
Evaluating ATTILA, a cycle-accurate GPU simulator

Miguel Ángel Martínez del Amor

Department of Computer and Information Science
Norwegian University of Science and Technology (NTNU)

miguelan@stud.ntnu.no
Project supervisor: Lasse Natvig

lasse@idi.ntnu.no
26th January 2007

Abstract. As GPUs’ technology grow more and more, new simulators are
needed to help on the task of designing new architectures. Simulators have
several advantages compared to an implementation directly in hardware, so they
are very useful in GPU development. ATTILA is a new GPU simulator that was
born to provide a framework for working with real OpenGL applications,
simulating at the same time a GPU that has an architecture similar to the current
designs of the major GPU vendors like NVIDIA or ATI. This architecture is
highly configurable, and also ATTILA gives a lot of statistics and information
about what occurred into the simulated GPU during the execution. This project
will explain the main aspects of this simulator, with an evaluation of this tool
that is young but powerful and helpful for researchers and developers of new
GPUs.

1. Introduction

The main brain of computers is the CPU (Central Processing Unit), where the
instructions are executed, manipulating by this way the data stored in memory. But
with the new applications that demand even more resources, the CPU is becoming a
bottleneck. There is a lot of works about how to improve the CPI (Cycles per
Instruction) which is a good parameter for making comparisons between uniprocessor
architectures, and the search for parallelism is the best way to do it. It is possible to
parallelize the execution of each instruction by performing this execution in stages. In
this manner, when an instruction is in the second stage, the next operation can start
with the first stage, so an instruction can start before finish the last one. It is similar to
the Henry Ford method for a car factory where the construction pipeline is divided in
stages and one car can be only in each stage (never two in the same stage), now
imagine that a car is an instruction and the factory is the CPU. It is easy to
demonstrate that CPI value can achieve 1 with this method, which is the perfect and
theoretical value although it was never achieved; these techniques and also all the
stages that each instruction is divided in are called pipeline. If we try to use the
parallelism between instructions (loops, threads …), it is possible to issue more than
one instruction per cycle, so the CPI can be less than one. It can be done by using
multiple pipelines for multiple instructions, and neither it was possible to achieve a

2 Miguel Ángel Martínez del Amor

perfect value less than 1. Superscalar and VLIW architectures are examples about this
kind of exploit parallelism.

Moreover, thread and process parallelism are used by multiprocessor architectures
as SMT (Simultaneous Multi Threading, several threads can be executed at the same
time in the same processor), UMA (Uniform Memory Access, also called SMP, all
processor share the main memory) and NUMA (Non Uniform Memory Access, each
processor has a part of memory). But all of these kinds of parallelism have limits, and
in some fields it has still some troubles to find them. Other problem that CPUs have is
that they are for general purpose, so they must consider all the possibilities making
more difficult the optimization of code execution. A solution for the last feature is to
make others specific systems that can help the CPU to improve the execution time.

In computer graphics the CPU needs to delegate to the GPU the calculations of
graphics instructions and data. GPU is a specific purpose processor that is optimized
for working with graphics which are based on streaming (continuous source of data,
like buffers or arrays of elements). There was many works trying to make a general
purpose CPU that could work with stream data, the first one was on the 70’s and was
called Vector processor. Nowadays this idea is used in technologies like MMX, SSE
or 3DNOW that help the CPU with graphics calculations. The key of the
optimizations that the stream specific purpose architecture provides is based on the
independence between the elements of a stream. In this manner, if a unit needs the
result stream from a previous one, it does not have to wait until this previous unit
finish with the entire stream, instead the unit can start to make calculations with one
element of the stream at the same time that the previous unit sends the processed
element. It means that there is an overlapping between instructions that share
resources, and it is really powerful for working with streams. Graphic processors
(GPU, Graphic Processor Unit) use these kind of architectures based on streaming
processing, and these processors are placed outside the CPU for performing the
complex graphic calculations and being the responsible of refreshing the screen with
new frames in parallel with the execution of instructions on the CPU. The
technologies mentioned before (MMX, SSE or 3DNOW) never replace a GPU; they
just help the CPU and GPU to perform multimedia and graphic operations.

However, CPU and GPU have to cooperate if they want that the system shows
good results with graphic operations. As it can be seen in figure 1.1 (next page), CPU
and GPU are interconnected by the North Bridge, but the real communication is made
by the system memory (DRAM). So the CPU puts data and code into the memory
while the GPU takes this data, makes the operations and sends the information to the
output display.

The most complex graphic calculations are about 3D graphics on real time (i.e.
videogames), so newer GPUs are optimized for this kind of applications. The pipeline
of 3D graphics is based on triangle and texture streaming, which means that the main
goal is to transform 3D data (coordinates of triangle models, easy to understand for
programmers) into pixels that are displayed on the 2D screen.

Evaluating ATTILA, a cycle-accurate GPU simulator 3

Figure 1.1 The place of the GPU into a typical computer system (from [3]).

That is a Nvidia implementation for the GeForce architecture.

Figure 1.2 shows a general pipeline architecture for 3D data. The input of the GPU

is 3D object coordinates (mainly from triangles) that go to the Geometry Stage where
the 3D coordinates are translated to the space of 2D coordinates of the display. In the
last stage, Rendering, the correct colour of each pixel is calculated in base of the
associated colour, light hitting, textures and other effects as alpha (translucent) and
fog of each Geometry stage’s output (also called fragments). Furthermore, the
Geometry stage can be divided into 2 stages. The first one is the Transform and
Lighting stage which is the process of displaying a three-dimensional object onto a
two-dimensional screen, providing lighting effects to the scene. The Rasterization
(also called Triangle Setup in [1]) sets up and clip the triangle, and makes fragments
for the next stages (Rendering). A fragment is not still a pixel (sometimes these two
terms are not distinguished, like in Direct3D specification), it has attributes like
colour and depth, and multiple fragments correspond to one pixel (i.e. when using
blending or transparency functions). Application tasks (AI, camera, interaction …)
and scene level task (collisions …) are always performed by the CPU (software),
because these are general purpose programs.

Figure 1.2 Abstract architecture of the graphic pipeline.

4 Miguel Ángel Martínez del Amor

Not all of these stages were implemented on the first Graphic Card that just
displayed the lines into the screen, so the other stages were made as a software
process by the CPU. With the evolution of transistors and hardware, it was possible to
implement the pipeline into the GPU; meanwhile the CPU just works with the
application tasks and scene level physics, giving to the GPU triangle coordinates from
the results.

The most complex stage and the bottleneck of GPU is the Rendering Stage (it
calculates the colour and position of pixels). At the beginning GPUs were able to
output only one pixel in several cycles. Because of this bottleneck, CPUs were able to
output more triangles than the GPU could handle. Two solutions were taken:
pipelining and parallelism. Nowadays a GPU has about 16 parallel pipelined
rendering processors, it was very easy because rendering 3D graphics is a repetitive
task and it is possible to do with different pixels at the same time. With these changes,
the CPU and the access to 3D data into the memory is becoming the bottleneck of
graphics rendering, so the best solution for this is that the GPU takes more workload
than the CPU, in this case, place the stage Transform and lighting into the GPU and
improve the access of the GPU to the memory (i.e. PCI Express).

The pipeline with all the graphics stages implemented on hardware was called
fixed function pipeline. Although it was faster, the implementation of all the pipeline
on hardware had a constant behaviour, that is, it always performs the same operations
with 3D data. Consequently, this pipeline was not flexible for graphic programmers in
case of, for example, changing the API or making a new kind of operation with the
vertices.

The solution (and nowadays the most used method) was to develop a
programmable pipeline where the GPU can execute small programs called shaders
over the vertices and fragments. Figure 1.3 (next page) shows a general view of this
new programmable graphic pipeline. A shader is a piece of code that program certain
parts of the graphics pipeline, and there are two types: vertex shaders (replace
Transform and Lighting stage) and fragment shaders (replace the texturing, colour
sum and fog). These shader codes use low-level languages, such as
ARB_Vertex_Program, ARB_Fragment_Program and Direct3D 9 Shading languages.
However there are high-level languages with compilers that make easy the complex
programming task. Some of the high-level languages are Cg1 and GLSlang2.

There are a widely amount of work research for future GPUs. Now it is possible to
execute general purpose code using a GPU as a transformation to streams (i.e.
GPGPU project in www.gpgpu.org), but sometimes it is not more efficient than a
CPU because there are some limitations as said in [2]. Some new compilers, like the
BrookGPU project [10], try to help with the task of making general purpose
applications for GPU, but they are still in development. Other future work is to
implement unified shader units on the GPU, that is, join vertex and fragments units in
a general one. Vertex and fragment shaders are so similar and their union can be
performed relatively easy. It provides better performance in some cases; for example,

1 Cg is a high-level shading language developed by NVIDIA. Homepage is at

http://developer.nvidia.com/page/cg_main.html.
2 GLSlang is a high-level shading language that will be introduced with OpenGL 2.0.

Homepage is at http://developer.3dlabs.com/documents/glslmanpage_index.htm.

Evaluating ATTILA, a cycle-accurate GPU simulator 5

when it is needed more vertex shaders than fragment units and then, it is possible to
share resources because of the use of unified shader units. Future shading languages
will support this novel architecture, like Shader Model 4.0 in Direct3D and GLSlang
in OpenGL 2.0.

(a)

(b)

Figure 1.3 Overview of the GPU pipeline. (a) A fixed function pipeline. (b) A
programmable function pipeline, with vertex and fragment shader units.

As it can be seen, the task of developing a novel architecture for GPU purpose is

hard, like for CPU purpose is. Simulators are a good tool that can help to GPU
developers to investigate new technologies without a physical implementation. A new
simulator was done by the department of computer architecture of polytechnic
university of Catalonia, with almost all the code public. The name of the project and
also of the simulator is ATTILA. This simulator is cycle accurate and execution
driven, and provides a wide set of statistics that permits the researcher to analyse the

6 Miguel Ángel Martínez del Amor

new architecture. The urge that this simulator can achieve for the development and
test of new GPU architectures has to be considered, that is the reason because this
report makes an evaluation of this tool.

In section 2 it will be commented some previous related works. Section 3 will
explain in detail the simulator: architectures that ATTILA can simulate, an
introduction to the source code and statistics that it provides. Section 4 will make an
evaluation of the simulator, executing testprograms of OpenGL and a discussion of
the weak and strong sides of ATTILA. Finally, section 5 gives a general conclusion of
the report and comments some possible work to continue in a not so far future.

At the end of this paper there are also four appendices. Appendix A contains a
small dictionary of abbreviations and terms that can help to the understanding of this
paper. So if one does not know the meaning of a word, just look for it in Appendix A.
Appendix B and C contains more information and details about the simulator. The
former (B) has the collection of statistics that ATTILA provides; the latter (C) shows
an introduction to the configuration of ATTILA by parameters. As a bonus for this
paper, Appendix D comments how ATTILA can improve the simulation time by
parallelizing some code.

2. Antecedents and related work

The previous works about ATTILA are the presentations and works made by the
authors, which are Victor Moya del Barrio, Carlos González, Jordi Roca, Chema Solís
and Agustín Fernández from the department of computer architecture of the
Polytechnic University of Catalonia (Spain), and Roger Espasa from Intel in
Barcelona. These works can be found on [8]. “An End to End, Highly Detailed
Simulator for the ATILA GPU Microarchitecture” [5] and “ATTILA: A cycle-Level
Execution-Driven Simulator for Modern GPU Architectures” [6] explain the
simulator on detail (the most used for this paper). [11], [12] and [13] are works that
uses ATTILA as the basis for their experiments (includes a little explanation of the
simulator).

But ATTILA is not the only choice for simulate GPU architectures. There are
previous frameworks like QSilver (see [14] or the home page
http://qsilver.cs.virginia.edu/, work from the University of Virginia), SM (inside the
project Sh, which is a metaprogramming language for programmable GPUs (see
home page at http://libsh.org/index.html), one interesting paper that talks about SM is
[15]) and one developed by NVIDIA, NVEmulate (of course it can simulate only
NVIDIA architectures, in special, GeForce Series, but support GLSlang and a wide
set of OpenGL, the webpage is at http://developer.nvidia.com/object/nvemulate.html).

Evaluating ATTILA, a cycle-accurate GPU simulator 7

3. ATTILA in detail

3.1 GPU simulated architecture

The architectures that ATTILA can simulate are based on a common pipeline that
can support real 3D graphic data going through its stages. This baseline pipeline uses
techniques developed from the main GPUs manufacturers such as ATI and NVIDIA,
and others from many researchers at universities; it is based on the OpenGL
specification, in the manner that D3D (Direct3D) is not supported yet (but it is being
in development). By this way, the pipeline is ready to work with real data like modern
GPUs do, but for simplicity, some stages was not implemented such as the fog and
alpha stages (they are simulated by fragment shader programs). This section makes an
overview of the baseline pipeline that ATTILA can simulate with an explanation of
the general architecture simulated (to know how to configure it with parameters, see
Appendix C) and a short explanation of the implementation on code (as a beginning
for configure a whole new pipeline).

