

Language Theory in Biocomputing

Proceedings

UC’07 – Unconventional Computation
Kingston, Ontario, Canada

Edited by Michael Domaratzki and Kai Salomaa

Table of Contents

Table of Contents ...iii

Preface ..iv

M. Sakthi Balan
Automaton Models Inspired by Peptide Computing ..1

Franziska Biegler, Mark Daley and M. Elizabeth Locke
Computation by Annotation: Modelling Epigenetic Regulation16

Mark Daley, Ian McQuillan and James McQuillan
Theoretical and Computational Properties of Transpositions 28

Tseren-Onolt Ishdorj, Remco Loos and Ion Petre
Computational Efficiency of Intermolecular Gene Assembly 39

John Jack, Fransisco Romero-Campero, Mario Perez-Jimenez, Oscar Ibarra
and Andrei Păun
Simulating Apoptosis Using Discrete Methods: a Membrane System
and a Stochastic Approach ... 50

Lila Kari and Kalpana Mahalingam
Watson-Crick Bordered Words and their Syntactic Monoid 64

Language Theory in Biocomputing iii UC'07 - Kingston, Canada

Preface
The Language Theory in Biocomputing Workshop was held on August 15,
2007 as part of the Unconventional Computation UC’07 conference. The con-
ference venue was the Four Points Hotel in Kingston, Ontario, Canada.

These proceedings contain the six accepted contributions. Each contribution was
refereed by at least three Program Committee members or external reviewers.

Revised versions of the papers from this workshop will be considered for publi-
cation in a special issue of the International Journal of Foundations of Computer
Science.

We would like to thank the sponsors of the UC’07 conference for their support:

• Faculty of Arts and Science, Queen’s University

• Fields Institute

• School of Computing, Queen’s University

• Department of Biology, Queen’s University

• Office of Research Services, Queen’s University

• MITACS–Mathematics of Information Technology and Complex Systems

• The Campus Bookstore, Queen’s University

• IEEE, Kingston Section

Language Theory in Biocomputing iv UC'07 - Kingston, Canada

Program Committee
Mark Daley University of Western Ontario
Michael Domaratzki (co-chair) University of Manitoba
Lucian Ilie University of Western Ontario
Stavros Konstantinidis St. Mary’s University
Ian McQuillan University of Saskatchewan
Andrei Păun Louisiana Tech University
Kai Salomaa (co-chair) Queen’s University

Language Theory in Biocomputing v UC'07 - Kingston, Canada

Sponsors

Language Theory in Biocomputing vi UC'07 - Kingston, Canada

Automaton Models Inspired by Peptide Computing⋆

M. Sakthi Balan

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada, N6A 5B7

sakthi@csd.uwo.ca

Abstract. We define two accepting devices inspired by peptide computing called
string binding-blocking automata and rewriting binding-blocking automata. In both
the devices there is an option to mark some symbols – in one case, it is used to
postpone reading of marked symbols to a later part of processing and in other case, it
is used to store some information. These ideas are inherited from peptide computing.
We show a nice hierarchy between these two systems and the previous model, the
binding-blocking automaton.

1 Introduction

We propose two new automaton models inspired by peptide computing: string
binding-blocking automaton and rewriting binding-blocking automaton. In both the
automaton models we impart a function for blocking and unblocking of a string of
symbols. Blocking and unblocking facilitates postponing the reading of some string
of symbols to a later part of processing. The idea of blocking some symbols from
being read by the head is borrowed from peptide computing [5] where some regions
of peptide sequences are blocked from being processed and later unblocked when
required.

Peptide computing proposed by H. Hug and R. Schuler [7] is a computational
model where computing is done through interactions between peptides and antibod-
ies. Interactions between peptides and antibodies occur by binding of antibodies to
some specific spots, called epitopes, present in the peptide sequence. Elementary op-
erations are binding/removal of antibodies from peptides that resembles a rewriting
system like Turing machine.

In [7], H. Hug and R. Schuler showed how to solve the satisfiability problem using
peptide computing. The following paper [5] presented a model to solve two further
NP-complete problems – Hamiltonian circuit and exact cover by 3-set . Moreover
in [5], a simulation of Turing machine by peptide computing is presented to show
peptide computing is computationally complete. In all the above results processing is
done by permanent or temporary elimination of some (part of) peptide sequences by
attaching some higher affinity antibodies. In this paper we use the idea of temporary
elimination called blocking in our model.

In our earlier work [4] we proposed a slightly different automaton model called
binding-blocking automata (BBA), which is a model based on classical finite state
automata together with blocking and unblocking of symbols and priority relation
in reading some string of symbols. Blocking of symbols is analogical to temporary
elimination used in peptide computing. While the model presented in [4] follows
blocking of symbols, our model proposed here uses blocking of strings.

In this paper we study how blocking improves the acceptance power of the sys-
tem. We show a nice hierarchy between all the three systems: binding-blocking au-
tomata, string binding-blocking automata and rewriting binding-blocking automata.

⋆ A very short and preliminary version of this paper appeared in [1].

Language Theory in Biocomputing 1 UC'07 - Kingston, Canada

We prove that the power of these systems increases in the order given above. We
also show that the power of rewriting binding-blocking automata is equivalent to
that of Turing machine.

The main idea of this study is, to see how the system performs if ideas of peptide-
antibody interactions in peptide computing [3, 5] are inserted into the definition of
finite state automata. A theoretical model for peptide computing is proposed in [2,
3]. The computation in the model presented in [2] is not a sequential one. In this
paper we use the ideas inherited from peptide computing but we use it in a sequential
device, finite state automata.

In section 2, we present some preliminaries and notations followed in this pa-
per. In section 3, we introduce string binding-blocking automaton and study the
acceptance power of the proposed model. In section 4, we define rewriting binding-
blocking automaton and prove that its acceptance power is equivalent to that of
Turing machine. The paper concludes with some remarks in section 5.

2 Preliminaries

Let V be a finite set of symbols and let y ∈ V ∗. We denote the set of all substrings
of y by sub(y); the set of all proper substrings of y as Sub(y); the set of all prefixes
of y as pre(y); and, set of all proper prefixes of y as Pre(y).

Random Context Grammars

Random context grammars is a variation of context-free grammars. There are two
restrictions in this model when applying a rule: permitting contexts and forbidding
contexts. Both the sets of contexts contain a subset of non-terminals, which are
checked for its presence in the sentential form when applying a rule. In the following
paragraphs we present a brief description of random context grammars and some of
the results which we use in our paper. We follow the notations of [6] in the definition
of random context grammars. For more details of this model refer [6].

A random context grammar is a system

G = (VN , VT , P, S)

where VN , VT , S are in a usual Chomsky grammar, and P is a finite set of random
context rules, that is triplets of the form

(α −→ β,Q,R),

where α −→ β is a rewriting rule over VG(VG = VN ∪VT) and Q and R are subsets
of VN . For x, y ∈ V ∗

G, we write x =⇒ y iff x = x′αx′′ for some x′, x′′ ∈ V ∗
G, (α −→

β,Q,R) is a triple in P , all symbols of Q appear in x′x′′, and no symbol of R appears
in x′x′′. Q is called the permitting context of α −→ β and R is the forbidding context
of this rule.

The language generated by this grammar G is defined as

L(G) = {x | x ∈ V ∗
T and S

∗
=⇒ x}

where again
∗

=⇒ is the reflexive and transitive closure of =⇒.
The grammar is of type i (λ-free)iff the rules α −→ β ∈ P are of type i(λ-free),

i ∈ {0, 1, 2, 3}, respectively. We use random context grammar with context-free rules
(type 2) unless otherwise mentioned.

Language Theory in Biocomputing 2 UC'07 - Kingston, Canada

We denote the families of languages generated by random context grammars
with appearance checking by L(RC,CF, ac). If no appearance checking features are
involved (i.e., R = φ for each rule (α → β,Q,R) in random context grammars) then
we erase the letters ac and obtain the families L(RC,CF). Some of the relevant
results in this (see [6]) are,

Theorem 1.
1. L(CF) is strictly contained in L(RC,CF − λ).
2. L(RC,CF − λ) ⊆ L(RC,CF) ⊂ L(RC,CF, ac) = L(RE).
3. L(RC,CF − λ) ⊂ L(RC,CF − λ, ac) ⊂ L(RC,CF, ac) = L(RE).
4. L(RC,CF − λ, ac) ⊂ L(CS). ⊓⊔

In the above L(CF) and L(CS) are the families of context-free languages and
context sensitive languages respectively. CF −λ denotes the context-free rules with-
out lambda rules.

Binding-Blocking Automata

We present the definition of binding-blocking automaton proposed in [4] and state
some of the results which we use in this paper.

A Binding-Blocking Automaton is a construct

P = (Q,V,E, δ, q0, R, βb, βub, Qaccept, Qreject)

where Q = Qblock ∪ Qunblock ∪ Qgeneral (pairwise disjoint sets), q0 ∈ Q is the start
state, V is a finite set of symbols, E is the finite subset of V ∗, δ is the transition
function from Q × (E ∪ {ε}) −→ 2Q, R is the partial order relation (called affinity
relation) on E, simply R ⊆ E × E, βb is the blocking function from Qblock −→ 2V ,
βub is the unblocking function from Qunblock −→ 2V and Qaccept ∪Qreject ⊆ Qgeneral

where Qaccept is the set of accepting states and Qreject is the set of rejecting states.
The symbols which have been read by the head are called marked symbols,

which are blocked are called as blocked symbols. Suppose a sequence of symbols, say
x = a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n is read, then it is marked and denoted by
a1

#

a2

#

···

···

an

#
. Suppose the symbol a ∈ V is blocked then it is denoted by

a

$
. All other

symbols which are not blocked and not read by the head are denoted by
a

−
. If no

symbol is read or blocked in a string x then simply we denote it by
x

−
. Likewise if

all the symbols have been read by the system then it is denoted by
x

#
. Similarly if

all the symbols in the string x are blocked then it is denoted by
x

$
.

The initial configuration of the automaton will be,

q0

↑

a1

−

a2

−

···

···

an

−

where a1a2 · · · an is the input string on the tape of the system.
We have four types of transitions of head which give two types of instantaneous

description of the system. The instantaneous description or configuration of the
automaton is,

a1

X

a2

X

···

···

ai−1

X

q

↑

ai

Y

ai+1

Y

···

···

an

Y

Language Theory in Biocomputing 3 UC'07 - Kingston, Canada

wherein

– in one case X ∈ {#, $} and Y ∈ {−,#, $} and
– in the other case X ∈ {−,#, $} and Y ∈ {−,#, $}.

The first transition is called as leftmost and blocked reading, denoted by ⊢(l,b),
the second transition as leftmost and free reading, denoted by ⊢(l,f), the third one as
locally leftmost and blocked reading, denoted as ⊢(ll,b) and the last one locally leftmost
and free reading, denoted as ⊢(ll,f). Leftmost reading is the one where reading always
starts from the leftmost unmarked and unblocked symbol; locally leftmost reading
need not start from the leftmost unmarked and unblocked symbol; free reading is
the one where a blocked symbol can be read if there is a transition defined on it;
whereas, blocked reading is the one where no blocked symbol is read.

We denote by ⊢∗
D the reflexive and transitive closure of the relation ⊢D (denoting

the four transitions) where D ∈ {(l, b), (l, f), (ll, b), (ll, f)}.
The language acceptance of the BBA P is defined as

LD(P) = {w ∈ V ∗ |
q0

↑

w

−
⊢∗

D
w

#

qf

↑
, for qf ∈ Qaccept}

where D ∈ {(l, b), (l, f), (ll, b), (ll, f)}.
We denote the family of BBA following (l, b) transition as BBA(l,b), likewise

BBA(l,f), BBA(ll,b) and BBA(ll,f) are also defined. If we are not bothered about
whether the system is following free or blocked transition, then we simply omit f
or b from the notation. Same is the case for l or ll also. Similarly, the family of
languages BBA(l,b) denote the set of languages accepted by BBA in BBA(l,b). The
family of languages BBA(l,f), BBA(ll,b) and BBA(ll,f) are similarly defined.

If the affinity relation R is empty then the family of BBA is denoted by BBAnp.
If the system reads only one symbol at a time then the BBA is called as a simple
BBA and its family is denoted by SBBA. The set of languages accepted by Xy is
denoted by Xy, where X ∈ {BBA,SBBA}, y ∈ {p, np} and X ∈ {BBA,SBBA}. If
D ∈ {(l, b), (l, f), (ll, b), (ll, f)} and y are to be specified then we denote the systems
by Xy,D and the set of languages by Xy,D. If the system is referred simply as BBA
then it denotes an arbitrary system.

We state some of the results, proved in [4], in the next theorem.

Theorem 2.

– BBA(l,b) ⊂ BBA(l,f).
– BBA(ll,b) ⊆ BBA(ll,f).

– BBAnp,(l,x) ⊂ BBAp,(l,x), x ∈ {b, f}.

– For every language L ∈ k-SNFA there is a language L′ ∈ BBA(ll,b) such that L

can be written in the form h−1(L′) where h is a homomorphism from L to L′.
– For every L ∈ BBA(l,x) there exists BBA(ll,x) P such that L(P) = L where

x ∈ {b, f} (L(P) denotes the language accepted by P).
– BBA(l,b) ⊂ BBA(ll,b).
– For every L ∈ BBAnp,(l,b) there is a k-NFA which accepts the same language.

⊓⊔

The blocking can also be called as marking since when we speak of blocking some
symbols, it intuitively means marking those symbols.

Language Theory in Biocomputing 4 UC'07 - Kingston, Canada

3 String Binding-Blocking Automata

The basic structure is a finite state automaton but with an additional flexibility to
postpone reading those string of symbols to a later part of processing by blocking
some string of symbols. The finite control of the automaton is divided into three
sets of states, namely blocking states, unblocking states and general reading states.
In general reading state, the head can read a string of symbols from its present
position. When a string is read they are marked. In a blocking a state, some string
of symbols (starting from the position of the head) are blocked from being read by
the head. So, only those symbols which are not marked and not blocked are read
by the head. We note that the blocking in this model is done in string-wise fashion
unlike the BBA where the blocking is done over individual symbols. Similarly in an
unblocking state, the system unblocks the corresponding strings for further reading.

The formal definition of the system is as follows:

Definition 1. A String Binding-Blocking Automaton (StrBBA) is a construct

P = (Q,V,E, δ, q0, R, βb, βub, Qaccept)

where Q = Qblock ∪ Qunblock ∪ Qgeneral is the set of states (pairwise disjoint);
q0 ∈ Q is the start state, V is a finite set of symbols; E is the finite subset of V ∗, δ
is the transition function from Q× (E ∪ {ε}) −→ 2Q; R is the partial order relation
(called affinity/priority relation) on E, i.e., R ⊆ E × E; βb is the blocking function
from Qblock −→ L; βub is the unblocking function from Qunblock −→ L′ where L and
L′ are finite set of family of languages over V , i.e., L = {L1, L2, · · · , Lk}, and
L′ = {L′

1, L
′
2, · · ·L

′
r}; and Qaccept ⊆ Q where Qaccept is the set of accepting states.

For 1 ≤ i ≤ k, Li ∈ L is said to be a blocking language. L is called as the family
of blocking languages. Similarly for 1 ≤ i ≤ r, L′

i ∈ L′ is said to be an unblocking
language and L′ is called as the family of unblocking languages.

In the sequel we describe how the system behaves in reading and (un)blocking
states. Let us suppose the input string is y(y ∈ V ∗). At an instant the system is at
any one of the three states - reading state, blocking state or unblocking state. In
reading state, the system reads a string of symbols (say l symbols) at a time and
moves the head l positions to the right. In the blocking state q, the system blocks
a string of symbols, say x where x ∈ L, L ∈ βb(q), x ∈ Sub(y) starting from the
position of the head. The string x satisfies the maximal property i.e., there exists no
z ∈ L such that x ∈ Pre(z) and z ∈ Sub(y) starting from the position of the head.
When the system is in the unblocking state q, all the blocked strings of the form
x ∈ Sub(y) and x ∈ L where L ∈ βub(q) are unblocked. We note that the head can
only read symbols which are neither read nor blocked. If more than one string can
be read by the head then the affinity relation R says which string has to be read. At
any point of time the head reads the string which has more affinity, i.e., if the head
can read either of the strings, x or y (x, y ∈ V +) and if (x, y) ∈ R then y is read.

The symbols that are read by the head are called marked symbols; that are
blocked are called as blocked symbols. Suppose a sequence of symbol x = a1a2 · · · an,

ai ∈ V, 1 ≤ i ≤ n is read, then it is marked and denoted by
a1

#

a2

#

···

···

an

#
. If the string

x ∈ V ∗ is blocked, then it is denoted by
x

$
. The symbols which are not blocked and

not read by the head are denoted by
a

−
. If no symbol is read or blocked in a string

Language Theory in Biocomputing 5 UC'07 - Kingston, Canada

x, then we denote it by
x

−
. Likewise, if all the symbols in a string x have been read

by the system then it is denoted by
x

#
. For simplicity, we denote

a1

X1

a2

X2

···

···

an

Xn
where

Xi ∈ {−,#, $}, 1 ≤ i ≤ n as
x

X
where x = a1a2 · · · an and X = X1X2 · · ·Xn. If

Xi ∈ {#, $} then it is denoted by
x

X−{−}
.

The initial configuration of the tape is,

q0

↑

a1

−

a2

−

···

···

an

−

where a1a2 · · · an is the input string on the tape of the system.
We have two types of instantaneous description (ID) of the system:

1.
a1

X

a2

X

···

···

ai−1

X

q

↑

ai

Y

ai+1

Y

···

···

an

Y
is an ID for P and X ∈ {#, $} and Y ∈ {−,#, $} (called

as leftmost); and

2.
a1

X

a2

X

···

···

ai−1

X

q

↑

ai

Y

ai+1

Y

···

···

an

Y
is an ID for P and X ∈ {−,#, $} and Y ∈ {−,#, $}

(called as locally-leftmost).

In both the cases, q is the state of the system, head is at the ith position, a1a2 · · · an

is the input string on the tape of the system. The first transition always reads
a sequence of symbol starting from the symbol which is the leftmost unread and
unblocked symbol. So it is equivalent to saying whenever unblocking of symbols take
place, the head comes back to the starting symbol on the tape and slides through
all the marked and blocked symbols until it sees the first unblocked and unmarked
symbol. Unlike the first transition, in the second one, the head reads from the first
unblocked and unmarked symbol from its present position. The first transition is
called as leftmost reading, denoted by ⊢l, and the second transition is called as
locally leftmost reading, denoted by ⊢ll. Both the above transitions are explained
below:
Case 1: q ∈ Qgeneral

We say the system makes the move,

a1

X

a2

X

···

···

ai−1

X

q

↑

ai

−

ai+1

−

···

···

aj

−

aj+1

Y

···

···

an

Y

⊢l

a1

X

a2

X

···

···

ai−1

X

ai

#

ai+1

#

···

···

aj

#

p

↑

aj+1

Y

···

···

an

Y

if δ(q, x) contains p, where

– p ∈ Q, x = aiai+1 · · · aj ∈ V ∗, 1 ≤ i < j ≤ n, ak ∈ V, 1 ≤ k ≤ n,X ∈ {#, $}
and Y ∈ {−,#, $}.

– there is no z ∈ E such that z > x in R with δ(q, z) being non-empty where either
(z ∈ Pre(x)) or (x ∈ Pre(z) and ai · · · aj · · · al = z, l ≤ n, and no symbols from
aj+1 to al is blocked or marked).

Similarly we can define the transition for ⊢ll; the only change in the above will
be X ∈ {−, $,#}.

Language Theory in Biocomputing 6 UC'07 - Kingston, Canada

Case 2: q ∈ Qblock

Let βb(q) = L then we say that system makes the move,

···

···

···

···

q

↑

x

−

···

···

···

···
⊢D

···

···

···

···

x

$

p

↑

···

···

···

···

if δ(q, ε) = p, where p ∈ Q, D ∈ {l, ll}, x ∈ L and there is no z ∈ L such that
x ∈ Pre(z). So the entire string x is blocked from being read.

Case 3: q ∈ Qunblock

Let βub(q) = L then the system makes the following move,

···

···

x1

$

···

···

x2

$

···

···

q

↑

···

···

xl

$

···

···
⊢l

p

↑

···

···

x1

−

···

···

x2

−

···

···

xl

−

···

···

in case of the leftmost reading and

···

···

x1

$

···

···

x2

$

···

···

q

↑

···

···

xl

$

···

···
⊢ll

···

···

x1

−

···

···

x2

−

···

···

p

↑

···

···

xl

−

···

···

in the case of locally leftmost reading, if δ(q, ε) = p, where p ∈ Q and xi ∈ L.
The head movements after unblocking in the l and ll transitions are different – in
l transitions, the head positions to the leftmost unmarked and unblocked symbol,
where as in ll transition the head remains at the same position.

We denote by ⊢∗
D, the reflexive and transitive closure of the relation ⊢D where

D ∈ {l, ll}.
We emphasize here that when blocking is done, a single string is blocked starting

from the position of the head and when unblocking occurs several substrings are
unblocked.

The language acceptance of the StrBBA system P is defined as

LD(P) = {w ∈ V ∗ |
q0

↑

w

−
⊢∗

D
w

#

qf

↑
, for qf ∈ Qaccept}.

The class of string binding-blocking automata with D-transition is denoted by
StrBBAD and the language accepted by the above classes are denoted by StrBBAD

respectively. If the blocking languages are finite languages, i.e., every Li ∈ L is a
finite language, then the above class is represented by StrBBAD(Fin). If there is
no priority then the above class is denoted by StrBBAnp,D and the set of languages
accepted by the above class is denoted by StrBBAnp,D. Similarly if the blocking
languages are finite and there is no priority then it is denoted by StrBBAnp,D(Fin).

We note that unlike in the binding-blocking automata model [4] where we use
two more transitions, namely, blocked and free transitions in addition to leftmost
and locally leftmost transitions, here we consider only blocked transitions.

3.1 Power of Acceptance

Example 1. We give an example of a StrBBA system P (without priority) working
in l transition which accepts L = {anban | n ≥ 1}.

Qgeneral = {q0, qa1 , qa2 , qf},

Qblock = {qblocka},
Qunblock = {qunblocka},
Qaccept = {qf},

βb(q
blocka) = {anb | n ≥ 0},

βub(q
unblocka) = {anb | n ≥ 0},

δ(q0, a) = {qblocka},
δ(qblocka , ε) = {qa1},
δ(qa1 , a) = {qa2},
δ(qa2 , ε) = {qunblocka

},
δ(qunblocka , ε) = {q0}
δ(q0, b) = {qf},

Language Theory in Biocomputing 7 UC'07 - Kingston, Canada

With little work we can see that the above system accepts the language L in l tran-
sition. The instantaneous descriptions are depicted in the following for a particular
string a3ba3.

q0

↑

a

−

a

−

a

−

b

−

a

−

a

−

a

−
→

a

#

a

$

a

$

b

$

qblocka

↑

a

−

a

−

a

−
→

a

#

a

$

a

$

b

$

qa1

↑

a

−

a

−

a

−
→

a

#

a

$

a

$

b

$

a

#

qa2

↑

a

−

a

−
→

a

#

qunblocka

↑

a

−

a

−

b

−

a

#

a

−

a

−
→

a

#

q0

↑

a

−

a

−

b

−

a

#

a

−

a

−
→

a

#

a

#

a

$

b

$

a

#

qblocka

↑

a

−

a

−
→

a

#

a

#

a

$

b

$

a

#

qa1

↑

a

−

a

−
→

a

#

a

#

a

$

b

$

a

#

a

#

qa2

↑

a

−
→

a

#

a

#

qunblocka

↑

a

−

b

−

a

#

a

#

a

−
→

a

#

a

#

q0

↑

a

−

b

−

a

#

a

#

a

−
→

a

#

a

#

a

#

b

$

a

#

a

#

qblocka

↑

a

−
→

a

#

a

#

a

#

b

$

a

#

a

#

qa1

↑

a

−
→

a

#

a

#

a

#

b

$

a

#

a

#

a

#

qa2

↑
→

a

#

a

#

a

#

qunblocka

↑

b

−

a

#

a

#

a

#
→

a

#

a

#

a

#

q0

↑

b

−

a

#

a

#

a

#
→

a

#

a

#

a

#

b

#

qf

↑

a

#

a

#

a

#

The above language L is not accepted by any BBAl. In the case of BBAl, in
order to equate the number of a′s on either side of b the BBA system has to first
block the symbol a. But blocking a′s will block both the strings of a and if the
system unblocks to equate the second string with the first string of a then the head
comes to the first string of a, since the transition is leftmost. So the second string of
a′s can not be equated with the first string of a′s. Hence L 6∈ BBAl. Relying on the
above observations it is possible to give a rigorous proof for the following lemma.

Lemma 1. There are StrBBAl systems that accepts languages not accepted by any
BBAl. ⊓⊔

The above language L is accepted by StrBBA in locally leftmost transition
(without priority) by the following example:

Example 2. Following is the StrBBA system P which accepts

L = {anban | n ≥ 1}

in ll transition mode.
Qgeneral = {q0, qa1 , qa2 , qf},

Qblock = {qblocka , qblocka,b},
Qunblock = {qunblocka, qunblocka,b},
Qaccept = {qf},

βb(q
blocka) = {anb | n ≥ 0},

βb(q
blocka,b) = {w | w ∈ {a, b}∗},

βub(q
unblocka) = {anb | n ≥ 0},

βub(q
unblocka,b) = {w | w ∈ {a, b}∗},

δ(q0, a) = {qunblocka,b},
δ(qunblocka,b , ε) = {qblocka},
δ(q0, b) = {qf},

δ(qblocka , ε) = {qa1},
δ(qa1 , a) = {qa2},
δ(qa2 , ε) = {qunblocka},
δ(qunblocka , ε) = {qblocka,b},
δ(qblocka,b , ε) = {q0}.

