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Abstract. As GPUs’ technology grow more and more, new simulators are 
needed to help on the task of designing new architectures. Simulators have 
several advantages compared to an implementation directly in hardware, so they 
are very useful in GPU development. ATTILA is a new GPU simulator that was 
born to provide a framework for working with real OpenGL applications, 
simulating at the same time a GPU that has an architecture similar to the current 
designs of the major GPU vendors like NVIDIA or ATI. This architecture is 
highly configurable, and also ATTILA gives a lot of statistics and information 
about what occurred into the simulated GPU during the execution. This project 
will explain the main aspects of this simulator, with an evaluation of this tool 
that is young but powerful and helpful for researchers and developers of new 
GPUs. 

1. Introduction 

The main brain of computers is the CPU (Central Processing Unit), where the 
instructions are executed, manipulating by this way the data stored in memory. But 
with the new applications that demand even more resources, the CPU is becoming a 
bottleneck. There is a lot of works about how to improve the CPI (Cycles per 
Instruction) which is a good parameter for making comparisons between uniprocessor 
architectures, and the search for parallelism is the best way to do it. It is possible to 
parallelize the execution of each instruction by performing this execution in stages. In 
this manner, when an instruction is in the second stage, the next operation can start 
with the first stage, so an instruction can start before finish the last one. It is similar to 
the Henry Ford method for a car factory where the construction pipeline is divided in 
stages and one car can be only in each stage (never two in the same stage), now 
imagine that a car is an instruction and the factory is the CPU. It is easy to 
demonstrate that CPI value can achieve 1 with this method, which is the perfect and 
theoretical value although it was never achieved; these techniques and also all the 
stages that each instruction is divided in are called pipeline. If we try to use the 
parallelism between instructions (loops, threads …), it is possible to issue more than 
one instruction per cycle, so the CPI can be less than one. It can be done by using 
multiple pipelines for multiple instructions, and neither it was possible to achieve a 
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perfect value less than 1. Superscalar and VLIW architectures are examples about this 
kind of exploit parallelism. 

Moreover, thread and process parallelism are used by multiprocessor architectures 
as SMT (Simultaneous Multi Threading, several threads can be executed at the same 
time in the same processor), UMA (Uniform Memory Access, also called SMP, all 
processor share the main memory) and NUMA (Non Uniform Memory Access, each 
processor has a part of memory). But all of these kinds of parallelism have limits, and 
in some fields it has still some troubles to find them. Other problem that CPUs have is 
that they are for general purpose, so they must consider all the possibilities making 
more difficult the optimization of code execution. A solution for the last feature is to 
make others specific systems that can help the CPU to improve the execution time. 

In computer graphics the CPU needs to delegate to the GPU the calculations of 
graphics instructions and data. GPU is a specific purpose processor that is optimized 
for working with graphics which are based on streaming (continuous source of data, 
like buffers or arrays of elements). There was many works trying to make a general 
purpose CPU that could work with stream data, the first one was on the 70’s and was 
called Vector processor. Nowadays this idea is used in technologies like MMX, SSE 
or 3DNOW that help the CPU with graphics calculations. The key of the 
optimizations that the stream specific purpose architecture provides is based on the 
independence between the elements of a stream. In this manner, if a unit needs the 
result stream from a previous one, it does not have to wait until this previous unit 
finish with the entire stream, instead the unit can start to make calculations with one 
element of the stream at the same time that the previous unit sends the processed 
element. It means that there is an overlapping between instructions that share 
resources, and it is really powerful for working with streams. Graphic processors 
(GPU, Graphic Processor Unit) use these kind of architectures based on streaming 
processing, and these processors are placed outside the CPU for performing the 
complex graphic calculations and being the responsible of refreshing the screen with 
new frames in parallel with the execution of instructions on the CPU. The 
technologies mentioned before (MMX, SSE or 3DNOW) never replace a GPU; they 
just help the CPU and GPU to perform multimedia and graphic operations. 

However, CPU and GPU have to cooperate if they want that the system shows 
good results with graphic operations. As it can be seen in figure 1.1 (next page), CPU 
and GPU are interconnected by the North Bridge, but the real communication is made 
by the system memory (DRAM). So the CPU puts data and code into the memory 
while the GPU takes this data, makes the operations and sends the information to the 
output display. 

The most complex graphic calculations are about 3D graphics on real time (i.e. 
videogames), so newer GPUs are optimized for this kind of applications. The pipeline 
of 3D graphics is based on triangle and texture streaming, which means that the main 
goal is to transform 3D data (coordinates of triangle models, easy to understand for 
programmers) into pixels that are displayed on the 2D screen. 
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Figure 1.1 The place of the GPU into a typical computer system (from [3]). 

That is a Nvidia implementation for the GeForce architecture. 
 
Figure 1.2 shows a general pipeline architecture for 3D data. The input of the GPU 

is 3D object coordinates (mainly from triangles) that go to the Geometry Stage where 
the 3D coordinates are translated to the space of 2D coordinates of the display. In the 
last stage, Rendering, the correct colour of each pixel is calculated in base of the 
associated colour, light hitting, textures and other effects as alpha (translucent) and 
fog of each Geometry stage’s output (also called fragments). Furthermore, the 
Geometry stage can be divided into 2 stages. The first one is the Transform and 
Lighting stage which is the process of displaying a three-dimensional object onto a 
two-dimensional screen, providing lighting effects to the scene. The Rasterization 
(also called Triangle Setup in [1]) sets up and clip the triangle, and makes fragments 
for the next stages (Rendering). A fragment is not still a pixel (sometimes these two 
terms are not distinguished, like in Direct3D specification), it has attributes like 
colour and depth, and multiple fragments correspond to one pixel (i.e. when using 
blending or transparency functions). Application tasks (AI, camera, interaction …) 
and scene level task (collisions …) are always performed by the CPU (software), 
because these are general purpose programs. 

 

 
Figure 1.2 Abstract architecture of the graphic pipeline. 
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Not all of these stages were implemented on the first Graphic Card that just 
displayed the lines into the screen, so the other stages were made as a software 
process by the CPU. With the evolution of transistors and hardware, it was possible to 
implement the pipeline into the GPU; meanwhile the CPU just works with the 
application tasks and scene level physics, giving to the GPU triangle coordinates from 
the results. 

The most complex stage and the bottleneck of GPU is the Rendering Stage (it 
calculates the colour and position of pixels). At the beginning GPUs were able to 
output only one pixel in several cycles. Because of this bottleneck, CPUs were able to 
output more triangles than the GPU could handle. Two solutions were taken: 
pipelining and parallelism. Nowadays a GPU has about 16 parallel pipelined 
rendering processors, it was very easy because rendering 3D graphics is a repetitive 
task and it is possible to do with different pixels at the same time. With these changes, 
the CPU and the access to 3D data into the memory is becoming the bottleneck of 
graphics rendering, so the best solution for this is that the GPU takes more workload 
than the CPU, in this case, place the stage Transform and lighting into the GPU and 
improve the access of the GPU to the memory (i.e. PCI Express).  

The pipeline with all the graphics stages implemented on hardware was called 
fixed function pipeline. Although it was faster, the implementation of all the pipeline 
on hardware had a constant behaviour, that is, it always performs the same operations 
with 3D data. Consequently, this pipeline was not flexible for graphic programmers in 
case of, for example, changing the API or making a new kind of operation with the 
vertices. 

The solution (and nowadays the most used method) was to develop a 
programmable pipeline where the GPU can execute small programs called shaders 
over the vertices and fragments. Figure 1.3 (next page) shows a general view of this 
new programmable graphic pipeline. A shader is a piece of code that program certain 
parts of the graphics pipeline, and there are two types: vertex shaders (replace 
Transform and Lighting stage) and fragment shaders (replace the texturing, colour 
sum and fog). These shader codes use low-level languages, such as 
ARB_Vertex_Program, ARB_Fragment_Program and Direct3D 9 Shading languages. 
However there are high-level languages with compilers that make easy the complex 
programming task. Some of the high-level languages are Cg1 and GLSlang2. 

There are a widely amount of work research for future GPUs. Now it is possible to 
execute general purpose code using a GPU as a transformation to streams (i.e. 
GPGPU project in www.gpgpu.org), but sometimes it is not more efficient than a 
CPU because there are some limitations as said in [2]. Some new compilers, like the 
BrookGPU project [10], try to help with the task of making general purpose 
applications for GPU, but they are still in development. Other future work is to 
implement unified shader units on the GPU, that is, join vertex and fragments units in 
a general one. Vertex and fragment shaders are so similar and their union can be 
performed relatively easy. It provides better performance in some cases; for example, 

                                                           
1 Cg is a high-level shading language developed by NVIDIA. Homepage is at 

http://developer.nvidia.com/page/cg_main.html.  
2 GLSlang is a high-level shading language that will be introduced with OpenGL 2.0. 