3.1.1 Architectures based on the baseline pipeline

For a good understanding, on figure 3.1 (next page) there is a scheme of the
simulated pipeline where the red lines (or lines without arrows) are control wires and
the data go through the black wires (or lines with arrows). It is supposed that between
two connected stages by data wires there is a buffer where the first stage stores its
outputs and the next takes its inputs. It implies that each stage run independently in
terms of synchronization from the others, in other words, each stage can work with
different latencies without waiting to the previous stage. Below the pipeline there are
details of the boxes ROPz (Z and Stencil tests), Shader and ROPc (color write), and
following the scheme there is an explanation of each stage of the pipeline, that is, the
task that each box has.

8 Miguel Ángel Martínez del Amor

Figure 3.1 Scheme of the ATTILA supported pipeline (from [6]).

- Command processor: controls (red wires) the whole pipeline, buffers

and the transactions of batches (set of vertices) from the system memory
to the GPU memory, and receives the commands sent from the processor
and forwards them to the pipeline.

- Vertex fetch or Streamer: requests vertex input attributes and converts
them into internal format (4 component 32 bit float point vectors) for the
vertex shader. It is supported both plain vertex attribute buffers and
indexed vertex buffers. The former is a natural stream of vertices like
arrays that can be stored in internal buffers implemented by a full
associative cache. The latter is used for the reuse when a vertex is shared
between two or more adjacent triangles by associating an index to each
one. For example when the TRIANGLE_FAN mode in OpenGL is used
and one vertex is shared between all the triangles defined. A cache is
used to reuse these indexed vertices by using a connection with the
output of the vertex shader (to store post-calculated shading vertices),
and then, avoid repetitive calculations when using shared vertices.

- Vertex shader: is the programmable unit explained in the introduction.
It takes a batch (a stream of vertices) processed by the Streamer and
executes a vertex shader program (provided by the Command Processor)
over them. The vertex shader unit was implemented using as reference
the ARB_vertex_program specification, so for supporting Direct3D it is

Evaluating ATTILA, a cycle-accurate GPU simulator 9

needed also to change the shader implementation. However, not all the
features of the ARB specification are supported, but the implemented
ones are enough for simulating frames from novel games like Doom3 or
Quake4.

The vertex shader units can be shared with the fragment shaders
ones, that is, it can be used a unified shader model. In this way, there are
mainly two simulator binaries: one that supports unified shader units and
another one that supports separated shader units. Because vertex and
fragment shaders are similar, it will be explained the whole shader unit
as unified. So for the understanding of the separated model, it is enough
to divide the part of vertex shader in one group of units and the part of
fragment shaders in other.

o Shader units: This architecture supports unified shader units
where, as mentioned so far, the units used for vertex and
fragment shading are the same (it is optional because there is
other version of the simulator for non-unified shader
architecture). This unit has an ALU based on SIMD
architecture of 4 component 32 bit float point vectors and scalar
ALUs to support fragment shading.

The shader on detail can be seen on the bottom of figure
3.1, where there are two separated parts, one with the ALU and
register file, and another with the texture units. Vertex Shaders
use only the ALU and register file, whereas Fragment Shaders
use the whole unit (ALU, texture ALU and texture cache). As
each shader unit can support the execution of several threads at
once, they can execute vertex and fragment programs at the
same time without interaction between them (thread
information contains if it is a vertex or a fragment shader and
the execution is performed only if there is free resources in the
shader unit).

A small cache is used to reduce the usage of the memory
bandwidth for texture accesses and it is based on the texture
cache architectures from Hakura and Gupta research [7], using
a 256 byte cache line that can store 8x8 32 bits Texel tile, with
4 sets and 16 lines per set that implies a cache of 16 KBs. As
said before, shader units are based on the ARB ISA (both
ARB_Vertex_program and ARB_Fragment_program) that
comprises an ALU and four registers files (as can be seen on
figure 3.2 (next page)): for input attributes (Read Only), for
output attributes (Write Only), temporal registers (Read/Write)
and for constants (Read Only, with values configured just
before the simulation). Each register is a 4 component 32 bits
float point vector (the variable type of the ARB), in exception
of the Temporal Bank that store 2 components 32 bits vectors.
Furthermore, it was defined others 4 kinds of registers files:
Address Register Bank (store integers), Condition Code
Register (store an integer), Boolean Constant Bank (store

10 Miguel Ángel Martínez del Amor

Booleans) and Texture Sampler (defines texture unit in usage).
The number of registers per bank depends on the kind of
shader and on the shader version, thus having five types that a
shader unit can represent: Fragment or Vertex Shader based on
model version 1.0, Fragment or Vertex Shader based on model
version 2.0 and unified shader. For example, the number of
registers for the constant bank is 96 in vertex shader 1.0 and
256 in the version 2.0.

One shader can fetch more than one instruction (configured
as a parameter) and the shader architecture implements
multithreading, hiding the latencies that instructions and
texture memory access have. The required number of threads
depends on the kind of shader: 12 threads are enough for vertex
shader, but fragment shader needs up to 112 threads because
the leverage of texture accesses’ large latencies. Also the
number of physical instruction registers (instruction memory
size) varies, from 96 to 448 in that order.

Figure 3.2 Unified Shader model based on the ARB specification (from [6]).

- Primitive Assembly: assembles the vertices from the vertex shader

output into rendering primitives. It can be seen on figure 3.1, below the
Vertex Fetch box. It supports five kinds of OpenGL triangle primitives:
lists, fans, strips, quad lists, and quad strips, but it can not support lines
or points yet what implies that the primitives points, lines and lines strip
will be ignored and not showed into the output. This unit uses a small
memory to store the last vertices and assemble the new object (triangle),
and also it uses some specific registers that controls this queue.

- Clipper unit : selects the triangles that are completely or partially inside

Evaluating ATTILA, a cycle-accurate GPU simulator 11

the view frustum3 volume. It can be seen on figure 3.1, below the
Primitive Assembly box, called as Clipping. It uses a buffer for the
clipped triangles and several registers as clippedTriangles (store the
count of triangles clipped) and frustumClip that works as a flag.

- Rasterization: makes fragments from the culled triangles. It comprises
the Triangle Setup, Fragment Generator, Hierarchical Z Test and the
Interpolator. However, as seen in the pipeline from the above scheme
(figure 3.1), Triangle Setup, Hierarchical Z, Z and Stencil tests and
Interpolator stages are outside the Rasterization stage, but actually they
are all together in the same box on the source code. This stage is
represented in figure 3.1 as a box called Rasterization, placed below the
Triangle Setup box.

o Triangle Setup: calculates several equations in order to
rasterize the primitives and do interpolation, these are, the
triangle edge equations and depth interpolation equation.

o Fragment Generator: uses an iterative algorithm for
transforming the area of a triangle projected on the viewport to
fragments. Each fragment will represent a pixel, but it is not a
pixel yet, for example it has some attributes as 2D screen
coordinates, value of the three edge equations of the respective
triangle, a cull flag and the depth (for Z tests).

Fragments are generated in a set called tile that is useful for
achieving performance with the access to the memory using the
locality behavior and also for the implementation of the Z
stages (Hierarchical Z buffer and Z compression). The tile’s
size can be configured in 3 levels: the highest can be set to the
fit of a memory page, the middle level to the fit of a single
fragment processing unit in the pipeline and the smallest to the
fit of a HZ block or framebuffer cache lines. The middle and
smallest level are set to 8x8 fragments. Moreover, there are two
different implementations of Fragment Generator, one based on
the algorithm described for Neon architecture and the recursive
rasterization algorithm described by McCool.

o Hierarchical Z : removes non visible fragments at a very fast
rate as 8x8 fragments per cycle in the default configuration.
Non visible fragments can be the ones culled by the fragment
generator or fragments outside the scissor window. This stage
can be removed easily just changing a value of a configurator
parameter (called DisableHZ). For achieving this fast rate, it is
used a cache and an on chip buffer that needs just 256KB for
resolutions of 4096x4096 with 8 bits of Z precision. After that,
the fragment tiles are divided into fragment quads (2x2
fragments) for the next stages. As we can see on figure 3.1,

3 View frustum: In 3D computer graphics, the viewing frustum or view frustum is the region

of space in the modeled world that may appear on the screen; it is the field of view of the
notional camera. (Source: www.wikipedia.org).

12 Miguel Ángel Martínez del Amor

there are two ways where the outputs of this stage can go: to the
Z and Stencil tests or to the Shaders. The former is the default
option; the latter is for supporting the OpenGL standard when
using alpha and fog modes, where it is supposed that the alpha
testing is before the Z and Stencil tests but after fragment
shading. The problem is that alpha and fog calculations are
made by a shader, so Shader Units (running as Fragment
Shaders) can be seen as the Alpha and Fog stages not
implemented. Then, when alpha and/or fog are used, the output
of the HZ (Hierarchical Z) goes to the alpha unit (that is, the
discontinuous line to Shader units) and the outputs of Shader
units come back to the Z and Stencil tests.

o Z and Stencil tests: makes a test of fragments using a buffer
for Stencil with 8 bits per element and a buffer for Z with 24
bits. These tests are based on the OpenGL specification, where
Stencil culls the fragments if they have the right value into the
buffer (configured by the OpenGL code), and Z buffer makes a
strict test with the depth value of each fragment. The Z buffer is
stored on the GPU memory, so a cache and a compression
algorithm are placed to reduce bandwidth usage: the Z cache
has a size of 16KB, with 16 lines, 256 Bytes per line and 4
associatively; and the compression algorithm achieves ratios of
1:2 or 1:4 without lose information. This stage is also called
early Z because its use before the shader unit. This stage is
represented by the ROPz box in figure 3.1, just after the
Hierarchical Z stage.

o Interpolator unit : interpolates the attributes of the fragment
that passes the Z and Stencil tests across the primitive being
rendered, what is something necessary for fragment shader
operations. This stage uses the perspective corrected linear
interpolation algorithm described on the OpenGL API for
varying variables on the OpenGL Shading language.

- Fragment Shader: when unified shader model is selected, it is used the
whole shader unit explained before, but if it is working with a non
unified shader model, the Fragment Shader unit are also the same of the
whole unified shader unit while the Vertex Shader unit are just the
Shader Unit without the texture components (in the implementation code
there is only one shader unit that implements the unified model).

- Color Write Unit : updates the framebuffer, where the outputs frames
are stored waiting for being drawn into the screen. The architecture of
this unit is similar to the Z and Stencil tests Unit, where the framebuffer
is stored into the GPU memory and then, it is used a cache with the same
configuration of the Z cache. Also it is supported a fast clear operation
of the buffer. This stage is represented as the ROPc box in figure 3.1.

- DAC: is the unit in charge of dumping the framebuffer into the output.
In real GPUs the output is the screen, in the simulator the output is a file
.ppm (see 3.3).

Evaluating ATTILA, a cycle-accurate GPU simulator 13

- Memory Controller : makes an interface with the GPU memory and
system memory. The access to the GPU memory is based on the
GDDR3 standard using a width of 64 bytes per 4 cycles; however the
effective bandwidth is 64 bytes per cycle with 4 channels used on the
baseline pipeline. On the other hand, the access to the system memory
can be simulated with AGP or PCI Express x16 bus (two channels for
read and write).

In summary, the units of the pipeline that access to the memory are:

CommandProcessor (it reads the commands that the CPU sends to the GPU),
Streamer (it fetches and loads the vertices sent from the CPU), ZSTencilTest (the
ZBuffer is stored on memory), ColorWrite (the framebuffer is stored on memory),
DAC (it dumps the final frame to a file (simulation) or to the video memory), and
TextureUnit (it access to the texture memory map).

The pipeline explained in this section is the baseline pipeline that the simulator
supports. It is possible to configure the pipeline by parameters, for example, in
number of units, latencies or configuration of caches and memory (see Appendix C
for further information), but none of these parameters implies a depth or novel change
to the pipeline, and if it is needed to change the pipeline in the manner of include a
new rasterization algorithm (for example the Direct 3D rasterizer implementation) or
place a new stage on the pipeline it is sure that the simulator’s source code must be
modified.

3.1.2 Architectures not based on the baseline pipeline: Introduction to the source
code

In order to simulate a new architecture that differs from the baseline pipeline and
the pipeline changed by the parameters supported by the simulator, it is needed to
make a new code for that. ATTILA was also implemented taking the idea of future
modifications in mind. The code is object-oriented (using the C++ language) and
implements a model of boxes and signals that provides an abstraction level helpful for
developers. Figure 3.3 (next page) represents the reduced class diagram where it can
be seen the three main classes: Box, Signal and Statistics.

Statistics is an abstract class that is based on keeping events using the method
inc(). The NumericStatistics class is defined to store the number of times of one or
more events. All the instances of Statistics are managed by other class called
StatisticsManager, where the Statistics objects are stored, dumps theirs values into the
output file in one cycle (by the method clock()) and search by name into the set. Each
box (and also the caches) can use several Statistics instances for measuring
information. For further information about the Statistics that ATTILA supports, see
section 3.2 and Appendix B.

Signal is a class that models a buffer with a configurable latency; it means that
when data is wrote on the buffer it is not possible to read it some cycles later. It is
common that each box has Signal instances for input and output. Usually there are
only two boxes related with one signal, one that write data (this signal is an output for
it) and another that read data (this signal is an input for it). The class SignalBinder

14 Miguel Ángel Martínez del Amor

manages all Signal instances on the system, where it is possible to dump all the Signal
states or also it is possible to search a Signal by name.