Language Theory in Biocomputing 8 UC'07 - Kingston, Canada

The above example shows that StrBBA, without priority, accepts languages not
accepted by BBAl systems.

The following example shows that StrBBAll accepts languages not accepted by
BBAll.

Example 3. Following is the StrBBA system P (with no priority) which accepts

L = {a2n(aca)n | n ≥ 1}

in ll transition mode.
Qgeneral = {q1, q2, q3, q4, q5, qb, qf}, q1

is the start state,
Qblock = {qblocka , qblockaca},
Qunblock = {qunblocka, qunblockaca},
Qaccept = {pf},

βb(q
blocka) = {a2n | n ≥ 1},

βb(q
blockaca) = {(aca)n | n ≥ 1},

βub(q
unblocka) = {a2n | n ≥ 1},

βb(q
unblockaca) = {(aca)n | n ≥ 1},

δ(q1, a) = {q2},
δ(q2, a) = {qunblockaca},
δ(qunblockaca , ε) = {qblocka},
δ(qblocka , ε) = {q3},
δ(q3, a) = {q4},
δ(q4, c) = {q5},
δ(q5, a) = {pf , qblockaca},

δ(qblockaca , ε) = {qunblocka},
δ(qunblocka , ε) = {q1}.

The above language L is not accepted by any BBAll. When constructing a BBAll

for L, in order to match a with a aca, the system has to know from where the
substring (aca)n starts. Moreover, in order to equate each a with the substring aca
the system has to block all a′s then look for aca. But blocking of a will block all
a′s in the substring aca. This shows the system can neither equate a with aca nor
it knows the position where the string aca starts. Hence there is no BBAll system
which accepts the language L. The observations above gives an informal proof for
the following lemma.

Lemma 2. There are StrBBAll systems that accepts languages not accepted by any
BBAll. ⊓⊔

It is interesting to see that even if the set of blocking languages are finite lan-
guages, the system is able to accept non-regular languages as the following example
shows:

Example 4.

Qgeneral = {q0, qa, qb},

Qblock = {qblocka , qblockb},
Qunblock = {qunblocka, qunblockb},
Qaccept = {q0},

βb(q
blocka) = {a}, βb(q

blockb) = {b},
βub(q

unblocka) = {a}, βub(q
unblockb) = {b},

δ(q0, a) = {qblocka , qa},
δ(qblocka , ε) = {qblocka, qa},
δ(qa, b) = {qunblocka},
δ(qunblocka , ε) = {q0},
δ(q0, b) = {qblockb , qb},
δ(qblockb , ε) = {qblockb , qb},
δ(qb, a) = {qunblockb},
δ(qunblockb , ε) = {q0}.

The above StrBBA accepts all strings over {a, b} with equal number of a′s and
b′s. If the system reads a symbol a (b), then it is followed by reading b (a). This
makes sure that the string contains equal number of a and b. Hence we have the
theorem,

Theorem 3. REG ⊂ StrBBAnp,D(Fin),D ∈ {l, ll}. ⊓⊔

Language Theory in Biocomputing 9 UC'07 - Kingston, Canada

Theorem 4. For any BBA in BBAD there is an equivalent StrBBA in StrBBAD

where D ∈ {l, ll}.

Proof. We give the construction for ll-transition. The same construction will also
hold for l-transitions. Let P = (Q,Σ, δ, q0, φ, βb, βub, Qaccept, Qreject) be a BBA
working in ll transition. We construct a StrBBAll,

Q = (Q′, Σ, δ′, qφ, β′
b, β

′
ub, Q

′
accept, Q

′
reject)

as follows:

1. Q′ = {qX , qX
block,X , qX

unblock,Y | q ∈ Q, X, Y ∈ 2V },

2. Q′
accept = {qX | q ∈ Qaccept,X ∈ 2V },

3. Q′
reject = {qX | q ∈ Qreject,X ∈ 2V },

4. Q′
block = {qX

block,X | q ∈ Qblock,X ∈ 2V },

5. Q′
unblock = {qX

unblock,Y | q ∈ Qunblock,X, Y ∈ 2V },

6. qX
block,X ∈ δ′(pX , a) if q ∈ δ(p, a) where p ∈ Qgeneral and X ∈ 2V ,

7. q
X∪βb(p)
block,X∪βb(p) ∈ δ′(pX , a) if q ∈ δ(p, a) where p ∈ Qblock, a ∈ V ∪ {ε} and X ∈ 2V ,

8. q
X−βub(p)
unblock,βub(p) ∈ δ′(pX , a) if q ∈ δ(p, a) where q ∈ Qunblock, a ∈ V ∪ {ε} and

X ∈ 2V ,
9. qX ∈ δ′(qX

block,X , ε),X ∈ 2V ,

10. qX
block,X ∈ δ′(qX

unblock,Y , ε),X, Y ∈ 2V ,

11. β′
b(q

X
block,X) = X∗,X ∈ 2V ,

12. β′
ub(q

X
unblock,Y) = Y ∗,X, Y ∈ 2V ,

In a BBA system when blocking occurs, symbols from the set X are blocked
wherever it is present in the tape. But in a StrBBA system only a string, starting
from the position of the head, is blocked. Hence when constructing a StrBBA sys-
tem, we have to take note that all the symbols in the set X, to its right of the head,
is blocked at each transition. In order to perform this, we insert states of the form
qX where X denotes the set of symbols blocked when the system is in the state q.
So, whenever the system reads a symbol it reaches the state of the form qX

block,X that
blocks a string of symbol from the set X, before reading the next symbol. Hence
for each reading and blocking transitions we have two transitions – one, to the state
of the form qX

block,X which blocks the string over X and the other one, to the state

of the form qX from where next transition is followed. When the system reaches
an unblocking state, the first transition gets the system in the state of the form
qX
unblock,Y where the symbols over Y are unblocked, and the symbols in X are got

after removing all the symbols in Y . In the next move, the system goes to the state
of the form qX

block,X which again blocks any string over X. The third move gets back

the system to the state of the form qX .
It is easy to see that if a string y is accepted by P, then it will be accepted by

Q and vice-versa. ⊓⊔
Hence by Lemmas 1 and 2, and by Theorem 4 we have the following

Theorem 5.
BBAD ⊂ StrBBAD

where D ∈ {l, ll}. ⊓⊔

Language Theory in Biocomputing 10 UC'07 - Kingston, Canada

We conjecture that the acceptance power of SBBA working in l transition without
priority can not exceed the generative power of random-context grammars. The
following is our proposed construction of a random-context grammar for a given
StrBBA. We note here that this construction works only for some examples. In the
following proof we take a strict sub-class of StrBBAl,np where L ∈ StrBBAl,np has
no iterative blocking, i.e., there is no additional blocking of strings when there is a
blocking of strings present already.

Conjecture 1. For every L ∈ StrBBAl,np there exists a random-context grammar
RC with context-free rules (without appearance-checking) such that L(RC) = L.

Let P = (Q,Σ, δ, q0, βb, βub, Qaccept, Qreject) where P ∈ StrBBAl,np. Also, let
L(P) = L. In our construction, we assume that the system StrBBA has no
iterative blocking. We construct an equivalent random-context grammar RC =
(VN , VT , P, Sq0) as follows:

1. VN = {Sq0 , Aq, A
′
q, Bq, B

′
q, B

′, E | q ∈ Q},
2. VT = Σ,

The production rules of RC includes the following, (a ∈ V ∪{ε} and r ∈ Q wherever
applicable)

1. (Sq0 −→ aAqB
′, φ, φ) if q ∈ δ(q0, a),

2. (Ap −→ aAq, {B
′, B′

r}, φ) if q ∈ δ(p, a) and p, q ∈ Qgeneral,
3. (Ap −→ aA′

q, {B
′, B′

r}, φ) if q ∈ δ(p, a) and q ∈ Qblock, p′ ∈ δ(q, ε) and L ∈ βb(q),

4. (B′ −→ Bq, {A
′
q}, φ),

5. (Bp −→ aBq, {A
′
r}, φ) if q ∈ δ(p, a) and p, q ∈ Qgeneral,

6. (Bp −→ aB′
q, {A

′
r}, φ) if q ∈ δ(p, a) and q ∈ Qunblock and L ∈ βub(q),

7. (A′
r −→ Aq, {B

′
q}, φ),

8. (Ap −→ E, {B′, B′
r}, φ) if p ∈ Qaccept,

9. (B′
r −→ λ, {E}, φ),

10. (B′ −→ λ, {E}, φ),
11. (E −→ λ, φ, φ).

In the following we explain the above construction. When no blocking takes place
the non-terminal Aq generates symbols in the same way as a regular grammar will
do. When Aq is generating, B is passive. When blocking occurs for the first time, the
RC system introduces the non-terminals A′

q in the sentential and the non-terminal
B′ takes over the control. The non-terminal A′

q is passive when Bq generates symbols.

If q ∈ Qunblock the control transfers to the non-terminal A′
q which cycles back to Aq

to generate symbols as above. This procedure is repeated for every blocking and
unblocking. When q ∈ Qaccept the RC system introduces the non-terminal E which
stops the generation of symbols.

From the above construction, it seems that this can be extended to StrBBA with
iterative blocking. If we prove that the number of blockings occurring in a sentential
form is bounded by a finite number, similar to the result that blocking quotient of
BBA is finite (see [4]), then the above idea can be extended to all StrBBA.

We note here that the above construction uses λ rules but forbidden context is
not used.

It should be easy to note here that the language ww is not accepted by StrBBA
working in either l or ll transitions. The reason is that the system can not guess
correctly from where the duplication starts. Suppose the system has to check for the

Language Theory in Biocomputing 11 UC'07 - Kingston, Canada

duplication the only possibility is that it reads symbols from both the parts of the
string, one or a finite number at a time, alternatively, and match them accordingly.
But for this procedure to be carried out, the system has to block some symbols
(i.e., a suffix of the string w). But the string w is an arbitrary string over {a, b}. So
the blocking has to be done over the language {a, b}∗. If this is done then the entire
input string will be blocked which will make the matching of the symbols impossible.
But a random context grammar without appearance-checking generates ww. This
makes it clear that StrBBA do not accept all languages accepted by random context
grammars with context-free rules and without appearance-checking.

4 Rewriting Binding-Blocking Automata

In this section we define another variant of binding-blocking automaton called as
rewriting binding-blocking automaton.

In this variant we use markers and state-affinity relation. The set of markers
are generalization of blocking symbols, since we can consider blocking of symbols in
BBA and StrBBA as done by a single marker. In this model, we have more than
one marker to mark the symbols. There is a finite set of states and a relation called
as state-affinity relation, which basically relates each state to a poset over the set of
markers. By this relation the system can rewrite in the tape by removing the lower
affinity marker by a marker having higher affinity.

The basic model consists of a finite control, an infinite tape (one end is fixed
and other end is infinite) which is divided into cells, and a tape head which scan a
cell at a time. The tape has two tracks - the first one consists of the input symbols
and the next one contains the markers. Each cell of the tape hold exactly one of a
finite number of tape symbols. The input string is left justified. Initially, the finite
control is in the state q0 and is scanning the leftmost symbol of a string of symbols
which appear on the input tape. At any time the head, which is 2-way, can read a
symbol on each track at the same time. As and when the symbols are read they are
marked. Marking is done with help of a particular set called Marker set, denoted by
M . There is a set of poset relations, P where each poset is defined on the set M .
This poset relation helps to replace the markers when the necessity arises. The idea
of marking and replacing one marker with a marker with higher affinity is borrowed
from peptide computing where one antibody binding to a peptide sequence can be
replaced by an antibody with a higher affinity [3, 5].

The formal definition of the system is as follows:

Definition 2. A Rewriting Binding-Blocking Automaton (RBBA) is a construct

Γ = (Q,Σ, V, δ,M,R,P, q0 , F)

where Q is the finite set of states and q0 ∈ Q is the start state; Σ is the finite set
of tape alphabet; V ⊆ Σ is a finite set of symbols called input alphabet; δ is the

transition function from Q ×
Σ

V
−→ 2Q×{L,R}; M ⊆ V is called the set of markers;

R is the set of posets over M called as affinity set (i.e, each R ∈ R is a subset of
M ×M); P is defined by, P : Q −→ R called as state-affinity function; and, F ⊆ Q
where F is the set of accepting states.

The symbols which are read by the head are called marked symbols. Suppose a
sequence of symbol x = a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n is read, then it is marked

Language Theory in Biocomputing 12 UC'07 - Kingston, Canada

and denoted by
a1

A1

a2

A2

···

···

an

An

. All other symbols not read by the head are denoted by

a

−
. If no symbol is read or blocked in a string x, then we denote it by

x

−
. Likewise, if

all the symbols have been read by the system, then it is denoted by
x

M
. If the string

x contains both read and unread symbols then it is denoted by
x

V
.

The initial configuration of the tape is,

q0

↑

a1

−

a2

−

···

···

an

−

6b

−

6b

−

···

···

where a1a2 · · · an 6 b 6 b · · ·, ai ∈ V and 6 b denotes blank cells is the input string on
the tape of the system.

The instantaneous description of the system is as follows:

a1

A1

a2

A2

···

···

ai−1

Ai−1

q

↑

ai

Ai

ai+1

Ai+1

···

···

an

An

6b

An+1

6b

An+2

···

···

6b

−

···

···

is an ID for P and ai, Ai ∈ Σ where q is the state of the system, head of the system
is at the ith position, a1a2 · · · an is the input string on the tape of the system.

We say the system makes the move,

a1

A1

a2

A2

···

···

ai−1

Ai−1

p

↑

ai

Ci

ai+1

Ci+1

···

···

aj

Cj

aj+1

Cj+1

···

···

an

Cn

6b

Cn+1

6b

Cn+2

···

···

···

···

⊢

a1

A1

a2

A2

···

···

ai−1

Ai−1

ai

Bi

q

↑

ai+1

Ci+1

···

···

aj

Cj

aj+1

Cj+1

···

···

an

Cn

6b

Cn+1

6b

Cn+2

···

···

···

···

if δ(p,
ai

Ci

) contains (q,R) where p, q ∈ Q, ai, Bi, Ai ∈ V,Ci ∈ V ∪{−}, (Bi, Ci) ∈ P(q)

and Bi ∈ max(P(q)).

or

a1

A1

a2

A2

···

···

ai−1

Ai−1

p

↑

ai

Ci

ai+1

Ci+1

···

···

aj

Cj

aj+1

Cj+1

···

···

an

Cn

6b

Cn+1

6b

Cn+2

···

···

···

···

⊢

a1

A1

a2

A2

···

···

q

↑

ai−1

Ai−1

ai

Bi

ai+1

Ci+1

···

···

aj

Cj

aj+1

Cj+1

···

···

an

Cn

6b

Cn+1

6b

Cn+2

···

···

···

···

if δ(p,
ai

Ci

) contains (q, L) where p, q ∈ Q, ai, Bi, Ai ∈ V,Ci ∈ V ∪{−}, (Bi, Ci) ∈ P(q)

and Bi ∈ max(P(q)).

The language acceptance of the PA system P is defined as

L(P) =

{

w ∈ V ∗ |
q0

↑

w

−

6b

−

6b

−

···

···
⊢∗ w

V

qf

↑

6b

A1

6b

A2

···

···
, for qf ∈ F

}

.

Language Theory in Biocomputing 13 UC'07 - Kingston, Canada

Theorem 6. For any Turing machine TM there is an equivalent RBBA system
which accepts the same language as TM .

Proof. Let TM = (Q,V,Σ, δ, q0, F) be a Turing machine. We construct a RBBA,
Γ = (Q′, Σ′, V ′, δ′,M,R,P, q′0, F

′) as follows:

1. Q′ = Q × V × Q ∪ {q′0, [q
′
0, λ, q0]} ∪ F ′, V ′ = V , Σ′ = Σ ∪ {−}, F ′ =

{p′f , p′′f | p ∈ F}, M = V ′,

We construct the affinity set R as follows:

2. for every R ∈ R,
– there exists [q,A, p] ∈ Q′ such that R = P([q,A, p]),
– R′ = {(B,A) | (p,B,Mov) ∈ δ(q,A)} where Mov ∈ {L,R},
– R = R′ ∪ {(B,−), (A,−) | (B,A) ∈ R′}

The transition function δ′ is defined as follows:

3. ([q′0, λ, q0], R) ∈ δ′(q′0, λ),

4. ([q, a, p], L/R) ∈ δ′([r, b, q]],
a

−
) if (p,A,L/R) ∈ δ(q, a),

5. ([q,A, p], L/R) ∈ δ′([r, C, q],
d

A
) if (p,B,L/R) ∈ δ(q,A), d ∈ V ,

6. For (p,B,L/R) ∈ δ(q,A) with p ∈ F , (pf , L/R) ∈ δ′([q,A],
d

A
),

7. (p′f , L) ∈ δ′(pf ,
6b

A
),

8. (p′f , L) ∈ δ′(p′f ,
6b

A
),

9. (p′′f , R) ∈ δ′(pf ,
d

A
), d ∈ V ,

10. (p′′f , R) ∈ δ′(p′′f ,
d

A
), d ∈ V ,

The states of the constructed system is taken as 3-tuples [q, a, p]. The reason for
taking 3-tuples is the following: First it has to be noted that the rewriting technique
of Turing machine can be simulated in rewriting binding-blocking automata only by
defining affinity relation with respect to each states and symbols read. This affinity
relation will make sure that the old symbol read is rewritten by some new symbol.
So the crucial part of the construction of rewriting binding-blocking automata lies
in defining the affinity relation. Each of the states of the form [q, a, p] denotes the
following,

– The system is in the state p,
– The system reached p by reading the symbol a when in the state q.

Now, if suppose the system rewrites the symbol a as A, then affinity relation for
the state [q, a, p] includes the element (A, a). Hence the rewriting binding-blocking
automata rewrites the symbol a as A according to its affinity relation. The movement
of the head of the rewriting binding-blocking automata is just same as the movement
of the Turing machine.

In the above construction, we shall make it clear that when the symbols are of

the form
a

−
then the system reads the top symbol which is a, otherwise, if it is of

Language Theory in Biocomputing 14 UC'07 - Kingston, Canada

the form
a

A
, then the system reads only the bottom symbol A. This is to make sure

that the system does not read any symbol which has been rewritten.
The other important issue in the construction is that some Turing machines can

accept the input string even if it has not read the full input string. In this case we
use a new state pf which positions the head at the end of the input string w.

Finally when TM reaches a final state p, Γ reaches either of the states, p′f or p′′f ,
and moves its head to the end of the input.

Hence any string accepted by the TM is accepted by Γ and no other string is
accepted by Γ . ⊓⊔

5 Conclusion

We proposed two new automaton models – string binding-blocking automaton and
rewriting binding-blocking automaton. Both these models use the idea of marking
some symbols, in the former model it is used to postpone reading of those marked
symbols and in the latter model it is used for storing some information. Both these
models are more powerful than that of binding-blocking automata. We strongly feel
that the acceptance power of string binding-blocking automata working in leftmost
transition do not exceed the generative power of a random-context grammar. In
the case of rewriting binding-blocking automaton, we generalized the blocking of
symbols with a set of markers and imparted a state-affinity relation on the set of
states. We proved that this model is universally complete.

Both the models proposed here used ideas from peptide computing where com-
puting occurs through binding, removing and replacing of antibodies. The main
motivation for this study was to use some of the ideas of peptide computing in
classical automata theory and to study their acceptance power. In peptide comput-
ing, the processing is completely random (for example, antibody can bind with a
substring present anywhere in a sequence) whereas, in classical automata the pro-
cessing takes place sequentially. This study was to show how the system behaves
if we make the processing sequential together with the use of abstract ideas from
peptide computing.

References

1. M. S. Balan: String binding-blocking automata. In Genetic and Evolutionary Computation
Conference, LNCS 2723. 425–426, 2003.

2. M. S. Balan, H. Jürgensen: Peptide computing: Universality and theoretical model. In Uncon-
ventional Computation, LNCS 4135. 57–71. Springer-Verlag, 2006.

3. M. S. Balan, H. Jürgensen: On the universality of peptide computing. Natural Computing
(2007). In print.

4. M. S. Balan, K. Krithivasan. Binding-blocking automata. Communicated, 2007.
5. M. S. Balan, K. Krithivasan, Y. Sivasubramanyam: Peptide computing: Universality and com-

puting. In N. Jonoska, N. Seeman (editors): Proceedings of Seventh International Conference on
DNA based Computers, LNCS 2340. 290–299, 2002.

6. J. Dassow, G. Păun: Regulated Rewriting in Formal Language Theory. Springer, Berlin, 1989.
7. H. Hug, R. Schuler: Strategies for the developement of a peptide computer. Bioinformatics 17

(2001), 364–368.

Language Theory in Biocomputing 15 UC'07 - Kingston, Canada

Computation by annotation: modelling epigenetic

regulation.∗

Franziska Biegler1, Mark Daley1,2 and M. Elizabeth O. Locke1

1Department of Computer Science
2Department of Biology

University of Western Ontario

London, ON N6A 5B7, Canada

Abstract

We present a formal model inspired by the epigenetic process of gene anno-
tation via histone modification. In particular, we study the generative capacity
of a system in which annotations on a set of strings control which substrings are
ultimately produced by the system and in which only the annotations, and not
the strings themselves, may be rewritten. On a biological level this represents
a first attempt to better understand the computational limits of this form of
epigenetic regulation. We introduce two different derivation modes for our for-
mal system and show that these systems are actually quite weak. The weaker
of the derivation modes is directly capable only of generating a subset of the
regular languages while the more powerful derivation mode is also only capable
of generating all regular languages modulo a begin- and an end-marker.

1 Motivation and Biological Background

The DNA of a cell encodes information by joining four different phosphonucleotides:
adenine, cytosine, guanine and thymine, commonly labelled A,C,G and T, respec-
tively, into a long linear sequence. Genes are just one of many types of information
stored in DNA and encode proteins which are constructed through the process of
gene expression. In this process, a sequence of nucleotides are translated into a
sequence of amino acids which then fold into a finished, biologically active, protein.

The regulation of gene expression is very important, as every protein must be
expressed at the proper level to maintain a healthy cell state. Many cancers and
disease states are associated with abberant regulation of gene expression, particu-
larity of genes involved in the cell cycle (for an extensive review, see [15]). Along
with the genes themselves, DNA also encodes information about both gene expres-
sion (through promoters and termination sequences), and gene regulation (through
enhancers, silencers and other control regions).

Regulation is a very complex process involving many components, of which the
histone proteins are a significant example. The structure of these proteins is like a

∗This research was supported by funds from the Natural Sciences and Engineering Research
Council of Canada and the SHARCNET Research Chairs program.

Language Theory in Biocomputing 16 UC'07 - Kingston, Canada

small spool which can have DNA wrapped about two and a half times around its
core. Many succesive histone proteins will associate along each DNA string and the
resulting structure, called chromatin, looks like beads on a string, where the DNA
‘string’ wraps around successive histone ‘beads’ (for a review, see [9]).

The histone proteins have tails (C-terminal and N-terminal ends of the protein)
which stick out from the central core or spool region. The tails can be modified
through biochemical processes, e.g., acetylation (and deacetylation), methylation
and phosporylation, and these modifications can be thought of as flags which can
be added or removed from the histone tails. Different combinations of flags on
particular histones may change the regulation pattern of genes in that region [1]
either by inducing structural changes or by recruiting proteins to the region which
perform various actions (for reviews see [8] and [3]). For example, when histones
are methylated, the histones, and in turn the DNA, are closer together and form
highly condensed structures, see [13], whereas histone regions that are acetylated
are generally highly expressed and thought to be much less condensed, as described
in [4] and reviewed in [5]. In either case, the histone flags are forming a so-called
‘epigentic code’ which can be read by the cellular machinery, and result in various
actions on the DNA and histones [1] ultimately affecting the regulation of genes in
that region.

Abstractly, these flags are making comments on how genes in this region of
chromatin (DNA and its associated histones) should be regulated. This parallels
the idea of annotation, where a writer can make a comment on a string of text by
writing something in the margin nearby, or directly linking a comment to a certain
part of the text. A more modern example is that of markup languages, where tags
are used to make formating and other comments on the underlying string using
HTML and XML. Formalizations of these use the nested and hierarchical nature of
strict markup languages to create tree grammars, as described in [12], but these are
not flexible enough to model the annotations made on DNA strings.

In this paper we propose an extension of the formal model proposed in [11],
inspired by histone annotation, which uses annotations to indicate comments on
an underlying string, in the hopes that it will aid the formal study of DNA based
languages. With the study of epigenetic regulation gaining in popularity and signif-
icance, we are particularly interested in the effect that this type of in-place string
annotation can have, in general, on the regulation of gene expression. We aim to
make our formalization as abstract as possible, in order to incorporate other types
of regulatory elements that may be discovered in the future.

2 Preliminaries and notation

Let Σ be a finite alphabet and Σ∗ be the free monoid on Σ, where we denote
the empty word by λ. Let A be a finite set of annotation labels. An annotated
word is a pair (w,A) where w ∈ Σ∗ and A is a set of annotations of the form
(n1, n2, a) ∈ N|w| × N|w| × A, where N|w| = {0, 1, ..., |w|}, which intuitively means
that the subword starting at the n1-th letter of w and ending with the n2-th letter
of w (including the letters at positions n1 and n2) is annotated by the label a. By

Language Theory in Biocomputing 17 UC'07 - Kingston, Canada

abuse of notation, we denote the set of all annotated words on Σ∗ as Σ∗
A.

