by a membrane. Since the
definition for the event concept is different for the two algebraic structures used
for contents, we get two definitions for the event structure of a membrane.

We first note that the notation for events is not longer suitable for the case
of membranes. We assume that we have a membrane with two evolution rules: ℓ :
a → b and ℓ′ : b → a. Let us consider the computation aa

mpr

⇒ bb
mpr

⇒ aa
mpr

⇒ bb. Since
the events of aa

mpr

⇒ bb occur always before the events of bb
mpr

⇒ aa, and the events of
bb

mpr

⇒ aa occur before the events of aa
mpr

⇒ bb, then we get [a•, ℓ] < [b•, ℓ′] < [a•, ℓ],
i.e., the causality relation < is cyclic. Therefore each event [c, ℓ] in ES(w,w′) is
denoted with a new fresh name e, and we define action(e) = [c, ℓ]. In this way, the
event sets corresponding to different computation steps are disjoint.
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4.1 Non-commutative Case

If the commutativity law is not suitable at this level of granularity, then a question
must be answered: who (and how) computes the correct permutation of the objects
such that the maximal parallel rewriting is possible? For instance, if the membrane
in Example 2 has the content bbac, then this content must be permuted to babc in
order to have bbac =c babc

mpr

⇒ acc.
The answer is given by the nondeterministic allocation of the available re-

sources to the rules before the execution of a mpr-step. Such an allocation of
resources is considered as an event appearing before a mpr-step. This event con-
sists in the nondeterministic choice of a permutation of available resources, and
reflect the nondeterminism of the membrane computation. Once such a permuta-
tion is selected, then the next mpr-step is applied over the corresponding string
corresponding to this permutation.

We informally describe the event structure of a membrane M . A computation
in M is of the form w0 =c w′

0
mpr

⇒ w1 =c w′
1

mpr

⇒ · · · , where w0 is the initial contents
of M . A string (contents) w is reachable in M iff there is a computation from w0

to w. A reachable string w is ready-to-fire if there is a w′ such that w
mpr

⇒ w′.

The event structure ES(M) = (EM , <M ,#M ) associated to a membrane M is
defined as follows:

1. for each reachable w and each w′ such that w
mpr

⇒ w′, ES(w,w′) ⊆ ES(M) (we
recall that the events in ES(w,w′) are renamed);

2. for each reachable w and each ready-to-fire permutation w′ of w, w 6= w′, we
consider in EM a distinct event e with action(e) equal to w =c w′, and
a) for each reachable w1 such that w1

mpr

⇒ w and for each event e1 in ES(w1, w)
we have e1 < e, and

b) for each w2 such that w′ mpr

⇒ w2 and for each event e2 in ES(w′, w2) we
have e < e2;

3. if e1, e2 ∈ EM such that action(e1) is w =c w1 and action(e2) is w =c w2 with
w1 6= w2, then we have e1#e2;

4. if w
mpr

⇒ w1, w
mpr

⇒ w2 and w1 6= w2, then we have e1#e2 in ES(M) for each e1

in ES(w,w1) and e2 in ES(w,w2).

Example 3. Let M be the membrane presented in Example 2. We consider the com-
putation subspace given by aabc

mpr

⇒ bbac =c babc
mpr

⇒ acc and aabc
mpr

⇒ bcc
mpr

⇒ acc.
We denote by D the event corresponding to bbac =c babc, by ({E,F}, ∅, ∅) the
event structure corresponding to babc

mpr

⇒ acc, by ({A′, B′}, ∅, ∅) the event structure
corresponding to aabc

mpr

⇒ bcc, and by ({E′}, ∅, ∅) the event structure correspond-
ing to bcc

mpr

⇒ acc. The whole event structure corresponding to the computation
subspace is represented in Figure 3.

The events given by item 2 are essential for the definition of the causality re-
lationship. Such an example is the event D in Example 3. We have A,B,C < D

because D is causally dependent on A,B,C. The non-deterministic allocation of
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aabc

bbac

�
({

A
,B

,C
},
∅,
∅)

babc

({D}, ∅, ∅)

?

bcc

({
A
′, B

′}
, ∅

, ∅)
-

acc
�

({
E
′ },

∅,
∅)

({E
,F
}, ∅, ∅)-

Fig. 3. Event structure corresponding to a membrane computation subspace over strings

the resources to rules is given only after all the evolution rules from the previ-
ous mpr-step are completely applied. In this way, all ready-to-fire strings obtained
from bbac have the same probability. However, it is debatable whether we have to
distinguish between ready-to-fire strings producing essentially the same compu-
tations, e.g., the computation starting from babc, abbc, bcab, abcb, cbab, and cabb

are bisimilar. We also have D < E,F because the evolution rules of the next step
can be applied only after the resources are allocated to rules. We assume for the
moment that action(E) = [•abc, ℓ2] and action(F ) = [b • c, ℓ3]. By transitivity,
we get A < F even if the application of the rule ℓ3 in F does not use resources
produced by the application of the rule ℓ1 in A.

The conflict relation # is given by the nondeterministic allocation of the avail-
able resources to the rules before the execution of a mpr-step (item 3), and the
causality relation is given by the repeating evolution steps (item 4). Again, it is
debatable if the events corresponding to bbac =c babc, bbac =c abbc, bbac =c bcab,
bbac =c abcb, bbac =c cbab, and bbac =c cabb are really in conflict.

4.2 Commutative Case

In terms of multisets, a computation in M is of the form [w0]
mpr

⇒ [w1]
mpr

⇒ · · · ,
where [w0] is the initial contents of M . A multiset (contents) w is reachable in M

iff there is a computation from [w0] to [w].
The construction of the event structure ES(M) = (EM , <M ,#M ) associated

to a membrane M is simpler than that for the case of strings:



What is an Event for Membrane Systems? 265

1. for each reachable [w] and each [w′] such that [w]
mpr

⇒ [w′], ES([w], [w′]) ⊆
ES(M);

2. if [w]
mpr

⇒ [w1], [w]
mpr

⇒ [w2] and [w1] 6= [w2], then we have e1#e2 in ES(M) for
each e1 in ES([w], [w1]) and e2 in ES([w], [w2]);

3. if [w]
mpr

⇒ [w1], [w1]
mpr

⇒ [w2], then we have e1 < e2 in ES(M) for each e1 in
ES([w], [w1]) and e2 in ES([w1], [w2]).

Example 4. We consider the computation subspace given by [aabc]
mpr

⇒ [bbac]
mpr

⇒
[acc] and [aabc]

mpr

⇒ [bcc]
mpr

⇒ [acc]. We denote by ({E,F}, ∅, ∅) the event structure
corresponding to [babc]

mpr

⇒ [acc], by ({A′, B′}, ∅, ∅) the event structure correspond-
ing to [aabc]

mpr

⇒ [bcc], and by ({E′}, ∅, ∅) the event structure corresponding to
[bcc]

mpr

⇒ [acc]. The whole event structure corresponding to the computation sub-
space is represented in Figure 4.

[aabc]

[bbac]

�
({

A
,B

,C
},
∅,
∅)

[bcc]

({A
′, B

′}, ∅, ∅)
-

[acc]
�

({
E
′ },

∅,
∅)

({E
,F
}, ∅, ∅)-

Fig. 4. Event structure corresponding to a membrane computation space over strings

The allocation of the resources to the rules is not longer given by an explicit
event. It is given by the causality relation. For instance, in Example 4 we have
A,B,C < E,F . The conflict relation is generated only by the mpr-steps starting
from the same multiset (contents) and producing different new multisets (con-
tents).

5 Conclusion

In this paper we study the event structure for membrane systems, considering both
the causality and the conflict relations. We investigate how an event structures can
be associated to an parallel evolution step. We found that the meaning of an event
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depends on the algebraic structure used for the contents of membranes: string or
multiset.

The construction of the event structures for the cases of priorities and pro-
moters can be reduced to the case of maximal parallel rewriting. A computation
step w

pri

⇒ w′ ([w]
pri

⇒ [w′]) in the presence of priorities is the same with w
mpr

⇒ w′

([w]
mpr

⇒ [w′]) by taking into account only the rules of maximal priority applicable
on w. Similarly, a computation step w

prom

⇒ w′ ([w]
prom

⇒ [w′]) in the presence of pro-
moters is the same with w

mpr

⇒ w′ ([w]
mpr

⇒ [w′]) where the rules requiring promoters
not in w are not considered.
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Summary. In this paper we study P systems using string-objects where the communi-
cation between the regions is indicated by the occurrence of so-called query symbols in
the string. We define two variants of communication and prove that these systems with
both types of communication are computationally complete, even having a number of
membranes limited with relatively small constants.

1 Introduction

In this paper we continue our investigations on P systems with string objects and
with communication by request. In [2], the authors studied tissue-like P systems
over string objects where the evolution rules of the objects are represented by
context-free rewriting rules which also describe the communication between the
membranes by the help of communication symbols, called query symbols, one such
symbol corresponding to each region of the system.

Membrane systems, or P systems, are distributed and parallel computing de-
vices inspired by the functioning of the living cell [5]. A P system consists of a
hierarchically embedded structure of membranes. Each membrane encloses a re-
gion that contains objects and might also contain other membranes. There are rules
associated to the regions describing the evolution and the movement of the objects
which together correspond to a computation. For details on membrane systems,
see the monograph [6] and consult the web-page http://psystems.disco.unimib.it.

While in the standard case a P system consists of a hierarchically embedded
structure of membranes, tissue-like P systems are organized in another manner
[4]. Instead of an individual cell, these correspond to groups of cells, like tissues or
organs, interacting with each other either directly or with the use of the environ-
ment, but in any case, having the common property that the membrane structures
are not necessarily described by a tree as the ones corresponding to individual
cells.
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Communication in tissue-like P systems with string objects and with commu-
nication by request was defined as follows: When one or more query symbols are
introduced in a string, then the rewriting of that string stops and the queries are
satisfied by replacing the query symbols with strings which do not contain fur-
ther query symbols from the region indicated by the query symbol, in all possible
combinations. If no query symbol free string exists in the queried region, then the
string containing the query disappears.

This model has some biological resemblance: if the strings are considered as
descriptions of simple organisms, the query symbols as their “weak points”, pos-
sibly infected or attacked by another organism, then the communication mimics
some features of an infection or parasitism. Inspired by these resemblances, we
call a communication of type i (infection) if after communicating the copies of
the strings, the strings themselves remain in the region, while the communication
is called of type p (parasitism), if after communication the communicated string
itself disappears from its original region. The model is called an MPC system in
short.

MPC systems can also be considered as modified variants of parallel commu-
nicating (PC) grammar systems defined over multisets of strings. PC grammar
systems are networks of grammars organized in a communicating system to gen-
erate a single language. The reader interested in the theory of grammar systems
is referred to [1, 7].

In [2], the authors proved that MPC systems with 7 membranes and working
with i-communication are able to describe all recursively enumerable languages.
The computational completeness of these systems working with p-communication
holds as well, even for a subclass consisting of systems having only 9 membranes.

In this paper we define the two types of communication for standard P systems
and examine the computational power and the size complexity of these models.
We call the new constructs RPC systems in short. In this case, the requested
string can only be communicated either to the parent membrane or to one of the
child membranes, depending on the issued query symbol. Thus, query symbols
refer only to the neighboring regions. According to the above mentioned biological
resemblance, both infection and parasitism are very local phenomena regarding
their spread, i.e., in one step only the neighbors can be infected and parasitism
can be developed only between two closely related, i.e. neighbor components. As
for MPC systems, the computational completeness can be proved for RPC systems
with both types of communication: in the case of i-communication systems with
10 membranes and in the case of p-communication systems with 30 membranes
are enough for demonstrating the power of the Turing machines. The reader can
observe that both MPC systems and P systems are able to obtain the computa-
tional completeness even with relatively small number of membranes. Moreover, in
the case of i-communication the difference between the two numbers is very small,
i.e. the difference in the underlying structure of the membrane system has not too
much influence on the computational power of the system.
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2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to be
familiar with the basics of formal language theory, for details see [7]. Let Σ be an
alphabet and let Σ∗ be the set of all words over Σ, that is, the set of finite strings
of symbols from Σ, and let Σ+ = Σ∗ − {ε} where ε denotes the empty word. For
w ∈ Σ∗ and S ⊆ Σ, let |w|S denote the number of occurrences of symbols from S
in the string w (if S = {a} is a singleton set, we may write |w|a instead of |w|{a}).

Let V be a set of objects, and let N denote the set of non-negative integers.
A multiset is a mapping M : V → N which assigns to each object a ∈ V its
multiplicity M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}.
If supp(M) is a finite set, then M is called a finite multiset. The set of all finite
multisets over the set V is denoted by V ◦.

We say that a ∈ M if M(a) ≥ 1. For two multisets M1,M2 : V → N, M1 ⊆ M2

if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a) −M2(a) for
all a ∈ V , and the intersection is (M1 ∩ M2) : V → N with (M1 ∩ M2)(a) =
min(M1(a),M2(a)) for a ∈ V , where min(x, y) denotes the minimum of x, y ∈ N.
We say that M is empty, denoted by ε, if its support is empty, supp(M) = ∅.

In the following we sometimes list elements a1, . . . , an of a multiset as M =
{{a1, . . . , an}}, by using double brackets to distinguish from the usual set notation.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique, is called the skin membrane.
The membrane structure is denoted by a sequence of matching parentheses where
the matching pairs have the same label as the membranes they represent. If mem-
brane li of a given membrane structure µ contains membrane lj , and there is no
other membrane, lk, such that lk contains lj and li contains lk, then we say that
membrane li is the parent membrane of lj , denoted as parentµ(lj) = li, and lj is one
of the child membranes of li, denoted as lj ∈ childµ(li). We also define for any re-
gion li the set of regions neighborµ(li) = {lj | parentµ(li) = lj or lj ∈ childµ(li)}.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,
the system performs a computation by passing from one configuration to another
one. Several variants of the basic notion have been introduced and studied proving
the power of the framework, see the monograph [6] for a summary of notions and
results of the area.

In the following we focus on systems where the objects are represented with
strings, object evolution is modeled by context-free string rewriting rules, and
communication is performed by dynamically emerging requests with the use of
query symbols appearing in the string objects.

Definition 1 A string rewriting P system with communication by request or an
RPC system (of degree m ≥ 1) is a construct
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Π = (V, µ, (M1, R1), . . . , (Mm, Rm), io),

where:

• V = N ∪ T ∪K where N, T, K are pairwise disjoint alphabets of noterminals,
terminals, and query symbols, respectively, with K = {Q1, . . . , Qm} (one query
symbol is associated to each region of Π);

• µ is a membrane structure of m membranes;
• M1, . . . , Mm are finite multisets over (N ∪ T )∗;
• R1, . . . , Rm are finite sets of context-free rewriting rules of the form A → u,

with A ∈ N and u ∈ V ∗;
• io ∈ {1, 2, . . . , m} is the index of the output membrane of Π.

The work of such a system starts from the initial configuration (M1, . . . , Mm).
It passes from a configuration (M ′

1, . . . , M
′
m), consisting of multisets of strings

over N ∪ T ∪K placed in the m regions of the system, to another configuration
(M ′′

1 , . . . , M ′′
m) in the following way. If no query symbol is present in the strings

contained by the system, then each string from each multiset M ′
i is rewritten which

can be rewritten according to the rules from Ri, 1 ≤ i ≤ m. This means the use of
one rule from Ri, non-deterministically chosen, for each string. The strings which
cannot be rewritten (no rule can be applied to them) remain unchanged. The
resulting multisets of strings are M ′′

i , 1 ≤ i ≤ m. Note that the rewriting of strings
is maximally parallel, in the sense that all strings which can be rewritten must be
rewritten, and that the process is non-deterministic, the choice of rules and the
places where the rules are applied can lead to several possible new multisets of
strings.

If any query symbol is present in any of the strings contained by M ′
i , 1 ≤ i ≤

n, then a communication is performed: Each symbol Qj introduced in a string
present in region i (that is, in the multiset M ′

i), where j is the index of one of
the neighboring regions, is replaced with all strings from this neighboring region
j which do not contain query symbols. If in region j there are several strings
without query symbols, then each of them is used, hence the string from region
i is replicated (with the occurrence of Qj replaced with strings from region j).
If there are several query symbols in the same string from component i, then
all of them are replaced (we also say that they are satisfied) at the same time,
in all possible combinations. If a query symbol Qj cannot be satisfied (region
j contains no string without query symbols), then the string containing Qj is
removed (it is like replacing it with the strings from an empty language). We call
such a system i-communicating if copies of the requested strings are communicated
to the requesting components, and p-communicating if after replacing the query
symbols with the requested strings, these strings are removed from the multiset
associated to the queried region.

In this way, all query symbols introduced by the rewriting rules disappear,
they are either satisfied (replaced by strings without query symbols) or they dis-
appear together with the string which contain them (in the case when they cannot
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be satisfied). The multisets obtained in this way in one communication step are
M ′′

1 , . . . ,M ′′
m, constituting the next configuration of the system.

We give now the formal definition of the transition.

Definition 2 Let Π = (V, µ, (M1, R1), . . . , (Mm, Rm), io) be an RPC system as
above, and let (M ′

1, . . . , M
′
m) and (M ′′

1 , . . . ,M ′′
m) be two configurations of Π. We

say that (M ′
1, . . . ,M

′
m) directly derives (M ′′

1 , . . . ,M ′′
m), if one of the following two

cases holds.

1. There is no string containing query symbols, that is, x ∈ (N ∪ T )∗ for all x ∈⋃m
i=1 Mi. In this case, if M ′

i = {{xi,1, . . . , xi,ti}}, then M ′′
i = {{yi,1, . . . , yi,ti}}

where either xi,j ⇒ yi,j according to a context-free rule of Ri, or yi,j = xi,j if
there is no rule in Ri which can be applied to xi,j , 1 ≤ j ≤ ti, 1 ≤ i ≤ m.

2. There is at least one x ∈ ⋃m
i=1 Mi such that |x|K > 0. In this case, rewriting

is stopped and a communication step must be performed as follows. Let

Mreq
i =




{{x ∈ M ′

i | |x|K = 0}} if there is a j ∈ neighborµ(i), such
that y ∈ M ′

j with |y|Qi
> 0,

∅ otherwise,

let
Mavail

i = {{x ∈ M ′
i | |x|K = 0}},

for all i, 1 ≤ i ≤ m, and let for an x = x1Qi1x2Qi2 . . . Qtxt+1, xj ∈ (N ∪
T )∗, Qij ∈ K, 1 ≤ j ≤ t + 1,

Sat(x) =




{{x1yi1x2yi2 . . . yit

xt+1 | yij
∈ Mavail

ij
}} if Mavail

ij
6= ∅ for

all ij , 1 ≤ j ≤ t,
∅ otherwise.

Now, for all i, 1 ≤ i ≤ m,

M ′′
i = M ′

i −Mreq
i − {{x ∈ M ′

i | |x|K > 0}}+
⋃

x∈M ′
i ,|x|K>0

Sat(x)

in the p-communicating mode, and

M ′′
i = M ′

i − {{x ∈ M ′
i | |x|K > 0}}+

⋃

x∈M ′
i ,|x|K>0

Sat(x)

in the i-communicating mode.

Let us denote the transitions from one configuration to another, (M ′
1, . . . , M

′
m) to

(M ′′
1 , . . . , M ′′

m), by (M ′
1, . . . ,M

′
m) ⇒X (M ′′

1 , . . . , M ′′
m) with X = i and X = p for

i-communicating and p-communicating systems, respectively.
The language generated by the RPC system consists of all terminal strings

produced in region io during any possible computation in Π.
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LX(Π) = {x ∈ T ∗ | (M1, . . . , Mm) ⇒∗
X (M ′

1, . . . , M
′
m) and x ∈ M ′

io
}

for X ∈ {i, p}, where ⇒∗
X denote the reflexive and transitive closure of ⇒X .

The families of all languages generated in this way by RPC systems of de-
grees at most m ≥ 1 with i-communication or p-communication, is denoted by
iRPCmCF and pRPCmCF , respectively. If we use systems of an arbitrary de-
gree, then we replace the subscript m with ∗. Let us also denote the class of
recursively enumerable languages by RE.

RPC systems are computationally universal; they characterize the class of re-
cursively enumerable languages, even with a limited number of components.

Before proving this result, we recall the notion of a two-counter machine from
[3]. A two-counter machine TCM = (T ∪{Z,B}, E, R) is a 3-tape Turing machine
where T is an alphabet, E is a set of internal states with two distinct elements
q0, qF ∈ E, and R is a set of transition rules. The machine has a read-only input
tape and two semi-infinite storage tapes (the counters). The alphabet of the storage
tapes contains only two symbols, Z and B (blank), while the alphabet of the input
tape is T ∪ {B}. R contains transition rules of the form (q, x, c1, c2) → (q′, e1, e2)
where x ∈ T ∪ {ε} corresponds to the symbol scanned on the input tape in state
q ∈ E, and c1, c2 ∈ {Z, ∗} correspond to the symbols scanned on the storage tapes.
If ci = Z, then the symbol scanned on the ith counter tape is Z, if ci = ∗, then the
symbol scanned is either Z or B. By a rule of this form, M enters state q′ ∈ E,
and the counters are modified according to e1, e2 ∈ {−1, 0, +1}. If x ∈ T , then
the machine was scanning x on the input tape, and the head moves one cell to
the right; if x = ε, then the machine performs the transition irrespective of the
scanned input symbol, and the reading head does not move.

The symbol Z appears initially on the cells scanned by the storage tape heads
and may never appear on any other cell. An integer t can be stored by moving
a tape head t cells to the right of Z. A stored number can be incremented or
decremented by moving the tape head right or left. The machine is capable of
checking whether a stored value is zero or not by looking at the symbol scanned
by the storage tape heads. If the scanned symbol is Z, then the value stored in the
corresponding counter is zero. Note that although we do not allow to explicitly
check the non-emptiness of the counters which is allowed in [3], this feature can be
simulated: After successfully decrementing and incrementing a counter, the stored
value is not altered, but the machine can be sure that the scanned symbol is B. A
word w ∈ T ∗ is accepted by the two counter machine if the input head has read
the last non-blank symbol on the input tape, and the machine is in the accepting
state qF . Two-counter machines are computationally complete; they are just as
powerful as Turing-machines, see [3].

Theorem 1. iRPC10CF = RE.

Proof. We only give the proof of the inclusion RE ⊆ iRPC10CF . The re-
verse inclusion follows from the Church thesis. To this aim, let us consider a
recursively enumerable language L ⊆ T ∗ and a two-counter machine TCM =
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(T ∪ {Z, B}, E, R), in the above form, accepting the language L. We construct an
RPC system L. Let

Π = (V, µ,Csel, Cgen, Cch1 , CS4 , Cc1 , Cind1 , Cch2,1 , Cc2 , Cind2 , Cch2,2 , sel),

where Cα = (Mα, Rα) for α ∈ {sel, gen, c1, c2, ind1, ind2, ch1, S4, ch2,1, ch2,2}, µ =
[ [ [ [ ]S4 [ [ ]ind1 [ ]ch2,1 ]c1 [ [ ]ind2 [ ]ch2,2 ]c2 ]ch1 ]gen ]sel and V = N ∪K ∪ T .

Let D = {[q, x, c1, c2, q
′, e1, e2] | (q, x, c1, c2) → (q′, e1, e2) ∈ R}, and let us

define for any α = [q, x, c1, c2, q
′, e1, e2] ∈ D, the following notations: State(α) = q,

Read(α) = x, NextState(α) = q′, and Store(α, i) = ci, Action(α, i) = ei for
i = 1, 2.

The general idea of the simulation is to represent the states and the transitions
of TCM with nonterminals of D and the values of the counters by strings of non-
terminals containing as many A symbols as the value stored in the given counter.
Let

N = {S′i, Fi, Bi | 1 ≤ i ≤ 6} ∪ {Si, Ci | 1 ≤ i ≤ 7} ∪ {αi,Hi | α ∈ D, 1 ≤ i ≤
8} ∪ {α′1, α′′1 , ᾱ′1, ᾱ

′′
1 , ᾱ′1 | α ∈ D} ∪ {F1,i | 1 ≤ i ≤ 5} ∪ {Ji | 1 ≤ i ≤ 4} ∪ {A,

F̄ ′1, F̄
′
1, F̄

′
1
, F̄ ′′1 , E, E1, I, J, S′′6 } and let the rules be defined as follows.

Msel = {{I}},
Rsel = {I → α1 | α ∈ D, State(α) = q0} ∪

{α8 → β1 | α, β ∈ D, NextState(α) = State(β)} ∪
{α8 → F1 | α ∈ D,NextState(α) = qF } ∪
{αi → αi+1 | α ∈ D, 1 ≤ i ≤ 7} ∪ {Fi → Fi+1 | 1 ≤ i ≤ 5} ∪
{F6 → Qgen, S′6 → S′6, S

′
6 → Qgen, E → ε, ᾱ′′1 → ε}.

This region keeps track of the current state of the simulated two-counter machine
and also selects the transition to be simulated. The symbol I is used to initial-
ize the system by introducing one of the initial transition symbols of the form
[q0, x, c1, c2, q

′, e1, e2]1 where q0 is the initial state. It also produces the result of
the computation when after simulating the entering of the counter machine into
the final state (that is, after the appearance of the nonterminal F1), it receives the
strings produced in the lower regions and erases the occurrences of the nontermi-
nals E which, if the simulation was successful, produces a terminal word accepted
by the two-counter machine.

Mgen = {{S1, S
′
1}},

Rgen = {S1 → S2, S2 → Qsel, S
′
1 → Qsel} ∪

{α1 → α′1, α2 → Qsel, αi → αi+1 | α ∈ D, 3 ≤ i ≤ 6} ∪
{α′1 → α′′1 , α′′1 → S′2, α7 → xS1 | α ∈ D, Read(α) = x} ∪
{F1 → F1,1, F1,i → F1,i+1, F1,5 → Qch1 | 1 ≤ i ≤ 4} ∪
{S′i → S′i+1 | 2 ≤ i ≤ 4} ∪ {S′5 → S′1, A → ε, J → ε} ∪
{F2 → Qsel, Fi → Fi+1 | 3 ≤ i ≤ 4} ∪ {F5 → Qch1} ∪
{S′6 → S′′6 , H7 → ε}.
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This region generates the string accepted by the counter machine by adding the
symbol Read(α) for each α ∈ D chosen in the selector region. After the appearance
of the nonterminal F1 in the system, this region will append the words from the
checking region ch1 to its own string and send this string which also contains the
generated word to the region sel. Then it will receive the word from region ch2

and erase all A and J symbols before forwarding it also to region sel.

Mch1 = {{S1, S
′
1}},

Rch1 = {S1 → S2, S2 → S3, S3 → Qgen, S′1 → S′2, S
′
2 → Qgen} ∪

{α′′1 → δ1δ2QS4 | α ∈ D, δj = Qcj if Store(α, j) = Z,

or δj = ε otherwise} ∪ {Si → Si+1 | 4 ≤ i ≤ 6} ∪
{α′1 → ᾱ′1, ᾱ

′
1 → ᾱ′1, ᾱ

′
1 → S′3, S

′
3 → S′4, S

′
4 → S′5} ∪

{F1,1 → F̄ ′1, F̄
′
1 → F̄

′
1, F̄

′
1 → F̄

′
1
, F̄

′
1
→ Qc1Qc2} ∪

{S7 → S1, S
′
5 → S′1, F1,2 → QS4}, and

MS4 = {{S4}},
RS4 = ∅.

The region ch1 checks whether the counter contents are zero when they should be
zero by collecting the counter strings from regions c1, c2 when necessary. At the
end of the simulation, the collected string is forwarded to the region gen and then
to region sel, where a terminal string can only be produced if the word originating
in region ch1 contains no A symbols.

For j = 1, 2, let

Mcj
= {{J,C1}},

Rcj = {J → J1, J1 → J2, J2 → Qch1 , A → Qindj , J3 → Qindj , J4 → J} ∪
{ᾱ′1 → ᾱ′′1 , ᾱ′′1 → δαJ3, ᾱ

′
1 → C5 | α ∈ D, δα = A if Action(α, j) = 0,

δα = AA if Action(α, j) = +1, δα = ε if Action(α, j) = −1} ∪
{Ci → Ci+1, C4 → Qch1 , C7 → C1 | i ∈ {1, 2, 3, 5, 6} } ∪
{F̄ ′1 → F̄ ′′1 , F̄

′
1 → Qch2,j , E → E1,H6 → H7}.

These regions maintain strings representing the contents of the two counters. After
the selection of a transition symbol in the region corresponding to Csel, they
execute the action required by the chosen transition symbol by adding AA, A,
or ε to the counter string and then deleting one A and J3 by rewriting it to
Qindj . The simulation can only be successful if exactly one A and the symbol J3

is rewritten. This is ensured by region Cindj . If there is a string obtained after the
two queries which contain only a number of A or E symbols and one J4 symbol,
then the simulation of the actions required by the chosen transition was successful.
If a counter is empty, this construction also forbids the successful execution of the
decrement instruction since this would introduce E1 in the counter strings.

The rules of the region supporting the work of the counters Ccj , j = 1, 2, are
defined as follows.
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Table 1. Components of Π in the proof of Theorem 1, simulating an instruction with
α = [q, x, Z, B, q′, +1,−1]. The region CS4 is omitted since it always contains the string
S4.

Csel Cgen Cch1 Cc1 Cind Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 α1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C α1 wS2, α1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 α2 wQsel, α
′
1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C α2 wα2, α
′
1 E...S3, α

′
1 E...J2, C3 B3 AEJ...H3

3 α3 wQsel, α
′′
1 E...Qgen, ᾱ′1 E...Qch1 , C4 B4 AEJ...H4

3C α3 wα3, α
′′
1 E...α′′1 , ᾱ′1 E...ᾱ′1, C4 B4 AEJ...H4

4 α4 wα4, S
′
2 E...Qc1QS4 , ᾱ′1 E...ᾱ′′1 , Qch1 B5 AEJ...H5

4C α4 wα4, S
′
2 E...ᾱ′′1S4, ᾱ

′
1 E...ᾱ′′1 , ᾱ′1 B5 AEJ...H5

5 α5 wα5, S
′
3 E...ᾱ′′1S5, S

′
3 E...δαJ3, C5 B6 AEJ...H6

6 α6 wα6, S
′
4 E...ᾱ′′1S6, S

′
4 E...QindJ3, C6 E AEJ...H7

6C α6 wα6, S
′
4 E...ᾱ′′1S6, S

′
4 E...EJ3, C6 E AEJ...H7

7 α7 wα7, S
′
5 E...ᾱ′′1S7, S

′
5 E...EQind, C7 J4 AEJ...H8

7C α7 wα7, S
′
5 E...ᾱ′′1S7, S

′
5 E...EJ4, C7 J4 AEJ...H8

8 α8 wxS1, S
′
1 E...ᾱ′′1S1, S

′
1 E...EJ, C1 B1 AEJQc1H1

8C α8 wxS1, S
′
1 E...ᾱ′′1S1, S

′
1 E...EJ, C1 B1 AEJ...H1

Mindj = {{B1}},
Rindj

= {Bi → Bi+1 | 1 ≤ i ≤ 5} ∪ {B6 → E, E → J4, J4 → B1},

and

Mch2,j
= {{H1}},

Rch2,j = {Hi → Hi+1 | 1 ≤ i ≤ 7} ∪ {H8 → Qcj H1}.

Instead of giving a detailed proof of the correctness of our construction, we demon-
strate the work of the system in Table 1 and Table 2 by indicating a possible tran-
sition sequence of Π while simulating an instruction of the two-counter machine
TCM , and by presenting the terminating part of the simulation. Note that the
cells of the tables contain only some of the strings produced by the regions, those
which are interesting from the point of view of the simulation.

Let us first look at Table 1. The simulated instruction is represented by a
nonterminal α1 = [q, x, Z, ∗, q′,+1,−1]1 chosen in region Csel in the first step.
This indicates that the first counter should be empty which requirement is satisfied
since region Cc1 contains a string containing zero A symbols. In the following few
steps, the indexed versions of α reach the regions Cgen, Cch1 , Ccj , j ∈ {1, 2}, and
each of these regions executes its part of the simulation. Cgen generates the letter
read by the two-counter machine, Cch1 queries the regions simulating the counters
in the case when their contents should be zero, and this way collects a “checker”
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string. If this string contains the nonterminal A, then the simulation is not correct.
Ccj

maintain the contents of the counters by adding or deleting A-s. Its work is
aided by Cind and Cch2,j . The region Cch2,j collects the counter strings at the end
of each simulating cycle. The simulation was successful if and only if this collected
string only contains A,E or J symbols.

The terminating phase of the simulation is presented on Table 2. When Gsel

selects the symbol F , the system prepares to finish its work. The variously indexed
versions of F travel through the system and result in the transfer of the word
generated in Ggen and the checker string of region Cch1 to region Csel. There
the symbol A cannot be erased, so a terminal word can only be produced if the
checker string does not contain this symbol. Meanwhile, the other checker strings
are transferred from Cch2,j

to region Cgen where the A and J symbols can be
erased, but nothing else, so when later also this string is transferred to Csel, a
terminal string can only be produced if the behavior of the counter simulating
regions were correct in each step of the simulation. The last row of the table
represents the situation when the erasing process begins. When all A and J have
disappeared from the string in region Cgen, then S′6 can be changed to a query
symbol transferring the result to Csel, where all remaining symbols can be erased,
in the case when the simulation was correct. 2

Next we prove that any RPC system using i-communication can be simulated
with an RPC system using p-communication.

Theorem 2. iRPCnCF ⊆ pRPC3nCF, for any n ≥ 1.

Proof. Let Π = (V, µ, (M1, R1), . . . , (Mn, Rn), 1) be a system of degree n with
V = N ∪K ∪T . We construct Π ′ = (V ′, µ′, (M ′

1, R
′
1), . . . , (M

′
3n, R′3n), 1) of degree

3n, such that Lp(Π ′) = Li(Π).
Let µ′ be defined by adding two new regions [ [ ]2n+i ]n+i inside every region i.

This way, n + i ∈ neighborµ′(i), and 2n + i ∈ neighborµ′(n + i) for all 1 ≤ i ≤ n.
Let V ′ = N ′ ∪K ′ ∪ T where N ′ = N ∪ {S1, S2, S3, S4}, and let the rules of Π ′

be defined as

M ′
i = Mi ∪ {{S1, S2}},

R′i = Ri ∪ {S1 → Qi, S2 → Qn+i},

and

M ′
n+i = {{S1, S2, S3, S4}}, R′n+i = {S3 → Qn+i, S4 → Q2n+i},

M ′
2n+i = {{S1, S2, S3, S4}}, R′2n+i = {S1 → Qn+i, S2 → Q2n+i}

for all 1 ≤ i ≤ n.
The additional membranes of Π ′ work as “suppliers” of symbols. In each step,

each region i rewrites S1 and S2 to query itself, and the region n+ i. From itself it
“receives” the strings it contains besides S1, S2, from region n+i it receives S1, S2,
so the same behavior can be repeated in the next step. This self query mechanism
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Table 2. Components of Π in the proof of Theorem 1, simulating the terminating phase
of the system. The region CS4 is omitted since it always contains the string S4.

Csel Cgen Cch1 Cc1 Cind Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 F1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C F1 wS2, F1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 F2 wQsel, F1,1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C F2 wF2, F1,1 E...S3, F1,1 E...J2, C3 B3 AEJ...H3

3 F3 wQsel, F1,2 E...Qgen, F̄ ′1 E...Qch1 , C4 B4 AEJ...H4

3C F3 wF3, F1,2 E...F1,2, F̄
′
1 E...F̄ ′1, C4 B4 AEJ...H4

4 F4 wF4, F1,3 E...QS4 , F̄
′
1 E...F̄ ′′1 , Qch1 B5 AEJ...H5

4C F4 wF4, F1,3 E...S4, F̄
′
1 E...F̄ ′′1 , F̄

′
1 B5 AEJ...H5

5 F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′1 B6 AEJ...H6

Qch2,1

5C F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′1 B6 AEJ...H6

AEJ...H6

6 F6 wQch1 E...S6 E...F̄ ′′1 E AEJ...H7

F1,5 Qc1Qc2 AEJ...H7

6C F6 wE...S6 E...S6 E...F̄ ′′1 E AEJ...H7

F1,5 AEJ......H7 AEJ...H7 E AEJ...H7

7 Qgen wE...S′6 E...S7 E...F̄ ′′1 J4 AEJ...H8

Qch1 AEJ......H7 AEJ...H7

7C wE...S′6 wE...S′6 E...S7 E...F̄ ′′1 J4 AEJ...H8

AEJ...H7 AEJ......H7 AEJ...H7

is used in each region to keep a copy of its contents even in the case when it
is requested by some other region. This way, Π ′ simulates the communication
behavior of Π. 2

By Theorems 1 and 2, we obtain the immediate corollary.

Corollary 3 iRPC10 = pRPC30CF = RE.

3 Closing Remarks

We proved that in the case of string rewriting P systems communication according
to dynamically emerging requests leads to computational completeness both for
standard P systems and tissue-like P systems, even in the case of systems with
bounded size parameters. There have remained several open problems for further
study. For example, it is not known whether the obtained size bounds are sharp
or not, and whether or not the sharp bounds are different for MPC systems and
RPC systems.
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6. Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin, 2002.
7. G. Rozenberg, A. Salomaa, (eds.), Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.



On the Dynamics of PB Systems with Volatile
Membranes

Giorgio Delzanno1, Laurent Van Begin2?
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Summary. We investigate decision problems like reachability and boundedness for ex-
tensions of PB systems with volatile membranes. Specifically, we prove that reachability
and boundedness are decidable for PB systems extended with rules for membrane disso-
lution. For PB systems extended with membrane creation, reachability is still decidable
whereas boundedness becomes undecidable. Furthermore, we show that both problems
are undecidable for PB systems extended with both dissolution and creation rules. Fi-
nally, we prove that reachability and boundedness become decidable for PB systems with
dissolution rules and in which only one instance of each type of membrane can be created
during a computation. Our work extends previous results obtained for PB systems by
Dal Zilio and Formenti in a paper appeared in the proceedings of WMC 2003 [5].

1 Introduction

The PB systems of Bernardini and Manca [2] are a variant of P-systems [16] in
which rules can operate on the boundary of a membrane. A boundary rule can be
used here to move multisets of objects across a membrane. In biological modeling,
PB are very useful for expressing complex interactions among biological mem-
branes [8]. For this reason, it seems important to develop methods for qualitative
and quantitative analysis of models specified in this formalism. In this paper we
focus our attention on theoretical issues for the qualitative analysis of PB systems.
Some preliminary results on decision problems for PB systems have been obtained
in [5]. Specifically, in [5] Dal Zilio and Formenti proved that the reachability prob-
lem is decidable for PB systems with symbol objects. The reachability problem
consists in checking if a given system can evolve into a fixed a priori configuration.
The decidability proof in [5] is based on an encoding of PB systems into Petri nets
[17], an infinite-state model of concurrent systems for which the reachability prob-
lem is decidable [14, 11]. A Petri net is a collection of places that contain tokens,

? Research fellow supported by the Belgian National Science Foundation (FNRS).
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and of transitions that define how tokens move from one place to another. The
current configuration of a net is called marking. A marking specifies the current
number of tokens in each place. A PB system can be encoded as a Petri net in
which membranes are modelled as places, symbol objects as tokens, configurations
as markings, and internal/boundary rules as transitions. The execution of a rule
is simulated then by the firing of the corresponding Petri net transition. The Petri
net encoding shows that the reachability problem is decidable in PB systems. The
same reduction can be used to decide other properties like boundedness [6]. In [5]
the authors observe that the aforementioned encoding can be extended to more
sophisticated Petri net models so as to deal with dynamically changing membrane
structures. As an example, Petri net transitions extended with transfer arcs nat-
urally model the dissolution of a membrane. Indeed, a transfer arc can be used
to atomically transfer all tokens from one place to another. This operation can be
applied to move the content of a dissolved membrane to its father. Unfortunately,
as pointed out in [5], this connection cannot be exploited in order to extend the de-
cidability results obtained for PB systems. Indeed, problems like reachability and
boundedness become undecidable in presence of transfer or reset arcs [6]. The de-
cidability of reachability and boundedness for PB systems with volatile or moving
membrane seems to be still an open problem. In this paper we focus our attention
on decision problems for extensions of PB systems with dissolution and creation
rules. More specifically, our technical results are as follows.

We first show that reachability is decidable in PB systems with dissolution
rules (PBD systems). Dissolution rules are a peculiar feature of P-systems. Thus,
PBD systems represent a natural extension of PB system. Our decidability proof
is still based on a reduction to a Petri net reachability problem. Our construction
extends the Petri net encoding of [5] in order to weakly simulate the original PBD
system. More precisely, from a PBD reachability problem we compute a Petri net
that may contain executions that do not correspond to real computations of the
corresponding PBD system. Spurious computations can however be eliminated by
enforcing special conditions (e.g. requiring a special set of places to be empty) on
the initial and target markings used to encode a PBD reachability problem. It
is important to notice that our reduction does not require the additional power
provided by Petri nets with transfer arcs.

As a second result, we show that reachability is decidable in PB systems ex-
tended with creation rules (PBC systems). We consider here creation rules inspired
to those proposed by Mart́ın-Vide, Pãun, and Rodriguez-Paton in the context of
P-systems [13]. Our proof exploits structural properties of PBC systems that allow
us to reduce the reachability of a target configuration c, to a reachability problem
in a Petri net extracted from both the original PBC system and the configuration
c. As for PBD systems, this decidability result is a conservative extension of the
result for PB systems obtained in [5].

We consider then a model with both dissolution and creation rules (PBDC sys-
tems). For this model, we first give a general negative result for the decidability of
reachability, and then study a non-trivial subclass in which reachability becomes
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decidable. Specifically, we first show that it is sufficient to consider three mem-
branes with the same name to encode a reachability problem for a two counter
machine [15] as reachability of a PBDC system. We define then a restricted seman-
tics for PBDC systems in which at most only one copy of each type of membrane
can be created during a computation. This semantics is inspired to a view of
membrane names/types as bounded resources. Under this semantics, we prove the
decidability of PBDC reachability via a reduction to Petri net reachability. In the
encoding we use special places to identify the membrane structure of the current
configuration. The encoding is exponentially more complex than the encoding used
for PBD and PBC systems, since it requires the construction of a Petri net where
the number of places is equal to number of tree structures that can be built upon
a finite and fixed a priori set of membrane names.

As a last analysis, we study the boundedness problem for the aforementioned
extensions of PB systems. Specifically, we first show that boundedness is decidable
for PBDC systems with restricted semantics. The proof exploits the theory of well-
quasi ordering [7]. As a consequence, we obtain the decidability of boundedness for
PBD systems. Finally, we prove that boundedness is undecidable in PBC systems.
This result is obtained by encoding counter machines as PBC systems. The en-
coding exploits the possibility of creating several instances of the same membrane
to simulate a counter (i.e. the same encoding cannot be applied in the restricted
semantics of PBDC systems).

To our current knowledge, these are the first decidability/undecidability results
obtained for reachability and boundedness in extensions of PB systems with disso-
lution and creation rules. Decision problems for qualitative analysis of subclasses
of P-systems have been studied, e.g., in [12, 9]. It is important to notice that the
decidability of reachability in PBC systems is not in contradiction with the un-
decidability of boundedness in the same model. Indeed, several other examples of
universal models for which the reachability problem is decidable has recently been
discovered in the field of process algebra, see e.g. [3, 4].

Plan of the Paper

In Section 2 we recall the main definitions of PB systems, Petri nets, and counter
machines. In Section 3, 4, and 5 we study the reachability problem for extensions
of PB systems resp. with dissolution, creation, and both dissolution and creation
rules. In Section 6 we study the boundedness problem for the aforementioned
extensions of PB systems. Finally, in Section 7 we address some conclusion and
future work.

2 Preliminaries

In this section we recall the main definitions for PB systems with symbol objects
taken from [2, 5], Petri nets [17], and counter machines [15]. We first need some
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preliminary notions. Let N be the set of positive integers. Consider a finite alphabet
Γ of symbols. A multiset over Γ is a mapping u : Γ ; N. For any a ∈ Γ , the
value u(a) denotes the multiplicity of a in u (the number of occurrences of symbol
a in u). We often use a multiset as a string a1 · . . . · an of symbols, i.e., ai ∈ Γ .
Furthermore, we use ε to denote the empty multiset, i.e., such that ε(a) = 0 for
any a ∈ Γ . As an example, for Γ = {a, b, c, d}, a · b · c · c represents the multiset
u such that u(a) = u(b) = 1, u(c) = 2, u(d) = 0. We use Γ⊗ to denote the set
of all possible multisets over the alphabet Γ . Given two multisets u, v over Γ ,
we write u

.= v if u(a) = v(a) for all a ∈ Γ , and u ¹ v if u(a) ≤ v(a) for all
a ∈ Γ . Furthermore, we use ⊕ and ª to denote multiset union and difference,
respectively. Specifically, for any a ∈ Γ we have that (u⊕ v)(a) = u(a)+ v(a), and
(uª v)(a) = u(a)− v(a). We are ready now to formally define a PB system.

2.1 P-systems with Boundary Rules

A PB system [2] with symbol object is a tuple Π = (Γ,M, R, µ0), where

• Γ is a finite alphabet of symbols;
• M is a finite tree representing the membrane structure with membrane names

taken from a set N ,
• R is a finite set of rules,
• µ0 is the initial configuration, i.e., a mapping from membranes (nodes in M)

to multisets of objects from Γ .

Rules can be of the following two forms:3

(1) Internal : [i u → [i v
(2) Boundary : u [i v → u′ [i v′

where i ∈ N , and u, u′, v, v′ ∈ Γ⊗ and we assume that at least one between u and
u′ is not empty.
A configuration µ of a PB system Π is a distribution of objects in Γ in the
membranes in M , i.e., a mapping from M to Γ⊗. A rule of the form (1) is enabled
at µ, if i is a membrane in M and u ¹ µ(i). Its application leads to a new
configurations ν′ such that ν′(i) = (ν(i) ª u) ⊕ v and ν′(j) = ν(j) for any j ∈ N
s.t. j 6= i.
Suppose now that membrane j contains as immediate successor in M membrane i.
A rule of the form (2) is enabled at µ, if u ¹ µ(j) and v ¹ µ(i). Its application leads
to a new configurations ν′ such that ν′(j) = (ν(j)ªu)⊕u′ and ν′(i) = (ν(i)ªv)⊕v′

and ν′(k) = ν(k) for any k ∈ N s.t. k 6= i, j. We say that there is a transition
µ ⇒ µ′ if µ′ can be obtained from µ by applying a rule in R. A computation with
initial configuration µ0 is a sequence of transitions µ0 ⇒ µ1 ⇒ . . .. A configuration
is reachable from µ0 if there exists a sequence of transitions µ0 ⇒ . . . ⇒ µ

3 We consider here a slight generalization of the model in [5] in which we allow any kind
of transformation between two membranes.
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Definition 1 (Reachability). Given a PB system Π with initial configuration
µ0 and a configuration µ, the reachability problem consists in checking if µ is
reachable from µ0.

Definition 2 (Boundedness). Given a PB system Π with initial configuration
µ0, the boundedness problem consists in deciding if the set of configurations reach-
able from µ0 is finite.

Reachability and boundedness are decidable for PB systems with symbol objects.
The proof is based on an encoding PB systems into Petri nets defined in [5].

2.2 Petri nets

A Petri net [17, 18] is a pair (P, T,m0) where P is a finite set of places, T is a finite
set of transitions (T ⊆ P⊗ × P⊗), and m0 is the initial marking. A transition t
is defined by the pre-set •t and by the post-set t•, two multisets of places in P (we
consider here multisets of places instead of adding weights to arcs). A marking is
just a multiset over P . Given a marking m and a place p, we say that the place p
contains m(p) tokens. A transition t is enabled at the marking m if •t ¹ m. If it is
the case, t can fire and produces a marking m′ (usually written m

t→ m′) defined
as (m ª• t) ⊕ t•. A firing sequence is a sequence of markings m0m1 . . . such that
mi is obtained from mi−1 by firing a transition in T at mi. Finally, we say that
m′ is reachable from m0 if there exists a firing sequence from m0 passing through
marking m′. The Petri net reachability problem has been proved to be decidable
in [14, 11].

2.3 Counter Machines

A counter machine [15] consists of a finite set of locations/control states `1, . . . , `k,
a finite set of counters c1, . . . , cm, and a finite set of instructions. The instruction
set consists of the increment, decrement, and zero-test, and the nonzero-test oper-
ations on each counter. Each operation has three parameters: the current location,
the successor location, and the counter on which it operates. When executed in
location `, the increment operation on ci adds one unit to the current value of
ci and then moves to the successor location `′. When executed in location `, the
decrement operation on ci removes one unit from the current value of ci and then
moves to the successor location `′. When executed in location `, the zero-test on
ci moves to the successor location `′ only if ci has value zero. When executed in
location `, the nonzero-test on ci moves to the successor location `′ only if ci has
a value strictly greater than zero. For a fixed initial location `0, the initial config-
uration has location `0 and all counters set to zero. A computation is a sequence
of configurations obtained by applying instructions associated to locations. The
if-then-else instruction `: if ci = 0 goto `1 else goto `2 typically found in the defini-
tion of counter machines can be simulated here by two rules associated to the same
location `: a zero-test ` : ci = 0 goto `1 and a nonzero-test. ` : ci > 0 goto `2. It
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is well-known that the model of two counter machines can simulate a Turing ma-
chine, i.e., properties like termination, reachability of a location, and boundedness
are all undecidable in this model [15].

3 PB Systems with Dissolution Rules

A PB system with dissolution rules (PBD) provides, in addition to internal and
boundary rules, a third kind of rules of the following form:

(3) Dissolution : [i u → [i v · δ

where δ is a symbol not in Γ . The intuitive meaning of this rule is that after
applying the rule [i u → [i v the membrane i is dissolved and its content (including
its sub-membranes) is moved to the membrane j that contains i as immediate
successor in the current membrane structure. To make the semantics formal, we
make the membrane structure part of the current configuration, M0 being the
initial tree. Thus, a configuration is now a pair c = (M, µ), where M is a tree, and
µ is a mapping from nodes of M to Γ⊗. Rules of type (1) and (2) operate on a
configuration c = (M, µ) without changing the tree structure M and changing µ
as specified in the semantics of PB systems. A dissolution rule like (3) operates on
a configuration c = (M, µ) as follows. For simplicity, we assume that membrane
i is not the root of M . Suppose now that i is an immediate successor of j in
M . The rule is enabled if u ¹ µ(i). Its application leads to a new configurations
c′ = (M ′, ν′) such that

• M ′ is the tree obtained by removing node i and by letting all successor nodes
of i become successors of j;

• ν′ is the mapping defined as ν′(j) = ν(j)⊕ (ν(i)ª u)⊕ v and ν′(k) = ν(k) for
any k ∈ M s.t. k 6= i, j.

Notice that rules of type (1− 3) are enabled at c = (M, µ) only if the membrane i
is in current tree M . The definition of sequences of transitions and of reachability
problems can naturally be extended to the new type of rules.

3.1 Decidability of Reachability in PBD Systems

In this section we prove that the reachability problem is decidable in PB systems
with dissolution rules. We assume here that names of membranes are all different.
However, the construction we present can be extended to the general case. The
starting point of our construction is the reduction of reachability for PB systems
to reachability in Petri nets given in [5]. Let Π = (Γ,M, R, µ0) be a PB system.
For each membrane i in M and each symbol a ∈ Γ , the Petri net N associated to
Π makes use of place ai to keep track of the number of occurrences (multiplicity)
of objects of type a in i. Transitions associated to internal rules redistribute tokens
in the set of places associated to the corresponding membrane. As an example, a
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rule like [i a · b → [i c is encoded by a Petri net transition that removes one token
from place ai and one token from place bi and adds one token to place ci. Boundary
rules are modelled by Petri net transitions that work on places associated to pairs
of membranes. As an example, if membrane j contains i, a rule like a [i b → b [i a
is encoded by a Petri net transition that removes one token from place aj and
one token from place bi and adds one token to place bj and one token to place
ai. For a membrane structure M , a configuration µ : M ; Γ⊗ is represented by
a marking mµ such that for every node i in M , ai has k tokens in m iff a has k
occurrences in µ(i). Reachability of a configuration µ is reduced the to reachability
of the marking mµ starting from mµ0 in N .

How to Cope with Dissolution Rules

The Petri net encoding of [5] exploits the property that the membrane structure
of a PB system is never changed by the application of a rule. This property does
not hold anymore for dissolution rules, since they removes nodes from the current
membrane structure. Thus, the size of the membrane structure may decrease in
a sequence of transitions. Our decidability proof is still based on a reduction to
a Petri net reachability problem. Our reduction exploits the property that the
number of applications of dissolution rules is bounded a priori by the size of the
initial membrane structure M0.

Specifically, suppose that in M0 there is an absolute path i0, i1, . . . , ik, i where
i0 is the root of M0. In the construction of the Petri net associated to the membrane
i we must take into consideration the possibility that each one of the membranes
i1, . . . , ik can dissolve during the execution. This means that boundary rules as-
sociated to the membrane i should be redirected to the membrane ij in the path
i0, i1, . . . , ik such that all membranes ij+1, . . . , jk are no more present in the current
membrane structure. To achieve this, each membrane i comes with an associated
flag presenti/dissolvedi. Transitions that encode boundary rules on membrane i
are conditioned then by the present/dissolved flags of the membranes i0, i1, . . . , ik
in the path leading to i. In other words we need to implement a sort of switch that
redirects boundary rules to membrane ij whenever membranes ij+1, . . . , jk are all
dissolved.

Another problem to solve is related to the transfer of the contents of a mem-
brane to its immediate ancestor in the membrane structure. To simulate this
process, our Petri net operates in two different modes. In the normal mode the
Petri net simulates boundary and internal rules. Suppose now that j is the mem-
brane that contains i in the current tree structure, and that the dissolution rule
[iu → [iv · δ is enabled. We first execute the internal rule [iu → [iv. The Petri
net then switches to the dissolvingi mode. In this mode all normal operations
are blocked. This is achieved by conditioning all transitions associated to normal
operations with the normal flag. After this step, we activate a set of transitions
that move tokens (one-by-one) from i to j. Since in a Petri net it is not possible to
test if a place is empty, instead of testing if all objects in i have been moved to j,
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we add a rule that non-deterministically stops the transfer process. As a last step,
we marked membrane i as dissolved and reactivate the normal operating mode.
The last step automatically disable internal/boundary/dissolve rules operating on
membrane i (they are conditioned by the presenti flag) and redirects boundary
rules of any membrane i′ contained in i (in the current tree structure) to membrane
j.

The non-deterministic termination of the transfer process may lead to incor-
rect simulations of the original PBD system. Indeed, we could restart in normal
mode with a configuration in which a membrane is marked dissolved and some of
its objects have not been transferred to its father. This problem can be solved by
the following key observation. We first recall that we are interested in reachability
of a configuration c = (M, µ). Thus, by looking at the structure of M0 and M we
can extract the set of nodes D that must be dissolved in a sequence of transitions
leading from c0 to c. Thus, we can tell good simulations from bad ones by imposing
the constraint that, in the marking mµ modelling the target configuration µ, every
place associated to a membrane in D is empty. As a final remark, notice that all
information needed in the encoding (nodes and paths in M0) can statically be ex-
tracted from the description of the PBD system and from the initial configuration
c0.

Formal Definition of the Petri Net Encoding

Assume a PBD system Π = (Γ, M0, R, µ0), where Γ = {a1, . . . , am}, and M0 has
the membranes with names in N = {n0, n1, . . . , nk}, n0 ∈ N being the root node.
Given a membrane i, let path(i) be the sequence of nodes in the (unique) path
from n0 to i in M0.

We define the Petri net N encoding Π in several steps. First of all we assume
that N has at least the places normal, dissolving1, . . . , dissolvingk that we use to
determine the simulation mode as described in the previous paragraphs. We assume
here that normal contains one token iff dissolvingi is empty for all i : 1, . . . , k,
and dissolvingi contains one token iff normal as well dissolvingj are empty for
any j 6= i. Furthermore, for each membrane i, the Petri net N has a place presenti
and a place dissolvedi and, for any a ∈ Γ , a place ai.
Notation: In the rest of the paper given a multiset of objects u and a membrane i
we use πi(u) to denote the multiset of places in which, for each a ∈ Γ , ai has the
same number of occurrences as those of a in u.

Internal Rules

An internal rule r = [iu → [iv is encoded by a transition tr that satisfies the follow-
ing conditions. The pre-set of tr contains place normal (normal mode), presenti
(membrane i is still present), and the multiset of places πi(u). The post-set of tr
contains normal, presenti and the multiset of places πi(v). Thus, the only differ-
ence with the encoding of PB system is the condition on the normal and presenti
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flags (in normal mode internal rules are enabled only when the membrane is not
dissolved).

Boundary Rules

Let path(i) = (n0, n1, . . . , nq, i) with q ≥ 0. A boundary rule r = u[iv → u′[iv′

is encoded by a set Br = {bn0
r , . . . , b

nq
r } of transitions. The pre-set of transition

b
nj
r contains places normal and presenti together with the set of places Dnj =
{presentnj , dissolvednj+1 , . . . , dissolvednq}, and the multisets πnj (u) and πi(v).
The post-set contains places normal and presenti together with the set of places
Dnj defined for the pre-set and the multisets πnj

(u′) and πi(v′). The pre-condition
Dnj allows us to select the membrane that is the immediate ancestor of i in
the current configuration, i.e., a membrane nj ∈ path(i) that is not dissolved
and such that all the intermediate membranes between nj and i in path(i) are
dissolved. Notice that, by the assumptions we made on the normal/dissolving
and present/dissolved flags, in normal mode one and only one rule in Br can be
enabled at a given configuration (represented by a marking).

Dissolution Rules

Let path(i) = (n0, n1, . . . , nq, i) with q ≥ 0. Consider a dissolution rule r = [iu →
[iv · δ. We first model the internal rule by the transition sr. The pre-set of sr con-
tains the places normal and presenti and the multiset πi(u). The post-set contains
the place dissolvingi and the multiset πi(v).
We then model the transfer of the contents of membrane i to its current immediate
ancestor via a set of transitions Sa

r = {sn0
a , . . . , s

nq
a } for each a ∈ Γ . The pre-set of

transition s
nj
a contains places dissolvingi (i is dissolving) and ai (the source of a

token to be transferred) together with the set of places Dnj defined in the case of
boundary rules. The post-set contains places dissolvingi and aj (the destination
of a transferred token), and the set Dnj .
Finally, we add a transition di

r to stop the transfer of tokens and to switch the op-
erating mode back to normal. The pre-set of di

r contains the place dissolvingi and
its post-set contains the places normal and dissolvedi. Notice that the simulation
phase of a dissolution rule for membrane i can be activated only if presenti is not
empty. This implies that once the dissolvingi flag is reset (i.e. the mode goes back
to normal) it cannot be set in successive executions (a membrane can dissolve at
most once).

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places and transitions used in
the encoding described before. Let M be a membrane structure with a subset of
the nodes in M0 (initial structure of Π). A configuration c = (M, µ) is encoded by
a marking mc in which there is one token in normal, one token in presenti for each
membrane i in M , and one token in dissolvedj for each j not in M . Furthermore,
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for each membrane i in c and a ∈ Γ , place ai has as many tokens as the number
occurrences of a in µ(i). All the remaining places in N (dissolvingi for i : 0, . . . , k
and presentj for all membranes j not in M) are empty.

Reachability Problem

By construction ofN , it is immediate to see that if there is a sequence of transitions
from c0 = (M0, µ0) to c = (M, µ) passing through the configurations c1, . . . , cv

then there is a firing sequence from mc0 to mc passing through the markings
mc1 , . . . ,mcv

. Such a firing sequence is obtained by completing all transfers of
objects required by the simulation of each dissolution rule (i.e. after the simulation
of the dissolution of membrane i, the normal mode is reactivate only when the
places associated to the objects contained in i are all empty). Vice versa, suppose
there exists a firing sequence from mc0 to mc. We first notice that only the markings
in which the place normal is not empty correspond to configurations of the original
PBD system. Furthermore, suppose that during the simulation of the dissolution of
membrane i, the transfer of objects is stopped when some of the places associated
to objects in i are not empty. Let m be the resulting marking. Now we notice
that the first step of the simulation of dissolution is to set the presenti flag to
false. This implies that in the marking m place presenti is empty, while there
exists a ∈ Γ such that ai is not empty (some token has not been transferred). It
is easy to check that if m has these two properties, for any marking m′ derived
from m by applying transitions of N , the content of the place ai in m′ is the
same as in m. Indeed, transitions that simulate internal, boundary and dissolution
rules operating directly on i are no more enabled (the condition presenti fails).
Furthermore, a dissolution rule on a membrane j nested into i in M0 cannot
transfer tokens to i since dissolvedi is checked when searching for the father of
j in the current tree structure. In other words, if the simulation of a dissolution
rule is not correctly executed, then there exists at least one non-empty place ai

for a dissolved membrane i. By definition, however, mc is the marking in which all
places associate to dissolved membranes are empty. Thus, if mc is reachable from
mc0 then the corresponding firing sequence corresponds to a real computation
in N . Thus, we have that the reachability of a configuration c = (M, µ) in Π
can be encoded as the reachability of the marking mc in N from mc0 . From the
decidability of reachability in Petri nets, we obtain the following theorem.

Theorem 1. Reachability is decidable in PBD systems.

This result extends (and is consistent with) the Petri net encoding and the decid-
ability result for reachability in PB systems of [5].

4 PB System with Creation

In this section we consider an extension of PB systems inspired to the membrane
creation operation studied in [13]. Let N be a possibly infinite list of membrane
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names. A PB system with creation rules (PBC) provides, in addition to internal
and boundary rules, a third kind of rules of the following form:

(4) Creation : a → [i v ]i

where a ∈ Γ , v ∈ Γ⊗, and i ∈ N. The intuitive meaning of this rule is that after
applying the rule a → [iv]i inside a membrane j, object a is replaced by the new
membrane i containing the multiset of objects v. To make the semantics formal, we
assume that membrane structures are trees whose nodes are labelled with names in
N. Furthermore, we make both the set of used names and the membrane structure
part of the current configuration, N0 ⊆ N being the initial set of used names, and
M0 being the initial tree defined over N0. Thus, a configuration is now a triple
c = (N,M, µ) where N is a set of names, M is a tree with nodes labelled in N ,
and µ is a mapping M ; Γ⊗. Rules of type (1) and (2) operate on a configuration
c = (N,M,µ) without changing N and M . A creation rule like (4) operates on a
configuration c = (N, M, µ) as follows. Suppose that n is a node in M . The rule is
enabled if a ∈ µ(n). Its application leads to a new configurations c′ = (N ′,M ′, ν′)
such that

• N ′ = N ∪ {i};
• M ′ is the tree obtained by adding a new node m labelled by i as a successor

of node n;
• ν′ is the mapping defined as ν′(n) = ν(n)ªa, ν′(m) = v, and and ν′(p) = ν(p)

for p 6= m,n, p ∈ N .

Notice that rules of type (4) can be applied in any membrane. Indeed, the only
precondition for the application of rule 4 is the existence of object a in a mem-
brane. Furthermore, such an application may create different nodes with the same
membrane name.

The reachability problem can naturally be reformulated for the extended se-
mantics of rules. Specifically, it consists in checking whether a given target config-
uration c is reachable from the initial configuration c0.

In presence of creation rules the membrane structure can grow in an arbitrary
manner both in width and depth. Notice that in our model we distinguish nodes
from membrane names. Thus, different nodes may have the same name. As a simple
example, consider the rule a → [1a]1 in a system with a single membrane [0a]0.
The evolution of this PBC system may lead to membrane structures of arbitrary
nesting level, e.g.,

[0[1a]1]0 [0[1[1a]1]1]0 [0[1[1[1a]1]1]1]0 . . .

Now consider the rules [0a → [0a · a and a → [1b]1. Then the membrane [0a]0 can
generate membrane structures of arbitrary width, e.g.,

[0[1b]1]0 [0[1b]1[1b]1]0 [0[1b]1[1b]1[1b]1]0 . . .

Despite of these powerful features of PBC systems, the reachability problems can
still be decided by resorting to an encoding into Petri net reachability as explained
in the next section.
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4.1 Decidability of Reachability in PBC Systems

Differently from the encoding defined for PBD systems in the previous section, the
encoding needed here is function of both the initial and the target configuration.
Indeed, since PBC rules can only add new nodes, to decide if a configuration
c = (N,M, µ) is reachable from c0 we can restrict our attention to membrane
structures of size comprised between the size of M0 and the size of M and with
(possibly repeated) labels in N .

Actually, we can make some simplification that allows us to build a Petri net
by considering only the target configuration M . Indeed, as shown in [13], with
creation rules we can safely consider initial configurations with only the root mem-
brane (we can always add a finite number of creation rules to generate any initial
configuration in a preliminary phase of the computation).

So let Π be a PBC system with initial configuration c0 = (N0,M0, µ0) where
M0 is a single node labelled n0. Consider now a target configuration (N, M, µ)
where N = {n0, . . . , nk} and M has m nodes with k ≤ m and the root node of M
is labelled n0.

Starting from Π and c we build the Petri net N described next. For each node
n in M , the Petri net N has places usedn and notusedn (used as one flip-flop), and
an for each a ∈ Γ (to model the content of membrane n). We assume that usedn

is not empty iff the membrane has been created and it is in use, and notusedn

is not empty iff the membrane has still to be created. PBC rules are modelled as
follows.

Internal Rules

For each node n in M with label i, an internal rule r = [iu → [iv is encoded by
a transition tnr that satisfies the following conditions: The pre-set contains place
usedn together with multiset πn(u); The post-set contains usedn together with
multiset πn(u).
The differences with the encoding of PB/PBD systems is the condition on the
usedn flag and the fact that we work on nodes of membrane structures and not
directly on membrane names (as said before two different nodes may have the same
name). The pre-condition on usedn is needed in order to enable rules operating
on node n only after the corresponding creation rule has been fired.

Boundary Rules

For each node m in M that has an immediate successor n with label i, a boundary
rule r = u[iv → u′[iv′ is encoded by a transition bm,n

r that satisfies the following
conditions. The pre-set contains places usedn and usedm together with the mul-
tisets πm(u) and πn(v). The post-set contains places usedn and usedm together
with the multisets πm(u′) and πn(v′). Notice that, differently from the encoding
used in PBD, in PBC we do not have to consider paths in the membrane structure
M .
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Creation Rules

For each node m in M that has an immediate successor n with label i, a creation
rule r = a → [iv]i is encoded by a transition cm,n

r that satisfies the following
conditions. The pre-set contains places usedm, am and notusedn. The post-set
contains places usedm and usedn, together with the multiset πn(v)

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places associated to each
membrane and the union of the set of transitions used to encode internal, boundary
and creation rules described before.
A configuration c′ = (N ′,M ′, µ′) is encoded by a marking mc′ in which for each
node n in M ′ there is one token in usedn, and for each a ∈ Γ , an has as many
tokens as the number occurrences of a in µ(n). Furthermore, for each node n′ in
M that do not occur in M ′, we put a token in notusedn′ . All the remaining places
are empty.

Reachability Problem

By construction of N , it is immediate to see that there is a sequence of transi-
tions from c0 = (N0,M0, µ0) to c = (N, M, µ) passing through the configurations
c1, . . . , cv if and only if there is a firing sequence from mc0 to mc passing through
the markings mc1 , . . . , mcv . The creation of a new node n corresponds to the acti-
vation of the part of the Petri net N that models node n. Since nodes are created
in ”cascade”, a node m is created only after all ancestors have been created. This
property is ensured by the condition on the used flag inserted in the transitions
modelling creation rules.

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 2. Reachability is decidable in PB systems with creation rules.

This result extends (and is consistent with) the Petri net encoding and the decid-
ability result for reachability in PB systems of [5].

5 PB Systems with Dissolution and Creation

In this section we consider an extension of PB systems with both dissolution and
creation rules (PBDC systems). The semantics is obtained in a natural way by
adapting the semantics of dissolution rules to membrane structures with labelled
nodes. More precisely, a dissolution rule applied to a configuration (N,M,µ) mod-
ifies M and µ as specified in Section 3 while it does not modify N , i.e., the set N
of used names can only grow monotonically. Notice that the reachability problem
for PBDC systems allows to determine if, for a PBDC system Π, it is possible
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from the initial configuration to build a membrane structure M with a mapping
µ that associates multisets of objects to nodes, whatever the set of names N is.
Indeed, the set of possible names for membranes that appear in executions of Π
is determined by the creation rules of the PBDC system (and its initial configu-
ration). Hence, the number of possibilities for N is finite and the problem can be
reduced to a finite number of reachability problems.

In presence of both creation and dissolution the membrane structure can change
in an arbitrary manner. As a simple example consider the rules a → [1a]1, and
[1a → [1a · δ in a system with a single membrane [0a]0. The evolution of this PB
system may lead to membrane structures that grow and shrink in an arbitrary
way as in the sequence:

[0[1a]1]0 [0[1[1a]1]1]0 [0[1a]1]0 . . .