Homepage is at http://developer.3dlabs.com/documents/glslmanpage_index.htm.  
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when it is needed more vertex shaders than fragment units and then, it is possible to 
share resources because of the use of unified shader units. Future shading languages 
will support this novel architecture, like Shader Model 4.0 in Direct3D and GLSlang 
in OpenGL 2.0. 

 

 
(a) 

 
(b) 

Figure 1.3 Overview of the GPU pipeline. (a) A fixed function pipeline. (b) A 
programmable function pipeline, with vertex and fragment shader units. 

 
As it can be seen, the task of developing a novel architecture for GPU purpose is 

hard, like for CPU purpose is. Simulators are a good tool that can help to GPU 
developers to investigate new technologies without a physical implementation. A new 
simulator was done by the department of computer architecture of polytechnic 
university of Catalonia, with almost all the code public. The name of the project and 
also of the simulator is ATTILA. This simulator is cycle accurate and execution 
driven, and provides a wide set of statistics that permits the researcher to analyse the 
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new architecture. The urge that this simulator can achieve for the development and 
test of new GPU architectures has to be considered, that is the reason because this 
report makes an evaluation of this tool. 

In section 2 it will be commented some previous related works. Section 3 will 
explain in detail the simulator: architectures that ATTILA can simulate, an 
introduction to the source code and statistics that it provides. Section 4 will make an 
evaluation of the simulator, executing testprograms of OpenGL and a discussion of 
the weak and strong sides of ATTILA. Finally, section 5 gives a general conclusion of 
the report and comments some possible work to continue in a not so far future. 

At the end of this paper there are also four appendices. Appendix A contains a 
small dictionary of abbreviations and terms that can help to the understanding of this 
paper. So if one does not know the meaning of a word, just look for it in Appendix A. 
Appendix B and C contains more information and details about the simulator. The 
former (B) has the collection of statistics that ATTILA provides; the latter (C) shows 
an introduction to the configuration of ATTILA by parameters. As a bonus for this 
paper, Appendix D comments how ATTILA can improve the simulation time by 
parallelizing some code. 

2. Antecedents and related work 

The previous works about ATTILA are the presentations and works made by the 
authors, which are Victor Moya del Barrio, Carlos González, Jordi Roca, Chema Solís 
and Agustín Fernández from the department of computer architecture of the 
Polytechnic University of Catalonia (Spain), and Roger Espasa from Intel in 
Barcelona. These works can be found on [8]. “An End to End, Highly Detailed 
Simulator for the ATILA GPU Microarchitecture” [5] and “ATTILA: A cycle-Level 
Execution-Driven Simulator for Modern GPU Architectures” [6] explain the 
simulator on detail (the most used for this paper). [11], [12] and [13] are works that 
uses ATTILA as the basis for their experiments (includes a little explanation of the 
simulator). 

But ATTILA is not the only choice for simulate GPU architectures. There are 
previous frameworks like QSilver (see [14] or the home page 
http://qsilver.cs.virginia.edu/, work from the University of Virginia), SM (inside the 
project Sh, which is a metaprogramming language for programmable GPUs (see 
home page at http://libsh.org/index.html), one interesting paper that talks about SM is 
[15]) and one developed by NVIDIA, NVEmulate (of course it can simulate only 
NVIDIA architectures, in special, GeForce Series, but support GLSlang and a wide 
set of OpenGL, the webpage is at http://developer.nvidia.com/object/nvemulate.html).  
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3. ATTILA in detail 

3.1 GPU simulated architecture 

The architectures that ATTILA can simulate are based on a common pipeline that 
can support real 3D graphic data going through its stages. This baseline pipeline uses 
techniques developed from the main GPUs manufacturers such as ATI and NVIDIA, 
and others from many researchers at universities; it is based on the OpenGL 
specification, in the manner that D3D (Direct3D) is not supported yet (but it is being 
in development). By this way, the pipeline is ready to work with real data like modern 
GPUs do, but for simplicity, some stages was not implemented such as the fog and 
alpha stages (they are simulated by fragment shader programs). This section makes an 
overview of the baseline pipeline that ATTILA can simulate with an explanation of 
the general architecture simulated (to know how to configure it with parameters, see 
Appendix C) and a short explanation of the implementation on code (as a beginning 
for configure a whole new pipeline). 

3.1.1 Architectures based on the baseline pipeline 
 

For a good understanding, on figure 3.1 (next page) there is a scheme of the 
simulated pipeline where the red lines (or lines without arrows) are control wires and 
the data go through the black wires (or lines with arrows). It is supposed that between 
two connected stages by data wires there is a buffer where the first stage stores its 
outputs and the next takes its inputs. It implies that each stage run independently in 
terms of synchronization from the others, in other words, each stage can work with 
different latencies without waiting to the previous stage. Below the pipeline there are 
details of the boxes ROPz (Z and Stencil tests), Shader and ROPc (color write), and 
following the scheme there is an explanation of each stage of the pipeline, that is, the 
task that each box has.  
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Figure 3.1 Scheme of the ATTILA supported pipeline (from [6]). 

 
- Command processor: controls (red wires) the whole pipeline, buffers 

and the transactions of batches (set of vertices) from the system memory 
to the GPU memory, and receives the commands sent from the processor 
and forwards them to the pipeline. 

- Vertex fetch or Streamer: requests vertex input attributes and converts 
them into internal format (4 component 32 bit float point vectors) for the 
vertex shader. It is supported both plain vertex attribute buffers and 
indexed vertex buffers. The former is a natural stream of vertices like 
arrays that can be stored in internal buffers implemented by a full 
associative cache. The latter is used for the reuse when a vertex is shared 
between two or more adjacent triangles by associating an index to each 
one. For example when the TRIANGLE_FAN mode in OpenGL is used 
and one vertex is shared between all the triangles defined. A cache is 
used to reuse these indexed vertices by using a connection with the 
output of the vertex shader (to store post-calculated shading vertices), 
and then, avoid repetitive calculations when using shared vertices. 

- Vertex shader: is the programmable unit explained in the introduction. 
It takes a batch (a stream of vertices) processed by the Streamer and 
executes a vertex shader program (provided by the Command Processor) 
over them. The vertex shader unit was implemented using as reference 
the ARB_vertex_program specification, so for supporting Direct3D it is 
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needed also to change the shader implementation. However, not all the 
features of the ARB specification are supported, but the implemented 
ones are enough for simulating frames from novel games like Doom3 or 
Quake4.  

The vertex shader units can be shared with the fragment shaders 
ones, that is, it can be used a unified shader model. In this way, there are 
mainly two simulator binaries: one that supports unified shader units and 
another one that supports separated shader units. Because vertex and 
fragment shaders are similar, it will be explained the whole shader unit 
as unified. So for the understanding of the separated model, it is enough 
to divide the part of vertex shader in one group of units and the part of 
fragment shaders in other. 

o Shader units: This architecture supports unified shader units 
where, as mentioned so far, the units used for vertex and 
fragment shading are the same (it is optional because there is 
other version of the simulator for non-unified shader 
architecture). This unit has an ALU based on SIMD 
architecture of 4 component 32 bit float point vectors and scalar 
ALUs to support fragment shading.  

The shader on detail can be seen on the bottom of figure 
3.1, where there are two separated parts, one with the ALU and 
register file, and another with the texture units. Vertex Shaders 
use only the ALU and register file, whereas Fragment Shaders 
use the whole unit (ALU, texture ALU and texture cache). As 
each shader unit can support the execution of several threads at 
once, they can execute vertex and fragment programs at the 
same time without interaction between them (thread 
information contains if it is a vertex or a fragment shader and 
the execution is performed only if there is free resources in the 
shader unit).  

A small cache is used to reduce the usage of the memory 
bandwidth for texture accesses and it is based on the texture 
cache architectures from Hakura and Gupta research [7], using 
a 256 byte cache line that can store 8x8 32 bits Texel tile, with 
4 sets and 16 lines per set that implies a cache of 16 KBs. As 
said before, shader units are based on the ARB ISA (both 
ARB_Vertex_program and ARB_Fragment_program) that 
comprises an ALU and four registers files (as can be seen on 
figure 3.2 (next page)): for input attributes (Read Only), for 
output attributes (Write Only), temporal registers (Read/Write) 
and for constants (Read Only, with values configured just 
before the simulation). Each register is a 4 component 32 bits 
float point vector (the variable type of the ARB), in exception 
of the Temporal Bank that store 2 components 32 bits vectors. 
Furthermore, it was defined others 4 kinds of registers files: 
Address Register Bank (store integers), Condition Code 
Register (store an integer), Boolean Constant Bank (store 
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Booleans) and Texture Sampler (defines texture unit in usage). 
The number of registers per bank depends on the kind of 
shader and on the shader version, thus having five types that a 
shader unit can represent: Fragment or Vertex Shader based on 
model version 1.0, Fragment or Vertex Shader based on model 
version 2.0 and unified shader. For example, the number of 
registers for the constant bank is 96 in vertex shader 1.0 and 
256 in the version 2.0.  