We say that w′ is the subword of w at index k, denoted by (w′, k) ≤i w if
w = w1w

′w2 with |w1| = k − 1. Intuitively w′ starts at the k-th letter of w. For a
word w, we denote by w[k] the k-th letter of w.

A right-linear grammar is a 4-tuple G = (N,T, P, S), where N and T are finite
alphabets of nonterminal and terminal symbols, S ∈ N is the initial nonterminal
and P is a set of productions of the form A → aB, with a ∈ T and A,B ∈ N or
A → a with A ∈ N , a ∈ T ∪{λ}. Right-linear grammars generate exactly the family
of regular languages, which we denote by L(REG), see [7, 14] for more details. A
(non-deterministic) finite automaton is a construct A = (Q,Σ, δ,Q0, F), where Q
is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q and F ⊆ Q are finite sets
of initial and final states, respectively, and δ ⊆ Q × (Σ ∪ {λ}) × Q is the (non-
deterministic) transition function. Finite automata accept also precisely the family
of regular languages.

Below we define which annotations of a word w we associate with a subword w′

of w.

Definition 2.1. Let (w,A) be an annotated word from Σ∗
A let (w′, k) ≤i w, for some

1 ≤ k ≤ |w| − |w′| + 1, and let l = k + |w′| − 1.
We say (w′, A′) is a weakly annotated subword of (w,A), denoted by

(w′, A′) ≤w
ann (w,A),

if and only if A′ = {(n1, n2, a) ∈ A | k ≤ n1 ≤ l or k ≤ n2 ≤ l or n1 < k and n2 >
l}.

The set of all weakly annotated subwords of (w,A) is denoted by annw(w,A).

Intuitively a subword w′ of an annotated word w is weakly annotated by all those
annotations of w which “overlap” with w′.

We note that one could also define strongly annotated subwords, which require
that a particular symbol annotate the subword exactly, and, similiarly, infix anno-
tated subwords. This is the subject of future research.

We also define a projection function that returns, for a given (indexed) subword
of a word, the set of annotation labels that this subword is annotated with.

Definition 2.2. Let (w,A) be an annotated word from Σ∗
A, let (w′, k) ≤ w and let

(w′, Aw) ≤w
ann (w,A). We define

labw(w′, k) = {a | (n1, n2, a) ∈ Aw}.

Example 2.1. Consider the following annotated word

(w,A) = (abcbbaababc, {(5, 7, A1), (4, 8, A2), (2, 4, A3), (9, 11, A4)}.

Language Theory in Biocomputing 18 UC'07 - Kingston, Canada

Obviously (w′, 4) ≤i w with w′ = bbaab, (w′, A) ≤w
ann (w,A) and, thus labw(w′, 4)

= {A1, A2, A3}.

We now describe a system which annotates a set of strings according to fixed
annotation rules and then ‘expresses’ only those strings which are both in an ex-
pressible format and correctly annotated. This is intended as a high-level model
of epigenetic regulation. The base set of strings represents a collection of chromo-
somes, each containing genes as subwords (marked, like real genes, with a ‘start
symbol’, $, and a ‘stop symbol’, #). The annotation rules represent the actions of
histone annotation and the resulting set of ‘expressed’ strings represents the product
of expressed genes. We note that we have deliberately excluded any other form of
regulation from this model as our intent is to study solely the regulatory power of
gene annotation. Formal models of traditional gene expression regulation have been
studied extensively in the literature, see, e.g., [2, 10, 6].

Definition 2.3. An annotation system is a 5-tuple

G = (Σ, ($,#),A, E, P)

where Σ is a finite alphabet, ($,#) is a pair of start- and stop-symbols, A is a finite
set of annotation labels, E ⊆ A is a finite set of expressible annotation labels and
P ⊆ Σ∗ × 2A ×A is a finite set of annotation rules.

The start- and stop-symbols can be thought of as the formal equivalent of start
and stop codons, and related regulatory elements. This definition can, of course, be
generalized to sets of start and stop symbols, but this generalization does not effect
the generative capacity so we consider these symbols to be unique in the following.

We now define the derivation relation. Note that only the annotations on a string
change during a derivation; the underlying word always remains the same. There
are two different modes, which differ only in whether additional annotations (which
do not appear in the rules) are allowed to be present during a rule application.

Definition 2.4. Let G = (Σ, ($,#),A, E, P) be an annotation system and let
(w,A), (w,A′) ∈ Σ∗

A. Then (w,A) directly derives (w,A′) in

• subset mode (shortly s-mode), denoted by (w,A) ⇒s (w,A′), if and only
if there exists a word v and a number k, with (v, k) ≤i w and (v,B) ∈
annw(w,A), and there exists a rule (v,B′, a) ∈ P with B′ ⊆ B and A′ =
A ∪ {(k, k + |v| − 1, a)}.

• equality mode (shortly e-mode), denoted by (w,A) ⇒e (w,A′), if and only
if there exists a word v and a number k, with (v, k) ≤i w and (v,B) ∈
annw(w,A), and there exists a rule (v,B, a) ∈ P and A′ = A ∪ {(k, k +
|v| − 1, a)}.

We allow for the possibility of two modes in order to allow us to capture the
underlying biology in the greatest generality. There are many types of processes
regulated by histone annotation with some operating in a subset-like mode while
others operate in a strict equality mode. We also note that the equality mode allows
for an implicit form of “forbidding” annotations.

Language Theory in Biocomputing 19 UC'07 - Kingston, Canada

As usual, we use ⇒∗
e and ⇒∗

s to denote the reflexive and transitive closures of
⇒e and ⇒s.

Finally, recalling that our goal is to model regulation of gene expression, we define
the languages generated (expressed) by an annotation system. Intuitively, a word
w′ will be generated by an annotation system if it is a subword of an annotated
word (w,A) which begins with the start symbol $, ends with end symbol # and
the entirety of w′ can, in the given mode, be annotated by one of the expressible
annotation labels.

Definition 2.5. Let G = (Σ, ($,#),A, E, P) be an annotation system. For an
annotated word (w,A) ∈ (Σ ∪ {$,#})∗A, the set of words expressed by (w,A) is
defined as

x(w,A) = {w′ | ∃k with w′ ∈ $Σ∗#, (w′, k) ≤i w and ∃α ∈ E such that

∀i with k ≤ i < k + |w′| we have α ∈ labw(w, i)}

For a word w ∈ (Σ ∪ {$,#})∗, the set of expressed words generated from w by G in
z-mode, z ∈ {e, s}, is defined as

xz(w) = {w′ | (w, ∅) ⇒∗
z (w,A) and w′ ∈ x(w,A)}.

The language generated by G in z-mode is defined as

Lz(G) =
⋃

w∈(Σ∪{$,#})∗

xz(w).

By Lz(ANN), we denote the family of all languages that can be generated by an
annotation system in z-mode, for z ∈ {e, s}.

Note that all words in L(G) have to start with $ and end with #.
The following result is obvious from the definitions of the two modes.

Proposition 2.1. For all annotation systems G, we have Le(G) ⊆ Ls(G).

The following example should help to clarify the above definitions.

Example 2.2. G = (Σ, ($,#),A, E, P) with Σ = {a, b}, A = {A1, A2, A3, ⋆}, E =
{⋆}, and P defined by the following rules:

($ab, ∅, A1), (abab, {A1}, A2),

(abab, {A2}, A3), (abab, {A3}, A1),

(ab#, {A3}, ⋆).

Also, for X ⊆ {A1, A2, A3}, the following rules are in P

(ab, {⋆} ∪ X, ⋆), (ba, {⋆} ∪ X, ⋆),

($a, {⋆} ∪ X, ⋆).

The latter set of rules annotates all symbols in subwords of the form $w#, every
letter of which is already annotated by some annotation label, by the ⋆-symbol. This

Language Theory in Biocomputing 20 UC'07 - Kingston, Canada

enables us to express these words. The example derivations found below do not apply
these rules, for reason of better readability. The derivations stop once every letter
of a subword $w# has been annotated.

From the following partial derivations, we see that both modes can generate
$(ab)3#.

However, we see that, when annotating $(ab)2#, in e-mode the derivation is
blocked after A2 is added because the subword abab is not annotated exactly by {A2},
but by {A1, A2}.

So the system G generates Le(G) = $((ab)3)∗# and Ls(G) = $(ab)∗#.

3 Computational power of annotation

In this section we investigate the generative capacity of annotation systems in both
modes. As our main results, we show that annotation systems in e-mode generate
exactly the regular languages modulo a begin- and an end-marker, while annotation
systems in s-mode generate only a proper subset of the e-mode annotation languages.
We conjecture that the two families of annotation languges are separated by so-called
count-loop languages, which are defined in this section.

Our first main result shows that annotation systems in e-mode generate only
regular languages.

Theorem 3.1. Le(ANN) ⊆ L(REG).

Proof. Let G = (Σ, ($,#),A, E, P) be an annotation system. Let m = max{n |
(w,X, Y) ∈ P, n = |w|} We construct a (non-determinisitic) finite automaton A =
(Q,Σ′, δ,Q0, {f}) as follows:

Q = {(X,a1 · · · an, (A0, . . . , An), (B0, . . . , Bn), f) | X ∈ E, 0 ≤ n ≤ m,aj ∈ Σ,

2 ≤ j < n, a1 ∈ Σ ∪ {$},

an ∈ Σ ∪ {#}, Ai ⊆ A× 2A,

Bi ⊆ A, 1 ≤ i ≤ n};

Σ′ = Σ ∪ {$,#}, Q0 = {(X,λ, (), ()) | X ∈ E} and δ is defined further down.
The idea of the construction is to traverse the word from left to right with a

buffer of up to m letters by the automaton and add annotations to the current
buffer. In the annotation system, annotations are not necessarily added in a left-
to-right fashion. In order to be able to still simulate every possible combination of
annotations, we are allowed to assume annotations for letters in the buffer which
will be added once the buffer has been moved further to the right. The buffer can

Language Theory in Biocomputing 21 UC'07 - Kingston, Canada

only be moved to the right if the letters “leaving” the buffer on the left end are
annotated by the necessary annotation (as defined by the expression set) and no
annotations are assumed for these letters anymore.

The states consist of a member of the expression set, a string of length at most
m, which is the maximal length of a substring to be annotated and for each letter of
this string we store two sets of annotations. For the i-th letter, the set Ai consists of
pairs (Y,Y), meaning that the i-th letter is annotated by Y and that this annotation
(transitively) made use of assuming the annotations in Y while Bi consists of the
“assumed” annotations of letter i, which might be necessary in order to get the
annotations in Ai or some of the neighbouring letters (which can be up to at most
m − 1 characters away).

If we have, e.g. a pair (X, {U, Y,Z}) ∈ A1, then this means that the annotation
X of letter number i in the current buffer was obtained (transitively) by assuming the
annotations U , Y and Z for some letter (not necessarily letter i). This information
has to be stored to prevent X from being used to annotate anything by U , Y or Z.

We define a projection function π1 : 2(A×2A) → 2A with π(A) = {Y | (Y,Y) ∈ A},
for every A ⊆ A× 2A, which is used to extract the first components of the pairs in
the Ai.

We also define, for each annotation label D ∈ A, a projection function πD :
2(A×2A) → 2A with πD(A) = {Y | (Y,Y) ∈ A,D /∈ Y}, which is used to extract only
those first components of the pairs in the Ai that did not make use of assuming D.

There is a set of initial states, one for each expression set. Thus, the automaton
can be thought of as a finite union of automata, one for each expression set.

In the transitions, moving the buffer and annotating parts of the buffer is never
done simultaneously.

The following set of transitions consists of transitions leading out of the intitial
states. In each initial state only $ can be read as only $ can start a word. For
X ∈ E, let

δ((X,λ, (), ()), $) = (X, $, (∅), (∅)). (1)

The following set of transitions lead into the final state. They are only possible
if the last letter is #, there are no more assumed annotations and the expression set
associated with the current state is a subset of the annotation sets for all letters.
For X ∈ E, n ≥ 0, a1 ∈ Σ ∪ {$}, a2, . . . , an ∈ Σ and A1, . . . , An, A# ⊆ A× 2A with
X ∈ π1(A1), . . . , π1(An), π1(A#) let

f ∈ δ((X,a1 · · · an#, (A1, . . . , An, A#), ∅n+1), λ). (2)

The next set of transitions reads a new symbol into the buffer. These transitions
are only possible if the current number of symbols in the buffer is less than the
maximum m. The annotation set and assumed annotation set for the new letter are
initialized by the empty set. For X ∈ E, 0 ≤ n < m, a1 ∈ Σ ∪ {$}, a2, . . . , an ∈ Σ,
a ∈ Σ ∪ {#}, A1, . . . , An ⊆ A× 2A, B1, . . . , Bn ⊆ A, let

δ((X,a1 · · · an, (A1, . . . , An), (B1, . . . , Bn)), a)

= (X,a1 · · · ana, (A1, . . . , An, ∅), (B1, . . . , Bn, ∅)). (3)

Language Theory in Biocomputing 22 UC'07 - Kingston, Canada

The following set of transitions allow us to remove symbols at the beginning of
the buffer. We can only remove a prefix of the current string in the buffer if the
expression set associated with the current state is a subset of the annotation sets of
all the letters in the prefix to be removed and also the sets of assumed annotations
for these letters have to be empty. For X ∈ E, 0 < j ≤ n ≤ m, a1 ∈ Σ ∪ {$},
a2, . . . , an−1 ∈ Σ, an ∈ Σ ∪ {#}, A1, . . . , An ⊆ A × 2A, B1, . . . , Bn ⊆ A, with
X ∈ π1(A1), . . . , π1(Aj), ∅ = B1 = · · · = Bj let

(X,aj+1 · · · an, (Aj+1, . . . , An), (Bj+1, . . . , Bn))

∈ δ((X,a1 · · · an, (A1, . . . , An), (B1, . . . , Bn), λ). (4)

The following set of transitions allow us to add assumed annotations at any
time. For X ∈ E, 0 < i ≤ n ≤ m, a1 ∈ Σ ∪ {$}, a2, . . . , an−1 ∈ Σ, an ∈ Σ ∪ {#},
A1, . . . , An ⊆ A × 2A, B1, . . . , Bn ⊆ A, B′

i = Bi ∪ {D}, for some D ∈ A, such that
D /∈ π(Ai) let

(X,a1 · · · an, (A1, . . . , An), (B1, . . . , Bi−1, B
′
i, Bi+1, . . . , Bn)

∈ δ((X,a1 · · · an, (A1, . . . , An), (B1, . . . , Bn)), λ) (5)

The following set of transitions essentially simulate the rules of the annotation
system. An annotation can be added to a substring of the current buffer, resulting
in adding it to all the letters of this substring, if the substring is already annotated
by the annotations necessary for the simulated rule. These needed annotations can
be present either in the first components of the Ai sets or in the assumed Bi sets.
Annotations in the Ai sets cannot be used to add a certain annotation if they were
themselves generated with this annotation being assumed. If an annotation is added
then this annotation is removed from the assumptions.

Let X ∈ E, 0 ≤ i < j ≤ n ≤ m, a1 ∈ Σ ∪ {$}, a2, . . . , an−1 ∈ Σ, an ∈
Σ ∪ {#}, A1, . . . , An ⊆ A × 2A, B1, . . . , Bn ⊆ A and (ai · · · aj , C,D) ∈ P with
C = {C1, . . . , Ck} ⊆ A, 0 ≤ k ≤ |A| and let D ∈ A. Furthermore we must have
π1(Al) = πD(Al) for i ≤ l ≤ j, ensuring that D was not used as an assumption
and we let C =

⋃

i≤l≤j(πD(A1) ∪ Bl), A′
l = Al ∪ {(D,C \ AD)}, B′

l = Bl \ {D}, for
i ≤ l ≤ j, let

(X,a1 · · · an, (A1, . . . , Ai−1, A
′
i, . . . , A

′
j , Aj+1, . . . , An),

(B1, . . . , Bi−1, B
′
i, . . . , B

′
j , Bj+1, . . . , Bn))

∈ δ((X,a1 · · · an, (A1, . . . , An), (B1, . . . , Bn), λ). (6)

It is obvious that all words accepted by the automaton can also be expressed by
the annotation system and, hence, every word in L(A) is also in L(G).

To show that L(G) ⊆ L(A) we look at a derivation of G and look at the de-
pendence structure of the annotations. Adding the annotations to the initially not
annotated string induces a partial order. We number the annotations in such a way
that an annotation never depends on an annotation with a higher number. Now
when traversing the string from left to right by the automaton we keep adding new
symbols to the buffer by transitions from (3) until we have a substring in the buffer

Language Theory in Biocomputing 23 UC'07 - Kingston, Canada

that has an annotation associated with it. If adding this annotation in the original
derivation of the annotation system depended on other annotations being present
which we have not reached yet, then we assume these annotations for the appro-
priate symbols. By doing that we can simulate every derivation of the annotation
system by the automaton.

We now show that all regular languages can be generated by an annotation
system in e-mode, modulo a begin- and an end-marker.

Theorem 3.2. Let L ∈ L(REG) and let $,# be two symbols that do not appear in the
alphabet of L. Then there exists an annotation system G, such that Le(G) = $L#.

Proof. Let G = (N,T, P, S) be a right-linear grammar. We construct an annotation
system G′ = (T, ($,#),A, E, P ′) as follows. We let A = {X,X ′ | X ∈ N} ∪ {⋆}
and E = {⋆}. A essentially mimics the nonterminals. The marked versions of the
nonterminals are used to remove cycles of the from A → aA from the grammar, by
replacing them with A → aA′ and A′ → aA. The star is used only to label correct
derivations in order to express them.

The intuitive idea behind the construction is to first annotate the $ sign by the
initial nonterminal and then to keep annotating symbol pairs xy by X if x was
already annotated by Y and there exists a production Y → yX. A left-to-right
character of the annotations is enforced, as letters annotated by more than one
symbol cannot be used for any future annotation (besides the ⋆-symbol), as we are
working in e-mode.

We let ($, ∅, S) ∈ P ′, which acts as the “seed” of annotating a subword.
For A → yB ∈ P with y ∈ T , A,B ∈ N , B 6= A and x ∈ T ∪ {$}, we let

(xy, {A}, B) ∈ P ′ and (xy, {A′}, B) ∈ P ′.

For A → yA ∈ P with y ∈ T , A ∈ N and x ∈ T ∪ {$}, we let

(xy, {A}, A′) ∈ P ′ and (xy, {A′}, A) ∈ P ′.

These rules simulate the non-terminating derivations of the grammar.
In addition, to simulate the terminating productions, for A → y ∈ P with y ∈ T ,

A ∈ N and x ∈ T ∪ {$}, we let

(xy#, {A}, ⋆) ∈ P ′ and (xy#, {A′}, ⋆) ∈ P ′.

For A → λ ∈ P with A ∈ N and x ∈ T ∪ {$}, we let

(x#, {A}, ⋆) ∈ P ′ and (x#, {A′}, ⋆) ∈ P ′.

It is easy to see that, whenever we have a subword $w#, that is fully annotated
(i.e. every letter of it is annotated by some annotation symbol), then w ∈ L(G).

The following rules are used to annotate everything in between a $-symbol and
a #-symbol by ⋆, if it is already annotated by something else. This allows us to
then express the subword between $ and #. The ⋆-annotation is added from right
to left. For all x ∈ T ∪ {$}, y ∈ T ∪ {#}, we let (xy, {⋆}, ⋆) ∈ P ′.

It is straightforward that Le(G) = $L#.

Language Theory in Biocomputing 24 UC'07 - Kingston, Canada

Next we show that the family of all languages generated in s-mode is a subset
of the family of all e-mode languages. This inclusion is shown to be proper in the
next result.

Theorem 3.3. Ls(ANN) ⊆ Le(ANN).

Proof. Let G = (Σ, ($,#),A, E, P) be an annotation system. We construct an
annotation system G′ = (Σ, ($,#),A, E, P ′), such that Le(G

′) = Ls(G) as follows:
For (w,X, Y) ∈ P with w ∈ {$, λ}Σ∗{#, λ}, X ∈ 2A, Y ∈ A, let the set

{(w,X ∪ X ′, Y) | X ′ ∈ 2A} be contained in P ′.
It is obvious that Le(G

′) = Ls(G).

Lemma 3.1. There exists a language L ∈ Le(ANN) \ Ls(ANN).

Proof. Let L = $(bbb)∗#. As (bbb)∗ is a regular language, L ∈ Le(ANN). Now
assume L ∈ Ls(ANN) and let G = (Σ, ($,#),A, E, P) be an annotation system
such that L = Ls(G). In order to express precisely the language L, the annotations
somehow have to encode which b is a “first”, “second” or “third” b of the recurring
sequence bbb. Obviously there have to be rules of the form (bn,X, Y) for some n ≥ 2,
X ⊆ A, Y ∈ A. However, applying a rule of this type to a long enough substring of
b’s, the annotation Y can slide. More precisely if bn−1bmbn−1 is a subword of some
word we are annotating, such that the central bm is annotated by X already, than
any subword of bn−1bmbn−1 which is of length n can be annotated by Y . But this
leads to Y “forgetting” which b’s it is annotating, thus leading to generate words in
b∗ \ (bbb)∗, a contradiction.

Very similar to the proof of Lemma 3.1, one can also proof that the language
L = ((ab)3)∗ which is generated in e-mode by the system of Example 2.2 cannot be
generated by any annotation system in s-mode.

Definition 3.1. A right-linear grammar G = (N,T, P, S) is said to have a count-
loop if there exist X1,X2, . . . ,Xn ∈ N , where Xi 6= Xj,∀i 6= j, w ∈ T+ and
productions X1 → w1X2,X2 → w2X3, . . . ,Xn → wnX1 with w1w2 · · ·wn = wk for
some w ∈ T ∗ with |w| ≥ 1 and k > 1. A regular language is called a count-loop
regular language if every right-linear grammar generating it has a count-loop. The
family of count-loop regular languages is denoted by L(clREG).

We conjecture that the count-loop regular languages separate the families of
e-mode and s-mode annotation languages. Proving this will be subject of future
research.

4 Discussion

Inspired by recent advances in the understanding of epigenetic regulation through
histone annotation, we have formulated a formal model of computation based on the
annotation of strings and investigated its computational power. We offer two modes
of operation for this model: a weak mode (s-mode) which allows annotations to be
applied only if certain other annotations are already present, and a stronger mode

Language Theory in Biocomputing 25 UC'07 - Kingston, Canada

(e-mode) which allows annotations only if a precise set of other annotations, and
no others, are present. We demonstrated that e-mode annotation systems are not
capable of generating non-regular languages while any regular language can be gen-
erated modulo start and end markers on each word. As one would expect, the family
of languages generatable in the weaker s-mode was shown to be strictly contained
within the family of languages generated in e-mode; in particular we conjecture that
the family of count-loop regular languages separates these two families.

We note with interest that the computational power of string annotation is, in
general, quite weak and suggest that this may be of interest to biologists studying
the superficially complex process of epigenetic regulation.

References

[1] V.G. Allfrey, R. Faulkner, and A.E. Mirsky. Acetylation and methylation of
histones and their possible role in the regulation of rna synthesis. PNAS, 51:786–
793, 1964.

[2] A. Arkin and H.H McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics,
149:1633–1648, 1998.

[3] S.L. Berger. Histone modifications in transcriptional regulation. Current Opin-
ion in Genetics & Development, 12:142–148, 2002.

[4] James E. Brownell, Jianxin Zhou, Tamara Ranalli, Ryuji Kobayashi, Diane G.
Edmondson, Sharon Y. Roth, and C. David Allis. Tetrahymena histone acetyl-
transferase a: A homolog to yeast gcn5p linking histone acetylation to gene
activation. Cell, 84:843–851, 1996.

[5] A. Eberharter and P. Becker. Histone acetylation: a switch between repressive
and permissive chromatin. EMBO reports, 3:224–229, 2002.

[6] Radek Erban, Ioannis G. Kevrekidis, David Adalsteinsson, and Timothy C.
Elston. Gene regulatory networks: A coarse-grained, equation-free approach to
multiscale computation. J. Chem. Phys., 124:084106, 2006.

[7] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

[8] T. Jenuwein and C.D. Allis. Translating the histone code. Science, 293:1074–
1080, 2001.

[9] Roger D. Kornberg and Yahli Lorch. Twenty-five years of the nucleosome,
fundamental particle of the eukaryote chromosome. Cell, 98:285–294, 1999.

[10] Harri Lähdesmäki, Ilya Shmulevich, and Olli Yli-Harja. On learning gene regu-
latory networks under the boolean network model. Machine Learning, 52:147–
167, 2003.

Language Theory in Biocomputing 26 UC'07 - Kingston, Canada

[11] M. Elizabeth O. Locke. Formal model of histone annotation on DNA strings.
Technical Report 678, Department of Computer Science, University of Western
Ontario, 2006.

[12] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxon-
omy of xml schema languages using formal language theory. ACM Trans. Inter.
Tech., 5(4):660–704, 2005.

[13] S. Rae, F.Eisenhaber, D. O’Carroll, B.D. Strahl, Z.W. Sun, M. Schmid,
S. Opravil, K. Mechtler, C.P. Pontig, C.D. Allis, and T. Jenuwein. Regulation
of chromatin structure by site-specific histone h3 methyltransferases. Nature,
406:593–599, 2000.

[14] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[15] K. Vermeulen, D.R. Van Bockstaele, and Z.N. Berneman. The cell cycle: a
review of regulation, deregulation and theraputic targets in cancer. Cell Pro-
liferation, 36:131–149, 2003.