This feature gives additional power to PB systems. Indeed, we can reduce the
reachability problem for two counter machines (known to be undecidable) to reach-
ability in a PBDC system. For this reduction it is enough to consider dissolution
and creation rules working on three membranes with the same name. Specifically,
consider a system with initial configuration

c0 = [0 s0 [0 c1 ]0 [0 c2 ]0 ]0

here s0 represents the initial control state of a two counter machine. Membrane
[0ci]0 is used to represent counter ci with value zero for i : 1, 2. Counter ci with
value k is represented by the membrane [0ci · u]0 where u is the multiset with k
occurrences of a special object a.
The increment of counter ci in control state s and update to control state s′ is
encoded by the boundary rule

s [0 ci → s′ [0 ci · a

for i : 1, 2.
The decrement of counter ci in control state s and update to control state s′ is
encoded by the boundary rule

s [0 ci · a → s′ [0 ci

for i : 1, 2.
The zero test on counter ci in control state s and update to control state s′ is
simulated by three rules. We first move to an auxiliary state auxs and dissolve the
membrane with label i.

s [0 ci → auxs [0 ε · δ
where ε is the empty multiset. We then create a new empty instance of the same
membrane containing the objects ci and out′s via the rule

auxs → [0 ci · outs′ ]0
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Finally, we use a boundary rule to move to the next state s′

[0 ci · outs′ → s′ [0 ci

We assume here that no other rule uses auxs and outs′ . The effect of the execution
of these three rules is that of moving the contents of the counter on which the zero-
test is executed to the top level membrane 0. Indeed, the membrane containing ci

is first dissolved and then re-created. If the zero-test is executed when a counter
is not zero, some object will remain inside membrane 0 in all successive configu-
rations. This feature can be used to distinguish good simulations from bad ones.
Specifically, let us consider the reachability problem for a two counter machine in
which the initial and the target configurations both coincide with the configuration
with a given control state s and both counters set to zero. This problem can be
expressed as the reachability of the configuration c0 from c0. Thus, the following
property holds.

Theorem 3. Reachability is undecidable in PBDC systems in which configurations
have at most three different membranes with the same name.

5.1 PBDC Systems with Restricted Semantics

As a final analysis, we consider a restricted semantics for PBDC systems in which
newly created membranes must be assigned fresh and unused names. In other
words we assume that creation rules can be applied at most once for each type
of membrane. Another possible view is that membrane names are themselves re-
sources that can be used at most once.

Formally, assume a configuration c = (N, M,µ). Suppose that n is a node
in M . In the restricted semantics, the creation rule (4) is enabled if a ∈ µ(n)
and i 6∈ N , i.e., the name i is fresh. Its application leads to a new configurations
c′ = (N ′,M ′, ν′) such that N ′ = N ∪ {i}, M ′ is the tree obtained by adding a
new node m labelled i as a successor of node n, and ν′ is the mapping defined as
ν′(n) = ν(n)ª a, ν′(m) = v, and ν′(p) = ν(p) for p 6= m, n, p ∈ N).

Since with creation rules in the style of [13] the set of rules operating on
membranes is fixed and known a priori, we can assume that the number of distinct
names is finite (it corresponds to the set of names occurring in internal, boundary,
dissolution and creation rules and in the initial configuration). This restriction
yields the following key observation.

Observation 1.

If the set of possible membrane names N is finite and every name in N can be
used only once, then starting from a configuration with a single membrane, the
number of distinct membrane structures that we can generate is finite. Every such
membrane structure has at most |N| nodes.

This property does not imply that the number of configurations is finite. Indeed,
there are no restrictions on creation and deletion of objects inside membranes. As
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an example, the PBDC system with the internal rule [0a → [0a · a and the initial
membrane [0a]0 generates an infinite set of configurations (membrane 0 with any
number of repetitions of object a).

The aforementioned property can be used to show that reachability is decidable
in PBDC Systems with restricted semantics. Let Π be a PBDC system defined
over a finite set of names Λ. Suppose that Λ has cardinality K. Furthermore,
assume that the initial configuration c0 = (N0,M0, µ0) is such that M0 is a single
node. We first build the set Θ of all possible membrane structures with at most K
nodes labelled with distinct labels taken from Λ. As an example, if Λ = {0, 1, 2},
then we will consider all trees with at most three nodes and such that each node
has a distinct label taken from Λ, i.e., [0 ]0, [1 ]1, [1 [0 ]0 ]1, [2 [0 ]0 [1 ]1]2, and
so on. Notice that for a fixed membrane structure T we can always determine the
immediate ancestor j of a node i (if it exists) at static time.

Starting from Π and Θ, we now define a Petri net N that satisfies the following
conditions. First of all, we associate a place T to each membrane structure T ∈ Θ.
We assume that only one of such places can be non empty during the simulation
of the restricted semantics. A non-empty place T ∈ Θ corresponds to the current
membrane structure. Furthermore, for each i ∈ Λ we add to N places usedi and
notusedi (to model freshness of name i), and, for each a ∈ Γ , place ai (to model
the content of membrane i in the current membrane structure). Notice that since
names are used at most once, we can safely confuse nodes of membrane structure
with their labels (each node has a different label in Λ). PBDC rules are modelled
as the finite set of transitions in N defined as follows.

Internal Rules

For each membrane structure T ∈ Θ with a membrane i, an internal rule r =
[iu → [iv is encoded by a transition tTr that satisfies the following conditions. The
pre-set contains the places T (the current membrane structure) and usedi (i is
in use) together with multiset πi(u). The post-set contains places T and usedi

together with multiset πi(v). Thus, only the internal rules defined on the current
membrane structure are enabled.

Boundary Rules

For each membrane structure T ∈ Θ with a membrane j with immediate successor
i, a boundary rule r = u[iv → u′[iv′ is encoded by a transition bT,i,j

r that satisfies
the following conditions. The pre-set contains places T , usedi, usedj , and the
multisets πi(u) and πi(v). The post-set contains places T , usedi, usedj , and the
multisets πi(u′) and πi(v′). Thus, only boundary rules defined on the current
membrane structure are enabled.

Creation Rules

For each T ∈ Θ such that i does not occur in the set of names in T (the side
condition that ensures the freshness of generated membrane names), and for each
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name j occurring in T , a creation rule r = a → [iv]i is encoded by a transition
cT,i,j
r that satisfies the following conditions. The pre-set contains places T , usedj ,

notusedi, and aj . The post-set contains places usedi and usedj , the multiset πi(v),
and the place Tj+i ∈ Θ associated to the membrane structure obtained from T by
adding a new node labelled i as immediate successor of j.

Dissolution Rules

For each membrane structure T ∈ Θ with a membrane j with immediate successor
i, a dissolution rule r = [iu → [iv · δ is encoded by the following set of transitions.
We first define a transition cT,i,j

r that starts the dissolution phase of node i. The
pre-set of cT,i,j

r contains places T , usedi, usedj , and the multiset πi(u). The post-
set contains the place dissolveT,i,j , and, the multiset πi(v). Notice that, by remov-
ing a token from the place T , we automatically disable all transitions not involved
in the dissolution phase (i.e. T plays the role of flag normal used for simulating
dissolution rules in PBD systems). Now, for each a ∈ Γ , we model the transfer of
the content of node i to node j via a transition mT,i,j,a

r that satisfies the following
conditions: The pre-set contains the places dissolveT,i,j and ai (the source of a
token to be transferred). The post-set contains the places dissolveT,i,j and aj (the
destination of a transferred token). Finally, let Tj−i be the membrane structure
obtained by T by removing membrane i and moving all of its sub-membranes
into membrane j. Then, we add transition dT,i,j

r to non-deterministically stop the
transfer of tokens and to update the membrane structure to Tj−i, i.e., the pre-set of
this transition contains the place dissolveT,i,j and its post-set contains the places
Tj−i, usedi and usedj . Notice that name i remains marked as used after dissolving
the corresponding membrane (i.e. it cannot be used in successive creation rules).

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places and transitions used to
encode internal, boundary, creation and dissolution rules described before.
A generic configuration c = (N, M, µ) is encoded by a marking mc in which: there
is one token in the place associated to the membrane structure M , one token in
usedi for each i ∈ N , one token in notusedi for each i ∈ Λ \ N , and, for each
i that occurs in M and for each a ∈ Γ , as many tokens in ai as the number of
occurrences of object a in µ(i). All other places are empty.

Reachability Problem

Notice that after a membrane with name i is introduced by a creation rule (i.e. the
place unusedi is emptied while one token is put in usedi), no other membranes
with the same name can be created (there is no rule that puts a token back to
unusedi). The membrane i however can dissolve in a successive transition, i.e. in a
target configuration usedi can be non-empty (i.e. i ∈ N), even if i does not occur
in the current membrane structure. Also notice that in mc we enforce all places
associated to membranes not occurring in M to be empty. The combination of these
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two properties allows us to distinguish good simulations (i.e. in which after the
application of dissolution rules all tokens are transferred to the father membrane)
from bad ones (some tokens are left in a place ai, usedi is non empty, but i is
no more in the current membrane structure). Following from this observation and
from the construction of N , we have that c = (N, M, µ) is reachable from c0 if and
only if the marking mc is reachable from mc0 .

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 4. Reachability is decidable in PBDC systems with restricted semantics.

6 Boundedness Problem for Extended PB Systems

In [5] Dal Zilio and Formenti exploit the Petri net encoding used for deciding
reachability to prove that boundedness is decidable too for PB systems with sym-
bol objects. In this section we investigate the boundedness problem for the different
extensions of PB systems proposed in the present paper. In particular, we show
that the boundedness problem is decidable for PBDC systems with restricted se-
mantics where a membrane name can be used at most once. This result implies that
boundedness is decidable for PB systems with dissolution (and standard seman-
tics). Finally, we show undecidability of the boundedness problem for PB systems
with creation and standard semantics.

6.1 Boundedness for PBDC Systems with Restricted Semantics

To prove decidability of boundedness in PBDC systems with restricted semantics,
let us first define the following partial order v over configurations. Assume two
configurations c1 = (N1,M1, µ1) and c2 = (N2,M2, µ2). We define c1 v c2 if and
only if N1 = N2 and M1 = M2 (i.e. c1 and c2 have the same tree structure), and
µ1(n) ≤ µ2(n) (the multiset associated to n in c1 is contained in that associated to
n in c2) for all node n in M1. If we fix an upper bound on the number of possible
nodes occurring in a membrane structure along a computation, then v has the
following property.

Proposition 1. Fixed a k ∈ N, for any infinite sequence of configurations c1c2 . . .
with membrane structure of size at most k, there exist positions i < j such that
ci v cj (i.e. v is a well-quasi ordering).

The proof is a straightforward application of composition properties of well-quasi
ordering, see e.g. [1]. Now assume an infinite computation c0 = (N0,M0, µ0)c1 =
(N1,M1, µ1) . . . of a PBDC system with restricted semantics. From Observation 1
it follows that for all i ≥ 0 the number of nodes in Mi is bounded by the number
of possible names. Hence, by Prop. 1 we know that there exist positions i < j
such that ci v cj . Furthermore, if ci v cj and ci 6= cj , then Ni = Nj , Mi = Mj ,
and µi ≺ µj . Thus, the transition sequence σ from ci to cj does not modify the
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membrane structure but strictly increases the number of objects contained at each
of its node. This implies that the application of σ can be iterated starting from cj ,
leading to a infinite strictly increasing, w.r.t v, sequence of configurations.

As a consequence of these properties, the boundedness problem for PBDC
systems can be decided by building a computation tree T such that: the root node
n0 of T is labelled by the initial configuration c0, if n0, . . . , nk is a path in T
such that ni is labelled with ci i : 0, . . . , k, and for all i : 0, . . . k − 1 ci 6= ck and
ci 6v ck then we add a node n′ labelled c′ as successor of nk if and only if ck ⇒ c′.
Furthermore, the PBDC system is not bounded if and only if there exists a leaf n
labelled with c and a predecessor n′ of n labelled with c′ in T such that c′ v c.
Since, v is a decidable relation and, the tree T is finite (by Observation 1 and
Prop. 1), the following property then holds.

Theorem 5. The boundedness problem is decidable for PBDC systems with re-
stricted semantics.

From Theorem 5, we know that boundedness is decidable for PB systems (con-
sistently with the result in [5]) and for PB systems with dissolution (they form a
subclass of PBDC systems where the restricted and standard semantics coincides).

6.2 Boundedness Problem for PBC Systems

The boundedness problem turns out to be undecidable for PBC systems with
standard semantics in which there is no limit on the number of instances of a
given type of membranes that can be created during a computation. The proof is
based on a reduction of counter machines with increment, decrement and zero-test
to PBC systems. The idea is to use nested membranes to model the current value
of a counter. For instance,

[1used [1 used [1 unused [1 end ]1]1]1]1

can be used to encode counter c1 with value 2 (the number of occurrences of symbol
used). Hence a configuration of a two counter machine with both counters set to
zero is encoded as a configuration of the form

[0 ` [1 unused [1 . . . [1 end ]1 . . .]1]1[2 unused [2. . . [2 end ]2 . . .]2 ]2 ]0

where ` is a symbol corresponding to the current location of the two counter
machine, and membrane with name i encodes counter i for i : 1, 2. Increment of
counter i in location ` with `1 as successor location is simulated by replacing the
first unused symbol encountered when descending the tree from the membrane
0 with the symbol used. This is implemented by the following set of rules that
descend the structure of a membrane of type i in search for the first occurrence of
symbol unused:
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` [i unused → `1 [i used
` [i used → `′i [i down
down [i used → down [i down
down [i unused → up [i used
down [i up → up [i used
`′i [i up → `1 [i used

where `′i, down, up are auxiliary symbols (`′i is blocking for the other counter(s),
down propagate the search down in the tree, up propagate the success notification
up in the tree). Furthermore, if the current tree has no membrane containing the
unused symbol (i.e. all membranes contain used) then a new membrane is created
by applying the following additional rules:

down [i end → down [i create
create → [i exit · end ]i
ε [i exit → up [i ε

where ε denotes the empty multiset. Decrement is simulated by changing the last
occurrence of used encountered by descending the membrane tree from the root
into symbol unused. We can safely assume here that the counter is non-zero, i.e.,
that there is at least one membrane with used object. The rules that implement
decrement are defined as follows.

` [i used → `′i [i used1

used1 [i used → used1 [i used1

used1 [i unused → used2 [i unused
used1 [i end → used2 [i end
used1 [i used2 → used3 [i unused
used1 [i used3 → used3 [i used
`′i [i used2 → `1 [i unused
`′i [i used3 → `1 [i used

where `′i, used1, used2, used3 are auxiliary symbols, used1 is used to mark nodes
during the downward search (for unused), used2 is used to mark the used node to
be replaced by unused, and used3 is used to replace nodes marked with used1 with
used during the return from the search. The zero-test on counter ci in location `
with successor `1 can be implemented by testing if all objects in membranes i are
unused (or end). Note that increment, resp. decrement, of ci is encoded by a top-
down traversal of membranes i until reaching a membrane containing an object
unused, resp. used, which is then replaced by used, resp. unused. Furthermore,
each membrane contains one object. Hence, no membrane i contain a used symbols
if and only if the top level membrane i has object unused or end. This can be
checked with the following rules:

` [i unused → `1 [i unused
` [i end → `1 [i end
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Similarly, testing that ci is not equal to zero in location ` with successor `1 amounts
to check that the top level membrane i has object used, i.e.,

` [i used → `1 [i used

By construction, we directly have that a two counter machine is bounded (Are
its counters bounded by a constant k ∈ N?) if and only if its encoding into PBC
systems is bounded. Since boundedness is undecidable for two-counter machines
with zero-test, we obtain the following negative result.

Theorem 6. The boundedness problem is undecidable for PBC systems.

Remark The proof of Theorem 6 shows that PBC systems can simulate two-counter
machines by means of membrane structures with unbounded depth. Let us now
go back to the reachability problem of a target configuration µ. Since PBC rule
never remove membranes, the target configuration µ gives us an upper bound
on the size of membrane structures that may occur in a sequence of transition
leading to it. Thus, the set of possible membrane structures than we have to
consider to solve a reachability problem is always finite (Notice that this not imply
that we have to consider a finite number of configurations). In other words, for
reachability problems, we do not have to deal with the full computational power
of PBC systems. For this reason, the undecidability of boundedness proved in
Theorem 6 is not in contradiction with the decidability of reachability proved in
Theorem 2. Similar results obtained for fragments of process calculi [3, 4] seem to
indicate that, in general, the decidability of reachability cannot be use to give an
estimation of the expressive power of a computational model.

7 Conclusions

In this paper we have investigated the decidability of reachability and boundedness
in extensions of PB systems with rules that dynamically modify the tree structure
of membranes. We conjecture that some of the positive results presented here
can be extended to PB systems with some form of movement and with dynamic
generation of membrane names. We plan to investigate these problems in future
work.
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Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez
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Summary. The aim of our paper is twofold. On one hand we prove the ability of polar-
izationless P systems with dissolution and with division rules for non-elementary mem-
branes to solve NP-complete problems in a polynomial number of steps, and we do this
by presenting a solution to the Subset Sum problem. On the other hand, we improve
some similar results obtained for different models of P systems by reducing the number
of steps and the necessary resources to be of a logarithmic order with respect to k (recall
that n and k are the two parameters used to indicate the size of an instance of the Subset
Sum problem).

As the model we work with does not allow cooperative rules and does not consider the
membranes to have an associated polarization, the strategy that we will follow consists
on using objects to represent the weights of the subsets through their multiplicities, and
comparing the number of objects against a fixed number of membranes. More precisely,
we will generate k membranes in log k steps.

1 Introduction

This paper is the continuation of a series of results on Complexity Classes in Mem-
brane Computing that are trying to establish the relevance, in terms of computing
power, of each one of the possible features of a P system (see [3]).

The Subset Sum problem is a well-known NP-complete problem which can be
formulated as follows: Given a finite set A, a weight function, w : A → N, and a
constant k ∈ N, determine whether or not there exists a subset B ⊆ A such that
w(B) = k. It has been a matter of study in Membrane Computing several times,
being mainly used to prove the ability of different P system models in order to
solve problems from the NP class in a polynomial time.

This speed-up is achieved by trading space for time, in the sense that the con-
sidered models allow that an exponential amount of membranes can be produced
by a P system in a polynomial number of steps. For example, solutions to the
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Subset Sum problem working in a number of steps which is linear with respect
to the parameters n and k have been designed using P systems with active mem-
branes [9], using tissue P systems with cell division [2], and using P systems with
membrane creation [4].

In this paper we work with P systems using division of non-elementary mem-
branes and dissolution rules. Our aim goes beyond adding this P system model to
the above mentioned list; we improve previous complexity results by solving the
Subset Sum problem in a linear number of steps with respect to n and log k. We
also improve the pre-computation process, as the initial resources are also bounded
by log k.

The paper is structured as follows: in the next section we present the formal
framework, i.e., we recall the definition of recognizing P systems, the P system
model used along the paper is settled and the class PMCAM0(+d,+ne) is presented.
In Section 3, our design of the solution of the Subset Sum problem is presented
and some conclusions are given in the last section.

2 Formal Framework

In this paper we are using cellular systems for attacking the resolution of decision
problems. This means that for each instance of a problem that we try to solve, we
are only interested in obtaining a Boolean answer (Yes or No). Therefore, the P
system can behave as a black box to which the user supplies an input and from
which an affirmative or negative answer is received. This is indeed the motivation
for defining the concept of recognizing P systems (introduced in [13]).

2.1 Recognizing P Systems

Let us recall that a decision problem, X, is a pair (IX , θX) where IX is a language
over an alphabet whose elements are called instances and θX is a total Boolean
function over IX . If u is an instance of the problem X such that θX(u) = 1
(respectively, θX(u) = 0), then we say that the answer to the problem for the
instance considered is Yes (respectively, No).

Keeping this in mind, recognizing P systems are defined as a special class of
membrane systems that will be used to solve decision problems, in the framework
of the complexity classes theory. Note that this definition is stated informally, and
it can be adapted for any kind of membrane system paradigm.

A recognizing P system is a P system with input and with external output
having two distinguished objects yes and no in its working alphabet such that:

• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.
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2.2 The P System Model

The power of membrane division as a tool for efficiently solving NP problems in
Membrane Computing has been widely proved. Many examples of designs of P
systems solving NP-complete problems have been proposed in the framework of P
systems with active membranes with two polarizations and three polarizations and
in the framework of P systems with non-elementary membrane division. The key of
such solutions is the creation of an exponential amount of workspace (membranes)
in a polynomial time.

In the literature, one can find two quite different rules for performing mem-
brane division. On the one hand, in [7], P systems with active membranes were
presented. In this model new membranes were obtained through the process of
mitosis (membrane division). In these devices membranes have polarizations, one
of the “electrical charges” 0,−, +, and several times the problem was formulated
whether or not these polarizations are necessary in order to obtain polynomial
solutions to NP–complete problems. The last result is that from [1], where one
proves that two polarizations suffice.

P systems with active membranes have been successfully used to design (uni-
form) solutions to well-known NP–complete problems, such as SAT [13], Subset
Sum [9], Knapsack [10], Bin Packing [11], Partition [5], and the Common Algo-
rithmic Problem [12].

The syntactic representation of membrane division rule is

[ a ]e1
h → [ b ]e2

h [ c ]e3
h (1)

where h is a label, e1,e2 and e3 are electrical charges and a,b and c are objects. The
interpretation is well-known: An elementary membrane can be divided into two
membranes with the same label, possibly transforming some objects and chang-
ing the electrical charge. All objects present in the membrane except the object
triggering the rule are copied into both new membranes.

In [6], a variant of this rule was used in which the polarization was dropped:

[ a ]h → [ b ]h [ c ]h. (2)

In both cases (with and without polarizations) the key point is that the mem-
branes are always elementary membranes. In the literature, there also exist rules
for the division of non-elementary polarizationless membranes, as

[ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 (3)

where h0, h1 and h2 are labels. There exists an important difference with respect
to elementary membrane division: in the case 3, the rule is not triggered by the
occurrence of an object inside a membrane, but by the membrane structure instead.
This point has a crucial importance in the design of solutions, since a membrane
can be divided by the corresponding rule even if there are no objects inside it.
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According to the representation (3), the membrane h2 divides into two new
membranes also with label h2 and all the information (objects and membranes)
inside is duplicated.

In this paper we use a type of membrane division which is syntactically equiv-
alent to (2)

[ a ]h → [ b ]h [ c ]h, (4)

but we will consider a semantic difference; the dividing membrane can be elemen-
tary or non-elementary and after the division, all the objects and membranes inside
the dividing membrane are duplicated, except the object a that triggers the rule,
which appears in the new membranes possibly modified (represented as objects b
and c).

In this paper we work with a variant of P systems with active membranes and
weak division that does not use polarizations.

Definition 1. A P system with active membranes with weak division is a P system
with Γ as working alphabet, with H as the finite set of labels for membranes, and
where the rules are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule, associated
with a membrane labeled with h: an object a ∈ Γ belonging to that membrane
evolves to a multiset u ∈ Γ ∗.

(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labeled with h is introduced in this membrane, possibly
transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane labeled
with h to the region immediately outside, possibly transformed into another
object.

(d) [ a ]h → b for h ∈ H, a, b ∈ Γ : A membrane labeled with h is dissolved in
reaction with an object. The skin is never dissolved.

(e) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ . A membrane can be divided into
two membranes with the same label, possibly transforming some objects. The
content of the membrane is duplicated. The membrane can be elementary or
not.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

• If at the same time a membrane labeled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules of
type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. Of course, this process takes only one step.
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• The rules associated with membranes labeled with h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

Let us note that in this framework we work without cooperation, without priorities,
with weak division, and without changing the labels of membranes.

In this paper we work within the model of polarizationless P systems using
weak division of non-elementary membranes and dissolution. Let AM0(+d, +ne)
be the class of such systems.

2.3 The Class PMCAM0(+d,+ne)

Definition 2. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing P systems from
AM0(+d, +ne) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every P system Π(n) a confluent
condition, in the following sense: every computation of a system with the same
input multiset must always give the same answer. The pair of functions (cod, s) is
called a polynomial encoding of the problem in the family of P systems.

We denote by PMCAM0(+d,+ne) the set of all decision problems which can
be solved by means of recognizing polarizationless P systems using division of
non-elementary membranes and dissolution in polynomial time.

3 Designing the Solution to Subset Sum

In this section we address the resolution of the problem following a brute force
algorithm, implemented in the framework of recognizing P systems from the
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AM0(+d, +ne) class. The idea of the design is better understood if we divide
the solution to the problem into several stages:

• Generation stage: for every subset of A, a membrane labeled by e is generated
via membrane division.

• Calculation stage: in each membrane the weight of the associated subset is
calculated (using the auxiliary membranes e0, . . . , en).

• Checking stage: in each membrane it is checked whether the weight of its asso-
ciated subset is exactly k (using the auxiliary membranes ch).

• Output stage: the system sends out the answer to the environment, according
to the result of the checking stage.

Let us now present a family of recognizing P systems from the AM0(+d, +ne)
class that solves Subset Sum, according to Definition 2.

We shall use a tuple (n, (w1, . . . , wn), k) to represent an instance of the Subset
Sum problem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k
is the constant given as input for the problem. Let g : N × N → N be a function
defined by

g(n, k) =
(n + k)(n + k + 1)

2
+ n

This function is primitive recursive and bijective between N× N and N and com-
putable in polynomial time. We define the polynomially computable function
s(u) = g(n, k).

We shall provide a family of P systems where each P system solves all the
instances of the Subset Sum problem with the same size. Let us consider the binary
decomposition of k, Σi∈I2i = k, where the indices i ∈ I indicate the positions of
the binary expression of k where a 1 occurs. Let I ′ = {1, . . . , blog kc} − I be the
complementary set, that is, the positions where a 0 occurs. This binary encoding
of k, together with the weight function w of the concrete instance, will be provided
via an input multiset determined by the function cod as follows:

cod(u) = cod1(u) ∪ cod2(u),

where cod1(u) = {{bwi
i : 1 ≤ i ≤ n}} and

cod2(u) = {{cj : j ∈ I}} ∪ {{c′j : j ∈ I ′}}
Next, we shall provide a family Π = {Π(g(n, k)) : n, k ∈ N} of recognizing

P systems which solve the Subset Sum problem in a number of steps being of
O(n + log k) order. We shall indicate for each system of the family its initial
configuration and its set of rules. We shall present the list of rules divided by
groups, and we shall provide for each of them some comments about the way their
rules work.

Let us consider an arbitrary pair (n, k) ∈ N × N. The system Π(g(n, k)) is
determined by the tuple (Γ, Σ, µ, M,R, iin, i0), that is described next:

• Alphabet:
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Fig. 1. Initial Configuration

Γ = Σ ∪ {b+
i , b−i , b=

i , di, d
+
i , d−i , pi, qi : i = 1, . . . , n}

∪ {g0, . . . , g2blog kc+2, h0, . . . , h2blog kc+2n+8, l0, . . . , l2blog kc+2n+10}
∪ {r0, . . . , r2blog kc+2n+7, v0, . . . , v2blog kc+2n+12}
∪ {w0, . . . , w2blog kc+2n+18}
∪ {x0, . . . , x2blog kc+2n+15, z0, . . . , zblog kc}
∪ {s, yes, no, T rash}

• Input alphabet: Σ(n, k) = {b1, . . . , bn, c0, . . . , cblog kc, c′0, . . . , c
′
blog kc}.

The initial configuration consists of n + blog kc + 9 membranes, arranged as
shown in Figure 1. Formally, the membrane structure µ is

[[[[[[ n. . . [[[[[ ]ch . . . [ ]ch]a′ ]a]e0 ]e1
n. . . ]en ]a2 [ ]c]a1 ]e]f ]skin

where there are exactly blog kc+ 1 copies of membrane [ ]ch.
Roughly speaking (more precise explanations will be given for the rules), we

can classify the membranes according to their role as follows:

• n + 2 membranes that take care of the generation stage, namely those labeled
by e0, e1, . . . en and e.

• blog kc+3 membranes that take care of preparing and implementing the check-
ing stage, namely those labeled by ch, a and a′.

• 4 membranes that take care of the answer stage, handling and synchronizing
the results of the checking, namely those labeled by a1, a2, c and f .

• The initial multisets are:

M(f) = {{w0}}; M(e) = {{g0}}; M(a1) = {{v0}}; M(a2) = {{h0}};

M(c) = {{x0}}; M(a) = {{r0}}; M(a′) = {{z0}}; M(ch) = {{l0}}
M(skin) = M(e0) = · · · = M(en) = ∅

• The input membrane is iin = e0, and the output region is the environment
(i0 = env).
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First task: generate k membranes ch

At the beginning of the computation, k membranes ch will be generated inside the
innermost region of the structure.

The strategy works as follows:

1. Initially, there are blog kcmembranes ch in the region a′, and the input multiset
is located in region e0 (recall that cod2(u) consists of blog kc objects ci or c′i
representing the binary encoding of k).

2. In the first blog kc steps, the objects from cod2(u) get into membrane a (the ob-
jects enter one by one membrane a). Simultaneously, the counter zi is evolving
inside membrane a′ and dissolves it at the blog kc step.

3. Thus, in the next step each element from cod2(u) will go inside a membrane ch
(all objects go in parallel into different membranes in a one-to-one manner).

4. Objects c′i will dissolve the membranes where they enter, while each object ci

will generate by division 2i membranes ch.
5. After at most blog kc further steps all divisions have been completed, and the

number of membranes ch is exactly k.

Membrane a will not be divided until the generation and weight calculation
stages have been completed, acting as a separator between objects from cod1(u)
and membranes ch.

Set (A1). ci[ ]a → [ci]a
c′i[ ]a → [c′i]a

ci[ ]ch → [ci]ch

c′i[ ]ch → [c′i]ch

[c′i ]ch → Trash





for i ∈ {0, . . . , blog kc}.

Set (A2). [c0 → Trash]ch

[ci]ch → [ci−1]ch [ci−1]ch for i = 1, . . . , blog kc
[zi → zi+1]a′ for i = 0, . . . , blog kc − 1
[zblog kc]a′ → Trash
[gi → gi+1]a′ for i = 0, . . . , 2blog kc+ 1
[g2blog kc+2 → d1s]e

In the last step of this stage, the counter gi produces the objects d1 and s
which will trigger the beginning of the next stage.

Set(B). [wi → wi+1]f
[vi → vi+1]a1

[hi → hi+1]a2

[xi → xi+1]c
[ri → ri+1]a
[li → li+1]ch





for i ∈ {0, . . . , 2blog kc+ 2}.
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The rest of the counters simply increase their indices in this stage. (See Fig.
2).

Second task: generate 2n membranes e

Objects di residing inside membrane(s) e will produce n consecutive divisions, thus
yielding 2n copies of membrane e. To each one of them, a subset of A is associated
in the following way: after each division, the membranes where object pi occurs
correspond to subsets of A containing ai, and conversely, membranes where qi

occurs will be associated with subsets not containing ai.

Set(C). [di]e → [d+
i ]e[d−i ]e for i = 1, . . . n

[d+
i → pidi+1]e for i = 1, . . . n− 1

[d−i → qidi+1]e for i = 1, . . . n− 1
[d+

n → pn]e
[d−n → qn]e

Membrane divisions take place every two steps, so in the (2blog kc+2n+2)-th
step there will be 2n membranes e.

Set(D). s [ ]ai → [s]ai for i = 1, 2
s [ ]ei → [s]ei for i = 0, . . . , n

[s]e0 → Trash

pj [ ]ai
→ [pj ]ai

for i = 1, 2 j = 1, . . . , n

pj [ ]ei → [pj ]ei for j = 1, . . . , n i = j, . . . , n

[pi → qi]ei for i = 1, . . . , n

qj [ ]ai
→ [qj ]ai

for i = 1, 2 j = 1, . . . , n

qj [ ]ei → [qj ]ei for j = 1, . . . , n i = j, . . . , n

[qi]ei → Trash for i = 1, . . . , n

While the divisions are being carried out, objects s, pj and qj , for j = 1, . . . , n,
travel into inner membranes (recall that whenever membrane e gets divided, the

• • • • •

•

• • • •

•

•

skin f e a1 a2

c

en e1 e0 a

ch

ch

...
wβ d1s vβ hβ

xβ

cod1(u) rβ

lβ

lβ

β = 2blog kc+ 3

¡
¡¡

. . . ¡
¡¡

@
@@

Fig. 2. Time 2blog kc+ 3
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internal nested structure of membranes ei is duplicated). In the (2blog kc+n+2)-th
step, an object s arrives to every membrane e0. This object dissolves the membrane
in the next step, and therefore in the (2blog kc+n+3)-th step we find inside every
membrane e1 the multiset cod1(u), and in this moment the weight calculation stage
begins (see rules in Set (E)).

As we said before, objects pj and qj are traveling into inner membranes, until
they reach ej . This is done in such a way that in the (2blog kc + n + 3)-th step
there is in each membrane e1 either an object p1 or an object q1, in addition to
the multiset cod1(u).

Before going on, let us state two points. First, recall that in the input multiset,
introduced in e0 at the beginning of the computation, there are w(ai) copies of bi,
for i = 1, . . . , n. Second, let us note that objects qi dissolve membrane ei imme-
diately after arriving to it, while objects pi take two steps to dissolve membrane
ei (first they are transformed into qi and in the next step the dissolution takes
place).
Set(E). [b1 → b+

1 ]e1

[bi+1 → b−i+1]ei
for i = 1, . . . , n− 1

[bi+2 → b=
i+2]ei

for i = 1, . . . , n− 2
[bi+3 → b=

i+3]ei
for i = 1, . . . , n− 3

[b+
i → b0]ei

for i = 1, . . . , n

[b+
i → Trash]ej

for i = 1, . . . , n j = i + 1
[b−i → b+

i ]ei for i = 2, . . . , n

[b−i+1 → b+
i+1]ei for i = 1, . . . , n− 1

[b=
i → b+

i ]ei
for i = 1, . . . , n

[b=
i+1 → b−i+1]ei for i = 1, . . . , n− 1

[b=
i+2 → b−i+2]ei for i = 1, . . . , n− 2

[b+
n → Trash]a2

The basic strategy consists on allowing objects bi to get transformed into ob-
jects b0 only if the element ai ∈ A belongs to the associated multiset.

Let us summarize informally the evolution of objects bi for all possible cases.
Recall that in the (2blog kc + 2)-th step, the counter gi produces an object s in
membrane e:

• At step t = 2blog kc + 3 object s enters in en and either d+
1 or d−1 appear in

each one of the two existing copies of membrane e.
• At step t = 2blog kc + 4 object s enters in en−1 and either p1 or q1 appear in

membranes e.
• At step t = 2blog kc + 5, after the second division has been carried out, there

are 4 membranes labeled by e. Object s enters in en−2 (this happens in all 4
copies) and p1 or q1 get into en (there are two of each).

• . . .
• At step t = 2blog kc+ n + 3 object s arrives into e0, and p1 or q1 enter in e2.
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• At step t = 2blog kc + n + 4 object s dissolves e0 (and hence objects bi are
moved to e1), and p1 or q1 arrive into e1.

• At step t = 2blog kc+ n + 5 objects b1, b2 and b3 have been transformed in b+
1 ,

b−2 and b=
3 , respectively, and they will be located either in e1 (if the membrane

contained an object p1) or in e2 (if there was an object q1 in e1). Besides, in
the same step p2 or q2 get into e2.

• At step t = 2blog kc+ n + 6
– Objects b+

1 evolve to b0 (if they were in e1) or to Trash (if they were in e2).
– Objects b−2 evolve to b+

2 .
– Objects b=

3 have been transformed into b−3 (both those that were in e2 and
those in e1).

– All the objects bα
i (i = 1, . . . , n and α ∈ {+,−,=}) will be located either

in membrane e2 (if the latter contained an object p2) or in e3 (if there was
an object q2 in e2).

– Besides, in this moment p3 or q3 get into e3.

The design has been adjusted in such a way that in the moment when objects
pi and qi arrive into membranes ei it happens that the objects bα

j (j = i, . . . , n
and α ∈ {+,−, =}) are located in ei in half of the membranes or in ei+1 in the
rest of membranes. In the next step there will be objects b+

i in ei only for those
cases where there was an object pi, and hence the weight of element ai ∈ A should
be added to the weight of the associated multiset (that is, w(ai) copies of b0 will
be produced in those membranes).
Set(F). [wi → wi+1]f

[vi → vi+1]a1

[hi → hi+1]a2

[xi → xi+1]c
[ri → ri+1]a
[li → li+1]ch





for i ∈ {2blog kc+ 3, . . . , 2blogkc+ 2n + 6}.

[r2blog kc+2n+7]a → Trash
The rest of the counters simply increase their indices during this stage. At the

end of the stage, in the (2blog kc+2n+7)-th step, ri will dissolve all membranes a.
Therefore, in the next step we have 2n membranes labeled by e, and inside them
(more precisely, inside membranes a2) we have a multiset of objects encoding the
weight of a subset and also exactly k copies of membrane ch, see Fig. 3.

Third task: compare k to the weight of each subset

We shall focus next on the checking stage. That is, the system has to check in all
membranes a2 if the number of objects b0 (encoding the weight of the associated
subset) matches or not the parameter k (represented as the number of membranes
ch). This task is performed by the following set of rules (for the sake of simplicity,
we denote β = 2blog kc+ 2n + 8):
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Fig. 3. Time 2blog kc+ 2n + 8

Set(G). b0 [ ]ch → [c∗]ch

[b0 → u1]a1

[c∗]ch → Trash

[hβ ]a2 → Trash

At the step t = β, objects b0 get into membranes ch, and simultaneously
membrane a2 is dissolved. There are three possible situations:

1. There are exactly k objects b0. In this case at step t = β + 1 there will not be
any object b0 remaining, and all membranes ch have been dissolved.

2. The number of objects b0 is lower than k. In this case at step t = β + 1 there
will not be any object b0 remaining, but there will be some membranes ch that
have not been dissolved (because no object b0 entered them).

3. The number of objects b0 is greater than k. In this case there are some objects
b0 that could not get inside a membrane ch (recall that the rules are applied
in a maximal parallel way, but for each membrane only one object can cross
it at a time).

In the second case, inside each membrane ch that has not been dissolved the
rules [lβ+1 → lβ+2]ch and [lβ+2]ch → u2 are applied in the steps t = β + 1 and
t = β + 2, respectively. Hence at step t = β + 3 there will be an object u2 in a1.

In the third case, the exceeding objects b0 may, nondeterministically, either
get into a membrane ch (avoiding that the dissolution rule is applied to that
membrane) or evolve into object u1. Irrespectively of the nondeterministic choice,
we know that there will be no more objects b0 in a1 at step t = β + 2.

Of course, during this stage the rest of the counters continue evolving:

Set(H). [lβ+i → lβ+i+1]ch for i = 0, 1
[vβ+i → vβ+i+1]a1 for i = 0, . . . , 3
[xβ+i → xβ+i+1]c for i = 0, . . . , 6
[wβ+i → wβ+i+1]f for i = 0, . . . , 9
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The next set of rules guarantees that in every membrane where the weight of
the associated subset was different from k (and only in such membranes) there
will be some objects u3.

Set(I1). [ui → ui+1]a1 for i = 1, 2
[lβ+2]ch → u2

[lβ+2 → u3]a1

[c∗ → u3]a1

These objects u3, being in membrane a1, will go into membranes c and dissolve
them. We have here a similar situation as before, as there may be several objects u3

willing to go into a membrane c. The counter vi takes care of dissolving membrane
a1 so that any exceeding object u3 will be moved to membrane e and subsequently
transformed into Trash.

Set(I2). u3 [ ]c → [u4]c
[vβ+4]a1 → Trash

[u3 → Trash]e
[u4 → u5]c
[u5]c → Trash

Final task: answer stage

Therefore, only in the branches where the number of objects b0 were equal to k
we have a membrane c inside membrane e at step β + 7. Besides, we also have a
counter wi evolving in membrane f :

• If the instance of the Subset Sum problem has an affirmative answer, i.e., if
there exists a subset of A whose weight is k, then in the step β +7 there will be
a membrane e with a membrane c inside and an object xβ+7 in it. This object
will produce an object yes which will dissolve his way out to the environment.
On the contrary, if the instance has a negative answer, then there will not exist
any membrane c in the system in the step β + 7 and the object yes will not
be produced. Hence, the membrane f will not be dissolved by yes and when
the counter wi reaches wβ+10, an object no will appear and will be sent to the
environment.

The set of rules is the following one:

Set(J). [xβ+7]c → yes
[yes]e → yes

[yes]f → yes

[yes]skin → yes [ ]skin

[wβ+10]f → no

[no]skin → no [ ]skin
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Consequently, if the answer is affirmative the P system halts after β +11 steps
and otherwise after β + 12 steps.

4 Conclusions

In this paper we have combined different techniques for designing P systems in
order to get a uniform family of P systems that solves the Subset Sum problem
in the framework of P systems with weak division, with dissolution and without
polarization. The main contribution of this paper is related to the Complexity
Theory of P systems. The best solution of the NP-complete problem Subset Sum
in any P system model up to now was linear in both input parameters n and k. In
this paper we show that the dependency on k can be significantly reduced, since we
show a solution where the resources and the number of steps are of a logarithmic
order with respect to k.
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61, av. Général de Gaulle, 94010 Créteil, France
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Summary. The formalism of P systems is known for many years, yet just recently new
derivation modes and halting conditions have been proposed. For developing comparable
results, a formal description of their functioning, in particular, of the derivation step is
necessary. We introduce a formal general framework for static membrane systems that
aims to capture most of the essential features of (tissue) P systems and to define their
functioning in a formal way.

1 Introduction

P systems were introduced by Gh. Păun (see [8], [14]) as distributed parallel com-
puting devices, based on inspiration from biochemistry, especially with respect to
the structure and the functioning of a living cell. The cell is considered as a set
of compartments enclosed by membranes; the membranes are nested one in an-
other and contain objects and evolution rules. The basic model neither specifies
the nature of these objects nor the nature of the rules. Specifying these two para-
meters, a lot of different models of computing have been introduced, see [20] for a
comprehensive bibliography. Tissue P systems, first considered by Gh. Păun and
T. Yokomori in [18] and [19], also see [11], use the graph topology in contrast to
the tree topology used in the basic model of P systems.

In this paper, we design a general class of multiset rewriting systems contain-
ing, in particular, P systems and tissue P systems. We recall that any P system
may be seen at the most abstract level as a multiset rewriting system with only
one compartment, encoding the membrane as part of the object representation.
However, this approach completely ignores the inner structure of the system be-
cause all structural information is hidden (by an encoding) which makes it difficult
do deduce any compartment-related information or to model (processes in) biolog-
ical systems. At a lower level of abstraction, a P system may be seen as networks
of cells (compartments) evolving with multi-cell multiset rewriting rules. At the
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lowest level, the graph/tree structure appears as well as a specialization of rules
which are of a very particular form. This last level is usually used in the area of P
systems because it permits to easily specify the system and to incorporate different
new types of rules.

It is worth noting that in the definition of membrane systems the application
of rules often is defined in a quite informal way. This is related to the fact that
for a long time only the maximally parallel derivation mode was considered and
a P system was supposed to work only in this mode. Recent developments in P
systems area have revealed that other derivation modes as the minimally paral-
lel derivation mode might be considered [5] and allow for many interesting new
results, yet depending on specific interpretations of this notion. Moreover, differ-
ent halting conditions have been investigated (see [10], [1]), too. All these articles
have shown that there is a need for a formal definition of part of the semantics
of membrane systems as the derivation step and the halting procedure like it was
done for splicing test tube systems [6] or networks of language processors [7]. In
particular, this is important for a classification of P systems as well as for their
implementation. For approaches to find operational and logic based semantics for
P systems we refer to [4] and [2]; a Petri net semantics for membrane systems is
discussed in [12].

This article is an attempt to fulfill the goal of formally defining a procedural
semantics for a quite large number of well-known variants of P systems considered
so far in the literature, but, of course, we do not at all claim to have captured all
the variants having already appeared in the literature. In order to be quite general
we place our reasoning at the abstract level of networks of cells, already considered
in a slightly different way in [3]. We adapt an implementational point of view and
also give a formal definition of the derivation step, the halting condition and the
procedure for obtaining the result of a computation. Moreover, we give examples
of applying our concepts to some well-known variants of P systems.

2 Preliminaries

We recall some of the notions and the notations we use (for further details see
[8] and [17]). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a
language) over V , and V + = V ∗ − {λ} where λ denotes the empty string. FIN
(FIN (V ))denotes the set of finite languages (over the alphabet V ), and RE, REG,
and MATλ denote the families of recursively enumerable and regular languages
as well as matrix languages, respectively. For any family of string languages F ,
PsF denotes the family of Parikh sets of languages from F and NF the family of
Parikh sets of languages from F over a one-letter alphabet. By N we denote the set
of all non-negative integers, by Nk the set of all vectors of non-negative integers.

Let V be a (finite) set, V = {a1, ..., an}. Then a finite multiset S over V is a
mapping fS : V −→ N. The mapping fS specifies the number of occurrences of each
x ∈ V in S. The size of the multiset S is |S| = ∑

x∈V fS (x). A multiset S over V
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can also be represented by any string x that contains exactly fS (ai) symbols ai for
all 1 ≤ i ≤ n, e.g., by a

fS(a1)
1 ...a

fS(an)
n , or else by the set

{
a

fS(ai)
i | 1 ≤ i ≤ n

}
. The

support of S is the set supp(S) = {a ∈ V | f(a) ≥ 1}. For example, the multiset
over {a, b, c} defined by the mapping a → 3, b → 1, c → 0 can be specified by a3b
or

{
a3, b

}
, its support is {a, b}.

The set of all finite multisets over the set V is denoted by 〈V,N〉. We may also
consider mappings fS of form the fS : V −→ N∞ where N∞ = N ∪ {∞}, i.e.,
elements of S may have an infinite multiplicity; we shall call such multisets where
fS (ai) = ∞ for at least one i, 1 ≤ i ≤ n, infinite multisets. The set of all such
multisets S over V with fS : V −→ N∞ is denoted by 〈V,N∞〉.

Let x and y be two multisets over V , i.e., from 〈V,N〉 or 〈V,N∞〉. Then x is
called a submultiset of y, written x ≤ y or x ⊆ y, if and only if fx (a) ≤ fy (a) for
all a ∈ V ; if, moreover, fx (a) < fy (a) for some a ∈ V , then x is called a strict
multiset of y. Observe that for all n ∈ N, n+∞ = ∞, and ∞−n = ∞. The sum of
x and y, denoted by x+y or x∪y, is a multiset z such that fz(a) = fx(a)+fy(a) for
all a ∈ V . The difference of two multisets x and y, denoted by x−y or x\y, provided
that y ⊆ x, is the multiset z with fz(a) = fx(a)−fy(a) for all a ∈ V . Observe that
in the following, when taking the sum or the difference of two multisets x and y
from 〈V,N∞〉, we shall always assume {fx(a), fy(a)} ∩ N 6= ∅.

If X = (x1, . . . , xn) and Y = (y1, . . . , yn) are vectors of multisets over V , then
X ≤ Y if and only if xi ⊆ yi for all i, 1 ≤ i ≤ n; in the same way, sum and
difference of vectors of multisets are defined by taking the sum and the diference,
respectively, in each component.

3 Network of Cells

In this section we consider a general framework for describing membrane systems
with a static membrane structure. We consider membrane systems as a collection
of interacting cells containing multisets of objects [3].

Definition 3.1 A network of cells of degree n ≥ 1 (an NC of degree n ≥ 1, for
short) is a construct

Π = (V,w1, w2, . . . , wn, R)

where

1. V is a finite alphabet;
2. wi ∈ 〈V,N∞〉, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
3. R is a finite set of interaction rules of the form

(X → Y ; P, Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are
vectors of multisets over V and P = (p1, . . . , pn), Q = (f1, . . . , fn), pi, fi,
1 ≤ i ≤ n are finite sets of multisets over V .
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We remark that in the definition given above wi might be an infinite multiset.
However, in most of the cases, only one cell, called the environment, will contain
an infinite multiset. Hence we define Infinite(Π) as the vector specifying the
symbols with infinite multiplicity. More exactly,

Infinite(Π) = (inf1, . . . , infn) where infi = {a ∈ V | fwi
(a) = ∞} , 1 ≤ i ≤ n.

Moreover, we define inf ′i , 1 ≤ i ≤ n, to be the infinite submultisets of wi taking
into account only the symbols with infinite multiplicity, i.e., finf ′i (a) = ∞ for
fwi

(a) = ∞ and finf ′i (a) = 0 for fwi
(a) < ∞, a ∈ V , as well as w′i, 1 ≤ i ≤ n, to

be the finite submultisets of wi taking into account only the symbols with finite
multiplicity, i.e., fw′i (a) = 0 for fwi

(a) = ∞ and fw′i (a) = fwi
(a) for fwi

(a) < ∞,
a ∈ V .

Remark 3.1 We will also use the notation

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (f1, 1) . . . (fn, n))

for a rule (X → Y ; P, Q). Moreover, if some pi or fi is an empty set or some xi

or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from the
specification of the rule.

A network of cells consists of n cells, numbered from 1 to n, that contain
(possibly infinite) multisets of objects over V ; initially cell i contains multiset wi.
Cells can interact with each other by means of the rules in R. An interaction rule

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (f1, 1) . . . (fn, n))

rewrites objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n if cells k,
1 ≤ k ≤ n, contain all multisets from pk and do not contain any multiset from
fk. In other words, the first part of the rule specifies the rewriting of symbols,
the second part of the rule specifies permitting conditions and the third part of
the rule specifies the forbidding conditions. In the next section we give a precise
definition for the application of an interaction rule.

For an interaction rule r of the form above, the set

{i | xi 6= λ or fi 6= ∅ or pi 6= ∅ or yi 6= λ}

induces a relation between the interacting cells. However, this relation need not
give rise to a structure relation like a tree as in P systems or a graph as in tis-
sue P systems (e.g., see [15] for definitions of P systems and tissue P systems),
though most models of membrane systems with a static membrane structure can
be seen as special variants of NCs, and moreover, a lot of important features of
membrane systems, in particular the derivation step and the halting condition,
may be described at the level of NCs.
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4 Systems with a Static Structure

In this section we consider networks of cells having a static structure, i.e., the
number of cells does not change during the evolution of the system. We first define
a transition step and then halting conditions.

Definition 4.1 Consider a network of cells Π = (V, w1, w2, . . . , wn, R). A con-
figuration of Π is an n-tuple of finite multisets C = (u1, . . . , un) satisfying
infi ∩ ui = ∅. The initial configuration of Π is defined as C0 = (w′1, . . . , w

′
n)

where w′i, 1 ≤ i ≤ n, are the finite multisets from 〈V,N〉 with fw′i (a) = 0 for
fwi

(a) = ∞ and fw′i (a) = fwi
(a) for fwi

(a) < ∞, a ∈ V .

Definition 4.2 We say that an interaction rule r = (X → Y ;P,Q) is eligible for
the configuration C = (u1, . . . , un) if and only if for all i, 1 ≤ i ≤ n, we have

• pi ⊆ ui ∪ inf ′i (pi is a submultiset of ui ∪ inf ′i),
• fi " ui ∪ inf ′i (fi is not a submultiset of ui ∪ inf ′i), and
• xi ⊆ ui ∪ inf ′i (xi is a submultiset of ui ∪ inf ′i).

Moreover, we require that xj∩(V − infj) 6= ∅ for at least one j, 1 ≤ j ≤ n. This
last condition ensures that at least one symbol appearing only in a finite number
of copies is involved in the rule. The set of all rules eligible for C is denoted by
Eligible (Π,C).

The marking algorithm.

Let C = (w1, . . . , wn) be a configuration of a network of cells Π and let R′ be
a finite multiset over M with M consisting of the (copies of) rules r1, . . . , rk,
where each ri = (Xi → Yi; Pi, Qi) ∈ Eligible (Π, C), Xi = (xi,1, . . . , xi,n), Yi =
(yi,1, . . . , yi,n), 1 ≤ i ≤ k. Moreover, set x′i,j , 1 ≤ j ≤ n, to be the finite multisets
from 〈V,N〉 with fx′i,j

(a) = 0 for a ∈ infj and fx′i,j
(a) = fxi,j (a) for a /∈ infj ,

a ∈ V , as well as y′i,j , 1 ≤ j ≤ n, to be the finite multisets from 〈V,N〉 with
fy′i,j

(a) = 0 for a ∈ infj and fy′i,j
(a) = fyi,j

(a) for a /∈ infj , a ∈ V . Then:

1. consider a vector of multisets Marked0 (Π, C, r1, . . . , rk) = (λ, . . . , λ) of size n
and let i = 1;

2. if X ′
i ≤ C −Markedi−1 (Π, C, r1, . . . , rk), then set

Markedi (Π, C, r1, . . . , rk) = C −Markedi−1 (Π, C, r1, . . . , rk)−X ′
i,

otherwise, end the algorithm and return false;
3. if i = k then end the algorithm and return true, otherwise set i to i + 1 and

return to step 2.

If the marking algorithm returns true for the pair (C,R′) then we say that
the configuration C may be marked by R′, and we define Marked (Π,C, R′) =
Markedk (Π,C, r1, . . . , rk).
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Definition 4.3 Consider a configuration C and R′ ⊆ Eligible (Π,C) (i.e., a mul-
tiset of eligible rules). We say that the multiset of rules R′ is applicable to C
if the marking algorithm as described above returns true and the configuration
Marked (Π,C, R′). The set of all multisets of rules applicable to C is denoted by
Applicable (Π, C).

Definition 4.4 Consider a configuration C and a multiset of rules R′ ∈
Applicable (Π, C). According to the marking algorithm described above, we define
the configuration being the result of applying of R′ to C as

Apply (Π, C,R′) = C −Marked (Π, C, R′) + Σ1≤i≤kY ′
i .

We remark that Apply(R′, C) is again a configuration.

For the specific derivation modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C may only be a specific subset
of Applicable (Π, C).

Definition 4.5 For the derivation mode ϑ, the selection of multisets of rules ap-
plicable to a configuration C is denoted by Applicable (Π, C, ϑ).

Definition 4.6 For the asynchronous derivation mode (asyn),

Applicable (Π, C, asyn) = Applicable (Π, C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 4.7 For the sequential derivation mode (sequ),

Applicable (Π,C, sequ) = {R′ | R′ ∈ Applicable (Π,C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Applicable (Π,C, sequ) has size 1.

The most important derivation mode considered in the area of P systems from
the beginning is the maximally parallel derivation mode where we only select
multisets of rules R′ that are not extensible, i.e., there is no other multiset of rules
R′′ ) R′ applicable to C.

Definition 4.8 For the maximally parallel derivation mode (max),

Applicable (Π, C,max) = {R′ | R′ ∈ Applicable (Π, C) and there is
no R′′ ∈ Applicable (Π,C) with R′′ ) R′} .

A derivation mode closely related to the maximally parallel one, yet not con-
sidered so far in the literature is the following one, where we not only demand that
the chosen multiset R′ is not extensible, but also contains the maximal number of
rules among all multisets from Applicable (Π,C, max):
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Definition 4.9 For the maximal in rules maximally parallel derivation mode
(maxrulemax),

Applicable (Π,C, maxrulemax) = {R′ | R′ ∈ Applicable (Π,C, max) and
there is no R′′ ∈ Applicable (Π,C, max)
with |R′′| > |R′|} .

In the minimally parallel derivation mode, we need an additional feature for
the set of rules R, i.e., we consider a partition of R into disjoint subsets R1 to
Rh. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of sets of rules Rj ,
1 ≤ j ≤ h, with Rj ∩R′ 6= ∅.

There are several possible interpretations of this minimally parallel derivation
mode which in an informal way can be described as applying multisets such that
from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g., see
[5]). We start with the basic variant where in each derivation step we only choose
a multiset of rules R′ from Applicable (Π, C, asyn) that cannot be extended to
R′′ ∈ Applicable (Π, C, asyn) with R′′ % R′ as well as (R′′ −R′) ∩ Rj 6= ∅ and
R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj

from which no rule has been taken into R′.

Definition 4.10 For the minimally parallel derivation mode (min),

Applicable (Π, C, min) = {R′ | R′ ∈ Applicable (Π, C, asyn) and
there is no R′′ ∈ Applicable (Π,C, asyn)
with (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

As in the case of the maximally parallel derivation mode, also for the minimally
parallel derivation mode we may choose only multisets of rules with the maximal
number of rules thus obtaining the maximal minimally parallel derivation mode:

Definition 4.11 For the maximal in rules minimally parallel derivation mode
(maxrulemin),

Applicable (Π, C,maxrulemin) = {R′ | R′ ∈ Applicable (Π,C, min) and
there is no R′′ ∈ Applicable (Π,C, min)

with |R′′| > |R′|} .

In the case of the minimally parallel derivation mode, we have two more very
interesting variants of possible interpretations, the first one maximizing the sets
of rules involved in a multiset to be applied (maxsetmin), and the second one de-
manding that all sets of rules that could contribute should contribute (allasetmin):

Definition 4.12 For the maximal in sets minimally parallel derivation mode
(maxsetmin),

Applicable (Π,C, maxsetmin) = {R′ | R′ ∈ Applicable (Π, C,min) and
there is no R′′ ∈ Applicable (Π, C,min)

with ‖R′′‖ > ‖R′‖} .
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Definition 4.13 For the using all applicable sets minimally parallel derivation
mode (allasetmin),

Applicable (Π,C, allasetmin) = {R′ | R′ ∈ Applicable (Π, C,min) and
for all j, 1 ≤ j ≤ h,
Rj ∩Applicable (Π,C) 6= ∅
implies Rj ∩R′ 6= ∅} .

The ideas of taking only multisets of rules involving the maximal number of
sets of rules and of taking only multisets of rules involving all sets of rules that
can contribute now can also be taken over for the maximally parallel derivation
mode:

Definition 4.14 For the maximal in sets maximally parallel derivation mode
(maxsetmax),

Applicable (Π, C,maxsetmax) = {R′ | R′ ∈ Applicable (Π, C,max) and
there is no R′′ ∈ Applicable (Π, C,max)

with ‖R′′‖ > ‖R′‖} .

Definition 4.15 For the using all applicable sets maximally parallel derivation
mode (allasetmax),

Applicable (Π, C, allasetmax) = {R′ | R′ ∈ Applicable (Π, C,max) and
for all j, 1 ≤ j ≤ h,
Rj ∩Applicable (Π,C) 6= ∅
implies Rj ∩R′ 6= ∅} .

Finally, we should like to mention that the derivation modes maxsetX and
allasetX with X ∈ {max,min} could be extended by the constraint that a
maximal number of rules has to be used, too, thus yielding derivation modes
maxsetmaxruleX and allasetmaxruleX with X ∈ {max,min}. Demanding to use
at least one rule from every set Rj , 1 ≤ j ≤ h, would be another option, yet this
case will be covered by the variant of partial halting defined in the succeeding
subsection when being combined with derivation modes as maxsetX and allasetX
with X ∈ {max,min}.

For all the derivation modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying derivation mode:

Definition 4.16 Given a configuration C of Π and a derivation mode ϑ, we may
choose a multiset of rules R′ ∈ Applicable (Π, C, ϑ) in a non-deterministic way
and apply it to C. The result of this transition step from the configuration C with
applying R′ is the configuration Apply (Π,C, R′), and we also write C =⇒(Π,ϑ) C ′.
The reflexive and transitive closure of the transition relation =⇒(Π,ϑ) is denoted
by =⇒∗

(Π,ϑ).
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There are several other derivation modes considered in the literature, e.g., we
may apply (at most) k rules in parallel in every derivation step, but we leave the
task to define such derivation modes in the general framework elaborated in this
paper to the reader.

Definition 4.17 A configuration C is said to be accessible in Π with respect to
the derivation mode ϑ if and only if C0 =⇒∗

(Π,ϑ) C (C0 is the initial configuration
of Π). The set of all accessible configurations in Π is denoted by Accessible (Π).

Definition 4.18 A derivation mode ϑ is said to be deterministic (det-ϑ) if
|Applicable (Π,C, ϑ)| = 1 for any accessible configuration C.

4.1 Halting conditions

A halting condition is a predicate applied to an accessible configuration. The sys-
tem halts according to the halting condition if this predicate is true for the current
configuration. In such a general way, the notion halting with final state or signal
halting can be defined as follows:

Definition 4.19 An accessible configuration C is said to fulfill the signal halting
condition or final state halting condition (S) if and only if

S (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) and State (Π, C ′, ϑ)} .

Here State (Π,C ′, ϑ) means a decidable feature of the underlying configuration
C ′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P systems
area is the total halting, usually simply considered as halting :

Definition 4.20 An accessible configuration C is said to fulfill the total halting
condition (H) if and only if no multiset of rules can be applied to C with respect
to the derivation mode anymore, i.e.,

H (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) and Applicable (Π, C ′, ϑ) = ∅} .

The adult halting condition guarantees that we still can apply a multiset of
rules to the underlying configuration, yet without changing it anymore:

Definition 4.21 An accessible configuration C is said to fulfill the adult halting
condition (A) if and only if

A (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) , Applicable (Π,C ′, ϑ) 6= ∅ and
Apply (Π, C ′, R′) = C ′ for every R′ ∈ Applicable (Π,C ′, ϑ)} .
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We should like to mention that we could also consider A (Π, ϑ) ∪ H (Π,ϑ)
instead of A (Π,ϑ).

For introducing the notion of partial halting, we have to consider a partition
of R into disjoint subsets R1 to Rh as for the minimally parallel derivation mode.
We then say that we are not halting only if there still is a multiset of rules R′ from
Applicable (Π, C) with R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h:

Definition 4.22 An accessible configuration C is said to fulfill the partial halting
condition (h) if and only if

h (Π,ϑ) = {C ′ | C ′ ∈ Accessible (Π) and there is
no R′ ∈ Applicable (Π,C ′) with
R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h} .

4.2 Goal and result of a computation

The computations with a network of cells may have different goals, e.g., to generate
(gen) a (vector of) non-negative integers in a specific output cell (membrane) or
to accept (acc) a (vector of) non-negative integers placed in a specific input cell at
the beginning of a computation. Moreover, the goal can also be to compute (com)
an output from a given input or to output yes or no to decide (dec) a specific
property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell, but, for example, also be taken modulo a terminal alphabet (T ) or by
subtracting a constant from the result (−k).

Such different tasks of a network of cells may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computations γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ are two other parameters to be specified and clearly defined when defining
the functioning of a network of cells or a membrane system.

4.3 Taxonomy of networks of cells and (tissue) P systems

For a particular variant of networks of cells or especially P systems/tissue P sys-
tems we have to specify the derivation mode, the halting condition as well as the
procedure how to get the result of a computation, but also the specific kind of
rules that are used, especially some complexity parameters.

For networks of cells, we shall use the notation

OmCn (ϑ, φ, γ, ρ) [parameters for rules]

to denote the family of sets of vectors obtained by networks of cells Π =
(V, w1, w2, . . . , wn, R) of degree n with m = |V |, as well as ϑ, φ, ρ indicating the
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derivation mode, the halting condition, and the way how to get results, respec-
tively; the parameters for rules describe the specific features of the rules in R. If
any of the parameters m and n is unbounded, we replace it by ∗.

For P systems, with the interaction between the cells in the rules of the cor-
responding network of cells allowing for a tree structure as underlying interaction
graph, we shall use the notation

OmPn (ϑ, φ, γ, ρ) [parameters for rules] .

Observe that usually the environment is not counted when specifying the number of
membranes in P systems, but this usually hides that in many cases the environment
takes an important role in the functioning of the system.

For tissue P systems, with the interaction between the cells in the rules of
the corresponding network of cells allowing for a graph structure as underlying
interaction graph, we shall use the notation

OmtPn (ϑ, φ, γ, ρ) [parameters for rules] .

As a special example, let us now consider symport/antiport P systems.

A specific example: P systems with symport/antiport rules

For definitions and results concerning P systems with symport/antiport rules,
we refer to the original paper [13] as well as to the overview given in [16]. An
antiport rule is a rule of the form ((x, i) (u, j) → (x, j) (u, i)) usually written as
(x, out;u, in), xu 6= λ, where j is the region outside the membrane i in the
underlying graph structure. A symport rule is of the form ((x, i) → (x, j)) or
((u, j) → (u, i)).

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type of rules α usually written as
antik. The weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|,
respectively. Using only symport rules with weight k induces the type of rules α
usually written as symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and
with |x| + |u| ≤ 3 as well as symport rules of weight 1 are used, we shall write
anti2′ .

As is well known,

O∗P2 (max,H, gen, N) [anti2′ ] = NRE.

Observe that we only need one membrane separating the environment and the skin
region, but this means that two regions corresponding to two cells are involved.

A general result

For any network of cells using rules of type α, with a derivation mode ϑ, ϑ ∈
{allasetmin, asyn, sequ}, and partial halting, we only get Parikh sets of matrix
languages (regular sets of non-negative integers):
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Theorem 1. For every ϑ ∈ {allasetmin, asyn, sequ},
O∗C∗ (ϑ, h, gen, T ) [α] ⊆ PsMATλ and O∗C∗ (ϑ, h, gen,N) [α] ⊆ NREG.

The proof follows the ideas of a similar result proved for a general variant of P
systems with permitting contexts in [1] and therefore is omitted. We should like
to mention that this result is still valid if we take the derivation mode maxsetmin
instead of allasetmin (because when using partial halting we always have to take
at least one rule from every set of rules), yet we do not know whether it also holds
for the derivation modes min and/or maxrulemin.

5 Conclusions

The main purpose of this paper is to elaborate a general framework for static
P systems and tissue P systems, but there are many variants of membrane sys-
tems not yet covered by this general framework, especially dynamic changes of the
number of cells cannot be handled with the current version. Yet we have already
started to extend our approach to such dynamic variants like P systems with ac-
tive membranes. Moreover, also spiking neural P systems require some efforts for
being captured within this framework. Our approach aims at formalizing the main
features of membrane systems in such a way that derivation modes and halting
conditions can be defined in a clear and unambiguous way to avoid that different
interpretations of notions and concepts in the P systems area yield incomparable
results (as a special example consider the variants described for the minimally par-
allel derivation mode). Moreover, specifying the marking algorithm in a procedural
way should allow for easier and unambiguous implementations. Considering vari-
ants of (tissue) P systems at such a high level of abstraction allows for establishing
quite general results.
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Summary. Some initial results on the study of conformon-P systems with negative
values are reported.

One model of these conformon-P systems is proved to be computationally universal
while another is proved to be at least as powerful as partially blind program machines.

1 Introduction

The subdivision of a cell into compartments delimited by membranes inspired
G. Păun to define a new class of (distributed and parallel) models of computa-
tion called membrane systems [8]. The hierarchical structure, the locality of in-
teractions, the inherent parallelism, and also the capacity (in less basic models)
for membrane division, represent the distinguishing hallmarks of membrane sys-
tems. Research on membrane systems, also called ‘P systems’ (where ‘P’ stays for
‘Păun’), has really flourished [9].

One of the lines of research within membrane systems deals with the study of
the generative power of models of these systems.

Recent results [3, 4] obtained with the use of Petri nets and P/T systems [10]
show that the study of the generative variants of computing systems based on
symbol objects (membrane systems, program machines, brane calculi, etc.) can
be facilitated if someone considers the number of unbounded elements present in
these systems. In the present paper we do not introduce the notation of Petri net
and P/T systems but only one result obtained with their use. These information
can be found in the just mentioned publications.

In particular [Corollary 2] from [4] indicates:
A P/T system with two unbounded elements has computational power equiva-

lent to the one of program machines;
A P/T system with only unbounded number of tokens has computational power

equivalent to the one of partially blind program machines;
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A P/T system with only unbounded number of places has computational power
equivalent to the one of restricted program machines (in this case restrictions in
the composition of building blocks are present).

There unbounded elements refers to some components of the P/T systems (as,
for instance, number of places and tokens) that are present in unbounded quantity.
In [4] it is also proved that maximal parallelism is equivalent to the presence of an
unbounded number of places. The results proved in [4] indicate that in the study
of a computing system the number and kind of unbounded elements can give an
indication (upper bounds and precise characterisation) of the computing power of
the system.

The research reported in the present paper does not have the level of generality
(i.e., the use of Petri nets) used in [4]. It refers to our initial results on the study of
conformon-P systems having one ‘extended’ unbounded element: the value of the
conformons ranges from −∞ to +∞, differently from previous studies in which it
was ranging from 0 to +∞.

2 Basic definitions

We assume the reader to have familiarity with basic concepts of formal language
theory [6] and program machines [7]. We indicate with N the set of positive integers,
N0 = {0} ∪N and Z = N0 ∪ {−i | i ∈ N} indicates the set of all integers (positive,
negative and zero).

2.1 Program machines

A program machine (also known as (multi)counter machines, multipushdown ma-
chines, register machines and counter automata) with n counters (n ∈ N) is defined
as M = (S, R, s0, sd), where S is a finite set of states, s0, sd ∈ S are respectively
called the initial and final states, R is the finite set of instructions of the form
(si, l−, sg, su) or (si, l+, sq), with si, sg, su, sq ∈ S, si 6= sd, 1 ≤ l ≤ n

A configuration of a program machine M with n counters is given by an element
in the n + 1-tuples (sj , Nn

0 ), sj ∈ S. Given two configurations (si, l1, . . . , ln) and
(s′j , l

′
1, . . . , l

′
n) we define a computational step as (si, l1, . . . , ln) ` (sj , l

′
1, . . . , l

′
n):

• if (si, l−, sg, su), l = lp and lp 6= 0, then sj = sg, l′p = lp − 1, l′k = lk, k 6=
p, 1 ≤ k ≤ n;
if l = lp and lp = 0, then sj = su, l′k = lk, 1 ≤ k ≤ n;
(informally: in state si if the content of counter l is greater than 0, then subtract
1 from that counter and change state into sg, otherwise change state into su);

• if (si, l+, sq), l = lp, then sj = sq, l
′
p = lp + 1, l′k = lk, k 6= p, 1 ≤ k ≤ n;

(informally: in state si add 1 to counter l and change state into sq).

The reflexive and transitive closure of ` is indicated by `∗.
A computation is a finite sequence of transitions between configurations of a

program machine M starting from the initial configuration (s0, l1, . . . , ln) with
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l1 6= 0, lk = 0, 2 ≤ k ≤ n. If the last of such configurations has sd as state,
then we say that M accepted the number l1. The set of numbers accepted by M
is defined as L(M) = {l1 | (s0, l1, · · · , ln) `∗ (sd, l

′′
1 , · · · , l′′n)}. For every program

machine it is possible to create another one accepting the same set of numbers and
having all counters empty in the final state.