One shader can fetch more than one instruction (configured 
as a parameter) and the shader architecture implements 
multithreading, hiding the latencies that instructions and 
texture memory access have. The required number of threads 
depends on the kind of shader: 12 threads are enough for vertex 
shader, but fragment shader needs up to 112 threads because 
the leverage of texture accesses’ large latencies. Also the 
number of physical instruction registers (instruction memory 
size) varies, from 96 to 448 in that order.  

 

 
Figure 3.2 Unified Shader model based on the ARB specification (from [6]). 

 
- Primitive Assembly: assembles the vertices from the vertex shader 

output into rendering primitives. It can be seen on figure 3.1, below the 
Vertex Fetch box. It supports five kinds of OpenGL triangle primitives: 
lists, fans, strips, quad lists, and quad strips, but it can not support lines 
or points yet what implies that the primitives points, lines and lines strip 
will be ignored and not showed into the output. This unit uses a small 
memory to store the last vertices and assemble the new object (triangle), 
and also it uses some specific registers that controls this queue. 

- Clipper unit : selects the triangles that are completely or partially inside 
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the view frustum3 volume. It can be seen on figure 3.1, below the 
Primitive Assembly box, called as Clipping. It uses a buffer for the 
clipped triangles and several registers as clippedTriangles (store the 
count of triangles clipped) and frustumClip that works as a flag. 

- Rasterization: makes fragments from the culled triangles. It comprises 
the Triangle Setup, Fragment Generator, Hierarchical Z Test and the 
Interpolator. However, as seen in the pipeline from the above scheme 
(figure 3.1), Triangle Setup, Hierarchical Z, Z and Stencil tests and 
Interpolator stages are outside the Rasterization stage, but actually they 
are all together in the same box on the source code. This stage is 
represented in figure 3.1 as a box called Rasterization, placed below the 
Triangle Setup box. 

o Triangle Setup: calculates several equations in order to 
rasterize the primitives and do interpolation, these are, the 
triangle edge equations and depth interpolation equation. 

o Fragment Generator: uses an iterative algorithm for 
transforming the area of a triangle projected on the viewport to 
fragments. Each fragment will represent a pixel, but it is not a 
pixel yet, for example it has some attributes as 2D screen 
coordinates, value of the three edge equations of the respective 
triangle, a cull flag and the depth (for Z tests).  

Fragments are generated in a set called tile that is useful for 
achieving performance with the access to the memory using the 
locality behavior and also for the implementation of the Z 
stages (Hierarchical Z buffer and Z compression). The tile’s 
size can be configured in 3 levels: the highest can be set to the 
fit of a memory page, the middle level to the fit of a single 
fragment processing unit in the pipeline and the smallest to the 
fit of a HZ block or framebuffer cache lines. The middle and 
smallest level are set to 8x8 fragments. Moreover, there are two 
different implementations of Fragment Generator, one based on 
the algorithm described for Neon architecture and the recursive 
rasterization algorithm described by McCool.  

o Hierarchical Z : removes non visible fragments at a very fast 
rate as 8x8 fragments per cycle in the default configuration. 
Non visible fragments can be the ones culled by the fragment 
generator or fragments outside the scissor window. This stage 
can be removed easily just changing a value of a configurator 
parameter (called DisableHZ). For achieving this fast rate, it is 
used a cache and an on chip buffer that needs just 256KB for 
resolutions of 4096x4096 with 8 bits of Z precision. After that, 
the fragment tiles are divided into fragment quads (2x2 
fragments) for the next stages. As we can see on figure 3.1, 

                                                           
3 View frustum: In 3D computer graphics, the viewing frustum or view frustum is the region 

of space in the modeled world that may appear on the screen; it is the field of view of the 
notional camera. (Source: www.wikipedia.org).  
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there are two ways where the outputs of this stage can go: to the 
Z and Stencil tests or to the Shaders. The former is the default 
option; the latter is for supporting the OpenGL standard when 
using alpha and fog modes, where it is supposed that the alpha 
testing is before the Z and Stencil tests but after fragment 
shading. The problem is that alpha and fog calculations are 
made by a shader, so Shader Units (running as Fragment 
Shaders) can be seen as the Alpha and Fog stages not 
implemented. Then, when alpha and/or fog are used, the output 
of the HZ (Hierarchical Z) goes to the alpha unit (that is, the 
discontinuous line to Shader units) and the outputs of Shader 
units come back to the Z and Stencil tests.  

o Z and Stencil tests: makes a test of fragments using a buffer 
for Stencil with 8 bits per element and a buffer for Z with 24 
bits. These tests are based on the OpenGL specification, where 
Stencil culls the fragments if they have the right value into the 
buffer (configured by the OpenGL code), and Z buffer makes a 
strict test with the depth value of each fragment. The Z buffer is 
stored on the GPU memory, so a cache and a compression 
algorithm are placed to reduce bandwidth usage: the Z cache 
has a size of 16KB, with 16 lines, 256 Bytes per line and 4 
associatively; and the compression algorithm achieves ratios of 
1:2 or 1:4 without lose information. This stage is also called 
early Z because its use before the shader unit. This stage is 
represented by the ROPz box in figure 3.1, just after the 
Hierarchical Z stage.  

o Interpolator unit : interpolates the attributes of the fragment 
that passes the Z and Stencil tests across the primitive being 
rendered, what is something necessary for fragment shader 
operations. This stage uses the perspective corrected linear 
interpolation algorithm described on the OpenGL API for 
varying variables on the OpenGL Shading language.  

- Fragment Shader: when unified shader model is selected, it is used the 
whole shader unit explained before, but if it is working with a non 
unified shader model, the Fragment Shader unit are also the same of the 
whole unified shader unit while the Vertex Shader unit are just the 
Shader Unit without the texture components (in the implementation code 
there is only one shader unit that implements the unified model).  

- Color Write Unit : updates the framebuffer, where the outputs frames 
are stored waiting for being drawn into the screen. The architecture of 
this unit is similar to the Z and Stencil tests Unit, where the framebuffer 
is stored into the GPU memory and then, it is used a cache with the same 
configuration of the Z cache. Also it is supported a fast clear operation 
of the buffer. This stage is represented as the ROPc box in figure 3.1.  

- DAC: is the unit in charge of dumping the framebuffer into the output. 
In real GPUs the output is the screen, in the simulator the output is a file 
.ppm (see 3.3). 
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- Memory Controller : makes an interface with the GPU memory and 
system memory. The access to the GPU memory is based on the 
GDDR3 standard using a width of 64 bytes per 4 cycles; however the 
effective bandwidth is 64 bytes per cycle with 4 channels used on the 
baseline pipeline. On the other hand, the access to the system memory 
can be simulated with AGP or PCI Express x16 bus (two channels for 
read and write).  

 
In summary, the units of the pipeline that access to the memory are: 

CommandProcessor (it reads the commands that the CPU sends to the GPU), 
Streamer (it fetches and loads the vertices sent from the CPU), ZSTencilTest (the 
ZBuffer is stored on memory), ColorWrite (the framebuffer is stored on memory), 
DAC (it dumps the final frame to a file (simulation) or to the video memory), and 
TextureUnit (it access to the texture memory map).  

The pipeline explained in this section is the baseline pipeline that the simulator 
supports. It is possible to configure the pipeline by parameters, for example, in 
number of units, latencies or configuration of caches and memory (see Appendix C 
for further information), but none of these parameters implies a depth or novel change 
to the pipeline, and if it is needed to change the pipeline in the manner of include a 
new rasterization algorithm (for example the Direct 3D rasterizer implementation) or 
place a new stage on the pipeline it is sure that the simulator’s source code must be 
modified. 

3.1.2 Architectures not based on the baseline pipeline: Introduction to the source 
code 
 

In order to simulate a new architecture that differs from the baseline pipeline and 
the pipeline changed by the parameters supported by the simulator, it is needed to 
make a new code for that. ATTILA was also implemented taking the idea of future 
modifications in mind. The code is object-oriented (using the C++ language) and 
implements a model of boxes and signals that provides an abstraction level helpful for 
developers. Figure 3.3 (next page) represents the reduced class diagram where it can 
be seen the three main classes: Box, Signal and Statistics.  

Statistics is an abstract class that is based on keeping events using the method 
inc(). The NumericStatistics class is defined to store the number of times of one or 
more events. All the instances of Statistics are managed by other class called 
StatisticsManager, where the Statistics objects are stored, dumps theirs values into the 
output file in one cycle (by the method clock()) and search by name into the set. Each 
box (and also the caches) can use several Statistics instances for measuring 
information. For further information about the Statistics that ATTILA supports, see 
section 3.2 and Appendix B. 