Figure 3.3 Abstract class diagram of ATTILA simulator.

The stages and other functions of the pipeline are implemented as subclasses of

Box. A Box object has always input and output signals and many Statistics objects,
thus, it is possible to say that these three classes (Box, Signal and Statistics) are the
ingredients for a new pipeline.

A new functionality in the architecture can be implemented as a Box subclass,
without varying so much the rest of ATTILA’s code. Therefore, the skeleton of the
pipeline is defined when the signals are associated to each box. Every Signal object
has a name that acts as identifier, and each box that wants to use a signal have to
know the associated name. By this way, two connected boxes have to be agree on the
name of the share signal, hence the writer box that has the signal as output has to call
the method newOutputSignal (in Box class), and the reader box the newInputSignal.
These functions register a signal into the SignalBinder object on the first call, but on
the next, if the signal is already registered it returns the respective Signal object.

Also this order can be seen easily again on the synchronization of the stages, that
is, the execution of one cycle by each stage. The execution of each stage is done
sequentially using the method clock() that Box class has; firstly one stage executes a
cycle, and when this stage finish, the next one can execute its cycle. This order has to
respect the organization defined by the connections with signals between the boxes, if
not, the simulation will crash because the data processed in one stage can not go to the
next, in exception of parallel stages or just forwarded stages (forward the information
but does not change any data). The sequential execution of the stages is done by the
simulation loop which structure is showed in figure 3.4. This portion of code shows a

Evaluating ATTILA, a cycle-accurate GPU simulator 15

non-unified architecture where several vertex and fragment shader units are simulated
by arrays of Box objects.

Figure 3.4 Main loop of the execution of the simulator.

3.2 Statistics and measures provided

The most important component of ATTILA is, undoubtedly, the wide kind of
statistics that it provides. It is essential because statistics permit to analyze the results
of the simulations, in other words, the main goal of ATTILA is to simulate a GPU
architecture, test it with graphic data from real applications and analyze the tests using
the collection of several statistics about the simulated architecture. ATTILA provides
up to 204 different statistic variables that measure all the components of the pipeline.

When a simulation finishes, the statistics are stored into an output file called
stats.csv. It can be opened with Microsoft Excel or compatible (i.e. Open Office Calc

16 Miguel Ángel Martínez del Amor

or an editor as Notepad) and has a structure of columns: each column represents the
values of each statistic variable, and each row represents the range of cycles showed
into the first column. A statistic variable is a counter that characterizes the number of
times an event happened inside a range of cycles. Figure 3.5 shows the first column of
stats.csv (the range of cycles) and the statistic variable BlockedThreads. For example,
the first value of BlockedThreads, 42048, means that between the cycles 0 and 9999,
there were 42048 blocked threads.

Cycles BlockedThreads_ShF-FS0
0..9999 42048
10000..19999 55032
20000..29999 10632
30000..39999 17472
40000..49999 13824
50000..59999 53952
60000..69999 46848
70000..79999 26112
80000..89999 32640
90000..99999 19200
100000..109999 21696
110000..119999 19848
120000..129999 28920
130000..139999 0

Figure 3.5. Example of columns from file stats.csv.

The format of a variable’s name is like this:

what_unit-id
Where “what” means what is measured (on the last example, BlockedThreads),

“unit” means the unit where the measure is applied (ShF is Fragment Shader) and “id”
means the instance of the unit measured (FS0 is the Fragment Shader with id 0).

In Appendix B there are a summary of the statistic variables and units that
ATTILA can measure, from hits and misses of the several caches to culled fragments.
It can be showed that there are a wide range of variables that measure the behavior of
the simulated architecture. As explained in section 3.1.2, it is also possible to
implement your own statistic variables in case you need something else.

3.3 ATTILA’s framework

One of the purposes of the ATTILA project was to execute real applications with
the simulator, as a real GPU does in the real life. To achieve this, the authors
developed a framework that permits the simulator to do tests with real OpenGL
applications (a Direct3D framework is in construction). This framework has 4 stages
and it is composed of 6 elements, as seen on figure 3.6.

Evaluating ATTILA, a cycle-accurate GPU simulator 17

Figure 3.6. Adaptation of the diagram of OpenGL ATTILA’s framework

from [6]

The first stage is called Collect, and it is the step where the data from the real

applications is captured as a trace file. The element used here is GLInterceptor that is
composed in others two elements: opengl32.dll and GLIConfig.ini. The latter is the
configuration file for GLInterceptor, and the former is a library that will be used by
the real application as the real OpenGL library. This library dumps all the OpenGL
API calls into a trace file, and also forwards the calls to the real library, permitting to
continue with the application’s execution. The way to use it is just to copy the two
files commented above to the same folder of the application’s binary. See that the
library is a .dll file, which means that it can be used only in a Windows platform.
Only the Simulate and Analyze stages can be done with Linux platforms. After the
execution of the application, three files will be created: tracefile.txt (that has the API
function calls and parameters, for example, glBegin(GL_QUADS)),
BufferDescriptors.dat (that keeps the buffers pointed by a pointer parameter (the
value of the pointer is now an identifier that index in the Buffer Descriptors file) and
MemoryRegions.dat (that stores the data passed as arrays in a number of OpenGL
API calls (glTexImage2D for example)).

The second stage is called Verify, and it is where a verification of the trace file is
performed. It ought to be done to verify the correctness of the traces before the
execution with the simulator. The element GLPlayer is used in this stage and it
permits to run the trace calls into the real OpenGL driver again. Then, it is possible to
see if the trace was well done. GLPlayer has two elements: GLPlayer.exe and
GLPConfig.ini. The former is the program that executes the trace and the latter is the
configuration file.

The third stage is called Simulate. Here there are a distinction between Linux,
Cygwin and Mingw32, and Visual Basic environments. If a Visual Basic system is
used, the ATTILA OpenGL Driver (gllib.a) will be utilized, if not, the gl2attila tool
has to be used. Both of them have the same behaviour: translate the OpenGL calls
from the trace into AGP transactions for ATTILA. The driver permits the simulator to
execute the trace directly, while gl2attila is a program that translates the OpenGL
trace to an AGP transaction trace file that the simulator can execute. It is
recommended to place the simulator (unified or non-unified version) and
configuration file (renamed to bGPU.ini) into the same folder of the traces (or vice
versa, place the trace files into the simulator folder) or changes the configuration file.

18 Miguel Ángel Martínez del Amor

The forth stage is called Analyze, and it is where the simulator outputs are
analyzed. The output files that the simulator provides in the third stage involve the
frame dumped (framex.pnm), the statistics (stats.csv, explained on section 3.2) and
the debug file (Signals in figure 3.6, that corresponds to the file signaltrace.txt, the
documentation does not explained yet how to use it). This is the stage where the
developers or researchers have to take the information from the simulator and make
their conclusions.

4. Evaluation of the simulator

The next tests was run in a bounds of a system that has these features: processor
Intel Pentium M750 at 1,86Ghz, 2MB of Cache L2, 1024 MB of memory with
technology DDR2 and a graphic card ATI MOBILITY RADEON X600SE with 256
MB HyperMemory (128 MB shared and 128 MB dedicated). The environment used
was Cygwin with a Windows XP SP2 Operating System. In every simulation, the
ATTILA version was the one from 13/01/07 (17/01/07 for Prey traces) and the
configuration file was ATTILA-rei-580.ini (see folder confs).

4.1 Installation of ATTILA

ATTILA simulator is a non-commercial simulator. This product is distributed by
the authors, and nowadays it can be found in the ATTILA’s log [8]. There are mainly
two distributions: with just the binaries (plus GLPlayer and GLInterceptor) and with
only the source code of the simulator (no GLPlayer neither GLInterceptor included).
This section will explain how to use and compile the simulator distribution built on
October of 2006. This version had some problems when compiling, nowadays fixed
by updates from December of 2006, explained at the end of the section too.

The installation and usage of the binaries is very simple, just decompress the file
and then use the folder according to the system used, either Linux (folder
“binpack/linux”) or Windows (folders “binpack/cygwin”, “binpack/mingw32” or
“binpack/vs2005”). Each folder has the binaries bGPU and bGPU-Uni, the former is
the binary that corresponds to the implementation of a GPU with non-unified shaders,
and the latter corresponds to unified shader architecture. But ATTILA’s framework
has more elements than the simulator, like GLInterceptor and GLPlayer that are used
for capturing the OpenGL calls in a trace and replay them, respectively (more detail
on the next section). The files for these two elements are placed in the folder
“binpack/vs2005” that limits the use of them only in a Windows system (there are not
files for Linux yet). The explanation of the parameters and way of use are in the file
USAGE.txt, for each element provided for the ATTILA´s framework.

The installation of the source code is a bit more complex, but not difficult. The
most important thing is to be sure that we are using an operating system and
environment compatible with the simulator, that is: Windows with Cygwin software
installed, Windows with Mingw32 software installed, Windows with Visual Studio
2005 installed or Linux using a gcc version 3.X (not later), all of them running in a 32
bit system. If the simulator is tried to be compiled into another environment, it is very

Evaluating ATTILA, a cycle-accurate GPU simulator 19

probable that it can not. The problem of this low portability is due to the pre-compiled
file gllib.a, provided to simulate an OpenGL driver for the simulated graphic card.
The code of this library is not public available, so the compilation of the simulator is
restricted to the different versions of gllib.a found on the folder “lib”. The way of
choosing one is to change the name of the right file according to the system used to
gllib.a, in the same directory “lib”.

The compilation of the simulator depends on the environment used: when Visual
Basic 2005 just open the created project on the folder win32 and compile it with the
options that Visual Basic provides; when Linux, Cygwin or Mingw32 just edit the file
makefile.defs in the manner that the variable GPU3DHOME has as value the absolute
address of the folder where the files are placed. The creation of the executable files is
performed by makefile when a non Visual Basic environment is used. This makefile
has several options that are used like:

make exec mode
make is the Unix instruction for executing a makefile. The parameter exec can be

bGPU (compile only the non-unified shader simulator version), bGPU-uni (compile
only the unified shader simulator version) or all (compile both versions). The
parameter mode indicates the format of the final executable files that can be debug
(the executable file can be debugged (use of the gcc option –g)), profiling (it is the
simple version of the simulator), optimized (it is used the optimization options that
gcc provides) or verbose (the simulator will give all the execution information in the
standard output).

At the date of this current report there was a new version built on December of
2006 (see [8]) that help to compile the simulator with Linux in an easier and more
portable way than the October version explained in this section. In this version, the
library gllib.a is not used in Linux, Cygwin and Mingw32 anymore, where there were
portability problems in special with Linux environments. The way to proceed to
compile is the same than before, in exception of choosing any gllib library because
now the job of this library is performed by a program called gl2attila (provided into
the binaries distribution). The previous library translates the OpenGL API calls to
AGP transactions, and now gl2attila translates the OpenGL API call trace into an
AGP transaction trace file, which can be used directly as an input for the simulator.

4.2 Running OpenGL testprograms on ATTILA

4.2.1 Testprograms selected

The best way to understand ATTILA and one goal of this current report is to work
with the simulator. As explained on section 3.3, ATTILA framework is prepared to
work with applications that use the OpenGL API, which means that programs that use
another API different to OpenGL as Direct3D or OpenGL ES (OpenGL for
Embedded Systems) is not going to work. GLInterceptor is able to trace only OpenGL
API calls by the substitution of the real OpenGL library with the provided library.
This provided library (opengl32.dll, see section 3.3) cannot capture Direct3D or
OpenGL ES because mainly two reasons: an application that uses OpenGL ES, for

20 Miguel Ángel Martínez del Amor

example, is not going to search and use the file opengl32.dll, and the libraries
OpenGL and OpenGL ES do not have the same entries or format in several functions,
and it implies that it does not work anymore with the current framework for OpenGL
(it is needed to develop a new framework for this library (see the explanation of the
author in [9]), for example, the one for Direct3D is under construction).

However, the task of choosing OpenGL testprograms is not easy. The problem is
that GLInterceptor (GLPlayer and the simulator too) does not support calls that
implements a complex behaviour (i.e., reading data buffers, handling 'objects' (like
textures or vertex buffers)) or extended functions for ATI or NVIDIA GPUs. Section
3.1.1 shows that it is supported only ARB shader implementations
(ARB_vertex_program and ARB_fragment_program), so the testprograms must have
disabled options as GLSlang or shader objects. It happens because ATTILA only
implements a minimum set of OpenGL API.

The variety of applications that can be traced and executed is very small, even
more, the authors recommend using the applications that they tested before; other
program out of these tests is likely going to fail. Also it is possible (and recommend
by the authors too) to implement applications that uses just the OpenGL calls that
ATTILA implements. The list of OpenGL functions supported was published in the
simulator version of 13/1/2006.