Language Theory in Biocomputing 27 UC'07 - Kingston, Canada

Theoretical and computational properties of

transpositions

Mark Daley1,2,∗, Ian McQuillan2,†, James M. McQuillan3

1 Department of Computer Science, Department of Biology
University of Western Ontario
London, ON N6A 5B7, Canada

daley@csd.uwo.ca

2 Department of Computer Science
University of Saskatchewan

Saskatoon, SK, S7N 5A9, Canada
mcquillan@cs.usask.ca

3 Department of Computer Science
Western Illinois University

Macomb, IL, 61455-1390, USA
jm-mcquillan@wiu.edu

Abstract

Transposable genetic elements are prevalent across many living organisms
from bacteria to large mammals. Given the linear primary structure of genetic
material, this process is natural to study from a theoretical perspective using
formal language theory. We abstract the process of genetic transposition to
operations on languages and study it combinatorially and computationally. It
is shown that the power of such systems is large relative to the classic Chomsky
Hierarchy. However, we are still able to algorithmically determine whether or
not a string is a possible product of the iterated application of the operations.

1 Introduction

There are many different types of changes which can occur to a genome throughout
evolution. These include mutations, and small insertions and deletions. In addi-
tion, there is a large class of DNA sequences which can move from one location to

∗This work was supported by grants from NSERC & SHARCNET
†Supported by grants from NSERC and The University of Saskatchewan.

Language Theory in Biocomputing 28 UC'07 - Kingston, Canada

another within a genome. These are collectively known as transposable elements or
transpositions. They are extremely important biologically, as they are estimated to
occupy between 64%− 73% of corn [6]. Moreover, the dispersed repetitive fraction
of the human genome is estimated to be 46% [1].

See [4] for a good survey of transpositions. There are two main classes of trans-
posable elements. Class I are referred to as retroelements. These elements are
produced by using reverse transcription (which allows DNA to be produced from
RNA) to make copies of themselves. The new DNA then integrates at a new lo-
cation of the genome. Intuitively, this class of transpositions operates similar to a
copy-and-paste mechanism. Class II are known as DNA transposons. They operate
with a cut-and-paste mechanism. Furthermore, many types of transposable elements
have a target site preference, which will affect the contexts around the DNA in which
the elements will be re-inserted.

These elements are quite natural to study theoretically using formal language
theory, abstracted to operations on words and languages. In this paper, we attempt
to lay the foundations for the study of this operation both mathematically and
algorithmically. We then analyze some basic properties of the operation.

In section 2, we give some mathematical preliminaries necessary for the rest of
the paper. In section 3, we give the definitions of different types of transpositions
abstracted to operations on words and languages. Sections 4 and 5 investigate the
computational power of applying both classes of transpositions iteratively. Section
6 investigates the properties of each type being applied a single time. This section
is useful towards the algorithmic study of transpositions, which is investigated in
section 7.

We were able to demonstrate that iterated type 1 transpositions produce arbi-
trary Recursively Enumerable languages from finite initial and transposition lan-
guages modulo right quotient with a regular language. In addition, we were able to
closely characterize the non-iterated versions of the operations. Then we determined
that we could algorithmically determine if a string is a possible product of either
iterated type 1 or type 2 transpositions, or even both together at once, so long as
we can determine membership in the initial and transposition language.

We hope that the study is useful for mathematical modelling, to improve our
understanding of transpositions, and also towards bioinformatics.

2 Preliminaries

Let N be the set of positive integers and let N0 be the set of nonnegative integers.
We refer to [8] for language theory preliminaries. Let Σ be a finite alphabet. We

denote, by Σ∗ and Σ+, the sets of all words and non-empty words, respectively, over
Σ and the empty word by λ. A language L is any subset of Σ∗. Let L,R ⊆ Σ∗. We
denote by R−1L = {z ∈ Σ∗ | yz ∈ L for some y ∈ R} and LR−1 = {z ∈ Σ∗ | zy ∈
L for some y ∈ R}.

Let x ∈ Σ∗. We let |x| denote the length of x. For each a ∈ Σ, we let |x|a be the
number of occurrences of a in x. If y = (x1, . . . , xn) is some n-tuple over Σ∗, then
|y| = |x1|+ · · ·+ |xn|.

Language Theory in Biocomputing 29 UC'07 - Kingston, Canada

For i ∈ N, let x(i) be ai if x = a1 · · · ai · · · an, aj ∈ Σ, 1 ≤ j ≤ n, and undefined
otherwise.

For n ∈ N0, let Σn = {w ∈ Σ∗ | |w| = n}, Σ≥n = {w ∈ Σ∗ | |w| ≥ n} and
Σ≤n = {w ∈ Σ∗ | |w| ≤ n}.

Let x, y ∈ Σ∗. We say x is a prefix of y, written x ≤p y, if y = xu, for some
u ∈ Σ∗. We say x is a suffix of y, written x ≤s y, if y = ux, for some u ∈ Σ∗. We
say x is an infix of y, written x ≤i y, if y = uxv, for some u, v ∈ Σ∗.

For each word x ∈ Σ∗ with Σ = {a1, . . . , an} using some fixed ordering, we
associate its Parikh vector, pΣ(x) by pΣ(x) = (|x|a1 , |x|a2 , . . . , |x|an). We extend pΣ

to languages in the natural way. We omit Σ if it is understood. Given Σ and Parikh
vector v, the Parikh inverse set of v, p−1(v), is p−1(v) = {x ∈ Σ∗ | p(x) = v}. If
x ∈ Σ∗ and L ⊆ Σ∗, then let perm(x) = {y ∈ Σ∗ | pΣ(y) = pΣ(x)} and perm(L) =⋃

x∈L perm(x). Note that p−1(p(x)) = perm(x) for all x ∈ Σ∗.
A set of vectors is called semilinear if it can be represented as a union of a finite

number of sets of the form {v0 +
∑m

i=1 αivi | αi ∈ N0 for 1 ≤ i ≤ m} where vi ∈ Nn
0

for 0 ≤ i ≤ m. A language L is called semilinear if the set pΣ(L) is a semilinear
set. Two languages L,L′ are called letter-equivalent if and only if pΣ(L) = pΣ(L′).
Thus, if two languages are letter equivalent, then one is semilinear if and only if the
other one is also. It is known that a language L is semilinear if and only if it is
letter-equivalent to a regular language [2].

A directed graph is a tuple G = (V,E) in the usual way. For v ∈ V , we let C(v)
be the connected component of v viewed as a subgraph of G.

3 Transpositions

Following the biology of Class I and Class II transpositions, we define two types of
formal transposition as follows. Let Σ be a finite alphabet. A 4-tuple t = (x, u, y, z)
is a transposition if x, y ∈ Σ∗, u ∈ Σ+, and z ∈ {1, 2}. The transposition t is type 1
if z = 1; it is type 2 if z = 2.

The transposition-concatenation map hc : Σ∗×Σ+×Σ∗×{1, 2} → Σ+ is defined
by hc(x, u, y, z) = xuy, where t = (x, u, y, z) is a transposition. Also, we define hc

i to
be the ith coordinate of the transposition, for 1 ≤ i ≤ 4, and hc(T) = {hc(t) | t ∈ T}.
We also define T≤n = {t ∈ T | |hc(T)| ≤ n}.

A transposition schema is an ordered pair γ = (Σ, T) where Σ is an alphabet
and T is a set of transpositions.

Given a transposition schema γ = (Σ, T) and r, s ∈ Σ∗, we say that r is T -
translatable to s (or s is T -translatable from r), denoted r →T s if at least one of
the following two conditions are true:

1. there exists (x, u, y, 1) ∈ T such that r = αuβ = x′xyy′ and s = x′xuyy′, for
some α, β, x′, y′ ∈ Σ∗,

2. there exists (x, u, y, 2) ∈ T such that r = αuβ, αβ = x′xyy′, s = x′xuyy′, for
some α, β, x′, y′ ∈ Σ∗.

We abbreviate r →T s with r → s when T is understood. We say that r →+
T s if

there exists k ≥ 0 and r1, r2, . . . , rk ∈ Σ∗ such that r →T r1 →T · · · →T rk →T s.

Language Theory in Biocomputing 30 UC'07 - Kingston, Canada

We say that r →∗
T s if r →+

T s or r = s.
Intuitively, r →T s implies that applying some transposition in T to r can

produce s. For a type 1 transposition (x, u, y, 1) to be applied, u must appear in r,
and then is pasted between sites x and y. This closely reflects the copy-and-paste
functionality of class I transposable elements. With type 2, u gets cut out of r before
it is pasted between x and y.

Let γ = (Σ, T) be a transposition schema and let L ⊆ Σ∗. We define the non-
iterated transposition of L to be γ(L) = {s | r → s, r ∈ L}. Furthermore, we define
the following inductively,

γ0(L) = L,

γi+1(L) = γ(γi(L)), for i ≥ 0,

γ∗(L) =
⋃
i≥0

γi(L),

γ+(L) =
⋃
i>0

γi(L),

γ≤i(L) =
⋃

0≤j≤i

γj(L),

where γ∗(L) is referred to as the iterated transposition of L.
We say a transposition schema is a type 1 (respectively type 2) transposition

schema if all transpositions are of type 1 (respectively type 2). In this case, we
identify the transpositions as ordered triples and omit the final coordinate. We say
a set of transpositions has finite contexts if {u1u3 | (u1, u2, u3) ∈ T} is finite. We
say the set has finite appearances if {u2 | (u1, u2, u3) ∈ T} is finite.

In order to discuss T as belonging to a language family, we will often write T as
being a subset of #Σ∗$Σ∗$Σ∗# by identifying t = (x, u, v) in T as t = #xuv#
where $ and # are any symbols not in Σ.

Note that γ∗(L) = γ+(L) ∪ {L} in the above definition. Also, note that T is
finite if and only if T has both finite contexts and finite appearances. Intuitively,
γ∗(L) will consist of all strings which can be produced after applying any arbitrary
number of transpositions to any string in L. Note that “nested transpositions”, or
transpositions being inserted into another transposition have been found to occur
[7].

4 Iterated type 1 transpositions

The contextual “copy-and-paste” nature of schemata restricted to type 1 trans-
positions suggests a natural relationship with the pure insertion grammars. Pure
grammars have no nonterminal symbols and thus all words derivable from a finite
set of axioms using a finite set of rules belong to the language generated by the pure
grammar.

Proposition 4.1 Let L ⊆ Σ∗ be a language generated by a pure insertion grammar
G = (Σ, A, P). There exist finite languages L′, T ⊆ Σ∗ and a type 1 transposition
schema γ = (Σ ∪ {$}, T) such that γ∗(L′)($Σ∗)−1 = L where $ 6∈ Σ.

Language Theory in Biocomputing 31 UC'07 - Kingston, Canada

Proof. (Sketch)We recall the definition of a pure insertion grammar as a triple
G = (Σ, A, P) where Σ is a finite alphabet, A ⊆ Σ∗ is a finite set of axioms and
P ⊆ Σ∗ × Σ∗ × Σ∗ is a finite set of insertion rules. The derivation relation (⇒) for
a pure insertion grammar is defined such that for u, v ∈ Σ∗, u ⇒ v iff u = u′xyu′′,
v = u′xwyu′′, for some (x,w, y) ∈ P , u, u′′ ∈ Σ∗. The language generated by such a
grammar is defined in the usual way.

Given a pure insertion grammar G, we denote by wP a word consisting of the
concatenation of the second component of all rules in P with an arbitrary, but fixed,
ordering on P . Formally, wP =

∏
p∈P π2(p), where π is the projection function.

We now construct a finite language L′ ⊆ Σ ∪ {$} and a type-1 transposition
schema γ = (Σ ∪ {$}, T) as follows: for all w ∈ A, we include w$wP ∈ L′, as A is
finite, so must be L′; for all rules (x, u, y) ∈ P we include (x, u, y) ∈ T which, again,
must be finite.

It is true that L(G) ⊆ γ∗(L′)($wp)−1, as each derivation applied in G can be
simulated by the corresponding transposition in γ as the second coordinate of the
transposition will appear in wp. Thus, L(G) ⊆ γ∗(L′)($Σ∗)−1. It is clear that
γ∗(L′)($Σ∗)−1 ⊆ L(G), as any transposition applied acts on either the part of the
word before $, or after $. If it gets applied before the $, then the segment before $
is in L(G).

The following corollaries are now immediate from [3], [5].

Corollary 4.1 For every recursively enumerable language L there exist homomor-
phisms h and g, a finite language L′ and a finite type 1 transposition schema γ such
that g(h−1(γ∗(L′)($Σ∗)−1)) = L. There exist also a regular language R, a finite
language L′′ and a finite type 1 transposition schema γ1 such that γ∗1(L′′)(R)−1 = L.

Corollary 4.2 There exist non-semilinear languages which can be generated by a
finite type 1 transposition schema acting on a finite language.

5 Iterated type 2 transpositions

In this section, we will explore basic mathematical properties and computational
capacity of iterated type 2 transpositions.

The following are immediate from the definitions of type-2 transposition systems:

Lemma 5.1 Let γ = (Σ, T) be a type-2 transposition schema with L ⊆ Σ∗. Then
the following are true:

1. pΣ(L) = pΣ(γ∗(L)),

2. γ∗(L) ⊆ perm(L),

3. γ∗(L) is semilinear if and only if L is semilinear,

4. w ∈ γ∗(L) if and only if w ∈ γ̄∗(L′) where γ̄ = (Σ, T≤|w|) and L′ = perm(w)∩
L.

5. If L is finite, then γ∗(L) = γ̄∗(L), where γ̄ = (Σ, T≤n), n = max{|v| | v ∈ L}

Language Theory in Biocomputing 32 UC'07 - Kingston, Canada

Proof. The first part is immediate as r → s implies pΣ(r) = pΣ(s), and the second
and third parts follow from the first. We will prove the fourth statement as follows:

“⇒” Assume w ∈ γ∗(L). It follows from part (2) that it is enough to use L′.
There exists v0, . . . , vn ∈ γ∗(L) and t1, . . . , tn ∈ T such that vi →{ti+1} vi+1 for
every 0 ≤ i < n where v0 ∈ L. In particular, in order for each ti to be used, by the
definition of a transposition system, |ti| ≤ |w|.

“⇐” immediate.
The fifth statement follows from the fourth.

Thus, in terms of generative power, if L is finite, we can assume T is also, by ignoring
rules of T which are too long to be used.

Lemma 5.2 Let Γ = (Σ, T) be a type-2 transposition schema with L ⊆ Σ∗ and
{(λ, a, λ) | a ∈ Σ} ⊆ T . Then γ∗(L) = perm(L).

Proof. “⊆” This follows from Lemma 5.1 (2).
“⊇” This follows as, for any w ∈ L, we can move every letter a ∈ Σ to any

position of w. Thus, perm(w) ⊆ γ∗(L), and hence perm(L) ⊆ γ∗(L).

The following is now immediate, since we know that the families of regular and
context-free languages are not closed under permutation.

Corollary 5.1 The families of regular and context-free languages are not closed
under type-2 transpositions with finite languages. Indeed they are not closed under
transposition languages of size |Σ|.

6 Non-iterated transpositions

In this section, we will explore the power of applying the transformations a single
time. These results will become important for the next section which studies the
operations algorithmically.

First we will see that under common formal language theoretic operations, clo-
sure under iterated transpositions implies closure under non-iterated transpositions.

Proposition 6.1 Let z ∈ {1, 2}. Let L1 be a language family closed under λ-
free homomorphism, inverse homomorphism and intersection with regular languages,
and let L2 be closed under inverse homomorphism and intersection with regular
languages. If L1 is closed under iterated type-z transpositions from L2, then L1 is
closed under non-iterated type-z transpositions from L2.

Proof. First we will consider type-1. Let L ∈ L1, let γ = (Σ, T) be a transpo-
sition schema, T ∈ L2, T ⊆ #Σ∗$Σ∗$Σ∗#, and let h be a homomorphism from
(Σ ∪ {α})∗ to Σ∗, where α is a new symbol, defined by h(a) = a, for each a ∈ Σ
and h(α) = λ. Let R = (αΣ)∗α, a regular language, and let L′ = h−1(L) ∩ R.
Thus, each word of L has α inserted between every two letters. Let T̄ = h−1(T) ∩
#(αΣ)∗α$(αΣ)+$(Σα)∗#, and let γ̄ = (Σ ∪ {α}, T̄). Then, it is evident that
γ̄∗(L′) ∩ ((αΣ)∗αα(Σα)∗ ∪ (αΣ)∗αα(Σα)∗ΣΣα(Σα)∗) = γ̄(L′) because any word

Language Theory in Biocomputing 33 UC'07 - Kingston, Canada

in γ̄2(L′)− γ̄(L′) would produce either three consecutive α’s, or two sections of two
α’s. Furthermore, h(γ̄(L′)) = γ(L), and every language family closed under λ-free
homomorphism, inverse homomorphism and intersection with regular languages is
also closed under linear-erasing homomorphisms. Thus type-1 follows.

The same proof works identically with type-2.

Proposition 6.2 Let z ∈ {1, 2}. The family of counter languages (and the context-
free languages) are not closed under non-iterated type-z regular transpositions with
contexts of size 0. Furthermore, the same is true with iterated transpositions.

Proof. We will start with type-1 transpositions. Assume otherwise. Let L =
{anqanq | n ≥ 0}, and let T = {(λ, qanq, λ) | n ≥ 0}, and let γ = ({a, q}, T) be
a transposition system. Then consider γ(L) ∩ a∗qa∗qqa∗q = γ∗(L) ∩ a∗qa∗qqa∗q =
{anqanqqanq | n ≥ 0}, which isn’t a counter language, a contradiction.

Next, we consider type-2 transpositions. Assume otherwise. Let
L = {anqpanpamqam | n, m ≥ 0}. Let T = (λ, panp, λ) | n ≥ 0}, and let
γ = ({p, q, a}, T) be a transposition system. Then, γ(L) ∩ a∗qa∗qpa∗pa∗ = γ∗(L) ∩
a∗qa∗qpa∗pa∗ = {anqamqpanpam | n, m ≥ 0}, which isn’t a counter language, con-
tradiction.

We see however, that for the non-iterated version, it is the unbounded appear-
ances which make the difference.

Proposition 6.3 Let L be a language family closed under inverse homomorphism,
λ-free homomorphism and intersection with regular languages. Then the following
are true:

1. L is closed under regular type-1 transpositions with finite appearances,

2. If L is closed under arbitrary homomorphism, then L is closed under regular
type-2 transpositions with finite appearances,

3. If L is closed under arbitrary homomorphism, then L is closed under regular
transpositions1 with finite appearances.

Proof. We will start with the second statement, as the first and third are easy vari-
ants of this. Let γ = (Σ, T) be a transposition system where T is a regular language
(which for simplicity’s sake, we will denote as being a subset of #Σ∗$Σ∗$Σ∗#), with
finite appearances. Let M = (Q,Σ, q0, F, δ) be a deterministic finite automaton ac-
cepting T . Let L ∈ L, L ⊆ Σ∗. Let X = {hc

2(t) | t ∈ T}, which is finite, and for
each x ∈ X, let Q(x) = {(q1, q2, q3, q4) | #u1xu3# ∈ T, δ(q0,#) = q1, δ(q1, u1) =
q2, δ(q2, x) = q3, δ(q3, u3) = q4}. Each of these sets are finite.

Let Σ̄ = {ā | a ∈ Σ}, and let h be a homomorphism from (Σ∪ Σ̄)∗ to Σ∗ defined
by h(a) = h(ā) = a, for each a ∈ Σ. Let X̄ be the barred version of X and let
L′ = h−1(L) ∩ Σ∗X̄Σ∗ ∈ L.

Next, we construct a nondeterministic gsm K which operates on L′ as follows:
first, on input u1u2u3, u1u3 ∈ Σ∗, u2 ∈ Σ̄∗, K nondeterministically guesses x ∈ X,
and (q1, q2, q3, q4) ∈ Q(x) and in parallel does the following

1This can include both type-1 and type-2 transpositions.

Language Theory in Biocomputing 34 UC'07 - Kingston, Canada

1. verifies h(u2) = x and erases u2,

2. while reading u1u3 = a1 · · · am (ie. ignoring the barred letters), guesses posi-
tions i, j, k, 1 ≤ i ≤ j < k and verifies that δ(q1, ai · · · aj) = q2, then outputs
x, then verifies that δ(q3, aj+1 · · · ak) = q4.

Then K(L′) = γ(L) and as every language family satisfying the assumptions is
closed under nondeterministic gsms, it follows that K(L′) ∈ L.

We shall next deal with type-1 transpositions. If in the proof above, we modify
K so that it does not erase u2, but rather outputs h(u2) = x, then K is λ-free, and
K(L′) = γ(L).

Lastly, if T consists of both type-1 and type-2 transpositions, then the nonde-
terministic gsm can guess at the beginning of its computation.

7 Membership of transpositions

We now discuss the algorithmic problem of deciding whether a given string is a
possible product of iterated transpositions. We will start with type-1 only.

Proposition 7.1 Let γ = (Σ, T) be a type-1 transposition schema with L ⊆ Σ∗ and
w ∈ Σ∗. Then w ∈ γ∗(L) if and only if w ∈ γ̄≤|w|(L′) where γ̄ = (Σ, T≤|w|) and
L′ = L ∩ Σ≤|w|.

Proof. “⇒” We will proceed by induction on the length of w. If |w| = 0, then
it is true. Assume it is true for every v with |v| ≤ n. Let |s| = n + 1. If s ∈
γ̄≤|s|−1(L ∩ Σ|s|−1), where γ̄ = (Σ, T |s|−1), then we are done. Assume otherwise.
Then r →{t} s, for some r 6= s with r ∈ γ̄≤|s|−1(L ∩ Σ≤|s|−1) where γ̄ = (Σ, T |s|−1).
Then t ∈ T≤|s| and thus s ∈ ¯̄γ≤|s|(L ∩ Σ≤|s|) where ¯̄γ = (Σ, T≤|s|).

“⇐” immediate.

We see that there is an algorithm as long as we can determine if a given string
is in L and T .

Proposition 7.2 Let γ = (Σ, T) be a type-1 transposition schema with L ⊆ Σ∗

where we can decide membership in L and T and let w ∈ Σ∗. Then we can decide
whether w ∈ γ+(L).

Proof. By Proposition 7.1, it suffices to decide if w ∈ γ̄≤|w|(L′) where γ̄ = (Σ, T≤|w|)
and L′ = L ∩ Σ≤|w|. As L and T have a decidable membership problem, we can
effectively construct both L′ and T≤|w|. As L′ and T≤|w| are both finite, it follows
that we can effectively construct the finite language γ̄≤|w|(L′) and then we can test
if w is in this language.

Next, we will study the same question for type-2 transpostions.

Let γ = (Σ, T) be a type-2 transposition schema and let L ⊆ Σ∗. We wish to find
an algorithm that, given w ∈ Σ∗, will decide whether or not w ∈ γ+(L).

Language Theory in Biocomputing 35 UC'07 - Kingston, Canada

Definition 7.1 Let γ = (Σ, T) be a type-2 transposition schema and let L ⊆ Σ∗.
The (γ, L)-graph, G(γ,L) = (V(γ,L), E(γ,L)), is the smallest directed graph2 satisfying
the following two properties:

1. x ∈ L ⇒ x ∈ V(γ,L),

2. x ∈ V(γ,L), x →T y ⇒ y ∈ V(γ,L), (x, y) ∈ E(γ,L).

Given v ∈ Σ∗, denote by Gv
(γ,L) the subgraph of G(γ,L) = (V v

(γ,L), E
v
(γ,L)) consisting

of all the connected components that have Parikh vector equal to that of v.

This leads naturally to the following proposition:

Proposition 7.3 Let γ = (Σ, T) be a type-2 transposition schema and let L ⊆ Σ∗.
The following are true:

1. Given a vertex v in G(γ,L), every vertex in the connected component of v has
the same Parikh vector,

2. Each connected component of G(γ,L) is finite,

3. If L is finite, then G(γ,L) is finite and G(γ,L) consists of at most |L| connected
components,

4. For any v ∈ Σ∗, V v
(γ,L) = γ∗(perm(v) ∩ L).

5. For any v ∈ Σ∗, it follows that Gv
(γ,L) is finite.

We solve the problem first if L and T are finite.

Proposition 7.4 Let γ = (Σ, T) be a type-2 transposition schema and L ⊆ Σ∗

where L and T are finite and effectively given, and let w ∈ Σ∗. Then there is an
algorithm which can determine if w ∈ γ∗(L).

Proof. It is immediate from the definition that γi+1(L) = γi(L) implies γ∗(L) =
γi(L). Consider L′ = perm(w) ∩ L. Then V w

(γ,L) = γ∗(L′) and Gw
(γ,L) is finite, by

Lemma 7.3 (4),(5). Then we construct γi(L′), for every i, until γi+1(L′) = γi(L′) =
γ∗(L′) = V w

(γ,L) which must occur since Gw
(γ,L) is finite. Then, we test whether

w ∈ V w
(γ,L).

More generally, we can decide membership in γ+(L) as long as we can within L
and T .

Proposition 7.5 Let γ = (Σ, T) be a type-2 transposition schema, let L ⊆ Σ∗ where
we can decide membership in L and T and let w ∈ Σ∗. Then it is decidable whether
w ∈ γ∗(T).

2We define a smallest directed graph satisfying property p to be a graph satisfying p with a
minimal number of vertices. In this case, there is only one such graph, so we refer to it as the
smallest graph.

Language Theory in Biocomputing 36 UC'07 - Kingston, Canada

Proof. Indeed, as we can decide membership in L and T , it is possible to construct
L ∩ perm(w) and T≤|w| by testing whether v is in L, for each v ∈ perm(w) and by
testing whether x is in T , for each |x| ≤ |w|. The proposition then follows from
Lemma 5.1 (4) and Proposition 7.4.