Signal is a class that models a buffer with a configurable latency; it means that 
when data is wrote on the buffer it is not possible to read it some cycles later. It is 
common that each box has Signal instances for input and output. Usually there are 
only two boxes related with one signal, one that write data (this signal is an output for 
it) and another that read data (this signal is an input for it). The class SignalBinder 
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manages all Signal instances on the system, where it is possible to dump all the Signal 
states or also it is possible to search a Signal by name. 

 

 
Figure 3.3 Abstract class diagram of ATTILA simulator. 

 
The stages and other functions of the pipeline are implemented as subclasses of 

Box. A Box object has always input and output signals and many Statistics objects, 
thus, it is possible to say that these three classes (Box, Signal and Statistics) are the 
ingredients for a new pipeline.  

A new functionality in the architecture can be implemented as a Box subclass, 
without varying so much the rest of ATTILA’s code. Therefore, the skeleton of the 
pipeline is defined when the signals are associated to each box. Every Signal object 
has a name that acts as identifier, and each box that wants to use a signal have to 
know the associated name. By this way, two connected boxes have to be agree on the 
name of the share signal, hence the writer box that has the signal as output has to call 
the method newOutputSignal (in Box class), and the reader box the newInputSignal. 
These functions register a signal into the SignalBinder object on the first call, but on 
the next, if the signal is already registered it returns the respective Signal object. 

Also this order can be seen easily again on the synchronization of the stages, that 
is, the execution of one cycle by each stage. The execution of each stage is done 
sequentially using the method clock() that Box class has; firstly one stage executes a 
cycle, and when this stage finish, the next one can execute its cycle. This order has to 
respect the organization defined by the connections with signals between the boxes, if 
not, the simulation will crash because the data processed in one stage can not go to the 
next, in exception of parallel stages or just forwarded stages (forward the information 
but does not change any data). The sequential execution of the stages is done by the 
simulation loop which structure is showed in figure 3.4. This portion of code shows a 
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non-unified architecture where several vertex and fragment shader units are simulated 
by arrays of Box objects.  

 

 
Figure 3.4 Main loop of the execution of the simulator. 

3.2 Statistics and measures provided 

The most important component of ATTILA is, undoubtedly, the wide kind of 
statistics that it provides. It is essential because statistics permit to analyze the results 
of the simulations, in other words, the main goal of ATTILA is to simulate a GPU 
architecture, test it with graphic data from real applications and analyze the tests using 
the collection of several statistics about the simulated architecture. ATTILA provides 
up to 204 different statistic variables that measure all the components of the pipeline. 

When a simulation finishes, the statistics are stored into an output file called 
stats.csv. It can be opened with Microsoft Excel or compatible (i.e. Open Office Calc 



16      Miguel Ángel Martínez del Amor 

or an editor as Notepad) and has a structure of columns: each column represents the 
values of each statistic variable, and each row represents the range of cycles showed 
into the first column. A statistic variable is a counter that characterizes the number of 
times an event happened inside a range of cycles. Figure 3.5 shows the first column of 
stats.csv (the range of cycles) and the statistic variable BlockedThreads. For example, 
the first value of BlockedThreads, 42048, means that between the cycles 0 and 9999, 
there were 42048 blocked threads. 

 
Cycles BlockedThreads_ShF-FS0 
0..9999 42048 
10000..19999 55032 
20000..29999 10632 
30000..39999 17472 
40000..49999 13824 
50000..59999 53952 
60000..69999 46848 
70000..79999 26112 
80000..89999 32640 
90000..99999 19200 
100000..109999 21696 
110000..119999 19848 
120000..129999 28920 
130000..139999 0 

Figure 3.5. Example of columns from file stats.csv. 
 
The format of a variable’s name is like this: 

what_unit-id 
Where “what” means what is measured (on the last example, BlockedThreads), 

“unit” means the unit where the measure is applied (ShF is Fragment Shader) and “id” 
means the instance of the unit measured (FS0 is the Fragment Shader with id 0). 

In Appendix B there are a summary of the statistic variables and units that 
ATTILA can measure, from hits and misses of the several caches to culled fragments. 
It can be showed that there are a wide range of variables that measure the behavior of 
the simulated architecture. As explained in section 3.1.2, it is also possible to 
implement your own statistic variables in case you need something else. 

3.3 ATTILA’s framework 

One of the purposes of the ATTILA project was to execute real applications with 
the simulator, as a real GPU does in the real life. To achieve this, the authors 
developed a framework that permits the simulator to do tests with real OpenGL 
applications (a Direct3D framework is in construction). This framework has 4 stages 
and it is composed of 6 elements, as seen on figure 3.6. 
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Figure 3.6. Adaptation of the diagram of OpenGL ATTILA’s framework 

from [6] 
 
The first stage is called Collect, and it is the step where the data from the real 

applications is captured as a trace file. The element used here is GLInterceptor that is 
composed in others two elements: opengl32.dll and GLIConfig.ini. The latter is the 
configuration file for GLInterceptor, and the former is a library that will be used by 
the real application as the real OpenGL library. This library dumps all the OpenGL 
API calls into a trace file, and also forwards the calls to the real library, permitting to 
continue with the application’s execution. The way to use it is just to copy the two 
files commented above to the same folder of the application’s binary. See that the 
library is a .dll file, which means that it can be used only in a Windows platform. 
Only the Simulate and Analyze stages can be done with Linux platforms. After the 
execution of the application, three files will be created: tracefile.txt (that has the API 
function calls and parameters, for example, glBegin(GL_QUADS)), 
BufferDescriptors.dat (that keeps the buffers pointed by a pointer parameter (the 
value of the pointer is now an identifier that index in the Buffer Descriptors file) and 
MemoryRegions.dat (that stores the data passed as arrays in a number of OpenGL 
API calls (glTexImage2D for example)). 

The second stage is called Verify, and it is where a verification of the trace file is 
performed. It ought to be done to verify the correctness of the traces before the 
execution with the simulator. The element GLPlayer is used in this stage and it 
permits to run the trace calls into the real OpenGL driver again. Then, it is possible to 
see if the trace was well done. GLPlayer has two elements: GLPlayer.exe and 
GLPConfig.ini. The former is the program that executes the trace and the latter is the 
configuration file. 

The third stage is called Simulate. Here there are a distinction between Linux, 
Cygwin and Mingw32, and Visual Basic environments. If a Visual Basic system is 
used, the ATTILA OpenGL Driver (gllib.a) will be utilized, if not, the gl2attila tool 
has to be used. Both of them have the same behaviour: translate the OpenGL calls 
from the trace into AGP transactions for ATTILA. The driver permits the simulator to 
execute the trace directly, while gl2attila is a program that translates the OpenGL 
trace to an AGP transaction trace file that the simulator can execute. It is 
recommended to place the simulator (unified or non-unified version) and 
configuration file (renamed to bGPU.ini) into the same folder of the traces (or vice 
versa, place the trace files into the simulator folder) or changes the configuration file. 
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The forth stage is called Analyze, and it is where the simulator outputs are 
analyzed. The output files that the simulator provides in the third stage involve the 
frame dumped (framex.pnm), the statistics (stats.csv, explained on section 3.2) and 
the debug file (Signals in figure 3.6, that corresponds to the file signaltrace.txt, the 
documentation does not explained yet how to use it). This is the stage where the 
developers or researchers have to take the information from the simulator and make 
their conclusions. 

4. Evaluation of the simulator 

The next tests was run in a bounds of a system that has these features: processor 
Intel Pentium M750 at 1,86Ghz, 2MB of Cache L2, 1024 MB of memory with 
technology DDR2 and a graphic card ATI MOBILITY RADEON X600SE with 256 
MB HyperMemory (128 MB shared and 128 MB dedicated). The environment used 
was Cygwin with a Windows XP SP2 Operating System. In every simulation, the 
ATTILA version was the one from 13/01/07 (17/01/07 for Prey traces) and the 
configuration file was ATTILA-rei-580.ini (see folder confs). 

4.1 Installation of ATTILA 

ATTILA simulator is a non-commercial simulator. This product is distributed by 
the authors, and nowadays it can be found in the ATTILA’s log [8]. There are mainly 
two distributions: with just the binaries (plus GLPlayer and GLInterceptor) and with 
only the source code of the simulator (no GLPlayer neither GLInterceptor included). 
This section will explain how to use and compile the simulator distribution built on 
October of 2006. This version had some problems when compiling, nowadays fixed 
by updates from December of 2006, explained at the end of the section too. 

The installation and usage of the binaries is very simple, just decompress the file 
and then use the folder according to the system used, either Linux (folder 
“binpack/linux”) or Windows (folders “binpack/cygwin”, “binpack/mingw32” or 
“binpack/vs2005”). Each folder has the binaries bGPU and bGPU-Uni, the former is 
the binary that corresponds to the implementation of a GPU with non-unified shaders, 
and the latter corresponds to unified shader architecture. But ATTILA’s framework 
has more elements than the simulator, like GLInterceptor and GLPlayer that are used 
for capturing the OpenGL calls in a trace and replay them, respectively (more detail 
on the next section). The files for these two elements are placed in the folder 
“binpack/vs2005” that limits the use of them only in a Windows system (there are not 
files for Linux yet). The explanation of the parameters and way of use are in the file 
USAGE.txt, for each element provided for the ATTILA´s framework. 