The programs tested and recommended by the authors are: Volumetric Lighting II
(by Humus (www.humus.ca)), Unreal Tournament 20044 (only tested with NVIDIA
cards), Doom3, Quake4, Prey and Chronicles of Riddick. Each game needs a
configuration that allows to ATTILA trace and work with them. Also can be possible
to work with games using engines based on Doom3’s engine5 (Quake4 and Prey are),
but it is not sure because not all was tested. Even more, the traces captured depend on
the GPU that the system has due to the no implementation of specific OpenGL
extensions (for ATI or NVIDIA). In this case, it was tried to capture traces from the
Unreal Tournament 2004 Demo, but it was not possible because, as said before, the
system uses an ATI GPU or maybe the usage of the incorrect demo version (that the
authors did not try). Moreover, in this work, several games out of these tests was tried
to be traced and simulated with ATTILA. Some of them were: Angeles (San Angeles
Observation OpenGL ES version example by Jetro Lauha (http://iki.fi/jetro), an
OpenGL ES application translated to OpenGL and well traced by GLInterceptor, but
it uses a mode called colorMaterialMode and it is not supported in the simulator;
traces from the OpenGL ES version was not possible to capture), HalfLife (the game
crashes after the execution and the simulation is not possible), Quake3 (similar effect
than with HalfLife) and GoogleEarth (the application crash before been executed, so
it is not possible to take traces). Even more, several OpenGL ES applications were
tested and it was not possible to capture it, as said before. It was tried to change the
file libGLES_CM.dll (the OpenGL ES library) with the opengl32.dll (the OpenGL

4 Unreal Tournament 2004 has to be configured with the following options in the configuration

file (system/UT2004.ini): activate the use of OpenGL driver
(OpenGLDrv.OpenGLRenderDevice) and not Direct3D, activate rendered vertex buffer and
disable vertex shader.

5 A game that use the Doom3 engine like Quake4, Prey or the same Doom3 has to be
configured with the configuration file with the next options: disable two sided stencil, index
buffers and copyToTexture, and enable arb2 render path and vertex buffers.

Evaluating ATTILA, a cycle-accurate GPU simulator 21

library provided with ATTILA), and of course it crashed because several call entries
was not found.

The chosen testprograms was Doom3 (with the trace file provided in the log
page), Prey and Volumetric Lighting II. They was tested by the authors and show how
to work with pre-captured traces (Doom3), a well-known program that works
perfectly with ATTILA (Volumetric Lighting II) and a game that does not work
wholly with ATTILA (Prey). Another reason because they was chosen is the real
graphic data that they provide (in the other hand we can make our programs, but they
don’t provide the reality and power than a professional application offers to
ATTILA).

4.2.2 Execution and collection of data

The way to capture traces, simulate and collect the statistics is the same as
explained on section 3.3 for ATTILA’s framework. In this section it will be presented
some examples that show how ATTILA works and some aspects to take in account
when using the simulator.

Finally, figure 4.1 shows a summary of what was able to do and what not with the
testprograms selected and many others, with the simulator version on 17/1/2007. This
last version can simulate traces from Prey with uniform shader version (before there
was an infinite loop with shaders and it never finished the simulation for frames from
the game, but yes from the loading screen). The times showed are approximately, that
is, it is the mean of two simulations, but it can vary from different Operating Systems
and computers.

Figure 4.1. Summary of what ATTILA can do and what not (version of
17/1/2007).

Volumetric
Lighting II

Prey Doom3 Quake3
Angeles
(OGLES
version)

Traces
captured

OK OK
OK

(downloaded)
OK FAILED

Gl2attila
translation

OK OK OK FAILED FAILED

Playable
by

GLPlayer
FAILED FAILED OK FAILED FAILED

Simulation
with

uniform
shaders

OK OK OK FAILED FAILED

Simulation
with non-
uniform
shaders

OK FAILED FAILED FAILED FAILED

Time of
simulation

12m 53sec
1st frame

24m 51sec
800th frame

13m 22sec
200th frame

FAILED FAILED

22 Miguel Ángel Martínez del Amor

4.2.2.1 Captures from testprograms

GLInterceptor has to be copied into the application binary folder (opengl32.dll and

GLIconfig.ini) for the capture of traces from the testprograms (first stage of the
framework). So for the Volumetric Lighting II (VLII), just copy these files into the
folder VolumetricLightingII, for Prey into the main folder. The Doom3 traces were
taken from [8]; it was created and posted by the authors, so just decompress these
files into a folder to work with them.

Once the files from GLInterceptor have been copied, it is possible to configure
this tool by opening the file GLIconfig.ini and change some options like lastFrame
(how many frames to capture, consider that 25 frames correspond to one second) or
outputFile (the default name is tracefile.txt). Altering the parameter startFrame (from
which frame start to capture) is not recommended because it can have some problems
later with the simulation, so GLInterceptor does not support very well a hot start
(however, the simulator does). If the application needs a special configuration (see
4.1.1), try to configure it before executing the program. VLII does not need any
special configuration, and Prey needs to add and change some options (the options for
a game that uses the Doom3’s engine). When everything is configured, play a bit and
GLInterceptor will work automatically.

Note that if the startFrame parameter is configured to 1 (recommended), then
GLInterceptor will start to capture frames from the beginning of the first usage of
OpenGL. In most games, menu and loading screens are implemented by OpenGL. It
means that GLInterceptor will trace both menu and loading screens, as seen on figure
4.2. This figure shows that the first frames from a trace always corresponds to this
kind of screens that not correspond to the rendering part of the game (the interactive
and real game, not screens, videos, presentations or menu), which is the most
interesting part to simulate. In Doom3 traces (4.2a) there are a loading screen capture,
whereas in Prey traces a presentation, the menu (4.2b) and loading screen (4.2c) was
captured. So be fast when loading the game for making the traces, if not, maybe you
will not have time to start the game.

Angeles is an application with two versions, one for OpenGL and other for
OpenGL ES. As show in figure 4.1, GLInterceptor was not able to capture traces from
this application on its version using OpenGL ES (the reason is in section 4.2.1). But
GLInterceptor was able to take a trace from OpenGL version, but as seen after that, it
was not possible to make the translation with gl2attila. The trace from Quake3 also
was captured, but this game always finished with an error panic when using
GLInterceptor.

Evaluating ATTILA, a cycle-accurate GPU simulator 23

(a)

(b)

24 Miguel Ángel Martínez del Amor

(c)

Figure 4.2. When capturing traces from the first frame, GLInterceptor will

dump into the trace also the frames corresponding to loading screens and menus.
In this work there was captured (a) a loading screen from Doom3, (b) a loading

screen from Prey and (c) loading menu interaction from Prey.

4.2.2.2 Replay of the captured traces

After finishing the application, some files are created. These files are the traces,
and their names are tracefile.txt, MemoryRegions.dat and BufferDescriptors (if not
other names were chosen), as explained on section 3.3. From this point, only the trace
files are necessary (not game’s files), so they can be moved to other folder (always
the three together) or keep them in the same folder and copy GLPlayer and the
simulator to it.

Then, it is possible to go to the second stage of the framework, Verification.
Configure GLPlayer by the file GLPconfig.ini (maybe the most important is the name
of the input file), and execute GLPlayer. In this work, GLPlayer did not work
correctly with VLII and Prey traces: it did not show any frame and even more, it
delete the content of the trace files (for example, the trace from Prey that is about 200
MB, after the execution of GLPlayer the trace became to only 1KB). The traces that
GLPlayer can play are from Doom3 (downloaded directly from the authors, not
captured with GLInterceptor in this work).

Evaluating ATTILA, a cycle-accurate GPU simulator 25

Figure 4.3 illustrates an example of GLPlayer. It is just a window that shows
information like the number of frame, the resolution used and the current frame. The
speed of this play can be modified with the configuration file, but by default it goes a
bit more slowly, because the most important is to be able to see the frames and
capture them for making a posterior check with the simulated ones.

Figure 4.3. GLPlayer showing the frame 200 from Doom3 trace file. Volumetric
Lighting 2 and Prey could not be played.

4.2.2.3 Execution of the simulator with captured traces

If the traces were checked but GLPlayer could not play them, it is still possible to

go to the next stage, Simulation. In particular, GLPlayer was not able to play VLII
and Prey traces, however, the simulator could simulate some frames correctly. For it,
one version (Unified or non-Unified) of the simulator has to be selected, and copied
together with one configuration file to the traces folder. Remember that if Linux,
Cygwin or Mingw32 environment are used, then gl2attila has to be executed before
the simulator (bGPU). Gl2attila also needs the same configuration file that the
simulator will use (in this test, the example configuration file of ATTILA-rei-580.ini).
In this work the simulator was executed within the bounds of Cygwin, so in every
case gl2attila.exe was utilized by typing gl2attila.exe N, with N equals to the number
of frames to translate (usually the whole trace, so equals to the number of frames
captured). For example, ./gl2attila tracefile.txt 900 (translation used for Prey trace). It

26 Miguel Ángel Martínez del Amor

is possible to add other parameter after N, which means the starting frame
(gl2attila.exe N M). It was tried but it did not work well when skipping frames in the
simulation with ATTILA simulator. So it is recommended to capture and translate
frames (gl2attila) starting always with the first frame, and then, it will be possible to
skip and simulate frames different to the frame number 1.

The execution of the simulator is easy just typing the name of the binary (bGPU
for non-unified version and bGPU-Uni for unified version), following the AGP trace
translated by gl2attila (the common name is attila.tracefile.gz) and N M, two optional
numbers that means the number of frames to simulate and the starting frame
respectively. For example, ./bGPU-uni attila.tracefile.gz 1 800 (execution used for
Prey, starting from the frame 800 and simulating only one frame, the frame 800th).
The time of simulation of one frame depends on the application to simulate, which
frame and the position of the frame (time elapsed for seeking the frame inside the
trace depends of how many frames to skip for reaching the frame to simulate). As said
before, a trace is captured from the first frame of the application; in a game it means
that it will be captured the menu and loading screen too (see section 4.2.2.1). The
simulation of a loading screen frame takes about 30 seconds for traces from Doom3,
but a frame from the rendering part (interactive game) takes about 13 simulation’s
minutes.

Even more, the choice of one version is important. There are two versions, one for
non-unified shaders and other for unified shaders. The version most tested by the
authors and compatible is the unified one, whereas the non-unified is no longer tested
because is based in a contemporary GPU but not as new as a unified architecture.
That is the reason because the non-unified version works only with VLII, but not with
Doom3 or Prey (it returns a simulator bug error after 12 minutes of simulation). As
seen in figure 4.1, the non-unified version has problems with some applications;
however, the unified version could simulate every well-translated trace file by
gl2attila.

Figures 4.4b and 4.4c show the outputs from the non-unified simulator with
Doom3 and Prey. They were not simulated correctly, but it was possible to have some
statistics corresponding till the cycle 717730 for Doom3 and cycle 2996339 for Prey.
Figure 4.4a shows how the finish of a well execution of the simulator is, in this case,
using the non-unified version with VLII traces. Finally, figure 4.4d shows the error
returned by gl2attila with the trace from Quake3. This trace contains an API call that
ATTILA can not support, or maybe the trace is not well-finish because the bad exit
that the game experiments when using GLInterceptor (it is not clear the reason).

As seen on the captured screens in figure 4.4, the simulator returns “B” and “.”
consecutively during the simulation. A “B” means that an OpenGL draw call (or
batch) has been fully processed and a “.” indicates that a number of cycles (10K by
default) has passed.

Evaluating ATTILA, a cycle-accurate GPU simulator 27

(a)

(b)

(c)

28 Miguel Ángel Martínez del Amor

(d)

Figure 4.4. Output of ATTILA non-unified version (bGPU) for (a)

Volumetric Lighting II, (b) Doom3 and (c) Prey. (d) Shows the error returned by
gl2attila with a trace from QuakeIII.

4.2.2.4 Analysis of ATTILA’s outputs

When the execution of the simulator finishes (correctly or incorrectly), the outputs
files are placed in the same folder than the simulator. These files were explained on
section 3.3 and involve two images, one showing the final frame simulated and other
a latency map (a per fragment quad map storing the execution latency of the last quad
written in a framebuffer position, see [5]), and a statistic file. There is not so much
information about what is the purpose or the complete meaning of the latency map.

An example of the statistic file is figure 3.5, and examples of outputs frames are
shown on figure 4.5. As seen in this figure, the outputs frames are exactly as shown in
a real GPU. But not always it is like this, for example, on [5] there is a comparison
between two frames from Unreal Tournament 2004 and there are some differences
(problems when simulating). Of course, a frame that was not perfectly simulated
means that the statistics will show data that not corresponds to the reality. In the
example from [5], the fragments that correspond to lines or letches in the forest have
not a correct value, so the statistics about these fragments can be incorrect. However,
these statistics are very near to the reality, and the most part of these frames are
correct. In short, if a simulation finishes correctly, the data, frames and statistics can
be enough for making conclusions about the architecture simulated.

The way to check simulated frames is more or less by intuition if GLPlayer did
not work with the trace. For example, we can see that the frame from Doom3 (4.5b) is
ok if it is compared with the frame from GLPlayer (figure 4.3). But the frames from
figures 4.5a (VLII) and 4.5c (Prey), that come from traces that GLPlayer could not
play, have to be checked with intuition: just see if there is some typical problems with
the rendering (shadows, objects, lights… missing and mistakes) or try to play again to
the game, capture the frame manually and see that the simulated frame is ok. In any
case, every capture from figure 4.5 seems to be correct.