Partially blind program machines (also known as partially blind multicounter
machines) were introduced in [5] and defined as program machines without test
on zero. The only allowed operations are increase and decrease of one unit per
time of the counters indicated as (si, l+, sq) and (si, l−, sg) respectively. In case
the machine tries to subtract from a counter having value zero it stops in a non
final state. In [5] it is also proved that such machines are strictly less powerful
than non blind ones.

2.2 Conformon-P system with negative values

A conformon-P system with negative values has conformons, a name-value pair, as
objects. If V is an alphabet (a finite set of letters), then we can define a conformon
as [α, a], where α ∈ V and a ∈ Z (in our previous works on conformons, see for
instance [1, 2], we considered a ∈ N0). We say that α is the name and a is the value
of the conformon [α, a]. If, for instance, V = A,B, C, . . ., then [A, 5], [C, 0], [Z,−14]
are conformons, while [AB, 21] and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n→ β, where r is the label of the rule (a kind of name,
it makes easier to refer to the rule) α, β ∈ V and n ∈ N0, and it says that a
conformon with name α can give n from its value to the value of a conformon
having name β. If, for instance, there are conformons [G, 5] and [R, 9] and the rule
r : G

3→ R, one application of r leads to [G, 2] and [R, 12], another application of
r (to [G, 2] and [R, 12]) leads to [G,−1] and [R, 15].

The compartments (membranes) present in a conformon-P system have a label
(again, a kind of name which makes it easier to refer to a compartment), every
label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element of the
set {≥ n,≤ n | n ∈ Z}. Examples of predicates are: ≥ 5,≤ −2, etc.

If, for instance, there are two compartments (with labels) m1 and m2 and there
is a connection from m1 to m2 having predicate ≥ 4, then conformons having
value greater or equal to 4 can pass from m1 to m2. In a time unit any number of
conformons can move between two connected membranes as long as the predicate
on the connection is satisfied. Notice that we have unidirectional connections that
is: m1 connected to m2 does not imply that m2 is connected to m1. Moreover, each
connection has its own predicate. If, for instance, m1 is connected to m2 and m2 is
connected to m1, the two connections can have different predicates. It is possible
to have multiple connections (with different predicates) between compartments.
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The interaction with another conformon and the passage to another membrane
are the only operations that can be performed by a conformon.

Formally, a conformon-P system with negative values of degree m,m ≥ 1, is
a construct Π = (V, µ, αa, ack, L1, . . . , Lm, R1, . . . , Rm), where V is an alphabet;
µ = (N, E) is a directed labelled graph underlying Π. The set N contains vertices
(the membrane compartments), while the set E defines directed labelled edges (the
connections) between vertices.

In αa the value of α can either be input or output, in the former case Π is an
accepting device, in the latter case Π is a generating device, while a ∈ {1, . . . , m}
indicates the input or output membrane, respectively. ack ∈ N indicates the ac-
knowledgment membrane.

The multisets Li contain conformons associated to region i; Ri are finite sets
of rules for conformons interaction associated to region i.

A configuration of Π is an m-tuple indicating the multisets of conformons
present in each membrane of the system. A transition is the passage from one
configuration to another as the consequence of the application of operations.

A computation is a finite sequence of transitions between configurations of a
system Π starting from (L1, . . . , Lm), the initial configuration characterized by
the fact that no conformon is present in the acknowledgment membrane. If used
as a generating device, then the result of a computation is given by the multisets
of conformons associated to membrane a when any conformon is associated to
membrane ack. When this happens the computation is halted, that is no other
operation is performed even if it could. When a conformon is associated to the ac-
knowledge membrane the number of conformons (counted with their multiplicity)
associated to membrane a defines the number generated by Π.

If used as an accepting device, then the input is given by the multiset of con-
formons associated to a in the initial configuration. If Π reaches a configuration
with any conformon in ack, then no other operation is performed even if it could
and Π accepts the input.

Some of the conformon-P systems considered in this paper work under maximal
parallelism: in every configuration the maximum number of operations that can be
performed is performed. If in one configuration some operations are conflicting (so
that they cannot be executed together as they involve the same conformons), then
any maximum number of non conflicting operations is performed. The passage
of two conformons through the same connection is considered as two different
operations (similarly for the interactions of two different pairs of conformons due
to one rule).

2.3 Some modules for conformon-P systems

In the following we use the concept of module: a group of membranes with con-
formons and interaction rules in a conformon-P system able to perform a specific
task.
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An example of module is a splitter [1]: a module that, when a conformon [X, x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h− 1 is associated with a specific mem-
brane of it, it may pass such a conformon to other specific membranes according to
its value x. A detailed splitter is depicted in Figure 1.a. Vertices outgoing a mod-
ule representation of a splitter, Figure 1.b, have as predicates elements in the set
{= n | N0}, this is a shorthand indicating the function performed by this module.

≤ x2

x1

≤ x1 ≤ xh−1

xh−1 xh

≤ xh

u1 uh−1 uh

(a)

[X, x]

[X, x]

p

= xh

spl

= x1

u1 uh

(b)

u2

uh+1

p ≥ xh−1

uh+1

x2

≥ x2 ≥ x3 ≥ xh[X, x]

[X, x]

Fig. 1. A detailed splitter (a) and its module representation (b)

It should be clear that if a splitter is part of a conformon-P system with max-
imal parallelism, then the number of steps required to a conformon to pass from
the uh+1 membrane to any other of the u membrane depends on the value of the
conformon. If we consider the splitter depicted in Figure 1.a, a conformon present
in membrane uh+1 requires only two steps to pass to membrane u1 but it requires
h + 1 steps to pass to membrane uh.

In order to have this time constant (equal to h+1 in the example), then delays
(i.e., sequences of membranes) have to be introduced. We make this assumption
for all the splitters considered in the proof of Theorem 1.

2.4 Figures in this paper

The representation of the conformon-P systems considered in this paper follows
some rules aimed to a more concise representation an to an easier understanding
of them.

The label of each membrane (a number) is indicated in bold on the top right
corner of each compartment. Splitters are depicted by a thicker line, their label
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(also in bold) starts with spl, and their edges have ‘=’ as predicate. The module
representation of a splitter is depicted in Figure 1.b.

Oval compartments with a label inside are shortcuts for membranes or modules.
Conformons present in the initial configuration of the system are depicted

in bold, the remaining conformons are the ones that could be present in the
membrane during the computation.

The predicate associated to an edge is indicated close to the edge.
Some predicates and the value of some conformons contain a slash (/). This is

a shorthand for multiple predicates or values. For instance, the conformon [A, 3/4]
indicates that in a membrane the conformons [A, 3] and [A, 4] can be present. If
there is a connection from membrane m1 to membrane m2 and the connection has
predicate ≤ 0/ ≥ 5, then this is equivalent to two connections from m1 to m2, one
with predicate ≤ 0 and the other with predicate ≥ 5.

If the conformon [A, a] is present in m copies in a certain membrane, then this
is indicated with ([A, a], m), where an unbounded number of copies is indicated
with +∞.

3 Results

Theorem 1. The class of numbers accepted by conformon-P systems with negative
values and with maximal parallelism coincides with the one accepted by program
machines.

Proof. This proofs follows from the one of [Theorem 2] from [1] (where priorities
between interaction rules are present) and from [Theorem 1] from [4].

Figure 1 represents such a conformon-P system used as accepting device sim-
ulating a program machine. During this proof we refer to this figure.

For each state si of the simulated program machine there is a conformon with
name si. For each instructions of the kind (si, l+, sq) ∈ R there is a conformon with
name s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R there are conformons
with name s′′g,l and s̄g,l. For the final state sd ∈ S there is one conformon with
name s′′′d .

The initial configuration of the conformon-P system with priorities has all
conformons with name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the ones
with name s̄g,l and 1 as value in membrane 17; all the ones with name si and 0
as value in membrane 11 except the one with name of the initial state s0 that is
in membrane 1 with value 9 (in Figure 2 the generic conformon [si, 9] is present
in membrane 1); conformons [a, 8] and [c, 0] are initially present in membrane 6
and 13 respectively. Moreover for each counter l of the simulated machine there
are an unbounded number of occurrences of the conformons [l, 0] in membrane 8,
while the input membrane (membrane 14 in the figure) contains as many copies
of such conformons as the values kl of the counters at the initial configuration of
the simulated machine.
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Fig. 2. The conformons-P system related to Theorem 1

The addition of one unit to one counter l is simulated moving one occurrence
of the conformon [l, 0] from membrane 8 to membrane 14; the subtraction of one
unit is simulated with the passage of one occurrence of the same conformon from
membrane 14 to membrane 8.
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For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the rule
si

6→ s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R, there is in membrane

1 the rule si
7→ s′′g,l; for sd ∈ S there is in membrane 1 the rule si

8→ s′′′d .
Only one conformons of the kind [si, 9] may be associated to membrane 1.

When such a conformon is present in membrane 1, then one of the interaction
rules indicate above can occur.

Let us consider now the case that the rule si
8→ s′′′d is applied. As there is only

one instance of [s′′′d , 0] then the newly created [s′′′d , 8] passes to spl1 and from here
to membrane 6. After the interaction two sets of rules are applicable: one with a
second interaction of si and s′′′d and another with the passage of [s′′′d , 8] and [si, 1]
to spl1. Maximal parallelism forces this last set to be applied.

In membrane 6 [s′′′d , 8] interacts with [a, 8] such that [s′′′d , 10] is created. When
this happens this conformon passes first to spl6 and then to membrane 7, the
acknowledgment membrane, halting in this way the computation.

It is important to notice that the presence of [a, 8] in membrane 6 is necessary
for the halting of the computation. If in a configuration the conformon [s′′′d , 8]
passes in membrane 6 but [a, 8] is not there, then the simulation does not halt.

If instead the interaction in membrane 1 involves the conformon with name si

and either s′q,l or s′′g,l (due to either (si, l+, sq) ∈ R or (si, li, sg, su) ∈ R), then the
following sets of applicable operations are.

1. the conformon with name si can interact again with the same instance of either
s′q,l or s′′g,l;

2. if there is either (si, l+, sq′) ∈ R or (si, l1, sg′ , su′) ∈ R, then the conformon
with name si can interact with an instance of either s′q′,l or s′′g′,l and the
conformon created in the previous interaction (either [s′q,l, 6] or [s′′g,l, 7]) can
pass to spl1;

3. both si and either [s′q,l, 6] or [s′′g,l, 7] can pass to spl1.

Because of maximal parallelism only the second and third set of operations in
the previous list can take place (as they contain two elements while the first set
contains only one element).

If the second set occurs, then the system never reaches an halting configuration.
This can be seen if, for instance, we consider the conformon [s′q,l, 6]. Once in spl1
this conformons passes to membrane 2, then to spl2 and from here to membrane 6
where it interacts with [a, 8]. As a consequence of this interaction the conformon
with name a passes to spl6 so that the system does never halt.

The role of [a, 8] in membrane 6 is just this: if in any stage during the compu-
tation the system performed an operation that does not follow the simulation of
the program machine, then a conformon passes to membrane 6 and interacts with
[a, 8] making it unavailable for [s′′′d , 8].

The creation of [si, 3] and [s′q,l, 6] in membrane 1 starts the simulation of the
instruction (si, l+, sq) ∈ R. As we said, the simulation of the addition of 1 to the
value of the counter is performed with the passage of one instance of [l, 0] from
membrane 8 to membrane 14. When in membrane 2 [si, 3] and [s′q,l, 6] interact,
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[si,−1] and [s′q,l, 10] are created and they pass to spl2 (in case [s′q,l, 6] passes to
spl2, then the system never halts). From spl2 [si,−1] and [s′q,l, 10] pass together to
membrane 3 where they interact, [si, 0] and [s′q,l, 9] are created and pass to spl3.
From here [si, 0] passes to membrane 11 while [s′q,l, 9] passes to membrane 8.

The membrane-splitter-membrane-splitter sequence that we just described
(membrane 2 - spl2 - membrane 3 - spl3) is present in other parts of the system.
This sequence allows to control the interaction of two conformons in a very precise
way and to discard the outcome (i.e., conformons) of undesired interactions.

Once in membrane 8 the conformon with name s′q,l goes under another
membrane-splitter sequence. In membrane 8 [s′q,l, 9] interacts with an instance
of [l, 0]. After this interaction three sets of applicable operations are possible, this
situation is similar to the one described before for membrane 1. In this case the
undesired computation sees a conformons [l, 5] passing from spl8 to membrane
6, while a proper simulation sees a conformon [l, 0] passing to membrane 14 and
[s′q,l, 9] passing to membrane 11.

In membrane 11 [s′q,l, 9] interacts with [sq, 0] such that [s′q,l, 3] and [sq, 6] are
created. Again a membrane-splitter sequence allows to create [s′q,l, 0] and [sq, 9]
and let them pass to membrane 1. The instruction (si, l+, sq) ∈ R has been per-
formed and the system simulates the program machine being in state q.

The simulation of the instruction (si, l−, sg, su) ∈ R starts with the interac-
tion of [si, 9] and [s′′g,l, 0]. If when this happens no [l, 0] conformon is present in
membrane 14, then the conformon [su, 9] passes to membrane 1, otherwise an oc-
currence of [l, 0] passes from membrane 14 to membrane 8 and the conformon
[sg, 9] passes to membrane 1.

One interaction of [si, 9] and [s′′g,l, 0] in membrane 1 creates [si, 2] and [s′′g,l, 7]
and, similarly to what described before, they can follow a membrane-splitter se-
quence at the end of which [si, 2] is in membrane 11 and [s′′g,l, 9] is in membrane
13.

In this last membrane [s′′g,l, 9] interacts with [c, 0] so that [s′′g,l, 7] and [c, 2]
are created, then these two conformons pass to spl11. From here [c, 2] passes to
membrane 14. The conformon [s′′g,l, 7] also passes to this membrane but only after
two steps (in the meantime it goes in membrane 15 and 16).

If in membrane 14 there is at least an occurrence of [l, 0], then [c, 2] interacts
with any of these so that [c,−3] and [l, 5] are created (at the same time [s′′g,l, 7]
pass to membrane 17). In this configurations a few things can happen. Similarly to
the second and third set of operations indicated in the list above [c,−3] can either
remain in membrane 14 and interact with another instance of [l, 0] (if present) or
it can pass to spl12 and from here to membrane 15. In any case [l, 5] passes to
spl13 and from here to membrane 15. If [c,−3] is not present in this membrane
when [l, 5] is present, then this last conformon passes to spl14 and from here to
membrane 6 (and here it interacts with [a, 8] such that the system never halts).

It should be clear now that if [c,−3] and [l, 5] do not move together out of
membrane 14 the system never halts. If they do so, then they pass to membrane
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15 at the same time. Here [l, 5] can either pass to spl14 (and then to membrane
6) or it can interact with [c,−3] so that [l, 0] and [c, 2] are created and they pass
together to spl14. From here [l, 0] passes to membrane 8 and [c, 2] to membrane 16
(where it waits until [s′′g,l, 7] arrives).

When [s′′g,l, 7] passes to membrane 14 it can be that the conformon with name
c is there or not. This last conformon can be in membrane 14 for two reasons:
either no occurrence of [l, 0] was in that membrane, or one occurrence of [l, 0] was
there and [c,−2] did not pass to spl12. We know from the above that in this last
case the system does not halt (because an [l, 2] is heading membrane 6), so we are
not going to discuss the consequences of the interaction between [s′′g,l, 7] and the
conformon with name c when this last has a negative value.

If [c, 2] is present in membrane 14 when [s′′g,l, 7] arrives there, too, then two
things can happen: the two conformons interact or not. In this last case [s′′g,l, 7]
passes to spl13 and from here to membrane 16 and no operation can happen in
the system. If instead the two conforms interact, then [s′′g,l, 11] and [c,−1] are
created and they pass to membrane 18 (through spl13 and spl12, respectively).
Here either [c,−2] passes to spl15 and no further operation is applied, or the two
conformons interact so to create [s′′g,l, 9] and [c, 0] and then these two conformons
pass to membrane 11 and 13, respectively. So when [s′′g,l, 9] is present in spl15, then
in the simulation the counter l was empty.

What happens to the conformon with name s′′g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [sg, 9] and [s′′g,l, 0] are created and pass to membrane 1.

We still have to discuss the case in which no conformon with name c is present in
membrane 14 when [s′′g,l, 7] arrives. Here maximal parallelism forces this conformon
to pass to spl13 and from here to membrane 16 where [c, 2] is also present. This
means that if [c, 2] and [s′′g,l, 7] are present in membrane 16, then the simulation
of the subtraction of 1 from counter l has been performed.

When in membrane 16 [c, 2] and [s′′g,l, 7] interact so that [c, 0] and [s′′g,l, 9] are
created and pass to membrane 13 and 17, respectively. In this last membrane
[s′′g,l, 9] interacts with [s̄g,l, 1] so that [s′′g,l, 0] and [s̄g,l, 10] are created. Because
of maximal parallelism these last two conformons pass to membrane 1 and 11,
respectively.

What happens to the conformon with name s̄g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [su, 9] and [s̄g,l, 1] are created and pass to membrane 1 and 17
respectively.

If on a given input the program machine reaches an halting state, then the
simulating conformon-P system can reach a final configuration.

The assumption that a program machine can simulate any such conformon-P
system derives from the Turing-Church thesis. ¤
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In the figure related to the following proof some conformons have a parametric
value of the kind a + bn, a, b ∈ N, n ≥ 0. This indicates all the possible values
that a conformons can have as a consequence of interactions. If, for instance, the
conformons [A, a], [C, c] and the interaction rule C

b→ A are present in the same
membrane, then the value of the A conformon can change into a + bn, where n
indicates the number of interactions between the A and the C conformon.

Theorem 2. Conformon-P systems with negative values and without maximal par-
allelism can simulate partially blind program machines.

Proof. This proof follows from the one of [Theorem 1] from [1].
Figure 2 represents such a conformon-P system used as an accepting device

simulating a program machine. During this proof we refer to this figure.
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Fig. 3. The conformons-P system related to Theorem 2

For each state si of the simulated program machine there is a conformon with
name si. For each instruction of the kind (si, l+, sq) ∈ R there is a conformon with
name s′q,l; for each instruction of the kind (si, l−, sg) ∈ R there is a conformon
with name s′′g,l. For the final state sd ∈ S there is one conformon with name s′′′d .
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The initial configuration of the conformon-P system has all conformons with
name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the ones with name si

and 0 as value in membrane 8 except the one with name of the initial state s0 that
is in membrane 1 with value 7 (in Figure 3 the generic conformon [si, 7] is present
in membrane 1).

Moreover, for each counter l of the simulated machine there are an unbounded
number of occurrences of the conformons [l, 0] in membrane 5, while the input
membrane (membrane 4 in the figure) contains as many copies of such conformons
as the values kl of the counters at the initial configuration of the simulated machine.
The addition of one unit to one counter l is simulated moving one occurrence of
the conformon [l, 0] from membrane 5 to membrane 4; the subtraction of one
unit is simulated with the passage of one occurrence of the same conformon from
membrane 4 to membrane 5.

For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the rule
si

6→ s′q,l; for each instruction of the kind (si, l−, v) ∈ R, there is in membrane 1

the rule si
5→ s′′g,l; for sd ∈ S there is in membrane 1 the rule si

4→ s′′′d .
For any configuration of the conformon-P system only one conformon of the

kind [si, 7] may be associated to membrane 1. As we already said, initially this
conformon is the one related to the initial state of the program machine.

When a conformon of the kind [si, 7] is present in membrane 1, then one of the
interaction rules indicate above can occur.

Let us consider now the case that the rule si
8→ s′′′d can be applied. Of course

this rule can be applied more than once, if this happens the value of the si confor-
mon goes below 0 and the one of the s′′′d conformon is 4n. If n is at least 1, then the
s′′′d conformon can pass to spl1, but only if n = 1, then [s′′′d , 4] passes to membrane
2, the acknowledgment membrane, halting in this way the computation.

This process of ‘filtering out’ (with splitters) conformons with an undesired
value is present in many places in this conformon-P system. If two conformons
over interacted, then the system never reaches an halting configuration.

If instead a rule of the kind si
6→ s′q,r is applied, then [s′q,r, 6 + 6n] can pass to

spl1, but only [s′q,r, 6] can pass to membrane 5. If in membrane 1 [si, 1] is produced,
then it passes to membrane 3 (through spl1).

In membrane 5 two things can happen:

1. s′q,l interacts several times with the same l conformon;
2. s′q,l interacts with different l conformons.

The only case such that [s′q,l, 1] is produced and passes to membrane 12
(through spl3) is when [s′q,l, 6] interacts only once with one [l, 0] conformons. In
all the other cases the value of the s′q,l conformon becomes negative and such a
conformon does not pass to membrane 12 (in this way the system never halts).

If [s′q,l, 1] is produced, then also one [l, 5] is produced and, once in membrane
12, these two conformons interact so that [s′q,l, 6] and [l, 0] are recreated (because of
spl4, an over interaction in membrane 12 leads the resulting conformons to remain
in that splitter) and they can pass to membrane 3 and 4, respectively.
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The passage of an instance of [l, 0] from membrane 5 to membrane 4 simulates
the subtraction of one unit from the l counter. If no [l, 0] conformon is present in
membrane 5 when a s′q,l conformon gets there, then the system never reaches an
halting configuration.

In membrane 3 si and s′q,l can interact such that [si,−n] and [s′q,l, 7+n], n ≥ 0
are produced and they pass to membrane 7 and 6 respectively. Only if n = 0
(which means that only one interaction took place), then [si, 0] and [s′q,l, 7] pass to
membrane 8. Here s′q,l interacts with sj and, in a way similar to what described
until now, this can lead to the production of [sj , 7] and [s′q,l, 0] and these two
conformons can pass to membrane 1.

The simulation of an instruction of the kind (si, l−, v) is performed in a similar
way.

If on a given input the partially blind program machine reaches an halting
state, then the simulating conformon-P system can reach a final configuration. ¤

4 Final Remarks

The results reported in this paper leave us perplex. How shall we interpret these
results in terms of unbounded elements [4]? Must the range of values (from −∞ to
+∞) be regarded as one or two unbounded elements or as no unbounded elements
at all? (because the two infinities ‘cancel’ each other)

In this last case [Corollary 2] from [4] is confirmed as Theorem 1 has two
unbounded elements (number of conformons and maximal parallelism) and Lemma
2 only one (number of conformons). This also implies that it is possible to prove
that a partially blind program machine can simulate any conformon-P system with
negative values without maximal parallelism.

In case the range of values is regarded as one unbounded element, then it should
be possible to prove that the computational power of conformon-P system with
negative values is equivalent to the one of program machines. This implies that
Theorem 1 is redundant (because it uses three unbounded elements).

In case the range of values is regarded as two unbounded elements, then some
of the results reported in [4] should be extended and made more general.

We believe that the range of values should be regarded an one unbounded
element.

Another problem on this line of research regards the characterization of blind
program machines in terms of unbounded elements. Blind program machines (also
known as blind multicounter machines) [5] are program machines that cannot sense
(so neither halt or check) if the value of a counter is zero. It is know that these
machines are strictly less computationally powerful then partially blind program
machines.
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Summary. Nowadays, several research works on implementation of P systems have been
focused on the massively parallel character of the model. In particular, it is possible to find
out implementation of P system on cluster of processors, networks of processors, FPGA’s
ad hoc designed, and microcontrollers. Several published time analysis have proved that
there is a very strong relationship between communication and evolution rules application
time in membranes of the system. This relation determines the number of membranes
that can be allocated per processor in order to obtain the minimum evolution time for
the P system. This fact presents a problem related to hardware technologies which have a
small amount of memory for storing multisets of objects and evolution rules, in particular
microcontrollers.

The aim of this work is to present an algorithm for compressing information of mul-
tisets and evolution rules stored in membranes. In particular, this algorithm has to com-
press information, without penalizing evolution rules application and communication
times with complex processes for compressing and decompressing such information. At
the same time, keeping the same parallelism degree obtained in P systems implementa-
tion over distributed architectures presented in previous research works, but storing more
membranes per processor.

1 Introduction

Membrane computing is a new computational model based on the membrane struc-
ture of living cells [14]. It must be stressed that they are not intended to model
the functioning of biological membranes. Rather, they explore the computational
character of several membranes features that can be used for modelling new com-
putational paradigms inspired in Nature. This model has become, during last
years, a powerful framework to develop new ideas in theoretical computation and
to connect Biology with Computer Science.

The membrane structure of a P System is a hierarchical arrangement of mem-
branes, embedded in a skin that separates the system from its environment. A
membrane with no other membrane inside is called elementary. Each membrane
defines a region that contains a multiset of objects, and a set of evolution rules.
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The objects are represented by symbols from a given alphabet. The objects can
pass through membranes and membranes can change their permeability, they can
be dissolved, or they can be divided. These features are used in defining transi-
tions between system configurations, and sequences of transitions are used to define
computations. Membrane systems are synchronous, in the sense that a global clock
is assumed, i.e., the same clock holds for all regions of the system. At each time
unit, a transformation of a system configuration takes place by applying rules in
all regions, in a nondeterministic and maximally parallel manner.

Nowadays, membrane systems have been sufficiently characterized from a theo-
retical point of view. Their computational power has been settled – many variants
are computationally complete. Among their most relevant characteristics appears
the fact that they can solve non polynomial time problems in polynomial time,
but this is achieved by the consumption of an exponential number of resources, in
particular, the number of membranes that evolve in parallel.

An overview of membrane computing software can be found in [2] [15]. How-
ever, the way in which these models can be implemented is a persistent problem
today, because ”the next generation of simulators may be oriented to solve (at
least partially) the problems of information storage and massive parallelism by
using parallel language programming or by using multiprocessor computers” [2].
In this sense, information storage in membrane computation implementation is
an example of Parkinson’s First Law [13]: ”storage and transmission requirements
grow double than storage and transmission improvements”.

This work focuses upon the problem due to the storage of multisets and rules
information for the membranes in P-systems implementation. In particular, we
pretend to get the highest compression level for the information without penalizing
compression and decompression time with cost-consuming operations. Thus, we
intend to reach a compression ratio that complies with the parallelism level reached
in previous research works for P-systems implementation.

The structure of this work is as follows: first, related works in P-systems imple-
mentation are presented; next two sections present requirements for information
compression in membrane systems and the proposed compression schema; then we
analyze the obtained results for a set of tests for a well known P-system. Finally,
authors present reached conclusions.

2 Related Works

First works over massively parallel implementation for P-systems started with
Syropoulos [19] and Ciobanu [3] that in their distributed implementations of P
systems use Java Remote Method Invocation (RMI) and the Message Passing
Interface (MPI) respectively, on a cluster of PC connected by Ethernet. These
authors do not carry out a detailed analysis about the importance of the time
used during communication phase in the total time of P system evolution; although
Ciobanu stated that ”the response time of the program has been acceptable. There
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are however executions that could take a rather long time due to unexpected
network congestion”.

Recently, in [20] and [1] they present analysis for distributed architectures that
are technology independent, based on: the allocation of several membranes in the
same processor; the use of proxies for communication among processors; and, token
passing in the communication. These solutions avoid communication collisions,
and reduce the number and size of communication among membranes. All this
allows to obtain a better step evolution time than in others suggested architectures
congested quickly by the network collisions when the number of membranes grows
up. Table 1 summarizes minimum times (Tmin), optimal amount of processors
needed to implement the P system Popt, membranes allocated at each one of them
Kopt to reach those minimum times, the throughput obtained with corresponding
processors Thproc and communications Thcom for the architecture. These analysis
consider the P-system number of membranes (M) that would evolve, the maximum
time used by the slowest membrane in applying its rules (Tapl), and the maximum
time used by the slowest membrane for communication (Tcom).

Distributed Architecture [20] Distributed Architecture [1]

Tmin = 2
p

2 M Tapl Tcom − 2 Tcom Tmin = 2
p

M Tapl Tcom + Tcom

Popt =
q

M Tapl

2 Tcom
Popt =

q
M Tapl

Tcom

Kopt =
q

2 M Tcom
Tapl

Kopt =
q

M Tcom
Tapl

Thproc∼ 50% Thproc∼ 50%

Thcom∼ 50% Thcom∼ 100%

Table 1. Distributed architecture parameters depending on application rules time (Tapl),
communication time (Tcom) and number of membranes (M)

It may be concluded that to reach minimum times over distributed architec-
tures, there should be a balance between the time dedicated to evolution rules
application and the time used for communication among membranes. So, depend-
ing from the existing relation between both times, and from the number of mem-
branes in the P-system, it is possible to determine the number of processors and
the number of membranes that can be allocated at each one of them to obtain the
evolution minimum time.

The difference between both architectures lies on the different topology for the
processors net and the policy for token passing. Thus, [1] reaches a throughput near
to a 100% of the communication line. With a 40% of increment in the parallelism
level produced by the increment of the number of processors in the architecture,
which permit to obtain a reduction over the 70% in the evolution time. Both works
conclude that, for a specific number of membranes M , if it is possible that:

1. Tapl be N faster, the number of membranes that would be hosted in a proces-
sor would be multiplied by

√
N , the number of required processors would be
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divided by the same factor and the time required to perform an evolution step
would improve approximately with the same factor

√
N .

2. Tcom be N faster, the number of required processors would be multiplied by√
N , the number of membranes that would be hosted in a processor would be

divided by the same factor and the time required to perform an evolution step
would improve approximately by the same factor

√
N .

Table 2 summarizes the importance of reducing Tapl and Tcom over the dis-
tributed architectures parameters (minimum evolution time, optimum number of
processors and optimum number of membranes per processor).

Conditions Tmin Popt Kopt

Tapl be N faster and Tcom be equal Tmin√
N

Popt√
N

Kopt ·
√

N

Tapl be equal and Tcom be N’ faster Tmin√
N′ Popt ·

√
N ′ Kopt√

N′

Tapl be N faster and Tcom be N’ faster Tmin√
N′·

√
N

Popt·
√

N′
√

N

Popt·
√

N√
N′

Table 2. Repercussion on distributed architecture parameters depending on Tapl and
Tcom

All the previous analysis for distributed architectures is independent of specific
technology. In this sense, as it usually happens, implementation of these systems
has been addressed from two different approaches: software and hardware mod-
els. The main research lines are: simulation over local networks using cluster of
microprocessors, hardware ad-hoc, and generic hardware such as microcontrollers:

1. The hardware specifically designed has the possible advantage of being a mas-
sively parallel solution [17] [5] [12]. Their weak point resides in the lack of
flexibility that presents, because this type of solutions only allows the simu-
lation of a specific kind of membrane systems (for each membrane system a
specific hardware is needed). They are also very enclosed solutions because
they may be applied only to a very little range of problems (reduced number
of objects in the alphabet and small number of evolution rules).

2. The solutions based on cluster of microprocessors and local networks have as
main advantage the use of very common and well-known architectures. They
are floppy systems also because a change at software level allows the simulation
of any kind of membrane systems. Its main problem is that the best simulation
times are reached always with few units, so the obtained solutions have a low
degree of parallelism.

3. The solution, based on the use of microcontrollers [9] [10], seeks to be an
intermediate point between hardware specifically designed and simulation us-
ing cluster of microprocessors. Microcontroller architecture is as flexible as a
cluster of microprocessors and less enclosed and floppier than the hardware
specifically designed. Microcontroller architecture has more level of potential
parallelism than cluster of microprocessors but does not have intrinsic parallel
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nature of the hardware specifically designed. Therefore, it is the cheapest ar-
chitecture. But, in return, in [10] it is admitted that it is needed “the definition
of more and more efficient data structures and algorithms oriented to minimize
the quantity of memory required for the multisets and evolution rules storage
that define the membrane”.

Thus, in hardware solutions and solutions based upon microprocessors nets, the
amount of information that has to be stored and transmitted is very important. In
the first case, the main problem is due to their low storage capacity. So, reducing
this amount of information needed to represent a membrane, means to be able
to extend the variety of problems that can be solved with this technology. In the
second case, reducing the amount of information to transmit means to minimize
the bottleneck in processor communication and so, increase the parallelism level.

3 Compression Requirements

First, unlike other environments, where it is admissible a lossy information system
(i.e. multimedia contents transmission), in our environment it is essential to have
a lossless information compression system.

Almost all the compression methods require two phases: the first for analysis
followed by a second one for conversion. First, an initial analysis of the information
is done to identify repeated strings. From this analysis, an equivalences table is
created to assign short codes to those strings. In a second phase, information
is transformed using equivalent codes for repeated strings. Besides, this table is
required with the information for its future compression/decompression. On the
other hand, we must realize that a higher compression without any information loss
will take more processing time. Bitrate is always variable and it is used mainly
in text compression [18]. Because all of this, in spite of the fact that there are
compression systems that are able to reach entropy limit - highest limit for data
compression (i.e. Huffman codes) - they are not the ideal candidates for our system
because of the following reasons:

1. Table storage will increase the needs for memory resources and would decrease
compression goal.

2. Time for the phase of evolution rules application is penalized with compres-
sion/decompression processes when accessing compressed information on the
P-system. This reduces parallelism level from distributed systems and increases
evolution time.

3. And also, despite of the fact that communication phase time will be reduced
because a lowest amount of information is transmitted, this will be counter-
acted by the time needed for decompression in the destination.

This way, as it is said in the goal of this work, compression schema for infor-
mation from P-system membranes should accomplish following requirements:
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1. there should be no information loss;
2. it should use the lowest amount of space for storage and transmission;
3. it should not penalize time for rules application phase and communication

among membranes while processing compressed information. Thus, this means
that the system should:
a) encode information for a direct manipulation in both phases without hav-

ing to use coding/decoding processes.
b) do the compression in a previous stage to the P-system evolution
c) therefore, abandon entropy limit to be able to maintain parallelism level

and evolution time reached in previous research works.

4 Compression Schema

This work pretends to compress the information from multisets that are present
in regions and rules antecedents and consequents from each one of the P-system
membranes. But it does not address the compression of another kind of informa-
tion, such as priorities, membrane targets in rule consequents nor dissolving rule
capability.

Representation for multisets information in related literature is Parikh’s vector
[4]. Data compression is very associated with its representation. Proposed compres-
sion schema is presented here in three consecutive steps beginning with Parikh’s
vector codification over the P-system alphabet. To show it, each of the successive
steps will be applied over the following P-System [14]. See figure 1.

Fig. 1. A P System generating n2, n ≥ 1

4.1 Parikh’s Vector over P System Alphabet

Each region of a membrane can potentially host an unlimited number of objects,
represented by the symbols from a given alphabet V. We use V* to denote the
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set of all strings over the alphabet V (we consider only finite alphabets). For
a ∈ V and x ∈ V* we denote by |x|a the number of occurrences of a in x.
Then, for V = {a1, ..., an}, the Parikh vector associated with V is the mapping
on V ∗ denoted by ψV (x) = (|x|ai

, · · · , |x|an
) for each x ∈ V ∗. Our representation

considers an order in the set of objects, hence the byte’s order reflects the order of
the objects within the alphabet and consequently, the position directly indicates
which symbol’s multiplicity is being stored.

Figure 2 shows an example for Parikh’s vector associated to a multiset over
the alphabet V = {a, b, c, d, e, f}.

Fig. 2. Example for Parikh’s vector over the alphabet V = {a, b, c, d, e, f}

Figure 3 shows previous P-system information by the use of Parikh’s vector
over the alphabet V = {a, b, b′, c, f} for all the multisets that are present in each
region and evolution rules for each membrane.

As we can see, codification using Parikh’s vector over the P system alphabet
requires 90 storage units for the multiplicities present in the multisets

4.2 Parikh’s Vector for each Membrane’s Alphabet

First step in compression considers only the alphabet subset for the P system
that may exist in each of the regions for the membrane system, whatever are the
possible configurations for the P system evolution. This subset may be calculated
by a static analysis, previous to P system evolution time. In order to determine
membranes alphabets in a given P system it is needed to consider the following
facts:

1. Every object present at the region in the P system initial configuration belongs
to its membrane’s alphabet.

2. Every object present at the consequent in a membrane’s evolution rule with
target “here” belongs to its membrane’s alphabet.

3. Every object present at the consequent in a membrane’s evolution rule with
target “in” to another membrane, belongs to the target membrane’s alphabet.

4. Every object present at the consequent in a membrane’s evolution rule with
target “out”, belongs to it’s father alphabet.
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Fig. 3. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with V alphabet

5. Every object present at any membrane’s alphabet with a evolution rule with
dissolution capability belongs to it’s father alphabet.

We will designate alphabet for a membrane i, Vi ⊆ V , where ∀ Vi , , |Vi| ≤ |V |.
For the example in figure 1, alphabets for the four membranes are: V1 = {a, b, b′, f};
V2 = {a, b, b′, f}; V3 = {a, b, f}; and V4 = {c}. According to these alphabets, each
of the multisets in the region and the antecedents for a membrane evolution rules
are codified by the Parikh’s vector over its membrane alphabet. On the other hand,
consequent multisets in each evolution rule are codified by the Parikh’s vector over
the target membrane alphabet.

Figure 4 shows previous P System information using Parikh’s vector for each
membrane alphabet.
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Fig. 4. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with the membranes’ alphabet

Now, P system codification by the use of Parikh’s vector over each membrane
specific alphabet, requires 63 storage units for present multiplicities in multisets.
This codification reduces information size over a 70,0% concerning previous codi-
fication.

4.3 Parikh’s vector without null values

Next compression step is an alteration over the Run Length Encoding (RLE) algo-
rithm [11], used mainly to compress FAX transmissions. In this lossless codifica-
tion, data sequences with same value (usually zeros) are stored as a unique value
plus its count. RLE compression factor is, approximately:
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E (X)
E {log2 x}

where X is a discrete random variable that represents the number of successive
zeros between two ones and E(X) is its expected value (average). Compression
value stands between 20% and 30%.

In our case, what we pretend is to eliminate all the null values in Parikh’s vector,
that is, to eliminate all the references to the alphabet elements in a membrane that
do not appear in its multiset. This information may be considered as redundant
cause it may be obtained from the new coded information. In a formal way, let
V = {a1, a2, . . . , an} be an ordered finite alphabet, ∀x ∈ V ∗, the encoded Parikh
vector associated with V is defined by ΨE

V (x) = {(|x|ai
, i) | |x|ai

6= 0}. Figure 5
shows an example for Parikh’s vector without null values associated to a multiset
over the ordered alphabet V = {a, b, c, d, e, f}.

Fig. 5. Example for Parikh’s vector without null values over the alphabet V =
{a, b, c, d, e, f}

Concerning to multiplicities of objects present in multisets, there is two dif-
ferent situations: for the cases with multisets present at a membrane region, in-
dependently from the initial configuration, its multiplicities values are variable
depending on the evolution that takes the membrane system in a non determinis-
tic way; on the other hand, for the cases with multisets present at the evolution
rules antecedents and consequents, its multiplicities values are constant and known
previously to the P system evolution.

According to this situation, the evolution second step encodes without null
values just the information that belongs to constant multisets present at evolution
rules. Thus, we get a more compressed and lossless representation. The reason
that does this representation possible is the fact that the absence of these null
values multiplicities does not affect none of the multisets operations (addition,
subtraction, applicability, scalar product, . . . )

Figure 6 shows previous P system information using Parikh’s vector without
null values over each membrane’s ordered alphabet.

Now, the P system codification using Parikh’s vector without null values over
each membrane’s ordered alphabet requires 46 storage units for the multiplicities
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Fig. 6. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with membranes alphabet and without null values

present at the multisets. This codification, in figure’s 1 example, reduces informa-
tion size until a 51,1% from the initial codification.

4.4 Storage Unit Compression

Last compression step concerns storage unit size for each of the P system infor-
mation values. Depending on the storage unit size (measured in bits), we will be
able to codify a greater or smaller range of values. In membrane computing, that
does not allow negative values, given a size t bits for the storage unit, the range
for possible values will vary from 0 to 2t − 1.

In this section, we will have to take into account separately multisets present
at the membrane’s regions in front of the ones present at evolution rules. For
the first, storage unit size depends on the value range we want to reach during
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evolution while not having an overflow. Instead of it, for the second ones, we have
to take into account, as it was shown in previous sections, that each membrane’s
ordered alphabet and their multiplicities are constant. Thus, an analysis previous
to the P system evolution allows calculating the value ranges that are present in
constant multisets for evolution rules and, so, the size that is needed to get their
codification:

1. value range for multiplicities present at the antecedents and consecuent for
each membrane (from 0 to 2 in example in figure 1; 2 bits needed for its
codification).

2. value range for Parikh’s vector positions over the ordered alphabet for each
membrane (from 1 to 4 in example in figure 1; 2 bits needed for its codification).

Table 3 presents the size, in bits, needed to represent P system information
from figure 1, with different storage unit sizes, using two different representations:
the original representation (Parikh’s vector over P system alphabet) and our com-
pression schema (Parikh’s vector without null values over membrane’s alphabet).
Last row shows compression rates obtained for different storage units sizes. In par-
ticular, it has been considered that the minimum storage unit size should be 8 bits
according to actual technologies. In this work, we do not address the possibility of
encoding several values at the same byte, which would increase more compression
rates.

Storage unit size

Representational Schema 8 bits 16 bits 32 bits 64 bits

Parikh’s vector for the P sys-
tem alphabet

720 bits 1440 bits 2880 bits 5760 bits

Parikh’s vector whithout null
values associated with mem-
brane alphabets

368 bits 464 bits 656 bits 1040 bits

Compression degree 51.1% 32.2% 22.8% 18.1%

Table 3. Size in bits for representing P system information with different size for storage
units and different representations

5 Analysis of Results

At this section we present the analysis of results obtained from the compression
schema. First we analyze the schema compression itself. Afterwards we analyze
the impact that compression has over the times for evolution rules application and
communication among membranes. Finally, we analyze the global impact over
distributed architectures parameters: evolution minimum time, optimum number
of processors and membranes in each processor.
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For the analysis of the following sections, we will do a review over a test set
composed by the P System published in [14] and [16]. Table 4 describes the con-
sidered P System set.

P System Task Reference

A. First example [14]

B. Decidability: n mod k = 0 [14]

C. Generating: n2, n ≥ 1(1st version) [14]

D. Generating: n2, n ≥ 1 (2nd version) [16]

Table 4. P System used for testing

5.1 Compression Schema Analysis

Table 5 shows compression rates reached for each P system from table 4, consid-
ering different storage unit sizes. Last row presents average compression rates for
each storage size.

Storage unit size

P System 8 bits 16 bits 32 bits 64 bits

A. 59.8% 37.8% 26.8% 21.3%

B. 75.0% 47.7% 34.1% 27.3%

C. 51.1% 32.1% 22.8% 18.1%

D. 52.2% 33.3% 23.9% 19.2%

Average compression degree 59.5% 37.7% 26.9% 21.5%

Table 5. Compression degree for P System from Table 4

Considering the worst case for this compression schema (8 bits for all the stor-
age units), at least, we reach a compression rate of 75,0%, which implies a increase
of a 33,3% for memory availability to store information. For average compression
rate (59,5%), it is reached an increase of 68,0% of memory availability. So we atten-
uate the storage problem for information in distributed architectures implemented
with low storage capacity microcontrollers based technologies. Using this compres-
sion schema, it will be possible allocate more membranes in each microcontroller
and so, it will be possible to reach minimum times at the same time that we are
maximizing resources.

On the other hand, it has to be underlined that the compression process is
done by an previous analysis to the P system evolution. Thus, evolution rules
application and communication among membranes phases are not penalized with
compression/decompression processes.
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5.2 Impact Analysis for Evolution Rules Application Time

Published parallel and sequential algorithms [6] [7] [21] [22] [8] for evolution rules
application are based upon a limited set of multisets primitive operations. These
are calculation of: applicability, maximum applicability, antecedent/consequent
addition and subtraction over its region multiset and the scalar product of a an-
tecedent/consequent.

Algorithmic complexity of any of these operations is determined by the rep-
resentation of multiset information present at the evolution rules. In worst case,
using representation trough Parikh’s vector over the P system alphabet, complex-
ity will be equal to its alphabet cardinal. On the other hand, using representation
through the proposed compression schema, complexity in worst case will be equal
to the multiset support that is present at the evolution rule antecedent/consequent.
Table 6 presents, for each of the P system in table 4, its alphabet support, the
average support for multisets present in its evolution rules and a percentage based
relation among both cardinals. Last row presents these cardinals average values
and their relation.

P System | V | | support(w) | %

A. 4 1.05 26.3%

B. 4 1.50 37.5%

C. 5 1.13 22.6%

D. 5 1.13 22.6%

Average 4.5 1.20 26.7%

Table 6. Alphabet Cardinality and support average from P systems of Table 4

According to these empirical values, each of the primitive operations previously
mentioned will decrease its execution time approximately until a 26,7%. And con-
sequently, evolution rules application time will be approximately 3,75 times faster.

5.3 Impact Analysis for Communication among Membranes Time

Communication among membranes addresses submission of multisets present at
the applied application rules consequents and, in case of dissolution, the region
multiset itself. Depending on information representation, the data packet size to
transmit will be smaller or bigger. Table 7 shows, for each of the P systems shown in
table 4, information compression rate for its communications for different storage
units sizes. Last row presents compression rates average.

According to these empirical values, a reduction until a 55,6% of the informa-
tion to transmit among membranes may be reached in the worst case. Considering
that communication is a linear process that depends upon the amount of informa-
tion to transmit, communication time among membranes will be approximately
1,80 times faster.
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Storage unit size

P System 8 bits 16 bits 32 bits 64 bits

A. 55.0% 45.0% 40.0% 37.5%

B. 60.0% 50.0% 45.0% 42.5%

C. 54.0% 44.0% 39.0% 36.5%

D. 53.3% 44.4% 40.0% 37.8%

Average 55.6% 45.9% 41.0% 38.6%

Table 7. Compression degree for communication units from P systems of Table 4

5.4 Global Impact Analysis

Finally, we present a impact analysis of this compression schema over distributed
architecture parameters. In particular, we examine, following criteria shown in ta-
ble 2, implication in optimum number of processors and membranes per processor
and minimum evolution time.

On one side, time reduction for evolution rules application increases the number
of membranes per processor. It also decreases the number of processors and evolu-
tion time. According to the previous empirical data, from a rule application time
3,75 times faster, we get an increment of a 93,5% for membranes per processor, a
reduction until a 51,6% for number of processors and for evolution time.

On the other hand, time reduction for communication among membranes in-
creases the number of processors. It also decreases the number of membranes per
processor and evolution time. According to the previous empirical data, from a
communication time 1,80 times faster, we get, for the worst case, a 34,2% incre-
ment for number of processors and a reduction until a 74,5% for the number of
membranes per processor and for evolution time.

Taking in account both factors, reduction for application and communication
time, counteract their effects over the number of processors and the number of
membranes per processor. According to the previous empirical data, we get a
reduction of a 69,3% for the number of processors, an increment of a 44,3% for the
number of membranes per processor and a reduction until a 38,5% for evolution
time.

6 Conclusions

In this work has been presented a schema for compressing multisets and evolution
rules for P system membranes. This compressing schema is a variant from Run
Length Encoding starting form the Parikh’s vector considering the specific mem-
brane alphabet. Empirical results over a reduced set of classical P systems show
degrees of compression varying from 51.1 % to 18.1% depending on the size in bits
needed for storing objects multiplicities for multisisets of objects in membranes
of the P systems. This is a way for allocating more membranes per processor in
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the implementation of P system on distributed architectures having a low memory
capability.

On the other hand, the compression schema does not penalize evolution rule
application nor communication times during P system evolution. The schema does
not required compression/decompression process during P system evolution. The
whole compression process is performed by mean of a static analysis previous to
the P system evolution. These facts, thanks to the representation of information
established, improve the system performance reducing evolution rule application
and communication times, what is very important because it implies a direct im-
plication on reducing the evolution time of the membrane systems.
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Summary. Modelling and simulation of biological reaction networks is an essential task
in systems biology aiming at formalisation, understanding, and prediction of processes
in living organisms. Currently, a variety of modelling approaches for specific purposes
coexists. P systems form such an approach which owing to its algebraic nature opens
growing fields of application. Here, emulating the dynamical system behaviour based on
reaction kinetics is of particular interest to explore network functions. We demonstrate a
transformation of Hill kinetics for gene regulatory networks (GRNs) into the P systems
framework. Examples address the switching dynamics of GRNs acting as inverter, NAND
gate, and RS flip-flop. An adapted study in vivo experimentally verifies both practicability
for computational units and validity of the system model.

1 Introduction

Along with the development of systems biology, a variety of modelling techniques
for biological reaction networks have been established during the last years [1].
Inspired by different methodologies, three fundamental concepts emerged mostly
independent of each other: analytic, stochastic, and algebraic approaches. Each
paradigm specifically emphasises certain modelling aspects. Analytic approaches,
primarily adopted from chemical reaction kinetics, enable a macroscopic view on
species concentrations in many-body systems. Based on differential equations con-
sidering generation and consumption rates of species, deterministic monitoring and
prediction of temporal or spatial system behaviour is efficiently expressed by con-
tinuous average concentration gradients. In contrast, stochastic approaches reflect
aspects of uncertainty in biological reaction networks by incorporating random-
ness and probabilities. So, ranges of possible scenarios and their statistical distri-
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Fig. 1. Modelling approaches for biological reaction networks and bridges between them.
Algorithmic strategies behind these bridges allow model transformations. Stochastic, an-
alytic, and algebraic approaches form fundamental paradigms, categorisable into sub-
classes (white highlighted) and transformational concepts (black highlighted)

bution can be studied facilitating a direct comparison with wetlab experimental
data. Statistical tools help in discovering correlations between network compo-
nents. Furthermore, algebraic approaches appear as flexible instruments regarding
the level of abstraction for system description. Due to their discrete principle of
operation, they work by embedding as well as evaluating structural information,
modularisation, molecular tracing, and hierarchical graduation of provided system
information.

Combining advantages of several paradigms comes more and more into the fo-
cus of research. On the one hand, heterogeneous models subsume elements from
different approaches into an extended framework. On the other hand, transforma-
tion strategies aim to model shifting between approaches, see Figure 1. Thus, spe-
cific analysis tools as well as advanced techniques for classification, simplification,
comparison, and unification can become applicable more easily. This is addition-
ally motivated by the fact that all three paradigms are independently known to
be capable of constructing Turing complete models for computation [14].

In general, P systems represent term rewriting mechanisms, hence algebraic
constructs [19, 20]. Substantiated by the progress in proteomics, investigating the
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dynamical behaviour of biological reaction networks is essential to understand their
function. Although P systems containing appropriate kinetics are useful, reaction
kinetics is mostly defined for analytic models. In this paper, we contribute to
bridging this gap for GRNs.

Related work addresses corresponding P systems for phenotypic representations
of some biological network classes. While metabolic P systems [15] and P systems
for cell signalling [11, 18] have already been equipped with mass-action kinetics
derived from underlying reaction mechanism [7], P systems for GRNs [2, 5] and
for quorum sensing [3] are restricted to formulate inhibiting or activating effects
qualitatively. In order to introduce a homogeneous quantitative model, we decided
to incorporate Hill kinetics [16] to the P systems framework by describing the
cooperativity in GRNs dynamically using sigmoid-shaped transfer functions that
are more precise than two-stage on/off switching.

The paper is organised as follows: Based on the definition of Hill kinetics, we
present a method for discretisation that leads to P systems ΠHill whose proper-
ties are discussed briefly. A case study includes GRNs acting as inverter, NAND
gate, and RS flip-flop. For each logic gate, its GRN in concert with ODEs derived
from Hill kinetics, corresponding P system, and simulation results are shown. Fi-
nally, we verify that a reporter gene encoding the green fluorescent protein (gfp)
with transcription factors N-acyl homoserine lactone (AHL) and isopropyl-βD-
thiogalactopyranoside (IPTG) can mimic the aforementioned RS flip-flop in vivo.
Here, gfp expression is quantified using flow cytometry.

2 Transforming Hill Kinetics to P System

Hill Kinetics

Hill kinetics [16] represents a homogeneous analytic approach to model cooperative
and competitive aspects of interacting biochemical reaction networks dynamically.
It formulates the relative intensity of gene regulations by sigmoid-shaped threshold
functions h of degree m ∈ N+ and threshold Θ > 0 such that x ≥ 0 specifies
the concentration level of a transcription factor that activates resp. inhibits gene
expression. Function value h then returns the normalised change in concentration
level of the corresponding gene product:

activation (upregulation) →: h+(x,Θ,m) = x
m

xm+Θm

inhibition (downregulation) ⊥: h−(x,Θ,m) = 1 − h+(x,Θ,m)

Functions h+ and h− together with a proportional factor c1 quantify the pro-
duction rate of a certain gene product GeneProduct. Here we assume a linear
spontaneous decay with rate c2[GeneProduct] such that the differential equation

takes the form d [GeneProduct]
d t

= ProductionRate − c2[GeneProduct]. Different ac-
tivation and inhibition rates are simply multiplied as in the following example
illustrated in Figure 2 (c1, c2 ∈ R+):
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A n

I 1

A 1

I p

Gene

GeneProduct

Fig. 2. Gene regulatory unit. Repetitive expression of a Gene leads to generation of a spe-
cific GeneProduct, a protein whose amino acid sequence is encoded by the DNA sequence
of the Gene. Transcription factors (specific single proteins or complexes) quantitatively
control the expression rate by their present concentration. Two types of transcription
factors can be distinguished: Inhibitors, here symbolised by I1, . . . , Ip, repress Gene ex-
pression by downregulation while activators A1, . . . , An cause the opposite amplifying
effect by upregulation.

d [GeneProduct]

d t
= c1 · h

+(A1, ΘA1
,m) · . . . · h+(An, ΘAn

,m) ·
(
1 − h+(I1, ΘI1

,m) · . . . · h+(Ip, ΘIp
,m)

)
− c2[GeneProduct]

For simplicity, each differential coefficient d y

d t
is subsequently denoted as ẏ.

By coupling gene regulatory units we obtain GRNs. Here, gene products can act
as transcription factors for other genes within the network. Additional complex
formation among gene products allows conjunctive composition of transcription
factors and the introduction of further nonlinearities. Thus, an effective signal
transduction and combination between different network elements becomes feasi-
ble.

Discretisation

The analytic nature of Hill kinetics based on continuous concentrations requires a
discretisation with respect to value and time in order to derive a homologous term
rewriting mechanism. Following the intention to approximate continuous concen-
trations by absolute particle numbers, we assume a large but finite pool of mole-
cules. The application of a reaction rule in terms of a rewriting process removes a
number of reactant particles from this pool and simultaneously adds all products.
Therefore, selection and priorisation of reaction rules to apply are controlled by
an underlying iteration scheme with temporally stepwise operation.

Since Hill kinetics is characterised by variable reaction rates due to the sigmoid-
shaped functions h, this variability should also be reflected in the term rewriting
mechanism. For this reason, we introduce dynamic stoichiometric factors resulting
in time dependent reaction rules. Let ∆τ > 0 be the constant time discretisation
interval (step length), the gene regulatory unit depicted in Figure 2 consists of two
reaction rules with variable stoichiometric factors s and u:
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s Gene −→ s GeneProduct + s Gene
∣∣
A1,...,An,¬I1,...,¬Ip

where

s = ⌊∆τ · c1 · [Gene]·
h+(A1, ΘA1

,m) · . . . · h+(An, ΘAn
,m)·(

1 − h+(I1, ΘI1
,m) · . . . · h+(Ip, ΘIp

,m)
)
⌋

u GeneProduct −→ ∅ where u = ⌊∆τ · c2 · [GeneProduct]⌋

Here, the upper reaction formulates the generation of GeneProduct particles with
regard to the limiting resource of available Gene objects. Reaction conditions
coming from the presence of activators A1, . . . , An and absence (¬) of inhibitors
I1, . . . , Ip affect the stoichiometric factor s. The notation of indexes after the ver-
tical bar declares the elements which occur in the h-components (h+,h−) of the
function regulating the rule. In order to map normalised concentrations from Hill
kinetics into absolute particle numbers, we introduce the factor term [Gene] which
represents the total number of Gene objects present in the reaction system. Ac-
cordingly, the decay (consumption) of GeneProduct is expressed by the lower
transition rule.

The rounding regulation (⌊ ⌋) provides for integer numbers as stoichiometric
factors. This is necessary for handling the discrete manner of term rewriting. Nev-
ertheless, a discretisation error can occur and propagate over the time course. The
higher the total number of particles in the reaction system is initially set, the more
this inaccuracy can be reduced.

Now, we incorporate the reaction system obtained by discretisation into the P
systems framework. Therefore, we firstly define some syntactical conventions with
respect to formal languages and multisets.

Formal Language and Multiset Prerequisites

We denote the empty word by ε. Let A be an arbitrary set and N the set of natural
numbers including zero. A multiset over A is a mapping F : A −→ N∪{∞}. F (a),
also denoted as [a]F , specifies the multiplicity of a ∈ A in F . Multisets can be
written as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .}
since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F ) ⊆ A of F is defined
by supp(F ) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | =

∑
a∈A

F (a). Let
F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1.
The intersection F1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sum F1 ⊎ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = F1(a) + F2(a)}, and the
multiset difference F1 ⊖ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = max(F1(a) − F2(a), 0)}
form multiset operations. The term 〈A〉 = {F : A −→ N ∪ {∞}} describes the set
of all multisets over A while P(A) denotes the power set of A.



368 T. Hinze et al.

Transformation: Definition of the Corresponding P System

The general form of a P system ΠHill emulating the dynamical behaviour of GRNs
using Hill kinetics is a construct

ΠHill = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , rk, f1, . . . , fk,∆τ,m)

where VGenes denotes the alphabet of genes, VGeneProducts the alphabet of gene
products (without loss of generality VGenes ∩ VGeneProducts = ∅), and Σ ⊆
VGeneProducts represents the output alphabet. ΠHill does not incorporate inner
membranes, so the only membrane is the skin membrane [1]1. The single mem-
brane property results from the spatial globality of GRNs within an organism:
Gene expression is located in the cell nuclei flanked by a receptor-controlled in-
tercellular transduction and combination of transcription factors. Resulting GRNs
form independent network structures of high stability within living organisms.

Let V = VGenes ∪ VGeneProducts. The multiset L0 ∈ 〈V 〉 over V holds the initial
configuration of the system.

Initial reaction rules3 ri ∈ 〈Ei,0〉 × 〈Pi,0〉 × P(TF i) with multiset of reactants
Ei,0 ⊆ V ×N, multiset of products Pi,0 ⊆ V ×N and set of involved transcription
factors TF i ∈ VGeneProducts, i = 1, . . . , k, define the potential system activity at
time point 0. A function fi : R+ × 〈V 〉 × N+ → N is associated with each initial
reaction rule ri. This function adapts the stoichiometric factors according to the
discretised Hill kinetics as described above.

Furthermore, we introduce two global parameters. The time discretisation in-
terval ∆τ ∈ R+ corresponds to the length of a time step between discrete time
points t and t + 1. The degree m ∈ N+ is used for all embedded sigmoid-shaped
functions.

Finally, the dynamical behaviour of the P system is specified by an iteration
scheme updating both the system configuration Lt and the stoichiometric factors
of reaction rules ri starting from L0 where i = 1, . . . , k:

Lt+1 = Lt ⊖ Reactantst ⊎ Productst with

Reactantst =
k⊎

i=1

(Ei,t+1 ∩ Lt)

Productst =
k⊎

i=1

(Pi,t+1 ∩ Lt)

Ei,t+1 = {(e, a′) | (e, a) ∈ Ei,t ∧ a′ = fi(∆τ,Lt,m)} (1)

Pi,t+1 = {(q, b′) | (q, b) ∈ Pi,t ∧ b′ = fi(∆τ,Lt,m)} (2)

Informally, the specification of Ei,t+1 and Pi,t+1 means that all reactants e and
products q remain unchanged over the time course. Just their stoichiometric factors
are updated from value a to a′ (reactants) and from b to b′ (products) according

3 Note that in our case the stoichiometry of reaction rules changes over time which is
used to implement time-varying reaction rates.
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to functions fi. These functions may utilise the numbers of copies for all |V | types
of particles recently present in the system. The cardinality |Lt ∩ {(wj ,∞)}| then
identifies this amount for any wj ∈ V .

In terms of computational devices, P systems ΠHill carry an output providing
the outcome of a calculation. For this purpose, the multiplicity of those gene
products listed in the output alphabet is suitable. We define an output function
output : N → N by

output(t) = |Lt ∩ {(w,∞) | w ∈ Σ}|.

For better readability, we subsequently write a reaction rule ri =({
(e1, a1), . . . , (eh, ah)

}
,
{
(q1, b1), . . . , (qv, bv)

}
,
{
tf1, . . . , tfc

})
with supp(Ei,t) =

{e1, . . . , eh} and supp(Pi,t) = {q1, . . . , qv} as well as TF i = {tf1, . . . , tfc} by using
the chemical denotation ri : a1 e1 + . . . + ah eh −→ b1 q1 + . . . + bv qv

∣∣
tf1,...,tf

c

.

As a first example, ΠHill of the gene regulatory unit shown in Figure 2 reads:

ΠHill,GRNunit = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, r2, f1, f2,∆τ,m)

VGenes = {Gene}

VGeneProducts = {A1, . . . , An,¬I1, . . . ,¬Ip,GeneProduct}

Σ = {GeneProduct}

L0 = {(Gene, g), (A1, a1), . . . , (An, an), (¬I1, i1), . . . , (¬Ip, ip)}

r1 : s1 Gene −→ s1 GeneProduct + s1 Gene
∣∣
A1,...,An,¬I1,...,¬Ip

r2 : s2 GeneProduct −→ ∅

f1(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(Gene,∞)}| ·

|Lt ∩ {(A1,∞)}|m

|Lt ∩ {(A1,∞)}|m + Θm

A1

· . . . ·
|Lt ∩ {(An,∞)}|m

|Lt ∩ {(An,∞)}|m + Θm

An

·

(
1−

|Lt ∩ {(¬I1,∞)}|m

|Lt ∩ {(¬I1,∞)}|m + Θm

¬I1

·...·
|Lt ∩ {(¬Ip,∞)}|m

|Lt ∩ {(¬Ip,∞)}|m + Θm

¬Ip

)
⌋

f2(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(GeneProduct,∞)}|⌋

∆τ ∈ R+

m ∈ N+

Note that s1 at time point t + 1 is equal to f1(∆τ,Lt,m) at time point t or holds
its initialisation value at time point 0. Respectively, s2 at time point t + 1 is equal
to f2(∆τ,Lt,m) at time point t or holds its initialisation value at time point 0, see
equations (1) and (2).

At low molecular concentrations, deterministic application of Hill functions can
conflict between different functions which want to update the system configuration.
This is the case if the amount of reactants is too small to satisfy the needs of all
functions. Since the number of multiset elements always remains nonnegative (see
definition of ⊖), the system can violate mass conservation by satisfying these needs.
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A system extension based on stochastic rewriting mechanisms can overcome this
insufficiency.

System Classification, Properties and Universality

ΠHill belongs to P systems with symbol objects and time varying transition rules
whose evolution is based on conditional rewriting by quantitative usage of pro-
moters and inhibitors. Thus, the dynamical behaviour formulated in Hill kinetics
is time- and value-discretely approximated by a stepwise adaptation. This leads
to a deterministic principle of operation.

From the view on computational completeness, there are several indicators for
Turing universality. On the one hand, we will demonstrate within the next section
how NAND gates and compositions of NAND gates can be emulated by P systems
of the form ΠHill. Arbitrarily extendable circuits consisting of coupled NAND gates
can be seen as computational complete [14]. On the other hand, the multiplicity
of each symbol object within the system may range through the whole recursively
enumerable set of natural numbers. So, copies of a gene product expressed by a
dedicated gene are able to represent the register value of a random access machine.
Autoactivation loops keep a register at a certain value while external activation
increases the amount of gene product (increment operation) and external inhibi-
tion decreases respectively (decrement operation). Incrementing and decrementing
transcription factors always form complexes with program counter objects. The
interplay of those specific transcription factors manages the program control.

3 Case Study: Computational Units and Circuits

Artificial GRNs have been instrumental in elucidating basic principles that govern
the dynamics and consequences of stochasticity in the gene expression of natu-
rally occurring GRNs. The realisation as computational circuits infers inherent
evolutionary fault tolerance and robustness to these modular units.

In a case study, we introduce three artificial GRNs for logic gates (inverter,
NAND gate, RS flip-flop) and describe their dynamical behaviour quantitatively
by an ordinary differential equation model using Hill kinetics and by corresponding
P systems ΠHill.

A variety of distinguishable transcription factors given by their concentration
over the time course enables communication between as well as coupling of com-
putational units. Thus, circuit engineering becomes feasible.
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Inverter

input: concentration level of transcription factor x

output: concentration level of gene product y

y yx

x y

x a

NOT gate

0 1

1 0
&

RegulatorGene EffectorGene

Ordinary Differential Equations (ODE)

ȧ = h+(x,Θx,m) − a

ẏ = h−(a,Θa,m) − y

Simulation Result (Copasi, ODE solver [12])

dynamical behaviour depicted for m = 2, Θj = 0.1, j ∈ {x, a},

a(0) = 0, y(0) = 0, x(t) =

�
0 for 0 ≤ t < 10; 20 ≤ t < 30
1 for 10 ≤ t < 20; 30 ≤ t < 40
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Corresponding P System

ΠHill,GRNinv. = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r4, f1, . . . , f4,∆τ,m)
VGenes = {RegulatorGene,EffectorGene}

VGeneProducts = {x, y,¬a}
Σ = {y}
L0 = {(RegulatorGene,rg), (EffectorGene,eg), (x,x0), (y,y0), (¬a,a0)}
r1 : s1 RegulatorGene −→ s1 ¬a + s1 RegulatorGene

∣∣
x

r2 : s2 ¬a −→ ∅
r3 : s3 EffectorGene −→ s3 y + s3 EffectorGene

∣∣
¬a

r4 : s4 y −→ ∅

f1(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(RegulatorGene,∞)}| · |Lt∩{(x,∞)}|m

|Lt∩{(x,∞)}|m+Θm
x

⌋

f2(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(¬a,∞)}|⌋

f3(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(EffectorGene,∞)}| ·

(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

)⌋

f4(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(y,∞)}|⌋
∆τ ∈ R+

m ∈ N+
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Simulation Result (MATLAB, P system iteration scheme)

dynamical behaviour depicted for m = 2, ∆τ = 0.1, Θj = 500, j ∈ {x, a}

rg = 10, 000, eg = 10, 000, x0 = 0, y0 = 0, a0 = 0
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NAND gate

input: concentration levels of transcription factors x (input1), y (input2)
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Ordinary Differential Equations

ȧ = h+(x,Θx,m) − a

ḃ = h+(y,Θy,m) − b

ż = 1 − h+(a,Θa,m) · h+(b,Θb,m) − z

Simulation Result (Copasi, ODE solver)

dynamical behaviour depicted for m = 2, Θj = 0.1, j ∈ {x, y, a, b}
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Corresponding P System

ΠHill,GRNnand = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6,∆τ,m)
VGenes = {RegGeneX,RegGeneY,EffGene}

VGeneProducts = {x, y, z,¬a,¬b}
Σ = {z}
L0 = {(RegGeneX, rgx), (RegGeneY, rgy), (EffGene, eg),

(x, x0), (y, y0), (z, z0), (¬a, a0), (¬b, b0)}
r1 : s1 RegGeneX −→ s1 ¬a + s1 RegGeneX

∣∣
x

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneY −→ s3 ¬b + s3 RegGeneY

∣∣
y

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 z + s5 EffGene

∣∣
¬a,¬b

r6 : s6 z −→ ∅

f1(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(RegGeneX,∞)}| · |Lt∩{(x,∞)}|m

|Lt∩{(x,∞)}|m+Θm
x

⌋

f2(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(¬a,∞)}|⌋

f3(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(RegGeneY,∞)}| · |Lt∩{(y,∞)}|m

|Lt∩{(y,∞)}|m+Θm
y

⌋

f4(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(¬b,∞)}|⌋

f5(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(EffGene,∞)}| ·(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

· |Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm

¬b

)⌋

f6(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(z,∞)}|⌋
∆τ ∈ R+

m ∈ N+

Simulation Result (MATLAB, P system iteration scheme)

dynamical behaviour depicted for m = 2, ∆τ = 0.1, Θj = 500, j ∈ {x, y, a, b}
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RS Flip-Flop

input: concentration levels of transcription factors S,R

output: concentration level of gene product Q
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Ordinary Differential Equations

ȧ = 1 − h+(b,Θb,m) · h−(S,Θ
S
,m) − a

ḃ = 1 − h+(a,Θa,m) · h−(R,Θ
R
,m) − b

Q̇ = h+(b,Θb,m) · h−(S,Θ
S
,m) − Q

Simulation Result (Copasi, ODE solver)

dynamical behaviour depicted for m = 2, Θj = 0.1, j ∈ {a, b, R, S}
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Corresponding P System

ΠHill,GRNrsff = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6,∆τ,m)
VGenes = {RegGeneResetState,RegGeneSetState,EffGene}

VGeneProducts = {Q,¬S,¬R,¬a,¬b}
Σ = {Q}

L0 = {(RegGeneResetState, rgr), (RegGeneSetState, rgs),
(EffGene, eg), (Q, q0), (S, ss0), (R, rs0), (¬a, a0), (¬b, b0)}

r1 : s1 RegGeneResetState −→s1 ¬a + s1 RegGeneResetState
∣∣
¬S,¬b

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneSetState −→ s3 ¬b + s3 RegGeneSetState

∣∣
¬R,¬a

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 Q + s5 EffGene

∣∣
¬S,¬b
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r6 : s6 Q −→ ∅

f1(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(RegGeneResetState,∞)}| ·(
1 − |Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm

¬b

·

(
1 − |Lt∩{(¬S,∞)}|m

|Lt∩{(¬S,∞)}|m+Θm

¬S

))⌋

f2(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(¬a,∞)}|⌋

f3(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(RegGeneSetState,∞)}| ·(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

·

(
1 − |Lt∩{(¬R,∞)}|m

|Lt∩{(¬R,∞)}|m+Θm

¬R

))⌋

f4(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(¬b,∞)}|⌋

f5(∆τ,Lt,m) =
⌊
∆τ · |Lt ∩ {(EffGene,∞)}| ·

|Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm

¬b

·

(
1 − |Lt∩{(¬S,∞)}|m

|Lt∩{(¬S,∞)}|m+Θm

¬S

)⌋

f6(∆τ,Lt,m) = ⌊∆τ · |Lt ∩ {(Q,∞)}|⌋
∆τ ∈ R+

m ∈ N+

Simulation Result (MATLAB, P system iteration scheme)

dynamical behaviour depicted for m = 2, ∆τ = 0.1, Θj = 500, j ∈ {a, b, R, S}
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A homologous analytic model of a bistable toggle switch was introduced in [8]. In
case of the forbidden input signalling S = 1, R = 1, the normalised concentra-
tions of both inhibitors ¬a and ¬b converge to 0.5. By setting or resetting input
signalling, the flip-flop restores.