Lastly, we will use these results to decide membership in γ+(L), even if γ contains
both type-1 and 2 transpositions.

Proposition 7.6 Let γ = (Σ, T) be a transposition schema (potentially containing
both type-1 and 2 rules), let L ⊆ Σ∗ where we can decide membership in L and T
and let w ∈ Σ∗. Then it is decidable whether w ∈ γ∗(T).

Proof. Let T1 (respectively T2) be the subset of T with type-1 (respectively type-2)
rules. Let γ1 = (Σ, T1) and γ2 = (Σ, T2).

Let L1 = L ∩ Σ and for all n ≥ 1, let

Ln+1 = (γ∗2(γ1(Ln) ∪ (L ∩ Σn+1)) ∩ Σ≤n+1) ∪ Ln.

We will show by induction that for all n ≥ 1, Ln = γ∗(L) ∩ Σ≤n.
It is clear that L1 = γ∗(L) ∩ Σ≤1. Let k ≥ 1 and assume Lk = γ∗(L) ∩ Σ≤k.

It is immediate that Lk+1 ⊆ γ∗(L) ∩ Σ≤k+1. Let w ∈ γ∗(L) ∩ Σk+1. Thus, either
v → v′ →∗ w where v ∈ Lk = γ∗(L) ∩ Σ≤k and v′ /∈ Lk, or v →∗ w where
v ∈ L ∩ Σk+1. Assume the first case. Then |v| < |v′| = |w|, and thus |v′| must
be obtained via one application of a rule from γ1 followed by zero or more from γ2.
Thus, w ∈ Lk+1. Assume the second case. Then w must be obtained from v via zero
or more applications of γ2 from L ∩ Σk+1 and thus w ∈ Lk+1. Hence, by induction,
Ln = γ∗(L) ∩ Σ≤n, for all n ≥ 1.

Finally, to test whether w ∈ γ∗(L), it suffices to check whether γ∗(L) ∩ Σ≤|w|.
To start, we can construct the finite languages L′ = L∩Σ≤|w| and T≤|w| by deciding
membership in L and T . Then, we can iteratively construct L1, . . . , L|w| as follows:
at iteration i + 1, we add in all words in L of length i + 1, all words of length i + 1
obtained via one application of a type-1 rule from Li, and then all words obtained
via iterated type-2 transpositions via these new words which we can determine by
Proposition 7.5. Thus, we can decide if w ∈ L|w| = γ∗(L) ∩ Σ≤|w| and if w ∈ γ∗(L).

8 Conclusions

We have abstracted the process of both classes of transposable elements to operations
on strings and languages. We investigated some basic mathematical properties and
the computational power of transpositions. In particular, it was shown that we
can generate arbitrary recursively enumerable languages from finite initial and finite
transposition languages, modulo right quotient by a regular set. Moreover, non-
semilinear languages can be generated similarly. For type-2 transpositions, we can
generate only semilinear languages, but the operation is strictly more powerful than
permutation. Algorithmically, it was demonstrated that we can decide membership
after application of both iterated type-1 and iterated type-2 transpositions, so long

Language Theory in Biocomputing 37 UC'07 - Kingston, Canada

as we can decide membership in both the initial and transposition languages. Then,
we were able to use these results to show decidability even when both type-1 and 2
transpositions were present simultaneously.

Future work will consider the time complexity necessary to determine this and
other decision questions. Furthermore, we would like to study these complexity
questions under certain realistic assumptions, in an attempt for the algorithms to
be useful from the perspective of bioinformatics and the analysis of data.

9 Acknowledgements

We are very grateful to a referee for many improvements to this paper.

References

[1] International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature, 409:860–921, 2001.

[2] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[3] L. Kari and P. Sośık. On the weight of universal insertion grammars. In
C. Mereghetti, B. Palano, G. Pighizzini, and D. Wotschke, editors, Seventh Int.
Workshop on Descriptional Complexity of Formal Systems, pages 202–214. Uni-
versita degli Studi di Milano, 2005.

[4] M. G. Kidwell. Transposable elements. In T. Ryan Gregory, editor, The Evolu-
tion of The Genome, chapter 3. Elsevier Academic Press, 2005.

[5] C. Martin-Vide, Gh. Păun, and A. Salomaa. A characterization of recursively
enumerable languages by means of insertion grammars. Theoretical Computer
Science, 205:195–205, 1998.

[6] B.C. Meyers, S.V. Tingey, and M. Morgante. Abundance, distribution, and
transcriptional activity of repetitive elements in the maize genome. Genome
Res., 11:1660–1676, 2001.

[7] H. Quesneville, C. M. Bergman, O. Andrieu, D. Autard, D. Nouaud, M. Ash-
burner, and D. Anxolabehere. Combined evidence annotation of transposable
elements in genome sequences. PLoS Computational Biology, 1(2):166–175, 2005.

[8] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

Language Theory in Biocomputing 38 UC'07 - Kingston, Canada

Computational Efficiency of Intermolecular

Gene Assembly

Tseren-Onolt Ishdorj1, Remco Loos2, and Ion Petre1

1Computational Biomodelling Laboratory
Department of Information Technologies

Åbo Akademi University, Turku 20520 Finland
E-mail:{tishdorj,ipetre}@abo.fi

2Research Group on Mathematical Linguistics
Rovira i Virgili University

Plaça Imperial Tàrraco 1, 43005 Tarragona, Spain.
E-mail:remcogerard.loos@urv.cat

Abstract

In this paper, we investigate the computational efficiency of gene rearrange-
ment operations found in ciliates, a type of unicellular organisms. We show
how the so-called guided recombination systems, which model this gene rear-
rangement, can be used as problem solvers. Specifically, we prove that these
systems can uniformly solve SAT in time O(n ·m) for a boolean formula of m
clauses over n variables.

1 Introduction

Ciliates are unicellular organisms [1] which have attracted attention from computer
scientists because of the complex nature of the gene rearrangement of some species.
Specifically, the DNA in their micronucleus, used for conjugation only, is transformed
into shorter molecules used for transcription. This process is called gene assembly
and is in some sense reminiscent of the use of “linked lists” in software engineering,
see [1].

Two main computational models have been proposed to model gene assembly
in ciliates. The so-called intermolecular model, introduced by Landweber and Kari
[10, 8], allows for operations involving two molecules. The intramolecular model,
proposed by Ehrenfeucht, Prescott and Rozenberg [2, 14], contains only operations
acting on a single molecule. The computational power of the intermolecular model
has been well studied, specifically in [8] it is shown that in some formulation the
model is as powerful as a Turing machine. It was recently proved that also the
intramolecular model is computationally universal [7].

Continuing the investigation of gene assembly from the perspective of com-
putability theory, it was recently proved that the intramolecular model is computa-
tionally efficient: SAT may be solved in this model in linear time, see [6]. We refer to

1

Language Theory in Biocomputing 39 UC'07 - Kingston, Canada

[11] for a related result on splicing systems. In this paper we address the same ques-
tion for the intermolecular model. We show how the guided recombination model of
[8] can be regarded as a problem solving device. The model we consider involves the
maximal parallel application of contextual recombination rules, as defined in this
paper. We present an algorithm to show that in this model, SAT can be solved in
time O(n · m) by a guided recombination system, with n denoting the number of
variables and m the number of clauses.

2 Preliminaries and Notation

We assume the reader to be familiar with the basic elements of formal languages,
Turing computability [15], DNA computing [13], and computational complexity [12].
We present here only some of the necessary notions and notation.

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ; the empty word we denote by λ.
The set of all words over an alphabet Σ is denoted by Σ∗. The set of all non-empty
words over Σ is denoted as Σ+, i.e., Σ+ = Σ∗ \ {λ}. The length |x| of a word x is
the number of symbols that x contains. The empty word has length 0.

We also define circular words over Σ by declaring two words u, v to be equivalent
if and only if u = xy and v = yx, for some words x, y. We also call u, v conjugates.
Then the circular word •w is the equivalence class of w with respect to this relation,
for all w ∈ Σ∗. The set of all circular words over Σ is denoted by Σ•.

A splicing scheme [5] is a pair R = (Σ,∼), where Σ is an alphabet and ∼, the
pairing relation of the scheme, ∼⊆ Σ∗Σ+Σ∗×Σ∗Σ+Σ∗. Assume we have two strings
x, y and a binary relation between two triples of words (α, p, β) ∼ (α′, p, β′), such
that x = x′αpβx′′ and y = y′α′pβ′y′′; then, the strings obtained by the recombina-
tion in the context from above are z1 = x′αpβ′y′′ and z2 = y′α′pβx′′.

When having a pair (α, p, β) ∼ (α′, p, β′) and two strings x and y as above,
x = x′αpβx′′ and y = y′α′pβ′y′′, we consider just the string z1 = x′αpβ′y′′ as the
result of the recombination (we call it one-output-recombination), because the string
z2 = y′α′pβx′′, we consider as the result of the one-output-recombination with the
respect to the symmetric pair (α′, p, β′) ∼ (α, p, β).

A Boolean expression is an expression composed of variables, parentheses and
the operators .̄, ∧ and ∨. The variables can take values 0 (false) and 1 (true). An ex-
pression is satisfiable if there is some assignment of variables such that the expression
is true. The satisfiability problem, commonly denoted as SAT, is to determine, given
a Boolean expression, whether it is satisfiable. SAT is a well known NP-complete
problem. A Boolean expression is said to be in conjunctive normal form (CNF) if
it is of the form E1 ∧ E2 ∧ · · · ∧ Ek, where each Ei, called a clause, is of the form
αi1∨αi2∨ ...∨αiri , where each αij is a literal, that is either x or x̄, for some variable
x.

Language Theory in Biocomputing 40 UC'07 - Kingston, Canada

3 Guided recombination systems

A splicing scheme is a pair P = (Σ,∼), where Σ is an alphabet and ∼, the pairing
relation of the scheme, ∼⊆ Σ∗Σ+Σ∗ × Σ∗Σ+Σ∗. In the splicing scheme P = (Σ,∼)
pairs (α, p, β) ∼ (α′, p, β′) define the contexts necessary for a recombination between
the repeats p. Then the contextual intramolecular recombination was defined in [8].

(delp) {upwpv} =⇒delp {upv, •wp},
where u = u′α, w = βw′ = w′′α′, v = β′v′, and (α, p, β) ∼ (α′, p, β′).

This constrains intramolecular recombination within upwpv to occur only if the
restrictions of the splicing scheme concerning p are fulfilled, i.e., the first occurrence
of p is preceded by α and followed by β and its second occurrence is preceded by α′

and followed by β′.
Also, if (α, p, β) ∼ (α′, p, β′), then the contextual intermolecular recombination

was defined in [8] as

(insp) {upv, •wp} =⇒insp
{upwpv}

where u = u′α, v = βv′, w = w′α′ = β′w′′, and (α, p, β) ∼ (α′, p, β′).

Intermolecular recombination between the linear strand upv and the circular strand
•wp may take place only if the occurrence of p in the linear strand is flanked by α
and β and its occurrence in the circular strand is flanked by α′ and β′.

Definition 1 For a splicing scheme P = (Σ,∼), we define the set of all contextual
gene rearrangement operations under guiding of the splicing scheme P as follows:

P̃ = {insp, delp | (α, p, β) ∼ (α′, p, β′) for some α, α′, β, β′ ∈ Σ∗}.

We now define a guided recombination system that captures the series of dispersed
homologous recombination events that take place during scrambled gene rearrange-
ment in ciliates.

Definition 2 A guided recombination system is a triple R = (Σ,∼, t) where (Σ,∼)
is a splicing scheme, and t ∈ Σ+ is a linear string called the axiom.

A guided recombination system R defines a derivation relation that produces a new
multiset from a given multiset of linear and circular strands, as follows. Starting
from a “collection” (multiset) of strings with a certain number of available copies
of each string, the next multiset is derived from the first one by an intra- or inter-
molecular recombination between existing strings. The strands participating in the
recombination are “consumed” (their multiplicity decreases by 1) whereas the prod-
ucts of the recombination are added to the multiset (their multiplicity increases by
1).

For two multisets S and S′ in Σ∗ ∪ Σ•, we say that S derives S′ and we write
S =⇒R S′, iff one of the following two cases hold:

Language Theory in Biocomputing 41 UC'07 - Kingston, Canada

(1) there exist x ∈ S, y, •z ∈ S′ such that

– {x} =⇒del {y, •z} according to an intramolecular recombination step in R,

– S′(x) = S(x) − 1, S′(y) = S(y) + 1, S′(•z) = S(•z) + 1, and S′(u) = S(u) for
all u /∈ {x, y, •z};

(2) there exist x′, •y′ ∈ S, z′ ∈ S′ such that

– {x′, •y′} =⇒ins {z′} according to an intermolecular recombination step in R,

– S′(x′) = S(x′) − 1, S′(•y′) = S(•y′) − 1, S′(z′) = S(z′) + 1, and S′(u) = S(u)
for all u /∈ {x′, y′, •z′}.

Those strands which, by repeated recombinations with initial and intermediate
strands eventually produce the axiom, form the language of the guided recombi-
nation system. Formally,

Lk
a(R) = {w ∈ Σ∗ | {(w, k)} =⇒∗

R S and t ∈ S}
((w, k) indicates the fact that the multiplicity of w equals k).

The guided recombination systems are proved in [8] to be equivalent to Turing
machine:

Theorem 1 ([8]) Let L be a language over T ∗ accepted by a Turing machine TM =
(S,Σ ∪ {#}, P). Then there exist an alphabet Σ′, a sequence π ∈ Σ′∗, depending on
L, and a recombination system R such that a word w over T ∗ is in L iff #6s0w#6π
belongs to Lk

a(R) for some k ≥ 1.

In line with this result, we define acceptance for guided recombination systems
as follows.

Definition 3 We say a guided recombination system R = (Σ,∼, t) accepts a string
w iff there exists a k ≥ 1 such that w ∈ Lk

a(R).

In other words, a guided recombination system accepts a string w if it generates
the axiom, when starting with some (sufficient) amount of copies of w.

We now consider the parallelism for the guided recombination model. Intuitively,
a number of operations can be applied in parallel to a string if the applicability of
each operation is independent of the applicability of the other operations.

In this paper we use a notion of parallelism following [6], which is the maximally
parallel application of a rule to a string.

First, we define the working places of a operation π ∈ P̃ on a given string where
π is applicable.

Definition 4 Let w be a string. The working places of a operation π ∈ P̃ with
respect to a multiset S for w is a set of substrings of w written as Wp(π(w)) and
defined by

Wp(delp(w)) = {upw′pv ∈ Sub(w) | {upw′pv} =⇒delp {upv, •w′p}},
Wp(insp(w)) = {upv ∈ Sub(w) | {upv, •w′p} =⇒insp

{upw′pv}
for some • w′p ∈ S}.

Language Theory in Biocomputing 42 UC'07 - Kingston, Canada

Definition 5 Let w be a string. The smallest working places of a operation π ∈ P̃
for w is a subset of Wp(π(w)) written as Wps(π(w)) and defined by

Wps(π(w)) = {w1 ∈ Wp(π(w)) | for all w′1 ∈ Sub(w1)
and w′1 6= w1, w

′
1 /∈ Wp(π(w))}.

Definition 6 Let Σ be a finite alphabet and P̃ the set of rules defined above. Let
π ∈ P̃ and u ∈ Σ∗. We say that v ∈ Σ∗ is obtained from u by applying π in a
maximally parallel way, denoted u =⇒max

π v, if

u = α1u1α2u2 . . . αkukαk+1, and v = α1v1α2v2 . . . αkvkαk+1,

where ui ∈ Wps(π)(u), vi ∈ Σ∗ for all 1 ≤ i ≤ k, and also, αi /∈ Wp(π(u)), for all
1 ≤ i ≤ k + 1.

Example 1 Let delp be the contextual deletion operation applied in the context
(x1x2, p, x3) ∼ (x3, p, x1), and consider the string u = x1x2px3px1x2p x3px1. The
unique correct result obtained by maximally parallel application of delp to u is:

x1x2px3px1x2px3px1 =⇒max
delp

x1x2px1x2px1.

Finally, if in a guided recombination system R = (Σ,∼, t) for some multiplicity
k {(w, k)} =⇒n

R S, with t ∈ S, we say that R accepts a string w in time n.

4 Efficiency of guided recombination systems

In this section, we use guided recombination systems as decision problem solvers. A
possible correspondence between decision problems and languages can be done via
an encoding function which transforms an instance of a given decision problem into
a word, see, e.g., [3].

Definition 7 We say that a decision problem X is solved in time O(t(n)) by guided
recombination systems if there exists a family A of guided recombination systems
such that the following conditions are satisfied:

1. The encoding function of any instance x of X having size n can be computed
by a deterministic Turing machine in time O(t(n)).

2. For each instance x of size n of the problem one can effectively construct, in
time O(t(n)), an intermolecular guided recombination system G(x) ∈ A which
accepts, again in time O(t(n)), the word encoding the instance x if and only if
the solution to the given instance of the problem is YES.

Moreover, we say that a solution is uniform if all instances of the same size are
solved by the same guided recombination system.

Language Theory in Biocomputing 43 UC'07 - Kingston, Canada

Theorem 2 SAT can be solved uniformly and deterministically by a guided recom-
bination system in time O(n ·m), where n denotes the number of variables and m
the number of clauses.

Proof. Let us consider a propositional formula φ of m clauses over n variables
in the conjunctive normal form. Thus φ = C1 ∧ · · · ∧ Cm, such that each clause
Cj , 1 ≤ j ≤ m, is of the form Cj = 〈yj,1 ∨ · · · ∨ yj,kj

〉, kj ≥ 1, where yj,k ∈ {xi, x̄i |
1 ≤ i ≤ n}, 1 ≤ k ≤ kj .

We encode each clause Cj as a string bounded by $j in the following form:

cj = $j†Cj†$j .

The instance φ is encoded as follows:

φ̂ = c1 . . . cm$m+1††x1††x̄1†† . . . ††xn††x̄n††$m+1$m+2.

It is easily seen that the size of the encoding is linear in n and m.
The string appended to the formula contains both values for all variables in φ.

We design a guided recombination system which solves the encoded instance of SAT
in the following steps.

1. Excise the variable values.

2. Insert a valued variable after each clause.

3. Check if the inserted variable satisfies the clause.

4. Check if the inserted variables are consistent.

5. Generate the axiom if and only if both checks are successful.

Specifically, given a boolean formula φ with m clauses and over n variables, we
construct a guided recombination system

G = (Σ,∼, $),

with

Σ = {$i | 1 ≤ i ≤ m + 2} ∪ {xi, x̄i | 1 ≤ i ≤ n} ∪ {∨, 〈, 〉, †},
$ = $1$2 . . . mm+1$m+2.

The relation ∼ is defined as follows, where x ∈ {xi, x̄i | 1 ≤ i ≤ n}, b ∈ {∨, 〈},
e ∈ {∨, 〉} and 1 ≤ j ≤ m. Also x̄ = x̄i if x = xi and x̄ = xi if x = x̄i.

(†, †, x) ∼ (x, †, †), (1)
(〉, †, jj+1) ∼ (x, †, x), (2)

(b, x, e) ∼ (〉†, x, †), (3)
(bx, †, λ) ∼ (bx̄†jj+1, †, 〈), (4)

(†$m, $m+1, λ) ∼ (λ, $m+1, $m+2), (5)
(λ, $j , †) ∼ (bx†, $j , $j+1$j+2). (6)

Language Theory in Biocomputing 44 UC'07 - Kingston, Canada

The size of this system is O(n · m) and it is not hard to see that it can be
constructed by a deterministic Turing machine in time O(n ·m).

We will show that G decides SAT for a given input φ. That is, that G accepts
encoding φ̂ if and only if φ is satisfiable.

For the if-part, consider the input string

$1†C1†$1 . . . $m†Cm†$m$m+1††x1††x̄1†† . . . ††xn††x̄n††$m+1$m+2.

To this word we can apply the operation del† using contexts of (1). In fact, we
apply 2n del†-operations in parallel, giving

$1†C1†$1 . . . $m†Cm†$m$m+1†2n+2$m+1$m+2

as well as the circular strings •x† for all x ∈ {xi, x̄i | 1 ≤ i ≤ n}.
In the next step, these circular strings can be inserted after each encoding of a

clause of φ using contexts (2). Again, this is done in parallel for all clauses, so with
m ins†-operations we obtain a string of the form

$1†C1†z1†$1 . . . $m†Cm†zm†$m$m+1†2n+2$m+1$m+2

with each zj , 1 ≤ j ≤ m in {xi, x̄i | 1 ≤ i ≤ n}. We interpret these inserted variables
as an assignment, where the variable inserted after each clause verifies this clause. It
is important to note that the same variable can be inserted more than once, up to m
times, into the same string, since we also have at our disposal circular strings excised
from other copies of the input string. Recall that by Definition 3 we can assume
that the input word is present in the multiplicity needed to generate all possible
assignments of a verifying variable to a clause. If m > 2n, extra multiplicity is
needed to provide enough variables to insert.

If the formula is satisfiable, there is at least one inserted assignment in which
all inserted variables effectively verify the clause preceding it. In this case, we can
apply the contexts of (3) to perform m delx-operations. This gives m strings of the
form • ∨ · · · ∨ yj,kj 〉†zi and a string

$1†〈y1,1 ∨ · · · ∨ z1†$1 . . . $m†〈ym,1 ∨ · · · ∨ zm†$m$m+1†2n+2$m+1$m+2.

Recall that each clause Cj , 1 ≤ j ≤ m, is of the form Cj = 〈yj,1 ∨ · · · ∨ yj,kj 〉, kj ≥
1, where yj,k ∈ {xi, x̄i | 1 ≤ i ≤ n}, 1 ≤ k ≤ kj .

Again, if the formula is satisfiable, there is at least one inserted assignment which
verifies all clauses and is consistent, in the sense that if a variable xi is inserted in
some place, no variable x̄i is inserted after another clause. This means no context of
(4) can apply to the string, since this requires the simultaneous presence of xi and
x̄i in the string.

Now we can apply del$m+1
using context (5). In this and the following steps,

no parallel applications are possible, so the derivation goes on sequentially. First,
del$m+1

yields •†2n+2$m+1 and

$1†〈y1,1 ∨ · · · ∨ z1†$1 . . . $m†〈ym,1 ∨ · · · ∨ zm†$m$m+1$m+2.

Language Theory in Biocomputing 45 UC'07 - Kingston, Canada

From here, we apply successively del$m
to del$1

using the contexts of (6). For
instance, del$m

gives •†〈ym,1 ∨ · · · ∨ zm†$m and

$1†〈y1,1 ∨ · · · ∨ z1†$1 . . . $m−1†〈ym−1,1 ∨ · · · ∨ zm−1†$m−1$m$m+1$m+2,

after which del$m−1
can be applied. This process goes on until del$1

yields the axiom

$1$2 . . . $m+1$m+2.

This means G accepts φ̂.

For the only if-part, assume that φ is not satisfiable. In this case, the first two
steps go on exactly as described above, giving

$1†C1†z1†$1 . . . $m†Cm†zm†$m$m+1†2n+2$m+1$m+2.

However, φ is not satisfiable. This means that for all inserted assignments at
least one of the following holds:

1. Not all clauses are verified by the variable inserted after them.

2. The inserted assignment is inconsistent.

For case 1, assume that only clause Cl is not verified by zl. Then we cannot
apply the m parallel delx-operations as before. In fact, we can only apply m − 1
operations giving

$1†〈y1,1∨· · ·∨z1†$1 . . . $l†〈. . . 〉†zl†$l . . . $m†〈ym,1∨· · ·∨zm†$m$m+1†2n+2$m+1$m+2.

Alternatively, if m > 2n, zl may not have been inserted. Also then delzl
cannot be

applied and we get

$1†〈y1,1 ∨ · · · ∨ z1†$1 . . . $l†〈. . . 〉†$l . . . $m†〈ym,1 ∨ · · · ∨ zm†$m$m+1†2n+2$m+1$m+2.

In both of these cases, if zl+1 happens to verify clause l, we could apply delzl+1

differently, resulting in • ∨ . . . 〉(†zl)†ll+1† . . . 〉†zl and

$1†〈y1,1∨· · ·∨z1†$1 . . . $l†〈. . . zl+1†$l+1 . . . $m†〈ym,1∨· · ·∨zm†$m$m+1†2n+2$m+1$m+2.

A similar situation can arise if zl happens to verify clause l − 1. Then, instead of
delzl−1

we could also apply delzl
, resulting in • ∨ . . . 〉†zl−1†$l−1$l† . . . 〉†zl and

$1†〈y1,1∨· · ·∨z1†$1 . . . $l−1†〈. . . zl†$l . . . $m†〈ym,1∨· · ·∨zm†$m$m+1†2n+2$m+1$m+2.

By our maximality requirement, these are the only possibilities. We suppose that
no del† using contexts (4) can be applied (if it can, this is treated under case 2).
Now, del$m+1

using context (5) is applied as before. Also del$j
by (6) until arriving

at del$l
(or del$l+1

). None of the strings obtained above satisfy the context of (6) at
that point, so the derivation of the axiom cannot continue. No other operations can
take place, so G does not accept φ̂ by this assignment. If more than one variables

Language Theory in Biocomputing 46 UC'07 - Kingston, Canada

do not satisfy their clause, the situation is the same, except that we can get more
substrings of the form $l†〈. . . 〉(†zl)†$l or $k†〈. . . zl†$l, k < l.