Evaluating ATTILA, a cycle-accurate GPU simulator 29

(a)

(b)

30 Miguel Ángel Martínez del Amor

(c)

Figure 4.5. Frames simulated from (a) Volumetric Lighting II (frame 60), (b)
Second level of Doom3 (frame 200), and (c) Second level of Prey Demo (frame

800)

Once the frame is checked, the statistics can be opened and analyzed. The problem

with the file stats.csv is that it is too big and has too many columns, so some programs
like Microsoft Office Excel will open only a limit number of columns (commonly
255). The problem of opening the .csv file with a text editor is that it is no longer
understandable because the use of the separator character “;” make difficult to follow
what a column means (while the size of a number is short, the name of the column is
too long, so they are not synchronized). Fortunately, there are some cheats about how
to open a file .csv with Excel that has more than 255 columns: making some
conversions to .txt and importations in Excel (a bit difficult) or writing a macro (see
http://support.microsoft.com/kb/272729).

The variables measured are shown on Appendix B, and from this data it is
possible to make some graphics like shown on figure 4.6. In this example it can be
possible to take some conclusions, for example, figure 4.6b shows that the fetch stage
of texture units works well because there are not so much fetches failed in comparison
with the fetches OK.

Evaluating ATTILA, a cycle-accurate GPU simulator 31

Blocked Threads on Vertex Shader 0

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Cycles (from 210000 to 769999)

T
h

re
ad

s

Blocked Threads on Vertex Shader 0

(a)

0

10000

20000

30000

40000

50000

60000

70000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136

Cycles

F
et

ch
es Fetches OK

Failed Fetches

(b)

32 Miguel Ángel Martínez del Amor

(c)

Figure 4.6. Examples of graphics with statistics from (a) Prey (Blocked threads
on vertex shader between cycles 210000 and 769999). (b) VLII (Fetches OK vs

Fetches Failed on the Texture Unit of Fragment Shader 0 during all the
execution 1048574). (c) Doom3 (from [6], resource utilization at frame 377 using

a thread window with 3 Texture Units).

4.3 Discussion about ATTILA

Now that the internal architecture and the way of working were explained, it is
time to make a discussion about ATTILA. Weak and strong sides will be analyzed
and finally a conclusion will be described at the end of this section. The discussion
will be made from a point of view of users, that in this case, a user is a GPU
developer.

As commented on section 3.1.2, a depth change involves going more far away
than the parameters and modifying the source code. The simulator’s source code is
easily to change because it is object oriented and box organized. But on the most
cases, these depth changes imply a transformation on the ATTILA’s OpenGL library
(now gl2attila or gllib.a before). For example, when a developer would like to support
GLSlang in his new simulated GPU (and maybe a new design for a future graphic
card) he is not able to implement it because GLInterceptor and gl2attila have to be
able to capture and translate GLSlang code. Other example is when a novel
architecture like several GPUs on chip is tested, and then the library has to be able to
share and distribute the workload among the new resources. The problem is that the
source code of the ATTILA’s OpenGL library is not open, so for these cases the
solution is to build an own library that can support these new features, or if it can be
important, ask the authors for a new version of the library.

Nowadays the lack of documentation for ATTILA is a problem for users. It is
necessary to contact the author by the ATTILA mail list distribution when having
doubts. The only documentation available is the source code, some files that the
author posted in the last versions, papers and reports from the authors and the mail
list. Sometimes they are helpful (for example, when installing ATTILA or executing
and capturing traces), but in many cases they are not enough (for example, the code
has to be read when trying to understand the statistics variables, which is a hard task).
On the definition of good software, as well as having the binaries, libraries and source

Evaluating ATTILA, a cycle-accurate GPU simulator 33

code, it is included documentation and manuals too. But it is lightening with a mail
list [9], where the author and even the community of users answer questions as soon
as possible. But this problem will be finally solved with time by the authors; they are
planning to public some documentation on the web next months.

The simulator is quite inefficient in terms of time spent for simulations. For only
one frame from Doom3 it can take from 13 to 20 minutes in a single processor, and
more or less the same in a core duo. The code explained on section 3.1.2 can show the
reason (figure 3.4): In each cycle, each stage has to wait to the previous for being
executed (and just one cycle), when in a real GPU it does not happen (each stage
executes one cycle at the same time). That the motivation of using buffers is having
stand alone stages (that is, stages that do not depend for timing). One solution for this
problem can be seen on Appendix D. This Appendix is based on a previous work [18]
from the same author of this current report, and shows how to improve the simulation
time of ATTILA using parallelization methods. Moreover, there is a lot of
intercommunication between the different components (boxes, the simulated stages of
the GPU) even if it is just an "I am ready" or "I am busy" signal.

Also the current OpenGL framework does not offer a good compatibility with
many applications. Firstly, GLInterceptor and the simulator can not work with
applications out of OpenGL (not with Direct3D or OpenGL ES), and inside OpenGL
programs the wide of choice is too small. Just some programs are known that work
with ATTILA (see section 4.1), and it does not provide to the developer a perfect
framework where work and test his GPU architecture with the programs that he wants
to use. Moreover, the use of the framework is limited only for Windows platforms,
and do not permit to the developer works only in UNIX systems (as it is known that
most developers and researchers work with non-Windows systems). In these cases,
the solution is that the developer has to make his own framework, but not the
simulator because the code is portable (not highly, but can be used in Windows,
Linux, Cygwin and Mingw32).

GLInterceptor can have potentially another bad aspect. The capture of the
OpenGL API calls can show the internal OpenGL code behaviour, and then, it is
possible to have the OpenGL code with some inverse engineering of, for example, a
game engine. GLInterceptor is very helpful and needed if ATTILA wants to work
with real applications, but it has to be manipulated carefully because it is possible to
infringe some intellectual laws. But this problem is potential and not completely real
because one can always monitor what is happening in his system, including API calls,
and the real code is still coded inside the binary and nobody can read it.

But not all are bad aspects, now talking about strong sides we can see that
ATTILA can support real data for testing the architecture. The part of OpenGL
supported is small, but maybe enough for most developers. If ATTILA could simulate
frames from complex games like Doom3, Prey or Unreal Tournament 2004, it means
that it is relatively powerful and with time it can simulate a lot of OpenGL
applications.

Another good aspect of ATTILA is that it has a very structural source code. As
seen on section 3.1.2, this source code is object-oriented, implementing boxes that
cover the details of each part of the pipeline. These boxes, signals and statistic
managers can help to the construction of a new architecture, with the bounds of a
structural code with abstractions and other good aspects from the object-orientation.

34 Miguel Ángel Martínez del Amor

Of course, it can not be possible without an open source code. The code available is
just from the simulator, the rest of the framework (GLInterceptor and GLPlayer) are
private code, and if it is needed to change, then a new framework must be
implemented as commented so far.

Finally it is good to comment that the lots of statistics and the wide set of
parameters that configure highly the pipeline help a lot to analyze with detail and
work with a lot of different architectures with ATTILA, respectively. Without the
statistics it is impossible to understand and analyze the architecture simulated, so the
high number of statistics (about 204 variables) is enough, and if it is not, Statistic
Manager helps to add new statistics to the architecture.

In conclusion, ATTILA is a completely framework for researching new GPU
architectures. It is still young: slow on simulations, not compatible with the most
graphic applications, and so on. Now it provides a good environment for working
with graphics, and helps to research and develop new GPU applications with the tools
that it provides. Among time of development, it will be possible to achieve a
compatible and a comfortable (maybe with a GUI) simulator.

5. Conclusions and future work

This project made an evaluation of the new GPU simulator called ATTILA.
Firstly I made an introduction to GPUs, some aspects of design and current general
architecture of the majority graphic cards. After that, I made a thorough explanation
of the simulator: simulated architecture, architectures that ATTILA can simulate,
introduction to the source code, statistics and the framework that ATTILA provides.
When this theory was explained, I exposed some experiences with ATTILA when
installing, choosing testprograms and running them on the simulator. Afterwards, I
was able to make an evaluation and some conclusions on section 4.3 with the
information recompiled on sections 3 and 4.

Some conclusions that can be taken out from this project are:
- The evolution and technology of GPUs go separately from the

development of CPUs. That is because GPUs work with other kind of
data and they can have a specialized architecture. It is a good reason for
developing new simulators for only GPUs.

- ATTILA provides a good environment because it supports real
applications and gives a collection of classes and objects that help to the
design of a new architecture.

- The simulators for CPUs are more developed than GPU simulators, it is
because the discipline about GPUs is younger than CPUs, but with time
it will be as important as CPUs, with a lot of software and tools that
helps to research in this area.

This simulator is still young and with time it can be powerful. Some future works

that can be interesting to develop are:
- Make a good documentation, with examples and explanation of every

detail like the statistics.

Evaluating ATTILA, a cycle-accurate GPU simulator 35

- Make ATTILA more compatible with graphic applications: support for
Direct3D and OpenGL ES, support of a more wide set of OpenGL (that
is, support of more OpenGL applications).

- More help to the user, not only the code, maybe a GUI that interactively
show how the architecture is working and change it in an easy way. Or
even more, a support for modules, making possible to add easily a new
device like memory or another GPU.

- Make ATTILA more efficient. For example, parallelize it allowing the
developers to execute the simulator in a multiprocessor faster than in a
single processor (see Appendix D).

Finally I hope that this work can help to understand a bit better the simulator

ATTILA, and encourage to GPU researchers use this simulator because it is
interesting for test new architectures and features.

36 Miguel Ángel Martínez del Amor

References

[1] Thomas Scott Crow. “Evolution of the graphical processing unit”. Dec. 2004.
www.cse.unr.edu/~fredh/papers/thesis/023-crow/GPUFinal.pdf

[2] Pedro Trancoso, Maria Charalambous. “Exploring Graphics Processor Performance for
General Purpose Applications”. 2005.
http://www2.cs.ucy.ac.cy/~pedro/publications/dsd2005-gpu.pdf

[3] Emmett Kilgariff, Randima Fernando. “The GeForce 6 Series GPU Architecture”. Chapter
30. 2005. Mc Graw Hill.
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

[4] Pushkar Joshi, Leslie Ikemoto. “Harnessing the GPU for General Purpose Computation: A
case study”. 17th dec. 2004. www.cs.berkeley.edu/~ppj/publications/gpu_paper.pdf

[5] Victor Moya del Barrio. “An end to end, highly detailed simulator for the ATILA GPU

microarchitecture”. 2005. http://personals.ac.upc.edu/vmoya/docs/ATILASim.pdf

[6] Victor Moya, Carlos González, Jordi Roca, Agustín Fernández and Roger Espasa.

“ATTILA: A cycle-level execution-driven Simulator for modern GPU architectures”. 2006.
http://personals.ac.upc.edu/vmoya/docs/ISPASS%20-%20ATTILASim.pdf

[7] Ziyad S. Hakura, Anoop Gupta. “The design and analysis of a cache architecture for texture

mapping”. ISCA 1997.

[8] Victor Moya del Barrio. “ATTILA log”. http://personals.ac.upc.edu/vmoya/log.html

[9] Victor moya del Barrio. “ATTILA GPU Simulator Mail List”.

http://tech.groups.yahoo.com/group/attilasim

[10] I. Back, T. Foley, D. horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.

Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on
Graphics, 23(3):777-786. 2004.

[11] Jordi Roca, Victor Moya, Carlos González, Chema Solís, Agustín Fernández and Roger

Espasa. “Workload Characterization of 3D games”. 2006
http://personals.ac.upc.edu/vmoya/docs/IISWC-Workload.pdf

[12] Victor Moya, Carlos González, Jordi Roca, Agustín Fernández and Roger Espasa. “Shader

Performance Análisis on a Modern GPU Architecture”. 2005.
http://personals.ac.upc.edu/vmoya/docs/vmoya-ShaderPerformance.pdf

[13] Victor Moya, Carlos González, Jordi Roca, Agustín Fernández and Roger Espasa. “A

Single (Unified) Shader GPU Microarchitecture for Embedded Systems”. 2005.
http://personals.ac.upc.edu/vmoya/docs/EmbeddedGPU.pdf

[14] J. W. Sheaffer, D. Luebke, and K. Skadron. “A Flexible Simulation Framework for

Graphics Architectures”. 2004. http://qsilver.cs.virginia.edu/gh2004.pdf

Evaluating ATTILA, a cycle-accurate GPU simulator 37

[15] Tiberiu S. Popa. “Compiling Data Dependent Control Flow on SIMD GPUs”. 2004.

http://qsilver.cs.virginia.edu/

[16] Miguel Ángel Martínez del Amor. “GPU ARCHITECTURE”. 2006.

www.idi.ntnu.no/~thorvan/tdt24/GPU%20ARCHITECTURE.ppt

[17] Miguel Ángel Martínez del Amor. “ATTILA SIMULATOR”. 2006.

www.idi.ntnu.no/~thorvan/tdt24/ATTILA%20SIMULATOR.ppt

[18] Miguel Ángel Martínez del Amor. “PARALLELIZATION OF ATTILA SIMULATOR

WITH OPENMP”. 2006.
www.idi.ntnu.no/~thorvan/tdt24/PARALLELIZATION%20OF%20ATTILA%20SIMULA
TOR%20WITH%20OPENMP.ppt

38 Miguel Ángel Martínez del Amor

APPENDIX A: DEFINITIONS AND ABBREVIATIONS

3

3D Objects: Objects that represent the objects of the modelled word. The
coordinates are expressed on 3D coordinates.

