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Abstract

In the literature, several examples of the efficiency of cell-like P systems regarding
the solution of NP-complete problems in polynomial time can be found (obviously,
trading space for time). Recently, different new models of tissue-like P systems have
received important attention from the scientific community. In this paper we present
a linear-time solution to an NP-complete problem from graph theory, the 3–coloring
problem, and we discuss the suitability of tissue-like P systems as a framework to
address the efficient solution to intractable problems.
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1 Introduction

Membranes are involved in many reactions taking place inside various com-
partments of a cell, and they act as selective channels of communication be-
tween different compartments as well as between the cell and its environment
[1].

This paper is enclosed in the Natural Computing framework. More pre-
cisely, in the study of the structure and functioning of cells as living organisms
able to process and generate information. Assuming this starting point, two
different disciplines within Natural Computing can be found in the literature:
Membrane Computing and Brane Calculi.
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Brane Calculi were recently introduced in [6], under the assumption that in
living cells membranes are not merely containers, but they are actually highly
dynamic and participate actively in the cell life. In this way, “computation”
happens on the membranes, not inside them.

On the other hand, Membrane Computing starts from the assumption that
the processes taking place within the compartmental structure of a living cell
can be interpreted as computations [19].

This emergent cross-disciplinary branch of Natural Computing was intro-
duced by Gh. Păun in [18]. It has received important attention from the
scientific community since then, with contributions by computer scientists,
biologists, formal linguists and complexity theoreticians, enriching each oth-
ers with results, open problems and promising new research lines. In fact,
Membrane Computing has been selected by the Institute for Scientific Infor-
mation, USA, as a fast Emerging Research Front in Computer Science, and
[20] was mentioned in [30] as a highly cited paper in October 2003.

The computational devices in Membrane Computing are called P systems.
Roughly speaking, a P system consists of a membrane structure, in the com-
partments of which one places multisets of objects which evolve according to
given rules in a synchronous non-deterministic maximally parallel manner 5 .

In the last years, many different models of P systems have been proposed.
The most studied variants are characterized by a cell-like membrane structure,
where the communication happens between a membrane and the surrounding
one. In this model we have a set of nested membranes, in such a way that the
graph of neighborhood relation is a tree.

One of the topics in the field is the study of the computational power and
efficiency of P systems. In particular, different models of these cell-like P sys-
tems have been successfully used in order to design solutions to NP-complete
problems in polynomial time (see [10] and the references therein). These so-
lutions are obtained by generating an exponential amount of workspace in
polynomial time and using parallelism to check simultaneously all the candi-
date solutions. Inspired in living cells, cell-like P systems abstract the way
of obtaining new membranes, mainly from two biological processes: mitosis

(membrane division) and autopoiesis, see [14] (membrane creation). Both
ways of generating new membranes have given rise to the corresponding P
systems model: P systems with active membranes, where the new workspace
is generated by membrane division and P systems with membrane creation,
where the new membranes are created from objects.

Both models are universal from a computational point of view, but tech-
nically, they are pretty different. In fact, nowadays there does not exist any
theoretical result which proves that these models can simulate each other in
polynomial time.

Under the hypothesis P 6=NP, Zandron et al. [29] established the limi-

5 A layman-oriented introduction can be found in [21] and further bibliography at [31].
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tations of P systems that do not use membrane division concerning the effi-
cient solution of NP-complete problems. This result was generalized by Pérez
Jiménez et al. [25] obtaining a characterization of the P 6=NP conjecture by
the polynomial time unsolvability of an NP-complete problem by language ac-
cepting P systems (without using rules that allow to construct an exponential
number of membranes in polynomial time).

We shall focus here on another type of P systems, the so-called (because
of their membrane structure) Tissue P Systems. Instead of considering that
membranes are hierarchically arranged, the membranes are placed in the nodes
of a graph. This variant has two biological inspirations (see [17]): intercellular
communication and cooperation between neurons. The common mathematical
model of these two mechanisms is a net of processors dealing with symbols and
communicating these symbols along channels specified in advance. The com-
munication among cells is based on symport/antiport rules 6 . Symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions.

From the seminal definition of Tissue P systems [16,17], several research
lines have been developed and other variants have arisen (see, for example,
[2,5,7,12,13,27]). One of the most interesting variants of Tissue P systems
was presented in [22]. In that paper, the definition of Tissue P systems is
combined with the one of P systems with active membranes, yielding Tissue

P systems with cell division.

One of the main features of such Tissue P systems with cell division is
related to their computational efficiency. In [22], a polynomial-time solution
to the NP-complete problem SAT is shown. In this paper we go on with
the research in this variant and present a linear-time solution to another well-
known NP-complete problem: the 3–coloring problem.

The paper is organized as follows: first we recall some preliminaries and
the definition of Tissue P systems with cell division. Next, recognizer Tissue P
systems are briefly described. A linear–time solution to the 3–coloring problem
is presented in the following section, with a short overview of the computation
and the necessary resources. Finally, the main results, some conclusions and
new open research lines are presented.
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