For case 2, assume all variables satisfy their clauses. In this case, m delx-
operations apply as before, giving

$1†〈y1,1 ∨ · · · ∨ z1†$1 . . . $m†〈ym,1 ∨ · · · ∨ zm†$m$m+1†2n+2$m+1$m+2.

Now suppose that zp and zq are inconsistent, for p < q. Now, in the same step as
del$m+1

we also apply del† by context (4). This gives •$p · · · ∨ zq†$q$q+1† and

$1†〈y1,1 ∨ · · · ∨ z1†$1 · · · ∨ zp†〈. . . 〉zq+1†$q+1 $m†〈ym,1 ∨ · · · ∨ zm†$m$m+1$m+2.

Note that if case 1 holds for any zl unequal to zp and zq, the same del† will still take
place. As in case 1, the created string does not satisfy the context of del$q

, so the
axiom cannot be derived.

Since for all possible assignments at least one case holds, the axiom is not gen-
erated, so G does not accept φ̂.

Finally, since each context can induce both a del and an ins -operation, we should
say a few words about the operations not mentioned before.

• ins† by context (1) is not possible since we never have any circular string with
two consecutive symbols †.

• del† by (2) cannot happen because we never have a substring x†x in a circular
string.

• insx by (3) is impossible because none of the circular strings we obtain has
substring 〉†x†.

• ins† by (4) cannot take place since none of the circular strings contains sub-
string ∨xjj+1†〈 or 〈xjj+1†〈.

• ins$m+1
by (5) is not possible because no circular string contains $m+1$m+2

(the circular strings generated by delx (3) and del† (4) only contain $1 to $m).

• ins$m+1
by (6) needs a circular string containing jj+1$j+2, which is never

created.

Our algorithm has a linear running time. Excision of the variables takes at most
m steps, since we need to excise from at most m copies of the input string. If the
formula is satisfiable, we obtain the axiom after m + 3 additional steps, giving a
total running time of 2m + 3 steps. Finally, the system G we constructed solves all
instances of SAT of m clauses over n variables, thus making our solution uniform.
This concludes the proof. 2

Language Theory in Biocomputing 47 UC'07 - Kingston, Canada

5 Conclusion

In this paper we considered a model of gene rearrangement in ciliates. We showed
that this model can be used as an efficient problem solving device by presenting
an algorithm for solving SAT in time O(n · m). One especially interesting feature
of our algorithm is that we show that using small local contexts one can perform
correctness and consistency checks over arbitrarily large distances. We believe that
the study of the gene rearrangement process in ciliates and its formal modelling is
not only interesting from a biological point of view, but can also be beneficial for
the study of computation.

Acknowledgments. The work of T.-O.I. is supported by the Center for Interna-
tional Mobility (CIMO) Finland, grant TM-06-4036 and by Academy of Finland,
project 203667. The work of R.L. was supported by Research Grant BES-2004-6316
of the Spanish Ministry of Education and Science. The work of I.P. is supported by
Academy of Finland, project 108421.

References

[1] Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G.,
Computation in Living Cells: Gene Assembly in Ciliates, Springer, 2003.

[2] Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects
of gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.)
Evolution as Computation, Springer, Berlin, Heidelberg, New York, 216–256,
2001.

[3] Garey, M., Jonhson, D., Computers and Intractability. A Guide to the Theory
of NP-completeness, Freeman, San Francisco, CA, 1979.

[4] Harju, T., Petre, I., and Rozenberg, G., Two models for gene assembly in
ciliates, Theory is forever, LNCS 3113:89–101, 2004.

[5] Head, T., Formal Language Theory and DNA: an analysis of the generative
capacity of specific recombinant behaviors. Bull. Math. Biology 49: 737–759,
1987.

[6] Ishdorj, T.-O, and Petre, I., Computing through gene assembly, accepted in
Int. Conf. UC’07, 13–17, August, 2007, Kingston, Canada.

[7] Ishdorj, T.-O, Petre, I., and Rogojin, V., Computational power of intramolecu-
lar gene assembly, International Journal of Foundations of Computer Science,
to appear, 2007.

[8] Kari, L., and Landweber, L. F., Computational power of gene rearrangement.
In: E. Winfree and D. K. Gifford (eds.) Proceedings of DNA Based Computers,
V American Mathematical Society, 207–216, 1999.

Language Theory in Biocomputing 48 UC'07 - Kingston, Canada

[9] Kari, L., and Thierrin, G., Contextual insertion/deletions and computability.
Information and Computation 131:47–61, 1996.

[10] Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s
solution to a computational problem. In: Proceedings of the 4th DIMACS Meet-
ing on DNA-Based Computers, Philadelphia, PA, 3–15, 1998.

[11] Loos, R., Mart́ın-Vide, C., and Mitrana, V., Solving SAT and HPP with accepting
splicing systems, PPSN IX, LNCS 4193:771–777, 2006.

[12] Papadimitriou, Ch. P., Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

[13] Păun, Gh., Rozenberg, G., Salomaa, A., DNA Computing - New computing
paradigms, Springer-Verlag, Berlin, 1998.

[14] Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations for
DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001) 241–
260.

[15] Salomaa, A., Formal Languages, Academic Press, New York, 1973.

Language Theory in Biocomputing 49 UC'07 - Kingston, Canada

Simulating Apoptosis Using Discrete Methods: a

Membrane System and a Stochastic Approach

John Jack,1 Francisco J. Romero-Campero,2 Mario J. Pérez-Jiménez,2

Oscar H. Ibarra3 and Andrei Păun1,4†

1 Department of Computer Science/IfM, Louisiana Tech University,
P.O. Box 10348, Ruston, LA 71272, USA {johnjack, apaun}@latech.edu

2 Department of Computer Science and Artificial Intelligence, University of Sevilla,
Avda. Reina Mercedes s/n 41012, Sevilla, Spain {fran, marper}@us.es

3 Department of Computer Science, University of California - Santa Barbara,
Santa Barbara, CA 93106, USA ibarra@cs.ucsb.edu

4 Universidad Politécnica de Madrid - UPM, Facultad de Informática
Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain

Abstract. Membrane Systems provide an intriguing method for modeling biological
systems at a molecular level. The hierarchical structure of Membrane Systems lends
itself readily to mimic the nature and behavior of cells. We have refined a technique for
modeling the type I and type II FAS-induced apoptosis signalling cascade. Improve-
ments over our previous modeling work on apoptosis include increased efficiency for
storing and sorting waiting times of reactions, a nondeterministic approach for han-
dling reactions competing over limited reactants and improvements, and refinements
of the model reactions.
The modular nature of our systems provides flexibility with respect to future discover-
ies on the signal cascade. We provide a breakdown of our algorithms and explanations
on improvements we have implemented. We also give an exhaustive comparison to an
established ordinary differential equations technique. Based on the results of our sim-
ulations, we conclude that Membrane Systems are a useful simulation tool in Systems
Biology that could provide new insight into the subcellular processes, and provide also
the argument that Membrane Systems may outperform ordinary differential equation
simulations when simulating cascades of reactions (as they are observed in cells).

1 Introduction

Many diseases and disorders are linked to the anomalous behavior of the apoptotic
pathway within an organism. Specifically, understanding of FAS-induced apoptosis
should be useful in combating cancers and HIV as pointed out in [10] and [11].
As new information is discovered on the stoichiometry and biochemical interactions
involved in this pathway, scientists look to the computer simulations as a tool for
understanding and predicting the effects of changes in molecules important to the
pathway. In this paper, we describe two techniques based on discrete methods for
modeling molecular signaling cascades within a cell. While the two discrete simula-
tion strategies can be applied to any pathway in the cell, we implemented the new
simulation techniques and chose to provide the simulation results for the caspase
dependent apoptotic pathway. We provide the algorithms for our two refined ap-
proaches, a Nondeterministic Waiting Time algorithm and a Multi-compartmental

† To whom correspondence should be addressed. E-mail: apaun@latech.edu

Language Theory in Biocomputing 50 UC'07 - Kingston, Canada

Gillespie algorithm. As mentioned above, we have tested our methods on the FAS-
induced apoptotic signal cascade and offer comparisons with a modeling technique
based on ordinary differential equations as was used for the apoptotic pathway in
[8].

The Nondeterministic Waiting Time (NWT) algorithm is a modified version of
our Membrane System described in [2]. We provide two major improvements over
our previous algorithm. First, we have added a nondeterministic logic to handle
reactions competing over limited reactants. And second, we improved the runtime
of the simulation algorithm by implementing a heap as a data structure used for the
ordering of the reactions.

We argue that our nondeterministic, discrete approach has an advantage over
methods based on ordinary differential equations, such as the ODE method found
in [8]. Ordinary differential equations are an appropriate modeling technique when
one seeks the average behavior of a system involving large numbers of elements – for
example, modeling the dynamics of large cell populations. However, when modeling
signal cascades within a single cell, we believe that differential equations may not
be the best approach. We feel that a discrete method is better equipped to simulate
processes that involve relatively low numbers of molecules/objects.

For example, assume that two reactions are competing over a single molecule.
A differential equations technique allows both reactions to be applied, borrowing
a fraction of the molecule to satisfy each equation. However, our discrete method
maintains molecular integrity. In other words we do not allow a single molecule to be
partially used in two reactions. The molecule is used for one reaction or the other.
Our nondeterministic logic can affect the entire evolution of the system, changing
the results of the signaling cascade in a way ODEs do not.

The second improvement over [2] is the use of a min-heap to store reactions.
Initially, we create the min-heap in the standard (bottom-up) way. However, during
the simulation our heap obeys two properties, which has led us to develop a non-
standard approach to maintaining the min-heap property. The properties are the
following:

(i) once intialized, the heap does not grow or shrink;
(ii) multiple nodes throughout the heap will be updated simultaneously.

In [3] the authors provide a nonstandard method for updating a min-heap. How-
ever, the min-heap they maintain does not obey (ii), so we have developed our own
special maintenance functions. We provide a full description of our heap maintenance
functions in a later section.

In this paper we demonstrate the design of our Nondeterministic Waiting Time
algorithm, as well as our results from simulating the FAS-induced apoptotic signaling
cascade. Section 2 provides a full description of our algorithm and pseudocode for
our heap maintenance functions. Section 3 presents results from our simulation of the
FAS-induced apoptotic pathway, along with comparisons to an established ordinary
differential equations method and some experimental data. Section 4 describes a
stochastic method, based on the ideas of the well-known Gillespie Algorithm. Section
5 is a discussion section providing ideas for future work.

Language Theory in Biocomputing 51 UC'07 - Kingston, Canada

We note that we will use the words rule and reaction interchangeably throughout
this paper. In the context of Membrane Systems, we have rules associated to symbols,
and in the context of cells we have reactions associated with proteins/molecules.

2 Membrane System For Simulating Signal Cascade

In the following we will give a brief description of the simulation technique proposed
and then we will provide the actual algorithm with a discussion on its main ideas
and an example for better understanding.

2.1 Explanation of Discrete Method

Our Membrane System follows the evolution of molecular multiplicities over time.
We simulate individual chemical reactions which are asynchronous and occur dis-
cretely over different lengths of time. The rules of the our system obey the Law of
Mass Action: the reaction rate depends proportionally on the concentrations of the
reactants.

Every reaction r has an associated reaction rate constant kr. For each reac-
tion r we pre-compute a kinetic constant, constr: constr = kr

V i−1×N i−1 where V is

the volume of the system, N is Avogadro’s constant (6.0221415 × 1023) and i is
the number of reactants involved in the reaction. Consider a general second order
reaction, r1 : A+B → C. We compute the amount of time required for a single appli-
cation of the reaction: wtr1 = 1

constr1∗|A|∗|B| where |A| and |B| represent the number

of molecules of the two reactants. Or, consider a first order reaction, r2 : D → E. A
single application of of the reaction is computed: wtr2 = 1

constr2∗|D| . We refer to this

as the calculation of the ’Waiting Time’ (WT) of a reaction.

2.2 Nondeterministic Waiting Time Algorithm

We now provide the pseudocode of our algorithm:

1. Initialization: Calculate the waiting time for every reaction in the system, and
label it ’WT’ (time required for reaction to occur). Store the reactions in a min-
heap (sorted by ’WT’). Set simulation time to zero (t = 0).

2. Select Rule: Select the reaction with the lowest waiting time. If there is a tie, go
to step 3. If not, proceed to step 4.

3. Handle Tie: If there are enough reactants to satisfy all reactions in the tie, imple-
ment all reactions in step 4. If there are not enough reactants to accommodate all
the reactions, use the nondeterministic logic to apply as many rules as possible.

4. Apply Rule: Update the multiplicities of the reactants and products involved in
the reaction(s) from step 2. Aggregate the simulation time (t = t+WT).

5. Update Rules: Recalculate the waiting time for any reactions involving the re-
actants or products of the applied reaction(s). For each such reaction compare
the new waiting time with the existing waiting time and keep the smallest of the
two.

6. Heap Maintenance: Adjust the min-heap.

Language Theory in Biocomputing 52 UC'07 - Kingston, Canada

7. Check Done: If the desired simulation time has not been reached, go back to step
2.

We initially build our min-heap using the standard bottom-up technique. Once
the top node of the heap has been selected (Step 2), applied (Step 4) and had its
waiting time recalculated (Step 5), we leave it at the top of the tree. Often an
applied reaction’s new waiting time is close to its previous WT. Therefore, the node
will most likely be located near the top of the heap once the heap is resorted. After
recalculating the waiting time of all reactions involving reactants or products of the
applied rule (Step 5), we are ready to reestablish our min-heap (Step 6). Next, we
provide our special methods for heap maintenance:

1: Reheap()

2: for each applied reaction (more than one if tie exists)
3: for each product of the applied reaction
4: for each reaction the product is a reactant of
5: CheckUp(reaction);
6: for each reactant of the applied reaction
7: for each reaction the reactant is a reactant of
8: CheckDown(reaction)

1: CheckUp(node r)

2: If parent(r) exists
3: If parent(r) > r
4: Swap(r, parent(r))
5: while parent(r) > children(parent(r))
6: Swap(parent(r), children(parent(r)))
7: CheckUp(r)

1: CheckDown(node r)

2: If children(r) exist(s)
3: If r > children(r)
4: Swap(smallestchild(r), r)
5: while parent(smallestchild(r)) > smallestchild(r))
6: Swap(parent(smallestchild(r)), smallestchild(r))
7: CheckDown(r)

Let us consider an applied rule of the form: A+B→C+D. When the rule is applied
the system loses a molecule of A and one of B, and it also gains a molecule of C and
one of D. Therefore, any reaction that has A, B, C, or D as a reactant requires a
recalculation of its waiting time. After recalculation, the Reheap method is called,
and the position of every reaction with a recalculated waiting time is checked. Since
ties are usually infrequent, the for loop on line 2 of the Reheap method runs for
very few iterations. Also, most reactions have at most two products and at most two
reactants. Hence, the for loops on line 3 and 4 combine for a total of at most four
iterations.

Our CheckUp and CheckDown methods differ from previous nonstandard heap
maintenance [3]. Since we update multiple nodes in our heap simultaneously, we can
have many nodes in violation of the min-heap property. We refer to Fig. 1 for an

Language Theory in Biocomputing 53 UC'07 - Kingston, Canada

example of our heap maintenance. In Fig. 1 we see three nodes in a heap of arbitrary
size. Fig. 1(I) shows a clear violation of the min-heap property. Assume that the
yellow and blue nodes have both just been recalculated (and their waiting time
decreased), and also assume that green has not been recalculated. Our algorithm
does not waste any clock cycles sorting the reactions with changed waiting times,
so we can assume that CheckUp is first called on the blue node. Blue is compared
with its parent (yellow), and since yellow has a smaller WT than blue, no changes
to the heap are made and the CheckUp method for blue terminates.

Fig. 1. (I) The waiting times for yellow and blue are recalculated, and the heap is now unsorted.
(II) The method CheckUp is called for blue, but the node does not move up, since yellow has a
smaller WT. (III) The method CheckUp is called for yellow. Yellow switches places with green.
Before yellow checks up again, green must attempt to move down. (IV) The green node and swaps
with the blue node, which satisfies the min-heap property. Green will move down as far as it can.
Afterwards, CheckUp is called on the yellow node, and the process repeats until the heap is resorted.

Next, CheckUp is called for the yellow node. Yellow and green are compared,
and because they violate the min-heap property, the two nodes are swapped. Since
yellow and green have swapped places, the green node must be moved down the tree
as far as possible in accordance with the min-heap property. Green and its children
(one of which is blue) are compared, and since there is a violation of the min-heap
property, green is swapped with its smallest child (assumed to be blue, but it could
be the other child). Green is moved down as far as necessary, bringing up the ’tail’
of yellow. Once green is in a position that does not violate the min-heap property,
CheckUp is called again for yellow (line 7 of CheckUp method), and the process is
repeated until yellow fails to move up. Once CheckUp and CheckDown have been
called for all reactions with recalculated waiting times, the heap will be sorted.

The implementation of our heap yielded a massive performance increase over
the previous algorithm from [2]. With the algorithm described in [2] we were able to
complete the FAS-induced simulation (∼8 cell simulated hours) in 30-40 minutes de-

Language Theory in Biocomputing 54 UC'07 - Kingston, Canada

pending on the particular rule set and molecular multiplicities. Our new algorithm,
utilizing the efficient heap structure, takes 3-4 minutes to run the same simulations.
While incorporating the heap structure we not only increased the sorting perfor-
mance, we were able to eliminate an extraneous for loop used to put waiting times
in the context of simulation times (a loop for every reaction for each applied rule).
Our previous simulator had a runtime of O(n2 log n). To be able to give the complex-
ity of the algorithm proposed and show that in this specific case is efficient, we need
to make several assumptions which are (usually) valid for the signalling cascades:
a) each reaction involves at most 5 different species of molecules
b) there are a bounded number of reactions having the same reactant (usually 3, at
most 5)
c) there are not many reactions happening at the same time (due to the differences
in molecule multiplicities and reaction rates).
From a), b) and c) we can now show that our new implementation has a runtime of
O(n log n) with respect to the number of reactions simulated.

Next, we will describe the use of our technique in modeling the FAS-mediated
signaling cascade.

3 FAS-induced apoptosis

We have chosen to simulate FAS-induced apoptosis because it has one of the most
detailed descriptions/characterization in the literature (due in large part to its role
in cancer and HIV research). In the interest of comparing our Membrane System
with an established ordinary differential equations (ODE) technique, we have imple-
mented 101 different rules working on 53 distinct proteins and protein complexes.
The pathway begins with the stimulation of FASL and ends with the activation of
the effector Caspase-3. Fei Hua et al., in [8], provide the results of an ODE simula-
tion, as well as some experimental data (from the Jurkat cell line), which they used
to fit their model.

Fig. 2. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]). The two graphs show the decline over time of full length Caspase-3, which means
there is an increase in active Caspase-3. In both simulators, we see that Caspase-3 nears zero after
four hours for the baseline Bcl-2 concentration. However, apoptosis is inhibited as Bcl-2 levels are
increased by 10- or 100-fold.

Language Theory in Biocomputing 55 UC'07 - Kingston, Canada

3.1 Results of Discrete Method

Similar to [8], we ran our simulation with three different initial concentrations of Bcl-
2: the baseline value (75nMs), an increase by 10x (750nMs), and an increase by 100x
(7500nMs). Assuming a cell volume of 10−12 liters, we convert the concentrations into
molecular multiplicities: baseline value (45166 molecules), 10x (451660 molecules),
and 100x (4516606 molecules). We expect to see a decline in Caspase-3 activation
as Bcl-2 concentration is increased by 10x and 100x; we provide the results of our
simulation in (Fig. 2). We also provide the results of a simulation with a decrease
of 10x and 100x in comparison to the baseline Bcl-2 multiplicity (Fig. 3). Notice,
the graphs based on our Membrane System simulations are comparable to the ODE
results from [8].

Fig. 3. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]). These results illustrate the models insensitivity to decreasing Bcl-2 concentrations
by 10- and 100-fold. We see agreement between the two different simulators.

Fig. 4. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]). Here we see the effects of Bcl-2 binding to Bax only. It seems that Bcl-2 binding
only with Bax is the second most effective method for blocking the apoptotic pathway.

3.2 Bcl-2’s effects on the Type II pathway

We now analyze the Caspase-3 activation kinetics by considering different mecha-
nisms through which Bcl-2 can block the type II pathway. In [24], [14], or [1] the

Language Theory in Biocomputing 56 UC'07 - Kingston, Canada

Fig. 5. On the right is the Membrane System and on the left is the ODE simulation (used with per-
mission [8]). These two graphs show Bcl-2 binding to tBid only. We see considerably less inhibition
of the pathway in this mechanism. The release of Cytochrome c is contingent on the binding of one
tBid to two Bax molecules, and thus, blocking Bax would be more effective than blocking tBid.

Fig. 6. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]). We see very little change in apoptotic behavior when Bcl2 is allowed to bind only
with Bid. This is because Bcl-2 binding to Bid is a reversible reaction, and once Bid is truncated
to tBid, it is no longer available to bind with Bcl-2.

authors suggest that Bcl-2 might bind with (a) Bax, (b) Bid, (c) tBid, or (d) bind to
both Bax and tBid to block the mitochondrial pathway. We have implemented in our
Membrane System four different sets of rules to test each Bcl-2 binding mechanisms.
We refer the interested reader to [8] for the details of the rules. The dynamics of
Caspase-3 activation are studied by varying the Bcl-2 concentration 10x and 100x
the baseline value. The conclusion of [8] is that Bcl-2 binding to both Bax and tBid
(d) is the most efficient mechanism for inhibiting apoptosis. Our Membrane System
yields results that are in agreement with the observations from [8]. The results of
(d) are illustrated in Fig. 2, and (a) - (c) can be seen in Fig. 4 - Fig. 6. A comparison
of (a) - (d) at baseline Bcl-2 concentration is shown in Fig. 7.

Modeling the Behavior of the Type I Pathway

There are cells which are not sensitive to Bcl-2 over expression as described in [20].
In these cells, Caspase-3 is activated through the type I pathway, bypassing the role
of the mitochondria and Bcl-2. Scaffidi et al. have suggested in [20] that the type of
pathway is chosen based on the concentration of Caspase-8 generated in active form
following FASL binding. High concentration of active Caspase-8 allows for direct
activation of Caspase-3 (type I), but if the concentration of Caspase-8 is sufficiently
low, amplification of the death signal through the mitochondria is required to induce

Language Theory in Biocomputing 57 UC'07 - Kingston, Canada

Fig. 7. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]). At baseline Bcl-2 concentration, each of the four mechanisms for Bcl-2 inhibition
are similar. Both simulators agree across all rule versions: Bcl-2 binding with Bax only, Bid only,
tBid only, or Bax and tBid.

the cell death (type II). We test this hypothesis by increasing the initial concentration
of Caspase-8 by 20x (from 33.33nMs to 666.6nMs), which should lead to increased
active Caspase-8 throughout the simulation run. In two different runs of increased
Caspase-8 concentration, the baseline concentration of Bcl-2 is used and an increase
of 100x, testing the sensitivity of Caspase-3 activation to Bcl-2. Fig. 8 shows the
Caspase-3 activation is not sensitive to the increase in Bcl-2 concentration, which is
the hallmark for type I pathway dominant behavior. N.B., the binding mechanism
chosen for this simulation is Bcl-2 to Bax and tBid, which was shown above to be
the most efficient mechanism for Bcl-2 inhibition of apoptosis.

Fig. 8. On the right is the Membrane System and on the left is the ODE simulation (used with
permission [8]. Unlike the type I pathway, the type II pathway is unaffected by a 100-fold Bcl-2
increase. We are pleased with these results, as Bcl-2 acts to block the release of Cytochrome c,
which is an unnecessary molecule in this pathway.

We will now describe another method of simulating signal cascades, using a
strategy that is based on the well known Gillespie’s algorithm, but running on more
than one compartment. It is called Multi-compartmental Gillespie Algorithm.

Language Theory in Biocomputing 58 UC'07 - Kingston, Canada

4 Multi-Compartmental Gillespie Algorithm

Gillespie’s algorithm [4] (see also [6, 7] for some recent improvements) provides an
exact method for the stochastic simulation of systems of bio-chemical reactions; the
validity of the method is rigorously proved and it has already been successfully used
to simulate various biochemical processes [13]. Moreover the Gillespie algorithm is
used in the implementation of stochastic π-calculus [16, 22], and in its application
to the modeling of biological systems [17]. The extension of the classical Gillespie
algorithm, called the Multi-compartmental Gillespie Algorithm, is first described in
[18]. Below we provide the general definition of the Membrane System.

Let Π = (O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) be a Membrane System with
the membranes Mi = (wi, Li) and the programs Ri, 1 ≤ i ≤ n. Each set Ri of pro-
grams are active inside their corresponding membrane i. These sets contain elements
of the form (j, πj , rj , pj , kj) where:

– j is the index of a program from Ri;
– πj is the predicate; in this section this will be always true and will be omitted;
– rj is the boundary rule contained in the program j;
– pj is the probability of the rule contained in the program j to be applied in the

next step of evolution; this probability is computed by multiplying a stochastic
constant kj , specifically associated with program j, by the number of possible
combinations of the objects present on the left side of the rules with respect to
the multiset wi (or the multiset wi′ , with i′ = upper(µ, i)) - the current content
of membrane i (i′).

First, each membrane i will be considered to be a compartment enclosing a
volume, therefore the index of the next program to be used inside membrane i and
its waiting time will be computed using the classical Gillespie algorithm which we
recall below:

1. calculate a0 =
∑

pj, for all (j, rj , pj , kj) ∈ Ri;
2. generate two random numbers r1 and r2 uniformly distributed over the unit

interval (0, 1);

3. calculate the waiting time for the next reaction as τi =
1

a0
ln(

1

r1
);

4. take the index j, of the program such that
j−1
∑

k=1

pk < r2a0 ≤
j

∑

k=1

pk;

5. return the triple (τi, j, i).