The installation of the source code is a bit more complex, but not difficult. The 
most important thing is to be sure that we are using an operating system and 
environment compatible with the simulator, that is: Windows with Cygwin software 
installed, Windows with Mingw32 software installed, Windows with Visual Studio 
2005 installed or Linux using a gcc version 3.X (not later), all of them running in a 32 
bit system. If the simulator is tried to be compiled into another environment, it is very 
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probable that it can not. The problem of this low portability is due to the pre-compiled 
file gllib.a, provided to simulate an OpenGL driver for the simulated graphic card. 
The code of this library is not public available, so the compilation of the simulator is 
restricted to the different versions of gllib.a found on the folder “lib”. The way of 
choosing one is to change the name of the right file according to the system used to 
gllib.a, in the same directory “lib”. 

The compilation of the simulator depends on the environment used: when Visual 
Basic 2005 just open the created project on the folder win32 and compile it with the 
options that Visual Basic provides; when Linux, Cygwin or Mingw32 just edit the file 
makefile.defs in the manner that the variable GPU3DHOME has as value the absolute 
address of the folder where the files are placed. The creation of the executable files is 
performed by makefile when a non Visual Basic environment is used. This makefile 
has several options that are used like: 

make exec mode 
make is the Unix instruction for executing a makefile. The parameter exec can be 

bGPU (compile only the non-unified shader simulator version), bGPU-uni (compile 
only the unified shader simulator version) or all (compile both versions). The 
parameter mode indicates the format of the final executable files that can be debug 
(the executable file can be debugged (use of the gcc option –g)), profiling (it is the 
simple version of the simulator), optimized (it is used the optimization options that 
gcc provides) or verbose (the simulator will give all the execution information in the 
standard output). 

At the date of this current report there was a new version built on December of 
2006 (see [8]) that help to compile the simulator with Linux in an easier and more 
portable way than the October version explained in this section. In this version, the 
library gllib.a is not used in Linux, Cygwin and Mingw32 anymore, where there were 
portability problems in special with Linux environments. The way to proceed to 
compile is the same than before, in exception of choosing any gllib library because 
now the job of this library is performed by a program called gl2attila (provided into 
the binaries distribution). The previous library translates the OpenGL API calls to 
AGP transactions, and now gl2attila translates the OpenGL API call trace into an 
AGP transaction trace file, which can be used directly as an input for the simulator. 

4.2 Running OpenGL testprograms on ATTILA 

4.2.1 Testprograms selected 
 

The best way to understand ATTILA and one goal of this current report is to work 
with the simulator. As explained on section 3.3, ATTILA framework is prepared to 
work with applications that use the OpenGL API, which means that programs that use 
another API different to OpenGL as Direct3D or OpenGL ES (OpenGL for 
Embedded Systems) is not going to work. GLInterceptor is able to trace only OpenGL 
API calls by the substitution of the real OpenGL library with the provided library. 
This provided library (opengl32.dll, see section 3.3) cannot capture Direct3D or 
OpenGL ES because mainly two reasons: an application that uses OpenGL ES, for 
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example, is not going to search and use the file opengl32.dll, and the libraries 
OpenGL and OpenGL ES do not have the same entries or format in several functions, 
and it implies that it does not work anymore with the current framework for OpenGL 
(it is needed to develop a new framework for this library (see the explanation of the 
author in [9]), for example, the one for Direct3D is under construction). 

However, the task of choosing OpenGL testprograms is not easy. The problem is 
that GLInterceptor (GLPlayer and the simulator too) does not support calls that 
implements a complex behaviour (i.e., reading data buffers, handling 'objects' (like 
textures or vertex buffers)) or extended functions for ATI or NVIDIA GPUs. Section 
3.1.1 shows that it is supported only ARB shader implementations 
(ARB_vertex_program and ARB_fragment_program), so the testprograms must have 
disabled options as GLSlang or shader objects. It happens because ATTILA only 
implements a minimum set of OpenGL API. 

The variety of applications that can be traced and executed is very small, even 
more, the authors recommend using the applications that they tested before; other 
program out of these tests is likely going to fail. Also it is possible (and recommend 
by the authors too) to implement applications that uses just the OpenGL calls that 
ATTILA implements. The list of OpenGL functions supported was published in the 
simulator version of 13/1/2006. 

The programs tested and recommended by the authors are: Volumetric Lighting II 
(by Humus (www.humus.ca)), Unreal Tournament 20044 (only tested with NVIDIA 
cards), Doom3, Quake4, Prey and Chronicles of Riddick. Each game needs a 
configuration that allows to ATTILA trace and work with them. Also can be possible 
to work with games using engines based on Doom3’s engine5 (Quake4 and Prey are), 
but it is not sure because not all was tested. Even more, the traces captured depend on 
the GPU that the system has due to the no implementation of specific OpenGL 
extensions (for ATI or NVIDIA). In this case, it was tried to capture traces from the 
Unreal Tournament 2004 Demo, but it was not possible because, as said before, the 
system uses an ATI GPU or maybe the usage of the incorrect demo version (that the 
authors did not try). Moreover, in this work, several games out of these tests was tried 
to be traced and simulated with ATTILA. Some of them were: Angeles (San Angeles 
Observation OpenGL ES version example by Jetro Lauha (http://iki.fi/jetro), an 
OpenGL ES application translated to OpenGL and well traced by GLInterceptor, but 
it uses a mode called colorMaterialMode and it is not supported in the simulator; 
traces from the OpenGL ES version was not possible to capture), HalfLife (the game 
crashes after the execution and the simulation is not possible), Quake3 (similar effect 
than with HalfLife) and GoogleEarth (the application crash before been executed, so 
it is not possible to take traces). Even more, several OpenGL ES applications were 
tested and it was not possible to capture it, as said before. It was tried to change the 
file libGLES_CM.dll (the OpenGL ES library) with the opengl32.dll (the OpenGL 

                                                           
4  Unreal Tournament 2004 has to be configured with the following options in the configuration 

file (system/UT2004.ini): activate the use of OpenGL driver 
(OpenGLDrv.OpenGLRenderDevice) and not Direct3D, activate rendered vertex buffer and 
disable vertex shader. 

5 A game that use the Doom3 engine like Quake4, Prey or the same Doom3 has to be 
configured with the configuration file with the next options: disable two sided stencil, index 
buffers and copyToTexture, and enable arb2 render path and vertex buffers. 
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library provided with ATTILA), and of course it crashed because several call entries 
was not found. 

The chosen testprograms was Doom3 (with the trace file provided in the log 
page), Prey and Volumetric Lighting II. They was tested by the authors and show how 
to work with pre-captured traces (Doom3), a well-known program that works 
perfectly with ATTILA (Volumetric Lighting II) and a game that does not work 
wholly with ATTILA (Prey). Another reason because they was chosen is the real 
graphic data that they provide (in the other hand we can make our programs, but they 
don’t provide the reality and power than a professional application offers to 
ATTILA). 

4.2.2 Execution and collection of data 
 

The way to capture traces, simulate and collect the statistics is the same as 
explained on section 3.3 for ATTILA’s framework. In this section it will be presented 
some examples that show how ATTILA works and some aspects to take in account 
when using the simulator. 

Finally, figure 4.1 shows a summary of what was able to do and what not with the 
testprograms selected and many others, with the simulator version on 17/1/2007. This 
last version can simulate traces from Prey with uniform shader version (before there 
was an infinite loop with shaders and it never finished the simulation for frames from 
the game, but yes from the loading screen). The times showed are approximately, that 
is, it is the mean of two simulations, but it can vary from different Operating Systems 
and computers. 

Figure 4.1. Summary of what ATTILA can do and what not (version of 
17/1/2007). 

 
Volumetric 
Lighting II 

Prey Doom3 Quake3 
Angeles 
(OGLES 
version) 

Traces 
captured 

OK OK 
OK 

(downloaded) 
OK FAILED 

Gl2attila 
translation 

OK OK OK FAILED FAILED 

Playable 
by 

GLPlayer 
FAILED FAILED OK FAILED FAILED 

Simulation 
with 

uniform 
shaders 

OK OK OK FAILED FAILED 

Simulation 
with non-
uniform 
shaders 

OK FAILED FAILED FAILED FAILED 

Time of 
simulation 

12m 53sec 
1st frame 

24m 51sec 
800th frame 

13m 22sec 
200th frame 

FAILED FAILED 
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4.2.2.1 Captures from testprograms  
 
GLInterceptor has to be copied into the application binary folder (opengl32.dll and 

GLIconfig.ini) for the capture of traces from the testprograms (first stage of the 
framework). So for the Volumetric Lighting II (VLII), just copy these files into the 
folder VolumetricLightingII, for Prey into the main folder. The Doom3 traces were 
taken from [8]; it was created and posted by the authors, so just decompress these 
files into a folder to work with them.  