4 RS Flip-Flop Validation in vivo

In addition to prediction and simulation of GRNs acting as logic gates, we demon-
strate the practicability of the RS flip-flop by an experimental study in vivo. Re-
sulting output protein data measured over the time course can validate the system
model. Following the pioneering implementation of a bistable toggle switch [8], we
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could confirm its function in a previous study [10]. Two extensions were investi-
gated: Firstly, the effects of IPTG and AHL as appropriate intercellular inducers
for flip-flop setting were shown. Secondly, flow cytometry was used to quantita-
tively measure protein concentrations within the flip-flop implementation. In the
following, we give a brief overview of the experimental setup and compare obtained
experimental results with our simulations based on the models.

Biological Principles and Prerequisites

Quorum Sensing and Autoinduction via AHL

In quorum sensing, bacterial species regulate gene expression based on cell-
population density [17]. An alteration in gene expression occurs when an inter-
cellular signalling molecule termed autoinducer, produced and released by the
bacterial cells reaches a critical concentration. Termed as quorum sensing or au-
toinduction, this fluctuation in autoinducer concentration is a function of bacter-
ial cell-population density. Vibrio fischeri, a well studied bacterium, colonises the
light organs of a variety of marine fishes and squids, where it occurs at very high
densities (1010 cells

ml ) and produces light. The two genes essential for cell density
regulation of luminescence are: luxI, which codes for an autoinducer synthase [22];
and luxR, which codes for an autoinducer-dependent activator of the luminescence
genes. The luxR and luxI genes are adjacent and divergently transcribed, and luxI
is the first of seven genes in the luminescence or lux operon. LuxI-type proteins
direct AHL synthesis while LuxR-type proteins function as transcriptional regula-
tors that are capable of binding AHL signal molecules. Once formed, LuxR-AHL
complexes bind to target promoters of quorum-regulated genes. Quorum sensing
is now known to be widespread among both Gram-positive and Gram-negative
bacteria.

Bioluminescence in Vibrio fischeri

Bioluminescence in general is defined as an enzyme catalysed chemical reaction
in which the energy released is used to produce an intermediate or product in an
electronically excited state, which then emits a photon. It differs from fluorescence
or phosphorescence as it is not depended on light absorbed. The mechanism for
gene expression and the structure of the polycistronic message of the lux structural
genes in Vibrio fischeri have been thoroughly characterised [9]. Briefly, there are
two substrates, luciferin, which is a reduced flavin mononucleotide (FMNH2), and
a long chain (7− 16 carbons) fatty aldehyde (RCHO). An external reductant acts
via flavin mono-oxygenase oxidoreductase to catalyse the reduction of FMN to
FMNH2, which binds to the enzyme and reacts with O2 to form a 4a-peroxy-
flavin intermediate. This complex oxidises the aldehyde to form the corresponding
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acid (RCOOH) and a highly stable luciferase-hydroxyflavin intermediate in its
excited state, which decays slowly to its ground state emitting blue-green light hν

with a maximum intensity at about 490nm:

FMNH2 + RCHO + O2
lucif.
−→ FMN + H2O + RCOOH + hν

Transcription Control by LacR and λCI Repressor Proteins

Escherichia coli cells repress the expression of the lac operon when glucose is
abundant in the growth medium. Only when the glucose level is low and the
lactose level is high, the operon is fully expressed. The Lac repressor LacR is a 360
residue long protein that associates into a homotetramer. It contains a helix-turn-
helix (HTH) motif through which it interacts with DNA. This interaction represses
transcription by hindering association with RNA polymerase and represents an
example of “combinatorial control” widely seen in prokaryotes and eukaryotes [4].
The CI repressor of bacteriophage lambda is the key regulator in lambda’s genetic
switch, a bistable switch that underlies the phage’s ability to efficiently use its two
modes of development [21].

Flow Cytometry

Flow cytometry refers to the technique where microscopic particles are counted
and examined as they pass in a hydro-dynamically focused fluid stream through
a measuring point surrounded by an array of detectors. Previously, flow cytom-
etry analyses were performed by us using a BD LSRII flow cytometer equipped
with 405nm, 488nm and 633nm lasers. 488nm laser was used for gfp and yellow
fluorescent protein (yfp) quantification.

Experimental Setup and Implementation

We have shown that an in vivo system [10] can potentially be used to mimic
a RS flip-flop [13] and have quantified its performance using flow cytometry. The
presence or absence of the inducers IPTG or AHL in combination with temperature
shift acts as an input signal. The toggle switch comprising of structural genes for
reporter/output proteins fused to promoter regions that are regulated by input
signals is visualised as a RS flip-flop. The functional modularity of input and output
circuits is maintained so that the artificial GRN used can be easily extended for
future studies.
This design endows cells with two distinct phenotypic states: where the λCI ac-
tivity is high and the expression of lacI is low (referred to as high or 1 state), or
where the activity of LacR is high and the expression of λCI is low (referred to as
low or 0 state). gfp is expressed only in the high λCI/low LacR state.
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Fig. 4. A schematic diagram of an AHL biosensor module interfaced with the genetic
toggle switch adapted from [10]. The transgenic artificial GRN consists of a bistable
genetic toggle switch [8] which is interfaced with genes from the lux operon [6] of the
quorum sensing signalling pathway of Vibrio fischeri [22].

Results and Discussion

For co-relational purposes, all experiments were conducted with both BL21 and
Top10 strains of Escherichia coli. The concentration of IPTG used in all the ex-
periments was 2mM and that of AHL was 1µM. Experiments conducted without
the use of inducers, lead to an unreliable shifting of the states, signifying the use
if inducers in a tightly, mutually regulated circuit. Further experiments conducted
to understand the switching dynamics of the circuit revealed that in the current
scenario, it was easier to switch from a high to a low state than vice versa. This dis-
crepancy in switching behaviour is attributed to the differing modes of elimination
of LacR and λCI repressor proteins. While switching from low to high state, the
repression due to IPTG-bound Lac repressor needs to be overcome by cell growth.
Switching from high to low state is effected by immediate thermal degradation of
the temperature-sensitive λCI. Experiments were also conducted to test the sus-
tainability of states. The plug and play property of the circuit was examined by
employing yfp as the reporter gene instead of gfp. As shown in Figure 5, the circuit
could reliably mimic a RS flip-flop. The massive parallelism permissible by the use
of large quantities of cells can compensate for the slow speed of switching. Further
tests are to be performed to confirm this hypothesis.

5 Conclusions

The dynamical behaviour of GRNs is able to emulate information processing in
terms of performing computations. In order to formalise this capability, we have
introduced P systems of the form ΠHill incorporating cooperativity and competi-
tivity between transcription factors based on Hill kinetics. Its transformation to a
dedicated iteration scheme for a discrete term rewriting mechanism with variable
stoichiometric factors in ΠHill provides a homogeneous approach that allows to
compose GRNs towards functional units like computing agents. Examples address
computational units (inverter, NAND gate, RS flip-flop), each defined by GRN,
its ODE model, and the corresponding P system. Simulations of the dynamical
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Fig. 5. Inducer-dependent switching. Repeated activation and deactivation of the toggle
switch based on inducers and temperature. Temperature was switched every 24 hours.
Cells were incubated with inducers for 12 hours, followed by growth for 12 hours without
inducers, initially kept at 30◦C (A) and 42◦C (B). The cells successfully switched states
thrice.

behaviour quantitatively show the switching characteristics as well as the expected
quality of binary output signals. Along with the prediction of GRNs acting as com-
putational units, an experimental study in vivo demonstrates their practicability.
Although the measurement of the dynamic switching behaviour was condensed to
12 points in time, they approximate the expected course. At the crossroad of mod-
elling, simulation, and verification of biological reaction networks, the potential of
amalgamating analytic, stochastic, and algebraic approaches into the P systems
framework seems promising for applications in systems biology to explore network
functions.
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Summary. In this paper we investigate some applications of spiking neural P systems re-
garding their capability to solve some classical computer science problems. In this respect
it is studied the versatility of such systems to simulate a well known parallel computa-
tional model, namely the Boolean circuits. In addition, another notorious application -
the sorting - is considered within this framework.

1 Introduction

Spiking neural P systems (shortly called SN P systems) are a class of computing
models introduced in [9]. They are using ideas from neural computing, area cur-
rently under high investigation, with a focus on spiking neurons (see, e.g., [4], [12],
[13]).

The new models are based on the tissue-like and neural-like P systems structure
to which various features were added. Details can be found at the website of
membrane computing ([21]). For an introduction in the area we refer to [16].

In short, an SN P system consists of a set of neurons placed in the nodes of
a graph and sending signals (spikes) along synapses (edges of the graph), under
the control of firing rules. One also uses forgetting rules, which remove spikes from
neurons. Hence, the spikes are moved and created, destroyed, but never modified
(there is only one type of objects in the system).

A generalization of the original model was considered in [15], [3] where rules of
the form E/ac → ap; d where introduced. The meaning is that when using the rule,
c spikes are consumed and p spikes are produced. Because p can be 0 or greater
than 0, we obtain at the same time a generalization of both spiking and forgetting
rules. Different from the original model of SN P systems, in [10], parallelism inside
a neuron was introduced. By that we mean that when a rule E/ac → a; d can be
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applied (the contents of a neuron is described by the regular expression E), then
we apply it as many times as possible in that neuron.

Based on the above features, we investigate their power to simulate Boolean
gates and circuits. We also introduce here a modality to sort natural numbers
(given as number of spikes) with SN P systems in the initial version.

2 Prerequisites

In this section we first introduce the definition of SN P system which we will use
during our endeavor, altogether with some explanations on the exhaustive use of
the rules. Then, we recall (some) basic notions on Boolean functions and circuits.

2.1 SN P systems

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over O, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule

E/ac → a; d of type (1) from Ri;
3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn, for 1 ≤ i ≤ m (synapses);
4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (also called spiking) rules, and the rules of type
(2) are called forgetting rules. The first ones are applied as follows: if the neuron
contains k spikes, ak ∈ L(E) and k ≥ c, then the rule E/ac → a; d can be applied,
and this means that c spikes are consumed, only k − c remain in the neuron, the
neuron is fired, and it produces one spike after d time units (a global clock is
assumed, marking the time for the whole system, hence the functioning of the
system is synchronized). If d = 0, then the spike is emitted immediately, if d = 1,
then the spike is emitted in the next step, and so on. In the case d ≥ 1, if the rule
is used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed,
and it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
sends a spike along it, then the spike is lost). In step t + d, the neuron spikes and
becomes again open, hence can receive spikes (which can be used in step t+d+1).
A spike emitted by a neuron σi is replicated and goes to all neurons σj such that
(i, j) ∈ syn.
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The forgetting rules, are applied as follows: if the neuron contains exactly s
spikes, then the rule as → λ can be used, and this means that all s spikes are
removed from the neuron.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. Because two firing rules E1/ac1 → a; d1 and
E2/ac2 → a; d2 can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules
can be applied in a neuron, and then one of them is chosen non-deterministically.
Note however that we cannot interchange a firing rule with a forgetting rule, as
all pairs of rules E/ac → a; d and as → λ have disjoint domains, in the sense that
as /∈ L(E).

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron. Starting from the initial config-
uration and applying the rules, we can define transitions among configurations.
A transition between two configurations C1, C2 is denoted by C1 =⇒ C2. Any
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used.

With any computation, halting or not, we associate a spike train, a sequence
of digits 0 and 1, with 1 appearing in positions 1 ≤ t1 < t2 < . . . , indicating
the steps when the output neuron sends a spike out of the system (we also say
that the system itself spikes at that time). With any spike train containing at
least two spikes we associate a result, in the form of the number t2 − t1; we say
that this number is computed by Π. By definition, if the spike train contains
only one occurrence of 1, then we say that we have computed the number zero.
The set of all numbers computed in this way by Π is denoted by N2(Π) (the
subscript indicates that we only consider the distance between the first two spikes
of any computation). Then, by Spik2Pm(rulek, consq, forgr) we denote the family
of all sets N2(Π) computed as above by spiking neural P systems with at most
m ≥ 1 neurons, using at most k ≥ 1 rules in each neuron, with all spiking rules
E/ac → a; t having c ≤ q, and all forgetting rules as → λ having s ≤ r. When one
of the parameters m, k, q, r is not bounded, it is replaced with ∗.

A rule of the type E/ac → ap is called an extended rule, and is applied as
follows: if neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule can
fire, and its application means consuming (removing) c spikes (thus only k − c
remain in σi) and producing p spikes, which will exit immediately the neuron.

In this paper, we use SN P systems of the form introduced above, but using
the rules in the exhaustive way. Namely if a rule E/ac → ap; d is associated with
a neuron σi which contains k spikes, then the rule is enabled (we also say fired) if
and only if ak ∈ L(E). Using the rule means the following. Assume that k = sc+r,
for some s ≥ 1 (this means that we must have k ≥ c) and 0 ≤ r < c (the remainder
of dividing k by c). Then sc spikes are consumed, r spikes remain in the neuron
σi, and sp spikes are produced and sent to the neurons σj such that (i, j) ∈ syn
(as usual, this means that the sp spikes are replicated and exactly sp spikes are
sent to each of the neurons σj). In the case of the output neuron, sp spikes are
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also sent to the environment. Of course, if neuron σi has no synapse leaving from
it, then the produced spikes are lost.

We stress two important features of this model. First, it is important to note
that only one rule is chosen and applied, the remaining spikes cannot evolve by
another rule. For instance, even if a rule a(aa)∗/a → a; 0 exists, it cannot be used
for the spike remaining unused after applying the rule a(aa)∗/a2 → a; 0. Second,
is that the covering of the neuron is checked only for enabling the rule, not step by
step during its application. For instance, the rule a5/a2 → a; 0 has the same effect
as a(aa)∗/a2 → a; 0 in the case of a neuron containing exactly 5 spikes: the rule is
enabled, 4 spikes are consumed, 2 are produced; both applications of the rule are
concomitant, not one after the other, hence all of them have the same enabling
circumstances.

If several rules of a neuron are enabled at the same time, one of them is non-
deterministically chosen and applied. The computations proceed as in the SN P
systems with usual rules, and a spike train is associated with each computation
by writing 0 for a step when no spike exits the system and 1 within a step when
one or more spikes exit the system. Then, a number is associated – and said to be
generated/computed by the respective computation – with a spike train containing
at least two occurrences of the digit 1, in the form of the steps elapsed between the
first two occurrences of 1 in the spike train. Number 0 is computed by computations
whose spike trains contain only one occurrence of 1.

2.2 Boolean Functions and Circuits

An n-ary Boolean function is a function f{true, false}n 7→ {true, false}. ¬ (nega-
tion) is a unary Boolean function (the other unary functions are: constant func-
tions and identity function). We say that Boolean expression ϕ with variables
x1, . . . , xn expresses the n-ary Boolean function f if, for any n-tuple of truth val-
ues t = (t1, · · · , tn), f(t) is true if T ² ϕ, and f(t) is false if T 2 ϕ, where T (x) = ti
for i = 1, . . . , n.

There are three primary Boolean functions that are widely used: The NOT
function - this is a just a negation; the output is the opposite of the input. The
NOT function takes only one input, so it is called a unary function or operator.
The output is true when the input is false, and vice-versa. The AND function -
AND function returns true only if all inputs are true; if there is an input which is
false the function returns false. The OR function - the output of an OR function
is true if the first input is true or the second input is true or the third input is
true, etc. (hence, to return true is enough for one input to be true). Both AND
and OR can have any number of inputs, with a minimum of two.

Any n-ary Boolean function f can be expressed as a Boolean expression ϕf

involving variables x1, . . . , xn.
There is a potentially more economical way than expressions for representing

Boolean functions, namely Boolean circuits. A Boolean circuit is a graph C =
(V, E), where the nodes in V = {1, . . . , n} are called the gates of C. Graph C has
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a rather special structure. First, there are no cycles in the graph, so we can assume
that all edges are of the form (i, j), where i < j. All nodes in the graph have the
“in-degree” (number of incoming edges) equal to 0, 1, or 2. Also, each gate i ∈ V
has a sort s(i) associated with it, where s(i) ∈ {true, false,∨,∧,¬}∪{x1, x2, . . . }.
If s(i) ∈ {true, false} ∪ {x1, x2, . . . }, then the in-degree of i is 0, that is, i must
have no incoming edges. Gates with no incoming edges are called the inputs of
C. If s(i) = ¬, then i has “in-degree” one. If s(i) ∈ {∨,∧}, then the in-degree of
i must be two. Finally, node n (the largest numbered gate in the circuit, which
necessarily has no outgoing edges) is called the output gate of the circuit.

This concludes our definition of the syntax of circuits. The semantics of circuits
specifies a truth value for each appropriate truth assignment. We let X(C) be the
set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X |
s(i) = x for some gate i of C}). We say that a truth assignment T is appropriate
for C if it is defined for all variables in X(C). Given such a T , the truth value
of gate i ∈ V , T (i), is defined, by induction on i, as follows: If s(i) = true then
T (i) = true, and similarly if s(i) = false. If s(i) ∈ X, then T (i) = T (s(i)). If now
s(i) = ¬, there is a unique gate j < i such that (j, i) ∈ E. By induction, we know
T (j), and then T (i) is true if T (j) = false, and vice-versa. If s(i) = ∨, then there
are two edges (j, i) and (j′, i) entering i. T (i) is then true if only if at least one
of T (j), T (j′) is true. If s(i) = ∧, then T (i) is true if only if both T (j) and T (j′)
are true, where (j, i) and (j′, i) are the incoming edges. Finally, the value of the
circuit, T (C), is T (n), where n is the output gate.

3 Simulating Logical Gates and Circuits

In this section we show how SNP systems can simulate logical gates. We consider
that input is given in one neuron while the output will be collected from the output
neuron of the system. Boolean value 1 is encoded in the spiking system by two
spikes, hence a2, while 0 is encoded as one spike.

We collect the result as follows. If the output neuron fires two spikes in the
second step of the computation, then the Boolean value computed by the system
is 1 (hence true). If it fires only one spike, then the result is 0 (false).

3.1 Simulating Logical Gates

Lemma 1. Boolean AND gate can be simulated by SN P systems using two neu-
rons and no delay on the rules, in two steps.

Proof. We construct the SNP system (formed by only one neuron):

ΠAND = ({a}, σ1 = (0, {a2 → a; 0, a3 → a; 0, a4/a2 → a; 0}), ∅, 1).

The functioning of the system is rather simple (remember that the rules are
used in an exhaustive way). Suppose in neuron 1 we introduce three spikes. This
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means we compute the logical AND between 1 and 0 (or 0 and 1). The only rule
the system can use is a3 → a; 0 and one spike (hence the correct result - 0 in this
case) is sent to the environment.

If 4 spikes are introduced in neuron 1 (the case 11), the output neuron will
fire using the rule a4/a2 → a; 0, and will send two spikes in the environment. The
system with the input 00 behaves similarly to the 01 or 10 cases. We have shown
how the system we have constructed gives the right answer in one computational
step and gets back to its initial configuration for a further use, if necessary.

We want to emphasize here that no “extended” rule was used. Of course, a rule
a4 → a2 can substitute, with the same effect, the rule we have preferred above
(namely a4/a2 → a; 0) but, in simulating Boolean gates, we have tried to minimize
the use of such rules. An extended rule is used only once in simulating Boolean
gates, more precisely in the simulation of OR gate.

If in the system above, in the output neuron, we change only the rule a3 → a; 0
(with the rule a3 → a2; 0) we obtain the OR gate.

Lemma 2. Boolean OR gate can be simulated by SN P systems using two neurons
and no delay on the rules, in two steps.

We now pass to the simulation of logical gate NOT.

Lemma 3. Boolean NOT gate can be simulated by SNP systems using two neu-
rons, no delay on the rules, in two steps.

Proof. We first want to stress that in simulating this gate we did not use any
extended rules. The case when such rules are used is left to the reader.

Let us construct the following SN P system:

ΠNOT = ({a}, σ1, σ2, {(1, 2), (2, 1)}, 1),

and:

• σ1 = (a, {a2/a → a; 0, a3 → a; 0}),
• σ2 = (0, {a/a → a; 0, a2/a2 → a; 0}).
Let us emphasize that in order to simulate Boolean gate NOT, in the initial con-
figuration, neuron 1 contains 1 spike, which, once used to correctly simulate the
gate, has to be present again in the neuron such that the system returns to its
initial configuration. This is done with the help of neuron 2 which in step 2 of the
computation refills neuron 1 with one spike.

The system is given in its initial configuration in Figure 1. This gives us the
opportunity to introduce the way we graphically represent a SN P system: as a
directed graph, with the neurons as nodes and the synapses indicated by arrows.
Each neuron has inside its specific rules and the spikes present in the initial con-
figuration.

If the input in the Boolean gate is 1, then two spikes are placed in neuron 1.
Having three spikes inside (two from the input, and one initially present inside)
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neuron 1 can use only rule a3 → a; 0, thus sending one spike to the environment
(hence Boolean 0 – the correct result – is obtained), and one spike to neuron 2.
The latter one will send the spike back, in the second step of the computation by
using rule a/a → a; 0, and the system regains its initial configuration.
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Figure 1. SN P systems simulating NOT gate

If the input in the Boolean gate is 0, hence one spike is introduced in neuron
1, it uses the rule a2/a → a; 0, two spikes are sent to the environment (and the
result of the computation is 1), and to neuron 2 in the same time. In the second
step of the computation neuron 2 uses the rule a2/a2 → a; 0, consumes the two
spikes present inside, and sends one back to neuron 1. The system recovers its
initial configuration.

After showing how SN P systems can simulate logical gates, we pass to the
simulation of circuits.
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Figure 2. Boolean Circuit and the Spiking System

3.2 Simulating Circuits

Next, we are presenting an example of how to construct a SN P system to simulate
a Boolean circuit designed to evaluate a Boolean function. Of course, in our goal
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we are using the systems ΠAND, ΠOR, and ΠNOT constructed before, to which
we add extra neurons to synchronize the system for a correct output.

We start with the same example considered in [1] and [11], namely the function
f : {0, 1}4 → {0, 1} given by the formula

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ ¬(x3 ∧ x4).

The circuit corresponding to the above formula as well as the spiking system
assign to it are depicted in Figure 2.

In order for the system that simulates the circuit to output the correct result it
is necessary for each sub-system (that simulates the gates AND, OR, and NOT) to
receive the input from the above gate(s) at the same time. To this aim, we have to
add synchronization neurons, initially empty with a single rule inside (a → a; 0).
Note that in Figure 2. we have added such a neuron in order for the output of the
first AND gate to enter gate OR at the same time with the output of NOT gate
(at the end of the second step of the computation).

Having the overall image of the functioning of the system, let us give some
more details on the simulation of the above formula. For that we construct the SN
P system

ΠC = (Π(1)
AND,Π

(2)
AND,Π

(3)
NOT , Π

(4)
OR)

formed by the sub-SN P systems for each gate, and we obtain the unique result as
follows:

1. for every gate of the circuit with inputs from the input gates we have a SN P
system to simulate it. The input is given in neuron labeled 1 of each gate;

2. for each gate which has at least one input coming as an output of a previous
gate we construct a SN P system to simulate it by ”constructing“ a synapse
between the output neuron of the gate from which the signal (spike) comes and
the input neuron of the system that simulates the new gate.
Note that if synchronization is needed the new synapse is constructed from the
output neuron of the output gate to the synchronization neuron and from here
another synapse is constructed to the input of the new gate in the circuit.

For the above formula and the circuit depicted in Figure 2 we will have:

– Π
(1)
AND computes the first AND1 gate (x1 ∧ x2) with inputs x1 and x2.

– Π
(2)
AND computes the second AND2 gate (x3 ∧x4) with inputs x3 and x4; these

two P systems, Π
(1)
AND and Π

(2)
AND, act in parallel.

– Π
(3)
NOT computes NOT gate ¬(x3 ∧ x4) with input (x3 ∧ x4). While Π

(3)
NOT is

working, the output value of the first AND1 gate passes through the synchro-
nization neuron.

– The input enters in the first neuron of OR gate, and SN P system Π
(4)
OR com-

pletes its task. The result of the computation for OR gate (which is the result
of the global P system), is sent into the environment of the whole system.

Generalizing the previous observations the following result holds:
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Theorem 1. Every Boolean circuit α, whose underlying graph structure is a rooted
tree, can be simulated by a SN P system, Πα, in linear time. Πα is constructed from
SN P systems of type ΠAND, ΠOR and ΠNOT , by reproducing in the architecture
of the neural structure, the structure of the tree associated to the circuit.

4 A Sorting Algorithm

We pass now to a different problem SN P systems can solve, namely to sort n
natural numbers, this time not using the rules in the exhaustive way, but as in the
original definition of such systems.

We first exemplify our sorting procedure through an example. Let us presume
we want to sort the natural numbers 1, 3, and 2, given in this order. For that we
construct the following system given only in its pictorial format below:
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Figure 3. Sorting three natural numbers

We encode natural numbers in the number of spikes (1 – one spike, 3 – three
spikes, 2 – two spikes) which we input in the first line of the system (hence in
the neurons labeled i1, i2, an i3). It can be noticed that the neurons in the first
layer of the structure are having the same rule inside (a∗/a → a; 0) and outgoing
synapses to all the neurons in the second layer of the structure (the ones denoted
s1, s2, and s3). Neuron labeled s1 has outgoing synapses with all neurons in the
third layer of the system, only one spiking rule inside (a3 → a; 0, where 3 is the
number of numbers that have to be sorted), and two deletion rules (a2 → λ, and
a → λ). For the other neurons in the second layer, the exponent of the firing rule
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decreases one by one as well as the synapses with the neurons from the third layer
of the system.

In the initial configuration of the system we have one spike in neuron i1, three
spikes in neuron i2 and 2 spikes in neuron i3. In the first step of the computation,
one spike from each neuron is consumed and sent to neurons from the second layer
of the system. Each of them receives the same number of spikes, namely 3.

In the second step of the computation, neuron labeled s1 consumes all three
spikes previously received and fires to neurons o1, o2 and o3. Hence, each neuron
from the output layer has one spike inside. The other neurons from the second
layer delete the three spikes they have received. In the same time neurons i2 and
i3 fire again sending 2 spikes (one each) to all neurons from the second layer.

In the third step of the computation, neuron s2 fires only to neurons o2 and
o3 (so, they will have one more spike inside, hence 2, while o1 remains with only
one spike), the other spikes from neurons s1 and s3 being deleted. In the same
time neuron i2 refills the neurons in the second layer of the system with one spike,
which will be consumed in the forth step of the computation by neuron s3 and
sent to the output neuron o3.

So, in the last step of the computation there are: 1 spike in the neuron o1, 2
spikes in the neuron o2, and 3 spikes in the neuron o3.

We pass now to the general case, constructing the system in the pictorial form:

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

? ?

? z?

i1 i2

s1 s2

o1 o2

a∗/a → a; 0 a∗/a → a; 0

an → a; 0
ai → λ,

where 1 ≤ i ≤ n − 1

an−1 → a; 0
aj → λ

with 1 ≤ j ≤ n
and j 6= n − 1

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

?

?

in

sn

on

a∗/a → a; 0

a → a; 0
ak → λ,

where 2 ≤ k ≤ n

...

...

...

q zz)9 9

q -z

Figure 4. Sorting n natural numbers

The functioning of the system is similar to the one described in the example
above. We introduce n natural numbers encoded as spikes, one in each neuron from
the first layer of the structure (denoted by ij , with 1 ≤ j ≤ n). As long as they
are not empty they consume at each step a spike, and send n spikes, one to each
neuron from the second layer of the structure (denoted by si, with 1 ≤ i ≤ n). The
latter neurons have n different thresholds (decreasing one by one from n – neuron
labeled s1, to 1 – neuron labeled sn), and have n different number of synapses
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with the neurons from the third layer of the structure. The latter ones contain the
result of the computation.

Theorem 2. SN P systems can sort a vector of natural numbers where each num-
ber is given as number of spikes introduced in the neural structure.

Based on the above construction, the time complexity (measured as usually as
the number of configurations reached during the computation) is O(T ), where T
is the magnitude of the numbers to be sorted. Although the time complexity is
better than the ”classical”, sequential algorithm, in this case one can notice that
the construction presented depends on the number of numbers to be sorted.

5 Final Remarks

Spiking neural P systems are a versatile formal model of computation that can be
used for designing efficient parallel algorithms for solving known computer science
problems. Here we firstly studied the ability of SN P systems to simulate Boolean
circuits since, apart for being a well known computational model, there exists many
”fast” algorithms solving various problems. In addition, this simulation, enriched
with some ”memory modules” (given in the form of some SN P sub-systems), may
constitute an alternative proof of the computational completeness of the model.

Another issue studied here regards the sorting of a vector of natural numbers
using SN P systems. In this case, due to its parallel features, the obtained time
complexity for the proposed algorithm overcome the classical sequential ones.

Several open problems arose during our research. For instance, in case of
Boolean circuits the simulation is done for such circuits whose underlying graphs
have rooted tree structures, therefore a constraint that need further investigations.

In what regards the sorting algorithm, the presented construction depends on
the magnitude of the numbers to be sorted. We conjecture that this inconvenient
might be eliminated. Also, we conjecture that further improvements concerning
time complexity can be made.
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Summary. The contribution argues for the proposition that formal models based on
the theory of formal grammars and languages are adequate for the study of some com-
putationally relevant properties of agents and multi-agent systems. Some questions are
formulated concerning the possibilities to enlarge the universality and realism of such
models by considering the possibilities to go with their computing abilities beyond the
traditional Turing-computability, and by considering very natural properties of any real
(multi-)agent system such as not fully predictable functioning (behavior) of agents, their
unreliability, dysfunctions, etc.

1 Introduction

Checking the hypothesized list of different areas of the use of different types of
formal language-theoretic framework we easily realize that the language-theoretic
paradigm works well. This impression seems to be true. However, on the other side
of the coin, there is the question of limitations. From the methodology of science
we know very well that each modeling framework is in certain sense limited by its
own descriptive and predictive boundaries.

A highly challenging field for constructing predictively productive formal mod-
els is the field of agents and multi-agent systems (agencies). The reason of the
increased interest consists in the fact, that the agent perspective seems to be very
effective position for study of a very large spectrum of systems. The second reason
consists perhaps in the fact that good, really applicable formal models of agents
and agencies are up to now very rear. On the other hand, we must consider very
seriously the appeals from the practice, like the one formulated by a recognized
specialist in advanced robotics and artificial intelligence, Rodney Brooks: We have
become very good at modeling fluids, materials, planetary dynamics, nuclear explo-
sions and all manner of physical systems. Put some parameters into the program,
let it crank, and out come accurate predictions of the physical character of modeled
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system. But we are not good at modeling living systems, at small or large scales.
Something is wrong. What is wrong? There are a number of possibilities: (1) we
might just be getting a few parameters wrong; (2) we might be building models that
are below some complexity threshold; (3) perhaps it is still a lack of computing
power; and (4) we might be missing something fundamental and currently unimag-
inable in our models (Brooks, 2001). OK, but what fundamental we have missing?
And why? And how to build the better models?

We must be also sensitive to the skepticism of some of our respected colleagues.
It is necessary to take seriously the opinion of Marvin Minsky one among the
founders of theoretical computer science and artificial intelligence research, who
said: If a theory is very simple, you can use mathematics to predict what it’ll
do. If it’s very complicated, you have to do a simulation (Kruglinski, 2007). We
must pose the question: OK, but what to do when the problems are somewhere in
between?

This contribution focuses on two among the number of different language-
theoretic models developed during the decades of efforts. Namely, it focuses to
the bio-chemically inspired models built up on the idea of membrane activities
in living structures, and to the sort of models inspired by distributed and multi-
agent systems, which have the form of systems of traditional formal grammars
which work together (cooperate, compete,) during the process of derivations. We
will sketch the close relation of the membrane and multi-grammar models to the
field of agents and agencies first, and then we will sketch some questions on the
universality and realism of the models. (Unfortunately, without answers.)

2 Agents and Agencies

In the broadest meaning agent is any active entity, which is able to sense its envi-
ronment, and to act in it according to the sensed pattern; cf. e.g. (Ferber, 1999).
In (Kelemen, 2006) we provide a taxonomy of different types of agents created
according the levels of complicatedness of the generation of appropriate actions
on the base of patterns sensed by them in the moment of action (this is the case
of the so-called purely reactive agents) or sequences of patterns sensed during the
history of their activities and processed by specific inference procedures (deliber-
ations) inside the agents’ structures (this is the case of the so-called deliberative
agents).

Consideration of any active thing as an agent, it is a very general perspective.
From this perspective, agents at different levels of complexity are human beings,
computer programs, living cells, social or economic organizations, etc., for instance.
So, to find a universal theoretical framework for dealing with such a large spectrum
of active entities is really a hard problem. However, we have at hand some appealing
approaches. Let us to mention at least two of them.

Systems consisting of biochemical membranes and active entities inside the
regions bounded by these membranes can be considered as agencies. The active
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entities inside are from such perspective the agents belonging to the agency. The
agents, (bio-)chemical structures in their substance, act in their unstructured en-
vironments (acting means (bio)-chemical reactions in real situations, and the un-
structured nature of the environment is modeled by the multi-set of symbols in-
stead of the strings of symbols), and through the membranes the results of their
activities changes the environment in neighboring regions (it can defines struc-
ture in the environment in certain sense and certain extent because of generating
strings of symbols in the environment from previously isolated symbols), where
other agents react to the chemical conditions in their environment, etc. Note two
important points in this context. First, that in this case, the environment in which
the agents act is unstructured and the activities of agents contribute to the emer-
gence of some (local) structures of the environment. Second, that environments can
be organized like the (semi-)Chinese box, or (semi-)Russian dolls (the environment
of the agent B on the Fig. 1 is the part of the hierarchically higher environment
of the agent A, while the environments of A and C are in the same level of the
hierarchy in the environment of E.

These changes of the environment(s) caused by the agents’ activities might
be interpreted in the computationalistic framework as computation, and, in the
consequence, the membrane structures might be considered as specific type of
computing devices. The systematic study of this type of computation using the
language-theoretic framework, is presented in the form of a monograph in (Păun,
2002).

In the model, there exist two types of communication between regions isolated
by membranes: The firs type is the communication between the ”equal” regions,
for instance between the regions A and C through the shared environment E in
Fig. 1. The second type of the communication is the communication like between
the regions A and B. where the environment A is in fact the environment in which
the region B is included and isolated by the corresponding membrane.

Fig. 1. A schematic view of a membrane system consisting of four regions, A, B, C and
E isolated by membranes.



398 J. Kelemen

Another example of the use of the agent paradigm is the view of the mind
from the perspective of Marvin Minsky’s society theory of mind (Minsky, 1986).
In this case, the components of the brain/mind machinery are considered as agents
and agencies. At the lowest level of the hierarchy are perhaps the neurons. Then
as agents are considered the agencies formed from neurons (as some anatomical
parts of the brain structure), then other agents are the agencies appearing as
psycho-physiological regions of the brain, playing roles in the formation of psychic
activities, etc. Note that the neurons might be considered as membrane structures,
and in such a simple way, the two models are in fact interconnected and the
agent paradigm works as a unifying framework for the whole spectra of activities
starting somewhere down by the (bio-)chemical ones up to the psychic on the
top. To provide a unifying formal framework for theoretical study with respect to
the needs of practice, seems to be a great appeal, and the multi-grammar models
(as the membrane system or (eco-)grammar system approaches) are promising
candidates for such framework. From the architectural point of view (see Fig.
2), the agents are in the case of the society theory of mind organized in pseudo-
pyramidal hierarchies. Some parts o such hierarchies might be considered - from an
outside observers point of view, or from the point of view of their functioning - as
agents. The interactions between agents are changeable, what enables to consider
in the framework of the society of mind phenomena like learning, remembering,
evolution, and similar cognitive processes. Moreover, the theory connects, as it is
presented in (Minsky, 2006), in an interesting and inspiring way the cognitive and
the emotive parts of the functioning of mind.

Fig. 2. A schematic view of the organization of agents in the society theory of mind. I
states for input agents (sensors), O for the output agents (actuators).
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The above sketched concepts of agents might be described in different for-
malisms and then studied in different formalizations. Each formalization empha-
sizes some of the aspects af the real systems, and suppress others.

In our context, the most interesting are the formal models of agents and agen-
cies constructed in the framework of the theory of formal languages and formal
grammars, as presented e.g. in (Csuhaj-Varju et al., 1994) or (Păun, 2002). In the
case of grammar-systems, comparing them with membrane systems, the model of
environment is supposed to be strictly structured, it is modeled by a string of sym-
bols instead of the model of environment as a multi-set of symbols, as it is in the
case of membrane systems. As documented e.g. in (Păun, Salomaa, 1999), there are
many results concerning the formal language or the grammar-systems-like models.
And the situation is similar in relation to other models, too.

In the prevailing majority of formal models, however, the answers to the ques-
tions appearing very naturally inside the framework used for modeling, have values
first of all inside the conceptual framework of the model formalism. In the case of
grammar systems there are questions inherent in the theory of formal grammars
and languages concerning the relation of language hierarchies to the traditional
Chomsky hierarchy, and questions generated then with respect the number of
components sufficient or necessary to generate some given (and theoretically im-
portant) families of languages, etc. In such a way, the models built originally for
studying multi-agent systems contribute to the enlargement and further develop-
ment of the traditional formal language theory. It is important for the development
of this theory, first of all. But how to proceed in order to help with result of such
theoretical model to the better understanding of the field of real multi-agent sys-
tems?

3 Universality

Before starting with searching the related questions to that, formulated at the
end of the previous section, and looking for the appropriate from of answers, we
will deal in short with the question of the universality of multi-agent approaches
to describing the different parts of the reality of some processes and phenom-
ena. According to (D’Inverno, Luck, 2004), agents offer an abstraction tool, or a
metaphor, for the design and construction of complex systems with multiple dis-
tinct and independent components. These abstractions can be used in the design
and development of large systems, of individual agents, of ways in which agents
may interact to support these concepts, and in the consideration of societal or
macro-level issues such as organizations and their computational counterparts.
They also enable the aggregation of different functionalities that have previously
been distinct in a conceptually embodied and situated whole. So, we may ask why
the multi-agent approach is an adequate point of view, and where are the limits
of its successful use.

As we have mentioned in the previous section, the agent approach is interesting
and attractive, because it provides a unifying view to the processes running in the
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(bio-)chemical level through many interesting branches of the human scientific and
engineering interests, e.g. up to the reflection (some parts of) processes running in
the level of (human) consciousness. Moreover, this view unifies in an appropriate
way the biological, psychic, social, and technical systems. All the mentioned types
(and many other types) of systems might be considered as systems composed
from (smaller or larger) number of active, effectively isolable components with
their own specific behaviors. The behaviors of the whole systems then emerge (in
a more or less predictable ways) from the behaviors (often not coordinated, not
centrally governed or managed) ways from the behaviors of the component agents;
cf. (Kelemen, 2001).

In the cases of above mentioned formal models of membrane computing, of
grammar systems, and of eco-grammar systems, and more generally, in all the
cases when the models are built on the conceptual base of formal grammars and
languages, the rules governing the dynamics of the behavior of agent-like entities
are described in the form of rewriting rules. This is an advantage, because this
formulation of the rules is in fact a formulation which defines a (trivially simple,
but it is not a disadvantage!) agents (in the meaning we have accepted at the
beginning): Each rule has its own sensor capacity (to sense the appearance of its
left-hand side string), and an action capacity to make a change in its environment
(to rewrite the sensed pattern to the for defined by the rule’s right hand side). The
ways of rules interactions are specified by different derivation modes and rewriting
regulations.

This is, at least from the methodological point of view, a fundamental advan-
tage. We know very well, that some specific multi-agent systems (formal gram-
mars) define very well-specified behaviors (formal languages) with very interesting
relation to different models of computation (to different types of automat) which
have very important relations to real engineered (computing) machines. What we
do not know it is the question of the universality of the approach accepted for
describing languages (behaviors). What kind of behaviors are we able to describe
using the just described framework behind the Turing-computable ones?

The second question follows from inclusion of the dynamics of the environ-
ments in which our trivial agents act. In the traditional formal language theory
we do not consider any dynamics of the strings under rewriting. The only changes
are those executed as rewriting activities of (some of) the rules. In the case of
eco-grammar systems, however, the situation is slightly modified, because of pro-
viding an ”independent” dynamics of the environment changes using a specific
parallel rewriting mechanism (modeled by L-systems) working independently on
the agents activities. What will happen when more complicated mechanisms of
changes will be included into the models? What we know on the situation, for
instance, when some finite subsequences (belonging to a language with specific
Turing-computability properties) will be randomly replaced by words from another
set of words (of known Turing-computability property)? How to proceed in the case
of multi-sets used as models of the environments in the case of membrane systems?
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Change the number of (some) symbols as the result of applying a non-computable
function to generate the changes, for instance?

Of course, there are many more similar questions which can be formulated in
a more or less formal ways. We provide some examples only, but related to very
actual themes in present days theoretical computer science, too, as documented in
(Burgin, Klinger, 2004), for instance.

The most fundamental question, according our meaning, is the following one:
Is it possible, and if yes, in what cases, and under what condition, to receive
(define) some stabilized (well defined in the framework of Turing-computability,
for instance) behavior in the hardly-predictable behavior of the environment in
which the agents act? From the standpoint of the practice, this question is very
important! To design such stabilizing multi-agent systems working in the unstable
environment is often the main goal of many engineering activities. What we are
able to say about the possibility of such design in our theoretical framework?

The last question leads us from the speculations about the universality of our
models to the question of their realism.

4 Realism

In this Section we will continue the provocations contained in (Di Nola et al., 2004).
However, our intention is not to continue in the development of inspiring ideas con-
tained in it. We are much more modest - we try to enlarge, if we will be successful,
the number of motivations for some questions connected with the study of realism
of grammar-theoretic models of real systems. We note, that systems are in our con-
text the systems composed from agents. We construct conceptual models in order
to better understand the studied real systems. We formalize our conceptual models
in order to receive rigorously predictive power of our conceptual models, and, as a
consequence of that, to have models with rigorous predictive power. The answers
derived logically and in formally (logically) correct ways with mathematical rigor
are truthful. OK, but are we able to formulate practically interesting questions in
our theoretical formalized models? Are our models realistic in this sense? If yes,
what are the inherently interesting questions for any multi-agent systems theory?

In this section we will concentrate on the problem of the broad-sense reliability
of multi-agent systems. Real (embodied or software) multi-agent systems are nat-
urally not perfectly reliable. To be more particular, let us mention some of really
often appearing in multi-agent systems, and because of that practically interesting,
phenomena related with reliability of (multi-agent) systems.

One among the most often is the phenomenon of disfunction of (some of the)
agents which form parts of the whole system. Suppose that some of the compo-
nents of a complicated machine go down. Will the whole machine work after this
reduction of its components? What kind of changes will appear in its behavior af-
ter this change? How to preserve some appropriate level of the functionality of the
machine (its resistance with respect of the ”small” changes in its architecture)?
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We see, that the parts and the reliability (in weaker sense) of the parts are in very
close relation to the whole systems functioning.

In other type of systems, despite of the reliability of the agents, their involve-
ment into the work of the whole system is important. In the society ants, for
instance, it is practically impossible to organize the work of any particular agent.
Some ants work in some time period, some of them not, and, moreover, we have
absolutely no predictive power to know exactly what ant will or will not do in the
next time period. This problem I will call the problem of randomness in multi-
agent systems.

Mention, that both of the sketched types of problems are imaginable in the
context of membrane computing and in the case of (eco-)grammar systems as
well, and that there are perhaps expressible also in some not very complicated
ways mathematically. How to do that?

Concerning the problem of reliability, first. An approach to incorporating re-
liability into the multi-grammar models (like the membrane computing and the
(eco-)grammar frameworks) may be inspired by the incorporation of the fuzzy-
approaches into the traditional grammar-theoretic models. Is seems to be possible
to fuzzyfy the rewriting rules, and in the consequence of the derived strings, and
to receive formal languages az fuzzy sets, in such a way. It is possible to fuzzyfy
also the components of grammar systems, or of the regions of membrane systems,
and then to propagate the fuzzyness toward the generated sets of behaviors, etc. It
is then possible to compare the behaviors of such models with the behavior (gen-
erative capacity) of the unfuzzyfied models. How to define the necessary notions,
and what will be the results derived from the resulting model?

Concerning the randomness of the impact of particular components of multi-
grammar models to the derivative capacity of the whole systems, we mention
(Wätjen, 2003) as an example of an interesting approach. The participation of
the components in each derivation step is defined by a function defined on the
number of derivation step with values in the superset of the components. In such
a form, for each derivation step, a team - similar to that introduced in (Csuhaj-
Varjú, Kelemenová, 1998) – is created from all of the components, which execute
the derivation. The relation of particular forms of this team-forming function and
their computational properties considerably influence the behavior of the multi-
grammar models. Exactly in what ways, and in what extent?

Another way of incorporation of dynamics of components behaviors in the mod-
els may consist in timing, as defined in (Kelemenová, 1999) for colonies, but de-
fined also for other models, e.g. by functions defined of the length of the derivation
chains. Note that the similar approaches are incorporable also into the fuzzyfied
models, so it seems to be realistic also the ability to combine different models of
reliability and randomness into one theoretical model. What is the most perspective
way of doing that?
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5 Conclusions

The language-theoretic models seem to be well inspired by large spectrum of multi-
agent systems, and the agent and multi-agent paradigm seems to be promising for
better understanding of events and processes appearing in the real word in which
different individually more or less autonomous entities (agents, in our terminology)
cooperate, compete, or simply cohabitate, but inevitably participate in generation
of the dynamics of the whole. We have argue that the language-theoretic models
form a suitable formal framework form study of systems of the above mentioned
type, and we have posed maybe too many questions the answers to which will
contribute to the better understanding of at least some multi-agent phenomena.
But almost no answers yet!. However, let us hope that, as Marcel Proust wrote,
each reader reads only what is inside himself. A text (book, in the original) is only
a sort of optical instrument which the writer offers to let the reader discover in
himself So, be successful!

And remember: If you “understand” something in only one way, then you
scarcely understand it at all – because when you get stuck, you’ll have nowhere to
go. But if you represent something in several ways, then when you get frustrated
enough, you can switch among different points of view, until you find one that
works for you! (Minsky, 2006).
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16. Păun, Gh., Salomaa, A. (eds.): Grammatical Models of Multi-Agent Systems. Gordon

and Breach, London, 1999
17. Proust, M.: Remembrance of Things Past. Random House, New York, 1927
18. Wätjen, D.: Function-dependent teams in eco-grammar systems. Theoretical Com-

puter Science 306 (2003) 39-53



Solving Numerical NP-Complete Problems with
Spiking Neural P Systems

Alberto Leporati, Claudio Zandron
Claudio Ferretti, Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
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Summary. Starting from an extended nondeterministic spiking neural P system that
solves the Subset Sum problem in a constant number of steps, recently proposed in a
previous paper, we investigate how different properties of spiking neural P systems affect
the capability to solve numerical NP–complete problems. In particular, we show that
by using maximal parallelism we can convert any given integer number from the usual
binary notation to the unary form, and thus we can initialize the above P system with
the required (exponential) number of spikes in polynomial time. On the other hand, we
show that this conversion cannot be performed in polynomial time if the use of maximal
parallelism is forbidden. Finally, we show that by selectively using nondeterminism and
maximal parallelism (that is, for each neuron in the system we can specify whether it
works in deterministic or nondeterministic way, as well as in sequential or maximally
parallel way) there exists a uniform spiking neural P system that solves all the instances
of Subset Sum of a given size.

1 Introduction

Membrane systems (also called P systems) were introduced in [16] as a new class of
distributed and parallel computing devices, inspired by the structure and function-
ing of living cells. The basic model consists of a hierarchical structure composed by
several membranes, embedded into a main membrane called the skin. Membranes
divide the Euclidean space into regions, that contain some objects (represented
by symbols of an alphabet) and evolution rules. Using these rules, the objects
may evolve and/or move from a region to a neighboring one. Usually, the rules
are applied in a nondeterministic and maximally parallel way; moreover, all the
objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained into an output
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membrane, or emitted to the environment from the skin of the system. For a sys-
tematic introduction to P systems we refer the reader to [18], whereas the latest
information can be found in [23].

In an attempt to pass from cell-like to tissue-like architectures, in [14] tissue
P systems were defined, in which cells are placed in the nodes of a (directed)
graph. Since then, this model has been further elaborated, for example, in [4]
and [21], with recent results about both theoretical properties [1] and applications
[15]. This evolution has led to explore also neural-like architectures, yielding to
the introduction of spiking neural P systems (SN P systems, for short) [8], based
on the neurophysiological behavior of neurons sending electrical impulses (spikes)
along axons to other neurons. We recall that this biological background has already
led to several models in the area of neural computation, e.g., see [12, 13, 6].

Similarly to tissue P systems, in SN P systems the cells (neurons) are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consist of a number of copies of a single object type, called the spike. The
firing rules assigned to a cell allow a neuron to send information to other neurons
in the form of electrical impulses (also called spikes) which are accumulated at the
target cell. The application of the rules depends on the contents of the neuron;
in the general case, applicability is determined by checking the contents of the
neuron against a regular set associated with the rule. As inspired from biology,
when a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

In the original model of SN P systems defined in [8], computations occur as
follows. A configuration specifies, for each neuron of the system, the number of
spikes it contains and the number of computation steps after which the neuron
will become “open” (that is, not closed). Starting from an initial configuration, a
positive integer number is given in input to a specified input neuron. The number
is encoded as the interval of time steps elapsed between the insertion of two spikes
into the neuron (note that this is a unary encoding). To pass from a configuration
to another one, for each neuron a rule is chosen among the set of applicable rules,
and is executed. The computation proceeds in a sequential way into each neuron,
and in parallel among different neurons. Generally, a computation may not halt.
However, in any case the output of the system is considered to be the time elapsed
between the arrival of two spikes in a designated output cell. Defined in this way,
SN P systems compute functions of the kind f : N → N (they can also indirectly
compute functions of the kind f : Nk → N by using a bijection from Nk to N). By
neglecting the output neuron we can define accepting SN P systems, in which the
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natural number given in input is accepted if the computation halts. On the other
hand, by ignoring the input neuron (and thus starting from a predefined input
configuration) we can define generative SN P systems.

In [8] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. These results can also be obtained with
even more restricted forms of spiking P systems; for example, [7] shows that at
least one of these features can be avoided while keeping universality: time delay
(refractory period) greater than 0, forgetting rules, outdegree of the synapse graph
greater than 2, and regular expressions of complex form. Finally, in [19] the be-
havior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [2] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

In [10] we have shown that by slightly extending the original definition of SN
P system given in [8] and [9], it is possible to solve any given instance of Subset
Sum by using a nondeterministic (extended) SN P system. The solution is given
in the so called semi–uniform setting, that is, for every fixed instance of Subset
Sum a specific SN P system that solves it is built. In particular, the rules of the
system and the number of spikes which occur in the initial configuration depend
upon the instance to be solved. A drawback of this solution is that in general
the number of spikes needed to initialize the system is exponential with respect
to the usually agreed instance size of Subset Sum. However, in this paper we
show that this preparation can be performed in polynomial time by traditional
SN P systems that, endowed with the power of maximal parallelism, read from
the environment the k-bit integer numbers v1, v2, . . . , vn encoded in binary and
produce v1, v2, . . . , vn spikes, respectively, in n specified neurons. We also prove
that this operation cannot be performed in polynomial time if the use of maxi-
mal parallelism is forbidden. Then we design an SN P system that performs the
opposite conversion: it takes a given (k-bit) number N of spikes occurring in a
certain neuron, and produces the coefficients of the binary encoding of N in k pre-
defined neurons. Thanks to these two modules, that allow us to move from binary
to unary encoding and back, we finally design a uniform family {Π(〈n, k〉}n,k∈N
of SN P systems, where Π(〈n, k〉) solves all possible instances ({v1, v2, . . . , vn}, S)
of Subset Sum such that all vi and S are k-bit positive integer numbers. As we
will see, the construction of Π(〈n, k〉) relies upon the assumption that different
subsystems can work under different regimes: deterministic vs. nondeterministic,
and sequential vs. maximally parallel.

The rest of this paper is organized as follows. In section 2 we give some math-
ematical preliminaries, and we define the standard version of SN P systems (as
found in [9]) as well as a slightly extended version. In section 3 we recall from [10]
how the NP–complete problem Subset Sum can be solved in constant time by
exploiting nondeterminism in our extended SN P systems. In section 4 we convert
positive integer numbers from binary notation to the unary form through max-
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imally parallel SN P systems, and we use such a convertion as an initialization
stage to solve Subset Sum. In section 5 we perform also the opposite conversion,
and we design a family of SN P systems that solves Subset Sum in a uniform
way (according to the above definition). Section 6 concludes the paper and gives
some directions for future research.

2 Preliminaries

Let us start by recalling the standard definition of a spiking neural P system, taken
from [9]. A spiking neural membrane system (SN P system, for short), of degree
m ≥ 1, is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers; if E = ac, then it is usually written in the following
simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t + d, the neuron spikes and becomes
open again, so that it can receive spikes (which can be used starting with the step
t + d + 1) and select rules to be fired.
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Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable then no forgetting rule is applicable, and vice versa.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron. In such a case, only one of them is chosen nondeterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in
parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of each neuron, which can be expressed as the
number of steps to count down until it becomes open (this number is zero if the
neuron is already open). A computation in a system as above starts in the initial
configuration. In order to compute a function f : Nk → N, one possibility is to
introduce k natural numbers n1, n2, . . . , nk in the system by “reading” from the
environment a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this
means that the input neuron of Π receives a spike in each step corresponding to
a digit 1 from the string z. Note that we input exactly k + 1 spikes. The result
of the computation is also encoded in the distance between two spikes: we impose
to the system to output exactly two spikes and halt (sometimes after the second
spike) hence producing a spike train of the form 0b′10r10g′ , for some b′, g′ ≥ 0
and with r = f(n1, n2, . . . , nk). As discussed in [9], there are other possibilities to
encode natural numbers read from and/or emitted to the environment by SN P
systems; for example, we can consider the number of spikes arriving to the input
neuron and leaving from the output neuron, respectively, or the number of spikes
read/produced in a given interval of time.

If we do not specify an input neuron (hence no input is taken from the envi-
ronment) then we use SN P systems in the generative mode; we start from the
initial configuration, and the distance between the first two spikes of the output
neuron (or the number of spikes, etc.) is the result of the computation. Note that
generative SN P systems are inherently nondeterministic, otherwise they would
always reproduce the same sequence of computation steps, and hence the same
output. Dually, we can neglect the output neuron and use SN P systems in the
accepting mode; for k ≥ 1, the natural number n1, n2, . . . , nk are read in input
and, if the computation halts, then the numbers are accepted.

We define the description size of an SN P system Π as the number of bits which
are necessary to describe it. Since the alphabet O is fixed, no bits are necessary
to define it. In order to represent syn we need at most m2 bits, whereas we can
represent the values of in and out by using log m bits each. For every neuron
σi we have to specify a natural number ni and a set Ri of rules. For each rule
we need to specify its type (firing or forgetting), which can be done with 1 bit,
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and in the worst case we have to specify a regular expression and two natural
numbers. If we denote by N the maximum natural number that appears in the
definition of Π, R the maximum number of rules which occur in its neurons,
and S the maximum size required by the regular expressions that occur in Π
(more on this later), then we need a maximum of log N + R(1 + S + 2 log N)
bits to describe every neuron of Π. Hence, to describe Π we need a total of m2 +
2 log m+m

(
log N +R(1+S+2 log N)

)
bits. Note that this quantity is polynomial

with respect to m, R, S and log N . Since the regular languages determined by
the regular expressions that occur in the system are unary languages, the strings
of such languages can be bijectively identified with their lengths. Hence, when
writing the regular expression E, instead of writing unions, concatenations and
Kleene closures among strings we can do the same by using the lengths of such
strings. (Note that, when concatenating two languages L1 and L2 represented in
this way, the lengths in L1 are summed with the lengths of L2 by combining
them in all possible ways). In this way we obtain a representation of E which
is succint, that is, exponentially more compact than the usual representation of
regular expressions. As we have seen in [10], this succint representation yields some
difficulties when we try to simulate a deterministic accepting SN P system that
contains general regular expressions, by a deterministic Turing machine. However,
as shown in [7], it is possible to restrict our attention to particularly simple regular
expressions, without loosing computational completeness. For these expressions,
the membership problem (is a given string into the language generated by the
regular expression?) is polynomial also when representing the instances in succint
form, and thus they do not yield problems when simulating the system with a
deterministic Turing machine.

In what follows it will be convenient to consider also the following slightly
extended version of SN P systems. Precisely, we will allow rules of the type E/ac →
ap; d, where c ≥ 1, p ≥ 0 and d ≥ 0 are integer numbers. The semantics of this kind
of rules is as follows: if the contents of the neuron matches the regular expression
E, then the rule can be applied. When the rule is applied, c spikes are removed
from the contents of the neuron and p spikes are prepared to be delivered to all
the neurons which are directly connected (through an arc of syn) with the current
neuron. If d = 0, then these p spikes are immediately sent, otherwise the neuron
becomes closed for the next d computation steps, after which the p spikes will be
sent. As before, a closed neuron does not receive spikes from other neurons, and
does not apply any rule. If p = 0, then we obtain a forgetting rule as a particular
case of our general rules.

Also in the extended SN P systems it may happen that, given two rules
E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2, if L(E1) ∩ L(E2) 6= ∅ then for some
contents of the neuron both the rules can be applied. In such a case, one of them
is nondeterministically chosen. Note that we do not require that forgetting rules are
applied only when no firing rule can be applied. We say that the system is determin-
istic if, for every neuron that occurs in the system, any two rules E1/ac1 → ap1 ; d1

and E2/ac2 → ap2 ; d2 in the neuron are such that L(E1)∩L(E2) = ∅. This means
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that, for any possible contents of the neuron, at most one of the rules that occur
in the neuron may be applied.

By using an input neuron and an output neuron, we have SN P systems that
compute functions of the kind f : N → N (as well as functions of the kind f :
Nk → N, by appropriate bijections between Nk and N), and hence we cover both
the generative and the accepting cases. If out = 0, then it is understood that
the output is sent to the environment (as the number of spikes produced by the
system, as the distance between the first two spikes, etc.). As usual, to use an SN
P system in the generative mode we do not consider the input neuron, whereas by
ignoring the output neuron we obtain an accepting SN P system.

The description size of an extended SN P system is defined exactly as we have
done for standard systems, the only difference being that now we require (at most)
three natural numbers to describe a rule.

3 Solving Numerical NP–complete Problems with Extended
Spiking Neural P Systems

Let us start by recalling the nondeterministic extended SN P system introduced
in [10] to solve the NP–complete problem Subset Sum in a constant number of
computation steps. The Subset Sum problem can be defined as follows.

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S.

• Question: is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?

If we allow to nondeterministically choose among the rules which occur in the
neurons, then the extended SN P system depicted in Figure 1 solves any given
instance of Subset Sum in a constant number of steps. We emphasize the fact
that such a solution occurs in the semi-uniform setting, that is, for every instance
of Subset Sum we build an SN P system that specifically solves that instance.

Let (V = {v1, v2, . . . , vn}, S) be the instance of Subset Sum to be solved. In
the initial configuration of the system, the leftmost neurons contain (from top to
bottom) v1, v2, . . . , vn spikes, respectively, whereas the rightmost neurons contain
zero spikes each. In the first step of computation, in each of the leftmost neurons
of the SN P system depicted in Figure 1 it is nondeterministically chosen whether
to include or not the element vi in the (candidate) solution B ⊆ V ; this is ac-
complished by nondeterministically choosing among one rule that forgets vi spikes
(in such a case, vi 6∈ B) and one rule that propagates vi spikes to the rightmost
neurons. At the beginning of the second step of computation a certain number
N = |B| of spikes, that corresponds to the sum of the vi which have been chosen,
occurs in the rightmost neurons. We have three possible cases:
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Fig. 1. A nondeterministic extended SN P system that solves the Subset Sum problem
in constant time

• N < S: in this case neither the rule a∗/aS → a; 0 nor the rule a∗/aS+1 → a; 1
(which occur in the neuron at the top and at the bottom of the second layer,
respectively) fire, and thus no spike is emitted to the environment;

• N = S: only the rule a∗/aS → a; 0 fires, and emits a single spike to the
environmnent. No further spikes are emitted;

• N > S: both the rules a∗/aS → a; 0 and a∗/aS+1 → a; 1 fire. The first rule
immediately sends one spike to the environment, whereas the second rule sends
another spike at the next computation step (due to the delay associated with
the rule).

Hence, by counting the number of spikes emitted to the environment at the second
and third computation steps we are able to read the solution of the given instance
of Subset Sum: the instance is positive if and only if a single spike is emitted.

The proposed system is generative; its input (the instance of Subset Sum to
be solved) is encoded in the initial configuration. We stress once again that the
ability to solve Subset Sum in constant time derives from the fact that the system
is nondeterministic. As it happens with Turing machines, nondeterminism can be
interpreted in two ways: (1) the system “magically” chooses the correct values vi

(if they exist) that allow to produce a single spike in output, or (2) at least one of
the possible computations produces a single spike in output.

The formal definition of the extended (generative) SN P system depicted in
Figure 1 is as follows:

Π = ({a}, σ1, . . . , σn+2, syn, out) ,

where:
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• σi = (vi, {avi → λ, avi → avi ; 0}) for all i ∈ {1, 2, . . . , n};
• σn+1 = (0, {a∗/aS → a; 0});
• σn+2 = (0, {a∗/aS+1 → a; 1);
• syn =

⋃n
i=1{(i, n + 1), (i, n + 2)};

• out = 0 indicates that the output is sent to the environment.

However, here we are faced with a problem that we have already met in [11],
and that we will meet again in the rest of the paper. In order to clearly expose the
problem, let us consider the following algorithm that solves Subset Sum using
the well known Dynamic Programming technique [3]. In particular, the algorithm
returns 1 on positive instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)
for j ← 0 to S

do M [1, j] ← 0
M [1, 0] ← M [1, v1] ← 1
for i ← 2 to n

do for j ← 0 to S
do M [i, j] ← M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j] ← M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S +1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm may work in exponential time and space. This behavior is usually
referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n log K), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(log K). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the
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integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.

The problem we mentioned above about the SN P system depicted in Figure
1 is that the rules avi → λ and avi → avi ; 0 which occur in the leftmost neurons,
as well as those that occur in the rightmost neurons, check for the existence of
a number of spikes which may be exponential with respect to the usually agreed
instance size of Subset Sum. Moreover, to initialize the system the user has to
place a number of objects which may also be exponential. This is not fair, because
it means that the SN P system that solves the NP–complete problem has in general
an exponential size with respect to the binary string which is used to describe it;
an exponential effort is thus needed to build and initialize the system, that easily
solves the problem by working in unary notation (hence in polynomial time with
respect to the size of the system, but not with respect to its description size). This
problem is in some aspects similar to what has been described in [11], concerning
traditional P systems that solve NP–complete problems.

4 Solving Subset Sum with Inputs Encoded in Binary

Similarly to what we have done in [11], in this section we show that the ability
of the SN P system depicted in Figure 1 to solve Subset Sum does not derive
from the fact that the system is initialized with an exponential number of spikes,
at least if we allow the application of rules in the maximal parallel way.

In this paper, maximal parallelism is intended exactly as in traditional P sys-
tems. Since in SN P systems we have only one kind of objects (the spike), this
means that at every computation step the (multi)set of rules to be applied in a
neuron is determined as follows. Let k denote the number of spikes contained in
the neuron. First, one rule is nondeterministically chosen among those which can
be applied. If such a rule consumes c spikes, then the selection process is repeated
to the remaining k − c spikes, until no rule can be applied. Note that a rule may
eventually be chosen many times, and thus at the end of the process we obtain
a multiset of rules. However let us note that, for our purposes, it will suffice to
define maximally parallel neurons that contain just one rule. Hence, the process
with which the neuron chooses the rules to be applied is uninfluent: at every com-
putation step the only existing rule is chosen, and is applied as many times as
possible (i.e., maximizing the number of spikes which are consumed).

Consider the SN P system depicted in Figure 2, in which all the neurons work
in the maximal parallel way. Assume that a sequence of spikes comes from the
environment, during k consecutive time steps. Such spikes can be considered as
the binary encoding of a k-bit natural number N , by simply interpreting as 1 (resp.,
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Fig. 2. A maximally parallel SN P system that converts a binary encoded positive integer
number to unary form

0) the presence (resp., the absence) of a spike in each time step. The system works
as follows. In the first step, the most significant bit of N enters into the neuron
labelled with 0. Simultaneously, neuron st fires and sends a spike to neuron out,
that will contain the resulting unary encoding of N . This is done in order to
close such a neuron, so that it does not receive the intermediate results produced
by neurons 0, 1, . . . , k − 1 during the conversion. During the next k − 1 steps,
all subsequent bits of N enter into the system. Neurons 0, 1, . . . , k − 1 act as a
shift register, and they duplicate every spike before sending both copies to the
neighbouring neuron. In this way, since rules are applied in the maximally parallel
way, at the end of the k-th step each neuron j, with j ∈ {0, 1, . . . , k − 1}, will
contain 2j spikes if the j-th bit of N is 1, otherwise it will contain 0 spikes. At the
(k + 1)-th step, neuron out becomes open again, and receives exactly N spikes.
Two little annoying details are that this neuron emits a “spurious” spike at the
(k + 1)-th computation step, and that it becomes again closed for further k − 1
time steps. The first spike emitted from the subsystem has obviously to be ignored,
whereas during the (2k)-th step neuron out emits the N spikes we are interested
in. Note that this module can be used only once, since neuron st initially contains
just one spike. By making neuron st work in the sequential mode (instead of the
maximally parallel mode), and slightly complicating the structure of the system,
we can also convert a sequence of n numbers arriving from the environment in n ·k
consecutive time steps.

By looking at Figure 3, we can see that for any instance ({v1, v2, . . . , vn}, S)
of Subset Sum it is possible to build a maximally parallel nondeterministic SN P
system that solves it as follows. During the first k computation steps, the system
reads n sequences of spikes, each one encoding in binary the natural number vi.
Each sequence goes to an SN subsystem which performs the conversion from binary
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Fig. 3. A nondeterministic SN P system that solves the Subset Sum problem by working
in the maximal parallel way (but for the neuron Sum)

to unary, as illustrated in Figure 2. Thus in the (2k)-th step, for all i ∈ {1, 2, . . . , n},
vi spikes reach the neuron labelled with vi. At the next step, each of these neurons
nondeterministically decides whether to propagate the spikes it has received, or to
delete them. Hence, the rules of neurons vi are applied not only in the maximal
parallel way, but also in a nondeterministic way (in the sense that one of the two
rules is nondeterministically chosen, and then is applied in the maximal parallel
way). In step 2k + 2, the neuron labelled with Sum checks whether the number
of spikes it has gathered is equal to S; if so, it fires one spike to the environment,
thus signalling that the given instance of Subset Sum is positive. Conversely, the
instance is negative if and only if no spike is emitted from the system during the
(2k + 2)-nd computation step. The forgetting rules which occur in neuron Sum
are needed so that at step k + 2 all the spurious spikes that (eventually) reach
the neuron (coming from the modules that have performed the conversions from
binary to unary) are removed from the system, and are not added to the spikes
that arrive at step 2k+1. Of course, here we are assuming that S > n; if this is not
the case, then the rules must be modified accordingly. Note that neuron Sum is
deterministic, and works in the sequential way. We also observe that, if desired, we
can use two neurons instead of one in the last layer of the system, as we have done
in Figure 1. The first neuron would be just like Sum, the only difference being
that the rule aS → a; 0 becomes a∗/aS → a; 0. The second neuron would contain
the same forgetting rules as Sum, and the firing rule a∗/aS+1 → a; 1 instead of
aS → a; 0. In this way, the instance would be signalled as positive if and only if a
single spike is emitted during the steps 2k + 2 and 2k + 3.

This solution to the Subset Sum problem is still semi–uniform: a single system
is able to solve all the instances that have the same value of S, and in which
all vi are k-bit numbers. A way to make the system uniform would be to read
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from the environment also the value of S, encoded in binary form, and send a
corresponding number of spikes to a predefined neuron. The problem would thus
reduce to comparing with S the number of spikes obtained by nondeterministically
choosing some of the vi. In the next section we will operate in a similar way;
however, instead of comparing the contents of two neurons, expressed in unary
form, we will operate as follows: we will keep S in binary form, and we will convert
the sum of vi from unary to binary. In this way, the problem to compare S with
the sum of vi is reduced to a bit-by-bit comparison.