Notice that the larger the stochastic constant of a rule and the number of occur-
rences of the objects placed on the left side of the rule inside a membrane are, the
greater the chance that a given rule will be applied in the next step of the simula-
tion. There is no constant time-step in the simulation. The time-step is determined
in every iteration and it takes different values depending on the configuration of the
system.

Next, the Multi-compartmental Gillespie’s Algorithm is described in detail:

1. Initialization:

Language Theory in Biocomputing 59 UC'07 - Kingston, Canada

◦ set time of the simulation t = 0;
◦ for each membrane i in µ compute a triple (τi, j, i) by using the procedure

described above; construct a list containing all such triples;

◦ sort the list of triples (τi, j, i) according to τi;

2. Iteration:

◦ extract the first triple, (τm, j,m) from the list;
◦ set time of the simulation t = t + τm;

◦ update the waiting time for the rest of the triples in the list by subtracting
τm;

◦ apply the rule contained in the program j only once changing the number of
objects in the membranes affected by the application of the rule;

◦ for each membrane m′ affected by the application of the rule remove the
corresponding triple (τ ′

m′ , j′,m′) from the list;

◦ for each membrane m′ affected by the application of the rule j re-run the
Gillespie algorithm for the new context in m′ to obtain (τ ′′

m′ , j′′,m′), the next
program j′′, to be used inside membrane m′ and its waiting time τ ′′

m′ ;
◦ add the new triples (τ ′′

m′ , j′′,m′) in the list and sort this list according to each
waiting time and iterate the process.

3. Termination:

◦ Terminate simulation when time of the simulation t reaches or exceeds a
preset maximal time of simulation.

Therefore, in this approach, the waiting time computed by the Gillespie algo-
rithm is used to select the membranes which are allowed to evolve in the next step of
computation. Specifically, in each step, the membranes associated to programs with
the same minimal waiting time are selected to evolve by means of the corresponding
rules. Moreover, since the application of a rule can affect more than one membrane
at the same time (e.g., some objects may be moved from one place to another), we
need to reconsider a new program for each one of these membranes by taking into
account the new distribution of objects inside them. Note that in this point our
approach differs from [21] where only one program is applied at each step without
taking into account the rest of the programs that are waiting to be applied in the
other membranes, neither it is considered the disruption that the application of one
program can produce in various membranes.

We coded the model in C and simulated the FAS-induced apoptotic pathway
described in Section 3. In the interest of saving space, we provide only some of the
stochastic simulation results in our discussion section.

5 Discussion And Final Remarks

We have provided two discrete methods for modeling molecular signaling cascades,
highlighting key changes to our previous technique. We also gave the results from
the simulation of the FAS-mediated apoptotic pathway. Our Membrane System has
yielded comparable results to an ordinary differential equations technique. The six-
teen distinct simulations reach apoptosis at similar rates to the ODE method (as
shown in Fig. 2 through Fig. 8). Although the activation of Caspase-3 is similar

Language Theory in Biocomputing 60 UC'07 - Kingston, Canada

between the two techniques, the molecular interactions throughout are different.
We have compared the results of our two simulators with the experimental results
obtained by Fei Hua et al. The Caspase-3 results are not very surprising, but the
activation of Caspase-8 raises our interest. Refer to Fig. 9 for a comparison of the
three simulation methods. We note the fact that in the case of the stocastic system
we have depicted a single run of the simulation.

Fig. 9. The experimental data and ODE simulation results were obtained from Fei Hua et al. to
be used in comparison to our Membrane System simulator. In both simulators, Bcl-2 is binding
with Bax and tBid. We see that the decrease of full length Caspase-3 is similar in all three results.
Interestingly, the decline of full length Caspase-8 is least prominent in the Membrane System simu-
lator. The contrast could be a result of the discrete nature of our system. As for both results being
different than the experimental data, we believe that further investigation of kinetic rates of the
reactions will allow for better agreement between simulation and experimentation.

The consistency between the framework and the experimental results in the
paper [8] validates our model. We have stated that our discrete methods handle low
levels of molecules in a different way that ODE techniques. To further investigate the
differences between discrete and ODE methods, we have chosen to focus on one rule
from the FAS-mediated pathway (a transformation): [CASP8P41

2]c → [CASP8∗2]c.
The initial concentration of CASP8P41

2 is assumed to be .03nMs (or 18 molecules)
and we use the same kinetic rate k5 = 0.1s−1 as in the model used in the current
paper.

The ode45 method in MATLAB was used to obtain the results for the ODE
technique, and is shown as the blue line in the Fig. 10. The membrane system
was used to produce the discrete results depicted in the dark blue bars. Fig. 10,
clearly shows a divergence between the two techniques. At the end of the simulation
(second 16) we notice that the ODE has the value approximately 14 whereas the
membrane simulator has the value 18. These results are obtained for the exact same
constants and reaction, leading to a difference greater than 20% of the end value. We
suggest to the interested reader to contemplate what would be the effects of similar
differences in protein multiplicities/concentrations when considering hundreds or
thousands of rules in the model being simulated. It should be obvious now why the
discrete simulation techniques are producing different results than the continuous
simulations. We believe that when modeling signaling cascades over a relatively

Language Theory in Biocomputing 61 UC'07 - Kingston, Canada

Fig. 10. The Membrane System does not allow the existence of fractional molecules, which makes
it fundamentally similar to the real world. Since ODEs use concentrations for simulation, the data
can become skewed as the simulation commences - i.e., fractions of molecules are interacting. If the
concentration is sufficiently high, this may not affect the quality of results, but as we can see here,
deviations occur when dealing with evolution of multiplicities rather than concentrations.

small number of molecules, the discrete methodology may yield better/more-realistic
results than an ODE technique.

Our Nondeterministic Waiting Time algorithm shows that Membrane Systems
are an intriguing alternative to ordinary differential equations methods. We have
argued that the discrete nature of our technique might be better for simulating the
evolution of systems involving low numbers of molecules. In the future, we would
like to add a stochastic element to the Nondeterministic Waiting Time algorithm,
allowing for limited stochasticity in our simulations. We will also be applying our
model to signal cascades other than FAS-mediated apoptosis. Another future thrust
of our group will be in the extension and refinement of the pathway discussed here.
We plan to model the behavior of the caspase-based apoptotic pathway in the HIV
infected cells.

Acknowledgements

J. Jack gratefully acknowledges a Ph.D. fellowship from the University of Louisiana
System and support from NSF Grant CCF-0523572. The research of O. H. Ibarra
was supported in part by NSF Grants NSF Grants CCF-0430945 and CCF-0524136.
The research of A. Păun was supported in part by LA BoR RSC grant LEQSF (2004-
07)-RD-A-23 and NSF Grants IMR-0414903 and CCF-0523572.

References

1. Cheng, E.H., Wei, M.C., Weiler, S., Flavell, R.A., Mak, T.W., Lindsten, T., Korsmeyer, S.J.
(2001). BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-
mediated mitochondrial apoptosis. Molecular Cell, 8, 705–711.

2. Cheruku, S., Păun, A., Romero-Campero, F., Pérez-Jiménez, M., Ibarra, O. (2006). Simulating
FAS-Induced Apoptosis by Using P Systems. Proceedings of Bio-inspired computing: theory and
applications (BIC-TA) September 18-22, 2006, Wuhan, China, also extended version accepted
to Progress in Natural Science, 17(4), 424–431.

Language Theory in Biocomputing 62 UC'07 - Kingston, Canada

3. Gibson, M. A., Bruck, J. (2000). Efficient Exact Stochastic Simulation of Chemical Systems
with Many Species and Many Channels. J. Phys. Chem. A 104, 1876–1889.

4. Gillespie, D.T. (1976). A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions. Journal of Computational Physics, 22, 403–434.

5. Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The Jour-
nal of Physical Chemistry, 81, 25, 2340–2361.

6. Gillespie, D.T. (2001). Approximate Accelerated Stochastic Simulation of Chemically Reacting
Systems. Journal of Chemical Physics, 115, 4, 1716–1733.

7. Gillespie, D.T. (2003). Improved Leap-size Selection for Accelerated Stochastic Simulation.
Journal of Chemical Physics, 119, 16, 8229–8234.

8. Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D. (2005). Effects of Bcl-2 Levels
on FAS Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational
Model Predictions. The Journal of Immunology, 175, 2, 985–995 and correction 175, 9, 6235–
6237.

9. Ibarra, O.H., Păun, A. (2005). Counting time in computing with cells. Proceedings of DNA
Based Computing, DNA11, London, Ontario, 25–36 and Lecture Notes in Computer Science,
3892, (2006), 112–128.

10. Krammer, P.H. (2000). CD95’s deadly mission in the immune system. Nature, 407, 789–795.
11. Krammer, P.H., (2000). CD95’s deadly mission the in immune system. Nature, 407, 789–795.
12. Manca, V., Bianco, L., Fontana, F. (2005). Evolution and Oscillation in P Systems: Applications

to Biological Phenomena, Lecture Notes in Computer Science, 3365, 63 – 84.
13. Meng, T.C., Somani S., Dhar, P. (2004). Modelling and Simulation of Biological Systems with

Stochasticity. In Silico Biology, 4, 3, 293–309.
14. Oltavi, Z.N., Milliman, C.L., Korsmeyer, S.J. (1993). Bcl-2 heterodimerizes in vivo with a

conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 4, 609–619.
15. Păun A., Pérez-Jiménez M., Romero-Campero F. (2006). Modelling Signal Transduction using

P Systems, Lecture Notes in Computer Science, 4361, 100–122.
16. Philips, A., Cardelli. L. (2004). A Correct Abstract Machine for the Stochastic Pi-calculus.

Proc. Bioconcur04. ENTCS.
17. Priami, C., Regev, A., Shapiro, E., Silverman, W. (2001). Application of a Stochastic Name-

Passing Calculus to Representation and Simulation of Molecular Processes. Information
Processing Letters, 80, 25–31.

18. Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006) P Systems, a New Computational Modeling
Tool for Systems Biology, Transactions on Computational Systems Biology, 4220, 176–197.

19. Romero-Campero, F.J., Pérez-Jiménez, M.J. (2005). A Study of the Robustness of the EGFR
Signalling Cascade using Continuous Membrane Systems. Lecture Notes in Computer Science,
3561, 268 – 278.

20. Scaffidi, C., Fulda. S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Kram-
mer, P.H., Peter, M.E. (1998). Two CD95 (APO-1/Fas) signaling pathways. The Embo Journal,
17, 1675–1687.

21. Stundzia, A.B., Lumsden, C.J. (1996). Stochastic Simulation of Coupled Reaction-Diffusion
Processes. Journal of Computational Physics, 127, 196–207.

22. The Stochastic Pi-Machine: http://www.doc.ic.ac.uk/~anp/spim/.
23. Van Kampen, N.G. (1992) Stochastic Processes in Physics and Chemistry. Elsevier Science B.

V., Amsterdam, The Netherlands.
24. Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L., Korsmeyer, S.J. (1996). BID: a novel BH3

domain-only death agonist. Genes & Development, 10, 2859–2869.

Language Theory in Biocomputing 63 UC'07 - Kingston, Canada

Watson-Crick bordered words and their syntactic
monoid

Lila Kari and Kalpana Mahalingam

University of Western Ontario,
Department of Computer Science,
London, ON, Canada N6A 5B7

lila, kalpana@csd.uwo.ca

Abstract. DNA strands that, mathematically speaking, are finite strings over the
alphabet {A, G, C, T} are used in DNA computing to encode information. Due to the
fact that A is Watson-Crick complementary to T and G to C, DNA single strands
that are Watson-Crick complementary can bind to each other or to themselves in ei-
ther intended or unintended ways. One of the structures that is usually undesirable for
biocomputation, since it makes the affected DNA string unavailable for future interac-
tions, is the hairpin: If some subsequences of a DNA single string are complementary
to each other, the string will bind to itself forming a hairpin-like structure. This paper
studies a mathematical formalization of a particular case of hairpins, the Watson-
Crick bordered words. A Watson-Crick bordered word is a word with the property that
it has a prefix that is Watson-Crick complementary to its suffix. We namely study
algebraic properties of Watson-Crick bordered and unbordered words. We also give a
complete characterization of the syntactic monoid of the language consisting of all
Watson-Crick bordered words over a given alphabet. Our results hold for the more
general case where the Watson-Crick complement function is replaced by an arbitrary
antimorphic involution.

1 Introduction

The subject of this paper, Watson-Crick (WK) bordered words, is motivated by the
practical requirements of DNA computing experiments. DNA strands can be viewed
as finite strings over the alphabet {A, G,C, T} and are used in DNA computing
to encode information. Since A is Watson-Crick complementary to T and G to
C, DNA single strands that are WK complementary can bind to each other or to
themselves in either intended or unintended ways. One of these undesirable DNA
secondary structures, the hairpin, is formed when the suffix of a DNA single strand
is WK complementary to the prefix of the same DNA strand. A word with this
property is called Watson-Crick bordered. Experimentally, DNA strands that are
Watson-Crick bordered are to be avoided when encoding data on DNA strands,
since the hairpin structures they form make them unavailable for biocomputations.
Theoretically, Watson-Crick bordered words generalize the classical definition of a
bordered word: A bordered word is one with the property that it has a prefix that
equals its suffix, [20], [18].

If in a Watson-Crick bordered word over the DNA alphabet the prefix and its
WK complementary suffix do not overlap, then the strand forms a hairpin struc-
ture such as the one shown in Fig 1. If, on the other hand, the prefix of such a
word and the WK complement of one of its suffixes overlap, the DNA strand could
bind with another copy of itself as shown in Fig 2. Both such bindings are poten-
tially undesirable for DNA computing experiments and this paper investigates words
that could potentially interact this way. Algebraic properties of other types of lan-
guages that avoid DNA sequences undesirable for DNA based computations, such
as sticky-free languages, overhang-free languages and hairpin-free languages, have

Language Theory in Biocomputing 64 UC'07 - Kingston, Canada

been extensively studied in [2, 3, 5, 8, 9]. The notion of Watson-Crick bordered words
was formalized and its coding properties as well as relations between Watson-Crick
bordered words and other types of codes have been discussed in [11]. Certain alge-
braic properties of involution bordered words were discussed in [11]. In this paper we
study the algebraic properties of the set of all Watson-Crick bordered words through
their syntactic monoid.

GC T AT C
GAT AGC A

C C
A
T

AC C T

G
C

A
TGAC

CTG

Fig. 1. If a word u is Watson-Crick bordered and its WK borders do not overlap, the word u may
stick to itself forming a simple hairpin loop, as shown above.

The reason for our choice of method of investigation is that the syntactic monoid
approach to the study of a language has proved to be very fruitful in other cases.
Algebraic characterizations of many classes of codes through their syntactic monoid
have been extensively studied [6, 14–16, 19]. In [6], the author formulated a general
characterization method of the syntactic monoid which applies to all classes of codes
that can be defined in a certain way and hence results analogous to those of [16]
can be obtained for a large variety of classes of codes. For more details on codes the
reader is referred to [1, 7, 18].

More recently, in [10] we have discussed the syntactic monoid properties of the set
of all hairpin-free words. In this paper we use these methods to study the algebraic
properties of the set of all involution-bordered words. Throughout the paper we
concentrate on an antimorphic involution θ such that θ(a) 6= a for all a ∈ Σ. Such
a function is arguably an accurate mathematical formalization of the Watson-Crick
DNA strand complementarity as it features its main properties: the fact that the WK
complement of a DNA strand is the reverse (antimorphism property) complement
(involution property) of the original strand. (An involution is a function θ such that
θ2 equals the identity.)

v

w

u

u

Fig. 2. If a word u is Watson-Crick bordered and its WK borders overlap, the word u may stick to
another copy of itself as shown above. (Usually, in a DNA computing experiment, each DNA strand
is present in hundreds or millions of copies in the solution.)

The paper is organized as follows: Section 2 reviews basic definitions. It is easy
to see that, for an antimorphic involution, the set of all involution-bordered words
is a proper subset of the set of all hairpins as studied in [10]. (Note that neither this

Language Theory in Biocomputing 65 UC'07 - Kingston, Canada

inclusion nor its reverse hold if we consider the set of general hairpins of a given
length k). In [10] we showed that the elements of the syntactic monoid of the language
of all hairpin-free words are idempotents and the monoid is commutative. In this
paper (Section 3) we obtain a different result for involution-bordered word sets: We
now show that, while all the elements of the syntactic monoid of the language of
all involution-bordered words over a given alphabet are idempotents, the monoid
is not commutative. We also observe that similarly to the case of the hairpin-free
words, the language of all involution-bordered words is locally testable. Proposition
5 and 6 parallel results in [10] by giving a necessary and sufficient condition for a
finite monoid to be the syntactic monoid of the set of all involution-bordered words
over a given finite alphabet. In Section 4, we discuss the Green’s relations for the
set of all involution-bordered words. In contrast to the case of the set of all hairpin-
free words, it turns out that the Green’s relations are not trivial for the set of all
involution-bordered words.

2 Definitions and basic concepts

In this section we review some basic notions. An alphabet set Σ is a finite non-empty
set of symbols. A word u over Σ is a finite sequence of symbols in Σ. We denote by
Σ∗ the set of all words over Σ, and by Σ+ the set of all non empty words over Σ.
The empty word is denoted by λ. We note that with the concatenation operation
on words, Σ∗ is the free monoid and Σ+ is the free semigroup generated by Σ. The
length of a word u = a1...an is n for all ai ∈ Σ and is denoted by |u|. A language
over Σ is an arbitrary subset of Σ∗. A mapping θ : Σ∗ 7→ Σ∗ is called a morphism
(antimorphism) of Σ∗ if θ(uv) = θ(u)θ(v) (respectively θ(uv) = θ(v)θ(u)) for all
u, v ∈ Σ∗. An involution map θ is such that θ2 equals identity.

Bordered words were initially called “overlapping words” and unbordered words
were called as “non-overlapping words”, [18]. For properties of bordered and unbor-
dered words we refer the reader to [20], [18]. In [11], we extended the concept of
bordered words to involution-bordered words and studied some of their algebraic
properties. We now recall some definitions defined and used in [11].

Definition 1. Let θ be either a morphic or an antimorphic involution on Σ∗.
1. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that u =

vx = yθ(v) for some x, y ∈ Σ+.
2. A non-empty word which is not θ-bordered is called θ-unbordered.

Lemma 1 Let θ be either morphic or an antimorphic involution.
1. A θ-bordered word x ∈ Σ+ has length greater than or equal to 2.
2. For all a ∈ Σ, a is θ-unbordered.
3. For all a ∈ Σ such that a 6= θ(a), an is θ-unbordered for all n ≥ 1.

In case θ is the Watson-Crick involution a θ-bordered word will be called Watson-
Crick bordered, and a θ-unbordered word will be called Watson-Crick unbordered.
Figures 1 and 2 illustrate some undesirable interactions that can result if a DNA
string is Watson-Crick bordered.

We recall that a language or a set X ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗,
X ∩Σ∗uΣ∗ 6= ∅. The following lemma was proved in [11].
Lemma 2 Let θ be an antimorphic involution. Let L be the set of all θ-bordered
words over Σ∗. Then
1. L is regular.
2. L is a dense set.

Language Theory in Biocomputing 66 UC'07 - Kingston, Canada

3 The syntactic monoid of the set of all Watson-Crick bordered
words

In the theory of codes, two types of syntactic monoids are usually considered, the
syntactic monoid of the code itself and the syntactic monoid of the Kleene star of
the code. In this section we concentrate on the characterizations of syntactic monoid
of the set of all θ-bordered words, when θ is an antimorphic involution such that
θ(a) 6= a for all a ∈ Σ. Necessary and sufficient conditions for a monoid to be the
syntactic monoid of the set of all θ-bordered words are also discussed. We first review
some basic concepts.

Let L be a language such that L ⊆ Σ+. We define the context, right context and
left context of a word w ∈ Σ∗ in L as follows:

– CL(w) = {(u, v) : uwv ∈ L, u, v ∈ Σ∗}.
– RL(w) = {u ∈ Σ∗ : wu ∈ L}.
– LL(w) = {u ∈ Σ∗ : uw ∈ L}.

CL(w), RL(w) and LL(w) are called the context, right context and left context of
w in L respectively. Also note that Sub(L) = {x : pxq ∈ L, p, q ∈ Σ∗} is the set of
all subwords of L. Recall that

Definition 2. Let L be a language such that L ⊆ Σ+.

1. The syntactic congruence of L ⊆ Σ+ is denoted by PL and is defined by u ≡
v(PL) iff CL(u) = CL(v).

2. The syntactic monoid of L is the quotient monoid M(L) = Σ∗/PL with the
operation [x][y] = [xy], where for x ∈ Σ∗, [x] denotes the PL equivalence class of
x.

Let W (L) = {x ∈ Σ∗ : CL(x) = ∅}, i.e., x ∈ W (L) iff x /∈ Sub(L). W (L) is
called the residue of L.

Note that if W (L) 6= ∅ then W (L) represents a class for PL and is the zero of
M(L).

Note that for a regular language L, M(L) is the transition monoid (see [17]) of
the minimal deterministic finite automaton (see [1, 17]) of L. The above definition
of the syntactic congruence PL can be defined for an arbitrary subset L of any
semigroup S. If the syntactic congruence is the equality relation then we call the
set L to be a disjunctive subset of S. If L = {x} for some x ∈ Σ∗ and if PL is
the equality relation then we say that x is a disjunctive element of S. For more on
syntactic monoid we refer the reader to [1, 12, 17].

It is a well known fact that L is a regular language if and only if M(L) is finite
(see [12, 17]). For any set L and its syntactic monoid M(L), η : Σ∗ → M(L) is the
natural surjective syntactic morphism defined by x → [x]. Note that for any L, L is
a union of PL classes.

We denote by Bθ,Σ the set of all θ-bordered words over Σ∗, with θ an antimorphic
involution and θ(a) 6= a for all a ∈ Σ. In the remainder of the paper, if the alphabet
Σ is clear from the context, we will denote the set of all θ-bordered words over Σ
simply by Bθ.

It was shown in [11] that Bθ is regular and hence Syn(Bθ) is finite. In the
following lemma we show that the residue of Bθ is the empty set.

Lemma 3 The residue of Bθ is the empty set, i.e., W (Bθ) = ∅.
Proof. Follows from the fact that Bθ is dense, see Lemma 2. ut

Language Theory in Biocomputing 67 UC'07 - Kingston, Canada

In the following proposition we show that every non zero element of Syn(Bθ) is
idempotent.

Proposition 1 For every u ∈ Σ∗, we have u PBθ
u2.

Proof. The congruence PBθ
is equivalent to the congruence PBθ

associated to the
complement Bθ of Bθ. Hence we have to show that u PBθ

u2, i.e., xuy ∈ Bθ iff
xu2y ∈ Bθ. Assume that xuy ∈ Bθ. Suppose that xu2y ∈ Bθ, then there exists
a ∈ Σ such that xu2y = avθ(a) for some v ∈ Σ∗. We have the following cases:

1. If x = ax1 and y = y1θ(a) then xuy = ax1uy1θ(a), a contradiction since xuy ∈
Bθ.

2. If x = λ, the empty word, then u2y = avθ(a) which implies u = av1 and
y = y1θ(a) and hence xuy = av1y1θ(a), again a contradiction. The case when
y = λ is similar.

3. If both x and y are empty, i.e., x = y = λ, then u2 = avθ(a). If v = λ, then
u = a = θ(a) a contradiction to our assumption that a 6= θ(a) for all a ∈ Σ.
Thus v 6= λ and u = av1 = v2θ(a) a contradiction since xuy = u ∈ Bθ.

Hence xu2y ∈ Bθ. Conversely, assume that xu2y ∈ Bθ. Suppose xuy ∈ Bθ, then
there exists a ∈ Σ such that xuy = avθ(a) for some v ∈ Σ∗. We have the following
cases:

1. If x = ax1 and y = y1θ(a) then xu2y = ax1u
2y1θ(a), a contradiction since

xu2y ∈ Bθ.
2. If x = λ, the empty word, then uy = avθ(a) which implies u = av1 and y = y1θ(a)

and hence xu2y = av1uy1θ(a), again a contradiction. The case when y = λ is
similar.

3. If both x and y are empty, i.e., x = y = λ, then u = avθ(a) which implies that
xu2y = u2 = avθ(a)avθ(a) again a contradiction since xu2y ∈ Bθ.

Thus xuy ∈ Bθ iff xu2y ∈ Bθ and hence uPBθ
u2 for all u ∈ Σ∗. ut

Corollary 1 The elements of the syntactic monoid of Bθ are idempotent elements.

Proof. The fact that uPBθ
u2 for any u ∈ Σ∗ implies that U = U2 for the class U

containing u. ut
If θ is a mapping of Σ∗ into Σ∗, a congruence R is said to be θ-compatible if uRv

implies θ(u)Rθ(v). If such is the case, then the mapping θ on Σ∗ can be extended to
a mapping of the quotient-monoid S = Σ∗/R in the following way. Let U be the class
mod R containing the word u. Define θ(U) to be the class of R containing θ(u). This
mapping is well defined, i.e., it does not depend on the choice of the representative
u of the class U . Indeed if u′ ∈ U , then, R being θ-compatible, we have θ(u)Rθ(u′)
and hence θ(u′) ∈ θ(U).

Proposition 2 The syntactic congruence PBθ
is θ-compatible.