3DNOW!: is the name of a multimedia extension created by AMD for its

processors, starting with the K6-2 in 1998. It is an addition of SIMD instructions to
the traditional x86 instruction set, designed to improve a CPU's ability to perform the
vector processing requirements of many graphic-intensive applications. (Source:
www.wikipedia.org).

A

AGP: The (Accelerated Graphics Port (also called Advanced Graphics Port)) is a
high-speed point-to-point channel for attaching a graphics card to a computer's
motherboard, primarily to assist in the acceleration of 3D computer graphics. Some
motherboards have been built with multiple independent AGP slots. AGP is currently
being phased out in favor of PCI Express. (Source: www.wikipedia.org).

AI : (Artificial Intelligence) can be defined as the study of methods by which a

computer can simulate aspects of human intelligence. (Source: www.wikipedia.org).

ALU : (Arithmetic Logic Unit) is a digital circuit that calculates an arithmetic

operation (like an addition, subtraction, etc.) and logic operations (like an Exclusive
Or) between two numbers. The ALU is a fundamental building block of the central
processing unit of a computer. (Source: www.wikipedia.org).

Alpha: In computer graphics, alpha compositing is the process of combining an

image with a background to create the appearance of partial transparency. (Source:
www.wikipedia.org).

API : (Application Programming Interface) is a source code interface that a

computer system or program library provides in order to support requests for services
to be made of it by a computer program. (Source: www.wikipedia.org).

ARB: (The OpenGL Architecture Review Board) is an industry consortium that

currently governs the OpenGL specification. It was formed in 1992, and defines the
conformance tests, approves the OpenGL specification and advances the standard. On
July 31, 2006, it was announced that the ARB voted to transfer control of the OpenGL

Evaluating ATTILA, a cycle-accurate GPU simulator 39

specification to Khronos Group. As of November 2004, the voting members are
3Dlabs, Apple Computer, ATI, Dell, IBM, Intel, Nvidia, SGI and Sun Microsystems,
plus other contributing members. Microsoft was an original voting member, but left in
March 2003. (Source: www.wikipedia.org).

ARB_Vertex_Program: Is a vertex shading language for OpenGL made by ARB.

ARB_Fragment_Program: Is a fragment shading language for OpenGL made by

ARB.

ATI : ATI Technologies U.L.C., founded in 1985, is a major designer of graphics

processing units and video display cards and a wholly owned subsidiary of AMD, as
of October 2006. (Source: www.wikipedia.org).

ATTILA : The name is based on 'Attila The Hun'. It is a cycle accurate GPU

simulator made by several authors (mainly Victor Moya) in the Polytechnic
University of Catalonia.

B

BrookGPU: is the Stanford University Graphics group's compiler and runtime
implementation of the Brook stream programming language for using modern
graphics hardware for non-graphical, or general purpose computations (GPGPU).
(Source: www.wikipedia.org).

Buffer : In computing, a buffer is a region of memory used to temporarily hold

output or input data. Buffers can be implemented in either hardware or software, but
the vast majority of buffers are implemented in software. Buffers are used when there
is a difference between the rate at which data is received and the rate at which it can
be processed, or in the case that these rates are variable, for example in a printer
spooler. (Source: www.wikipedia.org).

C

C++: is a general-purpose, high-level programming language with low-level
facilities. It is a statically typed free-form multi-paradigm language supporting
procedural programming, data abstraction, object-oriented programming, generic
programming and RTTI. Since the 1990s, C++ has been one of the most popular
commercial programming languages. (Source: www.wikipedia.org).

Cg: (C for Graphics) is a high-level shading language created by NVIDIA for
programming vertex and pixel shaders. Cg is based on the C programming language
and although they share the same syntax, some features of C were modified and new

40 Miguel Ángel Martínez del Amor

data types were added to make Cg more suitable for programming graphics
processing units. (Source: www.wikipedia.org).

Class: In object-oriented programming, classes are used to group related variables

and functions. A class describes a collection of encapsulated instance variables and
methods (functions), possibly with implementation of those types together with a
constructor function that can be used to create objects of the class. (Source:
www.wikipedia.org).

Class diagram: Is a diagram that shows how the classes from the source code of a

program are related and interconnected (relationships between classes).

CPI: (Cycles per instruction (clock cycles per instruction or clocks per

instruction)) is a term used to describe one aspect of a processor's performance: the
number of clock cycles that happen when an instruction is being executed. It is the
multiplicative inverse of Instructions Per Cycle (IPC). (Source: www.wikipedia.org).

CPU: (Central Processing Unit or sometimes simply processor) is the component

in a digital computer that interprets computer program instructions and processes
data. (Source: www.wikipedia.org).

Cygwin: is a collection of free software tools originally developed by Cygnus

Solutions to allow various versions of Microsoft Windows to act somewhat like a
Unix system. (Source: www.wikipedia.org).

D

D3D: see Direct3D.

DDR: In computing, a computer bus operating with Double Data Rate transfers

data on both the rising and falling edges of the clock signal, effectively nearly
doubling the data transmission rate without having to deal with the additional
problems of timing skew that increasing the number of data lines would introduce.
This technique has been used for the Front side bus, Ultra-3 SCSI, the AGP bus, DDR
SDRAM (principal memory), and the HyperTransport bus on AMD's Athlon 64 X2
processors. (Source: www.wikipedia.org).

Direct3D: is part of Microsoft's DirectX API. Direct3D is only available for

Microsoft's various Windows operating systems (Windows 95 and above) and is the
base for the graphics API on the Xbox and Xbox 360 console systems. Direct3D is
used to render three dimensional graphics in applications where performance is
important, such as games. Direct3D also allows applications to run fullscreen instead
of embedded in a window, though they can still run in a window if programmed for
that feature. Direct3D uses hardware acceleration if it is available on the graphic
board. (Source: www.wikipedia.org).

Evaluating ATTILA, a cycle-accurate GPU simulator 41

DRAM : (Dynamic Random Access Memory) is a type of random access memory
that stores each bit of data in a separate capacitor within an integrated circuit. (Source:
www.wikipedia.org).

Driver : is a specific type of computer software, typically developed to allow

interaction with hardware devices. This usually constitutes an interface for
communicating with the device, through the specific computer bus or
communications subsystem that the hardware is connected to, providing commands to
and/or receiving data from the device, and on the other end, the requisite interfaces to
the operating system and software applications. (Source: www.wikipedia.org).

E

Environment: is a type of computer software that assists computer programmers
in developing software. In this report means the system and tools used for the
development of these simulations.

F

FAN mode: In OpenGL, when defining the FAN mode for triangle means that the
three first vertices defined correspond to the first triangle, and the next vertices
defined make a triangle that has shared the first vertex defined and previous vertex.

(Source:

http://web.cs.wpi.edu/~matt/courses/cs563/talks/OpenGL_Presentation/OpenGL_Pres
entation.html)

Fog: is a cloud in contact with the ground. In computer graphics means that the
field of vision will be reduce.

Fragment: A fragment is a point in windows coordinates produced by rasterizer

stage that has attributes as color, depth… It has the data necessary needed to generate
a pixel in the frame buffer. One pixel (a dot of color) corresponds to multiple
fragments.

Frame: is one of the many still images which compose the complete moving

picture. The frame rate, the rate at which sequential frames are presented, varies
according to the video standard in use. In North America and Japan, 30 frames per

42 Miguel Ángel Martínez del Amor

second is the broadcast standard, with 24 frame/s now common in production for
high-definition video. In much of the rest of the world, 25 frame/s is standard.
(Source: www.wikipedia.org).

Framework: In software development, a framework is a defined support

structure in which another software project can be organized and developed. A
framework may include support programs, code libraries, a scripting language, or
other software to help develop and glue together the different components of a
software project. In this report means to the set of tools and steps that ATTILA has
for the development of GPU architectures for OpenGL. (Source: www.wikipedia.org).

Frustum volume: In 3D computer graphics, the viewing frustum or view

frustum is the region of space in the modeled world that may appear on the screen; it
is the field of view of the notional camera. The exact shape of this region varies
depending on what kind of camera lens is being simulated, but typically it is a frustum
of a rectangular pyramid. The planes that cut the frustum perpendicular to the viewing
direction are called the near plane and the far plane. Objects closer to the camera than
the near plane or beyond the far plane are not drawn. Often, the far plane is placed
infinitely far away from the camera so all objects within the frustum are drawn
regardless of their distance from the camera. (Source: www.wikipedia.org).

G

GCC: Originally named the GNU C Compiler, because it only handled the C
programming language, GCC 1.0 was released in 1987, and the compiler was
extended to compile C++ in December of that year. Front ends were later developed
for Fortran, Pascal, Objective-C, Java, and Ada, among others. (Source:
www.wikipedia.org).

GDDR3: (Graphics Double Data Rate 3) is a graphics card-specific memory

technology, designed by ATI Technologies. (Source: www.wikipedia.org).

GLES: See OpenGL ES.

GLSlang: (OpenGL Shading Language) is a high level shading language based

on the C programming language. It was created by the OpenGL ARB to give
developers more direct control of the graphics pipeline without having to use
assembly language or hardware-specific languages. (Source: www.wikipedia.org).

GPGPU: (General-Purpose Computing on Graphics Processing Units) is a recent

trend in computer science that uses the Graphics Processing Unit to perform the
computations rather than the CPU. The addition of programmable stages and higher
precision arithmetic to the GPU rendering pipeline have allowed software developers
to use the GPU for non graphics related applications. Because of the extremely
parallel nature of the graphics pipeline the GPU is especially useful for programs that
can be cast as stream processing problems. (Source: www.wikipedia.org).

Evaluating ATTILA, a cycle-accurate GPU simulator 43

GPU: (Graphics Processing Unit (also occasionally called Visual Processing Unit

or VPU)) is a dedicated graphics rendering device for a personal computer,
workstation, or game console. Modern GPUs are very efficient at manipulating and
displaying computer graphics, and their highly parallel structure makes them more
effective than typical CPUs for a range of complex algorithms. (Source:
www.wikipedia.org).

H

I

ISA: (Instruction Set Architecture) is (a list of) all instructions, and all their
variations, that a processor can execute. (Source: www.wikipedia.org).

J

K

L

Library : is a collection of subprograms used to develop software. Libraries
contain "helper" code and data, which provide services to independent programs. This
allows code and data to be shared and changed in a modular fashion. Some
executables are both standalone programs and libraries, but most libraries are not
executables. Executables and libraries make references known as links to each other
through the process known as linking, which is typically done by a linker. (Source:
www.wikipedia.org).

Linux : is a free open-source operating system based on Unix. Linux was

originally created by Linus Torvalds with the assistance of developers from around
the globe. Linux was developed under the GNU General Public License and the
source code is freely available to everyone. (Source: www.orafaq.com).

44 Miguel Ángel Martínez del Amor

M

Mingw32: (Min imalist GNU for Windows) is a software port of the GNU

toolchain to the Win32 platform. MinGW includes a set of Windows header files
(W32API) for native Win32 development. It was originally a fork of Cygwin (version
1.3.3). (Source: www.wikipedia.org).

MMX : (MultiMedia eXtensions) is a SIMD instruction set designed by Intel,

introduced in 1997 in their Pentium MMX microprocessors. It developed out of a
similar unit first introduced on the Intel i860. It has been supported on most
subsequent IA-32 processors by Intel and other vendors. (Source:
www.wikipedia.org).

N

North Bridge: also known as the Memory Controller H ub (MCH), is
traditionally one of the two chips in the core logic chipset on a PC motherboard, the
other being the Southbridge. Separating the chipset into Northbridge and Southbridge
is common, although there are rare instances where these two chips have been
combined onto one die when design complexity and fabrication processes permit it.
(Source: www.wikipedia.org).

NUMA : (Non-Uniform Memory Access or Non-Uniform Memory Architecture)

is a computer memory design used in multiprocessors, where the memory access time
depends on the memory location relative to a processor. Under NUMA, a processor
can access its own local memory faster than non-local memory, that is, memory local
to another processor or memory shared between processors. (Source:
www.wikipedia.org).

NVIDIA : NVIDIA Corporation (NASDAQ: NVDA) is a major supplier of

graphics processors (graphics processing units, GPUs), graphics cards, and media and
communications devices for PCs and game consoles such as the original Xbox and the
PlayStation 3. NVIDIA's most popular product lines are the GeForce series for
gaming and the Quadro series for Professional Workstation Graphics processing as
well as the nForce series of computer motherboard chipsets. (Source:
www.wikipedia.org).

O

Object: In the programming paradigm, object-oriented programming, an object is
an individual unit of run-time data storage that is used as the basic building block of
programs. These objects act on each other, as opposed to a traditional view in which a
program may be seen as a collection of functions, or simply as a list of instructions to
the computer. Each object is capable of receiving messages, processing data, and

Evaluating ATTILA, a cycle-accurate GPU simulator 45

sending messages to other objects. Each object can be viewed as an independent little
machine or actor with a distinct role or responsibility. Also, an object can be seen as a
instance of a Class. (Source: www.wikipedia.org).