Fig. 4. A maximally parallel SN P system that converts a unary encoded positive integer
number to binary form

Before doing all this, let us show that the conversion from binary to unary of
a given natural number cannot be performed in polynomial time without using
maximal parallelism. Let Π be a deterministic SN P system that works in the
sequential way: all the neurons compute in parallel with respect to each other,
but in each neuron only one rule is chosen and applied at every computation step.
To be precise, even if the contents of the neuron would allow to apply the chosen
rule many times (such as it happens, for example, with the rule a → a2; 0 and
five spikes occurring in the neuron), only one instance of the rule is applied (in
the example, one spike is consumed and two spikes are produced). Without loss of
generality, we can assume that the regular expressions that occur in Π have the
form ai with i ≤ 3 or a(aa)+, which suffice to obtain computationally complete
SN P systems [7]. Let m be the number of neurons in Π, and let t(k) be the
polynomial number of steps needed by Π to convert the k-bit natural number N
given in input from the binary to the unary form. Moreover, let Q be the maximum
number of spikes produced by any rule of Π. Since in the worst case every neuron
is connected with every other neuron, the total number of spikes occurring in the
system is incremented by at most mQ units during each computation step. If we
denote by M the number of spikes occurring in the initial configuration, then
after t(k) computation steps the number of spikes in the system will be at most
M + mQt(k). This quantity is polynomial with respect to both the number of
steps and the description size of Π, and thus it cannot cover the exponential gap
that exists between the number of objects needed to represent N in binary and in
unary form.
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5 A Uniform Family of SN P Systems for Subset Sum

Let us present now a uniform family {Π(〈n, k〉)}n,k∈N of SN P systems such
that for every n and k in N, the system Π(〈n, k〉) solves all possible instances
({v1, v2, . . . , vn}, S) of Subset Sum in which v1, v2, . . . , vn and S are all k-bit
natural numbers.

Fig. 5. The uniform SN P system Π(〈n, k〉) that solves all instances of Subset Sum
composed by k-bit natural numbers

As told in the previous section, we first need a subsystem that allows to convert
natural numbers from the unary to the binary form. Consider the system depicted
in Figure 4. All the neurons work in the maximally parallel way. Initially, neuron
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Fig. 6. An SN P system that delays of k steps the sequence of spikes given in input

in contains N spikes, where N is the k-bit integer number we want to convert.
In the first computation step, all the spikes contained in neuron in are sent to
neuron 0 (thus entering into the subsystem), thanks to the rule a → a applied in
the maximally parallel way. In the second step, rule a2 → a in neuron 0 halves
the number of spikes (indeed, computing an integer division by 2) and sends the
result to neuron 1. If the initial number of spikes was even, then in neuron 0 no
spikes are left; instead, if the initial number of spikes was odd, then exactly one
spike will remain in neuron 0. Hence, the number of spikes remaining in neuron
0 is equal to the value of the least significant bit of the binary encoding of N .
The computation proceeds in a similar way during the next k − 1 steps; in each
step, the next bit (from the least significant to the most significant) of the binary
encoding of N is computed. Note that the bits that have already been computed
are unaffected by subsequent computation steps. After k computation steps, the
neurons labelled with 0, 1, . . . , k − 1 contain all the bits of the binary encoding of
N . In order to use such bits, we can connect these neurons to other k neurons,
which should be kept closed during the conversion by means of a trick similar to
that used in Figure 2.

The SN P system Π(〈n, k〉) that solves all the instances ({v1, v2, . . . , vn}, S)
of Subset Sum which are composed by k-bit natural numbers is depicted (in a
schematic way) in Figure 5. The sequences of spikes that encode v1, v2, . . . , vn and
S in binary form arrive simultaneously from the environment, and enter into the
system from the top. The values v1, . . . , vn are first converted to unary and then
some of them are summed, as before; the sequence of bits in S, instead, is just
delayed (using the subsystem depicted in Figure 6) so that it arrives in the “Bit
by bit comparison” subsystem simultaneously with the binary representation of
the sum of the vi. Such a binary representation is obtained through the subsystem
depicted in Figure 4. The bit-by-bit comparison subsystem (depicted in Figure
7) emits a spike if and only if all the bits of the two integer numbers given in
input match, that is, if and only if the two numbers are equal. If we denote by
x =

∑k−1
i=0 xi2i and y =

∑k−1
i=0 yi2i the numbers to be compared, the subsystem

computes the following boolean function:

Compare(x0, . . . , xk−1, y0, . . . , yk−1) =
k−1∧

i=0

(¬(xi ⊕ yi)
)

= ¬
(

k−1∨

i=0

(xi ⊕ yi)

)

where ⊕ denotes the logical xor operation. The subsystem works as follows. Bits
xi and yi are xored by the neurons depicted on the top of Figure 7. The neuron
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Fig. 7. A standard SN P system that compares two k-bit natural numbers

labelled with ∨ computes the logical or of its inputs: precisely, it emits one spike
if and only if at least one spike enters into the neuron. Neuron out receives the
output produced by ∨ and computes its logical negation (not). In order to be
able to produce one spike if no spikes come from out, we use two auxiliary neurons
that send to out one spike at every computation step. The number of neurons, as
well as the total number of rules, used by Π(〈n, k〉) is polynomial with respect to
n and k.

We conclude by observing that the output of the SN P system depicted in
Figure 5 has to be observed exactly after 3k +6 computation steps. One spike will
eventually be emitted by the system before this time, since the conversion from
binary to unary of v1, v2, . . . , vn produces some spurious spikes before emitting
the result. These spurious spikes are added in neuron sum, and the result of this
addition is first converted to binary and then sent to the comparison subcircuit.
However, by carefully calibrating the delay subsystem this value does not interfere
with the bits of S, that will arrive to the comparison subsystem only later. From a
direct inspection of the system in Figure 5, it is easily seen that the correct delay
to be applied is of 3k + 2 steps.
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6 Conclusions and Directions for Future Research

In this paper we have continued the study concerning the computational power
of SN P systems, started in [10]. In particular, by slightly extending the original
definition of SN P systems given in [8] and [9] we have shown that by exploiting
nondeterminism it is possible to solve numerical NP–complete problems such as
Subset Sum and Partition (which can be considered as a particular case of
Subset Sum).

However, a drawback of this solution is that the system may require to specify
an exponential number of spikes both when defining the rules and when describing
the contents of the neurons in the initial configuration. Hence, we have shown that
the numbers v1, v2, . . . , vn occurring in the instance of Subset Sum can be given
to the system in binary form, and subsequently converted to the unary form in
polynomial time. In this way we have proved that the capability of the above
system to solve Subset Sum does not derive from the fact that it requires an
exponential effort to be initialized.

The new SN P system thus obtained still provides a semi–uniform solution,
since for each instance of the problem we need to build a specifically designed SN
P system to solve it. Thus, we have finally proposed a family {Π(〈n, k〉)}n,k∈N
of SN P systems such that for all n, k ∈ N, Π(〈n, k〉) solves all the instances
({v1, v2, . . . , vn}, S) of Subset Sum such that v1, v2, . . . , vn and S are all k-bit
natural numbers. This solution assumes that for each neuron (or, at least, for
each subsystem) it is possible to choose whether such a neuron (resp, subsystem)
works in a deterministic vs. nondeterministic way, and in the sequential vs. the
maximally parallel way.

In [10] we have also studied the computational power of deterministic accepting
SN P systems working in the sequential way. In particular, we have shown that they
can be simulated by deterministic Turing machines with a polynomial slowdown.
This means that they are not able to solve NP–complete problems in polynomial
time unless P = NP, a very unlikely situation. In future work, we will address
the study of the computational power of deterministic accepting SN P systems
working in the maximally parallel way.
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Summary. The complexity of biological systems is at times made worse by the diversity
of ways in which they are described: the organic evolution of the science over many
years has led to a myriad of conventions. This confusion is reflected by the in-silico
representation of biological models, where many different computational paradigms and
formalisms are used in a variety of software tools.

The Systems Biology Markup Language (SBML) is an attempt to overcome this
issue and aims to simplify the exchange of information by imposing a standardized way
of representing models. The success of the idea is attested to by the fact that more than
110 software tools currently support SBML in one form or another.

This work focuses on the translation of the Cyto-Sim simulation language (based
on a discrete stochastic implementation of P systems) to SBML. We consider the issues
both from the point of view of the employed software architecture and from that of the
mapping between the features of the Cyto-Sim language and those of SBML.

1 Introduction

Nowadays, very few common exchange formats exist. We face difficulties to ex-
change models among different analysis and simulation tools. Therefore, taking
advantage of the different tools power and capabilities is the main issue among
scientists.

To overcome this issue, in March 2001, a first step was taken. During the
First International Symposium on Computational Cell Biology, (Massachussetts,
USA), Michael Hucka presented a new simple, well-supported and with textual
substrate (XML) language adding components that reflect the natural conceptual
constructs used by modellers in the domain, SBML: Systems Biology Markup
Language.

In the following November 2002, M. Hucka talked again about The Systems
Biology Markup Language at the I3C 4th Quarter Technical Meeting (San Diego,
CA). On that occasion, starting from the observation of the enormous prolifera-
tion of software tools in this domain, he observed that a single package able to
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cover all needs does not exist. Different packages can have different niche strengths
and their strengths are often complementary. Moreover, he highlighted that much
likely, no single tool is able perform likewise in the near future because the range
of capabilities needed is large and new techniques and new tools evolve all the
time making simulations and results often not shareable or reusable. Finally, he
remarked that SBML is intended to be a common exchange format for transferring
network models among tools, even if it may not capture everything represented
by every tool (lossy transformation). At the same time, SBML is not suited to
represent experimental data and numerical results, even if with the addition of the
metadata support it may be suitable as a storage format for models too.

In May 2003, during the I3C May 2003 Meeting (Cambridge, MA) with a
presentation entitled Update on the Status of the Systems Biology Markup Lan-
guage (SBML) [17], M. Hucka dealt with the Related Efforts, the current status
of the features and the software libraries for SBML. In particular he talked about
similarities with CellML and the current joint work with the aim to bring them
together. He also discussed the adoption in SBML of some features from CellML,
like the MathML Subset and the Metadata specification. Moreover, he presented
BioPAX, specifying that it is oriented towards being a common exchange format
for databases of pathways Complementary efforts and then not a competing tool.
However, SBML and BioPAX teams will work together to define linkages between
SBML and BioPAX representations. Finally, he presented the version 1.0.1 of libs-
bml, a library designed to help modellers to read, write, manipulate, translate, and
validate SBML files and data streams. In the same year many other presentations
have been given by M. Hucka and others. In fact, in June 2003 MIPNETS Meeting
(Liverpool, UK), Finney presented The Systems Biology Workbench and Systems
Biology Markup Language [9], a project funded by Japan Science and Technol-
ogy Corporation ERATO program and started in the summer 2000. The project
goal was to provide software infrastructure which (i) enables sharing of simula-
tion/analysis software and models and (ii) enables collaboration between software
developers. Focused on biochemical modelling, it is an environment that enables
tools to interact using SBML to transfer models between tools and supporting
resource sharing.

All 2004 long was spent to delineate the limitations of the current SBML speci-
fication. In the same year Shapiro at al. talked about MathSBML [39], a Mathemat-
ica package designed for manipulating SBML models. It converts SBML models
into Mathematica data structures and provides a platform for manipulating and
evaluating these models. In [16], Hucka et al. summarise the current and upcoming
versions of SBML and their efforts at developing software infrastructure for sup-
porting and broadening its use. They also provided a brief overview of the many
available SBML-compatible software tools.

In the following year other interesting publications appeared. The one about
MIRIAM [26] is related to the way to define a minimum quality standard for
the encoding of biochemical models by means of a set of rules about quantitative
models of biological systems. These rules define procedures for encoding and an-
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notating models represented in machine-readable form. In May 2005 as well, an
ideal test bed in the understanding of the cellular systems by means of computa-
tional modelling appeared in [42]. In this chapter one goes over (i) computing for
modelling cells, (ii) SBML and (iii) developing the International E. coli Alliance,
which has been created to tackle the whole cell problem. Again in [15] and [8], one
presents SBML as an XML-based exchange format for computational models of
biochemical networks, including overview, enhancements, several proposals for the
language extension, model composition and multi-component chemical species. In
[32], the first step forward is taken by the P System community for representing
P systems which model biological reaction networks as SBML models.

In 2006 a very good paper about the BioModels database was published, an
annotated resource of quantitative models of biomedical interest. Models are care-
fully curated to verify their correspondence to their source articles. They are also
extensively annotated, with (i) terms from controlled vocabularies, such as dis-
ease codes and Gene Ontology terms and (ii) links to other data resources, such
as sequence or pathway databases. Researchers in the biomedical and life science
communities can then search and retrieve models related to a particular disease,
biological process or molecular complex [25]. In February of the same year, the
joint work between CellML and SBML team groups had a big result, namely the
CellML2SBML tool [38] implemented as a suite of XSLT stylesheets that, when
applied consecutively, convert models expressed in CellML into SBML without
significant loss of information. One month later, Sarah Keating et al. presented
another similar conversion tool: SBMLToolbox [22] a toolbox that facilitates im-
porting and exporting models represented in SBML in and out of the MATLAB
environment and provides functionality that enables an experienced user of either
SBML or MATLAB to combine the computing power of MATLAB with the porta-
bility and exchangeability of an SBML model. Other two useful tools appeared in
October of the same year, they were SBMLSupportLayout and SBWAutoLayout,
supporting reading, creating, manipulating and writing layout information for bio-
chemical models. SBMLSupportLayout can read, update, add and render model
layout information. SBWAutoLayout can automatically layout models, graphically
manipulate model layouts and generate layout information for models without lay-
out information. Using them, researchers can study large or complex biochemical
networks and benefit from the ability to automatically create lucid visualizations
and store them in a portable and widely accepted format [5]. In the winter of
the same year, Bergmann and Sauro described the current state of the Systems
Biology Workbench talking about how users and developers can perceive SBW
and then focusing on currently available SBW modules [2]. Yet other four smart
tools have been presented in the current year: SBML ODE Solver Library [28]
(SOSlib), a programming library for symbolic and numerical analysis of chemical
reaction network models encoded in SBML; SBML-PET [43], a tool designed to
enable parameter estimation for biological models including signalling pathways,
gene regulation networks and metabolic pathways. It can estimate the parameters
by fitting a variety of experimental data from different experimental conditions.
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In the same year, Eccher and Priami presented a tool to translate SBML into
pi-calculus [6] while Gheorghe presented the P System Modelling Framework [10],
a framework able to simulate the evolution of multi-compartmental Gillespie al-
gorithm over a hierarchy of compartment structures.

In 2007, other tools have appeared. The first one has been SBMLR1, a tool able
to link R to libsbml for SBML parsing and output converting SBML to R graph
objects, and more. Another emerging project is SemanticSBML2: a suite of tools to
facilitate merging of SBML models for systems biology starting from all elements
in the SBML files described by MIRIAM-type annotations. SemanticSBML will
help to insert and check such annotations. The need to build a tool to facilitate
the quick creation and editing of models encoded in SBML has been growing with
the number of users and the increased complexity of the language. SBMLeditor
[36] tries to answer this need by providing a very simple, low level editor of SBML
files. Users can create and remove all the necessary bits and pieces of SBML in a
controlled way, that maintains the validity of the final SBML file.

As many tools have been implemented all around SBML just to highlight the
trust of developers on the standardizing initiatives related to the software bio-
logical infrastructures towards commons exchange formats. In particular, it is an
undeniable fact the increasing and unison consensus among developers in favour of
SBML. In fact, several languages have been recently developed to overcome these
kind of problems (integrations, standardizing, reuse of biological models) [27], [14],
[7], [40], [41], [12], [29], [1], [19], [18]. However, only two XML-based formats are
suitable for representing compartmental reaction network models with sufficient
mathematical depth that the descriptions can be used as direct input to simulation
software. The two are CellML [4], [13] and SBML[17]. The latter is becoming a de-
facto standard for a common representation supporting basic biochemical models.
In fact, today, SBML is supported by over 110 software systems. As a consequence,
many SBML models of gene regulatory networks and metabolic pathways that code
a considerably body of biological knowledge have been accumulated in reposito-
ries. Among all databases, I recall (i) the PANTHER Classification System, [31],
an unique resource that classifies genes by their functions, using published sci-
entific experimental evidence and evolutionary relationships to predict function
even in the absence of direct experimental evidence; (ii) KEGG [21], a knowledge
base for systematic analysis of gene functions, linking genomic information with
higher order functional information; (iii) JWS Online [34], a Systems Biology tool
for simulation of kinetic models from a curated model database and (iv) Reac-
tome [20], a curated resource of core pathways and reactions in human biology.
The information in this database is cross-referenced with the sequence databases
at NCBI, Ensembl and UniProt, the UCSC Genome Browser, HapMap, KEGG
(Gene and Compound), ChEBI, PubMed and GO. In addition to curated human
events, inferred orthologous events in 22 non-human species including mouse, rat,
chicken, zebra fish, worm, fly, yeast, two plants and E.coli are also available.
1 Web Site of SBMLR: http://cran.r-project.org/src/contrib/Descriptions/rsbml.html
2 Web Site of SemanticSBML: http://sysbio.molgen.mpg.de/semanticsbml/
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Therefore, with the constant focus on SBML, in this paper I am going to inspect
in section 2 all the features and the internal structure of SBML, in the section 4
the software facilities employed and the software packages implemented to build
a pure Java library to handle SBML documents, in the section 3 I am going to
show how to use the library to encode and decode information from a SBML file
to Cyto-Sim model and vice-versa. In the section 5 I am going to test the software
package implemented on real SBML files taken from different data sources and in
the last section I am going to delineate the future works.

2 SBML Structure

In this paper I am going to take into consideration the latest stable release of SBML
highlighting differences with the previous versions. SBML is primarily oriented
to allow models to be encoded using XML. Major release of SBML are termed
levels and represent substantial changes to the composition and structure of the
language. The latest release3 is the SBML level 2. It represents an incremental
evolution of the level 1, therefore a valid SBML level 1 can be mapped in a valid
SBML level 2 file while only a subset of level 2 can be mapped in a level 1 file.
However, both levels remain separated and distinct. Instead, minor revisions of
whatever level of a SBML file will bring a new version. A new version carries
new corrections, adjusts and refinings of the language. Some languages features of
previous levels or versions can be deprecated or entirely removed in the time. A
feature can be directly removed, but not recommended, although the usual path to
completely remove a feature is to deprecate it before and then remove to maintain
backward compatibility as much as possible.

SBML allows models of arbitrary complexity to be represented. Each type in a
model is described using a specific type of data structure that organizes the rele-
vant information and derive directly or indirectly from a single abstract type called
Sbase. In addition to serving as the parent class for most other classes of objects in
SBML, this base type is designed to allow modeller or a software package to attach
arbitrary information to each major structure or list in an SBML model. Sbase
contains two default elements: (i) notes, intended to serve as a place for storing
optional information intended to be seen by humans; (ii) annotations, it is a con-
tainer for optional software-generated content not meant to be shown to humans.
All other types have at least other three parameters: (i) id, a mandatory field on
most SBML structures used to identify a component within the model definition;
(ii) name, an optional field, not intended to be used for cross-referencing purposes
within a model but just to provide a human-readable label for the component;
(iii) sboTerm, an optional field used to identify a term from an ontology where
vocabulary describes entities and processes in computational models.
3 at the writing time
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2.1 SBML in more depth ...

The top level of an SBML model definition consists of a list of all data type (figure
1), all being optional. These elements are contained in the model element directly
enveloped in the most outer element properly called sbml.

Fig. 1. List of all data types in a SBML model

SBML envelope: The root of a SBML file is an SBML element with three required
fields: two attributes (level and version) and exactly one child node (model).

Model: It is the highest level construct in a SBML document. It has got three
optional parameters: id, name, sboTerm and the hierarchy of data types just
before shown and in the exact order of the listed terms.

Function definitions: A function (or often called user-defined function) is a mere
textual macro containing a MathML lambda element, then its call can be
implemented as a textual substitutions. It has limited capabilities because
none external parameter can be referenced by a function.

Unit definitions: SBML optionally allows for the employment of units of measure-
ments for some mathematical entities (e.g. compartment size, reaction rates,
mathematical formulas, etc...). By means of two operative classes (UnitDefini-
tion and Unit), a new unit of measurement (UnitDefinition(newid, newname))
can be obtained by composition of the elementary ones already defined in
SBML (Unit(id, name)).
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Compartment types: If compartments share either a common biological func-
tion or similar reactions or other underlying conceptual features, they can
be grouped assigning to them the same compartment type value. After defin-
ing a compartment type with its univocal identifier, it can be referred by each
compartment belonging to the category specified by that compartment type.

Species types: As compartments, if species share common characteristics, they
can be grouped in a same logical set specified by a new species type. The
existence of SpeciesType structures in a model has not effect on the model’s
numerical interpretation.

Compartments: A compartment represents a bounded space in which species are
located. Compartments can be arranged in hierarchical structures and can
have a static or dynamical size.

Species: A species refers to a multiset of entities of a specific species type that take
part in reactions and are located in a specific compartment. With a species it
is possible to specify a number of parameters to better explaining its charac-
teristic. For example for a species one can specify the substance quantity or
the concentrations, the charge, the substance unit, etc...

Parameters: As usual programming languages, they are variables that can be
used in mathematical formulas. They are defined as constant values and can
be global, if defined at the beginning of the model or local if defined within
the scope of a reaction. Local parameters overwrite the global ones with the
same name.

Initial Assignments: An initial assignment is an alternative way to set quantities
of species, size of compartments and value of parameters with complex math-
ematical expressions at the beginning of a simulation. It overwrites eventual
already existing numerical values for quantities, sizes and parameter with the
mathematical expression it carries.

Rules: A rule furnishes a supplementary way to set a variable of the system that
cannot be set otherwise by any reaction rules or initial assignments. There
are three kind of rules: (i) assignment, used to express equations that set the
values of the variables. As an initial assignment, it overrides eventual exist-
ing numerical values of species quantity, compartments size and parameters
value with its mathematical expression. It is forbidden to have both an initial
assignment and a assignment rule related to the same object; (ii) rate, it is
used to express equations that determine the rates of change of variables. It
can refer to species, compartments and parameters as before explained. In the
context of a simulation, it can have effect either at t = 0 to obtain consistent
initial conditions or at t > 0 during the simulation run. To avoid indetermina-
tion problems, for each object in a system, only one between assignment rules
and rate rules can exist; (iii) algebraic rule, used to express equations that are
neither assignments of model variables nor rates of changes. The only one role
is to distinguish this case from the other cases.

Constraints: Constraints are mathematical expressions used to check permissible
values of different quantities in a model. A constraint should be checked against
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a variable at all time and triggers a message warning if the conditions expressed
by the formula is not verified.

Reactions: Reactions are processes that result in the interconversion of substances
that can change their quantities. The participants of a reaction are called
reactants and products. They change their quantities according to their own
stoichiometric coefficient and the kinetic law which rules the reaction. All
participants must belong to the list of species. A reaction can be optionally
set as reversible, fast and can contains modifiers, namely species acting as
catalysts or inhibitors.

Events: Events defines changes of variables of a system when a triggering condi-
tion fires. In particular an event specify (i) under which mathematical condi-
tion, (ii) how and (iii) when a variable changes. The triggered events can be
delayed and applied to more than one variables at t > 0. As usual, events have
effect on species quantity, compartments size and parameters value.

2.2 Differences between SBML Level 1 and Level 2

Many significant changes characterize the new level 2. They cover the (i) identi-
fication of the objects, (ii) annotation within the model, (iii) language for kinetic
expressions, (iv) dimensionality of compartments and (v) rule specification.

In particular SBML Level 2 supports the inclusion of metadata. In fact, all
structures in SBML can be annotated with optional content in RDF. The top-
level Model structure can contain an optional list of global user-defined functions
expressed in MathML and organized in new structures of type FunctionDefinition
and can contain an optional list of event definitions organized in structures of type
Event. All data structures, including SBML and listOf elements, are now derived
from the type SBase. This means all major structures in SBML can have separate
annotations and metadata associated with them.

A new field, id, replaces the name field previously defined for most SBML
structures to identify each part of a model. Formulas in Level 2 are expressed using
MathML 2.0. The field named formula previously available on the KineticLaw and
Rule structures has been replaced by a MathML element named math containing
MathML content. In addition, stoichiometry numbers may now be expressed using
MathML, allowing for more flexibility in defining reactions. Unlike in SBML Level
1, unit identifiers in Level 2 are in a separate namespace from the namespace used
for models, functions, species, compartments, reactions and parameters and have
the additional fields multiplier and offset to enable the definition of non-SI units.

The Compartment structure has a new field, spatialDimensions, whose value is
a positive integer specifying the number of dimensions in space the compartment
possesses. This enables the definition of such things as two-dimensional mem-
branes. All fields representing initial conditions or parameter values, including
compartment sizes and species concentrations, are optional in Level 2. A missing
value for one of these fields implies that the value is either unknown, not required
for analysis, or should be obtained from an external source. The Compartment,
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Species and Parameter structures each have a new boolean field named constant.
This field specifies whether the variables represented by these structures can be
changed by rules and reactions. In particular, the Species structure has a new
field, initialConcentration, for setting the initial value of a species in terms of its
concentration. This is in addition to the ability, carried over from Level 1, to set
the values in terms of amounts.

There is no longer a type field on Rule, and new structures AssignmentRule
and RateRule replace SBML Level 1’s ParameterRule, SpeciesConcentrationRule
and CompartmentVolumeRule. The Reaction structure has a new list of modifiers
in addition to the list of reactants and products. The listOfModifiers enumerates
species that affect a reaction but are neither created nor destroyed by the reaction.

3 SBML ⇔ Cyto-Sim

As deeply shown, SBML is a powerful and well defined language for modelling
biological interactive systems in standard way. The aim of my work has been to
make Cyto-Sim able to speak and understand SBML.

Cyto-Sim [3] is a stochastic simulator of biochemical processes in hierarchi-
cal compartments which may be isolated or may communicate via peripheral and
integral membrane proteins. It is available online as a Java applet [33] and as
standalone application. For security issue, although the functionalities of the ap-
plet has been reduced, it fully and correctly works. By means of it, it is possible to
model: (i) interacting species; (ii) compartmental hierarchies; (iii) species localiza-
tions inside compartments and membranes and (iv) rules and their and correlated
velocity formulas which govern the dynamics of the system to be simulated, as
chemical equations.

Some real biological systems have already been successfully simulated in the
past by means of Cyto-Sim. Now I am going to try to explain at first how to
translate a Cyto-Sim model into SBML (and vice-versa) and later I will test the
quality of the translation comparing the simulations available in literature against
those obtained by Cyto-Sim about the same models.

3.1 Speaking SBML

The conversion process from the Cyto-Sim syntax to the SBML one is quite
straightforward. In Cyto-Sim, users must declare the species present into the sys-
tem writing something like this:

/* Object Declaration */

object speciesA, speciesB, speciesC

This line of code corresponds to the following SBML chunk of code:

<listOfSpecies>

<species id="compartmentA_0_speciesA" name="speciesA"
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compartment="compartmentA" initialAmount="0.0"/>

<species id="compartmentB_0_speciesB" name="speciesB"

compartment="compartmentB" initialAmount="1.0"/>

<species id="compartmentC_2_speciesC" name="speciesC"

compartment="compartmentB" initialAmount="2.0"/>

</listOfSpecies>

Not all the information in this XML code can be retrieved by the previous
objects specification4. In fact, the compartment, membrane and initial amount
related to one species are reached both from the following code:

/* Compartments Declarations */

compartment compartmentA [ruleA]

compartment compartmentB [compartmentA, ruleB, ruleC,

speciesB, 100 speciesB@7000 : |2 speciesC|]

system compartmentB

and from this:

/* Rules Declarations */

rule ruleA {

speciesA k1-> *

|| + speciesA k2-> speciesA + ||

}

rule ruleB speciesB k3-> speciesC

rule ruleC |speciesC| k4-> || + speciesC

From the code related to the compartments we take information about (i) the
compartment hierarchy, (ii) which rule happens and in what compartment, (iii)
the declared initial quantities (species not declared in this context will not still
exist as default at the beginning of the simulation) and (iv) eventual re-feeding
events at specified evolution times. Considering now that a reaction happening
in a compartment acts only on the species within it, looking the localization of a
reaction we can infer the localization of its reactant species. Moreover it is possible
to notice that the rule ruleC acts on the species speciesC inside the membrane5

(membrane number 2) of the compartment compartmentB.
In SBML each compartment is quadruplicated to easily handle membranes.

<listOfCompartments>

<compartment id="compartmentA_0" compartmentType="compartmentA"

outside="compartmentA_1"/>

4 The figure between the compartment and the species names within the string assigned
to each species id corresponds to the membrane in which a species sits. For more
information about the syntax, look at [3]

5 Recall that in this context a compartment is surrounded by a membrane with a not
negligible thickness, therefore a compartment is logically divided into the internal
(membrane 0), internal and superficial (membrane 1), intra (membrane 2), external
and superficial (membrane 3) and external (membrane 4) membranes.
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<compartment id="compartmentA_1" compartmentType="compartmentA"

outside="compartmentA_2"/>

<compartment id="compartmentA_2" compartmentType="compartmentA"

outside="compartmentA_3"/>

<compartment id="compartmentA_3" compartmentType="compartmentA"

outside="compartmentB_0"/>

<compartment id="compartmentB_0" compartmentType="compartmentB"

outside="compartmentB_1"/>

<compartment id="compartmentB_1" compartmentType="compartmentB"

outside="compartmentB_2"/>

<compartment id="compartmentB_2" compartmentType="compartmentB"

outside="compartmentB_3"/>

<compartment id="compartmentB_3" compartmentType="compartmentB"

outside="system_0"/>

<compartment id="system_0" compartmentType="system"

outside="system_1"/>

<compartment id="system_1" compartmentType="system"

outside="system_2"/>

<compartment id="system_2" compartmentType="system"

outside="system_3"/>

<compartment id="system_3" compartmentType="system"/>

</listOfCompartments>

Then a single compartment generates four independent concentric compart-
ments, as a matrioska doll toy, related to the same compartment but enclosing
different spatial areas and then species. To keep conceptually linked these com-
partments, a compartment type specification is provided.

<listOfCompartmentTypes>

<compartmentType id="compartmentA"/>

<compartmentType id="compartmentB"/>

<compartmentType id="system"/>

</listOfCompartmentTypes>

The previously seen reactions are easily translated into SBML differenting
the names of the grouped rules (e.g. the ruleA group contains two reactions.
Their names will become: ruleA.0 and ruleA.1). Moreover, the kinetic formulas
just touched (k1, k2, etc) before are expressed by MathML expressions inside
<kineticLaw> tags.

<listOfReactions>

[...]

<reaction id="ruleA.1" name="compartmentA_0_ruleA.1">

<listOfReactants>

<speciesReference species="compartmentA_0_speciesA"

stoichiometry="1.0"/>

</listOfReactants>

<!--listOfProducts>No Products</listOfProducts-->

<kineticLaw>
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<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<cn>k1_value</cn>

<ci>compartmentA_0_speciesA</ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

Cyto-Sim also requires the specification of a range of evolution times and of the
species whose quantities have to be plotted on the screen.

evolve 0 - 1000

plot compartmentA[speciesA], compartmentB[speciesB:|speciesC|]

This information can be encoded in SBML by the use of an annotation which is
auto-explicative.

<annotation>

<Cyto-Sim xmlns:cytosim="http://www.sbml.org/2001/ns/cytosim">

<plot>

<species>compartmentA_0_speciesA</species>

<species>compartmentB_0_speciesB</species>

<species>compartmentB_2_speciesC</species>

</plot>

<evolve>

<from>0</from>

<to>1000</to>

</evolve>

</Cyto-Sim>

</annotation>

3.2 Understanding SBML

The process to make an existing SBML file comprehensible to Cyto-Sim is more
complex than the opposite step. Keeping in mind the correspondences among
structures before shown, during this kind of translation we have to check some
restrictions and to guarantee some constraints which are now explained.

Parameters: SBML optionally carries global parameters, visible everywhere in the
file and local ones with more restricted scope. During the parsing time of an
SBML file, Cyto-Sim loads all global parameters putting them into a global
HashMap. In the case of local parameters inside kineticLaw of reactions, Cyto-
Sim considers local and global parameters together taking care to overwrite
eventual global parameters with the same name of local ones.
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Species Quantities: SBML provides optional size for compartments. Cyto-Sim
handles quantities and not concentration for species, then each concentration
(if any) has to be converted into quantity. To do that, Cyto-Sim requires the
size specification for each compartment if there are any specification of the
species concentrations inside it.

Assignments: Cyto-Sim handles assignment rules at the moment of parsing and
use them to replace eventual existing fixed values specified for species quantity,
compartment size or parameters value. Up to now, it does not understand
initial assignments, rate rules and algebraic rules. These features will be made
available soon.

Functions: Cyto-Sim does not still handle λ-functions.
Units & Constraints: Cyto-Sim does not still make use of units of measurements

and costraints.

4 Binding to the SBML Schema

After having conceptually explained how Cyto-Sim converts SBML in its own
language and vice-versa, now I am going to show which software architecture gives
it the possibility to do that. I used two well known tools for this aim: the Java
Architecture for XML Binding (JAXB) package and the XML DOM parser, both
build-in the latest release of Java (Java Mustang).

JAXB [11] simplifies access to an XML document from a Java program by
presenting the XML document to the program in a Java format. The first step
in this process is to bind the schema for the XML document into a set of Java
classes that represents the schema. Binding a schema means generating a set of
Java classes that represents the schema. All JAXB implementations provide a
tool called binding compiler in order to bind a schema. In response, the binding
compiler generates a set of interfaces and a set of classes that implement the
interface. I obtained Java classes for each available XML levels and versions. I
mean SBML level 1 version 1, level 1 version 2, level 2 version 1 and level 2 version
2. Later, I compiled and packaged them into just one package. The second step is to
unmarshal an SBML document. Unmurshalling means creating a tree of content
objects that represents the content and the organization of the document. The
content tree is not a DOM-based tree. In fact, content trees produced through
JAXB can be more efficient in terms of memory use than DOM-based trees. The
content objects are instances of the classes produced by the binding compiler. In
addition to providing a binding compiler, JAXB provides runtime APIs for JAXB-
related operations such as marshalling. It is possible to validate source data against
an associated schema as part of the unmarshalling operation. If the data is found
to be invalid (that is, it doesn’t conform to the schema) the JAXB implementation
can report it and might take further action. JAXB providers have a lot of flexibility
here. The JAXB specification mandates that all provider implementations report
validation errors when the errors are encountered, but the implementation does
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not have to stop processing the data. Some provider implementations might stop
processing when the first error is found, others might stop even if many errors are
found. In other words, it is possible for a JAXB implementation to successfully
unmarshal an invalid XML document, and build a Java content tree. However, the
result will not be valid. The main requirement is that all JAXB implementations
must be able to unmarshal valid documents. I unmarshal and validate each SBML
file at runtime.

Fig. 2. Software Architecture for SBML Binding

The W3C Document Object Model (DOM) is a platform and language-neutral
interface that allows programs and scripts to dynamically access and update the
content, structure, and style of a document. The XML DOM is the tool to define (i)
a standard set of objects for XML, (ii) a standard way to access XML documents;
(iii) a standard way to manipulate XML documents. Cyto-Sim uses the DOM
parser contained into xerces2-j [35] built into the Java Mustang release. The DOM
parser is used to:

Check Levels and Versions: Cyto-Sim preliminary opens SBML files and checks
levels and versions (delegating validation and comprehension to JAXB). It
acquires knowledge about which JAXB context instantiating or, more clearly,
which SBML schema considering for binding, unmarshalling and validation;
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Parse MathML expression: Due to intrinsic limitations of JAXB to handle re-
cursively nested xml tags, Cyto-Sim makes use of DOM to explore MathML
expressions and parse their components.

5 Experimental Tests

The capability of Cyto-Sim to understand all currently existing SBML levels and
versions has been tested on almost all official existing SBML files available on the
web. I successfully imported all SBML files generated by Gepasi [30], a software
package for modelling biochemical systems and the most part of the models stored
into the BioModels database [25]. Gepasi makes available 9 SBML level 1 version
1 files 6 while BioModels has 70 curated and 43 not curated models exported as
SBML level 2 version 1 files. I have also tested models from the PANTHER (130
SBML level 1 version 2 files) Classification System, and from KEGG (77 SBML
level 2 version 1 files). All SBML files were converted from KEGG by using a
conversion script kegg2sbml. Moreover, I retrieved some interesting models among
all 238 CellML models and tested them. To do that, I had to manually convert
from the CellML format to SBML by means of CellML2SBML [38] and later
import and simulate them with Cyto-Sim. All imported files have been successfully
parsed by Cyto-Sim. This testifies the quality of the conversion routines and of the
architecture employed. Summarising, I retrieved 567 models from the most known
and famous biological model containers available in SBML (or in formats having
reference to SBML), and tested them. I obtained a successful test, when Cyto-Sim
had been able to correctly parse the inferred model. In particular, now I am going
to show a couple of examples which Cyto-Sim has been able not only to correctly
parse, but also to simulate and get the same results shown in literature.

The first test is related to the model BIOMD0000000010 picked up from the
BioModels database. It concerns the functional organization of signal transduction
into protein phosphorylation cascades and in particular the mitogen-activated pro-
tein kinase (MAPK) cascades. It greatly enhances the sensitivity of cellular targets
to external stimuli [23]. In this paper it is demonstrated that a negative feedback
loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about
sustained oscillations in MAPK phosphorylation. The conversion of the SBML file
produces the following model with 1 compartment, 8 species and 10 reactions.

object MKKK, MKKK_P, MKK, MKK_P, MKK_PP, MAPK, MAPK_P, MAPK_PP

rule J0 MKKK ((1.0*2.5*MKKK)/((1+((MAPK_PP/9.0)^1.0))*(10.0+MKKK)))-> MKKK_P

rule J1 MKKK_P ((1.0*0.25*MKKK_P)/(8.0+MKKK_P))-> MKKK

rule J2 MKK ((1.0*0.025*MKKK_P*MKK)/(15.0+MKK))-> MKK_P

rule J3 MKK_P ((1.0*0.025*MKKK_P*MKK_P)/(15.0+MKK_P))-> MKK_PP

rule J4 MKK_PP ((1.0*0.75*MKK_PP)/(15.0+MKK_PP))-> MKK_P

6 among all, a very large model representing a set of 100 yeast cells in a liquid culture
whose dynamics is represented by means of 2000 reactions
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rule J5 MKK_P ((1.0*0.75*MKK_P)/(15.0+MKK_P))-> MKK

rule J6 MAPK ((1.0*0.025*MKK_PP*MAPK)/(15.0+MAPK))-> MAPK_P

rule J7 MAPK_P ((1.0*0.025*MKK_PP*MAPK_P)/(15.0+MAPK_P))-> MAPK_PP

rule J8 MAPK_PP ((1.0*0.5*MAPK_PP)/(15.0+MAPK_PP))-> MAPK_P

rule J9 MAPK_P ((1.0*0.5*MAPK_P)/(15.0+MAPK_P))-> MAPK

compartment uVol[J0, J1, J2, J3, J4, J5, J6, J7, J8, J9, 280.0 MAPK,

10.0 MKK_P, 10.0 MKK_PP, 10.0 MKKK_P, 10.0 MAPK_PP, 280.0 MKK,

10.0 MAPK_P, 90.0 MKKK]

system uVol

evolve 0-33000

plot uVol[MAPK,MAPK_PP]

In the figure 3, on the left is shown the simulation result coming from the literature
and on the right that one obtained with Cyto-Sim. The graphs are identical.

Fig. 3. Sustained oscillations in MAPK cascade

The second test is related to the glucose transport by the Bacterial Phospho-
enolpyruvate [37] whose model has been found in JWS Online. The resulting model
has 1 compartment, 17 species and 10 reactions.

object EI, PyrPI, EIP, HPr, EIPHPr, HPrP, EIIA, HPrPIIA, EIIAP, EIICB,

EIIAPIICB, EIICBP, EIICBPGlc, PEP, Pyr, GlcP, Glc

rule v1 PEP + EI ((1960.0*PEP*EI)-(480000.0*PyrPI))-> PyrPI

rule v2 PyrPI ((108000.0*PyrPI)-(294.0*Pyr*EIP))-> EIP + Pyr

rule v3 HPr + EIP ((14000.0*EIP*HPr)-(14000.0*EIPHPr))-> EIPHPr

rule v4 EIPHPr ((84000.0*EIPHPr)-(3360.0*EI*HPrP))-> HPrP + EI

rule v5 HPrP + EIIA ((21960.0*HPrP*EIIA)-(21960.0*HPrPIIA))-> HPrPIIA

rule v6 HPrPIIA ((4392.0*HPrPIIA)-(3384.0*HPr*EIIAP))-> EIIAP + HPr

rule v7 EIICB + EIIAP ((880.0*EIIAP*EIICB)-(880.0*EIIAPIICB))-> EIIAPIICB

rule v8 EIIAPIICB ((2640.0*EIIAPIICB)-(960.0*EIIA*EIICBP))-> EIICBP + EIIA

rule v9 EIICBP + Glc ((260.0*EIICBP*Glc)-(389.0*EIICBPGlc))-> EIICBPGlc

rule v10 EIICBPGlc ((4800.0*EIICBPGlc)-(0.0054*EIICB*GlcP))-> EIICB + GlcP
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compartment compartment_cyto_sim[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

0.0 EIICBPGlc, 5.0 EIICBP, 25.0 HPrP, 2.0 EIP, 20.0 EIIA, 5.0 EIICB,

25.0 HPr, 2800.0 PEP, 0.0 PyrPI, 0.0 EIPHPr, 50.0 GlcP, 900.0 Pyr,

0.0 HPrPIIA, 20.0 EIIAP, 500.0 Glc, 0.0 EIIAPIICB, 3.0 EI]

system compartment_cyto_sim

evolve 0-10000

plot compartment_cyto_sim[HPrP,EIIAPIICB,HPrPIIA]

In the figure 4 it is possible to notice that both graphs represent the same behav-
iour. The differences are due to the deterministic (on the left) or stochastic (on
the right) nature of the simulations.

Fig. 4. Glucose Transport by the Bacterial Phosphoenolpyruvate

At the end, I tested the whole human reactome derived from Reactome. The
actual release of the human reactome I used is an SBML file containing 28 com-
partments (even including internal membranes of the same compartment), 3054
species (in all their forms) and 1979 interactions represented by means of reac-
tions. Cyto-Sim is able to parse and even to simulate it, although at the moment
it cannot have meaning because of the lack of quantitative parameters (reaction
rates and initial species quantities).

6 Conclusion

kosmopolitês (citizen of the world), has been used to describe a wide variety of
important views in moral and socio-political philosophy. The nebulous core shared
by all cosmopolitan views is the idea that all human beings, regardless of their
political affiliation, do (or at least can) belong to a single community, and that this
community should be cultivated. Different versions of cosmopolitanism envision
this community in different ways, some focusing on political institutions, others
on moral norms or relationships, and still others focusing on shared markets or
forms of cultural expression [24].
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In the context of the present work, a citizen of the world is anyone who speaks
and understands a common language, who can travel to the ends of the earth
without worrying about misunderstanding or being misunderstood. Limited com-
prehension of language is the greatest barrier for people who need to spread infor-
mation and ideas. This is exactly the case for scientists who wish to share their
results and models with the widest possible audience.

In this paper I have presented an extended overview of the SBML story, contin-
ually remarking on the increasing interest of scientists both to support and write
their biological models in SBML. I talked about the internal structure of SBML,
in order to focus on its expressive potentialities, and later I presented a possi-
ble software architectural arrangement to allow simple binding to SBML schemas
and correct unmarshalling of SBML files. Finally, I presented tests performed on
two models coming from separate databases. I demonstrated the correctness of
the translation routines and highlighted the similarities of the obtained simulation
results.

Today there are more than 600 models written in SBML, ready to be more
accurately studied, confirmed or refuted. Challenging existing knowledge is the
means to increase understanding and therefore to grow knowledge. The best way
to achieve this is to maximize the number of people that speak the same language,
in this case SBML. My work sits perfectly in this context and my hope is that it
has wide application.
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Summary. We define a model of membrane system where each membrane is clocked
independently from the others, in the sense that every derivation step is applied without
a global synchronization. The computation is obtained by the execution of a limited
amount of rules in each membrane, and only when they are allowed to execute a derivation
step. Indeed, each membrane operates with a certain work frequency that could change
across the system and during the execution. Simple results show that this model is at
least as powerful as the usual one, and a few examples demonstrate that it gives rise to
interesting dynamic behaviors.

1 Introduction: Biological Motivation

This work introduces a new class of P systems, where we want to come closer to
biological cell’s behavior by adopting some new features of membrane computing
that could have a higher correspondence in biology. As we known, in general,
different chemical reactions can take different time to be executed and moreover the
same reaction could take different time depending on some environment conditions
(for example concentration, temperature, etc.).

Some models have already adopted different approaches to the timing in P sys-
tems. For instance, in [5] maximal parallelism is not enforced, while in [1] a single
rule is probabilistically chosen inside each membrane, but all selected rules work
in parallel. Interestingly, paper [1] specifically aims at modeling some biological
phenomena. In [2,6,4] authors study a model where each rule can take a different
time to perform its action, and look for systems where even if timing changes
results stay the same. Further results along this line are in [3].

We want to explore other changes to timing inside P systems but, above all,
we want to focus the attention on the real asynchronous nature of biological cells.
We want to consider every single membrane as a separate domain with a specific
clock, where the rules can be applied as often as specified by their membranes’
clock frequency. In this behavior, a single derivation step can occur only when
the membrane has the right, specified by its own clock and by other constraints,
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to carry out one or more rules, so each component of the system, regarding the
overall computation, is totally independent from the others, hence the system is
partially asynchronous.

As we said before we want, also, to adopt a different approach to the maximal
parallel way to execute the rules. We think maximal parallelism is a very strong
assumption, so we want to bound the amount of rules that can be applied in each
membrane’s derivation step. The motivations for this feature come from the fact
that, in a living cell, there is a limited amount of energy, hence a limited amount
of reactions can take place in a given time.

In this paper we introduce also a decay time for some symbol objects; we have
made this assumption thinking that other reactions (here not described) could be
modeled by such feature. For instance, symbols could decay because the cell itself
uses them to get energy.

One more detail related to clocking is the offset on the starting time of oper-
ations in each membrane. This, and the other modeling features are discussed by
means of examples and simple formal results in the following sections.

2 Frequency P Systems: Definition

A frequency P system is a P system where each rule has a time of execution. This
execution’s time is expressed in clock steps. Each membrane has its own clock,
and a limited amount of rules that can be applied in each clock step (or a fixed
amount of energy, if we want to associate different levels of energy to the rules).
The clock period is a multiple of the unit time of an external observer.

The system will use symbol objects with evolution rules. We denote by N the
set of natural numbers.

A Frequency P system with symbol objects of degree m ≥ 1, is a construct

Π = (O, D, T, µ, ω1, . . . , ωm, E, tD, C, R1, . . . , Rm, iO)
where:

• O is the alphabet of the objects;
• D ⊆ O is the alphabet of decaying symbols;
• T ⊆ O is the alphabet of non-decaying symbols;
• µ is a membrane structure consisting of m membranes labeled with 1,2,. . . ,m;
• ωi, 1 ≤ i ≤ m, specifies the multiset of objects present in the corresponding

region i at the beginning of a computation;
• E ⊆ Nm is a set of m numbers indicating the energy value assigned to each

membrane at every membrane’s clock step, overriding any previous energy level
associated to them;

• tD ⊆ Nn is a set of n numbers indicating the decay time of the n decay symbols
in D ;
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• C ⊆ Nm is a set of m numbers indicating the clock value (referred to an
external observer) assigned on each membrane;

• Ri, 1 ≤ i ≤ m , are finite sets of evolutionary rules over O associated with
regions 1,2,. . . ,m of µ; the rules can be either cooperative or non-cooperative
rules of the form A −→k

s v , where A is an object from O and v is a string over
{ahere, aout, ain | a in O , 1 ≤ j ≤ m}, if the target is not specified, then it
is intended to be here; k is an integer representing the energy to consume to
apply the rule. Note that k could be a negative number, in this case we assume
that the reaction modeled by the rule produces energy for the cell, when k
is not specified we assume that k=1; s in N is the number of clock’s steps
necessary to the rules to act (and produce the objects in the right hand side),
when s is not specified we assume that s=0;

• iO in {0,1,. . . ,m} is the output region (0 for the environment).

A configuration of
∏

at a given time t is represented by a string of parentheses
(the structure µ) and strings over O (contents of the regions). For instance, a
possible configuration of the system at time 0 (the starting time) with an alphabet
O={A,B} and a structure µ = [1[2]2[3]3]1 could be:

ς(Π(0)) = [1[2AA]2[3BB]3]1
Given a string ω representing a configuration at time t , then all the strings ob-

tained from ω by taking any permutation of the strings, representing the contents
of the regions, represent the same configuration at time t .

We suppose the existence of an external global clock that ticks at uniform in-
tervals, taken as time unit, starting at time 0; we also suppose that each membrane
has its own clock that ticks at uniform intervals, taken as multiple of the observer’s
time unit. In the former example we assume that each membrane starts at same
time (time 0 of the observer).

In each membrane of the system we have a finite number of objects from
alphabet O , a finite set of evolution rules each one with its own costs (in time
and energy) and a finite amount of energy. At each time step of the observer’s
clock, we have membranes in the system that are allowed to execute their rules
according to their own clock ticks and membranes that are not allow to execute
their rules (until their next clock ticks). These membranes could receive object
symbols from other membranes if they are target of some rules but they are not
allowed to deal with those objects until their next clock ticks. We identify former
membranes as active membranes and the latter as passive membranes (in a given
observer’s time).

When a membrane becomes active we apply as many rules as we can, according
to the left hand side of the rules and the energy necessary to carry out the rules.
It’s important to understand that the rules are NOT applied in maximum parallel
manner as in standard P systems, since only one instance of objects on the left
hand side of the rule will be consumed and only one instance of the objects on
the right hand side of the rule will be produced after a fixed number of time step
specified by the rule. During the execution of a rule, the occurrences of symbol
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objects in the right hand side are no longer available for other rules. Each time a
rule is applied we decrease the energy value of the membrane by the value specified
by the rule, in this way a membrane could execute a fixed number of rules for each
clock ticks. The energy level of a membrane will be reset to the initial value at the
beginning of the next membrane clock ticks.

If two or more rules in an active membrane are allowed to be executed, then
possible conflicts for using the occurrences of symbol objects are solved by as-
signing the objects in a non-deterministic way. The computation halts when at a
certain observer’s clock step no rule can be applied in any region and there are no
rules in execution. The output of a halting computation is the vector of numbers
representing the multiplicities of objects present in the output region in the halting
configuration.

3 Frequency P Systems: Examples

The following example shows how a frequency P system works:

Π0 = (O, D, T, µ = [1[2]2[3]3[4]4]1, ω1 = λ, ω2 = A5, ω3 = B7, ω4 = C7,
E, tD, C, R1, R2, R3, R4, iO = 1),

where:
O = {A,B,C,a,b,c,e} ; D = Ø ; T = O ;
E = {2,1,1,1}
tD(i) = 1,∀i ∈ D
C = {C1 = 1, C2 = 3, C3 = 2, C4 = 2}
R1 = {r1 : abc → e, r2 : bc → a, r3 : aa → e}
R2 = {r4 : A → aout}
R3 = {r5 : B → bout}
R4 = {r6 : C → cout}

The starting configuration of this frequency P system represented by Figure 1.
The configuration of the system at different times is shown in Figure 2.
In this and in the following figures, we focus the attention only to the objects in

skin membrane µ1, in particular by displaying the availability in there of symbols
a, b, c at different times, by marking in the picture the axis labeled as “Symbol
object. . . ”.

Note that if we set to 0 the time of execution of each rule we get the same result
of a computation carried out with a standard P system; the only difference is that
we introduce a sort of priority in rules execution. For example, if we introduce a
new rule in membrane µ1 (r7:a→f ) we force the system to apply this rule before
the others at least in t5 (because in each clock step the membrane could execute
at most 2 rules if it can, and in t5 no other rule can be applied except r7). In this
case we reach the same final configuration of a standard P system also because
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Fig. 1. The starting configuration of Π0.

Fig. 2. The evolution of skin membrane in Π0.

we set an energy value for the membrane µ1 to E=2. This parameter in the given
example enforce maximality because in case of presence of the symbol objects a,b,c
in the membrane we could apply either the rule r1 or both the rules r2 and r3 in
the same clock step. This behavior produces the same result (the symbol object
e) but in the former case it consumes only a single unit of energy indeed, while in
the latter, it consumes two energy units.

Note that this sort of “chain reaction” is allowed by the definitions of the
system, even though this happens only because we set to 0 the time of execution
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of the rules; but, despite of that, this feature will become useful in some further
variants of the system (for example we could apply a rule even if the membrane
is not active if we have enough energy units left, or we could increase or decrease
the clock frequency of the membrane in function of its own energy level).

Note also that if we do not associate decay time to some object symbols we
get the same result even if we starts the membranes not at the same time.

In the following example we run the same P system as above, but with the
difference that we introduce a delay of one observer’s clock step for the membrane
µ4. The resulting dynamics is shown in Figure 3.

Fig. 3. Dynamics in skin membrane of a system derived from Π0 by introducing a delay
for µ4.

4 Frequency P Systems with Decay Time: Examples

Now we shows the same example with a delay time 1 for the symbol objects {a,b,c}.
The following is the definition of the system Π1 .

Π1 = (O, D, T, µ = [1[2]2[3]3[4]4]1, ω1 = λ, ω2 = A5, ω3 = B7, ω4 = C7,
E, tD, C, R1, R2, R3, R4, iO = 1),

where:
O = {A,B,C,a,b,c,e} ; D = {a,b,c} ; T = O-D = {A,B,C,e};
E = {2,1,1,1}
tD(i) = 1,∀i ∈ D
C = {C1 = 1, C2 = 3, C3 = 2, C4 = 2}
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R1 = {r1 : abc → e, r2 : bc → a, r3 : aa → e}
R2 = {r4 : A → aout}
R3 = {r5 : B → bout}
R4 = {r6 : C → cout}

As we have done before, the configuration of the system will be showed below.
However, before, we want to justify this feature by comparing it with its biological
counterpart. We could think of an object produced by a membrane as a sort
of bio-chemical stimulus that is a part of a reaction. If this stimulus does not
reach a certain concentration the reaction could not take place. We could think
this stimulus will be suppressed if it does not match with a proper receptor in a
limited period of time.

When we set a decay time for some symbol objects, the system could have a
different behavior (and a different final configuration) depending of the starting
time of activity of certain membranes.

For the following examples we have set the decay time tD() equal to 1 for the
symbols objects {a,b,c}; this means that a symbol object i in D produced at time
j , could be used by a rule only from time j (included) to time j+1 (excluded).
The dynamics can be seen in Figure 4.

Fig. 4. The dynamics in skin membrane of Π1.

As you can see, in this case the same system with decay times produces a
different output with respect to a standard P system and moreover, the final
configuration could be different if we introduce a random delay in membranes
starting.

In the previous example we see that the rule r1 could be applied only where
are present all the three symbol objects {a,b,c}, and this situation occurs three
times: at time t0, t6 and t12.
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Also the rule r2 is applied but the symbol object a decays before another
instance of the symbol could reach the membrane, hence the rule r3 is never
carried out.

The following example, described by Figure 5, shows the configuration of the
same system, but with a delay of one observer’s clock step for the membrane µ4.

Fig. 5. Dynamics in skin membrane of a system derived from Π1 by introducing a delay
for µ4.

Note that no rules of type r1 or r3 could be applied during the computation
because, due to the time shifting on membrane µ4, the symbol objects {a,b,c} are
never present, at the same time, in the membrane. Hence in this case the halting
configuration of the system is Ø.

In the last example we want to force the production of the symbol object e by
increasing the reactivity frequency of membrane µ4. The following is the definition
of the system Π2.

Π2 = (O, D, T, µ = [1[2]2[3]3[4]4]1, ω1 = λ, ω2 = A5, ω3 = B7, ω4 = C7,
E, tD, C, R1, R2, R3, R4, iO = 1),

where:
O = {A,B,C,a,b,c,e} ; D = {a,b,c} ; T = O-D = {A,B,C,e};
E = {2,1,1,1}
tD(i) = 1,∀i ∈ D
C = {C1 = 1, C2 = 3, C3 = 2, C4 = 1}
R1 = {r1 : abc → e, r2 : bc → a, r3 : aa → e}
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R2 = {r4 : A → aout}
R3 = {r5 : B → bout}
R4 = {r6 : C → cout}

The resulting dynamics is shown in Figure 6.

Fig. 6. The evolution of symbols in skin membrane of Π2.

This behavior is of interest with respect to the modeling of biological mecha-
nisms. We could think that the presence of symbol object e in the halting config-
uration models certain gene activation. If we simulate several cells with several P
systems, derived from Π1 but with different shifting of their membranes’ starting
time, we obtain only a little gene activation depending of the starting configura-
tion of the membranes of each system, but if we increase the concentration of our
stimulus (represented by the frequency increasing of membrane µ4) we force the
activation of the gene in every system for every permutation of their membranes’
starting time.

5 Some Properties of Frequency P Systems

It is easy to state that the class of frequency P systems includes all usual P systems,
since we can: assign 0 to the value of energy consumed by each rule, set to 0 the
time required by rules to produce their output, have no decaying symbols, have
all membranes’ clocks with period equal to the unit time of the observer.

But this remark also leads us to a key aspect: a global clock does exist. It
is the clock of the observer, which has a frequency which is a multiple of each
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membranes’ frequency, and above all, all clocks, in membranes and for the observer,
are synchronized among themselves, along the grid of time points defined by the
observer’s clock. Even the eventual offset assigned to membranes is of length equal
to an exact multiple of the period of the observer’s clock.

This further allows us to state the following:
Proposition: Frequency P systems not consuming energy and without decay-

ing symbols can be simulated by usual P systems with maximal parallelism.
Proof sketch:
We consider observer’s clock of simulated frequency P system as the global

clock applied in the simulating (usual) P system to each membrane. Membranes
of the frequency P system apply rules exactly on (some) ticks of observer’s clock.
Thus, we could introduce, in the simulating P systems, rules derived from those
of the simulated frequency P system, with a left side modified by also requiring
the presence a new symbol, associated to the correct (cyclic) counting of global
clock’s ticks: those new symbols are evolved by specific rules so to represent the
waiting of simulated frequency membranes.

(end of Proof sketch)
Nonetheless, our examples show that the dynamics emerging from the behavior

of frequency P systems make them an interesting alternative to usual ones as a
way to model some basic mechanisms of biological inspiration.
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Summary. In this paper we introduce a variant of membrane systems with elementary
division and without charges. We allow only elementary division where the resulting
membranes are identical; we refer to this using the biological term symmetric division.
We prove that this model characterises P. This result characterises the power of a class
of membrane systems that fall under the so called P conjecture for membrane systems.

1 Introduction

The P-conjecture states that recogniser membranes systems with division rules
(active membranes [5]), but without charges, characterise P. This was shown for
a restriction of the model: without dissolution rules [4]. However, it has been
shown that systems with dissolution rules and non-elementary division characterise
PSPACE [2, 8]. In this setting, using dissolution rules allows us to jump from P
to PSPACE. As a step towards finding a bound (upper or lower) on systems with
only elementary division rules, we propose a new restriction, and show that it has
an upper bound of P.

Using our restriction insists that the two membranes that result from an ele-
mentary division rule must be identical. This models the usual biological process of
cell division [1] and we refer to it using the biological term “symmetric division”.
We refer to division where the two resulting daughter cells are different by the
biological term “asymmetric division”. In nature asymmetric division occurs, for
example, in stem cells as a way to achieve cell differentiation.

Since our model is uniform via polynomial time deterministic Turing machines
it trivially has a lower bound of P. All recogniser membrane systems with division
rules are upper bounded by PSPACE [8]. In this paper we show that systems with
symmetric elementary division and without charges are upper bounded by P. From
an algorithmic point of view, this result result allows one to write a polynomial time
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algorithm that models certain membrane systems which use exponential numbers
of membranes and objects.

2 Preliminaries

In this section we define membrane systems and complexity classes. These defini-
tions are from Păun [5, 6], and Sośık and Rodŕıguez-Patón [8].

2.1 Recogniser membrane systems

Active membranes systems are membrane systems with membrane division rules.
Division rules can either only act on elementary membranes, or else on both ele-
mentary and non-elementary membranes. An elementary membrane is one which
does not contain other membranes (a leaf node, in tree terminology). In Defini-
tion 1 we make a new distinction between two types of elementary division rules.
When we refer to symmetric division (es) we mean division where the resulting two
child membranes are identical. When the two child membranes are not identical
we refer to the rule as being asymmetric (e).

Definition 1. An active membrane system without charges using elementary di-

vision is a tuple Π = (V,H, µ,w1, . . . , wm, R) where,

1. m > 1 the initial number of membranes;

2. V is the alphabet of objects;

3. H is the finite set of labels for the membranes;

4. µ is a membrane structure, consisting of m membranes, labelled with elements

of H;

5. w1, . . . , wm are strings over V , describing the multisets of objects placed in the

m regions of µ.

6. R is a finite set of developmental rules, of the following forms:

a) [ a → v ]h,

for h ∈ H, a ∈ V, v ∈ V ∗

b) a[h ]h → [h b ]h,

for h ∈ H, a, b ∈ V

c) [h a ]h → [h ]h b,

for h ∈ H, a, b ∈ V

d) [h a ]h → b,

for h ∈ H, a, b ∈ V

(es) [h a ]h → [h b ]h [h b ]h,

for h ∈ H, a, b ∈ V

(e) [h a ]h → [h b ]h [h c ]h,

for h ∈ H, a, b, c ∈ V .

These rules are applied according to the following principles:
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• All the rules are applied in maximally parallel manner. That is, in one step, one

object of a membrane is used by at most one rule (chosen in a non-deterministic

way), but any object which can evolve by one rule of any form, must evolve.

• If at the same time a membrane labelled with h is divided by a rule of type (e)

or (es) and there are objects in this membrane which evolve by means of rules

of type (a), then we suppose that first the evolution rules of type (a) are used,

and then the division is produced. This process takes only one step.

• The rules associated with membranes labelled with h are used for membranes

with that label. At one step, a membrane can be the subject of only one rule of

types (b)-(e).

In this paper we study the language recognising variant of membrane systems
which solves decision problems. A distinguished region contains, at the beginning
of the computation, an input – a description of an instance of a problem. The result
of the computation (a solution to the instance) is “yes” if a distinguished object yes
is expelled during the computation, otherwise the result is “no”. Such a membrane
system is called deterministic if for each input a unique sequence of configurations
exists. A membrane system is called confluent if it always halts and, starting form
the same initial configuration, it always gives the same result, either always “yes”
or always “no”. Therefore, given a fixed initial configuration, a confluent membrane
system can non-deterministically choose from various sequences of configurations,
but all of them must lead to the same result.

2.2 Complexity classes

Complexity classes have been defined for membrane systems [7]. Consider a deci-
sion problem X, i.e. a set of instances {x1, x2, . . .} over some finite alphabet such
that to each x1 there is an unique answer “yes” or “no”. We consider a family

of membrane systems to solve each decision problem so that each instance of the
problem is solved by some class member.

We denote by |xi| the size of any instance xi ∈ X.

Definition 2 (Uniform families of membrane systems). Let D be a class of

membrane systems and let f : N → N be a total function. The class of problems

solved by uniform families of membrane systems of type D in time f , denoted by

MCD(f), contains all problems X such that:

• There exists a uniform family of membrane systems, ΠX = (ΠX(1);ΠX(2); . . .)
of type D: each ΠX(n) is constructable by a deterministic Turing machine with

input n and in time that is polynomial of n.

• Each ΠX(n) is sound: ΠX(n) starting with an input (encoded by a determin-

istic Turing machine in polynomial time) x ∈ X of size n expels out a distin-

guished object yes if an only if the answer to x is “yes”.

• Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x of

size n give the same result; either always “yes” or else always “no”.
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• ΠX is f-efficient: ΠX(n) always halts in at most f(n) steps.

Semi-uniform families of membrane systems ΠX = (ΠX(x1);ΠX(x2); . . .)
whose members ΠX(xi) are constructable by a deterministic Turing machine with
input xi in a polynomial time with respect to |xi|. In this case, for each instance
of X we have a special membrane system which therefore does not need an input.
The resulting class of problems is denoted by MCS

D(f). Obviously, MCD(f) ⊆
MCS

D(f) for a given class D and a complexity [3] function f .
We denote by

PMCD =
⋃

k∈N

MCD(O(nk)), PMCS

D =
⋃

k∈N

MCS

D(O(nk))

the class of problems solvable by uniform (respectively semi-uniform) families of
membrane systems in polynomial time. We denote by AM the classes of membrane
systems with active membranes. We denote by EAM the classes of membrane sys-
tems with active membranes and only elementary membrane division. We denote
by AM0

−a (respectively, AM0
+a) the class of all recogniser membrane systems with

active membranes without charges and without asymmetric division (respectively,
with asymmetric division). We denote by PMCS

EAM0
−a

the classes of problems

solvable by semi-uniform families of membrane systems in polynomial time with
no charges and only symmetric elementary division.

We let poly(n) be the set of polynomial (complexity) functions of n.

3 An upper bound on PMCS

EAM0

−a

In this section we give an upper bound of P on the membrane class PMCS

EAM0
−a

.

We provide a random access machine (RAM) algorithm that simulates this class
using a polynomial number of registers of polynomial length, in polynomial time.
We begin with an important definition and an informal description of our contri-
bution.

Definition 3 (Equivilance class of membranes). An equivalence class of

membranes is a multiset of membranes where: each membrane shares a single

parent, each has the same label, and each has identical contents. Further, only

membranes without children can be part of an equivalence class of size greater

than one; each membrane with one or more children has its own equivalence class

of size one.

Throughout the paper, when we say that a membrane system has |E| equivalence
classes, we mean that |E| is the minimum number of equivalence classes that
includes all membranes of the system.

While it is possible for a computation path of PMCS

EAM0
−a

to use an exponen-

tial number of equivalence classes, our analysis guarantees that there is another,
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equally valid, computation path that uses at most a polynomial number of equiv-
alence classes. Our algorithm finds this path in polynomial time. Moreover, via
our algorithm, after a single timestep the increase in the number of equivalence
classes is never greater than |E0||V |, the product of the number of initial equiv-
alence classes and the number of object types in the system. Since the system is
confluent, our chosen computation path is just as valid to follow as any alternative
path.

In Section 3.2 we prove that by using our algorithm:

• Type (a) rules do not increase the number of equivalence classes since the rule
has the same effect on each membrane of a given equivalence class.

• Type (c) rules do not increase the number of equivalence classes since objects
exit all child membranes for the parent membrane (which is already an equiv-
alence class with one membrane).

• Type (d) rules do not increase the number of equivalence classes since the rule
is applied to all membranes in the equivalence class. The contents and child
membranes are transfered to the parent (already an equivalence class).

• Type (es) rules do not increase the number of equivalence classes, the number
of membranes in the existing equivalence classes simply increases.

Type (b) rules require a more detailed explanation. In Section 3.3 we show that
there is a deterministic polynomial sequential time algorithm that finds a compu-
tation path that uses only a polynomial number of equivalence classes.

Our RAM algorithm operates on a number of registers that can be thought of
as a data structure (see Section 3.1). The data structure stores the state of the
membrane system at each timestep. It compresses the amount of information to be
stored by storing equivalence classes instead of explicitly storing all membranes.
Each equivalence class contains the number of membranes in the class, a reference
to each of the distinct objects in one of those membranes, and the number of
copies (in binary) of that object. Type (a) rules could therefore provide a way to
create exponential space. However, we store the number of objects in binary thus
we store it using space that is the logarithm of the number of objects.

Our RAM algorithm operates in a deterministic way. To introduce determinism
we sort all lists of object multisets by object multiplicity, then lexicographically.
We sort all equivalence classes by membrane multiplicity, then by label, and then
by object. We sort all rules by rules type, matching label, matching object, and
then by output object(s). The algorithm iterates through the equivalence classes
and applies all rules of type (a), (c), (d), and (es). It then checks to see if any rules
of type (b) are applicable. If so, it takes each object in its sorted order and applies
it to the relevant membranes in their sorted order.

Theorem 1. PMCS

EAM0
−a

⊆ P

The proof is in the remainder of this section.
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3.1 Structure of RAM Registers

Our RAM uses a number of binary registers that is a polynomial (poly(n)) of the
length n of the input. The length of each register is bounded by a polynomial
of n. For convenience our registers are grouped together in a data structure (as
illustrated in Figure 1).

Fig. 1. A representation of our polynomial sized registers as a data structure.

Object registers

For each distinct object type vi, the following registers are used to encode the
object in an equivalence class ek ∈ E.

The register v represents the type of the object, vi ∈ V (see Definition 1).
Throughout the computation, the size of the set V is fixed so this register does
not grow beyond its initial size.

The copies register is the multiplicity of the distinct object vi encoded in
binary. At time 0 we have |vi| objects. At time 1 the worst case is that each object
evolves via a type (a) rule to give a number of objects that is poly(n). This is an
exponential growth function, however, since we store it using binary, the register
length does not grow beyond space that is poly(n).

The register used represents the multiplicity vi objects that have been used
already in this computation step. It is always the case that used ≤ copies for
each object type vi.

Equivalence class registers

The following registers are used to store information about each equivalence class.
To conserve space complexity we only explicitly store equivalence classes (rather
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than explicitly storing membranes); the number of equivalence classes is denoted
|E|.

The register h stores the label of equivalence class ek and is an element of the
set H (see Definition 1). The size of register h is fixed and is bounded by poly(n).

The register parent stores a reference to the equivalence class (a single mem-
brane in this case) that contains this membrane. This value is bounded by the
polynomial depth of the membrane structure. Since the depth of the membrane
structure is fixed throughout a computation, the space required to store a parent
reference is never greater than a logarithm of the depth.

The children register references all of the child equivalence classes of ek at
depth one. Its size is bounded by poly(n) via Theorem 2.

The register copies stores the number, denoted |ek|, of membranes in the
equivalence class. We store this number in binary. In the worst case, the number
that is stored in copies doubles at each timestep (due to type (es) rules). Since we
store this number in binary we use space that is poly(n).