Once the files from GLInterceptor have been copied, it is possible to configure 
this tool by opening the file GLIconfig.ini and change some options like lastFrame 
(how many frames to capture, consider that 25 frames correspond to one second) or 
outputFile (the default name is tracefile.txt). Altering the parameter startFrame (from 
which frame start to capture) is not recommended because it can have some problems 
later with the simulation, so GLInterceptor does not support very well a hot start 
(however, the simulator does). If the application needs a special configuration (see 
4.1.1), try to configure it before executing the program. VLII does not need any 
special configuration, and Prey needs to add and change some options (the options for 
a game that uses the Doom3’s engine). When everything is configured, play a bit and 
GLInterceptor will work automatically. 

Note that if the startFrame parameter is configured to 1 (recommended), then 
GLInterceptor will start to capture frames from the beginning of the first usage of 
OpenGL. In most games, menu and loading screens are implemented by OpenGL. It 
means that GLInterceptor will trace both menu and loading screens, as seen on figure 
4.2. This figure shows that the first frames from a trace always corresponds to this 
kind of screens that not correspond to the rendering part of the game (the interactive 
and real game, not screens, videos, presentations or menu), which is the most 
interesting part to simulate. In Doom3 traces (4.2a) there are a loading screen capture, 
whereas in Prey traces a presentation, the menu (4.2b) and loading screen (4.2c) was 
captured. So be fast when loading the game for making the traces, if not, maybe you 
will not have time to start the game. 

Angeles is an application with two versions, one for OpenGL and other for 
OpenGL ES. As show in figure 4.1, GLInterceptor was not able to capture traces from 
this application on its version using OpenGL ES (the reason is in section 4.2.1). But 
GLInterceptor was able to take a trace from OpenGL version, but as seen after that, it 
was not possible to make the translation with gl2attila. The trace from Quake3 also 
was captured, but this game always finished with an error panic when using 
GLInterceptor. 
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(a) 

 

 
(b) 
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(c) 

 
Figure 4.2. When capturing traces from the first frame, GLInterceptor will 

dump into the trace also the frames corresponding to loading screens and menus. 
In this work there was captured (a) a loading screen from Doom3, (b) a loading 

screen from Prey and (c) loading menu interaction from Prey. 

4.2.2.2 Replay of the captured traces 
 

After finishing the application, some files are created. These files are the traces, 
and their names are tracefile.txt, MemoryRegions.dat and BufferDescriptors (if not 
other names were chosen), as explained on section 3.3. From this point, only the trace 
files are necessary (not game’s files), so they can be moved to other folder (always 
the three together) or keep them in the same folder and copy GLPlayer and the 
simulator to it. 

Then, it is possible to go to the second stage of the framework, Verification. 
Configure GLPlayer by the file GLPconfig.ini (maybe the most important is the name 
of the input file), and execute GLPlayer. In this work, GLPlayer did not work 
correctly with VLII and Prey traces: it did not show any frame and even more, it 
delete the content of the trace files (for example, the trace from Prey that is about 200 
MB, after the execution of GLPlayer the trace became to only 1KB). The traces that 
GLPlayer can play are from Doom3 (downloaded directly from the authors, not 
captured with GLInterceptor in this work).  
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Figure 4.3 illustrates an example of GLPlayer. It is just a window that shows 
information like the number of frame, the resolution used and the current frame. The 
speed of this play can be modified with the configuration file, but by default it goes a 
bit more slowly, because the most important is to be able to see the frames and 
capture them for making a posterior check with the simulated ones. 

 

Figure 4.3. GLPlayer showing the frame 200 from Doom3 trace file. Volumetric 
Lighting 2 and Prey could not be played. 

4.2.2.3 Execution of the simulator with captured traces 
 
If the traces were checked but GLPlayer could not play them, it is still possible to 

go to the next stage, Simulation. In particular, GLPlayer was not able to play VLII 
and Prey traces, however, the simulator could simulate some frames correctly. For it, 
one version (Unified or non-Unified) of the simulator has to be selected, and copied 
together with one configuration file to the traces folder. Remember that if Linux, 
Cygwin or Mingw32 environment are used, then gl2attila has to be executed before 
the simulator (bGPU). Gl2attila also needs the same configuration file that the 
simulator will use (in this test, the example configuration file of ATTILA-rei-580.ini). 
In this work the simulator was executed within the bounds of Cygwin, so in every 
case gl2attila.exe was utilized by typing gl2attila.exe N, with N equals to the number 
of frames to translate (usually the whole trace, so equals to the number of frames 
captured). For example, ./gl2attila tracefile.txt 900 (translation used for Prey trace). It 
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is possible to add other parameter after N, which means the starting frame 
(gl2attila.exe N M). It was tried but it did not work well when skipping frames in the 
simulation with ATTILA simulator. So it is recommended to capture and translate 
frames (gl2attila) starting always with the first frame, and then, it will be possible to 
skip and simulate frames different to the frame number 1. 

The execution of the simulator is easy just typing the name of the binary (bGPU 
for non-unified version and bGPU-Uni for unified version), following the AGP trace 
translated by gl2attila (the common name is attila.tracefile.gz) and N M, two optional 
numbers that means the number of frames to simulate and the starting frame 
respectively. For example, ./bGPU-uni attila.tracefile.gz 1 800 (execution used for 
Prey, starting from the frame 800 and simulating only one frame, the frame 800th). 
The time of simulation of one frame depends on the application to simulate, which 
frame and the position of the frame (time elapsed for seeking the frame inside the 
trace depends of how many frames to skip for reaching the frame to simulate). As said 
before, a trace is captured from the first frame of the application; in a game it means 
that it will be captured the menu and loading screen too (see section 4.2.2.1). The 
simulation of a loading screen frame takes about 30 seconds for traces from Doom3, 
but a frame from the rendering part (interactive game) takes about 13 simulation’s 
minutes. 

Even more, the choice of one version is important. There are two versions, one for 
non-unified shaders and other for unified shaders. The version most tested by the 
authors and compatible is the unified one, whereas the non-unified is no longer tested 
because is based in a contemporary GPU but not as new as a unified architecture. 
That is the reason because the non-unified version works only with VLII, but not with 
Doom3 or Prey (it returns a simulator bug error after 12 minutes of simulation). As 
seen in figure 4.1, the non-unified version has problems with some applications; 
however, the unified version could simulate every well-translated trace file by 
gl2attila.  

Figures 4.4b and 4.4c show the outputs from the non-unified simulator with 
Doom3 and Prey. They were not simulated correctly, but it was possible to have some 
statistics corresponding till the cycle 717730 for Doom3 and cycle 2996339 for Prey. 
Figure 4.4a shows how the finish of a well execution of the simulator is, in this case, 
using the non-unified version with VLII traces. Finally, figure 4.4d shows the error 
returned by gl2attila with the trace from Quake3. This trace contains an API call that 
ATTILA can not support, or maybe the trace is not well-finish because the bad exit 
that the game experiments when using GLInterceptor (it is not clear the reason).  

As seen on the captured screens in figure 4.4, the simulator returns “B” and “.” 
consecutively during the simulation. A “B” means that an OpenGL draw call (or 
batch) has been fully processed and a “.” indicates that a number of cycles (10K by 
default) has passed. 
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(d) 

 
Figure 4.4. Output of ATTILA non-unified version (bGPU) for (a) 

Volumetric Lighting II, (b) Doom3 and (c) Prey. (d) Shows the error returned by 
gl2attila with a trace from QuakeIII. 

4.2.2.4 Analysis of ATTILA’s outputs 
 

When the execution of the simulator finishes (correctly or incorrectly), the outputs 
files are placed in the same folder than the simulator. These files were explained on 
section 3.3 and involve two images, one showing the final frame simulated and other 
a latency map (a per fragment quad map storing the execution latency of the last quad 
written in a framebuffer position, see [5]), and a statistic file. There is not so much 
information about what is the purpose or the complete meaning of the latency map.  

An example of the statistic file is figure 3.5, and examples of outputs frames are 
shown on figure 4.5. As seen in this figure, the outputs frames are exactly as shown in 
a real GPU. But not always it is like this, for example, on [5] there is a comparison 
between two frames from Unreal Tournament 2004 and there are some differences 
(problems when simulating). Of course, a frame that was not perfectly simulated 
means that the statistics will show data that not corresponds to the reality. In the 
example from [5], the fragments that correspond to lines or letches in the forest have 
not a correct value, so the statistics about these fragments can be incorrect. However, 
these statistics are very near to the reality, and the most part of these frames are 
correct. In short, if a simulation finishes correctly, the data, frames and statistics can 
be enough for making conclusions about the architecture simulated. 