Object-Oriented programming: (OOP) is a programming paradigm that uses

"objects" to design applications and computer programs. It utilizes several techniques
from previously established paradigms, including inheritance, modularity,
polymorphism, and encapsulation. Even though it originated in the 1960s, OOP was
not commonly used in mainstream software application development until the 1990s.
Today, many popular programming languages (such as Java, JavaScript, C#, C++,
Python, PHP, Ruby and Objective-C) support OOP. (Source: www.wikipedia.org).

OpenGL: (Open Graphics L ibrary) is the premier environment for developing

portable, interactive 2D and 3D graphics applications. It is a standard specification
defining a cross-language cross-platform API for writing applications that produce 3D
computer graphics (and 2D computer graphics as well). The interface consists of over
250 different function calls which can be used to draw complex three-dimensional
scenes from simple primitives. OpenGL was developed by Silicon Graphics. OpenGL
operates on image data as well as geometric primitives (see the similarity with the
architecture explained on section 3.1.1):

 (Sources: www.opengl.org and www.wikipedia.org).

OpenGL ES: (OpenGL for Embedded Systems) is a subset of the OpenGL 3D

graphics API designed for embedded devices such as mobile phones, PDAs, and
video game consoles. It is defined and promoted by the Khronos Group, a graphics
hardware and software industry consortium interested in open APIs for graphics and
multimedia. (Source: www.wikipedia.org).

P

PCI: (Peripheral Component Interconnect or PCI Standard) specifies a computer
bus for attaching peripheral devices to a computer motherboard. (Source:
www.wikipedia.org).

PCI Express: is an implementation of the PCI connection standard that uses

existing PCI programming concepts, but bases it on a completely different and much

46 Miguel Ángel Martínez del Amor

faster full duplex, multi-lane, point to point serial physical-layer communications
protocol. (Source: www.wikipedia.org).

Pixel: (short for Picture Element, using the common abbreviation "pix" for

"picture") is a single point in a graphic image. Each such information element is not
really a dot, nor a square, but an abstract sample. With care, pixels in an image can be
reproduced at any size without the appearance of visible dots or squares; but in many
contexts, they are reproduced as dots or squares and can be visibly distinct when not
fine enough. The intensity of each pixel is variable; in color systems, each pixel has
typically three or four dimensions of variability such as red, green and blue, or cyan,
magenta, yellow and black. (Source: www.wikipedia.org).

Pixmap: is a three-dimensional array of bits. Also, a pixmap is normally thought

of as a two-dimensional array (matrix) of pixels.

Q

R

Render: is the process of generating an image from a model, by means of
computer programs. The model is a description of three dimensional objects in a
strictly defined language or data structure. It would contain geometry, viewpoint,
texture and lighting information. The image is a digital image or raster graphics
image. The term may be by analogy with an "artist's rendering" of a scene.
'Rendering' is also used to describe the process of calculating effects in a video editing
file to produce final video output. (Source: www.wikipedia.org).

S

Shader: is a piece of code that programs certain parts of the graphic pipeline.
Specifically, it is a set of instructions, a computer program used in 3D computer
graphics to determine the final surface properties of an object or image, executed by
the GPU. This often includes arbitrarily complex descriptions of texture mapping,
light absorption, diffusion, reflection, refraction, shadowing, surface displacement and
post-processing effects. There are two types: vertex shader and fragment shader.
(Source: www.wikipedia.org).

SIMD : (Single Instruction, Multiple Data) is a technique employed to achieve

data level parallelism, as in a vector or array processor. (Source: www.wikipedia.org).
An operation (performed by a unit) over two arrays using this technique will make the
calculation over each element, issuing the resulting array element by element to the
next unit. By this way it is not needed to wait for the realization of the operation (A)

Evaluating ATTILA, a cycle-accurate GPU simulator 47

over the whole array for continuing with the next operation (B) that needs the
resulting array from the previous operation (A).

SMP: (Symmetric Multi Processor) is a multiprocessor computer architecture

where two or more identical processors are connected to a single shared main
memory. Most common multiprocessor systems today use SMP architecture. (Source:
www.wikipedia.org). SMP is also called UMA.

SMT: (Simultaneous Multithreading) is a technique for improving the overall

efficiency of superscalar CPUs. SMT permits multiple independent threads of
execution in the same superscalar processor to better utilize the resources provided by
modern processor architectures. (Source: www.wikipedia.org).

SSE: (Streaming SIMD Extensions, originally called ISSE, Internet Streaming

SIMD Extensions) is a SIMD (Single Instruction, Multiple Data) instruction set
designed by Intel and introduced in 1999 in their Pentium III series processors as a
reply to AMD's 3DNow! (which had debuted a year earlier). (Source:
www.wikipedia.org).

Stencil: Stenciling, like z-buffering, enables and disables drawing on a per-pixel

basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the screen.
Stenciling is typically used in multipass rendering algorithms to achieve special
effects, such as decals, outlining, and constructive solid geometry rendering. (Source:
OpenGL bluebook).

Stream: is applied to hardware as well as software. There it defines the quasi-

continuous flow of data which is processed in dataflow languages as soon as the
program state meets the starting condition of the stream. (Source:
www.wikipedia.org).

STRIP mode: In OpenGL, when defining the STRIP mode for lines, triangles or

quads means that the first vertices defined will construct a first object (line, triangle or
quad) and the next vertex defined will make a new object with the union of the last
vertices defined. There are examples for Line Strip, for Triangle Strip and for Quad
Strip, respectively:

(Source:

http://web.cs.wpi.edu/~matt/courses/cs563/talks/OpenGL_Presentation/OpenGL_Pres
entation.html).

48 Miguel Ángel Martínez del Amor

T

Texel: (Texture Element (also Texture Pixel)) is the fundamental unit of texture
space, used in computer graphics. Textures are represented by arrays of texels, just as
pictures are represented by arrays of pixels.

Texture: an image used in computer rendering to give color and other apparent

surface characteristics ("textures") to 3D objects.

Tile: A pixmap can be replicated in two dimensions to tile a region. The pixmap

itself is also known as a tile. In this report it can be seen as a set of pixels, texels or
fragments. (Source:
http://barossa.ac3.edu.au/SGI_Developer/books/XLib_WinSys/sgi_html/go01.html).

Triangle: is one of the basic shapes of geometry. Because of this, every 3D object

can be represented approximately as a set of multiple triangles.

U

UMA : (Uniform Memory Access) is a computer memory architecture used in
parallel computers. All the processors in the UMA model share the physical memory
uniformly. Peripherals are also shared. Cache memory may be private for each
processor. In an UMA architecture, accessing time to a memory location is
independent from which processor makes the request or which memory chip contains
the target memory data. (Source: www.wikipedia.org).

V

Vertex: is a corner of a polygon (where two sides meet) and, in OpenGL, a vertex
can have associated several parameters as 3D coordinates, colour, depth, alpha, etc.

Visual Studio: is Microsoft's flagship software development product for computer

programmers. It centers on an integrated development environment which lets
programmers create standalone applications, web sites, web applications, and web
services that run on any platforms supported by Microsoft's .NET Framework.
(Source: www.wikipedia.org).

VLIW : (Very Long Instruction Word) refers to a CPU architectural approach to

taking advantage of instruction level parallelism (ILP). A processor that executes
every instruction one after the other (i.e. a non-pipelined scalar architecture) will have
very poor performance. The performance can be improved by executing different sub-
steps of sequential instructions simultaneously (this is pipelining), or even executing
multiple instructions entirely simultaneously as in superscalar architectures. (Source:
www.wikipedia.org). In this kind of architectures, the processor always issue and
execute the same number of instructions at the same time (always 4 or 8, depending

Evaluating ATTILA, a cycle-accurate GPU simulator 49

on the configuration of the processor). For that, the compiler has to dispose the
instructions to the processor in a correct order avoiding interactions and bad results.
The instruction nop (not an operation, do not do anything) is used to fill the places of
instructions that can not be executed at the same time that the other (for example, two
instructions where one need the result of the other operation).

W

Windows: is the name of several families of proprietary operating systems by
Microsoft. They can run on several types of platforms such as servers, embedded
devices and, most typically, on personal computers. (Source: www.wikipedia.org).

X

Y

Z

Z: see Z-buffering.

Z-buffering : is the management of image depth coordinates in three-dimensional

(3-D) graphics, usually done in hardware, sometimes in software. It is one solution to
the visibility problem, which is the problem of deciding which elements of a rendered
scene are visible, and which are hidden. The painter's algorithm is another common
solution which, though less efficient, can also handle non-opaque scene elements. Z-
buffering is also known as depth buffering. (Source: www.wikipedia.org).

50 Miguel Ángel Martínez del Amor

APPENDIX B: OUTPUT STATISTIC VARIABLES

NAME UNIT CODE (to be explained by the author in
future documentation, but the majority
understandable)

AccessQueueOccupation TU (Texture unit)
AddressALUBusyCycles TU
AddressCalculationFinished TU
AllocateFailed CW-SU
AllocateOK CW
AnisotropyRatio TU
BackFacingTriangles TS (Triangle Setup)
Batches CP (Command Processor)
BilinearSamples TU
BlendedFragments CW
BlockCommands ShDX FS (Fragment Shader)
BlockedInstructions ShDx FS
BlockedThreads ShF FS
Blocks ShF FS
BytesRead CP
BytesWritten CP
Clear CP
ClippedTriangles CLP
ColorWriteReadBytes MC (Memory Controller)
ColorWriteReadTransactions MC
ColorWriteTransactions MC
ColorWriteWriteBytes MC
ColorWriteWriteTransactions MC
CommandProcessorReadBytes MC
CommandProcessorReadTransactions MC
CommandProcessorTransactions MC
CommandProcessorWriteBytes MC
CommandProcessorWriteTransactions MC
CulledFragments CW SU HZ ZST
CulledHZFragments HZ (Hierarchical Z)
CulledOutsideFragments HZ
CulledTriangles TS
DACReadBytes MC
DACReadTransactions MC
DACTransactions MC
DACWriteBytes MC
DACWriteTransactions MC
DataCycles00 - 03 MC

Evaluating ATTILA, a cycle-accurate GPU simulator 51

Degenerated PA
Draw CP
EmptyCycles ShF FS
EndCommands ShDX FS
EndFragment CP
EndGeometry CP
ExecutedInstructions ShDX FS
FailedFragments ZST SU (Z-Stencil)
FakedInstructions ShDX FS
FetchBankConflicts TU
FetchCycles FS
FetchFailed CW SU ZST
FetchOK CW SU ZST
FetchStallAddress TU
FetchStallFetch TU
FetchStallReadyRead TU
FetchStallWaitRead TU
FetchedInstr ShF FS
FetchesFailed TU
FetchesOK TU
FetchesSkiped TU
Fetches StL
FilterALUBusyCycles TU
FinishedThreads ShF
Frames CP
FreeThreads ShF
FrontFacingTriangles TS
GeneratedFragments TT
HitsAlloc CW InC TU ZST
HitsFetch CW InC TU ZST
HitsHZCache HZ
Hits StOC
IndexesSent StF
Indices Stc StL StOC
InputActiveInputAttributes ShF
InputActiveOutputAttributes ShF
InputFragments CW FFU HZ ZST
InputRegisters ShF
InputTriangles CLP FFU TS TT
InputVertices FFU
Inputs ShF StL
IntStampQueuesOccupation FFU
InterpolatedFragments FFU
LogicOpFragments CW
MappedAttributes StL

52 Miguel Ángel Martínez del Amor

MemTransactions StL
MemoryPreload CP
MemoryReadBytes MC
MemoryReadTransactions MC
MemoryRead CP
MemoryRequestLatency Tu
MemoryRequests TU
MemoryTransactions MC StF
MemoryWriteBytes MC
MemoryWriteTransactions MC
MemoryWrite CP
MissFailAlloc CW InC TU ZST
MissFailFetch CW InC TU ZST
MissFailMissAlloc TU
MissFailMissFetch TU
MissFailReqQueueAlloc TU
MissFailReqQueueFetch TU
MissFailReserveAlloc TU
MissFailReserveFetch TU
MissOKAlloc CW Inc TU ZST
MissOKFetch CW InC TU ZST
MissesAlloc CW InC TU ZST
MissesFetch CW InC TU ZST
MissesHZCache HZ
Misses StOC
NoFetches StL
NoReads StL
NoReadyCycles ShF
OpenPagePenalty00 - 01 MC
OpenPages01 - 03 MC
OutputAttributes Stc
OutputFragments FFU HZ ZST
OutputTriangles CLP FFU TS
OutputVertices FFU
Outputs ShF StC
OutsideFragments CW ZST
OutsideTriangleFragments HZ
OutsideViewPortFragments HZ
PassedFragments ZST
PreloadTransactions MC
RAWDependence CW ZST
RastStampQueuesOccupation FFU
ReFetchedInstr ShF
ReadBankConflicts TU
ReadBytesMemoryBuss00 – 03 MC