The register used stores the number of membranes in the equivalence class that
have been used by some rule in the current timestep and so this value is ≤ |ek|.

Rules registers

The rules registers store the rules of the membrane system; their number is
bounded by the polynomial |R| and is fixed for all time t. The rules registers can
not change or grow during a computation. The type register stores if the rule is
of type (a), (b), (c), (d) or (es). The lhsObject register stores the object on the
left hand side of the rule. The lhsLabel register stores the label on the left hand
side of the rule. The rhsObject register stores the object on the right hand side
of the rule. The rhsAObjects register stores the multiset of objects generated by
the rule.

3.2 There is a computation path using polynomially many equivalence
classes.

In Section 3.2 we prove Theorem 2. Before proceeding to this theorem we make an
important observation. Suppose we begin at an initial configuration of a recogniser
membrane system. Due to non-determinism in the choice of rules and objects, after
t timesteps we could be in any one of a large number of possible configurations.
However all computations are confluent. So if we are only interested in whether
the computation accepts or rejects, then it does not matter which computation
path we follow.

Theorem 2 asserts that after a polynomial number of timesteps, there is at least
one computation path where the number of equivalence classes of a PMCS

EAM0
−a

system is polynomially bounded. This is shown by proving that there is a computa-
tion path where the application of each rule type (a) to (es), in a single timestep,
leads to at most an additive polynomial increase in the number of equivalence
classes.
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Theorem 2. Given an initial configuration of a PMCS

EAM0
−a

system Π with |E0|

equivalence classes and |V | distinct object types, then there is a computation path

such that at time t ∈ poly(n) the number of equivalence classes is |Et| = O(|E0|+
t|E0||V |) which is poly(n).

Proof. Base case: From Definition 3, |E0| is bounded above by the (polynomial)
number of membranes at time 0. Thus |E0| ∈ poly(n). Each of lemmata 1 to 5
gives an upper bound on the increase in the number of equivalence classes after
one timestep for rule types (a) to (es), respectively. Lemma 2 has an additive
increase of |E0||V | and the other four lemmata have an increase of 0. Thus at
time 1 there is a computation path where the number of equivalence classes is
|E1| ≤ |E0| + |E0||V |. (From Definitions 1 and 2, |V | ∈ poly(n) and |V | is fixed
for all t.)

Inductive step: Assume that |Ei|, the number of equivalence classes at time i,
is polynomial in n. Then, while Lemmata 1 to 5, there exists a computation path
where |Ei+1| ≤ |Ei| + |E0||V |.

After t timesteps we have |Et| = O(|E0| + t|E0||V |), which is polynomial in n

if t is. ⊓⊔

The proofs of the following five lemmata assume some ordering on the set of
object types V and on the rules R. For the proof of Lemma 2, we give a specific
ordering, however for the other proofs any ordering is valid.

Lemma 1. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiva-

lence classes. After a single timestep, where only rules of type (a) (object evolution)

are applied, there exists a configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has

≤ |E| equivalence classes.

Proof. If a type (a) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects, it could be
the case that the membranes in ek evolve differently. However let us assume an
ordering on the object types V and on the rules R. We apply the type (a) rules
to objects using this ordering. Then all membranes in an equivalence class evolve
identically in a timestep, and no new equivalence classes are created. Thus there
is a computation path Ci ⊢ Ci+1 where there is no increase in the number of
equivalence classes. ⊓⊔

Observe that type (b) rules have the potential to increase the number of equiv-
alence classes in one timestep by sending different object types into different mem-
branes from the same class. For example, if objects of type v1 are sent into some of
the membranes in an equivalence class, and v2 objects are sent into the remainder,
then we get an increase of 1 in the number of equivalence classes. The following
lemma gives an additive polynomial upper bound on this increase.
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Lemma 2. Given a configuration Ci of a PMCS

EAM0
−a

system Π with |E| equiv-

alence classes. Let |E0| be the number of equivalence classes in the initial config-

uration of Π. Let |V | be the number of distinct object types in Π. After a single

timestep, where only rules of type (b) (incoming objects) are applied, there exists a

configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has ≤ |E| + |E0||V | equivalence

classes.

Proof. Let ej be a parent equivalence class, thus ej represents one membrane (by
Definition 3). If the child membranes of ej are all parent membranes themselves,
then the type (b) communication rule occurs without any increase to the number
of equivalence classes. The remainder of the proof is concerned with the other
case, where ej contains a non-zero number of equivalence classes of elementary
membranes; by the lemma statement this number is ≤ |E|.

For the remainder of this proof let V ′ ⊆ V be the set of distinct object types
in the membrane defined by ej , let V be the total number of objects in the mem-
brane defined by ej , let E′ ⊆ E be the set of equivalence classes that describe
the children of the membrane defined by ej , and let M be the total number of
membranes that are children of the membrane defined by ej (therefore M is the
number of membranes in E′). Furthermore we assume that E′ is ordered by num-
ber of membranes, i.e. we let E′ = (e1, e2, . . . , e|E′|) where |ek| is the number of
membranes in equivalence class ek and ∀k, |ek| ≤ |ek+1|. Similarly we assume that
V ′ is ordered by the number of each object type, i.e. we let V ′ = (v1, v2, . . . , v|V ′|)
where |vk| is the multiplicity of objects of type vk and ∀k, |vk| ≤ |vk+1|. We divide
the proof into two cases.

Case 1: V < M. Table 1 gives the proof for this case. The “Range” column
gives a series of ranges for V with respect to the numbers of membranes in the
elements of E′. The “Total EC” gives the total number of equivalence classes if
we place symbols into membranes according to the orderings given on E′ and V ′.
The “Increase EC” column gives the increase in the equivalence classes after one
timestep (i.e. |E′| subtracted from the “Total EC” value). Although we omit the
tedious details, it is not difficult to show that by using the above ordering and going
through the various sub-cases, the worst case for the total number of equivalence
classes after one timestep is |E′| + |V ′|.

Case 2: V ≥ M. Case 2 is proved using Table 2. Again we omit the details,
however it is not difficult to show that by using the above ordering and going
through the various sub cases, the worst case for the total number of equivalence
classes after one timestep is |E′| + |V ′|.

This procedure is iterated over all parent membranes ej where type (b) rules are
applicable, by Definition 3 the number of such parent membranes ≤ |E0|. For each
parent it is the case that |V ′| ≤ |V |. Thus there is a computation path Ci ⊢ Ci+1

where the increase in the number of equivalence classes is ≤ |E0||V
′| ≤ |E0||V |.

⊓⊔

Lemma 3. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiva-

lence classes. After a single timestep, where only rules of type (c) (outgoing objects)
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are applied, there exists a configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has

≤ |E| equivalence classes.

Proof. If a type (c) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be the case
that membranes in ek eject different symbols. However lets assume an ordering on
the object types V and on the rules R. We apply the type (c) rules to objects using
this ordering. Then all membranes in an equivalence class evolve identically in one
(each membrane ejects the same symbol), and so no new equivalence classes are
created from ek. The single parent of all the membranes in ek is in an equivalence
class ej which, by Definition 3, contains exactly one membrane and so no new
equivalence classes are created from ej .

Thus there is a computation path Ci ⊢ Ci+1 where there is no increase in the
number of equivalence classes. ⊓⊔

Interestingly, dissolution is the easiest rule to handle using our approach. The
following lemma actually proves something stronger than the other lemmata: dis-
solution never leads to an increase in the number of equivalence classes.

Lemma 4. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiv-

alence classes. After a single timestep, where only rules of type (d) (membrane

dissolution) are applied then for all Ci+1, such that Ci ⊢ Ci+1, Ci+1 has ≤ |E|
equivalence classes.

Proof. If there is at least one type (d) rule that is applicable to an object and
a membrane in equivalence class ek, then there is at least one rule that is also
applicable to all membranes in ek. Unlike previous proofs, we do not require an
ordering on the objects and rules: all membranes in ek dissolve and equivalence
class ek no longer exists. The single parent of all the membranes in ek is in an
equivalence class ej which, by Definition 3, contains exactly one membrane and so
no new equivalence classes are created from ej .

Thus for all Ci+1, where Ci ⊢ Ci+1, there is no increase in the number of
equivalence classes. ⊓⊔

Lemma 5. Given a configuration Ci of a PMCS

EAM0
−a

system with |E| equiv-

alence classes. After a single timestep, where only rules of type (es) (symmet-

ric membrane division) are applied, there exists a configuration Ci+1 such that

Ci ⊢ Ci+1 and Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (es) rule is applicable to an object and membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be the case
that membranes in ek divide using and/or creating different symbols. However lets
assume an ordering on the object types V and on the rules R. We apply the type
(es) rules to objects (and membranes) using this ordering. Then all membranes in
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an equivalence class evolve identically in a timestep (each membrane in ek divides
using the same rule). The number of membranes in ek doubles, but since each new
membrane is identical, no new equivalence classes are created from ek.

Thus there is a computation path Ci ⊢ Ci+1 where there is no increase in the
number of equivalence classes. ⊓⊔

Range Total EC Increase EC

1 ≤ V < |e1| |E′|+ |V ′| |V ′|

|e1| ≤ V < |e1|+ |e2|
|E′|+ |V ′| − 1 |V ′| − 1
|E′|+ |V ′| |V ′|

|e1|+ |e2| ≤ V < |e1|+ |e2|+ |e3|
|E′|+ |V ′| − 2 |V ′| − 2
|E′|+ |V ′| − 1 |V ′| − 1
|E′|+ |V ′| |V ′|

...
...

...
|E

′
|−1X

ℓ=1

|eℓ| ≤ V <

|E
′
|X

ℓ=1

|eℓ| |E′|+ |V ′| − (|E′| − 1) + 1 |V ′| − (|E′| − 1) + 1

|E′|+ |V ′| |V ′|

Table 1. Increase in the number of equivalence classes (EC) when V < M. This table is
used in the proof of Lemma 2.

Range Sub-case Total EC Increase
EC

0 < M ≤ |v1| - |E′| 0

|v1| < M ≤ |v1|+ |v2|
∃ m s.t. 1 ≤ m < |E′|, |E′| 0

mX
ℓ1

|eℓ| = |v1|,

|v2| ≥ M− |v1|
∄ m s.t. 1 ≤ m < |E′|, |E′|+ 1 1

mX
ℓ1

|eℓ| = |v1|,

|v2| ≥ M− |v1|

|v1|+ |v2| < M ≤ |v1|+ |v2|+ |v3|
...

...
...

...
...

...
...

|V
′
|−1X

ℓ=1

|vℓ| < M ≤

|V
′
|X

ℓ=1

|vℓ|
... |E′|+ |V ′| − 1 |V ′| − 1

Table 2. Increase in the number of equivalence classes (EC) when V ≥ M. This table is
used in the proof of Lemma 2.
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3.3 RAM Algorithm

Here we outline a RAM algorithm that simulates the computation of any mem-
brane system of the class PMCS

EAM0
−a

in polynomial time (in input length n).

The algorithm operates on any initial configuration and successively applies the
evolution rules of the membrane system. It orders all lists of objects, rules and
equivalence classes which results in a deterministic computation path that never
uses more than polynomial space. The algorithm makes explicit use of the polyno-
mial size bounded registers described in Section 3.1. It also relies on the confluent
nature of recogniser membrane systems and simulates only one of the set of valid
computation paths. In particular, using the results from Section 3.2, the algorithm
chooses a computation path that uses at most a polynomial number of equivalence
classes.

Our sort function runs in polynomial time (in input length n) and sorts lists
of

• object multisets by object multiplicity, then lexicographically.
• equivalence classes by membrane multiplicity, then by label, and then by ob-

jects.
• rules by rules type, matching label, matching object, and then by output ob-

ject(s).

Since instances of PMCS

EAM0
−a

are constructed by polynomial time deter-

ministic Turing machines they are of polynomial size. Also, since all instances of
PMCS

EAM0
−a

run in polynomial time, if our algorithm simulates it with a polyno-

mial time overhead we obtain a polynomial time upper bound.
Our algorithm begins with a configuration of PMCS

EAM0
−a

(see Algorithm 1).

The input configuration is encoded into the registers of the RAM in polynomial
time. The rules of the system are sorted and the algorithm then enters a loop. At
each iteration all available rules are applied which simulates a single timestep of
the membrane systems computation. The loop terminates when the system ejects
a yes or no object indicating that the computation has halted. Since all instances
of PMCS

EAM0
−a

run in polynomial time, this loop iterates a polynomial number

of times.
At each iteration the algorithm iterates through all equivalence classes and

applies all applicable rules to it. The worst case time complexity for each func-
tion is given. The total time complexity for running the simulation for time t is
O(t|R||E|2|V |).
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Algorithm 1: The is the main body of the membrane simulation algorithm.
The systems rules are sorted and then applied to the membrane system at
each timestep until the system accepts or rejects its input.

Input: a configuration of PMCS

EAM
0
−a

Output: The deciding configuration of the system
Initialise registers with input system;
sortedRules ← sort(rules);

O(t) repeat

/* evolve the membrane system one step */

O(|E|) forall equivalence class in membraneSystem do
O(|R||E||V |) ApplyRules(equivalence class);

end

until yes or no object is in skin membrane ;

Function ApplyRules(equivalence class) Applies all applicable rules for an
equivalence class for one timestep

Input: equivalence class

Output: equivalence class after one timestep of computation
b rules ← ∅;
b ecs ← ∅;
b objs ← ∅;

O(|R|) forall rule in sortedRules do

if rule.label matches equivalence class.label and rule is not type (b) then

O(|V |) forall object in sortedObjects do

if not all copies of object have been used then

if rule is type (a) then
O(|V |) Apply a rule(equivalence class, object, rule);

else if rule is type (c) then
O(1) Apply c rule(equivalence class, object, rule);

else if rule is type (d) then
O(|V |) Apply d rule(equivalence class, object, rule);

else if rule is type (es) then
O(1) Apply e rule(equivalence class, object, rule);

end

end

end

end

if rule is type (b) then

O(|E|) forall child ec in equivalence class do

if child ec.label = rule.lhsLabel and object.used ≥ 1 then
append child ec to b ecs ;
append object to b objs ;

O(|V ||E|) Apply b rule(b ecs, b objs, rule)

end

end

end

end

O(|V | × |E|) reset all used counters to 0;
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Function Apply a rule(equivalence class, object, rule) applies a single type
(a) rule to instances of an object in an equivalence class. Total time complex-
ity O(|V |).

Input: equivalence class, object, rule

Output: equivalence class after a type (a) rule on an object has been applied
O(|V |) forall resultingObject in rule.outAobjects do

multiplicity of resultingObject in equivalence class + = the multiplicity of
matching object − the number of object.used × the resultingObject.multiplicity ;
used number of resultingObject in the equivalence class + = the multiplicity of
resultingObject × object.multiplicity − object.used ;

end

decrement object.multiplicity ;
set object.used = object.multiplicity ;

Function Apply c rule(equivalence class, object, rule) applies a single rule
of type (c) to a membrane. Total time complexity O(1).

Input: equivalence class

Output: equivalence class after a (c) rule have been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent of the generated object;
increment object.used in equivalence class.parent of the generated object;
increment equivalence class.used ;

Function Apply d rule(equivalence class, object, rule). This function ap-
plies dissolution rules to an equivalence class. It calculates the total number
of each object in the equivalence class and adds it to the parent. It also
copies the child membranes from the dissolving membrane and adds them to
the parents child list. The total time complexity is O(|V |).

Input: equivalence class
Output: equivalence class after (d) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent from the rule;
increment object.used in equivalence class.parent from the rule;
/* move contents of the dissolved membrane to its parent */

O(|V |) forall move object in equivalence class objects do
add move object.multiplicity × equivalence class.multiplicity to
move object.multiplicity in equivalence class.parent ;
add move object.used × equivalence class.multiplicity to move object.used in
equivalence class.parent ;
move object.multiplicity ← 0;
move object.used ← 0;

end

equivalence class.parent.children ← equivalence class.parent.children ∪
equivalence class.children ;
equivalence class.multiplicity ← 0;
equivalence class ← ∅;
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Function Apply es rule(equivalence class, object, rule). Applies a single
rule of type (es) to a membrane. Total time complexity O(1).

Input: equivalence class
Output: equivalence class after (es) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity from the rule;
increment object.used from the rule;
increment equivalence class.used ;
equivalence class.multiplicity ← equivalence class.multiplicity × 2;

Function Apply b rules(b equivalence classes, b objects, b rules). Total
time complexity O(|V ||E|).

Input: membrane
Output: membrane after (b) rules have been applied
b objects sorted ← sort(b objects);
b equivalence classes sorted ← sort(b equivalence classes);

O(|V |) forall object in b objects sorted do

O(|E|) forall equivalence class in b equivalence classes sorted do

if object.multiplicity < equivalence class.multiplicity then
copy equivalence class to new equiv class ;
subtract object.multiplicity from new equiv class.multiplicity ;
equivalence class.multiplicity ← object.multiplicity ;
equivalence class.used ← equivalence class.multiplicity ;
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;

end

else if object.multiplicity ≥ equivalence class.multiplicity then
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;
equivalence class.used ← equivalence class.multiplicity ;
subtract equivalence class.multiplicity from object.multiplicity ;

end

end

end

4 Conclusion

We have given a P upper bound on the computational power of one of a number
of membrane systems that fall under the so-called P-conjecture. In particular we
consider a variant of membrane systems that allows only symmetric division. This
variant can easily generate an exponential number of membranes and objects in
polynomial time. Our technique relies on being able to find computation paths
that use only polynomial space in polynomial time. It seems that this technique
is not näıvely applicable to the case of asymmetric division: it is possible to find
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examples where all computation paths are forced to use an exponential number of
equivalence classes.

Furthermore the result seems interesting since before before now, all models
without dissolution rules were upper bounded by P and all those with dissolution
rules characterised PSPACE. This result shows that despite having dissolution
rules, by using only symmetric elementary division we restrict the system so that
it does not create exponential space on all computation paths in polynomial time.
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6. Gheorghe Păun. Membrane Computing. An Introduction. Springer-Verlag, Berlin,
2002.
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Summary. Membrane computing investigates models of computation inspired by cer-
tain features of biological cells. To exploit the performance advantage of the large-scale
parallelism of membrane computing models, it is necessary to execute them on a parallel
computing platform. However, it is an open question whether it is feasible to develop
a parallel computing platform for membrane computing applications that significantly
outperforms equivalent sequential computing platforms while still achieving acceptable
flexibility and scalability. To move closer to an answer to this question, we have inves-
tigated a novel approach to the development of a parallel computing platform for mem-
brane computing applications that has the potential to deliver a good balance between
performance, flexibility and scalability. This approach involves the use of reconfigurable
hardware and an intelligent software component that is able to configure the hardware to
suit the specific properties of the membrane computing model to be executed. We have
developed a prototype computing platform called Reconfig-P based on the approach.
Reconfig-P is the first computing platform of its type to implement parallelism at both
the system and region levels. In this paper, we describe Reconfig-P and evaluate its per-
formance, flexibility and scalability. Theoretical and empirical results suggest that the
implementation approach on which Reconfig-P is based is a viable means of attaining
a good balance between performance, flexibility and scalability in a parallel computing
platform for membrane computing applications.

1 Introduction

Membrane computing investigates models of computation inspired by the struc-
tural and functional properties of biological cells. Such models have been applied
in a variety of domains. To exploit the performance advantage of the large-scale
parallelism of membrane computing models, it is necessary to execute them on a
parallel computing platform. However, the use of a parallel computing platform
instead of a sequential computing platform often comes at the cost of reduced
flexibility and scalability.
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The first parallel computing platforms for membrane computing applications
to be published [15, 27, 30] do not exhibit sufficient flexibility or scalability. Even
so, because research in this area is in its early stages, it is still an open question
whether it is feasible to develop a parallel computing platform for membrane com-
puting applications that significantly outperforms equivalent sequential computing
platforms while still achieving acceptable flexibility and scalability. To move closer
to an answer to this question, it is important to investigate the viability of imple-
mentation approaches that have the potential to deliver a good balance between
performance, flexibility and scalability.

The research presented in this paper involves an investigation of a novel ap-
proach to the development of a parallel computing platform for membrane com-
puting applications. This approach involves the use of reconfigurable hardware
and an intelligent software component that is able to configure the hardware to
suit the specific properties of the membrane computing model to be executed.
We have developed a prototype computing platform called Reconfig-P based on
the approach. In this paper, we describe Reconfig-P and evaluate its performance,
flexibility and scalability.

The paper is organised as follows. In Section 2, we introduce key concepts
and previous research associated with parallel computing platforms for membrane
computing applications. In Section 3, we describe Reconfig-P. In Section 4, we
evaluate the performance, flexibility and scalability of Reconfig-P. And in Section
5 we draw a conclusion regarding the viability of the implementation approach on
which Reconfig-P is based.

2 Background

In this section, we introduce key concepts and previous research associated with
parallel computing platforms for membrane computing applications. First, we in-
troduce membrane computing and its applications. Second, we define the attributes
of performance, flexibility and scalability in the context of a computing platform for
membrane computing applications, explain the significance of these attributes, and
indicate the connections that exist between them. Third, we describe the general
characteristics of sequential computing platforms, software-based parallel comput-
ing platforms and hardware-based parallel computing platforms, and discuss the
implications of these characteristics for performance, flexibility and scalability. Fi-
nally, we briefly describe existing computing platforms for membrane computing
applications and evaluate their performance, flexibility and scalability.

2.1 Membrane computing and its applications

Membrane computing [24, 25] investigates models of computation inspired by cer-
tain structural and functional features of biological cells, especially features that
arise because of the presence and activity of biological membranes.
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Biological membranes define compartments inside a cell or separate a cell from
its environment. The compartments of a cell contain chemical substances. The
substances within a compartment may react with each other or be selectively
transported through the membrane surrounding the compartment (e.g., through
protein channels) to another compartment as part of the cell’s operations.

In a membrane computing model, called a P system, multisets of objects (chem-
ical substances) are placed in the regions defined by a hierarchical membrane struc-
ture, and the objects evolve by means of reaction rules (chemical reactions) also
associated with the regions. The reaction rules are applied in a maximally paral-
lel, nondeterministic manner. The objects can interact with other objects inside
the same region or pass through the membrane surrounding the region to neigh-
bouring regions or the cell’s environment. These characteristics are used to define
transitions between configurations of the system, and sequences of transitions are
used to define computations. A computation halts when for every region it is not
possible to apply any reaction rule. The input of the computation is defined by
the multisets of objects in the initial configuration of the system. The output of
the computation may be defined in various ways. For example, the output might
be defined as the number of objects located in a particular region in the halting
configuration of the system, or as the number of objects emitted to the system’s
environment during the course of the computation.

Following is a definition of an example P system model. All P systems Π that
instantiate the model have the features specified in the definition. The model,
which we call the core P system model, defines all the essential components of a P
system plus two simple and commonly used additional features (namely, catalysts
and reaction rule priorities).

Π = (V, T,C, µ,w1, ..., wm, (R1, ρ1), ..., (Rm, ρm)), where

• V is an alphabet that contains labels for all the types of objects in the system;
• T ⊆ V is the output alphabet, which contains labels for all the types of objects

that are relevant to the determination of the system output;
• C ⊆ V − T is the alphabet that contains labels for all the types of catalysts,

which are the types of objects whose multiplicities cannot change through the
application of a reaction rule;

• µ is a hierarchical membrane structure consisting of m membranes, with
the membranes (and hence the regions defined by the membranes) injec-
tively labelled by the elements of a given set H of m labels (in this paper,
H = {1, 2, . . . ,m});

• each wi, 1 ≤ i ≤ m, is a string over V that represents the multiset of objects
contained in region i of µ in the initial configuration of the system;

• each Ri, 1 ≤ i ≤ m, is a finite set of reaction rules over V associated with the
region i of µ;

• a reaction rule is a pair (r, p), written in the form r → p, where r is a
string over V representing a multiset of reactant objects and p is a string
over {ahere, aout, ain | a ∈ V } representing a multiset of product objects, each
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of which either (a) stays in the region to which the rule is associated (the
subscript ‘here’ is usually omitted), (b) travels ‘out’ into the region that im-
mediately contains the region to which the rule is associated, or (c) travels ‘in’
to one of the regions that is immediately contained by the region to which the
rule is associated; and

• each ρi is a partial-order relation over Ri which defines the relative priorities
of the reaction rules in Ri.

Several P system models have been developed that extend in various ways the
core P system model. Examples of additional features found in these extended mod-
els include: structured (i.e., non-atomic) objects, membrane creation and dissolu-
tion, special inter-region communication rules (e.g., symport and antiport rules),
membrane permeability, and electronic charge for objects and membranes. See [24]
for a discussion of these features.

P system models have been applied in a variety of domains, including algorithm
solving and analysis [1, 19, 20, 23], linguistics [6] and biology [2, 8, 10, 11, 12, 22,
29]. Most existing applications of membrane computing are targeted at the mod-
elling and simulation of biological systems. For example, researchers have modelled
the following biological systems as P systems: respiration [10], photosynthesis [22],
cell-mediated immunity [12], mechanosensitive channels [2] and protein signalling
pathways [29]. In general, biologists are interested in using P systems to perform
simulations, rather than to produce computational outputs as in classical com-
puting. That is, they are interested in viewing the configuration-by-configuration
evolution of a P system and not only in the final output produced by the P sys-
tem. Once a biological system has been modelled as a P system, it is possible to
simulate the biological system by executing the P system. In many cases, the P
system will be executed many times so that the effect of different initial conditions
on the evolution of the biological system can be studied.

2.2 Quality attributes of computing platforms for membrane
computing applications

The overall quality of a computing platform depends on the extent to which it
possesses certain positive attributes, including usability, performance, flexibility,
maintainability and scalability. Performance, flexibility and scalability are three
of the most important quality attributes for a computing platform for membrane
computing applications. Ensuring that a computing platform for membrane com-
puting applications has all three of these attributes to an acceptable degree is
a challenge, because a factor that promotes one of the attributes can sometimes
demote another one of the attributes. In this section, we define the attributes of
performance, flexibility and scalability in the context of a computing platform for
membrane computing applications, explain the significance of these attributes, and
indicate the connections that exist between them.
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Performance

By the performance of a computing platform for membrane computing applications
we mean the speed at which it executes P systems; that is, the amount of useful
processing it performs per unit time. A suitable measure of the amount of useful
processing performed is the number of reaction rule applications performed. Thus
the performance of a computing platform for membrane computing applications
can be measured in reaction rule applications per unit time.

Flexibility

By the flexibility of a computing platform for membrane computing applications
we mean the extent to which it can support the execution of a wide range of P
systems. Thus a flexible computing platform for membrane computing applications
must be able to adapt to the specific properties of the P system to be executed.
The greater the flexibility of the computing platform, the greater the diversity
among the P systems in the class of P systems that the computing platform is
able to execute.

Scalability

By the scalability of a computing platform for membrane computing applications
we mean the extent to which increases in the size of the P system to be executed
do not lead to a reduction in the ability of the computing platform to perform its
functions or a reduction in the performance of the computing platform. We take
the size of a P system as being largely determined by the number of regions and
the number of reaction rules it contains.

Connections between performance, flexibility and scalability

The performance of a computing platform for membrane computing applications
can be increased by tailoring its implementation to the specific properties of the
P systems it is intended to execute. However, the greater the diversity of these P
systems, the more difficult it is to efficiently tailor the implementation to their spe-
cific properties. Therefore, increasing the performance of the computing platform
is likely to come at the cost of reduced flexibility, while increasing the flexibility
of the computing platform is likely to come at the cost of reduced performance.

Increasing the flexibility of a computing platform for membrane computing
applications involves supporting additional P system features. Naturally, this usu-
ally requires the implementation of additional data structures and algorithms.
In software-based computing platforms, the implementation of additional data
structures is likely to come at the cost of increased memory consumption. In
hardware-based computing platforms, the implementation of additional data struc-
tures comes at the cost of increased hardware resource consumption, as does the
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implementation of additional algorithms. Therefore, given that memory resources
and hardware resources are limited, implementing additional P system features re-
duces the maximum size of the P systems that a computing platform for membrane
computing applications can execute. Thus increasing the flexibility of a comput-
ing platform for membrane computing applications is likely to come at the cost of
reduced scalability, while increasing the scalability of such a computing platform
is likely to come at the cost of reduced flexibility.

2.3 Types of computing platforms

We identify three major types of computing platforms: sequential computing plat-
forms, software-based parallel computing platforms and hardware-based parallel
computing platforms.

Sequential computing platforms are typically based on a software-programmed
microprocessor. When such a microprocessor is used, the execution hardware is
abstracted by the instruction set architecture, which provides a set of specific
instructions that the microprocessor can process to perform computations. This is
a very flexible computing solution since it is possible to change the functionality
of the computing platform simply by modifying its software — there is no need to
modify the hardware configuration. As a result of this flexibility, the same fixed
hardware can be used for many applications. However, the flexibility comes at the
cost of lower performance. As each instruction needs to be sequentially fetched from
memory and decoded before being executed, there is a high execution overhead
associated with each individual operation. Furthermore, only one instruction can
be executed at a time.

Software-based parallel computing platforms are typically based on a cluster
of software-programmed microprocessors. Because the microprocessors execute in
parallel, software-based parallel computing platforms can significantly outperform
sequential computing platforms for many applications. The microprocessors syn-
chronise their activities by using shared memory or by sending messages to each
other (often over a network). Such synchronisation can be very time consuming,
and therefore can hinder performance significantly. Increasing the performance
of a software-based parallel computing platform involves increasing the amount
of parallelism and therefore requires the inclusion of additional microprocessors.
However, as the number of microprocessors increases, the overheads associated
with synchronisation increase substantially (unless the overall algorithm executed
by the computing platform can be neatly partitioned into separate procedures that
are largely independent of each other). This fact limits the scalability of software-
based parallel computing platforms.

Hardware-based parallel computing platforms execute algorithms that have been
directly implemented in hardware. In one approach, an application-specific inte-
grated circuit (ASIC) is used. The design of an ASIC is tailored to a specific
algorithm. As a consequence, ASICs usually achieve a higher performance than
software-programmed microprocessors when executing the algorithm for which
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they were designed. However, with this higher performance comes reduced flexi-
bility: as the implemented algorithm is fabricated on a silicon chip, it cannot be
altered without creating another chip. In another approach, reconfigurable hard-
ware is used. Unlike ASICs, reconfigurable hardware can be modified. Therefore,
by using reconfigurable hardware, it is possible to improve on the performance
of software-based computing platforms while retaining some of their flexibility. A
field-programmable gate array (FPGA) is a type of reconfigurable hardware de-
vice. As shown in Figure 1, an FPGA consists of a matrix of logic blocks which
are connected by means of a network of wires. The logic blocks at the periphery of
the matrix can perform I/O operations. The functionality of the logic blocks and
the connections between them can be modified by loading configuration data from
a host computer. In this way, any custom digital circuit can be mapped onto the
FPGA, thereby enabling it to execute a variety of applications. The digital circuits
used in hardware-based parallel computing platforms are specified in hardware
description languages. A very popular hardware description language is VHDL.
VHDL allows circuits to be specified either in terms of a structural description of
the circuit or in terms of low-level algorithmic behaviours of the circuit. Another
popular hardware description language is Handel-C. Unlike VHDL, Handel-C does
not support the specification of the structural features of a hardware circuit. How-
ever, sharing a syntax similar to that of the C programming language, Handel-C
allows algorithms to be specified at a very abstract level, and therefore eases the
process of designing a circuit for an application.

 

Fig. 1. The basic architecture of an FPGA.
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2.4 Existing computing platforms for membrane computing
applications

In this section, we provide a brief survey of existing computing platforms for
membrane computing applications.

Sequential computing platforms

As P systems are inherently parallel devices, it is not possible to truly implement
them on sequential computing platforms. Nevertheless, sequential computing plat-
forms exist that enable one to simulate in a sequential manner the execution of P
systems [4, 7, 9, 13, 16, 21, 26, 28]. For example, Nepomuceno-Chamarro’s soft-
ware tool SimCM [21] is able to simulate the execution of P systems that have the
features specified in the definition of the core P system model as well as the feature
of membrane dissolution. SimCM is written in Java. It provides a graphical user
interface that enables the user to specify and view the evolution of a P system in
a visual manner.

Software-based parallel computing platforms

Two research groups have created prototypes of software-based parallel computing
platforms for membrane computing applications. Ciobanu and Guo [15] have im-
plemented a simulation of P systems on a Linux cluster using C++ and a library
of functions for message-passing parallel computation called the Message Passing
Interface (MPI), while Syropoulos and colleagues [30] have implemented a distrib-
uted simulation of P systems using Java Remote Method Invocation (RMI). We
discuss Ciobanu and Guo’s computing platform below.

Ciobanu and Guo’s computing platform

Ciobanu and Guo’s computing platform is a software program written in C++
that is designed to run on a cluster of computers. The communication mechanism
for the computing platform is implemented using MPI. In its prototype form,
the computing platform consists of a Linux cluster, in which each node has two
1.4GHz Intel Pentium III CPUs and 1GB of memory, and the nodes are connected
by gigabit Ethernet.

Ciobanu and Guo’s computing platform supports the execution of a class of P
systems that is very similar to the class of P systems that instantiate the core P
system model. That is, the computing platform implements most of the basic fea-
tures of P systems, but does not implement additional features such as membrane
creation and dissolution. In the computing platform, each region of a P system
is modelled as a separate computational process. Such a process implements the
application of the reaction rules in its corresponding region. The processes for the
regions in the P system execute in parallel. Communication and synchronisation
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between regions is implemented using MPI. The application of reaction rules is
performed in rounds. At the end of each round, each region exchanges messages
with its parent region and child regions. The reaction rules associated with a re-
gion are implemented as threads. If multiple reaction rules require objects of the
same type in a round, then only one of them is allowed to consume objects of that
type in that round. If two reaction rules do not have relative priorities, which of
the two reaction rules is allowed to consume objects first is determined at random.

The process associated with the outermost region of the P system executes a
halting detection algorithm. If it detects that the P system has halted, it broadcasts
this information to the processes associated with the other regions in the P system.

As the threads for the reaction rules in a region execute on the same node
in the cluster, and there are only two processors per node, it would seem that
it is impossible for the computing platform to achieve region-level parallelism for
anything other than small P systems. To achieve region-level parallelism for larger
P systems, it would be necessary to increase the number of processors in a node
from two to a number at least equal to the number of reaction rules in the region
corresponding to that node. Thus without the inclusion of additional nodes, the
computing platform cannot be said to implement region-level parallelism, although
it does implement system-level parallelism. Nevertheless, Ciobanu and Guo’s use
of multithreading as a means of representing the concurrent application of reaction
rules within a region is promising, and could be used to implement region-level
parallelism if sufficient hardware resources were available.

Ciobanu and Guo do not provide a detailed evaluation of the performance of
their computing platform. However, they do report that the performance of the
computing platform is somewhat unpredictable. While the execution times exhib-
ited by the computing platform are often acceptable, some execution times are
unacceptably long owing to unexpected network congestion. Ciobanu and Guo in-
dicate that the major problem with their computing platform from the point of
view of performance is the overhead associated with communication and coopera-
tion between regions. Such communication and cooperation consumes most of the
total execution time.

Ciobanu and Guo do not evaluate the scalability of their computing platform.
However, it is clear that the scalability of the computing platform is limited to
a large extent by the nature of a cluster-based implementation approach. For
example, to execute P systems with a large number of regions, the computing
platform would have to include a large number of nodes, since there is a one-to-
one correspondence between regions and nodes. As a consequence, there would
be very significant overheads associated with communication and synchronisation
between regions, and this would have an adverse impact on the performance of
the computing platform.

As it implements only a basic P system model, Ciobanu and Guo’s computing
platform is not capable of executing P systems that have additional features such
as symport and antiport rules. This detracts from its flexibility. Nevertheless, since
the existing implementation is expressed at a level of abstraction at which the high-
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level features of a P system are apparent, it seems very feasible that the computing
platform could be extended to support additional P system features.

Hardware-based parallel computing platforms

A few researchers have designed digital circuits for particular aspects of P sys-
tems (e.g., see [17, 18]). However, to the best of our knowledge, only Petreska
and Teuscher [27] have implemented a hardware-based computing platform for
membrane computing applications. We discuss Petreska and Teuscher’s comput-
ing platform below.

Petreska and Teuscher’s computing platform

Petreska and Teuscher [27] have developed a full implementation of a particu-
lar P system model on reconfigurable hardware. This P system model is similar
to the core P system model, except that it also includes the feature of membrane
creation and dissolution. The hardware architecture for the specific P system to
be executed, which is specified in structural VHDL, is elegant in that it contains
only one type of high-level hardware component (a universal component) and in-
terconnections between components of this type.

Petreska and Teuscher have demonstrated the feasibility of implementing some
of the important features of membrane computing on reconfigurable hardware.
Nevertheless, their computing platform has four main limitations.

First, the computing platform does not exploit the performance advantages of
the membrane computing paradigm. This is primarily because it does not imple-
ment parallelism at the region level (i.e., the reaction rules in a region are applied
sequentially). Achieving region-level parallelism requires the implementation of a
scheme for the resolution of conflicts that arise when different reaction rules com-
pete for or produce the same types of objects in the same region at the same time.
It is difficult to implement such a scheme efficiently in hardware, especially when
a low-level hardware description language is used, and this is perhaps a major
reason why Petreska and Teuscher did not attempt to do so. Conflicts do not arise
when reaction rules do not compete for or produce the same types of objects in the
same region. Nevertheless, in Petreska and Teuscher’s computing platform, even
such non-conflicting reaction rules must be applied sequentially. Furthermore, if
reaction rules from different regions need to update the same multiset, their re-
spective update operations must occur sequentially.

Second, the computing platform is inflexible. As the computing platform uses
only one type of high-level hardware component and connects components of this
type to build hardware architectures in a fixed manner, the extent to which the
hardware architecture for a P system can be tailored to the specific characteristics
of the P system is limited.

Third, the computing platform is not extensible. As it is specified at the hard-
ware level in a low-level hardware description language, adding support for addi-
tional P system features would require redesigning the hardware for the computing
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platform directly. This is likely in most cases to be a difficult and time-consuming
task, given the dependence of the computing platform on the design of a single
universal hardware component. Thus there is limited opportunity to improve the
flexibility of the computing platform.

Fourth, the computing platform has limited scalabilty. As there is only a lim-
ited ability to tailor the hardware architecture to the specific characteristics of the
P system to be executed, the hardware architecture often includes many redun-
dant hardware components. These redundant components unnecessarily consume
hardware resources.

As it implements membrane creation and dissolution in addition to the basic
P system features included in the core P system model, Petreska and Teuscher’s
computing platform can execute a wider range of P systems than Ciobanu and
Guo’s computing platform. So, in this respect, it is more flexible than Ciobanu
and Guo’s computing platform. However, being specified in a low-level hardware
description language, the implementation of Petreska and Teuscher’s computing
platform is more brittle, and therefore less extensible, than the implementation of
Ciobanu and Guo’s computing platform. Therefore, unlike in the case of Ciobanu
and Guo’s computing platform, it seems that it would be very difficult to increase
the flexibility of Petreska and Teuscher’s computing platform without significantly
changing its existing implementation.

3 Description of Reconfig-P

In this section, we describe Reconfig-P, our prototype hardware-based parallel com-
puting platform for membrane computing applications. Being the first computing
platform based on reconfigurable hardware to implement parallelism at both the
system and region levels, Reconfig-P advances the state-of-the-art in hardware im-
plementations of membrane computing. First, we specify the key features of the
novel implementation approach on which Reconfig-P is based, and explain why
this implementation approach has the potential to deliver a good balance between
performance, flexibility and scalability. Second, we specify the functional require-
ments of Reconfig-P. Third, we provide an overview of the major components
of Reconfig-P and the role of these components in the execution of membrane
computing applications. Fourth, we provide an overview of the functionality of
P Builder, a software component of Reconfig-P that is responsible for generat-
ing customised hardware representations for P systems. Finally, we describe how
P Builder represents the fundamental structural and behavioural features of P
systems in hardware.

3.1 Implementation approach

Key features of the implementation approach

The implementation approach on which Reconfig-P is based involves
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• use of a reconfigurable hardware platform,
• generation of a customised digital circuit for each P system to be executed,

and
• use of a hardware description language that allows digital circuits to be spec-

ified at a level of abstraction similar to the level of abstraction at which a
general-purpose procedural software programming language (such as C) allows
algorithms to be specified.

In the approach, a software component of the computing platform is respon-
sible for analysing the structural and behavioural features of the P system to be
executed and producing a hardware description for the P system that is tailored
to these features. When determining the hardware description for the P system,
the software component aims to maximise performance and minimise hardware
resource consumption.

Potential of the implementation approach

The use of reconfigurable hardware opens up the possibility of generating custom
digital circuits for P systems. The ability to generate a custom circuit for the P sys-
tem to be executed makes it possible to design this circuit according to the specific
structural and behavioural features of the P system, and therefore facilitates the
design of circuits that exhibit good performance and economical hardware usage.
Therefore the implementation approach facilitates the development of a comput-
ing platform that exhibits good performance and economical hardware usage. For
example, because the number of reaction rules in the P system to be executed is
known before it is executed, the circuit for the P system can be designed in such
a way that it includes exactly that number of processing units to implement the
reaction rules. Without the possibility of generating a custom circuit, the circuit
for the P system would have to include a fixed number of processing units for re-
action rules, and therefore would often include redundant hardware components.
Also, because it is possible by inspection of the definitions of the reaction rules in
a P system to determine for any two regions in the P system whether it is possible
for objects to traverse between these regions, the circuit for a P system can be
designed in such a way that the logic that implements object traversal is included
only for those inter-region connections over which object traversal is possible.

The fact that digital circuits are specified at a level of abstraction similar to
that at which a general-purpose procedural software programming language spec-
ifies algorithms, rather than at a level of abstraction that reveals the structure or
low-level algorithmic behaviour of the circuits, makes it more feasible to develop a
software component that is able to flexibly adapt to the specific features of the P
system to be executed when generating a circuit for that P system. The greater the
ability of the software component to flexibly adapt to the specific features of the P
system to be executed, the greater the range of P systems for which it is capable of
generating circuits that exhibit good performance and economical hardware usage.
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Therefore the implementation approach facilitates the development of a comput-
ing platform that exhibits good flexibility. For example, as mentioned in Section
2.4, implementing parallelism at the region level of a P system requires resolving
conflicts that may occur when different reaction rules update the same multiplicity
values. If a low-level hardware description language were used, it would be very
difficult to resolve such conflicts in an efficient manner. The use of a high-level
hardware description language makes it more feasible that a solution to the con-
flict resolution problem can be found.

Because it involves the use of a hardware description language that is incapable
of expressing the low-level structure and behaviour of digital circuits, the imple-
mentation approach limits the extent to which low-level optimisations of circuits
can be carried out. However, it is unlikely that the benefits of customisation and
flexibility mentioned above could be achieved if a low-level hardware description
language were used.

The above considerations suggest that the implementation approach has the
potential to deliver a good balance between performance, flexibility and scalability
in a parallel computing platform for membrane computing applications.

3.2 Functional requirements

Reconfig-P is required to execute P systems that instantiate the core P system
model on reconfigurable hardware. In addition, to facilitate testing of P system
designs, Reconfig-P is required to enable the user to execute a P system in soft-
ware, and view the configuration-by-configuration evolution of the P system, before
generating a hardware circuit for the P system.

It is not a strict requirement that Reconfig-P implement the nondeterminism of
P systems. In particular, Reconfig-P is not required to implement the assignment
of objects to reaction rules in a nondeterministic manner. Although nondetermin-
ism is very important from a theoretical perspective and can be useful in some
applications, many applications of membrane computing do not depend on the
nondeterministic aspects of P systems. Therefore we do not regard it as crucial
that a computing platform for membrane computing applications implement the
nondeterminism of P systems. Even so, it is certainly desirable that a computing
platform for membrane computing applications implement the nondeterminism of
P systems. We intend to investigate the feasibility of implementing the nondeter-
minism of P systems in a future version of Reconfig-P.

3.3 System overview

Figure 2 shows the major components of Reconfig-P and the roles of these com-
ponents in the execution of a P system.

(1) The user begins using Reconfig-P by writing a P system specification. This
specification defines a P system that is described in terms of the core P system
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Fig. 2. An overview of Reconfig-P. The shaded region covers the components of Reconfig-
P that are transparent to the user.

model. (2) The hardware source code generator called P Builder (which is hid-
den from the user) processes the input information. (3) P Builder analyses the P
system specification, determines a customised hardware representation for the P
system, and then generates Handel-C source code that implements the hardware
representation. (4) The user can choose to (a) execute the source code in hardware,
or (b) simulate the execution of the source code in software. (5) The ability to gen-
erate simulation source code enables users to examine their P system design before
building a corresponding hardware circuit. (6) The simulation instance (specified
by a DLL file) is executed on a host computer. The host computer invokes the
simulation feature provided by the Celoxica DK Design Suite to allow users to (a)
view the evolution of their P system one configuration at a time, or (b) return the
output of the simulation in an output file. (7) The generation of hardware execution
source code allows the user, once they have finalised the design of their P system,
to build a hardware circuit for the P system. (8) The hardware execution source
code is then synthesised into a hardware circuit. A hardware execution instance
(specified by a bitstream) can then be executed on a reconfigurable hardware plat-
form (an FPGA). The FPGA communicates with the host computer via a PCI
bus. The output of the execution instance is stored in an output file, which can
then be analysed by the user.
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Much of the process of executing a P system is transparent to the user. The
shaded region in Figure 2 covers the components of Reconfig-P that are transparent
to the user.

3.4 P Builder

P Builder is responsible for implementing the hardware reconfiguration capability
of Reconfig-P. It generates customised Handel-C source code for a P system based
on the specific characteristics of the P system.

P Builder interprets a simple declarative language which is used by the user
to specify P systems. More specifically, P Builder supports the execution of a P
system by

1. converting a text representation of the P system (the P system specification)
into software objects (written in Java);

2. converting the object representation into an abstract hardware representation
and then into Handel-C source code that implements the abstract hardware
representation; and then

3. converting the Handel-C source code that implements the abstract hardware
representation into a hardware circuit (by invoking Xilinx tools) or initiating
a simulation of the abstract hardware representation in software (by invoking
the DK Design Suite).

Since P Builder is hidden from the user, the mechanics of the conversion process
it performs are transparent to the user. The conversion process is illustrated in
Figure 3. The innovation of P Builder lies in the way it converts a P system
specification into an abstract hardware representation. In the next section, we
describe how P Builder represents the core structural and behavioural features of
P systems in hardware.

3.5 Hardware implementation of core P system features

P systems can differ significantly with respect to size, structure and information
content. Reconfig-P takes advantage of this fact by configuring the hardware ac-
cording to the specific requirements of the P system to be executed.

Although P systems can differ significantly, there are certain core features
common to all P systems. These include (a) regions and their containment rela-
tionships, (b) the mutiset of objects in every region, (c) application of reaction
rules, and (d) synchronisation of the application of reaction rules. This section
describes how these core features are implemented in hardware.

Regions and their containment relationships

As the evolution of a P system is essentially a matter of the modification of the
contents of regions according to certain rules, regions do not need to be explicitly
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Fig. 3. P Builder converts the text specification of a P system into an executable hard-
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represented in hardware. Instead, a region is represented in hardware implicitly via
its contents. The only inter-region containment relationships that it is important
to represent are those between regions between which it is possible for objects to
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traverse through the application of a reaction rule. These containment relationships
are represented implicitly by ensuring that each reaction rule with an ‘in’ or ‘out’
target directive has, for each region to/from which it sends/receives objects, access
to the multiset of objects in that region.

Multisets of objects in regions

Because the multiplicity values of objects in a region can be accessed by multi-
ple reaction rules simultaneously, the hardware elements that store them should
support concurrent accesses. Therefore a multiset is implemented as an array of
registers (see Figure 4). Because it is infeasible to predict which types of objects
may become available in which regions during the evolution of a P system, the
array of registers that represents the multiset of objects in a region contains one
register for every type of object in the alphabet of the P system. A common
bitwidth is used for all object types (the default width is 8 bits).

Using registers can be expensive if a large amount of data needs to be stored.
However, because in the hardware design each register corresponds to the multi-
plicity of a type of object in a region (rather than an individual object), for most
P systems only a relatively small amount of data needs to be stored.

 a
a

a  b b 

a3b2 00000011 00000010 00000000

objects in region 

a b c{  ,    ,    } 
alphabet 

array of registers

Fig. 4. A multiset of objects in a region is implemented as an array of registers.

Reaction rules

A reaction rule is implemented as a processing unit. This processing unit is rep-
resented in Handel-C as a potentially infinite while loop that contains code that
specifies the processing associated with the application of the reaction rule. If a
reaction rule operates on the multiplicity value for a particular object type in a
particular region, then the section of the code for its corresponding processing
unit that accomplishes this operation contains a reference to the array element
representing that multiplicity value.

In a transition of a P system, all the reaction rules in the system complete one
instance of execution, which consists of two phases. In the first phase, called the
preparation phase, objects are assigned to the reaction rules that require them as
reactants or catalysts. That is, for each reaction rule in each region, the number
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of instances of the reaction rule that can be applied is determined. In the second
phase, called the updating phase, each applicable reaction rule updates one or more
multisets of objects according to its definition and the number of instances of the
reaction rule that can be applied.

The rest of this section describes the processing performed by the processing
units for reaction rules during the preparation and updating phases.
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Preparation phase

In the preparation phase, each reaction rule attempts to obtain as many of each of
its required types of object as possible so as to maximise the number of instances
of the reaction rule that can be applied in the updating phase. Therefore imple-
menting the preparation phase involves calculating for each reaction rule r the
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value max-instancesr, which is the maximum number of instances of r that can be
applied in the current transition of the P system given (a) the current state of the
multiset of objects in its region and (b) the relative priorities and requirements
of the other reaction rules in its region. The processing unit corresponding to r
performs the calculation.

To calculate max-instancesr, the processing unit for a reaction rule r first
calculates for each of its required object types (using integer division) the ratio of
the number of available objects of that type in the region of r to the number of
objects of that type needed to apply one instance of r. This is done in one clock
cycle. It then calculates max-instancesr, which is equal to the minimum ratio
calculated in the previous step. The operation of determining the minimum ratio
can be represented as a binary tree in which each node corresponds to the execution
of a binary MIN operation and executing the MIN operation at the root node gives
the value of the minimum ratio. This tree has log2 n levels, where n is the sum of
the number of reactants and the number of catalysts in the definition of r. The
processing unit for r evaluates max-instancesr by first executing in parallel all the
MIN operations at the bottom (leaf) level of the tree, then executing in parallel
all the MIN operations at the next level up, and so on, until finally it executes the
MIN operation at the root node to obtain the value of max-instancesr. Therefore
calculating max-instancesr takes log2 n clock cycles.

If two reaction rules attempt to obtain objects of the same type, then their
corresponding processing units execute the relevant operation one after the other
according to their relative priorities. (It is assumed that reaction rules that attempt
to obtain objects of the same type have been assigned relative priorities.) Other-
wise, the processing units for different reaction rules execute in parallel. Therefore
the number of clock cycles taken to complete the preparation phase for the entire
P system is the maximum number of clock cycles taken by an individual reaction
rule, out of all the reaction rules in the P system, to complete its preparation
phase.

Updating phase

At the start of the updating phase, the processing unit for a reaction rule r inspects
the value of max-instancesr to determine whether r is applicable in the current
transition. If max-instancesr = 0, r is inapplicable; otherwise r is applicable. As
it takes zero clock cycles to evaluate a conditional expression in Handel-C, deter-
mining the applicability of r takes zero clock cycles. The applicability status of
r is recorded in the isApplicableFlag of r (see Figure 6). Once the applicability
status of each reaction rule has been determined and recorded, the processing unit
that coordinates the execution of reaction rules is able to determine whether the
P system should halt or continue the updating phase. Assume that the P system
should continue the updating phase. If r is inapplicable, the processing unit for r
simply waits for the next transition. If r is applicable, it moves on to the next step
of the updating phase.
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In the next step of the updating phase, every instance of every applicable re-
action rule is applied. This is implemented by having the processing unit for each
applicable reaction rule r bring about the combined effect of the execution of
the instances of r. That is, the processing unit decreases/increases certain mul-
tiplicity values in certain multiset data structures according to the type, amount
and source/destination of the objects consumed/produced by the instances of the
reaction rule. For example, in Figure 5, in the next transition of the P system
represented at the top of the figure, the processing unit R2 would decrease by
2 the value stored in the register corresponding to object type a in the multi-
set data structure for region 2, and increase by 2 the value stored in the register
corresponding to object type b in the multiset data structure for region 1.

If a reaction rule includes ‘in’ target directives, the definition of a P system calls
for nondeterministic targeting of objects if there are multiple child regions. Such
nondeterministic targeting can be approximated through the use of pseudorandom
numbers. Therefore, the hardware design associates a random number generator to
each processing unit for a reaction rule that might produce objects in multiple child
regions of its own region. When such a processing unit needs to select a destination
child region, it invokes its random number generator to obtain a number which
identifies the child region to be selected. For example, the processing unit R1 in
Figure 5 invokes its random number generator to determine whether to produce b
objects in region 2 or in region 3.

Processing units for reaction rules that do not manipulate any multiplicity
values in common execute in parallel during the updating phase. This is not nec-
essarily the case for processing units for reaction rules that do manipulate at least
one multiplicity value in common, since without further measures being taken, the
parallel execution of such processing units would lead to situations where multiple
processing units write to the same register at the same time. Section 3.6 describes
two alternative techniques Reconfig-P makes available for the prevention of such
situations, and shows the extent to which each technique allows conflicting process-
ing units to execute in parallel during the updating phase. The number of clock
cycles taken to complete the updating phase depends on the conflict resolution
strategy that is adopted.

Synchronisation of reaction rules

Figure 6 illustrates the synchronisation of reaction rules involved in the execution
of a transition of a P system.

The synchronisation of reaction rules is controlled by three sentinels — prepara-
tionSentinel, applicableSentinel and updatingSentinel — and corresponding flags
associated with each reaction rule — preparationCompleteFlag, updatingCom-
pleteFlag and isApplicableFlag. The sentinels are implemented as 1-bit registers.
Each type of flag is implemented as an array of 1-bit registers, each element of
which being associated with one reaction rule in the P system. The flags prepa-
rationCompleteFlag, isApplicableFlag and updatingCompleteFlag for a reaction
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rule are used to indicate whether the reaction rule has completed its preparation
phase, is applicable, and has completed its updating phase, respectively. The value
of each sentinel is the result of performing the AND or OR function to the values of
all its corresponding flags. The value of preparationSentinel indicates whether all
reaction rules in the P system have completed their preparation phase. The value
of applicableSentinel indicates whether at least one reaction rule is applicable (i.e.,
whether the P system should continue execution). And the value of updatingSen-
tinel indicates whether all applicable reaction rules in the P system have completed
their updating phase (and hence whether the P system is ready to proceed to the
next transition).

The management of synchronisation is the responsibility of the rule application
coordinator, a processing unit that executes in parallel with the processing units
for the reaction rules (see Figure 5). The rule application coordinator monitors
the conditions relevant to synchronisation at each clock cycle.

Let n be the number of reaction rules in the P system. The most natural
way to implement the updating of a sentinel value in Handel-C is to write an
assignment statement of the form s = f1#f2#...#fn, where s is the variable
that stores the sentinel value, each fi(1 ≤ i ≤ n) is a flag for a reaction rule,
and # is either the AND operator or the OR operator. Clearly, the greater the
number of reaction rules in the P system, the greater the number of AND or
OR operations that need to be performed, and therefore the greater the depth
of the logic that implements the assignment statement. Since in Handel-C an
assignment statement always takes one clock cycle to execute, increasing the depth
of the logic that implements an assignment statement can result in a reduction
in the clock rate of the FPGA. Therefore, in some situations, decomposing an
assignment statement into multiple assignment statements of reduced logical depth
can prevent or mitigate a reduction in the clock rate of the FPGA. Whether or
not performing such a decomposition is advantageous depends on whether the
beneficial effect of reducing the clock cycle length outweighs the detrimental effect
of introducing extra clock cycles. For P systems with a large number of reaction
rules it might be advantageous to decompose each assignment statement that
implements the updating of a sentinel value into multiple assignment statements
of reduced logical depth. Therefore Reconfig-P incorporates a logic depth reduction
feature. It decomposes an assignment statement with n operands into multiple
assignment statements, each of with has at most x ≤ n operands. If as many
of these assignment statements as possible contain x operands, then the original
assignment statement is replaced by dlogx ne assignment statements. The user sets
the value of x in order to obtain the best results. By default, Reconfig-P does not
perform logic depth reduction (i.e., x = n by default).

3.6 Conflict resolution in the updating phase

As discussed in Section 3.5, a conflict occurs in the updating phase when multiple
processing units for reaction rules write to the same register at the same time.
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Fig. 6. An illustration of the synchronisation performed to accomplish a transition of a
P system.

This occurs if the reaction rules consume or produce the same type of object in
the same region in the same transition. As mentioned in Section 2.4, Petreska
and Teuscher’s hardware implementation avoids the conflict problem by totally
sacrificing the parallelism that gives rise to the problem. This is an undesirable
strategy, because it hinders performance significantly.
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Reconfig-P implements two alternative conflict resolution strategies: the time-
oriented strategy and the space-oriented strategy. The time-oriented strategy con-
sumes time, whereas the space-oriented strategy consumes space. Therefore, the
best strategy to use depends on whether it is more important to optimise space
or time usage. The user selects the strategy to be used.

Both strategies involve determining in software before run-time all of the po-
tential conflicts that might occur between reaction rules, and then generating the
hardware circuit for the P system in such a way that all processing units can exe-
cute independently without any possibility of writing to the same register at the
same time. The task of determining the resource conflicts has a time complexity
of Θ(nrno), where nr is the number of reaction rules in the P system, and no is
the number of object types in the alphabet of the P system. Therefore it has a
negligible impact on performance. Note that, since the circuit for the P system
need be generated only once, the task is performed only once.

In both strategies, potential conflicts are determined through the construction
of a conflict matrix. Each row of a conflict matrix for a P system is a quadruple
(p, q, r, s), where p is an object type in the alphabet of the P system, q is a region
in the P system, r is the set of reaction rules whose application results in the
consumption and/or production of objects of type p in q, and s — called the
conflict degree of (p, q) — is the size of r. There is a row for every pair (p, q).

We now describe how the updating phase occurs when (a) the time-oriented
strategy is used, and (b) the space-oriented strategy is used.

Time-oriented conflict resolution

In the time-oriented conflict resolution strategy, if two reaction rules need to up-
date the multiplicity value for the same type of object in the same region, then
they do so one after the other (the order in which they do so is not important and
so is chosen arbitrarily).

Table 1 illustrates the time-oriented strategy. In the table, ‘u(p, q)’ denotes the
operation of updating the multiplicity value of object type p in region q.

The correct interleaving of the various conflicting operations of the processing
units is determined by means of analysis of the conflict matrix for the P system
before run-time. That is, the Handel-C source code that is generated for the P
system specifies the interleaving directly. This is achieved by inserting the appro-
priate number of single-clock-cycle delay statements in the appropriate places in
the source code for the processing units. For example, the code in the processing
unit for r3

1 that updates the multiplicity value of object type a in region 2 is pre-
ceded by two delay statements, whereas the corresponding code for object type
b in region 3 is not preceded by any delay statements. For the general case, take
a quadruple (p, q, r, s) from the conflict matrix for a P system. Assume that the
reaction rules r1, r2, . . . , rn ∈ r are ordered (for the purpose of conflict resolution)
according to the natural ordering of their subscripts. Then the number of delay
statements to be inserted immediately before the code in the processing unit for
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the reaction rule ri ∈ r that updates the multiplicity value of object type p in
region q is equal to i− 1. As Table 1 illustrates, the number of clock cycles taken
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Fig. 7. An example P system configuration. An arrow labelled by reaction rule r from
object type p1 in region q1 to object type p2 in region q2 means that p1 is a reactant of
r (taken from q1) and p2 is a product of r (produced in q2).

to update the multiplicity value for object type p in region q of a P system is
equivalent to the conflict degree of (p, q), which is recorded in the conflict matrix
for the P system.

Let k be the highest conflict degree in the conflict matrix for a P system. Then
the updating phase for the P system takes k clock cycles to complete when the
time-oriented conflict resolution strategy is used.

Table 1. How the processing units for the reaction rules in the P system in Figure 7
execute during the updating phase of the current transition if the time-oriented conflict
resolution strategy is used.

Clock 
cycle r 1

1 r 1
2 r 2

2 r 1
3 r 2

3 r 1
4 

1 
u(a,2), u(b,1), 

u(c,1) 
end 

u(f,2) u(b,2), 
u(e,2)

u(b,3) u(c,3), 
u(e,3) 
end 

u(d,4), 
u(e,2) 

2 
 u(a,2)

end 
u(f,2) 
end 

  u(b,2) 
end 

3 
   u(a,2)

end 
  



A Parallel Computing Platform for Membrane Computing Applications 495

Space-oriented conflict resolution

In the space-oriented conflict resolution strategy, if n reaction rules need to update
the multiplicity value for the same type of object in the same region, then n
copies are made of the register that stores that multiplicity value. The processing
units for the conflicting reaction rules are assigned one copy register each, and
in the updating phase write to their respective copy registers (see Figure 5 for
an example). Once all of the processing units for reaction rules have completed
writing to their registers, processing units called multiset replication coordinators
(each of which is associated with one object type in one region and runs in parallel
with the other processing units in Reconfig-P) read the values that have been
stored in the copy registers, and set the original registers in the relevant multiset
data structures accordingly (again see Figure 5). This step takes one clock cycle
to complete. However, for P systems with a large number of object copies, it may
be beneficial to perform logic depth reduction (see Section 3.5).

Table 2 illustrates the space-oriented strategy.

Table 2. How the processing units for the reaction rules in the P system in Figure 7
execute during the updating phase of the current transition if the space-oriented conflict
resolution strategy is used.

Clock 
cycle r 1

1 r 1
2 r 2

2 r 1
3 r 2

3 r 1
4 

1 

u(a,2), 
u(b,1), 
u(c,1) 
end 

u(f,2) 
u(a,2) 
end 

u(b,2), 
u(e,2) 
u(f,2) 
end 

u(b,3) 
u(a,2) 
end 

u(c,3), 
u(e,3) 
end 

u(d,4), 
u(e,2) 
u(b,2) 
end 

2 
Multiset replication coordinators update original 

registers in relevant multiset data structures 

4 Evaluation of Reconfig-P

In this section, we evaluate the performance, flexibility and scalability of Reconfig-
P. First, we present a theoretical analysis of the performance of Reconfig-P. Then
we present and discuss empirical results that give insight into the performance and
hardware resource usage of Reconfig-P. Finally we comment on the flexibility of
Reconfig-P.

4.1 Theoretical evaluation of the performance of Reconfig-P

Figure 8 presents the time complexity of the parallel algorithm executed by
Reconfig-P (in both the time-oriented and space-oriented modes) as well as the
time complexity of the sequential algorithm used in sequential implementations of
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membrane computing. Table 3 illustrates the relative theoretical performances of
(a) the sequential algorithm, (b) an algorithm that implements parallelism only at
the system level (as in Petreska and Teuscher’s computing platform), (c) the time-
oriented parallel algorithm executed by Reconfig-P, and (d) the space-oriented
parallel algorithm executed by Reconfig-P. It does so by evaluating their time
complexities for example P systems.

In Table 3, larger and larger P systems are derived from one initial basic P sys-
tem using either horizontal cascading or vertical cascading. In horizontal cascading,
more and more regions are added, but the number of reaction rules per region is
held constant. In vertical cascading, the number of reaction rules per region in-
creases, but the number of regions is held constant. The following assumptions,
deemed to represent the average case, are made: (a) there are 20 object types; (b)
each reaction rule has four reactant object types, four catalyst object types and
four product object types; (c) there are conflicts on 20% of the object types in the
preparation phase; and (d) there are conflicts on 60% of the object types in the
updating phase. Assumption (d) gives rise to a k value for each P system, which is
the highest conflict degree in the conflict matrix for the P system. P systems are
also assigned an arbitrary a value, which is the percentage of reaction rules that
are applicable in a transition on average.

Table 3 clearly demonstrates the superior speed of the algorithm executed
by Reconfig-P over both the sequential algorithm and the algorithm with one
level of parallelism. When horizontal cascading is applied, the time-oriented and
space-oriented algorithms both show exceptional scalability. When the k value is
small and reaction rules are evenly distributed across regions, the time-oriented
algorithm is more effective than the space-oriented algorithm because it uses less
space while achieving similar speeds. When vertical cascading is applied, the time-
oriented and space-oriented algorithms are significantly faster than the algorithm
with one level of parallelism. The space-oriented algorithm is faster than the time-
oriented algorithm. The main reason is that, whereas increasing the k value reduces
the degree of parallelism in the updating phase when the time-oriented algorithm
is used, this is not the case when the space-oriented algorithm is used.

4.2 Empirical evaluation of the performance and scalability of
Reconfig-P

We have conducted a series of experiments to investigate the performance and
hardware resource usage of Reconfig-P. In this section, we present and discuss
the results of these experiments, and evaluate the performance and scalability of
Reconfig-P in light of these results.

Details of the experiments

Table 4 shows the P systems that were executed in the experiments. Each P
system was constructed by first taking n copies of the basic P subsystem shown
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Table 3. An illustration of the time complexity results presented in Figure 8.
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parallelism 
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Horizontal cascading 
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10 
10 
36 
36 
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10 
10 
25 
25 
40 
40 

at the top-right of Figure 9, then cascading these copies in a horizontal, vertical
or horizontal and vertical manner (as shown in Figure 9), and finally placing the
copies into the region shown at the top-left of Figure 9. The value of n is a mea-
sure of the size of the constructed P system; the larger the value of n, the larger
the P system. Thus in the experiments a series of P systems of different sizes and
different structures were executed.

Table 4 lists a C value for each P system. The C value for a P system is
a measure of the amount of conflict that exists between reaction rules in the P
system. More specifically, C is the sum of the conflict degrees of all pairs (p, q) for
the P system, where p is an object type, q is a region and the conflict degree of
the pair is greater than 1.

The target circuit for the experiment was the Xilinx Virtex-II XC2V6000FF11
52-4, and the Handel-C code for the P systems was synthesised, placed and routed
using Xilinx tools.

Table 4. Details of the P systems used in the experiments.

 
Horizontal cascading

 
Vertical cascading Horizontal and 

vertical cascading P 
system n Regions 

Rules C k Rules  C k Rules C k 

1 1 4 11 27 7 11 27 7 11 27 7 
2 2 7 21 53 7 22 54 7 22 54 7 
3 4 13 41 97 7 44 108 7 42 106 7 
4 8 25 81 193 9 88 216 7 83 211 7 
5 16 49 161 377 17 176 432 7 165 415 7 
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Evaluation of the hardware resource usage of Reconfig-P

Table 5 shows experimental data related to the hardware resource usage of
Reconfig-P, both when it executes in time-oriented mode and when it executes
in space-oriented mode. We use the number of LUTs (lookup tables) on the cir-
cuit generated for a P system as the measure of the hardware resource usage of
Reconfig-P for that P system. We also record the percentage of the LUTs avail-
able on the FPGA that is used by the circuit, because this percentage provides an
indication of the extent to which current FPGA technology meets the hardware
resource requirements of Reconfig-P.

Table 5. Experimental results related to the hardware resource usage of Reconfig-P in
both the time-oriented and space-oriented modes.

Time-oriented mode Space-oriented mode 
P system n Number of 

LUTs % of LUTs Number of 
LUTs % of LUTs 

Horizontal cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1667 2.47% 1801 2.66% 
3 4 3058 4.52% 3248 4.81% 
4 8 5752 8.51% 6060 8.97% 
5 16 11106 16.43% 11719 17.34% 

Vertical cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1959 2.9% 2075 3.07% 
3 4 3570 5.32% 3790 5.65% 
4 8 6771 10.09% 7344 10.87% 
5 16 13207 19.79% 14486 21.43% 

Horizontal and vertical cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1934 2.94% 1934 2.94% 
3 4 3479 5.16% 3689 5.46% 
4 8 6597 9.76% 7293 10.79% 
5 16 12780 19.41% 13360 20.1% 

Figures 10 and 11 illustrate the experimental data in graphical form.
Figures 10 and 11 illustrate the experimental data in graphical form. We make

the following observations:

• The hardware resource usage of Reconfig-P scales linearly with respect to the
size of the P system executed (i.e., with respect to n). This is as good as can
reasonably be expected, and indicates that Reconfig-P is scalable with respect
to hardware resource usage.
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• The type of cascading employed in the construction of the P system that is
executed has little effect on hardware resource usage.

• For all P systems, Reconfig-P uses less than 22% of the LUTs available on the
FPGA. Given that the largest P system has 49 regions and 176 reaction rules,
this is an impressive result. Not only does it strongly suggest that current
FPGA technology meets the hardware resource requirements of Reconfig-P,
it also indicates that it would be feasible to extend Reconfig-P to support P
system features not covered by the core P system model.

• Reconfig-P uses only slightly more hardware resources in space-oriented mode
than in time-oriented mode. This suggests that, at least for the P systems exe-
cuted in the experiments, multiset replication has only a relatively small effect
on hardware usage. Indeed, even for P systems with C > 400 and therefore
with more than 400 copies of multiplicity values, the hardware resources con-
sumed by Reconfig-P to store, access and coordinate these copies is relatively
small.

In summary, the experimental results indicate that Reconfig-P makes efficient
use of hardware resources, and therefore is scalable with respect to hardware re-
source usage. The fact that less than 22% of the available hardware resources is
used for even relatively large P systems augurs well for the flexibility of Reconfig-P
(see Section 4.3 for more on this point).