The way to check simulated frames is more or less by intuition if GLPlayer did 
not work with the trace. For example, we can see that the frame from Doom3 (4.5b) is 
ok if it is compared with the frame from GLPlayer (figure 4.3). But the frames from 
figures 4.5a (VLII) and 4.5c (Prey), that come from traces that GLPlayer could not 
play, have to be checked with intuition: just see if there is some typical problems with 
the rendering (shadows, objects, lights… missing and mistakes) or try to play again to 
the game, capture the frame manually and see that the simulated frame is ok. In any 
case, every capture from figure 4.5 seems to be correct. 

 



Evaluating ATTILA, a cycle-accurate GPU simulator      29 

 
(a) 

 

 
(b) 
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(c) 

 
Figure 4.5. Frames simulated from (a) Volumetric Lighting II (frame 60), (b) 
Second level of Doom3 (frame 200), and (c) Second level of Prey Demo (frame 

800) 
 
Once the frame is checked, the statistics can be opened and analyzed. The problem 

with the file stats.csv is that it is too big and has too many columns, so some programs 
like Microsoft Office Excel will open only a limit number of columns (commonly 
255). The problem of opening the .csv file with a text editor is that it is no longer 
understandable because the use of the separator character “;” make difficult to follow 
what a column means (while the size of a number is short, the name of the column is 
too long, so they are not synchronized). Fortunately, there are some cheats about how 
to open a file .csv with Excel that has more than 255 columns: making some 
conversions to .txt and importations in Excel (a bit difficult) or writing a macro (see 
http://support.microsoft.com/kb/272729).  

The variables measured are shown on Appendix B, and from this data it is 
possible to make some graphics like shown on figure 4.6. In this example it can be 
possible to take some conclusions, for example, figure 4.6b shows that the fetch stage 
of texture units works well because there are not so much fetches failed in comparison 
with the fetches OK. 
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(c) 
 

Figure 4.6. Examples of graphics with statistics from (a) Prey (Blocked threads 
on vertex shader between cycles 210000 and 769999). (b) VLII (Fetches OK vs 

Fetches Failed on the Texture Unit of Fragment Shader 0 during all the 
execution 1048574). (c) Doom3 (from [6], resource utilization at frame 377 using 

a thread window with 3 Texture Units). 
 

4.3 Discussion about ATTILA 

Now that the internal architecture and the way of working were explained, it is 
time to make a discussion about ATTILA. Weak and strong sides will be analyzed 
and finally a conclusion will be described at the end of this section. The discussion 
will be made from a point of view of users, that in this case, a user is a GPU 
developer. 

As commented on section 3.1.2, a depth change involves going more far away 
than the parameters and modifying the source code. The simulator’s source code is 
easily to change because it is object oriented and box organized. But on the most 
cases, these depth changes imply a transformation on the ATTILA’s OpenGL library 
(now gl2attila or gllib.a before). For example, when a developer would like to support 
GLSlang in his new simulated GPU (and maybe a new design for a future graphic 
card) he is not able to implement it because GLInterceptor and gl2attila have to be 
able to capture and translate GLSlang code. Other example is when a novel 
architecture like several GPUs on chip is tested, and then the library has to be able to 
share and distribute the workload among the new resources. The problem is that the 
source code of the ATTILA’s OpenGL library is not open, so for these cases the 
solution is to build an own library that can support these new features, or if it can be 
important, ask the authors for a new version of the library. 

Nowadays the lack of documentation for ATTILA is a problem for users. It is 
necessary to contact the author by the ATTILA mail list distribution when having 
doubts. The only documentation available is the source code, some files that the 
author posted in the last versions, papers and reports from the authors and the mail 
list. Sometimes they are helpful (for example, when installing ATTILA or executing 
and capturing traces), but in many cases they are not enough (for example, the code 
has to be read when trying to understand the statistics variables, which is a hard task). 
On the definition of good software, as well as having the binaries, libraries and source 



Evaluating ATTILA, a cycle-accurate GPU simulator      33 

code, it is included documentation and manuals too. But it is lightening with a mail 
list [9], where the author and even the community of users answer questions as soon 
as possible. But this problem will be finally solved with time by the authors; they are 
planning to public some documentation on the web next months. 

The simulator is quite inefficient in terms of time spent for simulations. For only 
one frame from Doom3 it can take from 13 to 20 minutes in a single processor, and 
more or less the same in a core duo. The code explained on section 3.1.2 can show the 
reason (figure 3.4): In each cycle, each stage has to wait to the previous for being 
executed (and just one cycle), when in a real GPU it does not happen (each stage 
executes one cycle at the same time). That the motivation of using buffers is having 
stand alone stages (that is, stages that do not depend for timing). One solution for this 
problem can be seen on Appendix D. This Appendix is based on a previous work [18] 
from the same author of this current report, and shows how to improve the simulation 
time of ATTILA using parallelization methods. Moreover, there is a lot of 
intercommunication between the different components (boxes, the simulated stages of 
the GPU) even if it is just an "I am ready" or "I am busy" signal. 

Also the current OpenGL framework does not offer a good compatibility with 
many applications. Firstly, GLInterceptor and the simulator can not work with 
applications out of OpenGL (not with Direct3D or OpenGL ES), and inside OpenGL 
programs the wide of choice is too small. Just some programs are known that work 
with ATTILA (see section 4.1), and it does not provide to the developer a perfect 
framework where work and test his GPU architecture with the programs that he wants 
to use. Moreover, the use of the framework is limited only for Windows platforms, 
and do not permit to the developer works only in UNIX systems (as it is known that 
most developers and researchers work with non-Windows systems). In these cases, 
the solution is that the developer has to make his own framework, but not the 
simulator because the code is portable (not highly, but can be used in Windows, 
Linux, Cygwin and Mingw32). 

GLInterceptor can have potentially another bad aspect. The capture of the 
OpenGL API calls can show the internal OpenGL code behaviour, and then, it is 
possible to have the OpenGL code with some inverse engineering of, for example, a 
game engine. GLInterceptor is very helpful and needed if ATTILA wants to work 
with real applications, but it has to be manipulated carefully because it is possible to 
infringe some intellectual laws. But this problem is potential and not completely real 
because one can always monitor what is happening in his system, including API calls, 
and the real code is still coded inside the binary and nobody can read it. 

But not all are bad aspects, now talking about strong sides we can see that 
ATTILA can support real data for testing the architecture. The part of OpenGL 
supported is small, but maybe enough for most developers. If ATTILA could simulate 
frames from complex games like Doom3, Prey or Unreal Tournament 2004, it means 
that it is relatively powerful and with time it can simulate a lot of OpenGL 
applications. 

Another good aspect of ATTILA is that it has a very structural source code. As 
seen on section 3.1.2, this source code is object-oriented, implementing boxes that 
cover the details of each part of the pipeline. These boxes, signals and statistic 
managers can help to the construction of a new architecture, with the bounds of a 
structural code with abstractions and other good aspects from the object-orientation. 
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Of course, it can not be possible without an open source code. The code available is 
just from the simulator, the rest of the framework (GLInterceptor and GLPlayer) are 
private code, and if it is needed to change, then a new framework must be 
implemented as commented so far. 

Finally it is good to comment that the lots of statistics and the wide set of 
parameters that configure highly the pipeline help a lot to analyze with detail and 
work with a lot of different architectures with ATTILA, respectively. Without the 
statistics it is impossible to understand and analyze the architecture simulated, so the 
high number of statistics (about 204 variables) is enough, and if it is not, Statistic 
Manager helps to add new statistics to the architecture. 

In conclusion, ATTILA is a completely framework for researching new GPU 
architectures. It is still young: slow on simulations, not compatible with the most 
graphic applications, and so on. Now it provides a good environment for working 
with graphics, and helps to research and develop new GPU applications with the tools 
that it provides. Among time of development, it will be possible to achieve a 
compatible and a comfortable (maybe with a GUI) simulator.  

5. Conclusions and future work 

This project made an evaluation of the new GPU simulator called ATTILA. 
Firstly I made an introduction to GPUs, some aspects of design and current general 
architecture of the majority graphic cards. After that, I made a thorough explanation 
of the simulator: simulated architecture, architectures that ATTILA can simulate, 
introduction to the source code, statistics and the framework that ATTILA provides. 
When this theory was explained, I exposed some experiences with ATTILA when 
installing, choosing testprograms and running them on the simulator. Afterwards, I 
was able to make an evaluation and some conclusions on section 4.3 with the 
information recompiled on sections 3 and 4. 

Some conclusions that can be taken out from this project are: 
- The evolution and technology of GPUs go separately from the 

development of CPUs. That is because GPUs work with other kind of 
data and they can have a specialized architecture. It is a good reason for 
developing new simulators for only GPUs. 