Proof. To show that PBθ
is θ-compatible, we have to show that uPBθ

v implies
θ(u)PBθ

θ(v), i.e., CBθ
(u) = CBθ

(v) implies CBθ
(θ(u)) = CBθ

(θ(v)). Let uPBθ
v and

let (x, y) ∈ CBθ
(θ(u)), then xθ(u)y ∈ Bθ which implies that θ(xθ(u)y) ∈ θ(Bθ). Thus

θ(y)θ(θ(u))θ(x) ∈ θ(Bθ), .i.e., θ(y)uθ(x) ∈ θ(Bθ). Since Bθ is θ stable, θ(Bθ) ⊆ Bθ

and thus θ(y)uθ(x) ∈ Bθ iff θ(y)vθ(x) ∈ Bθ since uPBθ
v. Therefore θ(θ(y)vθ(x)) ∈

θ(Bθ) ⊆ Bθ and therefore xθ(v)y ∈ Bθ which implies that (x, y) ∈ CBθ
(θ(v)). Simi-

larly we can show that CBθ
(θ(v)) ⊆ CBθ

(θ(u)). Thus PBθ
is θ-compatible. ut

Language Theory in Biocomputing 68 UC'07 - Kingston, Canada

Recall that a semigroup in general is a set equipped with an internal associative
operation which is usually written in a multiplicative form. A monoid is a semigroup
with an identity element (usually denoted by e). If S is a semigroup, S1 denotes the
monoid equal to S if S has an identity element and to S∪{e} otherwise. In the latter
case, the multiplication on S is extended by setting s.e = e.s = s for all s ∈ S. Let
e ∈ S be an idempotent of S. Then the set eSe = {ese : s ∈ S} is a subsemigroup
of S, called the local subsemigroup associated with e. This semigroup is in fact a
monoid, since e is an identity in eSe. We also recall that a semigroup S is called
locally trivial if for all s ∈ S and for all idempotents e ∈ S, we have ese = e. We
recall the following result.

Proposition 3 [17] Let S be a non empty semigroup. The following are equivalent.
1. S is locally trivial.
2. The set of all idempotents is the minimal ideal of S.
3. We have esf = ef for all s ∈ S and for all idempotents e, f ∈ S.

Since for all e ∈ Syn(Bθ), e is an idempotent, we have the following observations.
Let S = Syn(Bθ) \ {1}, then
– S is aperiodic, i.e., for all e ∈ S, there exists n such that en = en+1.
– S is regular, i.e., for all e ∈ S, e is regular, i.e., there exists s ∈ S such that

ese = e.

Lemma 4 For all [ab] ∈ Syn(Bθ), such that a, b ∈ Σ, [ab] as a set is equal to the
set of all words that begin with a and end with b.

Proof. We first prove for the case when a 6= b. Clearly ab ∈ [ab]. Let u ∈ Σ∗ be such
that aub /∈ [ab]. Then there exists x, y ∈ Σ∗ such that xaby ∈ Bθ and xauby /∈ Bθ.
Note that xaby ∈ Bθ implies that xaby = cpθ(c) for some c ∈ Σ and p ∈ Σ∗. Then
xauby = cqθ(c) which implies that xauby ∈ Bθ a contradiction. Hence aub ∈ [ab] for
all u ∈ Σ∗.
If a = b, then clearly we have aa ∈ [aa] and for all u ∈ Σ∗, aua ∈ [aa]. Suppose
a /∈ [aa] then there exists x, y ∈ Σ∗ such that xaay ∈ Bθ and xay /∈ Bθ. Note that
xaay ∈ Bθ implies that xaay = cpθ(c) for some c ∈ Σ and p ∈ Σ∗. If both x and
y are non empty, then xay = cqθ(c) for some c ∈ Σ and q ∈ Σ∗, which implies
that xay ∈ Bθ, which is a contradiction. If x = λ and y ∈ Σ+ then aay = cpθ(c)
which implies a = c and y = y1θ(c) and hence xay = ay = cy1θ(c) which implies
that xay ∈ Bθ, a contradiction. The case when x ∈ Σ+ and y = λ is similar. If
x = y = λ, then aa = cpθ(c) which implies that a = c = θ(c) a contradiction to our
assumption, since for all a ∈ Σ, θ(a) 6= a. Hence a ∈ [aa]. Thus for all a, b ∈ Σ, and
for all [ab] ∈ Syn(Bθ), [ab] as a set is the set of all words that begin with a and end
with b. ut

Recall that a language L is said to be n-locally testable if whenever u and v have
the same factors of length at most n and the same prefix and suffix of length n− 1
and u ∈ L then v ∈ L. The language L is locally testable if it is n-locally testable
for some n ∈ IN .

We also recall a characterization of the syntactic semigroup of locally testable
languages which states that (Proposition 2.1 in [13]) a recognizable subset (A lan-
guage is called recognizable if there exists an algorithm that accepts a given string if
and only if the string belongs to that language) L of Σ+ is locally testable iff for all
idempotents g ∈ Syn(L), gSyn(L)g is a semi lattice. We use this characterization
and the above proposition to show that Bθ is locally testable.

Language Theory in Biocomputing 69 UC'07 - Kingston, Canada

Corollary 2 Bθ is locally testable.

Proof. We need to show that for all e ∈ Syn(Bθ), eSyn(b)e is a semilattice. Note
that from Lemma 4, for all e, s ∈ Syn(Bθ), ese = e and hence eSyn(Bθ)e = {e}.
Since e is an idempotent and {e} is commutative, eSyn(Bθ)e = {e} is a semilattice.
Thus Bθ is locally testable.

Corollary 3 S = Syn(Bθ) \ {1} is locally trivial.

Proof. For all e ∈ S, e is an idempotent. We need to show that ese = e for all
e, s ∈ S. Let e = [ab] for some a, b ∈ Σ and let s = [s1] for some s1 ∈ Σ+. Then
ese = [ab][s1][ab] = [abs1ab] = [ab] = e. Hence S is locally trivial. ut
Corollary 4 S is the minimal ideal of S and for all e, s, f ∈ S, esf = ef .

Proof. Follows from the fact that S is locally trivial and all elements of S are idem-
potents and from Proposition 3. ut
Corollary 5 For all e, f, g ∈ Syn(Bθ), if eg = fg and ge = gf then e = f .

Proof. Given that eg = fg and ge = gf . Then eg.ge = fg.gf which implies that
ege = fgf since for all e ∈ Syn(Bθ), e is an idempotent. Thus from Corollary 4,
ege = e2 = e = fgf = f2 = f which implies that e = f .

Corollary 6 Syn(Bθ) is a simple semigroup.

Proof. Since ∅ and S = Syn(Bθ) are the only ideals of Syn(Bθ), S is simple.

In the next proposition we show that for all e, f ∈ S, e and f are conjugates,
i.e., e = uv and f = vu for some u, v ∈ S.

Proposition 4 For all e, f ∈ S, e and f are conjugates.

Proof. Let e, f ∈ S such that e = [ab] and f = [cd] for some a, b, c, d ∈ Σ. Then
e = [ab] = [adcb] = [ad][cb] and f = [cd] = [cbad] = [cb][ad] which implies that e and
f are conjugates. ut
Lemma 5 PBθ

class of 1 is trivial.

Proof. Suppose not, let u ≡ 1(PBθ
) for some u ∈ Σ+. Then for any v ∈ Bθ, uv ≡

v(PBθ
) and vu ≡ v(PBθ

). Since v ∈ Bθ, uv, vu ∈ Bθ. Also, v, uv, vu ∈ [ab] for some
a, b ∈ Σ with θ(a) = b. Thus v = axb, uv = ayb and vu = azb for some x, y, z ∈ Σ∗.
Then u = arb which implies that u ∈ [ab] and hence 1 ∈ [ab] a contradiction since
1 /∈ Bθ. Thus PBθ

class of 1 is trivial.

In the following results, using the notion of the syntactic monoid, similar to
Proposition 17, 18 in [10], we establish an algebraic connection between the language
Bθ of the bordered words relatively to an antimorphic involution θ over a finite
alphabet Σ and a certain class of finite monoids.

Proposition 5 Let Syn(Bθ) be the syntactic monoid of Bθ. Then:

1. Syn(Bθ) is a finite monoid which has no zero and every element of Syn(Bθ) is
idempotent.

Language Theory in Biocomputing 70 UC'07 - Kingston, Canada

2. There exists an antimorphic involution ψ such that the set Syn(Bθ) is stable
under ψ.

3. Syn(Bθ) has two non empty disjunctive sets D1 and D2 such that Syn(Bθ) =
D1 ∪D2 and D1 ∩D2 = ∅, where D1 = {[x] ∈ Syn(Bθ) \ {1} : ψ([x]) = [x]}.

Proof. 1. The regularity of the language Bθ implies the finiteness of its syntactic
monoid Syn(Bθ). Since Bθ is dense, Syn(Bθ) has no zero. The last part follows
from Corollary 1.

2. Since the syntactic congruence PBθ
is θ-compatible, an antimorphic involution ψ

can be defined on Syn(Bθ) in the following way. Let U be an element of Syn(Bθ),
i.e., U is a class of PBθ

, and define ψ(U) to be the class containing the element
θ(u), where u ∈ U . This mapping is well defined because it does not depend on
the choice of the representation v of the class U by virtue of θ-compatibility of
PBθ

. Indeed, since uPBθ
v, then θ(u)PBθ

θ(v) and hence θ(v) ∈ ψ(U). Therefore
if V is the class of PBθ

containing v, then ψ(U) = ψ(V). It is immediate that ψ
is an antimorphism since θ is an antimorphism. To show that ψ is an involution,
for all U ∈ Syn(Bθ), ψ(ψ(U)) = U . Note that ψ(U) = [θ(u)] for all u ∈ U . Thus
ψ(ψ(U)) = [θ(θ(u))] = [u] = U since θ is an involution. Thus ψ is an antimorphic
involution. The last part follows from the fact that Bθ is θ-stale.

3. Let D1 = {[x] ∈ Syn(Bθ) : x ∈ Bθ} and let D2 = Syn(Bθ) \ D1 = {[x] ∈
Syn(Bθ) : x ∈ Bθ}. Let [x] ∈ D1 which implies that x ∈ Bθ and thus x = arb for
some a, b ∈ Σ and r ∈ Σ∗ with θ(a) = b. Thus from Corollary 4, we have ψ([x]) =
ψ([arb]) = ψ([ab]) = [θ(ab)] = [θ(b)θ(a)] = [ab] = [x]. Thus for all [x] ∈ D1,
ψ([x]) = [x]. Now we show that D1 is disjunctive. Suppose there exists [x], [y] ∈
Syn(Bθ) such that CD1([x]) = CD1([y]). Then [α][x][β] ∈ D1 iff [α][y][β] ∈ D1

for [α], [β] ∈ Syn(Bθ) which implies that [αxβ] ∈ D1 iff [αyβ] ∈ D1. Thus for
all α, β ∈ Σ∗, αxβ ∈ Bθ iff αyβ ∈ Bθ which implies CBθ

(x) = CBθ
(y) and hence

x, y ∈ [x] = [y]. Hence D1 is disjunctive. Since PD1 = PD1
= PD2 , D2 is also

disjunctive.

The next proposition is a converse of the Proposition 5.

Proposition 6 Let M be a monoid with identity e and satisfy the following prop-
erties:

1. M is finite.
2. M has no zero.
3. Every element of M is an idempotent element.
4. There exists an antimorphic involution ψ such that M is stable under ψ.
5. M has two non empty disjunctive subsets D1 and D2 such that D1 = {x ∈

M \{e} : ψ(x) = x} and D2 = M \D1 and for all x ∈ D1 there exists p, q, r ∈ D2

such that x = pq and either ψ(p) = rq or ψ(q) = pr.

Then there exists a free monoid Σ∗ over a finite alphabet Σ, an antimorphic invo-
lution θ and a language Bθ in Σ∗ such that,
(i) Bθ is the set of all θ-bordered words over Σ
(ii) The syntactic monoid Syn(Bθ) = Σ∗/PBθ

is isomorphic to M .

Proof. If M = {x1, x2, ..., xn}, then take the elements of M as the letters of an alpha-
bet Σ = {x1, x2, ..., xn} and let Σ∗ be the free monoid generated by Σ∗. Let φ be the
mapping of Σ∗ onto M defined in the following way. If u ∈ Σ, then φ(u) = ψ(u) ∈ M .

Language Theory in Biocomputing 71 UC'07 - Kingston, Canada

If u = u1u2...uk ∈ Σ+ with ui ∈ Σ, then φ(u) = ψ(u) = ψ(uk)...ψ(u1). If u = λ,
then φ(u) = e, the identity of M . It is clear that φ is an antimorphism on Σ∗ onto
M . The relation ρ defined as uρv, u, v ∈ Σ∗ iff φ(u) = φ(v) is a congruence of Σ∗
and the quotient monoid Σ∗/ρ is isomorphic to M .
Let Bθ = {x ∈ Σ+ : φ(x) = x} and let PBθ

be the syntactic congruence of Bθ. We
need to show that PBθ

= ρ. We first show that ρ ⊆ PBθ
. Let uρv then φ(u) = φ(v).

We need to show that uPBθ
v. Let αuβ ∈ Bθ which implies that φ(αuβ) = αuβ =

φ(β)φ(u)φ(α) = φ(β)φ(v)φ(α) since uρv. Thus φ(αuβ) = φ(αvβ) = φ(αuβ) which
implies αvβ = αuβ, since φ is an involution, it is bijective. Thus φ(αvβ) = αvβ
which implies that αvβ ∈ Bθ. Similarly we can show that αvβ ∈ Bθ and hence
αuβ ∈ Bθ. Thus uPBθ

v.
Conversely, we need to show that PBθ

⊆ ρ. Let uPBθ
v. If u is not equivalent to v

modulo ρ then φ(u) 6= φ(v). M has a disjunctive D1. Then syntactic congruence
PD1 is the equality relation and we have CD1(φ(u)) 6= CD1(φ(v)). This implies the
existence if α, β ∈ M such that αφ(u)β ∈ D1 and αφ(v)β /∈ D1 or αφ(u)β /∈ D1 and
αφ(v)β ∈ D1. Suppose that we have the first case, αφ(u)β ∈ D1 and αφ(v)β /∈ D1,
and since φ is bijective there exists r, s ∈ Σ∗ such that α = φ(r), and β = φ(s).
Thus αφ(x)β = φ(r)φ(u)φ(s) = φ(sur) ∈ D1 and φ(svr) /∈ D1, i.e., φ(sur) = sur
and φ(svr) 6= svr which implies that sur ∈ Bθ and svr /∈ Bθ a contradiction since
CBθ

(u) = CBθ
(v). Hence it follows that PBθ

⊆ ρ.
We define the requested antimorphism θ of Σ∗ by taking the corresponding per-
mutation of the alphabet Σ and extending it to Σ∗ in the usual way. If u ∈ Σ+,
u = x1x2...xn for x1, x2, ..., xn ∈ Σ, then θ(u) = θ(x1x2...xn) = θ(xn)...θ(x1) and
θ(λ) = λ. It is immediate that θ is bijective antimorphism. Let us show now that
conditions (i) and (ii) are satisfied.
For (i), let u ∈ Bθ and suppose that u is θ-unbordered. If u ∈ Bθ then u = u1u2...uk

for some ui ∈ Σ. Then if a word u is Watson-Crick bordered and its WK borders
overlap, the word u may stick to another copy of itself as shown above. φ(u) =
φ(uk)...φ(u1) = u1...uk which implies φ(uk)φ(u1) = u1uk by Corollary 4. Thus u1 =
uk. Hence φ(u) = φ(u1uk) = φ(u1u1) = φ(u1) = u = u1u1 = u1 since for all f ∈ M ,
f is an idempotent. Thus for all u ∈ Bθ, u = u1 for some u1 ∈ D1. Hence there exists
p, q, r ∈ D2 such that u = pq with ψ(p) = rq or ψ(q) = pr. Thus u = pq implies
ψ(u) = ψ(q)ψ(p) = prψ(p) or ψ(u) = ψ(q)rq which implies that u is θ-bordered.
Suppose there exists a u ∈ Σ∗ such that u is θ-bordered and u /∈ Bθ, then u = axb
with θ(a) = b and a, b ∈ Σ. Thus ψ(u) = ψ(axb) = ψ(axθ(a)) = ψ(θ(a))ψ(x)ψ(a)
= ψ(θ(a))ψ(a) = ψ(b)ψ(a) = ab = axb = u. Thus ψ(u) = u implies that φ(u) = u
and u ∈ Bθ.
Condition (ii) follows by construction. ut

4 Green’s relations for the set of all Watson-Crick bordered words

We recall here the definition of Green’s relations and some well known facts about
some of the relations. For extensive treatments of Green’s relations and the related
varieties of finite monoids, we refer the reader to [4, 12, 17]. In [10], it was shown that
Green’s relations are trivial for the language of all hairpin-free words. In contrast,
this is not the case for the language of all involution-bordered words. Namely, in
this section we show that S = Syn(Bθ) \ {1} is H-trivial and S is not K-trivial for
all K ∈ {D,R,L,J }.
Definition 3. (Green’s Relations:) Let S be a semigroup. We define on S four
equivalence relations R, L, H and J called Green’s relations:

Language Theory in Biocomputing 72 UC'07 - Kingston, Canada

aRb ⇔ aS1 = bS1

aLb ⇔ S1a = S1b
aJ b ⇔ S1aS1 = S1bS1

aHb ⇔ aRb and aLb

Note that the relations R and L commute, i.e., RL = LR and D = RL. In
a finite semigroup D = J . A semigroup S is K-trivial iff eKf implies e = f for
K ∈ {D,R,L,J ,H}. A semigroup S is aperiodic if for all x ∈ S there exists n such
that xn = xn+1. Note that S = Syn(Bθ) \ {1} is aperiodic since all elements of S
are idempotents.

We use the following propositions from [17] to show that S = Syn(Bθ) \ {1} is
H-trivial and the D class of S is equal to S.

Proposition 7 [17] Let S be a semigroup and let g and f be idempotents of S.
Then gDf if and only if g and f are conjugates, i.e., there exists u, v ∈ S such that
g = uv and f = vu.

Proposition 8 [17] Let S be a finite semigroup. The following conditions are equiv-
alent.
1. S is aperiodic (for every x ∈ S there exists n such that xn = xn+1).
2. There exists m > 0 such that for every x ∈ S, xm = xm+1.
3. S is H-trivial.

Proposition 9 The D class and J class of S is equal to S.

Proof. Follows from the fact that S is simple and finite.

Proposition 10 S = Syn(Bθ) \ {1} is H-trivial.

Proof. Since S is aperiodic, by Proposition 8, S is H-trivial. ut
Proposition 11 Let Σ = {a1, a2, ..., an} and let [ab] ∈ S = Syn(Bθ) \ {1} for
some a, b ∈ Σ. Then the R class of [ab] is {[aai] : ai ∈ Σ}. and L class of [ab] is
{[aib] : ai ∈ Σ}.
Proof. Let eRf where e = [ab] for some a, b ∈ Σ. e = [ab] is the set of all words that
begin with a and end with b. Then for all f ∈ [ab]S1, f is the set of all words that
begin with a. Thus R class of [ab] is {[aai] : ai ∈ Σ}. Similarly we can show that
the L class of [ab] is {[aib] : ai ∈ Σ}. ut
Corollary 7 For all e, f ∈ S, Re ∩ Lf = {ef}.
Proof. For some e, f ∈ S, e = [ae1] and f = [f1b] for some a, b ∈ Σ and e1, f1 ∈ Σ∗.
Note that ef = [ae1].[f1b] = [ae1f1b] = [ab]. Then from Proposition 11, R[ae1] =
{[aai] : ai ∈ Σ} and L[f1b] = {[aib] : ai ∈ Σ}. Thus Re ∩ Lf = {[ab]} = {ef}.
Example 1. Let ∆ = {A,C, G, T} and let θ be an antimorphic involution that maps
A 7→ T and C 7→ G. Then Bθ = {aub : a, b ∈ ∆, θ(a) = b, u ∈ ∆∗} is the
set of all θ-bordered words over ∆∗. Then Syn(Bθ) = {[1], [A], [C], [G], [T], [AC],
[AG], [AT], [CA], [CG], [CT], [GA], [GC], [GT], [TA], [TG], [TC]}. Note that for all
a, b ∈ ∆, [ab] is the set of all words that begin with a and end with b and [a] repre-
sents the class that contains all words that begin and end with a. We now compute
both the R and L class for elements of Syn(Bθ).

Language Theory in Biocomputing 73 UC'07 - Kingston, Canada

– L[A] = { [A], [CA], [GA], [TA]}
– L[C] = { [C], [AC], [GC], [TC]}
– L[G] = { [G], [AG], [CG], [TG]}
– L[T] = { [T], [CT], [GT], [AT]}
– R[A] = { [A], [AC], [AG], [AT]}
– R[C] = { [C], [CA], [CG], [CT]}
– R[G] = { [G], [GA], [GC], [GT]}
– R[T] = { [T], [TA], [TG], [TC]}

Also note that since H = R∩ L for all e ∈ Syn(Bθ), He = {e}

5 Conclusion

The DNA secondary structure called “hairpin” has been a topic of constant inter-
est in experimental as well as theoretical biomolecular computing, as it is usually
undesirable in DNA-based computing experiments. This paper investigates a math-
ematical formalization of a particular case of hairpins, the Watson-Crick bordered
words, whereby the “sticky borders” that cause a DNA single strand to form a hair-
pin are situated at the extremities of the strand. Cases where these “sticky borders”
are situated in the interior of the strand have been addressed, e.g., in [9], [10]. The
main results of this paper are algebraic properties of Watson-Crick bordered and
unbordered words, and a complete characterization of the syntactic monoid of the
language consisting of all Watson-Crick bordered words over a given alphabet.

Directions for future work are two-fold. On one hand we intend to investigate
other generalizations of classical notions in combinatorics of words motivated by
DNA computing, such as Watson-Crick conjugate words and Watson-Crick com-
mutative words. On the other hand, we intend to formalize other DNA secondary
structures such as DNA pseudo-knots and study their properties.

Acknowledgment Research supported by NSERC and Canada Research Chair
grants for Lila Kari.

References

1. J.Berstel and D.Perrin, Theory of Codes, Academic Press, Inc. Orlando Florida, (1985).
2. M.Domaratzki. Hairpin structures defined by DNA trajectories, Proc. of DNA Computing 12,

C.Mao, T.Yokomori, Editors, LNCS 4287 (2006), 182-194.
3. M.Garzon, V.Phan, S.Roy and A.Neel. In search of optimal codes for DNA computing, Proc.

of DNA Computing 12, C.Mao, T.Yokomori, Editors, LNCS 4287 (2006), 143-156.
4. J.M.Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, (1995).
5. N.Jonoska, K.Mahalingam and J.Chen, Involution codes: with application to DNA coded lan-

guages, Natural Computing, Vol 4-2 (2005), 141-162.
6. H.Jürgensen, Syntactic monoid of codes, Acta Cybernetica 14 (1999), 117-133.
7. H.Jürgensen and S.Konstantinidis, Codes, Handbook of Formal Languages, Vol 1, Chapter 8,

G.Rozenberg, A.Salomaa, Editors, (1997), 511-608.
8. L.Kari, S.Konstantinidis, E.Losseva and G.Wozniak, Sticky-free and overhang-free DNA lan-

guages, Acta Informatica 40 (2003), 119-157.
9. L.Kari, S.Konstantinidis, E.Losseva, P.Sosik and G.Thierrin, Hairpin structures in DNA words,

Proceedings of DNA Computing 11, A.Carbone, N.Pierce, Editors, LNCS 3892 (2005), 158-170.
10. L.Kari, K.Mahalingam and G.Thierrin, The syntactic monoid of hairpin-free languages, Ac-

cepted, Acta Informatica (2007).
Available online: http://www.springerlink.com/content/2r264425831k6283/

11. L.Kari and K.Mahalingam, Involution bordered words, Accepted, IJFCS, (2007). Available on-
line: http://www.csd.uwo.ca/˜ lila/invbor.pdf

Language Theory in Biocomputing 74 UC'07 - Kingston, Canada

12. G.Lallement, Semigroups and Combinatorial Dynamics, Wiley/Interscience, New York (1995).
13. A.De Luca and A.Restivo, A characterization of strictly locally testable languages and its ap-

plication to subsemigroups of a free semigroup, Information and Control 44 (1980), 300-319.
14. M.Petrich and C.M.Reis, The syntactic monoid of the semigroup generated by a comma-free

code, Proceedings of the Royal Society of Edinburgh, 125A (1995), 165-179.
15. M.Petrich, C.M. Reis and G.Thierrin, The syntactic monoid of the semigroup generated by a

maximal prefix code, Proceedings of the American Mathematical Society, 124-3 March (1996),
655-663.

16. M.Petrich and G.Thierrin, The syntactic monoid of an infix code, Proceedings of the American
Mathematical Society 109-4 (1990), 865-873.

17. J.E.Pin, Varieties of Formal Languages, Plenum Press (1986).
18. H.J.Shyr, Free Monoids and Languages, Hon Min Book Company (2001).
19. G.Thierrin, The syntactic monoid of a hypercode, Semigroup Forum 6 (1973), 227-231.
20. S.S.Yu, d-Minimal Languages, Discrete Applied Mathematics 89 (1998), 243-262.

Language Theory in Biocomputing 75 UC'07 - Kingston, Canada

	intro
	assembly_resized
	Balan - Peptide Computing
	Biegler et al - Computation by annotation
	Daley et al - Properties of Transpositions
	Ishdorj et al - Intermolecular Gene Assembly
	Jack et al - Simulating Apoptosis
	Kari and Mahalingam - WC Bordered Words