Evaluation of the performance of Reconfig-P

Table 6 shows the number of clock cycles that Reconfig-P executes per transi-
tion for each of the P systems used in the experiments, both when it executes
in time-oriented mode and when it executes in space-oriented mode. The values
shown in the table were determined empirically.

We make the following observations:

• Nearly all of the P systems used in the experiments have k = 7. When it
executes in time-oriented mode, Reconfig-P takes 14 clock cycles to execute a
transition if k = 7. When k = 9, it takes 16 clock cycles, and when k = 17,
it takes 24 clock cycles. This is exactly as expected, given that the number
of clock cycles taken to execute the updating phase across all regions in a P
system is equal to k when the time-oriented conflict resolution strategy is used
(see Section 3.6).

• When it executes in space-oriented mode, Reconfig-P takes 7 clock cycles to
execute a transition for all the P systems used in the experiments. This suggests
that when the space-oriented conflict resolution strategy is used, Reconfig-P
shows exceptional scalability with respect to the number of clock cycles it takes
per transition.

• Overall, Reconfig-P shows excellent scalability with respect to the number of
clock cycles it takes per transition. However, when it executes in time-oriented
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Table 6. Experimental data related to the number of clock cycles Reconfig-P takes to
execute one P system transition.

Number of clock cycles per 
transition P system n k 

Time-oriented 
mode 

Space-oriented 
mode 

Horizontal cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 9 16 7 
5 16 17  24 7 

Vertical cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 7 14 7 
5 16 7 14 7 

Horizontal and vertical cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 7 14 7 
5 16 7 14 7 

 

mode and horizontal cascading is applied, increases in the size of the P system
to be executed can lead to increases in the value of k, and hence increases in
the number of clock cycles per transition.

• Reconfig-P takes considerably less clock cycles per transition when it executes
in space-oriented mode than when it executes in time-oriented mode. This is
as expected, given that the updating phase executes in a maximally parallel
manner when the space-oriented conflict resolution strategy is used, but only in
a partially parallel manner when the time-oriented conflict resolution strategy
is used.

Table 7 shows the performance of Reconfig-P for each of the P systems used
in the experiments, both when it executes in time-oriented mode and when it
executes in space-oriented mode. It also shows, for the sake of comparison, the
corresponding results for a software-based sequential computing platform (i.e., a
Java simulator for the core P system model).

Figures 12, 13 and 14 illustrate the experimental data in graphical form. We
make the following observations:
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Table 7. Experimental data related to the performance of Reconfig-P (in both the space-
oriented and time-oriented modes) and a software-based sequential computing platform.

Reaction rule applications per second 

P system n Software-based 
sequential 

computing platform

Reconfig-P (space-
oriented mode) 

Reconfig-P (time-
oriented mode) 

Horizontal cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 4.5 × 105 120 × 105 110 × 105 
3 4 5.3 × 105 230 × 105 210 × 105 
4 8 4.7 × 105 460 × 105 410 × 105 
5 16 3.5 × 105 910 × 105 710 × 105 

Vertical cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 5.2 × 105 126 × 105 116 × 105 
3 4 4.3 × 105 250 × 105 230 × 105 
4 8 3.2 × 105 500 × 105 460 × 105 
5 16 2 × 105 1000 × 105 890 × 105 

Horizontal and vertical cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 4.1 × 105 126 × 105 115 × 105 
3 4 4.5 × 105 240 × 105 220 × 105 
4 8 3.7 × 105 470 × 105 430 × 105 
5 16 2.7 × 105 930 × 105 820 × 105 

• Reconfig-P executes P systems significantly faster than the software-based se-
quential computing platform (from 14 to 500 times faster). The larger the P
system that is executed, the greater the extent to which Reconfig-P outper-
forms the sequential computing platform. This is as expected, because larger
P systems have more regions and more reaction rules and therefore more op-
portunity for parallelism at both the system and region levels.

• In general, the performance of Reconfig-P in both the space-oriented and time-
oriented modes increases linearly with respect to the size of the P system that
is executed. This is a good result, because it indicates that as the size of the
P system to be executed increases, Reconfig-P is able to take advantage of
the increased opportunities for parallelism. That is, there does not appear to
be any significant problems of scale in the hardware design (e.g., nonlinearly
growing logic depths in certain parts of the hardware circuit that would reduce
the clock rate of the FPGA).

• Reconfig-P performs better in space-oriented mode than in time-oriented mode,
although only by approximately 10%. This relatively small difference is a con-
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sequence of the fact that the various P systems used in the experiments have
small k values. If the k values were larger, we would expect to observe a more
pronounced difference in performance between the space-oriented and time-
oriented modes.

In summary, the experimental results indicate that Reconfig-P achieves very
good performance.

4.3 Evaluation of the flexibility of Reconfig-P

In its current prototype form, Reconfig-P supports the basic P system features
covered by the core P system model. Therefore it is not able to execute P systems
that include additional features such as structured objects and membrane perme-
ability. This counts against its flexibility. However, there is good reason to believe
that Reconfig-P can be extended to support additional P system features. As we
have observed, Reconfig-P exhibits exceptionally economic hardware resource us-
age: for the P systems used in the experiments, approximately 75% of the available
hardware resources are left unused. Thus there is ample space on the FPGA for the
inclusion of additional data structures and logic required for the implementation
of additional features. Furthermore, the fact that Reconfig-P is implemented in a
high-level hardware description language should ease the process of incorporating
additional features into the existing implementation.

5 Conclusion

By developing Reconfig-P, we have demonstrated that it is possible to efficiently
implement both the system-level and region-level parallelism of P systems on re-
configurable hardware and thereby achieve significant performance gains.

Theoretical results demonstrate that the algorithm executed by Reconfig-P is
significantly faster than the sequential algorithm used in sequential implemen-
tations of membrane computing. Empirical results show that for a variety of P
systems Reconfig-P achieves very good performance while making economical use
of hardware resources. And there is good reason to believe that Reconfig-P can be
extended in the future to support additional P system features. Therefore, there is
strong evidence that the implementation approach on which Reconfig-P is based
is a viable means of attaining a good balance between performance, flexibility and
scalability in a parallel computing platform for membrane computing applications.
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26. Pérez-Jiménez, M. J. and Romero-Campero, F. 2004. A CLIPS Simulator for

Recognizer P Systems with Active Membranes. In Pǎun, G., Riscos-Núñez, A.,
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Definitions
M = {m1, m2, ..., mn} is the set of membranes in the P system. V = {o1, o2, ..., ov} is
the alphabet of the P system. Rmx =

{
r1,mx , r2,mx , ..., rkmx ,mx

}
is the set of reaction

rules in the region defined by membrane mx. ry,mx is the yth reaction rule in the region
defined by membrane mx. ra

y,mx
denotes that ry,mx is applicable. nR(ry,mx), nC(ry,mx)

and nP(ry,mx) denote the number of reactant, catalyst and product object types in
reaction rule ry,mx , respectively. MUPDATE

mx
: V −→ Rmx maps each object type in

the region defined by membrane mx to the set of reaction rules that might update
its multiplicity. Maxn

i=1xi is the function that returns the maximum value in the set
{x1, x2, ..., xn}. In the following performance analysis, e denotes the time taken to ex-
ecute one transition of a P system. This time is composed of the separate times taken
to execute the preparation phase (p), the updating phase (u) and (in the parallel algo-
rithm) synchronisation operations (s). Synchronisation operations include updates of
the sentinels preparationSentinel and updatingSentinel, as well as operations related
to multiset replication coordination. Times are measured in clock cycles.

Sequential algorithm

eSEQ =

n∑
i=1

kmi∑
j=1

=

{
pSEQ(rj,mi) , if rj,mi is not applicable
pSEQ(rj,mi) + uSEQ(rj,mi) , if rj,mi is applicable

where
pSEQ(ry,mx) = nR(ry,mx) + nC(ry,mx)− 1

and
uSEQ(ra

y,mx
) = nR(ra

y,mx
) + nP(ra

y,mx
).

Parallel algorithm

ePAR = Maxn
i=1Max

kmi
j=1 pPAR(rj,mi) + Maxn

i=1Max
kmi
j=1 uPAR(ra

j,mi
) + sPAR,

where

pPAR(ry,mx) =


∑y

s=1
log2(n

R(rs,mx) + nC(rs,mx)),
if rs,mx has an assigned priority

log2(n
R(ry,mx) + nC(ry,mx)),

if ry,mx does not have an assigned priority

and

Maxn
i=1Max

kmi
j=1 uPAR(ra

j,mi
) =


Maxn

i=1Maxv
j=1

∣∣MUPDATE
mi

(oj)
∣∣ ,

if the time-oriented strategy is used
1,

if the space-oriented strategy is used

and

sPAR =

{
2(logx

⌈∑n

i=1
|Rmi |

⌉
− 1) , if the time-oriented strategy is used.

2(logx

⌈∑n

i=1
|Rmi |

⌉
− 1) + 1 , if the space-oriented strategy is used.

Fig. 8. The time complexities of the parallel algorithm executed by Reconfig-P and the
sequential algorithm executed by sequential implementations of membrane computing.
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Fig. 9. Each P system used in the experiments was constructed by first cascading n
copies of a basic P subsystem in a horizontal, vertical or horizontal and vertical manner,
and then placing these copies into an outermost region.
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Fig. 10. An illustration of the experimental results related to the hardware resource
usage of Reconfig-P in space-oriented mode.
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Hardware resource usage of Reconfig-P 
in time-oriented mode
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Fig. 11. An illustration of the experimental results related to the hardware resource
usage of Reconfig-P in time-oriented mode.
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Fig. 12. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when horizontal cascading is applied.
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Performance of Reconfig-P and a software-based 
sequential computing platform when vertical 

cascading is applied
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Fig. 13. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when vertical cascading is applied.
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Fig. 14. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when horizontal and vertical cascading is applied.
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Summary. A concept of a (directed) multigraphical membrane system, akin to mem-
brane systems in [9] and [10], for modeling complex systems in biology, evolving neural
networks, perception, and brain function is introduced.

1 Introduction

Statecharts described in [7] and their wide applications, including applications in
system biology, cf. [6], and the formal foundations for natural reasoning in a visual
mode presented in [11] challenge a prejudice against visualizations in exact sciences
that they are heuristic tools and not valid elements of mathematical proofs.

We introduce a concept of a (directed) multigraphical membrane system to be
applied for modeling complex systems in biology, evolving neural networks, per-
ception, and brain function. A precise mathematical definition of this concept and
its topological representation by Venn diagrams and the usual graph drawings con-
stitute a kind of visual formalism related to that discussed in [7]. The concept of a
multigraphical membrane system is some new variant of the notion of a membrane
system in [9] and [10].

2 Multigraphical Membrane Systems

Membrane system in [9] and [10] are simply finite trees with nodes labeled by mul-
tisets, where the finite trees have a natural visual presentation by Venn diagrams.

We introduce (directed) multigraphical membrane systems to be finite trees
with nodes labeled by (directed) multigraphs.

We consider directed multigraphical membrane systems of a special feature
described formally in the following way.
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A sketch-like membrane system S is given by:

• its underlying tree TS which is a finite graph given by the set V (TS) of vertices,
the set E(TS) ⊆ V (TS)×V (TS) of edges, and the root r which is a distinguished
vertex such that for every vertex v different from r there exists a unique path
from v into r in TS , where for every vertex v we define rel(v) = {v′ | (v′, v) ∈
E(TS)} which is the set of vertices immediately related to v;

• its family (Gv | v ∈ V (TS)) of finite directed multigraphs for Gv given by the
set V (Gv) of vertices, the set E(Gv) of edges, the source function sv : E(Gv) →
V (Gv), and the target function tv : E(Gv) → V (Gv) such that the following
conditions hold:
1) V (Gv) = {v} ∪ rel(v),
2) E(Gv) is empty for every elementary vertex v, i.e. such that rel(v) is empty,
3) for every non-elementary vertex v, i.e. such that rel(v) is a non-empty set,

we have
(i) Gv(v, v′) is empty for every v′ ∈ V (Gv),
(ii) Gv(v′, v) is a one-element set for every v′ ∈ rel(v),
where Gv(v1, v2) = {e ∈ E(Gv) | sv(e) = v1 and tv(e) = v2}.

For every non-elementary vertex v of TS we define:

• the v-diagram Dg(v) to be that directed multigraph which is the restriction
of Gv to rel(v), i.e. V (Dg(v)) = rel(v),

E(Dg(v)) =
{
e ∈ E(Gv) | {sv(e), tv(e)} ⊆ rel(v)

}
,

the source and target functions of Dg(v) are the obvious restrictions of sv, tv
to E(Dg(v)), respectively,

• the v-cocone to be a family (ev′ | v′ ∈ rel(v)) of edges of Gv such that sv(ev′) =
v′ and tv(ev′) = v for every v′ ∈ rel(v).

By a model of a sketch-like membrane system S in a category C with finite
colimits we mean a family of graph homomorphisms hv : Gv → C (v is a non-
elementary vertex of TS) such that hv(v) is a colimit of the diagram hv ¹ Dg(v) :
Dg(v) → C and (hv(ev′) | v′ ∈ rel(v)) is a colimiting cocone for the v-cocone
(ev′ | v′ ∈ rel(v)), where hv ¹ Dg(v) is the restriction of hv to Dg(v).

For all categorical and sketch theoretical notions like graph homomorphism,
colimit of the diagram, and colimiting cocone we refer the reader to [3].

The idea of a sketch-like membrane system and its categorical model is a spe-
cial case of the concept of a sketch and its model described in [3] and [8], where one
finds that sketches can serve as a visual presentation of some data structure and
data type algebraic specifications. On the other hand the idea of a sketch-like mem-
brane system is a generalization of the notion of ramification used in [4] and [5] to
investigate hierarchical categories with hierarchies determined by iterated colimits
understood as in [4]. Hierarchical categories with hierarchies determined by iter-
ated colimits are applied in [1] and [5] to describe various emergence phenomena
in biology and general system theory. The iterated colimits identified with binding
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of patterns in neural net systems are expected in [5] to be applied in the inves-
tigations of binding problems in vision systems (associated with perception and
brain function) in [12] and [13], hence the notion of sketch-like membrane system
is aimed to be a tool for these investigations.

More precisely, sketch-like membrane systems are aimed to be presentations of
objects of state categories of Memory Evolutive Systems in [4] and [5] similarly
like strings of digits serve for presentation of numbers, where these state categories
are hierarchical categories with hierarchies determined by iterated colimits. Hier-
archical shape of sketch-like membrane systems and their categorical semantics
reflect iterated colimit feature of objects of state categories of Memory Evolutive
Systems.

If we drop condition 3) in the definition of a sketch-like membrane system, we
obtain these directed multigraphical membrane systems which appear useful to
describe alternating organization of living systems discussed in [2] with a regard
to nesting (represented by the underlying tree TS) and interaction of levels of
organization (represented by family of directed multigraphs Gv (v ∈ V (TS))).
According to [2] the edges in Gv(v′, v) describe integration, the edges in Gv(v, v′)
describe regulation, and the edges of v-diagram Dg(v) describe interaction.

A directed multigraphical (a sketch-like) membrane system is illustrated in
Fig. 1, whose semantics (model) in a hierarchical category is illustrated in Fig. 2.

Multigraphical membrane system corresponding to 2-ramification:

.

.

.

.

nodes—membranes, edges—objects,

neurons—membranes, synapses—objects.
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Summary. We consider once more the membrane systems with proteins on membranes.
This model is bridging the membrane systems and brane calculi areas together, thus it
is interesting to study it in more depth. We have improved previous results in the area
and also defined a new variant of these systems based on time as the output of the
computation. The new model allows (due to its flexibility) even stronger improvements
with respect to the number of proteins needed to perform the computation.

1 Introduction

We continue the work on a membrane systems model combining membrane systems
and brane calculi as introduced in [14]. In brane calculi introduced in [5], one works
only with objects – called proteins – placed on membranes, while the evolution is
based on membrane handling operations, such as exocytosis, phagocytosis, etc. In
the membrane computing area we have rules associated with each region defined by
a membrane, and in the recent years the rules in membrane computing have been
considered mainly to work on symbol objects rather than other structures such
as strings. The extension considered in [14] and in [15] was to have both types of
rules (both at the level of the region delimited by membranes and also at the level
of membrane controlled by a protein). The reason for considering both extensions
was that in biology, many reactions taking place in the compartments of living
cells are controlled/catalysed by the proteins embedded in the membranes bilayer.
For instance, it is estimated that in the animal cells, the proteins constitute about
50% of the mass of the membranes, the rest being lipids and small amounts of
carbohydrates. There are several types of such proteins embedded in the membrane
of the cell; one simple classification places these proteins into two classes, that of
integral proteins (these molecules can “work” in both inside the membrane as
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well as also in the region outside the membrane), and that of peripheral proteins
(macromolecules that can only work in one region of the cell) – see [1].

In the present paper we continue the discussion in the direction of membrane
systems with proteins, but we extend the model to have also a “more natural”
output of the computation with ideas from [8].

Briefly, the systems that we consider in this paper extend the original defini-
tion by using the paradigm of time as the output of a computation as previously
introduced in [6] and [8]. The idea originates in [17] as Problem W; the novelty
is that instead of the “standard” way to output, like the multiplicities of objects
found at the end of the computation in a distinguished membrane as it was de-
fined in the model from [14] and in [15], it seems more “natural” to consider certain
events (i.e., configurations) that may occur during a computation and to relate the
output of such a computation with the time interval between such distinguished
configurations. Our system will compute a set of numbers similarly with the case
of “normal” symport/antiport systems as defined in [14], but the benefit of the
current setting is that the computation and the observance of the output are now
close to the biology and to the tools used for cell biology (fluorescence microscopy,
FACS).

2 The Types of Rules in the System

In what follows we assume that the reader is familiar with membrane computing
basic elements, e.g., from [16] and from [19], as well as with basic elements of
computability, so that we only mention here a few notations we use. The rules
based on proteins on membranes were described in detail in [14], and we refer the
interested reader to that publication and to [15] for further details.

As usual, we represent multisets of objects from a given alphabet V by strings
from V ∗, and the membrane structures by expressions of correctly matching la-
beled parentheses. The family of recursively enumerable sets of natural numbers
is denoted by NRE.

In the P systems which we consider below, we use two types of objects, proteins
and usual objects; the former are placed on the membranes, the latter are placed
in the regions delimited by membranes. The fact that a protein p is on a membrane
(with label) i is written in the form [ ip|. Both the regions of a membrane structure
and the membranes can contain multisets of objects and of proteins, respectively.

We consider the following types of rules for handling the objects and the pro-
teins; in all of them, a, b, c, d are objects, p is a protein, and i is a label (“cp” stands
for “change protein”), where p, p′ are two proteins (possibly equal; if p = p′, then
the rules of the type cp become rules of the type res; i.e. restricted):
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Type Rule Effect (besides changing also the protein)
1cp [

i
p|a → [

i
p′|b

a[
i
p| → b[

i
p′| modify an object, but not move

2cp [
i
p|a → a[

i
p′|

a[
i
p| → [

i
p′|a move one object unmodified

3cp [
i
p|a → b[

i
p′|

a[ ip| → [ ip
′|b modify and move one object

4cp a[ ip|b → b[ ip
′|a interchange two objects

5cp a[ ip|b → c[ ip
′|d interchange and modify two objects

An intermediate case between res and cp can be that of changing proteins in
a restricted manner, by allowing at most two states for each protein, p, p̄, and the
rules working either in a res manner (without changing the protein), or changing
it from p to p̄ and back (like in the case of bistable catalysts). Rules with such
flip-flop proteins are denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we
allow both rules which do not change the protein and rules which switch from p
to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in another state (from p into p̄ and vice versa for ff). Such rules
are said to be of pure ff or cp type, and we indicate the use of pure ff or cp rules
by writing ffp and cpp, respectively.

We can use these rules in devices defined in the same way as the sym-
port/antiport P systems (hence with the environment containing objects, in arbi-
trarily many copies each – we need such a supply of objects, because we cannot
create objects in the system), where also the proteins present on each membrane
are mentioned.

That is, a P system with proteins on membranes is a device of the form

Π = (O, P, µ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, io),

where:

1. m is the degree of the system (the number of membranes);
2. O is the set of objects;
3. P is the set of proteins (with O ∩ P = ∅);
4. µ is the membrane structure;
5. w1, . . . , wm are the (strings representing the) multisets of objects present in

the m regions of the membrane structure µ;
6. z1, . . . , zm are the multisets of proteins present on the m membranes of µ;
7. E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each);
8. R1, . . . , Rm are finite sets of rules associated with the m membranes of µ;
9. io is the output membrane, an elementary membrane from µ.

The rules can be of the forms specified above, and they are used in a non-
deterministic maximally parallel way: in each step, a maximal multiset of rules is
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used, that is, no rule can be applied to the objects and the proteins which remain
unused by the chosen multiset. As usual, each object and each protein can be
involved in the application of only one rule, but the membranes are not considered
as involved in the rule applications, hence the same membrane can appear in any
number of rules at the same time.

If, at one step, two or more rules can be applied to the same objects and pro-
teins, then only one rule will be non-deterministically chosen. At each step, a P
system is characterized by a configuration consisting of all multisets of objects
and proteins present in the corresponding membranes (we ignore the structure
µ, which will not be changed, and the objects from the environment). For exam-
ple, C = w1/z1, . . . , wm/zm is the initial configuration, given by the definition
of the P system. By applying the rules in a non-deterministic maximally parallel
manner, we obtain transitions between the configurations of the system. A finite
sequence of configurations is called computation. A computation halts if it reaches
a configuration where no rule can be applied to the existing objects and proteins.

Only halting computations are considered successful, thus a non-halting com-
putation will yield no result. With a halting computation we associate a result, in
the form of the multiplicity of objects present in region io in the halting configu-
ration. We denote by N(Π) the set of numbers computed in this way by a given
system Π. (A generalization would be to distinguish the objects and to consider
vectors of natural numbers as the result of a computation, but we do not examine
this case here.)

We denote, in the usual way, by NOPm(pror;list-of-types-of-rules) the family
of sets of numbers N(Π) generated by systems Π with at most m membranes,
using rules as specified in the list-of-types-of-rules, and with at most r proteins
present on a membrane. When parameters m or r are not bounded, we use ∗ as a
subscript.

The new definition introduced by the current paper is the addition of time to
the above model, in brief, P system with proteins on membranes and time is a
device of the form

Π = (O,P, µ,w1/z1, . . . , wm/zm, E, R1, . . . , Rm, Cstart, Cstop),

where:

1. m, O, P, µ, w1, . . . , wm, z1, . . . , zm, E, R1, . . . , Rm are as defined above;
2. Cstart, Cstop are regular subsets of (O∗)m, describing configurations of Π. We

will use a regular language over O ∪ {$} to describe them, the special symbol
$ 6∈ O being used as a marker between the configurations3 in the different
regions of the system. More details are given in [8] and [12].

3 We express by these configurations restrictions that need to be satisfied by each of the
current multisets in their respective regions so that the overall configuration can be
satisfied.
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As an example for the Cstart and Cstop configurations, let us give the following
restriction4 C = b3d7(O − {a, b, d})∗ for a single membrane (the proofs obtained
below need only one membrane, thus we can simplify the notation by not using
the symbol $). This means that in the region delimited by the only membrane
in the system, the configuration C is satisfied if and only if we do not have any
symbol of type a, we must have exactly 3 symbols of type b and exactly 7 symbols
of type d. Any other symbol not mentioned is not restricted, e.g. we can have any
number of symbols of type c.

We emphasize the fact that in the definition of Π we assume that Cstart and
Cstop are regular. Other, more restrictive, cases can be of interest but we do not
discuss them here.

We can now denote the systems as above based on time with NTOPm(pror;list-
of-types-of-rules) the family of sets of numbers N(Π) generated by systems Π with
at most m membranes, using rules as specified in the list-of-types-of-rules, and with
at most r proteins present on a membrane. When parameters are not bounded we
replace them by ∗.

3 Register Machines

In the proofs from the next sections we will use register machines as devices char-
acterizing NRE, hence the Turing computability.

Informally speaking, a register machine consists of a specified number of regis-
ters (counters) which can hold any natural number, and which are handled accord-
ing to a program consisting of labeled instructions; the registers can be increased
or decreased by 1 – the decreasing being possible only if a register holds a number
greater than or equal to 1 (we say that it is non-empty) –, and checked whether
they are non-empty.

Formally, a (non-deterministic) register machine is a device M = (m,B, l0, lh, R),
where m ≥ 1 is the number of counters, B is the (finite) set of instruction labels, l0
is the initial label, lh is the halting label, and R is the finite set of instructions la-
beled (hence uniquely identified) by elements from B (R is also called the program
of the machine). The labeled instructions are of the following forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (add 1 to register r and go non-deterministically
to one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if register r is not empty, then subtract 1 from
it and go to the instruction with label l2, otherwise go to the instruction with
label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

We say that a register machine has no ADD instructions looping to the
same label (or without direct loops) if there are no instructions of the form

4 C can be written also in the following form C = (a0b3d7)
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l1 : (ADD(r), l1, l2) or l1 : (ADD(r), l2, l1) in R. For instance, an instruction of the
form l1 : (ADD(r), l1, l2) can be replaced by the following instructions, where l′1 is
a new label: l1 : (ADD(r), l′1, l2), l′1 : (ADD(r), l1, l2). The generated set of numbers
is not changed.

A register machine generates a natural number in the following manner: we
start computing with all m registers being empty, with the instruction labeled by
l0; if the computation reaches the instruction lh : HALT (we say that it halts), then
the values of register 1 is the number generated by the computation. The set of
numbers computed by M in this way is denoted by N(M). It is known (see [11])
that non-deterministic register machines with three registers generate exactly the
family NRE, of Turing computable sets of numbers. Moreover, without loss of
generality, we may assume that in the halting configuration all registers except
the first one, where the result of the computation is stored are empty.

4 Previous Results

In [14] the following results were proved:

Theorem 1.

NOP1(pro2; 2cpp) = NRE. (Theorem 5.1 in [14])
NOP1(pro∗; 3ffp) = NRE. (Theorem 5.2 in [14])

NOP1(pro2; 2res, 4cpp) = NRE. (Theorem 6.1 in [14])
NOP1(pro2; 2res, 1cpp) = NRE. (Theorem 6.2 in [14])
NOP1(pro∗; 1res, 2ffp) = NRE. (Theorem 6.3 in [14])

As an extension of the work reported in [14], a significant amount of energy
was devoted to the flip-flopping variant of these membrane systems which resulted
in the paper [9]. S.N Krishna was able to prove several results in [9] improving
Theorem 5.2, and Theorem 6.3 from [14]:

Theorem 2.

NOP1(pro7; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro7; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro7; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro10; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro7; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro9; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro9; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro8; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro9; 3res, 4ffp) = NRE. (Theorem 11 in [9])
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NOP1(pro8; 2ffp, 5res) = NRE. (Theorem 13 in [9])

A close reading of the theorems mentioned above will yield some improvements
that are given in the following section.

5 New Results

We start this section by first discussing the results from [9] which we mentioned in
Theorem 2. The main idea in all the proofs reported in [9] was to simulate register
machines (it is known that such devices with 3 registers are universal). The novelty
of the proof technique in [9] was to consider for all ADD instructions associated
with a particular register a single protein, similarly we use one protein for all the
SUB instructions associated with a specific register. Thus in the proofs of the
results mentioned in Theorem 2 we will have 6 proteins used for the simulation
of the instructions in the register machine, (both ADD and SUB instructions for
the 3 registers in the machine) the other(s) protein(s) being needed mainly for the
test with zero processing in the simulation of SUB instructions.

The main observation that we want to make at this point is the fact that
register machines with three registers out of which one (the output register) is
non-decreasing are still universal, thus all the results from [9] are better by one
protein without any major changes in their proofs. This is due to the fact that
we only need two proteins to simulate the SUB instructions, and also the proof
technique allows for such a modification. Subsequently, the following results were
shown in [9]:

Theorem 3.

NOP1(pro6; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro6; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro6; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro9; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro6; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro8; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro8; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro7; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro8; 3res, 4ffp) = NRE. (Theorem 11 in [9])
NOP1(pro7; 2ffp, 5res) = NRE. (Theorem 13 in [9])

We will proceed now to consider the same framework, but with the extra feature
of the output based on time. We show that we can improve the result from Theorem
11 from [9]:
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Theorem 4. NRE = NTOP1(pro7, 3res, 4ffp).

Proof. We consider a register machine M = (m,B, l0, lh, R) and we construct the
system

Π = (O,P, [
1

]
1
, {l0, b}/P, E,R1, Cstart, Cstop)

with the following components:

O = {ar, a
′
r | 1 ≤ r ≤ 3} ∪ {i, i′, li, l′i, l′′i , l′′′i , livi , Li, L

′
i | 0 ≤ i ≤ h}

∪{o, o1, o2, b, h, †}.
E = {ar, a

′
r | 1 ≤ r ≤ 3} ∪ {i | 0 ≤ i ≤ h} ∪ {o}.

P = {p1, p2, p3, s2, s3, p, t}.
Cstart = l′′h(O − {l′′h, †})∗, in other words, l′′h

appears exactly once and there are no copies of † in the membrane,
and the rest of the symbols can
appear in any multiplicity as they are ignored.

Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

The proteins p and t are of the type 3res while all the others are of the type
4ffp. Proteins p and pi are used in the simulation of ADD instructions of register
i, proteins p, t and si are used in the simulation of SUB instructions of register
i, and protein p, t, s2 and s3 are used in the simulation of the instructions for
counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 1.

Step Rules Type Environment Membrane

1 a′r[1pr | l1 → l1[1p
′
r | a′r 4ffp El1 ba′r

2 or ar[1p
′
r | a′r → a′r[1pr | ar and l1[1p |→ [

1
p | l2 4ffp, 3res E bl2ar

2 ar[1p
′
r | a′r → a′r[1pr | ar and l1[1p |→ [

1
p | l3 4ffp, 3res E bl3ar

Table 1. Steps for ADD instruction for Theorem 4.

We simulate the work of the ADD instruction in two steps. First we send out
the current instruction label l1 and bring in a copy of the (padding) symbol a′r
using the protein pr. Next we simultaneously apply the rules to replace a′r with ar

using the protein p′r and we bring in the next instruction label l2 or l3 according
to the currently simulated rule l1. Of course, l1 uniquely identifies which rule was
simulated, thus there is no ambiguity about which symbols li are able to enter the
membrane at this time. Let us now consider the case of the SUB instructions:

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 2.
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Step Rules Type Environment Membrane

1 [
1
p | l1 → l′1[1p | 3res El′1 bar

2 l′1[1p |→ [
1
p | l′′1 3res E bl′′1ar

3 o[
1
sr | l′′1 → l′′1 [

1
s′r | o 4ffp El′′1 boar

4 l′′1 [
1
p |→ [

1
p | l′′′1 and [

1
t | o → o1[1t| 3res, 3res Eo1 bl′′′1 ar

5 [
1
p | l′′′1 → liv1 [

1
p | and o1[1t |→ [

1
t | o2 3res, 3res Eliv1 bo2ar

Register r is non-empty

6 liv1 [
1
s′r | ar → ar[1sr | liv1 and [

1
t | o2 → o[

1
t | 4ffp, 3res Eoar bliv1

7 [
1
p | liv1 → 2′[

1
p | 3res E2′ b

8 2′[
1
p |→ [

1
p | l2 3res E bl2

Wrong Computation

6 liv1 [
1
t |→ [

1
t | L′3 and [

1
p | o2 → †[

1
p | 3res, 3res E† bL′3ar

7 †[
1
t |→ [

1
t | † 3res E b † ar

Register r is empty

6 [
1
t | o2 → o[

1
t | 3res Eo b

7 liv1 [
1
t |→ [

1
t | L′3 3res E bL′3

8 3[
1
s′r | L′3 → L′3[1sr | 3 4ffp EL′3 b3

9 [
1
p | 3 → 3′[

1
p | 3res E3′ b

10 3′[
1
p |]ra[

1
p | l3 3res E bl3

Table 2. Steps for SUB instruction for Theorem 4.

We simulate the work of the SUB instruction in several steps (eight if the
register is not empty and ten if it is empty). We first send out the current label
as l′1 using the protein p. At the next step the symbol l′1 is brought in as l′′1 . Next
we exchange l′′1 and o using the protein sr (the protein sr is moved in its primed
version of the flip-flop). We can now apply two rules in parallel and bring in l′′1 as
l′′′1 while sending out o as o1. Next, l′′′1 is sent out as liv1 while we bring in o1 as o2

in parallel.
In this moment our system will perform the checking of the contents of the

register r. If the register is not empty, then liv1 will enter the membrane, decreasing
the register and at the same time another marker o2 is sent outside as o to help
identify the correct case later. At the next stage liv1 will be sent out as 2′ using
protein p. Finally 2′ will return as the next instruction label to be brought in
(in this case l2 as the register is not empty). If liv1 comes back in the membrane
through the protein t instead of s′r, we will have a wrong computation. In this
case we can send out o2 as symbol † in parallel using the protein p (as this is the
only channel available at this time to o2, t being used by liv1 ). Next we can bring
in a copy of the symbol † into the membrane. The application of this rule will
never satisfy the starting configuration; hence, we will not be able to use the time
counter.

If the register is empty, after step 5 we have liv1 in the environment and o2 in
the membrane, and the protein associated with the subtract rule for the register r
(sr) is primed. At this moment liv1 cannot enter the membrane through the protein
s′r as there are no ar objects in the membranes with which it must be exchanged.
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There are two choices: either liv1 enters the membrane through t (and we get the
wrong computation case as above) or t is used by o2, and then liv1 sits one step
in the environment. At the next step we have the “branching point”: rather than
exchanging with ar (which will be present in the membrane in the case when the
register is not empty), liv1 comes into the membrane as L′3 through t. Next we use
the protein s′r to exchange L′3 and 3, and then send out 3 as 3′ using protein p.
Now we bring in 3′ as the next instruction to be simulated l3.

Terminating/counting work: It is clear that at the end of the simulation, if
the register machine has reached the final state, we will have the halting instruction
symbol in the membrane along with one copy of the symbol b and multiple copies
of the three different objects associated with their respective registers. At that
time we will have the computed value encoded as the multiplicity of the object
a1 that is associated with the output register. We will also have in the system
the label of the halting instruction, lh; thus, the rule ([1p | lh → l′h[1p |) can be
applied only when the simulation is performed correctly. At the next step, using
the protein s2 we exchange l′h and b.

The terminating/counting work is done by the rules as shown in Table 3.

Step Rules Type Env Membrane

1 [
1
p | lh → l′h[

1
p | 3res El′h ban1

1 an2
2 an3

3

2 l′h[
1
s2 | b → b[

1
s′2 | l′h 4ffp Eb l′han1

1 an2
2 an3

3

3 b[
1
p |→ [

1
p | l′′h and [

1
t | l′h → l′′h[

1
t | 3res, 3res El′′h l′′han1

1 an2
2 an3

3

4 h[
1
s2 | l′′h → l′′h[

1
s′2 | h or h[

1
s′2 | l′′h → l′′h[

1
s2 | h 4ffp El′′ha1 l′′han1

1 an2
2 an3

3 h
and l′′h[

1
s3 | a1 → a1[1s

′
3 | l′′h 4ffp

or l′′h[
1
s′3 | a1 → a1[1s3 | l′′h

Table 3. Steps for terminating/counting instructions for Theorem 4.

Next we apply two rules in parallel and bring in b as l′′h while sending out l′h as
l′′h, satisfying the Cstart configuration. One can note that if there are no copies of
a1 in the membrane, then also the configuration Cstop is satisfied at the same time,
thus our system would compute the value zero in that case. Next we exchange h
from the environment with l′′h and l′′h from the environment with a1 until we reach
the stopping configuration. For any other value encoded in the multiplicity of a1 it
will take exactly the same number of steps to push the number of copies of object
a1 from the membrane. ut

An interesting observation is the fact that the object b is used for the counting
at the end of the computation. If one considers the same construct for membrane
systems with proteins as defined in [14] (the “classical” systems with the output
the multiplicity of objects in the membrane), then our construction is still valid
even in the case of systems without time, thus we have the following theorem also
proven:

Theorem 5. NRE = NOP1(pro7, 3res, 4ffp).
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The theorem above is valid as one can restrict the register machine to be
simulated (without loss of generality) to the case when the machine halts with the
non-output registers empty.

Thus it can be seen that we are able to improve the result shown in Theorem
10 in [9] both for systems based on multiplicity output and also for systems based
on time. The next result improves significantly Theorem 11 from [9], in this case
for systems based on time, and later one we will discuss also about the non-timed
systems.

Theorem 6. NRE = NTOP1(pro3, 2ffp, 5res).

Proof. We consider a register machine M = (m,B, l0, lh, R) and we construct the
system

Π = (O, P, [
1

]
1
, {l0, b, e}/P,E,R1, Cstart, Cstop)

with the following components:

O = {li, l′i | 0 ≤ i ≤ h} ∪ {a1, a2, a3, b, o, y}.
E = {a1, a2, a3, o}.
P = {p, q, s}.

Cstart = (O − {b})∗, in other words, there are no copies of b in the membrane,
and the rest of the symbols

can appear in any multiplicity as they are ignored.
Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

Protein q is of type 5res while all the others are of the type 2ffp. Proteins p
and q are used in the simulation of the ADD instruction, proteins q and s are used
in the simulation of the SUB instruction, and protein q is used in the simulation
of the instructions for counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 4.

Step Rules Type Environment Membrane

1 ar[1q | l1 → l′1[1q | ar 5res El′1 bear

2 l′1[1q | e → e[
1
q | l2 5res Ee bl2ar

2 l′1[1q | e → e[
1
q | l3 5res Ee bl3ar

3 e[
1
p |→ [

1
p′ | e or e[

1
p′ |→ [

1
p | e 2ffp, 2ffp E bear

Table 4. Steps for ADD instruction for Theorem 6.

We simulate the work of the ADD instruction in two steps. First we send out
the current instruction label l1 as l′1 and bring in a copy of the symbol ar using the
protein q. Next we apply the rule to send out e using the protein q and we bring
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l′1 in as the new instruction label. To simulate the non-deterministic behavior of
these machines we have two rules that do the same job, the only difference being
the next instruction label being brought back in the system. It is clear that the
simulation of the ADD instruction is performed correctly. The work is finished in
this case by the rule (e[

1
p |→ [

1
p′ | e) or (e[

1
p′ |→ [

1
p | e).

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 5.

Step Rules Type Environment Membrane

1 [
1
s | l1 → l1[1s

′ | 2ffp El1 bear

Register r is non-empty

2 o[
1
s′ |→ [

1
s | o and l1[1q | ar → ar[1q | l′1 2ffp, 5res Ear beol′1

3 o[
1
q | l′1 → l′1[1q | l2 5res El′1 beol2

4 l′1[1q | o → o[
1
q | y 5res Eo bey

Register r is empty

2 o[
1
s′ |→ [

1
s | o 2ffp El1 beo

3 l1[1q | o → o[
1
q | l3 5res Eo bel3

Table 5. Steps for SUB instruction for Theorem 6.

We simulate the work of the SUB instruction in several steps (four if the register
is not empty and three if it is empty). At step 1 we first send out the current label
l1 using the protein s. If the register is not empty, at step 2, l1 will enter the
membrane, decreasing the register and at the same time the symbol o is brought
in. At the next stage (step 3) l′1 will be sent out using protein q, and o will return
as the next instruction label to be brought in (in this case l2 as the register is
not empty). Finally l′1 will return as the symbol y while sending out o, so that no
extra copies of o are left in the membrane so that future SUB simulations will be
performed correctly. The symbols y will accumulate in the membrane.

In the case when the register to be decremented is empty, we perform the same
initial step, sending out the current label using the protein s. This time l1 cannot
enter the membrane at the step 2 as there is no ar in the membrane to help bring
it in. So l1 will wait for one step in the environment. o is entering the membrane
at step 2, so at the step 3 l1 can now come into the membrane through q and is
changed into the label of the next instruction to be simulated l3.

The terminating/counting work stage is done by the rules as shown in
Table 6.

Step Rules Type Environment Membrane

1 o[
1
q | lh → lh[

1
q | y 5res Elh bean1

1 an2
2 an3

3

2 lh[
1
q | b → l′h[

1
q | y 5res Ebl′h ean1

1 an2
2 an3

3

3 l′h[
1
q | a1 → l′h[

1
q | y 5res El′ha1 ean1

1 an2
2 an3

3

Table 6. Steps for terminating/counting instructions for Theorem 6.
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It is clear that at the end of the simulation, if the register machine has reached
the final state, we will have the halting instruction symbol in the system membrane,
along with one copy of the symbol b and multiple copies of the three different
objects associated with the respective registers and the symbol y. At that time we
will have the computed value encoded as the multiplicity of the object a1 that is
associated with the output register. We will also have in the system the label of
the halting instruction, lh, thus the rule (o[

1
q | lh → lh[

1
q | y) can be applied only

when the simulation is performed correctly. At the next step, using the protein q
we bring in lh as y while sending out b as l′h, satisfying the Cstart configuration.
One can note that if there are no copies of a1 in the membrane, then also the
configuration Cstop is satisfied at the same time, thus our system would compute
the value zero in that case. Next we bring in l′h as y while sending out a1 as
l′h until we reach the stopping configuration. For any other value encoded in the
multiplicity of a1 it will take exactly the same number of steps to push the a1-s
out of the membrane. ut

Thus it can be seen that by using time as the output, we are able to improve
the result shown in Theorem 13 from [9], where seven proteins were required for
universality, as opposed to the three used in the above proof.

If one wants to still restrict the discussion to only the case of the non-timed
systems, with the price of one protein we can remove the objects y and e from
the membrane (by first modifying them into some other symbols such as y′ and
o′ and then expelling them to the environment). In this way it is easy to see that
our proof for Theorem 6 leads to the following theorem:

Theorem 7. NRE = NOP1(pro4, 2ffp, 5res).
Membrane systems with proteins on membranes are universal for one membrane
and rules of the type 2ffp and 5res using only four proteins.

6 Final Remarks

We have shown that previous results about membrane systems with proteins on
membranes can be improved in what concerns the number of proteins, we have also
extended the model to have the output encoded as the time between two configu-
rations and this has lead to a significant improvement as opposed to the previous
results reported in [9]. Additional similar improvements are under investigation.
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4. F. Bernardini, A. Păun, Universality of Minimal Symport/Antiport: Five Membranes
Suffice, WMC03 revised papers in LNCS 2933, Springer (2004), 43–54.

5. L. Cardelli: Brane Calculi – Interactions of Biological Membranes. In Computational
Methods in Systems Biology. International Conference CMSB 2004, Paris, France,
May 2004, Revised Selected Papers. LNCS, 3082, Springer, Berlin, 2005, 257–280.
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8. O.H. Ibarra, A. Păun, Counting Time in Computing with Cells, Proceedings of
DNA11 conference, June 6-9, 2005, London Ontario, Canada, 112–128.

9. S.N. Krishna, Combining Brane Calculus and Membrane Computing, Proc. Bio-
Inspired Computing – Theory and Applications Conf., BIC-TA 2006, Wuhan, China,
September 2006, Membrane Computing Section and Journal of Automata Languages
and Combinatorics in press.

10. M.L. Minsky, Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics
in Theory of Turing Machines, Annals of Mathematics, 74 (1961), 437–455.

11. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, 1967.
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15. A. Păun, B. Popa, P Systems with Proteins on Membranes and Membrane Division,
Proc. 10th DLT Conf., Santa Barbara, USA, 2006, LNCS 4036, Springer, Berlin,
2006, 292–303.
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Summary. We consider here a variant of rewriting P systems [1], where communication
is controlled by the contents of the strings, not by the evolution rules used for obtaining
these strings. Some new characterizations of recursively enumerable languages are ob-
tained by means of P systems with a small number of membranes, which improves some
of the known results from [1] and [4].

1 Introduction

P systems are a class of distributed parallel computing models inspired from the
way the living cells process chemical compounds, energy, and information. Many
variants of P systems use string objects and context-free rules for processing them.
Rewriting P systems with string objects were introduced in [5]. Several variants of
P systems with string objects have also been investigated extensively. In this work,
we concentrate on rewriting P systems with conditional communication introduced
in [1].

In this variant of rewriting P systems, the communication is controlled by the
contents of the strings, not by the evolution rules themselves. This is achieved
by considering certain types of permitting and forbidding conditions, based on
the symbols or the substrings (arbitrary, or prefixes/suffixes) which appear in a
given string. Several characterizations of recursively enumerable languages were
obtained in [1]. In [4], some of these results were improved. Here we give some new
characterizations of recursively enumerable languages by means of P systems with
a small number of membranes. These results improve some of the results from both
[1] and [4]. In [1], there is a characterization of recursively enumerable language
by systems, where both prefixes and suffixes are checked, without a bound on the
number of membranes. It was also conjectured that the characterization holds also
for a reduced number of membranes. We settle this here in an affirmative way by
giving the characterization with 8 membranes.
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2 Some Prerequisites

In this section we introduce some formal language theory notions which will be
used in this paper; for further details, we refer to [7].

For an alphabet V , we denote by V ∗ the set of all strings over V , including the
empty one, denoted by λ. By RE we denote the family of recursively enumerable
languages. The set of symbols appearing in a string x is denoted by alph(x) and
the substrings of x is denoted by Sub(x).

In our proofs in the following sections we need the notion of a matrix grammar
with appearance checking. Such a grammar is a construct G = (N,T, S, M,F ),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T , and F is a
set of occurrences of rules in M (N is the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N∪T )∗ we write w ⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and the strings wi ∈ (N∪T )∗, 1 ≤ i ≤ n+1, are such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either (1) wi = w

′
iAw

′′
i , wi+1 = w

′
ixiw

′′
i , for some w

′
i, w

′′
i ∈

(N∪T )∗, or (2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in F
if they cannot be applied - one says that these rules are applied in the appearance
checking mode).

The languages generated by G is defined by L(G) = {w ∈ T ∗ | S ⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE

A matrix grammar G = (N, T, S,M, F ) is said to be in the binary normal form
if N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices
in M are in the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y, A → #),with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap symbol - once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of derivation.

According to [2], for each matrix grammar there is an equivalent matrix gram-
mar in the binary normal form.

For an arbitrary matrix grammar G = (N, T, S,M,F ), let us denote by ac(G)
the cardinality of the set {A ∈ N | A → α ∈ F}. It was proved that each recursively
enumerable language can be generated by a matrix grammar G such that ac(G) ≤
2. Consequently, to the properties of a grammar G in the binary normal form we
can add the fact that ac(G) ≤ 2. We will say that this is the strong binary normal
form for matrix grammars.

There are several normal forms for type 0 grammars. We use the Penttonen
normal form in our proofs. A type 0 grammar G = (N, T, S, P ) is said to be
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in Penttonen normal form if the rules from P are of one of the following forms:
A → λ, A → a, A → BC, AB → AC, for A,B, C ∈ N and a ∈ T .

3 Rewriting P Systems with Conditional Communication

An extended rewriting P systems (of degree m ≥ 1) with conditional communica-
tion is a construct

Π = (V, T, µ, M1, . . . , Mm, R1, P1, F1, . . . , Rm, Pm, Fm),

where:

1. V is the alphabet;
2. T ⊆ V is the terminal alphabet;
3. µ is the membrane structure;
4. M1, . . . , Mm are finite languages over V , representing the strings initially

present in the m regions;
5. R1, . . . , Rm are finite sets of context-free rules over V present in the regions of

µ;
6. Pi and Fi are permitting and forbidding conditions associated with the regions.

The conditions can be of the following forms:

1. empty: no restriction is imposed on strings, they either exit the current mem-
brane or enter any of the directly inner membrane freely (but they cannot
remain in the current membrane); we denote an empty permitting condi-
tion by (true, X), X ∈ {in, out}, and an empty forbidding condition by
(false, notX), X ∈ {in, out}.

2. symbols checking: each Pi is a set of pairs (a,X), X ∈ {in, out}, for a ∈ V , and
each Fi is a set of pairs (b, notX), X ∈ {in, out}, for b ∈ V ; a string w can go
to a lower membrane only if there is a pair (a, in) ∈ Pi with a ∈ alph(w) and
for each (b, notin) ∈ Fi we have b /∈ alph(w); similarly for sending the string
w out of membrane i it is necessary to have a ∈ alph(w) for at lease one pair
(a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi.

3. substring checking: each Pi is a set of pairs (u,X), X ∈ {in, out}, for u ∈ V +,
and each Fi is a set of pairs (v, notX), X ∈ {in, out}, for v ∈ V +; a string w can
go to a lower membrane only if there is a pair (u, in) ∈ Pi with u ∈ Sub(w),
and for each (v, notin) ∈ Fi we have v /∈ Sub(w); similarly for sending the
string w out of membrane i it is necessary to have u ∈ Sub(w) for at lease one
pair (u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi.

4. prefix/suffix checking: exactly as in the case of substrings checking, with the
checked string being a prefix or a suffix of the string to be communicated.

We say that we have conditions of the types empty, symb, subk, prefk, suffk,
respectively, where k is the length of the longest string in all Pi, Fi.

A systems is said to be non-extended if V = T .
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The transitions of the system are defined in the following way. In each region,
each string which can be rewritten is rewritten by a rule from that region. The
rule to be applied and the nonterminal it rewrites are non-deterministically cho-
sen. The string obtained in this way is checked against the conditions Pi, Fi from
that region. If it fulfills the required conditions, then it will be immediately sent
out of the membrane or to an inner membrane, if any exists; if it fulfills both in
and out conditions, then it is sent to a membrane non-deterministically choos-
ing the direction - and non-deterministically choosing the inner membrane in the
case when several directly inner membranes exist. If a string does not fulfill any
condition, or it fulfills only in conditions and there is no inner membrane, then
the string remains in the same region. If a string cannot be rewritten, then it is
directly checked against the communication conditions. That is, the rewriting has
priority over communication.

A sequence of transitions form a computation and the result of a halting com-
putation is the set of strings over T sent out of the system. In the case of non-
extended systems, all strings sent out are accepted. A computation does not yield
a result if it does not halt. A string which remains inside the system or, in the
case of extended systems, which exits but contains nonterminal symbols does not
contribute to the generated language. The language generated by a system Π is
denoted by L(Π).

We denote by RPn(rw, α, β), n ≥ 1, α, β ∈ {empty, symb} ∪ {subk | k ≥
2} ∪ {prefsuffk | k ≥ 2}, the family of languages generated by P system of
degree at most n and with permitting and forbidding conditions of type α and β
respectively.

4 Improved Universality Results

In [1], it was proved that P systems of degree 4 with permitting conditions of type
sub2 and forbidding conditions of type symb are computationally universal. This
result has been improved from 4 to 3 membranes in [4]. We improve this result
and show that universality can be achieved with 2 membranes in this case.

Theorem 1. RE = RP2(rw, sub2, symb).

Proof. Let us consider a type 0 grammar G = (N,T, S, P ), in Penttonen normal
form, with the non context-free rules from P labeled in a one-to-one manner and
construct the system

Π = (V, T, [1[2]2]1, {S}, ∅, (R1, P1, F1), (R2, P2, F2)),

with the following components :

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P};
R1 = {A → x | A → x ∈ P}
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∪ {B → (B, r) | r : AB → AC ∈ P};
P1 = {(A(B, r), in) | r : AB → AC ∈ P}

∪ {(true, out)};
F1 = {(false, notout)};
R2 = {(B, r) → C | r : AB → AC ∈ P};
P2 = {(true, out)};
F2 = {((B, r), notout) | r : AB → AC ∈ P}.

The system works as follows:
The initial configuration of the system is [1S[2]2]1. The context-free rules from

P are present in R1 as rewriting rules, hence we can simulate them without any
difficulty. Let us assume that we have a string w1ABw2 in membrane 1. In order
to simulate a rule r : AB → AC ∈ P , we apply the rule B → (B, r) on the string.
The string is sent to membrane 2 only if it has a substring of the form A(B, r) for
some r : AB → AC ∈ P . Otherwise, the string is sent out, but it is not a terminal
one. In membrane 2, we replace the symbol (B, r) with C and send the resulting
string to the skin membrane. In this way, we complete the simulation of the non
context-free rule.

The process can be iterated until no nonterminal is present in the sentential
form. Hence, each derivation in G can be simulated in Π and, conversely, all
halting computations in Π correspond to correct derivations in G. Therefore, the
computation in Π can stop only after reaching a terminal string with respect to
G. Thus, we have L(G) = L(Π). ut

In [1], it was proved that P systems of degree 4 with permitting conditions
of type sub2 and forbidding conditions of type empty can characterize recursively
enumerable languages. We improve this result by proving the universality with 3
membranes.

Theorem 2. RE = RP3(rw, sub2, empty).

Proof. We start again from a type 0 grammar G = (N, T, S, P ) in Penttonen
normal form, with the non context-free rules in P labeled in a one-to-one manner,
and we construct the P system

Π = (V, T, [1[2]2[3]3]1, ∅, {S}, ∅, (R1, P1, F1), . . . , (R3, P3, F3)),

with the following components:

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P}
∪ {A′, A′′ | A ∈ N} ∪ {f, Z};

R1 = {f → λ,C ′′ → Z}
∪ {C ′ → C ′′ | C ∈ N};

P1 = {(λ, out)} ∪ {(C ′′, in) | C ∈ N}
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∪ {(A(B, r), in) | r : AB → AC ∈ P};
R2 = {B → (B, r) | r : AB → AC ∈ P}

∪ {A → x, A → xf | A → x ∈ P}
∪ {C ′′ → C | C ∈ N};

P2 = {(f, out)}
∪ {((B, r), out) | r : AB → AC ∈ P};

R3 = {(B, r) → C ′ | r : AB → AC ∈ P}
∪ {C ′′ → Z | C ∈ N};

P3 = {(C ′, out) | C ∈ N}.

All sets of forbidding conditions consist of the pairs (false, notin), (false, notout).
This system works as follows. We start in membrane 2 with the axiom of G.

The context-free rules of G can be simulated here. If a terminal rule A → xf is
used in membrane 2, then the string goes to membrane 1 and from here out of the
system. If it is not terminal,it is not accepted in the generated language. If the
string is terminal, then it is introduced in L(Π).

Suppose that a string w is rewritten in membrane 2 by a rule B → (B, r)
associated with a rule r : AB → AC ∈ P . It exits; if the symbols A and (B, r)
are not associated with the same rule from P , then the string is sent out, but it is
not a terminal one. Assume that the string is of the form w1A(B, r)w2, for some
r : AB → AC ∈ P . No rule can be applied in membrane 1, but the string can be
sent to a lower membrane. If it arrives back in membrane 2, then it will exit either
unchanged or after introducing one more symbol of the form (B, r). The process
is repeated; eventually; the string will arrive in membrane 3 (otherwise we either
continue between membrane 1 and 2 or we send the string out of the system and
it is not a terminal one). Here in membrane 3 we replace the symbol (B, r) with
C ′ and the string is sent back to the skin membrane. In the skin membrane, the
symbol C ′ is replaced with C ′′.

Now there are two cases. If we had at least two symbols of the form (B, r) and
(B1, r1) in the string, then before finishing the simulation of the rule r, we can
start the simulation of the rule r1. But then the trap symbol Z will be introduced.
So we have to finish the simulation of the rule r first. In the other case, the string
can be sent to one of membrane 2 and 3. If the string arrives back to 3, then the
trap symbol will be introduced. Thus, we have to send the string to membrane
2. We have two cases here. If in membrane 2 we use the rule C ′′ → C, then we
have again a string (N ∪ T )∗, and the process can be iterated. If before using the
rule C ′′ → C, we use a rule B → (B, r), then the string should go to membrane 1
where we introduce the trap symbol Z by the rule C ′′ → Z. Thus L(G) = L(Π).
ut

The universality result for P systems with both permitting and forbidding
conditions of type symb has been improved from 6 [1] to 5 membranes in [4]. Here
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we give a universality result with only 3 membranes. We use the same idea as in
[3].

Theorem 3. RE = RP3(rw, symb, symb).

Proof. Consider a matrix grammar with appearance checking G = (N, T, S, M, F )
in the strong binary normal form with N = N1 ∪ N2 ∪ {S, #}. Assume that
ac(G) = 2, and let B(1) and B(2) be the two objects in N2 for which we have rules
B(j) → # in matrices of M . Let us assume that we have k matrices of the form
mi : (X → α, A → x), X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, and x ∈ (N2 ∪ T )∗. We
replace each matrix of the form (X → λ,A → x) by (X → f, A → x) where f
is a new symbol. We continue to lable the obtained matrices in the same way as
the original one. The matrices of the form (X → Y, B(j) → #), are labeled by mi

with i ∈ labj , for j = 1, 2 such that lab1, lab2 and lab0 = {1, 2, . . . , k} are mutually
disjoint sets.

We construct the P system (of degree 3)

Π = (V, T, µ,M1, . . . ,M3, R1, P1, F1, . . . , R3, P3, F3),

with the following components:

V = N1 ∪N2 ∪ T ∪ {Xi,j | X ∈ N1, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {Ai, Ai,j | A ∈ N2, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {X ′, X ′′, X(1), X(2) | X ∈ N1 ∪ {f}},

µ = [1[2[3]3]2]1,
M1 = {XA}, for (S → XA) being the initial matrix of G,

M2 = M3 = ∅,

and with the following triples (Ri, Pi, Fi), 1 ≤ i ≤ 3 :

R1 = {X → Y (1) | mi : (X → Y,B(1) → #}
∪ {X → Y (2) | mi : (X → Y,B(2) → #}
∪ {A → Ai,0 | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}
∪ {Ai,j → # | 1 ≤ j < i ≤ k}
∪ {Ai → x | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}
∪ {α′ → α | α ∈ N1} ∪ {f ′ → λ};

P1 = {(Ai,0, in) | i ≤ i ≤ k}
= {(X(1), in), (X(2), in) | X ∈ N1}
= {(a, out) | a ∈ T};

F1 = {(X, notout) | X ∈ N1 ∪N2}
∪ {(Ai, notin) | A ∈ N2, 1 ≤ i ≤ k}
∪ {(Ai,j , notout) | A ∈ N2, 1 ≤ i, j ≤ k}
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∪ {(α′, notin) | α ∈ N1 ∪ {f}};
R2 = {X → Xi,0 | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}

∪ {B(1) → #, # → #}
∪ {Y (1) → Y, Y ′′ → Y | Y ∈ N1}
∪ {Xi,j → Xi,j+1 | X ∈ N1, 1 ≤ j < i ≤ k}
∪ {Xi,i → α′ | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}};

P2 = {(Y, out), (Y (2), in) | Y ∈ N1}
∪ {(Xi,j , in) | 1 ≤ j < i ≤ k}
∪ {(α′, out) | α ∈ N1 ∪ {f}};

F2 = {(B(1), notout) | B ∈ N2}
∪ {(α′′, notin) | α ∈ N1 ∪ {f}};

R3 = {Y (2) → Y ′′} ∪ {B(2) → #, # → #}
∪ {Ai,j → Ai,j+1 | A ∈ N2, 1 ≤ j < i ≤ k}
∪ {Ai,i → Ai, Ai → # | 1 ≤ i ≤ k};

P3 = {(Y ′, out) | Y ∈ N1}
∪ {(Ai,j , out) | 1 ≤ j < i ≤ k}
∪ {(Ai, out) | 1 ≤ i ≤ k};

F3 = {(B(2), notout) | B ∈ N2}.

Only strings over T are accepted in the generated language; # is a trap symbol.
From the skin membrane in any moment we can send out a string if it contains at
least one terminal symbol, but the string is not accepted in the generated language
if it contains any symbol not in T .
Simulation of the matrix mi : (X → α, A → x), 1 ≤ i ≤ k:

We start the simulation by the rule A → Ai,0. The string can be sent to
membrane 2 where we apply the rule X → Xj,0. The obtained string is sent to
membrane 3. From now on, the string will go back and forth between membranes
2 and 3, and the second subscript of the symbols Xi,s and Yj,t is alternatively
increased. Now we have three cases here:
Case 1: i < j. This means that at some step in membrane 3 we have a string of
the form Xj,iw1Ai,i−1w2. We replace Ai,i−1 with Ai,i and no communication is
possible. So we use the rule Ai,i → Ai and the string is sent out. In membrane 2,
we replace Xj,i with Xj,i+1 and sent the string back to membrane 3, where the
trap symbol # is introduced (the rewriting has priority over communication).
Case 2: i > j. At some moment we have a string of the form Xj,jw1Ai,j−1w2 in
membrane 2 which is sent to membrane 3. Here we replace Ai,j−1 with Ai,j and
send the string out. In membrane 2 we replace Xj,j with α′, and the string is sent
out. In the skin membrane, we can apply Ai,j → #, hence the string will never
lead to a terminal one.
Case 3: i = j. At some moment we pass from membrane 2 to membrane 3 a string
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Xi,iw1Ai,i−1w2. In membrane 3, we replace Ai,i−1 with Ai,i and, because we can-
not exit, we replace Ai,i with Ai and send out the string. Here in membrane 2 we
replace Xi,i with α′ and send the string to the skin membrane. In the skin mem-
brane we have to replace α′ with α and Ai with x before starting the simulation
of the next matrix.
Simulation of the matrices (X → Y, B(j) → #), j = 1, 2.

The simulation of a matrix of this form starts by a rule X → Y (1) or X →
Y (2) in the skin membrane. If we are simulating a rule (X → Y,B(1) → #),
then in membrane 2 we use the rule Y (1) → Y . Now the string can be sent to
the skin membrane only if B(1) is not present. Similarly, if we are simulating
(X → Y, B(2) → #), then in membrane 2 there is no rule we can apply. So we
send the string to membrane 3, where we replace Y (2) with Y ′′ and the resulting
string can be sent out if B(2) is not present. Back in membrane 2, we replace Y ′′

with Y and send the string to the skin membrane.
If at any moment we get a string of the form f ′w, for w ∈ T ∗, in the skin

membrane, then we remove f ′ and send the string out. Consequently, L(G) =
L(Π). ut

There is a characterization of recursively enumerable languages by P systems
with permitting conditions of type prefsuff2 and forbidding conditions of type
empty in [1] without a bound on the number of membranes. It was conjectured that
such a characterization holds also for a reduced number of membranes. We settle
this conjecture in the positive here and show that eight membranes are enough for
achieving the universality.

Theorem 4. RE = RP8(rw, prefsuff2, empty).

Proof. Let us consider a type 0 grammar G = (N, T, S, P ) in Penttonen normal
form, with the non context-free rules in P labeled in an injective manner, and
assume that N ∪ T ∪ {$} = {E1, E2, . . . , En}. We construct the P system Π, of
degree 8, with the following components:

V = N ∪ T ∪ {A′ | A ∈ N}
∪ {X, Y, Y ′, Z, $}
∪ {Xi, Yi, Xi,j , Yi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ n}
∪ {(B, r) | r : AB → AC ∈ P},

µ = [1[2[3[4[5[6]6]5]4]3[7[8]8]7]2]1,
Mi = ∅, 1 ≤ i ≤ 8, i 6= 2,

M2 = X$SY,

and with the following sets of rules and associated permitting conditions. All for-
bidding condition sets are of the form {(false, notin), (false, notout)}:

R1 = {X → λ, Y → λ, $ → λ};
P1 = {(a, out) | a ∈ T};
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R2 = {Ei → E′
i, Y → Yi,0 | 1 ≤ i ≤ n}

∪ {B → (B, r) | r : AB → AC ∈ P}
∪ {A → x | A → x ∈ P}
∪ {(B, r) → Z | r : AB → AC ∈ P}
∪ {E′

i → Z, Yi,0 → Z | 1 ≤ i ≤ n};
P2 = {($Y, out)}

∪ {(E′
iYi,0, in) | r : AB → AC ∈ P, 1 ≤ i ≤ n}

∪ {((B, r)Y, in) | r : AB → AC ∈ P};
R3 = {E′

i → λ, Yi → Y | 1 ≤ i ≤ n}
∪ {(B, r) → Z | r : AB → AC ∈ P};

P3 = {(Yi,0, in) | 1 ≤ i ≤ n}
∪ {(Y, out)};

R4 = {X → Xi,0Ei, Xi → X | 1 ≤ i ≤ n}
∪ {Yi,j → Z | 1 ≤ j < i ≤ n};

P4 = {(Xi,0, in) | 1 ≤ i ≤ n}
∪ {(X, out)};

R5 = {Xi,j → Xi,j+1 | 0 ≤ j < i ≤ n}
∪ {Xi,i → Xi | 1 ≤ i ≤ n};

P5 = {(Xi,j , in) | 1 ≤ j < i ≤ n}
∪ {(Xi, out) | 1 ≤ i ≤ n};

R6 = {Yi,j → Yi,j+1 | 0 ≤ j < i ≤ n}
∪ {Yi,i → Yi, Yi → Z | 1 ≤ i ≤ n};

P6 = {(Yi,j , out) | 1 ≤ j < i ≤ n}
∪ {(Yi, out) | 1 ≤ i ≤ n};

R7 = {Y → λ, Y ′ → Y }
∪ {Yi,0 → Z | 1 ≤ i ≤ n};

P7 = {(A(B, r), in), (CY, out) | r : AB → AC ∈ P};
R8 = {(B, r) → CY ′ | r : AB → AC ∈ P};
P8 = {(CY ′, out)}.

We start from the string X$SY , initially present in membrane 2. We plan to
simulate the non context-free rules from P in the right end of the strings of Π
and to this aim we use the so-called rotate-and-simulate technique much used in
the DNA computing area. If Xw1$w2Y is a sentential form of Π, then w2w1 is a
sentential form of G. The symbol $ indicates the actual beginning of strings from
G. Z is a trap symbol, once introduced, it cannot be removed, hence the string
will never become a terminal one.
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In membrane 2, we can simulate any context-free rule from P and the string
will remain in the same region. We start the procedure of circularly permuting the
string with one symbol by using the rules Ei → E′

i and Y → Yi,0. If the primed
symbol is the right most one, then the condition to send the string to a lower
membrane is fulfilled. If we did not use both the rules or the primed symbol is not
the rightmost one, then the trap symbol is introduced. Now we can either send the
string to membrane 7 or 3. If it enters membrane 7, then we introduce the trap
symbol.

In membrane 3, we remove E′
i and send the string to membrane 4. In membrane

4, we replace X with Xi,0Ei and send the string to membrane 5. From now on,
the string will go back and forth between membranes 5 and 6, and the second
subscript of the symbols Xi,s and Yj,t is alternatively increased. Now there are
three cases:
Case 1: i < j. This means that at some step in membrane 6 we have a string
Xj,iwYi,i−1. We replace Yi,i−1 with Yi,i and no communication is possible, hence
one more rewriting is necessary. We replace Yi,i with Yi and the string is sent
out. In membrane 5 we replace Xj,i with Xj,i+1 and the string is sent back to
membrane 6, where we introduce the trap symbol.
Case 2: i > j. At some moment we have a string of the form Xj,jwYi,j−1 in
membrane 5, which is sent to membrane 6. We replace Yi,j−1 with Yi,j in membrane
6 and the string exits. In membrane 5 we replace Xj,j with Xj and the string is
sent out. Back in membrane 4 we can apply Yi,j → Z, hence the string will never
lead to a terminal one.
Case 3: i = j. At some moment we pass from membrane 5 to membrane 6 a string
Xi,iwYi,i−1. In membrane 6 we replace Yi,i−1 with Yi,i and, because we cannot
exit, we replace Yi,i with Yi and sent the string out. In membrane 5 we replace
Xi,i with Xi and the string is sent out. We replace the symbols Xi and Yi with
X and Y respectively in membrane 4 and 5 and the string is sent to membrane 2.
The process of circularly permuting the symbol will end successful if we add the
symbol Ei in the left end of the string corresponding to the symbol E′

i which was
removed from the right end of the string

We simulate the non context-free rules r : AB → AC, in the following way. A
symbol B is replaced by (B, r) in membrane 2, if this is not done in the right most
position, then the symbol Z is introduced. If the string is of the form Xw(B, r)Y ,
then it has to go to membrane 7. In membrane 7 we replace the symbol Y and send
the string to membrane 8, if the string is of the form Xw1A(B, r) corresponding
to some rule r : AB → AC ∈ P . In membrane 8 we replace (B, r) with CY ′ and
send out the resulting string . In membrane 7 we replace Y ′ with Y and send the
string to membrane 2.

The process can be iterated. Consequently, L(G) = L(Π). ut
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5 Conclusion

In this paper we gave some improved results about rewriting P systems with
conditional communication. We believe that the result of Theorem 3 cannot be
improved further. It is an open problem whether or not the result of Theorem 4
can be improved.
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Universidad Politécnica de Valencia
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Summary. The relation between the membrane structures of P systems and an exten-
sion of tree automata which introduces multisets in the transition function has been
proposed in previous works. Here we propose two features of tree automata which have
been previously studied (namely, reversibility and local testability) in order to extend
them to multiset tree automata. The characterization of these families will introduce a
new characterization of membrane structures defined by the set of rules used for mem-
brane creation and deletion.

1 Introduction

The relation between membrane structures and tree languages has been explored
in previous works. So, Freund et al. [4] proved that P systems are able to generate
recursively enumerable sets of trees through their membrane structures. Other
works have focused on extending the definition of finite tree automata in order to
take into account the membrane structures generated by P systems. So, in [13], the
authors propose an extension of tree automata, namely multiset tree automata,
in order to recognize membrane structures. In [7], this model is used to calculate
editing distances between membrane structures. Later, a method to infer multiset
tree automata from membrane observations was presented in [14].

In this work we introduce two new families of multiset tree automata, by using
previous results taken from tree language theory. We propose a formal definition of
reversible multiset tree automata and local testable multiset tree automata. These
features have been widely studied in previous works [6, 8].

The structure of this work is simple: first we give basic definitions and notation
for tree languages, P systems and multiset tree automata and we define the new
families of multiset tree automata. Finally, we give some guidelines for future
research.
? Work supported by the Spanish Generalitat Valenciana under contract GV06/068.
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2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the books [12], [10] and [2] to
the reader.

Multisets

First, we will provide some definitions from multiset theory as exposed in [15].