Evaluating ATTILA, a cycle-accurate GPU simulator 53

ReadBytesMemory TU
ReadBytesSystemBus MC
ReadBytes CW InC StF StL TU ZST
ReadFailed CW ZST
ReadOK CWZST
ReadToWritePenalty00 – 03 MC
ReadTransactions CW TU ZST
ReadsFail CW TU ZST
ReadsFailedTU TU
ReadsHZBuffer HZ
ReadsOKTU TU
ReadsOK CW InC TU ZST
Reads StL
ReadyreadQuewueOccupation TU
ReadyThreads ShF
RegisterWrites CP
RemovedInstructions ShDX
ReplayCommands ShDX
RequestQueueOccupation TU
RequestedTriangles TS TT
Requests PA StC
ResultQueueOccupation TU
ShadedFragments FFU
ShadedStampQueuesOccupation FFU
ShadedTriangles FFU
ShadedVertices FFU
ShaderOutputs StC
SplittedAttributes StL
StreamerFetchReadbytes Mc
StreamerFetchReadTransactions MC
StreamerLoaderTransactions MC
StreamerLoaderWriteBytes MC
StreamerLoaderWriteTransactions MC
Swap CP
SystemDataCycles 00 – 01 MC
Systemreadbytes MC
SystemReadTransactions MC
SystemTransactions MC
SystemWriteBytes Mc
SystemWriteTransactions Mc
TestStampQueuesOccupation FFU
TestedFragments ZST
TextureRequests ShDX TU
TextureResultLatency TU
TextureResults TU

54 Miguel Ángel Martínez del Amor

TextureUnitReadBytes MC
TextureUnitReadTransactions MC
TextureUnitWriteTransactions MC
TriangleInputQueueOccupation FFU
TriangleOutputQueueOccuaption FFU
Triangles PA
UnblockCommands ShDX
Unblocks ShF
Unreserves CW TU ZST
UnusedCycles MC
UpdatesHZ HZ
UsedResources ShF
VertexInputQueueOccupation FFU
VertexOutputQueueOccupation FFU
Vertices PA
WaitReadWindowOccupation TU
WriteBytesMemoryBus 00 – 03 MC
WriteBytesSystemBus MC
WriteBytes CW InC TU ZST
WriteFailed CW ZST
WriteOK ZST
WriteToReadPenalty00 – 03 MC
WriteTransactions CP CW ZST
WritesFail CW TU ZST
WritesHZBuffer HZ
WritesOK CW InC TU ZST
ZStencilTestReadBytes MC
ZStencilTestReadTransactions MC
ZStencilTestTransactions MC
ZStencilTestWriteBytes MC
ZStencilTestWriteTransactions MC

Evaluating ATTILA, a cycle-accurate GPU simulator 55

APPENDIX C: PARAMETERS

In this appendix the parameters that configure the ATTILA architecture will be
explained. This appendix complements the section 3.1.1, so it is interesting to read
them at the same time. Here only the most interesting parameters will be explained,
because there are about 215 different parameters. To see all the parameters, just have
a look to one configuration file (ATTILA-rei-5xx.ini) in the folder confs.

The parameters are defined in a configuration file that has a structure as shown in
figure C.1. Label says the unit that will be configured, and parameter corresponds to
an aspect of this unit to configure.

 [LABEL1]
 ParameterName11 = value11
 ParameterName12 = value12
 …

 [LABEL2]
 ParameterName21 = value21
 ParameterName22 = value22
 …

Figure C.1. Scheme of the configuration file.

- [COMMANDPROCESSOR]: for the configuration of the Command
Processor. One parameter is PipelinedBatchRendering (allow to process
register writes (AGP_REG_WRITE) and non locked memory uploads
(AGP_WRITE) while the rest of the pipeline is rendering).

- [STREAMER]: for the configuration of the Streamer of Vertex Fetch. It
can be configured by up to 13 parameters as IndexBufferSize or
VerticesCycle.

- [VERTEXSHADER]: for the configuration of the Vertex Shader (every
vertex shader will have the same structure, but if unified shaders are
used, then in the same shader unit can be mixed vertex and fragment
shader) with up to 14 parameters, as ExecutableThreads, ScalarALU (it
is a Boolean variable that only take the true value for pixel (or fragment)
shader, the only one that supports scalar ALUs), FetchRate,
InputsPerCycle,….

- [PRIMITIVEASSEMBLY]: for the configuration of the Primitive
Assembly. The parameters in order to configure this stage are
VerticesCycle, InputBusLatency, AssemblyQueueSize (the size of the
memory that stores the last vertices) and TrianglesCycle.

- [CLIPPER]: some parameters that configure the Clipper stage can be
ClipperUnits and ExecLatency, supporting up to 5 parameters.

- [RASTERIZER]: for the configuration of the whole Rasterizer stage.

56 Miguel Ángel Martínez del Amor

o The parameters for configuring the Triangle Setup are
TrinagleInputLatency, TriangleSetupOnShader,
StampsPerCycle, etc.

o The parameters for configuring the Fragment Generator stage
can be RecursiveMode, GenWidth, GenHeight, ScanWidth, etc.

o The parameters for configure the HZ can build up the HZ cache
or latencies, for example, HZCacheLines, HZCacheLineSize,
HZAccessLatency, amongst others.

o One important parameter for configuring the Interpolator stage
is NumInterpolators.

- [ZSTENCILTEST]: Z and Stencil tests can be configured in a separately
section from the Rasterizer. Some parameters can be used for
configuring the ZCache (ZCacheWays, ZCachLines), and other about
the compression unit (CompressionUnitLatency, DisableCompression).
The number of the total of parameters is 19 parameters.

- [FRAGMENTSHADER]: In any case, the parameters for configuring
the Fragment Shader are the same than for the Vertex Shader, plus the
parameters for configuring the Texture Units, such as
TextureBlockDimension, TextureCacheWays, TwoLevelTextureCache,
TextureCacheWaysL1, against others.

- [COLORWRITE]: The parameters placed below this label can be
StampsperCycle, ColorCacheWays, ColorCacheLines, ColorQueueSize,
etc.

- [DAC]: It can be configured by the parameters BytesPerPixel,
BlockSize, DecompressionUnitLatency (in case of use Compression of
frames, but it can be always dismissed to only 1 cycle because the dump
into a file is out of the GPU work), RefreshFrame … of the stage DAC.

- [MEMORYCONTROLLER]: This unit can be highly configured by
parameters, such as MemorySize, MemoryFrequency, MemoryBusses,
BankGranularity (size of banks), ReadLatency, WriteLatency,
MemoryPageSize, etc.

The bus width of Command Processor, Streamer, ZStencil, DAC and

TextureUnit can be configured with the parameters CommandProcessorBusWidth (on
the baseline configuration is 8, and not 64 like in the others),
StreamerFetchBusWidth, StreamerLoaderBusWidth, ZStencilBusWidth,
DACBusWidth and TextureUnitBusWidht.

Evaluating ATTILA, a cycle-accurate GPU simulator 57

APPENDIX D: PARALLELIZATION OF ATTILA

This section is based on the miniproject [18] and further information found on the
mail list [9]. The ideas exposed here are as theory; they were not tested before in a
real machine yet but seem that can make the simulator to achieve a better
performance.

As commented on the conclusion from section 4.3, ATTILA is a cycle-accurate
simulator but inefficient when simulating. One simulation takes a lot of time when
simulating, but it is logic when thinking that:

- The CPU has to do a work (simulation) that is very inefficient if it is not
used specific hardware like GPU or other SIMD architectures.

- ATTILA is a cycle-accurate simulator, where everything is simulated on
detail.

- The simulator code uses sequential model, with boxes and a lot of
sometimes “useless” signals between them.

But it is possible to make the simulator more efficient trying some methods over

the code like parallelization, avoiding change the whole design of the source code.
We can see the way of working of the simulator in the main loop (called from the
main function, file bGPU.c, see figure D.1) and it is possible to see two aspects:

Figure D.1. Main loop of ATTILA simulator.

Each stage (or
box) is executed
for one cycle, in a
sequential order

58 Miguel Ángel Martínez del Amor

- It is sequential, first simulate one cycle in one box, and then simulate the
next.

- Each box has input signals and output signals. One signal is a class that
implements a kind of buffer with a cycle of delay. Then, each box
simulates a single cycle stage (or stages) using local data and signal data
produced in another box. But the data that comes from the signals was
produced at least one cycle in the past so there are no data dependences
between boxes simulating the same cycle.

Taking in account these aspects, it is possible to give solutions to many problems
that statistics and experience can show us. Only two problems will be seen here:

- Problem 1: Statistics show that the most of simulation time is used on
shaders (fragment shaders and their texture units). Also ZStencilTest
takes so much time when doing depth or stencil passes (like stencil
shadows engines as Doom3).

The solution for this problem can be the implementation of parallel
fragment shaders, but not in a sequential implementation as currently
are, that is, with a parallel paradigm. For that, OpenMP will be applied
over the existing code (see www.openmp.org). The parallelization of the
Fragment Shaders can be easy if we put a barrier for waiting before
going to the next stage. Each Fragment Shader has an input and an
output private signal that only the boxes connected with them can read,
that is, there is not interaction between the Fragment Shader Units (as
commented before). See figure D.2 for an example of how
implementation should be.

Figure D.2. Parallelization of fragment shaders with OpenMP.

Each iteration is done
by one thread, with an
implicit barrier at the end

Evaluating ATTILA, a cycle-accurate GPU simulator 59

- Problem 2: In each cycle, each stage has to wait to the previous for being
executed (and just one cycle), when in a real GPU it does not happen
(each stage executes one cycle at the same time).

The extensible model that ATTILA uses allows us to parallelize the
execution of each stage in an “easy” way. The solution for that problem
can be the execution in parallel of each stage, using the buffers with
locks for the connections and barriers at the end of each stage for
simulating only one cycle per stage at the same time (and no more). This
solution is not easy. We have to implement a lock for the signals
(buffers), statistics dumps, and not go to panic mode when there is no
data in a signal. On the first cycles, all the buffers are empty, so each
stage has to wait or perform an empty cycle (in exception of the first
stage). With time, data will go through the buffers and stages. For
example, when a fragment is created it has to go to the next stages, but
for going from one stage to the next one, it has to wait at least one cycle.
At the end, if it is possible to have an unlimited number of processors
(for execute the thread of each stage in each processor) the slower box
or 'stage' would be the one determining the simulator speed, like in a real
GPU or processor.

This scheme is shown on figure D.3. One thread will simulate the
clock system, and is the one that synchronize the other threads (stages).
In figure D.4 there are two example implementations with OpenMP and
PThreads. The implementation in Pthreads was able to be compiled and
executed, but not in a multiprocessor. These are some ideas that can
work well with the simulator.

Figure D.3. Scheme of the execution in parallel of the stages.

60 Miguel Ángel Martínez del Amor

(a)

(b)

Figure D.4. Example implementation of the execution in parallel of each stage
using (a) OpenMP and (b) PThreads

…

Evaluating ATTILA, a cycle-accurate GPU simulator 61

Content table

1. INTRODUCTION.. 1

2. ANTECEDENTS AND RELATED WORK.. 6

3. ATTILA IN DETAIL... 7

3.1 GPU SIMULATED ARCHITECTURE.. 7
3.1.1 Architectures based on the baseline pipeline .. 7
3.1.2 Architectures not based on the baseline pipeline: Introduction to the

source code... 13
3.2 STATISTICS AND MEASURES PROVIDED... 15
3.3 ATTILA’ S FRAMEWORK... 16

4. EVALUATION OF THE SIMULATOR 18

4.1 INSTALLATION OF ATTILA .. 18
4.2 RUNNING OPENGL TESTPROGRAMS ON ATTILA ... 19

4.2.1 Testprograms selected...19
4.2.2 Execution and collection of data ... 21

4.2.2.1 Captures from testprograms...21
4.2.2.2 Replay of the captured traces...24
4.2.2.3 Execution of the simulator with captured traces ..25
4.2.2.4 Analysis of ATTILA’s outputs..28

4.3 DISCUSSION ABOUT ATTILA.. 32

5. CONCLUSIONS AND FUTURE WORK ... 34

REFERENCES... 36

APPENDIX A: DEFINITIONS AND ABBREVIATIONS.......... 38

APPENDIX B: OUTPUT STATISTIC VARIABLES 50

APPENDIX C: PARAMETERS ... 55

APPENDIX D: PARALLELIZATION OF ATTILA 57

62 Miguel Ángel Martínez del Amor

Figures table

Figure 1.1… Page 3.
Figure 1.2… Page 3.
Figure 1.3… Page 5.

Figure 3.1… Page 8.
Figure 3.2… Page 10.
Figure 3.3… Page 14.
Figure 3.4… Page 15.
Figure 3.5… Page 16.
Figure 3.6… Page 17.

Figure 4.1… Page 21.
Figure 4.2… Pages 23- 24.
Figure 4.3… Page 25.
Figure 4.4… Pages 27-28.
Figure 4.5… Pages 29-39.
Figure 4.6… Pages 31-32.

Figure C.1… Page 55.

Figure D.1… Page 57.
Figure D.2… Page 58.
Figure D.3… Page 59.
Figure D.4… Page 60.