Definition 1. Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→ N
is a function.

Definition 2. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by AªB, is the multiset C = 〈D, h〉 where
for all a ∈ D h(a) = max(f(a)− g(a), 0).

Definition 3. Let A = 〈D, f〉 be a multiset; we will say that A is empty if for all
a ∈ D, f(a) = 0.

Definition 4. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum, de-
noted by A⊕B, is the multiset C = 〈D, h〉, where for all a ∈ D h(a) = f(a)+g(a).

Definition 5. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say that
A = B if the multiset (AªB)⊕ (B ªA) is empty.

The size of any multiset M , denoted by |M | will be the number of elements
that it contains. We are specially interested in the class of multisets that we call
bounded multisets. They are multisets that hold the property that the sum of all
the elements is bounded by a constant n. Formally, we will denote by Mn(D) the
set of all multisets 〈D, f〉 such that

∑
a∈D f(a) = n.

A concept that is quite useful to work with sets and multisets is the Parikh
mapping. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
Nn where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define Ψ(x) =
(#d1(x), · · · ,#dn(x)) where #dj (x) denotes the number of occurrences of dj in x.

P systems

We will introduce basic concepts from membrane systems taken from [10]. A gen-
eral P system of degree m is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)
• T ⊆ V (the output alphabet)
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• C ⊆ V , C ∩ T = ∅ (the catalysts)
• µ is a membrane structure consisting of m membranes
• wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i
• Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj
| a ∈ V, 1 ≤ j ≤ m}

and δ is a special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink : 1 ≤ k ≤ m}.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time then permutations are allowed). The set of
vector numbers that represent the objects in the output membrane i0 will be
denoted by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for
halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in which
these variants have been proposed (see, for example, [1, 9, 10, 11]).

In the following, we enumerate some kind of rules which are able to modify the
membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′
2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g.,
exocytosis, endocytosis, etc.) has been widely studied in the membrane computing
area.

Tree automata and tree languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 5]. First, let a ranked alphabet be the association of an alpha-
bet V together with a finite relation r in V × N. We denote by Vn the subset
{σ ∈ V | (σ, n) ∈ r}.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0

σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)
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and let a tree language over V be defined as a subset of V T .
Given the tuple l = 〈1, 2, ..., k〉 we will denote the set of permutations of l by

perm(l). Let t = σ(t1, ..., tn) be a tree over V T . We denote the set of permutations
of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin

) | 〈i1, i2, ..., in〉 ∈
perm(〈1, 2, ..., n〉)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots, formed
using the catenation as the composition rule and the empty word λ as the identity.
Let the prefix relation ≤ in N∗ be defined by the condition that u ≤ v if and only
if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of N∗ is called a tree
domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes correspond
to the elements of D where the hierarchy relation is the prefix order. Thus, each
tree t over V can be seen as an application t : D → V . The set D is called the
domain of the tree t, and denoted by dom(t). The elements of the tree domain
dom(t) are called positions or nodes of the tree t. We denote by t(x) the label of
a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as
depth(t) = max{|x| : x ∈ dom(t)}. In the same way, for any tree t, we denote the
size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree t =
σ(t1, . . . , tn) will be defined as Ht = 〈root(t1), . . . , root(tn)〉. Finally, leaves(t)
will denote the set of leaves of the tree t.

Definition 6. A finite deterministic tree automaton is defined by the tuple A =
(Q,V, δ, F ) where Q is a finite set of states; V is a ranked alphabet with m as the
maximum integer in the relation r, Q∩V = ∅; F ⊆ Q is the set of final states and
δ =

⋃
i:Vi 6=∅ δi is a set of transitions defined as follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . , m

δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by
Ant(q), as the set of strings
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Ant(q) = {p1 · · · pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}
From now on, we will refer to finite deterministic tree automata simply as tree

automata. We suggest [3, 5] for other definitions on tree automata.
The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees

as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q,V, δ, F ), where:

Q = Sub(T )
F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

Let $ be a new symbol in V0, and V T
$ the set of trees (V ∪ {$})T where each

tree contains $ only once. We will name the node with label $ as link point when
necessary. Given s ∈ V T

$ and t ∈ V T , the operation s#t is defined as:

s#t(x) =
{

s(x) if x ∈ dom(s), s(x) 6= $
t(z) if x = yz, s(y) = $, y ∈ dom(s)

therefore, given t, s ∈ V T , let the tree quotient (t−1s) be defined as

t−1s =
{

r ∈ V T
$ : s = r#t if t ∈ V T − V0

t if t ∈ V0

This quotient can be extended to consider set of trees T ⊆ V T as:

t−1T = {t−1s | s ∈ T}

For any k ≥ 0, let the k-root of a tree t be defined as follows:

rootk(t) =
{

t, if depth(t) < k
t′ : t′(x) = t(x), x ∈ dom(t) ∧ |x| ≤ k, otherwise
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Multiset tree automata and mirrored trees

We will extend over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we will
characterize the set of trees that it accepts.

Given any tree automaton A = (Q, V, δ, F ) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1) ⊕MΨ (p2) ⊕ · · · ⊕MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up pars-
ing as in the tree automaton case.

Definition 7. A multiset tree automaton is defined by the tuple MA = (Q,V, δ, F ),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V ) = n,
Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ (a) ∈M1(Q ∪ V0) ∀a ∈ V0

We can observe that every tree automaton A defines a multiset tree automaton
MA as follows

Definition 8. Let A = (Q,V, δ, F ) be a tree automaton. The multiset tree automa-
ton induced by A is defined by the tuple MA = (Q,V, δ′, F ) where each δ′ is defined
as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, ..., pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A
is non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended as
follows
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δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′n(σ, M1 ⊕ · · · ⊕Mn) | Mi ∈ δ′(ti)1 ≤ i ≤ n}
for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M | MΨ (q) ∈ δn(σ,M)}.
Theorem 1. (Sempere and López, [13]) Let A = (Q,V, δ, F ) be a tree automa-
ton, MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A and t =
σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ (q) ∈ δ′(t).

Corollary 1. (Sempere and López, [13]) Let A = (Q,V, δ, F ) be a tree automaton
and MA = (Q,V, δ′, F ) be the multiset tree automaton induced by A. If t ∈ L(A)
then t ∈ L(MA).

We will introduce the concept of mirroring in tree structures as exposed in [13].
Informally speaking, two trees will be related by mirroring if some permutations
at the structural level hold. We propose a definition that relates all the trees with
this mirroring property.

Definition 9. Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t ./ s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists 〈s1, s2, . . . , sk〉
∈ perm(〈s1, s2, ..., sn〉) such that ∀1 ≤ i ≤ n ti ./ si

Theorem 2. (Sempere and López, [13]) Let A = (Q, V, δ, F ) be a tree automaton,
t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q,V, δ′, F ) be the
multiset tree automaton induced by A. If t ./ s then δ′(t) = δ′(s).

Corollary 2. (Sempere and López, [13]) Let A = (Q, V, δ, F ) be a tree automaton,
MA = (Q,V, δ′, F ) the multiset tree automaton induced by A and t ∈ V T . If
t ∈ L(MA) then, for any s ∈ V T such that t ./ s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [13]. So, given two trees s and t, we can establish
in time O((min{|t|, |s|})2) if t ./ s.
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3 k-testable in the Strict Sense (k-TSS) Multiset Tree
Languages

In this section, we will define a new class of multiset tree languages. The definitions
related to multiset tree automata come from the relation between mirrored trees
and multiset tree automata which we have established in the previous section. So,
whenever we refer to multiset tree languages we are taking under our consideration
the set of (mirrored) trees accepted by multiset tree automata.

We refer to [6] for more details about reversibility and local testability in tree
languages.

First, we define k-TSS multiset tree languages for any k ≥ 2.

Definition 10. Let T ⊆ V T and the integer value k ≥ 2. T is a k-TSS multi-
set tree language if and only if, given whatever two trees u1, u2 ∈ V T such that
rootk−1(u1) = rootk−1(u2), u−1

1 T 6= ∅ and u−1
2 T 6= ∅ implies that u−1

1 T = u−1
2 T

Any multiset tree automaton as in the definition given before will be named a
k-TSS multiset tree automaton. Given A a tree automaton, t1, t2 valid contexts
over V T

$ , as an extension of a result concerning k-TSS tree languages, we give the
following definition:

Definition 11. Let A be a multiset tree automaton over V T
$ . Let u1, u2 ∈ V T be

two trees such that rootk−1(u1) = rootk−1(u2) and t1#u1, t2#u2 ∈ L(A) for some
valid contexts t1 and t2. If A is a k-TSS mirror tree automaton then δ(u1) = δ(u2).

We can give the following characterization of such automata.

Corollary 3. Let A be a k-TSS multiset tree automaton. There does not exist two
distinct states q1, q2 such that rootk(q1) ∩ rootk(q2) 6= ∅

The previous result can be easily deduced from the definition of k-TSS multiset
tree automata and the definitions given in section 2 about tree automata and tree
languages.

Example 1. Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q2

δ(σ, q1q1)= q1

δ(σ, aq2q1)= q3 ∈ F

Note that the multiset tree language accepted by the automaton is k-TSS for
any k ≥ 2.

Note also that the following one does not have the k-TSS condition for any
k ≥ 2:
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δ(σ, aa)= q1

δ(σ, bb)= q2

δ(σ, q2q2)= q2

δ(σ, q1q1)= q1

δ(σ, q2q1)= q3 ∈ F

because both the states q1 and q2 (and q3) share a common k-root.

4 Reversible Multiset Tree Automata

We also extend a previous result concerning k-reversible tree languages (for any
k ≥ 0) to give the following definition.

Definition 12. Let T ⊆ V T and the integer value k ≥ 0. T is a k-reversible
multiset tree language if and only if, given whatever two trees u1, u2 ∈ V T such
that rootk−1(u1) = rootk−1(u2), whenever there exists a context t ∈ V T

$ such that
both u1#t, u2#t ∈ T , then u−1

1 T = u−1
2 T

Definition 13. Let A be a multiset tree automaton over V T
$ . Let p1, p2 ∈ Q be

two states such that rootk(L(p1))∩ rootk(L(p2)) 6= ∅. A is order k reset free if the
automaton does not contain two transitions such that

δ(σ, q1q2 . . . qnp1) = δ(σ, q1q2 . . . qnp2)

where qi ∈ Q, 1 ≤ i ≤ n.

Definition 14. Let A be a multiset tree automaton. A is k-reversible if A is order k
reset free and for any two distinct final states f1 and f2 the condition rootk(L(f1))∩
rootk(L(f2)) 6= ∅ is fulfilled.

Example 2. Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, q2q2)= q2

δ(σ, aaq1)= q1

δ(σ, q1q1)= q3 ∈ F
δ(σ, q2q1)= q3 ∈ F

The multiset tree language accepted by this automaton is k-reversible and it is
also an example of non k-TSS multiset tree language.
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A relation between the previous classes

Finally, we can relate the two families of multiset tree languages that we have
previously defined with the following result.

Theorem 3. Let T ⊆ V T and an integer value k ≥ 2. If T is k-TSS then T is
(k − 1)-reversible.

Proof.
Let t#t1 and t#t2 belong to T , with t ∈ V T

$ and rootk(t1) = rootk(t2).
Trivially, t−1

1 T 6= ∅ and t−1
2 T 6= ∅. If T is a k-TSS tree language, then by previous

definitions, t−1
1 T = t−1

2 T , and also T is (k − 1)-reversible. ¤

5 From Transitions to Membrane Structures

Once we have formally defined the two classes of multiset tree automata, we will
translate their characteristics in terms of membrane structures. First we will give a
meaning to the concept of rootk(t). Observe that in a membrane structure t, which
is represented by a set of mirrored trees {t′ | t ./ t′}, the meaning of rootk(t) is
established by taking into account the (sub)structure of the membranes from the
top region up to a depth of length k. Another concept that we have managed
before is the operator #. Observe that this is related to membrane creation of P
systems. So, we can go from membrane configuration t to t#s by creating a new
membrane structure s in a predefined region of t (established by #).

So, k testability implies that, whenever we take two membrane structures u1

and u2 at any level of the P regions, if they are part of a common structure then
they are part of the same set of structures (u1 cannot appear as a substructure of a
membrane structure if u2 does not appear as a substructure of the same membrane
structure at the same level).

On the other hand, k-reversibility implies that whenever two membrane struc-
tures u1 and u2 share the same substructure up to length k− 1, if u1 and u2 have
a common structure t such that u1#t and u2#t are valid configurations of the P
system, then u1#s is a valid configuration of the P system iff so is u2#s.

6 Conclusions and Future Work

We have introduced two new families of multiset tree languages. These classes have
characterized the membrane structures defined by P systems. We think that other
classes of tree languages will imply new classes of membrane structures. So, all the
theory that has been previously established on tree languages can enrich the way
in which we look up to the membrane structures.
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In addition, there is another way to explore the relation between the membrane
structures of P systems and the languages that they can accept or generate. So,
a natural question arises: How is affected the structure of the language by the
structure of the membranes?

This issue will be explored in future works.
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7. D. López, J. M. Sempere. Editing Distances between Membrane Structures. In Pro-
ceedings of the 6th International Workshop, WMC 2005, pp 326-341. R. Freund, Gh.
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Summary. Swarm-based systems are biology-inspired systems which can be directly
mapped to multi-agent systems (MAS), possessing characteristics such as local control
over the decisions taken by the agents and a highly dynamic structure which continu-
ously changes. This class of MAS is of a particular interest because it exhibits emergent
behaviour through self-organisation and finds itself applicable to a wide range of do-
mains. In this paper, we present OPERAS, an open formal framework that facilitates
modelling of MAS, we describe how a particular instance of this framework, namely
OPERASCC , could employ existing biological computation systems, such as Population
P Systems, and demonstrate how the resulting method can be used to formally model a
swarm-based system of autonomous spacecrafts.

1 Introduction

Lately, there has been an increasing interest toward biological and biology-inspired
systems. From the smallest living elements, the cells, and how they form tissues in
organisms to entire ecosystems and how they evolve, there is growing investigation
on ways of specifying such systems. The intention is to create software that mimics
the behaviour of their biological counterparts. Examples of biological systems of
interest also include insect colonies (of ants, termites, bees etc.), flocks of birds,
tumours growth—the list is endless. The understanding of how nature deals with
various situations has inspired a number of problem solving techniques [13] that are
applicable to a wide range of situations that had been puzzling computer scientists
for decades. Swarm Intelligence [15, 16], Ant Colony Optimisation techniques [10]
for example, has been successfully applied to robotics [11], network routing [8, 28]
and data mining [1] and has inspired agent-based modelling platforms [19].
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The promising feature is that these systems can be directly mapped to multi-
agent systems (MAS) by considering each entity as an agent, with its own behav-
ioural rules, knowledge, decision making mechanisms and means of communication
with the other entities and with the environment. The overall system’s behaviour
is merely the result of the agents’ individual actions, the interactions among them
and between them and the environment. This also points to the issue of self-
organisation and how collective behavioural patterns emerge as a consequence of
individuals’ local interactions in the lack of knowledge of the entire environment
or global control.

An additional modelling key aspect of MAS has not received much attention
so far; it is the dynamic nature of MAS and how their structure is constantly
reconfigured. By structure we imply (i) the changing number of agents in a MAS,
and (ii) either their physical placement in the environment or, more generally,
the structure that is dictated by the communication channels among them. Most
modelling methodologies assume a fixed, static structure that is not realistic since
in a dynamic MAS, communication between two agents may need to be established
or ceased at any point and also new agents may appear in the system while existing
ones may be removed. One additional issue that the inherent dynamic nature of
these systems raises has to do with distinguishing between the modelling of the
individual agents (behaviour) and the rules that govern the communication and
evolution of the collective MAS (control). By ‘control’ we do not imply central
control, as this would cancel any notion of self-organisation. Rather, we refer to
the part of the agent that takes care of non-behavioural issues. A modelling method
that allows such a distinction, would greatly assist the modeller by breaking down
the work into two separate and independent activities, modelling the behaviour
and modelling the control.

Population P Systems with active membranes [4], a class of variants of P Sys-
tems [20] are membrane structures composed of membranes configured in an ar-
bitrary graph and naturally possess the trait of reconfiguring their own structure
through rules that restructure the graph and allow membranes to divide and die.
Inspired by this appealing characteristic, in this paper we present a formal frame-
work, called OPERAS, that facilitates the development of dynamic MAS of the
nature of many biology and biology-inspired systems. The next section introduces
OPERAS formal definition, while section 3 presents an instance of this frame-
work, namely OPERASCC which utilises Population P Systems in order to model
MAS. A brief description of a representative case study dealing with a swarm-based
system follows in Section 4 which also deals with the formal model for the case
problem in question. Finally, Section 5 discusses issues arising from our attempt
and concludes the paper.

2 OPERAS: Formal Modelling of MAS

In an attempt to formally model each individual agent as well as the dynamic be-
haviour of the overall system, we need a formal method that is capable of rigorously
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describing all the essential aspects, i.e. knowledge, behaviour, communication and
dynamics. It is also important that the level of abstraction imposed by a formal
method is appropriate enough to lead toward the implementation of a system.
New computation approaches as well as programming paradigms inspired by bi-
ological processes in living cells, introduce concurrency as well as neatly tackle
the dynamic structure of multi-component systems (P Systems, Brane Calculus,
Gamma, Cham, MGS) [2, 5, 20]. In agent-oriented software engineering, there
have been several attempts to use formal methods, each one focusing on different
aspects of agent systems development [3, 6, 9, 12, 21]. Other formal methods, such
as π-calculus, mobile ambients and P Systems with mobile membranes [7, 17, 18],
successfully deal with the dynamic nature of systems and concurrency of processes
but lack intuitiveness when it comes to the modelling of an individual agent (lack
of primitives and more complex data structures). An interesting comparison of var-
ious formal methods for the verification of emergent behaviours in swarm-based
systems is reported in [22].

2.1 OPERAS Definition

We start this section by providing the definition of a model for a dynamic MAS
in its general form.

A Multi-Agent System can be defined by the tuple (O, P, E, R, A, S) containing:

• a set of reconfiguration rules, O, that define how the system structure evolves
by applying appropriate reconfiguration operators;

• a set of percepts, P , for the agents;
• the environment’s model / initial configuration, E;
• a relation, R, that defines the existing communication channels;
• a set of participating agents, A, and
• a set of definitions of types of agents, S, that may be present in the system.

More particularly:

• the rules in O are of the form condition ⇒ action where condition refers to
the computational state of agents and action involves the application of one or
more of the operators that create/remove a communication channel between
agents or introduce/remove an agent into/from the system;

• P is the distributed union of the sets of percepts of all participating agents;
• R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A meaning that agent Ai may send

messages to agent Aj ;
• A = {A1, . . . An} where Ai is a particular agent defined in terms of its individ-

ual behaviour and its local mechanism for controlling reconfiguration;
• Sk = (Behaviourk, Controlk) ∈ S, k ∈ Types where Types is the set of iden-

tifiers of the types of agents, Behaviourk is the part of the agent that deals
with its individual behaviour and Controlk is the local mechanism for control-
ling reconfiguration; each participating agent Ai of type k in A is a particular
instance of a type of agent: Ai = (Behk, Ctrlk)i.
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2.2 OPERAS as an open framework

The general underlying idea is that an agent model consists of two parts, its be-
haviour and its control. The behaviour of an agent can be modelled by a formal
method with its computation being driven by percepts from the environment. The
control can be modelled by a set of reconfiguration rules which given the compu-
tation states of agents can change the structure of the system. The MAS structure
is determined through the relation that defines the communication between the
agents. The set of participating agents are instances of agent types that may par-
ticipate in the system. This deals with the fact that an agent may be present at
one instance of the system but disappear at another or that a new agent comes
into play during the evolution of the MAS. This assumes that all agent types that
may participate in the system should be known in advance.

There are still some open issues which, however, make the OPERAS approach
a framework rather than a formal method. These are: (i) Which are the formal
methods that can be used in order to model the behaviour? (ii) Which are the for-
mal methods that can to use in order to model the control? (iii) Could the methods
in (i) and (ii) be different? (iv) Should the agents’ behaviour models communicate
directly with other agents’ behaviour models? (v) Should the agents’ control mod-
els communicate with other agents’ control models? (vi) Could communication be
established implicitly through percepts of the environment? (vii) Which method
chosen from (i) or from (ii) drives the computation of the resulting system? There
is no unique answer to these questions but the modelling solution will depend
on the choice of formal methods which are considered suitable to model either
behaviour or control.

It is therefore implied that there are several options which could instantiate
OPERAS into concrete modelling methods. Regarding the modelling of each type
of agent Sk, there are more than one options to choose from in order to specify
its behavioural part and the same applies for its control mechanism. We have long
experimented with various formal methods, such as X-machines with its commu-
nicating counterpart and Population P Systems with active cells. In this paper we
present an instance of the framework that employs ideas from the latter, using a
PPS to model both the behaviour as well as the control part of the agent.

3 OPERASCC

3.1 Population P Systems with active cells

A Population P System (PPS) [4] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical sub-
stances with their neighbouring cells (Fig. 1). More formally, a PPS with active
cells [4] is defined as a construct P = (V, K, γ, α, wE , C1, C2, . . . , Cn, R) where:

• V is a finite alphabet of symbols called objects;
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• K is a finite alphabet of symbols, which define different types of cells;
• γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n }, is a finite undirected

graph;
• α is a finite set of bond-making rules of the form (t, x1; x2, p), with x1, x2 ∈ V ∗,

and t, p ∈ K meaning that in the presence of objects x1 and x2 inside two cells
of type t and p respectively, a bond is created between the two cells;

• wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
• Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ K the type of cell i;
• R is a finite set of rules dealing with communication, object transformation,

cell differentiation, cell division and cell death.

Fig. 1. An abstract example of a Population P System; Ci: cells, Ri: sets of rules related
to cells; wi: multi-sets of objects associated to the cells.

All rules present in the PPS are identified by a unique identifier, r. More
particularly:

Communication rules are of the form r : ( a ; b, in )t, r : ( a ; b, enter )t, r :
( b, exit )t, for a ∈ V ∪ {λ}, b ∈ V , t ∈ K, where λ is the empty string, and allow
the moving of objects between neighbouring cells or a cell and the environment
according to the cell type and the existing bonds among the cells. The first rule
means that in the presence of an object a inside a cell of type t an object b
can be obtained by a neighbouring cell non-deterministically chosen. The second
rule is similar to the first with the exception that object b is not obtained by a
neighbouring cell but by the environment. Lastly, the third rule denotes that if
object b is present it can be expelled out to the environment.

Transformation rules are of the form r : ( a → b )t, for a ∈ V , b ∈ V +, t ∈ K,
where V + is the set of non-empty strings over V , meaning that an object a is
replaced by an object b within a cell of type t.

Cell differentiation rules are of the form r : ( a )t → ( b )p, with a, b ∈ V ,
t, p ∈ K meaning that consumption of an object a inside a cell of type t changes
the cell, making it become of type p. All existing objects remain the same besides
a which is replaced by b.
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Cell division rules are of the form r : ( a )t → ( b )t ( c )t, with a, b, c ∈ V , t ∈ K.
A cell of type t containing an object a is divided into two cells of the same type.
One of the new cell has a replaced by b while the other by c. All other objects of
the originating cell appear in both new cells.

Cell death rules are of the form r : ( a )t → †, with a ∈ V , t ∈ K meaning that
an object a inside a cell of type t causes the removal of the cell from the system.

PPS provide a straightforward way for dealing with the change of a system’s
structure and this is the reason why we have chosen them to define an instance of
the OPERAS framework, namely OPERASCC .

3.2 Definition of OPERASCC

In OPERASCC , each agent (individual behaviour) is modelled as a PPS cell,
and has a membrane wrapped around it, that is responsible for taking care of
structure reconfiguration issues (control). In essence, this may be considered as a
usual Population P System in which each cell is virtually divided in two regions,
inner (for behaviour) and outer (for control), that deal with different sets of objects
and have different kinds of rules that may be applied to them. An abstract example
of an OPERASCC model consisting of two agents is depicted in Fig. 2.

Additionally, when using a PPS for modelling purposes, we consider all ob-
jects to be attribute-value pairs of the form att : v so that it is clear to which
characteristic of the agent an object corresponds to.

Fig. 2. An abstract example of a OPERASCC consisting of two agents.

A MAS in OPERASCC is defined as the tuple (O,P, E,R, (A1, . . . An), S) (in
correspondence to P = (R, V, wE , γ, (C1, . . . Cn), k) of a PPS) where:
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• Ai = (wbeh, wctrl, t), wbeh being the objects of the agent behaviour cell, want

the objects of the control cell (these objects possibly hold information about
the wbeh objects (computation states) of neighbouring agent cells) and t ∈ k
the type of the cell;

• O = OA ∪OC .
– The rules in OA (to be applied only by the behaviour cells on the wbeh

objects) are the transformation rules of a PPS that rewrite the objects, as
well as the communications rules that move objects between cells that are
linked with a bond (both kinds of rules do not affect the structure of the
system).

– The rules in OC (to be applied only by the control cells on the wctrl objects)
are the birth, death, differentiation and bond-making rules of a PPS (the
kinds of rules that affect the structure of the system) as well as environment
communication rules (receiving/sending objects from/to the environment)
so that there is indirect communication between the control cells.

• P = PA∪PC , the set of percepts of all participating agents where PA is the set
of inputs perceived by the behaviour cells and PC is the set of inputs perceived
by the control cells.

• E is the set of objects assigned to the environment holding information about
the computation states of all the participating agents;

• R is the finite undirected graph that defines the communication links between
the behaviour cells;

• S is the set of possible types of cells.

It should be noted that although the agent descriptions’ set A appears fifth
in OPERAS definition tuple, from a practical perspective it is the first element
being defined; the other tuple elements and their form are naturally dependent on
the particular method(s) chosen to define the behavioural and control part of the
agents.
Computation
In every computation cycle:

• In all the cells modelling the behaviour of the agent, all applicable object rules
in OA (transformation and communication) are applied;

• All control cells expel in the environment the wbeh objects (computation states
of behaviour cells) along with the cell identity;

• All control cells import the computation states, wbeh, of neighbouring agents;
• All rules in OC (bond-making, birth, death, differentiation) are triggered in

the control cells, (if applicable) reconfiguring the structure of the system.

Since the model follows the computation rules of a PPS system, the overall sys-
tem’s computation is synchronous. Asynchronous computation may be achieved
with the use of other methods for modelling the agents’ behaviour and/or control.
In [27] we present another instance of the framework, namely OPERASXC , which
uses X-machines for the behavioural part of the agent and membranes wrapped
around the machines for the control part, and apply it on the same swarm-based
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system that we present hereafter. Because in that version of the framework com-
putation is driven by the computation of the participating X-machines, overall
computation is asynchronous.

4 OPERASCC for a Swarm-based system

4.1 Autonomous Spacecrafts for Asteroid Exploration

A representative example of a system which clearly possesses all the afore-
mentioned characteristics of a dynamic MAS is the NASA Autonomous Nano-
Technology Swarm (ANTS) system [22]. The NASA ANTS project aims at the
development of a mission for the exploration of space asteroids with the use of
different kinds of unmanned spacecrafts. Though each spacecraft can be consid-
ered as an autonomous agent, the successful exploration of an asteroid depends
on the overall behaviour of the entire mission, as the latter emerges as a result of
self-organisation. We chose this case study because relevant work on the particu-
lar project included research on and comparison of a number of formal methods
[22, 23].

Fig. 3. An instance of the ANTS mission, L: Leader, W : Worker, M : Messenger.

The ANTS mission uses of three kinds of unmanned spacecrafts: Li, leaders (or
rulers or coordinators), Wi, workers and Mi, messengers (Fig. 3). The leaders are
the spacecrafts that are aware of the goals of the mission and have a non-complete
model of the environment. Their role is to coordinate the actions of the spacecrafts
that are under their command but by no means should they be considered to
be a central controlling mechanism as all spacecrafts’ behaviour is autonomous.
Depending on its goals, a leader creates a team consisting of a number of workers
and at least one messengers. Workers and messengers are assigned to a leader upon
request by (i) another leader, if they are not necessary for the fulfillment of its
goals, or (ii) earth (if existing spacecrafts are not sufficient in number to cover
current needs, new spacecrafts are allocated to the mission).
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A worker is a spacecraft with a specialised instrument able, upon request from
its leader, to take measurements from an asteroid while flying by it. It also possesses
a mechanism for analysing the gathered data and sending the analysis results back
to its leader in order for them to be evaluated. This in turn might update the view
of the leader, i.e. its model of the environment, as well as its future goals.

The messengers, finally, are the spacecrafts that coordinate communication
among workers, leaders and the control centre on earth. While each messenger is
under the command of one leader, it may also assist in the communication of other
leaders if its positioning allows it and conditions demand it.

What applies to all types of spacecrafts is that in the case that there is a mal-
functioning problem, their superiors are being notified. If the damage is irreparable
they need to abort the mission while on the opposite case they may “heal” and
return back to normal operation.

4.2 The OPERASCC approach to the ANTS mission

The swarm-based system in the ANTS mission can be directly mapped into the
OPERAS framework (Fig. 4). A number of agents of three different types (work-
ers, W , leaders, L, and messengers, M) compose the MAS system. System con-
figuration is highly dynamic due to its nature and unforeseen situations that may
come up during the mission.

Fig. 4. (a) An instance of MAS structure corresponding to ANTS in Fig. 3 with an
OPERAS agent (W4) consisting of separate Behaviour and Control components. (b)
A change in the structure of MAS after possible events (e.g. destruction of worker W2,
leader L1 employs worker W6 etc.).
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Leader: Formal Modelling of Behaviour in OPERASCC

For the modelling of the leader agent, one has to identify the internal states of the
agent, its knowledge as well as the inputs it is capable of perceiving, so that they
are represented as objects of the corresponding PPS.

The state of a leader can be either one of the three: Processing for an leader
that is fully operational, Malfunctioning for one that its facing problems and
Aborting for one that is either facing irreparable problems or has been commanded
by the control centre on earth to abort the mission.

Object Description

status The current operational state of the leader

existingWorkers The set of IDs and statuses of the workers under its com-
mand

existingMsgs The set of IDs and statuses of the messengers under its
command

results The set containing analysis results it has gathered

model The current model of the agent’s surroundings

goals The agent’s goals

Table 1. Objects representing the knowledge of the Leader agent.

The knowledge of the agent consists of the objects presented in Table 1 along
with their description.

Similarly, the leader type of cell will be able to also perceive other objects
representing input from the environment or from other agents. The most prominent
ones are summarised in Table 2.

Object Description

abrt A request from the control centre that the agent
should abort the mission

worker A new worker that joins the team under the leaders
command

messenger A new messenger that joins the team under the lead-
ers command

requestForWorker A request for a worker, made by another leader (so
that the worker is reallocated)

requestForMsg A request for a messenger, made by another leader
(so that the messenger is reallocated)

message An object representing a message sent by another
agent

Table 2. Objects representing the percepts of the Leader agent.
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Indicatively, two of the operations that a leader may perform in the form of
transformation rules follow.

The rule representing the joining of a worker wi to the leader’s team of Workers
is specified as:
workerJoining :
(status : processing worker : wi existingWorkers : Workers

→ status : processing existingWorkers : {wi} ∪Workers)L

The newly allocated worker wi may be received by another leader with the use of
a communication rule of the form:
receiveWorker : (message : canSendY ouAWorker ; worker : wi, in)L

which assumes that a canSendY ouAWorker message has been previously sent by
the other leader informing that it is willing to reallocate one of its workers.

Similarly, the rule representing the reallocation of the messenger mi to another
leader is:
reAllocatingMessenger :
(status : processing percept : requestForMsg existingMsgs : Messengers

→ status : processing existingMsgs : Messengers\{mi})L,
if isMessengerNeeded(mi) == false

Worker: Formal Modelling of Behaviour in OPERASCC

Similarly for a worker agent, the internal states in which a it may be in are
Measuring, when taking measurements from an asteroid, Analysing, when analysing
the measurements in order to send results to its leader, Idle, Malfunctioning and
Aborting.

The knowledge of the agent consists of the objects presented in Table 3 along
with their description.

Object Description

status The current operational state of the worker

myLeader the identity of its commanding leader,

teamWorkers The set of other coworkers belonging to the same team

teamMsgs The set of messengers belonging to the same team

Target The target asteroid

Data The set of data collected from the asteroid

Results The set of the data analysis results

Table 3. Objects representing the knowledge of the Worker agent.

The worker type of cell will also be able to also perceive other objects that
represent either environmental stimuli or messages from other agents. Indicative
ones are being summarised in Table 4.



562 I. Stamatopoulou, P. Kefalas, M. Gheorghe

Indicatively, some of the operations that a worker may perform in the form of
transformation rules follow.

The rule representing the measurements’ analysis mechanism of the worker is:
analysingData :
(status : Analysing data : Data → status : Idle results : Results)W

The rule that informs a worker that it is being reallocated to another leader is
defined as:
reAllocating :

(status : Idle myLeader : Leader reassignedTo : NewLeader
→ status : Idle myLeader : NewLeader)W

Object Description

abrt A request from the control centre that the agent should abort the
mission

reassignedTo The identifier of the new leader the worker is being reassigned to

data The set of measurements taken from the asteroid

Table 4. Objects representing the percepts of the Worker agent.

4.3 Formal Modelling of Control in OPERASCC

According to OPERASCC , for the definition of the given system as a dynamic
MAS, we need to assume an initial configuration. To keep the size restricted for
demonstrative purposes, let us consider an initial configuration that includes one
leader L1, one messenger M1 and two workers W1,W2. According to OPERASCC

the above system would be defined as follows.
The set O contains all the aforementioned transformation rules that model

the agents’ behaviour as well as the reconfiguration rules (birth, death and bond-
making) regarding (i) the generation of a new worker when the control centre on
earth decides it should join the mission, (ii) the destruction (i.e. removal from
the system) of any kind of agent in the case it must abort the mission, (iii) the
establishment of a communication channel between a leader and all members of
its team. More particularly O additionally contains the following rules.

The following birth rules create a new worker wi or messenger mi under the
command of a leader Li when the leader has received the corresponding mes-
sages (objects earthSendsWorker and earthSendsMsg) from the control centre
on earth.
newWorkerFromEarth :
(status : Processing earthSendsWorker : wi existingWorkers : Workers)Li

→ (status : Processing existingWorkers : Workers ∪ {wi})Li

(status : Idle myLeader : Li)Wi
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newMessengerFromEarth :
(status : Processing earthSendsMsg : mi existingMsgs : Messengers)Li

→ (status : Processing existingMsgs : Messenger ∪ {mi})Li

(status : Idle myLeader : Li)Mi

Inputs, such as earthSendsMsg : mi, from the environment are perceived with
the use of communication rules of the form:
receiveInput : (ε ; earthSendsMsg : mi, enter)L

The death rule below removes agent instances that have aborted the mission from
the model (t ∈ S stands for any type of agent).
abortion :

(status : aborting)t → †
Finally, the following bond-making rules ensure the creation of a communication
bond between a leader agent (ε stands for the empty multi-set, i.e. no object
is necessary) and any messenger or worker that belongs to this leader’s team.
workerBondMaking :

(Li ε ; myLeader : Li W )
messengerBondMaking :

(Li ε ; myLeader : Li M)

The set P contains all objects recognised by the Population P System.
Regarding the environment E, it should initially contain objects representing

the initial percepts for all agents.
Since in the assumed initial configuration we consider to have one group of

spacecrafts under the command of one leader, all agents should be in communica-
tion with all others and so:
R = {(L1,W1), (L1,W2), (W1,W2), (M1, L1), (M1,W1), (M1,W2)}
Finally, the set S that contains the agent types is: S = {L, W,M}.

5 Conclusions and Further Work

We presented OPERAS with which one can model multi-agent systems that ex-
hibit dynamic structure, emergent and self-organisation behaviour. The contribu-
tions of OPERAS can be summarised in the following:

• A formal framework for MAS modelling.
• The behaviour and the control of an agent are separate components which

imply distinct modelling mental activities.
• Flexibility on the choice of formal methods to utilise and option to combine

different formal methods.

It is because of this distinct separation between behaviour and control that
OPERAS provides this flexibility of choosing different methods for modelling
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these two aspects; while some methods are better at capturing the internal states,
knowledge and actions of an agent, others focusing on the dynamic aspect of a
MAS are more suitable for capturing the control mechanisms.

In this paper, we employed Population P Systems with active cells to define
OPERASCC , an instance of the general framework. We presented the OPERASCC

model of a swarm-based system of a number of autonomous spacecrafts. It could
easily be spotted that an OPERASCC model does resemble (as a final outcome)
a model which could be developed if one used Population P Systems with ac-
tive cells from scratch [24]. However, in the current context we have the following
advantages:

• PPS can be viewed as a special case for OPERAS.
• The distinction of modelling behaviour and control as separate, offers the

ability to deal with transformation/communication rules separately from cell
birth/division/death and bond making, with implications both at theoretical
as well as practical level.

• Practically, during the modelling phase, one can find advantages and drawbacks
at any of the behaviour or control component and switch to another formal
method for this component if this is desirable.

As far as the last point is concerned, we verified our initial findings [24] in
which it was stated that modelling the behaviour of an agent with PPS rewrite and
communication rules may be rather cumbersome. Especially in this rather complex
case study, although the modelling of the control is absolutely straightforward,
we had difficulties to establish the necessary peer to peer communication between
agents by employing just the communication rules. That gave us the opportunity to
consider alternatives. For example, we have experimented with Communicating X-
machines which have a number of advantages in terms of modelling the behaviour
of an agent. The resulting model, OPERASXC [27], seems to ease the modelling
process in complex MAS. It is worth noticing that none of the two formal methods
(X-machines and Population P Systems) by itself could successfully (or at least
intuitively) model a MAS [14, 26]. This is true for other formal methods too, which
means the current framework gives the opportunity to combine those methods that
are best suited to either of the two modelling tasks.

We would like to continue the investigation of how OPERAS could employ
other formal methods that might be suitable for this purpose. In the near future,
we will focus on theoretical aspects of the framework. Towards this direction, we
are also currently working on various types of transformations that could prove
its power for formal modelling as well as address legacy issues concerned with
correctness.

Finally, efforts will also be directed towards enhancing existing animation tools
on Population P Systems in order to come up with a new version of the tool that
will be able animate OPERASCC specified models. More particularly, the PPS-
System [25] is a tool that generates Prolog executable code from Population P
Systems models written in a particular notation. Future work will involve extend-
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ing the notation and the system in order to integrate the necessary OPERAS fea-
tures, allowing us to gain a deeper understanding of the modelling issues involved
with OPERASCC and helping us investigate the practicability of our approach.
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Summary. Transition P systems are a parallel computational model based on the notion
of the cellular membrane system. The distributed architectures for P system implemen-
tation in digital device must deal jointly with the time for active rules application over
multisets and the time for communication among membranes. Analysis of these architec-
tures shows that it is very important to improve the time used in the rules application
step since this allows for reducing the evolution step time and the number of processors
needed in the system. This work introduces the concepts of competitiveness relationship
among active rules and competitiveness graph. For this, it takes into account the fact
that some active rules in a membrane can consume disjointed object sets. Based on these
concepts this paper presents a new evolution rules application algorithm that improves
throughput of active rules elimination algorithms (sequential and parallel).

1 Introduction

Computation with membranes was introduced by Gheorghe Păun in 1998 [10]
through a definition of transition P systems. This new computational paradigm
is based on the observation of biochemical processes. The region defined by a
membrane contains chemical elements (multisets) which are subject to chemical
reactions (evolution rules) to produce other elements. Transition P systems are
hierarchical, as the region defined by a membrane may contain other membranes.
Multisets generated by evolution rules can be moved towards adjacent membranes
(parent and children). This multiset transfer feeds back into the system so that
new products are consumed by further chemical reactions in the membranes.

These systems perform computations through transition between two consecu-
tive configurations. Each transition or evolution step goes through two sequential
steps: rules application and objects communication. First, the evolution rules are
applied simultaneously to the multiset in each membrane. This process is per-
formed by all membranes at the same time. Then, also simultaneously, all mem-
branes communicate with their destinations.
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The objective of this paper is to present an improvement of the algorithm of
active rules elimination [12] used in the rules application step. To achieve this, the
paper is structured as follows: first, related works are presented; then, the basic
ideas of the active rules elimination algorithm are summarized, which is followed
by a definition of the concept of competition between rules; next, the optimization
of the algorithm is specified and, finally, conclusions are drawn.

2 Related works

No line of research for the implementation of P system in digital devices has man-
aged to achieve the massively parallel nature of these systems. However, significant
advances have been made. First, specifications have been made of faster algorithms
for application of evolutions rules for both sequential devices [12] [3] and parallel
ones [4] [5]. Moreover, the problem of network congestion in the multiset commu-
nications step described by Ciobanu [2] has been solved in the works of Tejedor
[11] and Bravo [1]. In short, today a number of implementations can be made that
achieve a certain degree of parallelism that depends on communications and the
application of evolution rules.

Viable communications architectures for the P systems implementation pro-
posed in [11] and [1] use a number of processors on the order of the square root of
the number of membranes and place several membranes in each processor. More-
over, these solutions achieve an evolution pass time, at worst, on the order of
the square root of the number of membranes and eliminate network congestion
by means of access control to the common medium. However, these architectures
need to know the time needed to perform rules application. This information is
needed to be able to optimally distribute membranes among processors. In these
P system implementation architectures, it is important to improve the time used
in the rules application step since this allows for reducing the evolution step time
and the number of processors needed in the system. Specifically, if rule applica-
tion time is divided by the factor N, then the evolution time and the number of
processors in the system is divided by the square root of N.

Analysis of the rules application algorithms published to date shows that only
the algorithm of active rules elimination [12] together with its parallel version [5]
meet the viable architectures of Tejedor [11] and Bravo [1]. These 2 algorithms
enable prior determination of the maximum execution time, since this value de-
pends on the number of rules rather than on the multiset cardinal to which they
are applied, as in other algorithms reported. [2] [3]. In addition, these algorithms
are the quickest in their category (sequential and parallel). This paper improves
throughput of active rules elimination algorithms and takes into account the fact
that some active rules in a membrane can consume disjointed object sets. This
improvement is applicable to the algorithm in both its sequential and parallel
versions.
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3 Algorithm of active rules elimination [12]

The general idea of this algorithm is to eliminate, one by one, the rules from the
set of active rules. Each step of rule elimination performs two consecutive actions:

1. Iteratively, any rule other than that which is to be eliminated is applied for
a randomly selected number of times in an interval from 0 to the maximum
applicability benchmark. This action ensures the non-determinism inherent to
P systems.

2. The rule to be eliminated is applied a number of times which is equal to
its maximum applicability benchmark, thus making applicable no longer and
resulting in its disappearance from the set of active rules.

We assume that:

1. The object multiset to which active rules are applied is ω.
2. The active rules set is transformed in an indexed sequence R in which the

order of rules is not relevant.
3. The object multiset resulting from application of active rules is ω′.
4. The multiset of applied rules that constitute the algorithm output is ωR.
5. Operation |R| determines the number of rules in the indexed sequence R.
6. Operation ∆R[Ind] dω′e calculates the maximum applicability benckmark of

the rule R [Ind] over ω′.
7. The operation input (R [Ind])·K performs the scalar product of the antecedent

of rules by a natural number.

and thus the algorithm is:

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T )

(3) FOR Last = |R| DOWNTO 1
(4) BEGIN
(5) FOR Ind = 1 TO Last− 1 DO
(6) BEGIN
(7) Max← ∆R[Ind] dω′e
(8) K ← random(0,Max)
(9) ωR ← ωR +

{
R [Ind]K

}
(10) ω′ ← ω′ − input (R [Ind]) ·K
(11) END
(12) Max← ∆R[Last] dω′e
(13) ωR ← ωR +

{
R [Last]Max

}
(14) ω′ ← ω′ − input (R [Last]) ·Max
(15) END
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Remember that if rule R [i] is no longer applicable in the elimination step for R [j],
it is no longer necessary to perform the elimination step for R [i], the algorithm is
greatly improved, as shown in [12].

In each iteration of the algorithm of actives rules elimination, the maximum
applicability benchmark of a rule is calculated and then the rule is applied. The
number of iterations executed at worst is:

#iterations =
q∑

i=1

i =
q · (q + 1)

2

Let q be the cardinal of the indexed sequence of active rules. Thus, this algo-
rithm allows one to know how long it takes to be executed in the worst case, with
knowledge of the rules set of a membrane.

It is important to note that, in general, it is essential to perform the first
action in each elimination step of a rule. This action is necessary to ensure that
any possible result of the rules application to the multiset is produced by the
algorithm. In case the action is not performed, the eliminated rule (applied as
many times as the value of its maximum applicability benchmark) may consume
the objects necessary so that any other rule can be applied. However, the latter
does not always occur and the first action in each elimination step can be simplified.
For the sake of illustration, let us assume that the antecedents of a set of active
rules are shown in figure 1.

Fig. 1. Antecedents of a set of active rules

In this case, in the elimination step of the rule r1 only the first action with the
rule r2 has to be taken, as r1 and r2 are the only rules with the object a in their
antecedents. The same is the case with rules r3 and r4, as these two compete for
the object d. Thus, taking into account the competition between rule antecedents,
one can adjust the rule elimination algorithm to perform only 6 iterations in the
worst case, rather than 10 (2 to eliminate r1, 1 to eliminate r2, 2 to eliminate r3,
1 to eliminate r4) as shown in figure 2.
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Fig. 2. Execution trace of Rules Elimination and Rules Elimination with competitiveness
algorithms

4 Definition of competitiveness between rules

Definition 1: Competitiveness graph.
Let R be a set of active rules

R = {r1, r2, ..., rq} with q > 0

Let C be a binary relationship defined over the set R

∀x, y ∈ R, x 6= y x C y ⇔ input(x) ∩ input(y) 6= ∅

This binary relationship can be represented by a non-directed graph CG =
(R,C) called a competitiveness graph, where the rules are related to each other
if, and only if its antecedents have an object in common. For example, given the
rules inputs shown in figure 3, the competitiveness graph generated by these rules
taking into account the relationship C will be as shown in figure 4.

Definition 2: Subgraph resulting from elimination of a rule. Let competi-
tiveness graph be CG = (R,C) and rule x ∈ R. The subgraph resulting from
elimination of rule x is defined as:

CSG = (R− {x} , C ∩R− {x} ×R− {x})

Definition 3: Induced subgraph. Let a competitiveness graph be CG = (R,C)
and R′ ⊆ R. The competitiveness subgraph induced by the subset R′ is the graph:
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Fig. 3. Antecedents of a set of active rules

Fig. 4. Competitiveness graph

CSG = (R′, C ∩R′ ×R′)

Definition 4: Competitiveness chain. For a competitiveness graph CG =
(R,C), a competitiveness chain is defined as an ordered sequence of rules pertain-
ing to R

s1, s2, ... , sn si ∈ R,

satisfying:

si C si+1 ∀i ∈ {1, ..., n− 1}
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By definition, there is always a competitiveness chain composed of a single rule.
Definition 5: Accessible rule relationship. For a competitiveness graph CG =

(R,C), the accessible rule relationship (A) is defined as:

x, y ∈ R x A y ⇔ ∃ a competitiveness chain s1, ..., sn|s1 = x ∧ sn = y

This is an equivalence relation which divides the rule set R into equivalence
classes.

Definition 6: Connected component of competitiveness graph. Let competi-
tiveness graph be CG = (R,C), let the accessible rule relationship be A and let E
be an equivalence class produced by A. The connected component of CG is defined
as the graph induced by the vertices pertaining to the equivalence class E.

Definition 7: Connected competitiveness graph. Let a competitiveness graph
be CG = (R,C) and consider the its rule accessibility relation. We call connected
CG if and only if it has a connected component.

Definition 8: Articulation. For a competitiveness graph CG = (R,C) and a
rule x ∈ R, it is said that x is an articulation of CG if and only if the subgraph
resulting from the elimination of rule x has more connected components than CG.

5 Algorithm based on rules competitiveness

Based on the rules competitiveness relationship of a membrane’s rules one can
improve the algorithm of elimination of active rules. To do this, an analysis must
be made of the evolution rules of each membrane prior to P system evolution. The
analysis will determine the order of active rules elimination and what rules set
are used in the first action of each elimination step of a given rule. The following
optimizations can be made of the algorithm of rule elimination:

5.1 1st optimization

The idea of this optimization is based on the fact that in the elimination step of
a rule, the first action of the algorithm must be applied to the rules in the same
connected component of the competitiveness graph. This can be done because the
antecedents of rules in different connected components do not compete for common
objects of the multiset.

The analysis prior to the execution of each P system calculates the competitive-
ness graph of each membrane. Then the connected components of the graph are
calculated. The algorithm of active rule elimination will be applied independently
to the rules of each of the connected components, with no need for any change in
its codification.

In the worse case of the example of figure 4, the sequential version of this
algorithm will need to perform 3 iterations in the connected component consisting
of the rules {r1, r2} and 36 iterations in the connected component consisting of
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the rules {r3, r4, r5, r6, r7, r8, r9, r10}. Therefore, this example has gone from
55 iterations in the worst case of the algorithm of active rules elimination to 39
iterations (figure 5), that is, it has been reduced by 71% compared to the active
rules elimination algorithm.

Fig. 5. Execution trace of sequential 1st optimization

Making a parallel version of the algorithm is quite simple. One need only apply
the algorithm of active rules elimination in parallel to the rules of each connected
component on the competitiveness graph. The parallel version would require only
36 iterations (maximum(36, 3)) in the worst case, as shown in figure 6), that is,
it has been reduced by 65% compared to the active rules elimination algorithm.

5.2 2nd optimization

This optimization is applied in each connected component of the competitiveness
graph. If the competitiveness graph of a membrane has articulations the algorithm
can be used to eliminate these rules first and cause the appearance of new con-
nected components. Thus, if rule r6 is eliminated in our example (figure 4) the
connected component splits in two: the one composed of {r3, r4, r5} and the one
composed of {r7, r8, r9, r10}.
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Fig. 6. Execution trace of parallel 1st optimization

When a connected component has no articulations, elimination of more than
one rule can break it into more than one connected component. Continuing with
the example we have proposed, if we first remove from connected component
{r7, r8, r9, r10} rules r7 and r10 in two elimination steps, it then splits into two
connected components consisting of the rules r8 and r9, respectively.

To perform this optimization, a slight change must be made in the sequential
algorithm of active rules elimination. Now, each step of elimination of a rule must
eliminate a specific rule and is carried out in a sequence of determinate rules.
Moreover, there is a certain partial order in the elimination steps of a rule. Whereas
order is irrelevant in previous versions of the active rules elimination algorithm,
it is decisive in this version. The set of rules used and the rule being eliminated
in each elimination step is calculated for each membrane in the analysis prior to
the evolution of the P system; as a result, the calculation does not penalize the
execution time of the algorithm.

Figure 7 shows the order in which evolution rules are eliminated and the set
of rules used in each elimination step for the example in figure 4. The number of
iterations of this algorithm in the worst case is 25, that is, it has been reduced by
45% compared to the active rules elimination algorithm.

The parallel version of the algorithm involves applying the sequential version to
each of the connected components that are either in the original competitiveness
graph or that are generated as a result of the elimination of a rule.

The execution trace of the parallel algorithm used with the set of rules of the ex-
ample in figure 4 is shown in figure 8. It may be noted that the number of iterations
in the worst case is 16 (maximum(8, 2)+maximum(3, 4, 1)+maximum(1, 1, 3)+
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Fig. 7. Execution trace of sequential 2nd optimization

maximum(1, 1)) using 5 processes. Hence, the number of iterations is reduced by
29% compared to the active rules elimination algorithm.

Fig. 8. Execution trace of parallel 2nd optimization
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Table 1 shows the number of iterations performed by the algorithms in the
worst case:

• Actives rules elimination (ARE)[12]
• Sequential competitive rules with 2nd optimization(SCR)
• Delimited massively parallel (DMP)[5]
• Parallel competitive rules with 2nd optimization (PCR)

Applied to P systems defined in:

• Reference#1:Computing with Membranes [8]
• Reference#2:A Guide to Membrane Computing [9]
• Reference#3:P Systems Running on a Cluster of Computers [2]

Sequential Parallel

ARE SCR SCR/ARE DMP PCR PCR/DMP

Ref#1 pag 10 6 4 66% 5 3 60%

Ref#1 pag 13 6 4 66% 5 3 60%

Ref#1 pag 15 3 3 100% 3 3 100%

Ref#2 pag 9 6 4 66% 5 3 60%

Ref#2 pag 14 10 6 60% 8 3 37%

Ref#3 pag 137 10 5 50% 8 3 37%

Ref#3 pag 138 6 4 66% 5 3 60%

Table 1. Number of iterations performed by the algorithms in the worst case

5.3 3rd optimization

This last optimization is based on an analysis of the execution trace of the 2nd

optimization. It can occasionally be observed that the elimination step of one rule
rj also eliminates one or more additional rules ri. This can occur either because
ri is applied a number of times that coincides with the maximum applicability
benchmark, or the rules applied prior to ri consume the objects it needed to
continue being active. This can be used mainly in three ways to improve the
execution time of the algorithm:

1. There is no need to execute the elimination step of the rule ri eliminated in a
previous step. Bearing in mind the execution trace in figure 7, if the elimination
step of rule r6 also eliminates rule r4, then it would no longer be necessary to
execute the elimination step of r4, thus allowing execution of the algorithm to
save 3 iterations.

2. Rule ri is not to be applied in the elimination steps of subsequent rules. Bearing
in mind the execution trace in figure 7, if the elimination step of rule r6 also
eliminates rule r8, it is therefore unnecessary in elimination steps of rules r7
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and r10 to try to apply r8, thus allowing execution of the algorithm to save 2
iterations.

3. Elimination of rule ri causes a change in the composition and order of the
subsequent elimination steps. Keeping in mind the execution trace in figure 7,
if the elimination step of rule r6 also eliminates rule r8, then it is beneficial
to execution of the algorithm for r9 to be the next rule eliminated. This is
the case because once r6, r8 and r9 have been eliminated, r7 and r10 can be
eliminated in a single iteration in their elimination step since they do not share
objects. Here, 3 iterations would be saved.

To implement this optimization, a determination is necessary of what rules con-
tinue to be active whenever an elimination step is performed, and this information
is used to calculate the next optimal elimination step to be taken. Logically, calcu-
lation of the next optimal elimination step would severely penalize the execution
time of the algorithm. Hence, a different solution must be sought. This solution
involves making an analysis prior to the execution of each P system, in which we
can calculate all the possible active rule sets and assign them the next optimal
step of rule elimination. All this information would be reflected in a director graph
of the algorithm, the definition of which is as follows:

Definition 9: Director graph of algorithm of rule application. Let R be a set
of active rules. The director graph of the algorithm of rule application is composed
of a triad DG = (Q,A, T ) where:

1. Q is the node set of the graph, composed of a subset of parts of R, that is:
∀q ∈ Q, , q ∈ P (R)

2. A is a correspondence whose initial set is Q and whose final set is a set of
sequences of rules composed of rules of the origin element of Q. Thus, each
set of active rules has one or more sequences of rules. Each sequence of rules
indicates the order in which elimination step rules are applied. So a state can
have several elimination steps associated in the analysis prior the evolution of
each P system.
A : Q→ E where E is the set of possible sequences with elements in Q

1. T is a set of transitions. Each transition is composed of a triad 〈qi, A (qi) , qf 〉
where qi, qf ∈ Q are the initial and final state, respectively, of the transition
and A (qi) are the elimination step (s) of rules associated to state qi, which,
after being executed, means that active rules are those of state qf .

Execution of the sequential algorithm of application of competitive rules will
involve making a loop that ends when it reaches a state with no active rules. In
each iteration, there are 3 steps:

1. The elimination steps associated to the state are executed.
2. Active rules are calculated.
3. The state represented by active rules is transited.
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Execution of the parallel algorithm of application of competitive rules will be
similar to the sequential one. The difference is that execution of several elimination
steps associated to a state is performed in parallel way.

In the worse case, 3rd optimization performs the same iterations as the 2nd

optimization. However, the experimental data obtained with the execution of the
algorithm with 3rd optimization are better than the 2nd one, as show figure 9.
In this figure, the X-axis values represent the relationship between the cardinal
of the multiset and the cardinal of the sum of inputs of active rules. The Y-axis
values are percentage relationship between the number of iterations with active
rules elimination algorithm and sequential competitive rules with 3rd optimization
algorithm.

Fig. 9. Comparation between Active Rules Elimination Algorithm and Sequential Com-
petitive Rules with 3rd optimization

6 Conclusions

This paper introduces the concept of a competitiveness relationship among active
rules. Based on this concept, a new way of parallelism has been opened towards the
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massively parallel character needed in rules application in P systems. Moreover,
the sequential version of this algorithm has a lower number of operations in its
execution than in other sequential algorithms published to date.

Both the sequential and the parallel versions of the algorithm perform a limited
number of operations, thus allowing for prior knowledge of the execution time.
This characteristic makes both versions of the proposed algorithm appropriate for
use in viable distributed architectures of implementation of P systems. This is
said because architectures require determining the distribution of the number of
membranes to be located in each processor of the architecture in order to obtain
minimal evolution step times with the use of minimal resources.
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Direct Simulation of the Oregonator Model by
Using a Class of P Systems

Mai Umeki and Yasuhiro Suzuki

Department of Complex Systems Science, Graduate School of Information Science,
Nagoya University, Furocho Chikusa-ku Nagoya, JAPAN

Summary. We propose a simple method of simulating chemical reactions by using a
multiset rewriting systems, the Abstract Rewriting System on Multisets (ARMS). We
simulate the Oregonator model, a mathematical model of the Belousov-Zhabotinsky and
We obtain the same behavior when the differential equations are used. We also investigate
the Oregonator with large stochastic fluctuations and confirm that they may affect its
oscillational behaviors.

We simulated the Oregonator model [2], which is a mathematical model of the
Belousov-Zhabotinsky reaction (BZ reaction) [11]. As for the mathematical model
of BZ reaction, the brusselator [7] and Oregonator are well known. In the brus-
selator, each reaction rule does not correspond to the actual chemical reactions
exhibiting the BZ reaction, while in the Oregonator each reaction rule corresponds
to actual chemical reactions exhibiting the BZ reaction. Thus, various parameters
of the BZ reaction have been obtained by chemical experiments; these parame-
ters cannot be used for simulation of the burruselator but can be used for the
Oregonator. However the Oregonator is not simple and in order to simulate it,
usually simplifications of the model by abstracting dimensions of parameters and
neglecting variants are required [10]. So, in the simulation of the simplified model,
even if we can find interesting behaviors, we cannot feed back to design chemical
experiments to confirm them.

Direct methods such as the Gillespie method [3] or the StochSim [5] allow us
to simulate the Oregonator without simplifying and transforming parameters to
dimensionless space. the Abstract Rewriting system on MultiSets (ARMS) [8], is a
direct method and a variant of P Systems, which is closely related to the Metabolic
Algorithm (MA) (for example [4]) and the Gillespie method.

The main differences between the ARMS and MA are the ARMS is a stochastic
model and the rate constants keep the same during computations, while the MA
is a deterministic model and the rate constant can change during a computation.
And [1] investigated the relationship between P systems and the Gillespie method.
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The main differences between the ARMS and Gillespie method is that; the
ARMS and Gillespie method based on the rate constants and population size of
each chemical species. The probability of one reaction occurring relative to another
is obtained by multiplying the rate constant of each reaction with the numbers of
its substrate molecules. A random number is then used to choose which reaction
will occur, based on relative probabilities. And in the Gillespie method, another
random number determines how long the step will last, while in the ARMS such a
random number is not used to determine how long the step will last and the steps
of intervals between reaction events are given by the rate constants.

1 Abstract Rewriting System on Multisets, ARMS

Formally, in the ARMS a chemical solution is a multiset of elements denoted by
symbols from a given alphabet, A = {a, b, . . . , }; these elements correspond to
chemicals.Reaction rules that act on the chemicals are specified in the ARMS by
reaction rules. Let A be an alphabet (a finite set of abstract symbols). A multiset
over a set of objects A is a mapping M : A 7→ N, where N is the set of natural
numbers, N, 0, 1, 2,. . . .

The number M(a), for a ∈ A, is the multiplicity of object a in the multiset M .
We denote by A# the set of all multisets over A, including the B (empty multiset,
∅, defined by ∅(a) = 0 for all a ∈ A). A multiset M : A 7→ N, for A = {a1, . . . , an}
is represented by the vector w = (M(a1)M(a2) . . .M(an).

The union of two multisets M1,M2 : A 7→ N is addition of vectors w1 and w2

that represent the each multisets respectively. If M1(a) ≤ M2(a) for all a ∈ A,
then we say that multiset M1 is included in multiset M2 and we write M1 ⊆ M2.
A reaction rule u → v, u, v ∈ A# is a vector r, r = −u + v. Note that u and v can
also be zero vector (empty). For example, the reaction a b → c is the vector of (-1
-1 1)=-(1 1 0) + (0 0 1).

A reaction is the addition of vectors M ∈ A# and r ∈ R,and it can be defined
only when r ⊆ M.We can define over A# a relation: (→): for M, M ′ ∈ A#, r ∈ R
we write M → M ′ iff M ′ = (M + r). As for strategy of rule application, one rule
will be applied in each step, conventionally. But we can easily realize maximal
parallel rule application.

Application of rules in the ARMS

Kinetics of bio-chemical reactions have traditionally been described by the reaction-
diffusion (RD) equations based on the mass-action law (MAL). The chemical equa-
tion of

A + B → C + D (1)

indicates that molecules A and B react together to form molecules C and D. From
this chemical equation we can obtain the rate equation. It is important to note
that most chemical reactions are assumed to follow the mass action law (MAL)
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kinetics, meaning that the reaction rate is proportional to the concentration of
the molecules. Thus the rate equation of the equation (1) is −[Ȧ] = ra= k[A][B],
where [A] represents the concentration of molecules A, ra is the reaction rate and
k is the rate constant of the reaction.

The reactions in the ARMS obey the Mass Action Law (MAL), where the
frequency of a reaction follows the concentration of chemicals and a rate constant.
In the ARMS, reaction rules are selected probabilistically, where each probability
of selecting a rule is in proportion to the total number of collisions of chemicals.
Concretely, the probability is given by the ratio of the total number of colliding
chemicals of a reaction to the sum of the total number of colliding chemicals of
every reactions in the rule; for example, there are only two reaction rules a, b

k1→
c : (r1) and c, d

k2→ a : (r2), the probabilities of selecting r1 and r2 are respectively
given by,

Pr1 ≡
k1[a][b]

k1[a][b] + k2[c][d]
, (2)

Pr2 ≡
k2[c][d]

k1[a][b] + k2[c][d]
. (3)

In this contribution, the change of concentration of chemicals are given by the
expectation value of selected a rule and its stoichiometric constants, for example,
the case when r1 is selected, the change of concentration a is given as Pr1 ×−1, b,
Pr1 ×−1, c, Pr1 × 1 and d, Pr1 × 1, respectively. In this contribution, the changes
of concentrations obey those of expectation values.

Oregonator

The Oregonator is proposed by [2] as follows;

X, Y, H
k1→ 2W : (r1), (4)

A, Y, 2H
k2→ X, W : (r2), (5)

2X
k3→ A,W,H : (r3), (6)

A,X, H
k4→ 2X, 2Z : (r4), (7)

B,Z
k5→ 0.5Y : (r5), (8)

where k1 ... k5 are obtained through chemical experiments and proposed [2];
k1 = 106M−2S−1, k2 = 2M−3S−1, k3 = 2 × 103M−1S−1, k4 = 10M−2S−1,
k5 = B× 2× 10−2S−1, where M stands for one molar, S stands for a second. And
A corresponds to the concentration of BrO3, B, CH(COOH)2, X, HBrO2, Y ,
Br, Z, C4+

e , W ,HOBr and H, H+, respectively.
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Fig. 1. Population dynamics of X,Y,Z in the Oregonator, where the vertical axis illus-
trates the number of chemicals and the horizontal axis illustrates the step

In the Oregonator, chemicals A and B are resources and assumed that they
are continuously supplied or largely existed than other chemicals. W is the final
product through these reactions and oscillations among X, Y and Z emerge.

2 Results

We confirmed that the ARMS can simulate conventional behavior of the Oregona-
tor by using the differential equations (figure 1), where reactions of generating X
(HbrO2) are trigger of oscillations and these reactions increase the concentration
of Z (C4+

e ) then high concentration of Z leads reactions of generating Y (Br),
since this reaction required Z, the concentration of Z is decreased.

The reaction mechanism of the Oregonator is illustrated by the usage of re-
action rules (figure 2). Basically, the r1 (X,Y, H → 2W ) and r5(B, Z → 0.5Y )
are used continuously. And r2 (A, Y, 2H → X, W ) is also mainly used, however
by the increase of X with r4 (A,X, H → 2X, 2Z), occasionally applications of r2

is switched by r3 (2X → A,W,H). These usages of rules fit to actual chemical
mechanism of the BZ reactions. Therefore, this result indicates not only the ARMS
exhibits the same behavior that of modeled by the differential equations but also
shows the correctness of chemical mechanism of the Oregonator.
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Fig. 2. The usage of reaction rules, the When the vertical axis illustrates r1, r2 ... r5

from the top to bottom. The horizontal axis illustrates the steps. Each dot illustrates the
usage of a rule

3 Discussion

Next, we consider the case when the system with large stochastic fluctuations. The
change of concentration by a reaction is small and it can be approximated as con-
tinuous; however, most of the chemical reactions in a living system are performed
with few molecules. In the reactions with few molecules, its developments are not
approximated as continuous but discrete, where stochastic fluctuations can not be
ignore.

In order to introduce discreteness in the developments, we define an exernal
parameter ρ(0.0 < ρ), it is multiplied by the denominator of the probability of
selecting a rule. Under the same extent of concentration change by a reaction
when the value of ρ is small, the probability of selecting a rule will be changed
easier compared to the case when ρ is large.

For example, probabilities of selecting a, b
k1→ c : (r1) and c, d

k2→ a : (r2) are
given by

Pr1 ≡
k1[a][b]

(k1[a][b] + k2[c][d])ρ
, (9)
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Fig. 3. un-stable oscillations: population dynamics of X,Y,Z in the Oregonator when ρ
is small (ρ is an external parameter), where the vertical axis illustrates the number of
chemicals and the horizontal axis illustrates the step

Pr2 ≡
k2[c][d]

(k1[a][b] + k2[c][d])ρ
, (10)

where when ρ = 1.0 the probabilities are the same as the conventional definition,
while ρ < 1.0, as the denominator is getting small, the probability becomes sensi-
tive to the slight change of the value of the numerator. So, the value of ρ is getting
smaller, probabilities are getting easier to suffer from the fluctuations, it corre-
sponds to the case when the system with few molecules. And also, as the value of
ρ is getting smaller, the change of concentration by a reaction becomes large and
discretely.

System with large fluctuations

We found that there exists three cases of behaviors according to the value of ρ. As
decreasing the value of ρ to 0.0, it shows stable oscillations, quasi-stable oscilla-
tions and un-stable oscillations, where stable oscillations means that conventional
oscillations, quasi-stable oscillations, in some trials oscillations disappear in a lapse
of steps while others show conventional oscillations, un-stable oscillations(figure 3
and 4), in every trials oscillations disappear in a lapse of steps. The usage of rules
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Fig. 4. The usage of reaction rules the case when un-stable oscillations occur (ρ is an
external parameter and this graph indicates when it is small), the vertical axis illustrates
r1, r2 ... r5 from the top to bottom. The horizontal axis illustrates the steps. Each dot
illustrates usage of a rule. From around 250,000 steps, the usage of reactions indicates a
rule between 1 and 2 are used, it means that rule 1 and 2 selected but cannot be applied,
because of the concentration of X, Y and Z become under 1.0

(figure 4) indicates that, since the concentration of X, Y and Z become under 1.0,
no rule can be applied. This result illustrates that discreteness can be induced by
low concentration of chemicals, as for this phenomena, the same mechanism has
been reported in another abstract chemical system [9].

4 Final remarks

In this contribution, we report our preliminary results on direct simulation of the
Oregonator. We confirm that when the Oregonator is affected by large stochastic
fluctuations, the oscillatory behaviors may change. More detailed investigation on
it is our future work, where in order to confirm the correctness of the investigation,
chemical experiment might be required, it is also our future work.

And also, chemical systems could give a good analogy when we consider the
complex interaction systems such as protein-protein interactions etc. We will try
to apply this method to investigate such a biological netwrok.
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Sburlan, Dragoş, 383
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This volume contains the papers presented at the Eighth Workshop on 

Membrane Computing, WMC8 which has been organized in Thessalo-

niki, Greece, from June 25 to June 28, 2007. The 2007 edition of WMC 

was organised at City College, Thessaloniki, by the South-East European 

Research Centre (SEERC), under the auspices of the European Molecular 

Computing Consortium (EMCC). 

As usual in the last years, a balanced attention was paid to both "theory" 

and "practice", to mathematical and theoretical computer science topics 

as well as to applications and implementations. This is especially visible 

in what concerns the five invited talks, all of them included in the present 

volume, delivered by Luca Bianco, Pierluigi Frisco, Alberto Leporati, 

Andrea Maggiolo-Schettini, and Gheorghe Stefan. The volume also 

contains the 32 accepted papers. Each of them was subject of two or three 

referee reports.

Details about membrane computing can be found at the area web site 

(maintained in Milano, Italy) from http://psystems.disco.unimib.it. The 

workshop web site was http://www.seerc.org/wmc8/, where you will be 

able to find all papers in electronic form. The workshop was sponsored by 

City College, Thessaloniki, and the South-East European Research 

Centre (SEERC). Special thanks to the organising and programme com-

mittee, the invited speakers, the authors of the papers, the presenters, the 

reviewers, and all the participants; it is their effort that made the Eighth 

Workshop on Membrane Computing (WMC8) a very successful event.
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