- ATTILA provides a good environment because it supports real 
applications and gives a collection of classes and objects that help to the 
design of a new architecture. 

- The simulators for CPUs are more developed than GPU simulators, it is 
because the discipline about GPUs is younger than CPUs, but with time 
it will be as important as CPUs, with a lot of software and tools that 
helps to research in this area. 

 
This simulator is still young and with time it can be powerful. Some future works 

that can be interesting to develop are: 
- Make a good documentation, with examples and explanation of every 

detail like the statistics. 
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- Make ATTILA more compatible with graphic applications: support for 
Direct3D and OpenGL ES, support of a more wide set of OpenGL (that 
is, support of more OpenGL applications). 

- More help to the user, not only the code, maybe a GUI that interactively 
show how the architecture is working and change it in an easy way. Or 
even more, a support for modules, making possible to add easily a new 
device like memory or another GPU. 

- Make ATTILA more efficient. For example, parallelize it allowing the 
developers to execute the simulator in a multiprocessor faster than in a 
single processor (see Appendix D). 

 
Finally I hope that this work can help to understand a bit better the simulator 

ATTILA, and encourage to GPU researchers use this simulator because it is 
interesting for test new architectures and features. 
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APPENDIX A: DEFINITIONS AND ABBREVIATIONS 

3 

3D Objects: Objects that represent the objects of the modelled word. The 
coordinates are expressed on 3D coordinates. 

 
3DNOW!: is the name of a multimedia extension created by AMD for its 

processors, starting with the K6-2 in 1998. It is an addition of SIMD instructions to 
the traditional x86 instruction set, designed to improve a CPU's ability to perform the 
vector processing requirements of many graphic-intensive applications. (Source: 
www.wikipedia.org).  

A 

AGP: The (Accelerated Graphics Port (also called Advanced Graphics Port)) is a 
high-speed point-to-point channel for attaching a graphics card to a computer's 
motherboard, primarily to assist in the acceleration of 3D computer graphics. Some 
motherboards have been built with multiple independent AGP slots. AGP is currently 
being phased out in favor of PCI Express. (Source: www.wikipedia.org).  

 
AI : (Artificial  Intelligence) can be defined as the study of methods by which a 

computer can simulate aspects of human intelligence. (Source: www.wikipedia.org). 
 
ALU : (Arithmetic Logic Unit) is a digital circuit that calculates an arithmetic 

operation (like an addition, subtraction, etc.) and logic operations (like an Exclusive 
Or) between two numbers. The ALU is a fundamental building block of the central 
processing unit of a computer. (Source: www.wikipedia.org). 

 
Alpha: In computer graphics, alpha compositing is the process of combining an 

image with a background to create the appearance of partial transparency. (Source: 
www.wikipedia.org). 

 
API : (Application Programming Interface) is a source code interface that a 

computer system or program library provides in order to support requests for services 
to be made of it by a computer program. (Source: www.wikipedia.org). 

 
ARB: (The OpenGL Architecture Review Board) is an industry consortium that 

currently governs the OpenGL specification. It was formed in 1992, and defines the 
conformance tests, approves the OpenGL specification and advances the standard. On 
July 31, 2006, it was announced that the ARB voted to transfer control of the OpenGL 
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specification to Khronos Group. As of November 2004, the voting members are 
3Dlabs, Apple Computer, ATI, Dell, IBM, Intel, Nvidia, SGI and Sun Microsystems, 
plus other contributing members. Microsoft was an original voting member, but left in 
March 2003. (Source: www.wikipedia.org). 

 
ARB_Vertex_Program: Is a vertex shading language for OpenGL made by ARB. 
 
ARB_Fragment_Program: Is a fragment shading language for OpenGL made by 

ARB. 
 
ATI : ATI Technologies U.L.C., founded in 1985, is a major designer of graphics 

processing units and video display cards and a wholly owned subsidiary of AMD, as 
of October 2006. (Source: www.wikipedia.org). 

 
ATTILA : The name is based on 'Attila  The Hun'. It is a cycle accurate GPU 

simulator made by several authors (mainly Victor Moya) in the Polytechnic 
University of Catalonia. 

B 

BrookGPU: is the Stanford University Graphics group's compiler and runtime 
implementation of the Brook stream programming language for using modern 
graphics hardware for non-graphical, or general purpose computations (GPGPU). 
(Source: www.wikipedia.org). 

 
Buffer : In computing, a buffer  is a region of memory used to temporarily hold 

output or input data. Buffers can be implemented in either hardware or software, but 
the vast majority of buffers are implemented in software. Buffers are used when there 
is a difference between the rate at which data is received and the rate at which it can 
be processed, or in the case that these rates are variable, for example in a printer 
spooler. (Source: www.wikipedia.org). 

C 

C++: is a general-purpose, high-level programming language with low-level 
facilities. It is a statically typed free-form multi-paradigm language supporting 
procedural programming, data abstraction, object-oriented programming, generic 
programming and RTTI. Since the 1990s, C++ has been one of the most popular 
commercial programming languages. (Source: www.wikipedia.org). 

 

Cg: (C for Graphics) is a high-level shading language created by NVIDIA  for 
programming vertex and pixel shaders. Cg is based on the C programming language 
and although they share the same syntax, some features of C were modified and new 
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data types were added to make Cg more suitable for programming graphics 
processing units. (Source: www.wikipedia.org). 

 
Class: In object-oriented programming, classes are used to group related variables 

and functions. A class describes a collection of encapsulated instance variables and 
methods (functions), possibly with implementation of those types together with a 
constructor function that can be used to create objects of the class. (Source: 
www.wikipedia.org). 

 
Class diagram: Is a diagram that shows how the classes from the source code of a 

program are related and interconnected (relationships between classes). 
 
CPI: (Cycles per instruction (clock cycles per instruction or clocks per 

instruction)) is a term used to describe one aspect of a processor's performance: the 
number of clock cycles that happen when an instruction is being executed. It is the 
multiplicative inverse of Instructions Per Cycle (IPC). (Source: www.wikipedia.org). 

 
CPU: (Central Processing Unit or sometimes simply processor) is the component 

in a digital computer that interprets computer program instructions and processes 
data. (Source: www.wikipedia.org). 

 
Cygwin: is a collection of free software tools originally developed by Cygnus 

Solutions to allow various versions of Microsoft Windows to act somewhat like a 
Unix system. (Source: www.wikipedia.org). 

D 

D3D: see Direct3D. 
 
DDR: In computing, a computer bus operating with Double Data Rate transfers 

data on both the rising and falling edges of the clock signal, effectively nearly 
doubling the data transmission rate without having to deal with the additional 
problems of timing skew that increasing the number of data lines would introduce. 
This technique has been used for the Front side bus, Ultra-3 SCSI, the AGP bus, DDR 
SDRAM (principal memory), and the HyperTransport bus on AMD's Athlon 64 X2 
processors. (Source: www.wikipedia.org). 

 
Direct3D: is part of Microsoft's DirectX API. Direct3D is only available for 

Microsoft's various Windows operating systems (Windows 95 and above) and is the 
base for the graphics API on the Xbox and Xbox 360 console systems. Direct3D is 
used to render three dimensional graphics in applications where performance is 
important, such as games. Direct3D also allows applications to run fullscreen instead 
of embedded in a window, though they can still run in a window if programmed for 
that feature. Direct3D uses hardware acceleration if it is available on the graphic 
board. (Source: www.wikipedia.org). 
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DRAM : (Dynamic Random Access Memory) is a type of random access memory 
that stores each bit of data in a separate capacitor within an integrated circuit. (Source: 
www.wikipedia.org). 

 
Driver : is a specific type of computer software, typically developed to allow 

interaction with hardware devices. This usually constitutes an interface for 
communicating with the device, through the specific computer bus or 
communications subsystem that the hardware is connected to, providing commands to 
and/or receiving data from the device, and on the other end, the requisite interfaces to 
the operating system and software applications. (Source: www.wikipedia.org). 

E 

Environment: is a type of computer software that assists computer programmers 
in developing software. In this report means the system and tools used for the 
development of these simulations. 

F 

FAN mode: In OpenGL, when defining the FAN mode for triangle means that the 
three first vertices defined correspond to the first triangle, and the next vertices 
defined make a triangle that has shared the first vertex defined and previous vertex. 

 
(Source: 

http://web.cs.wpi.edu/~matt/courses/cs563/talks/OpenGL_Presentation/OpenGL_Pres
entation.html) 

 
 

Fog: is a cloud in contact with the ground. In computer graphics means that the 
field of vision will be reduce. 

 
Fragment: A fragment is a point in windows coordinates produced by rasterizer 

stage that has attributes as color, depth… It has the data necessary needed to generate 
a pixel in the frame buffer. One pixel (a dot of color) corresponds to multiple 
fragments. 

 
Frame: is one of the many still images which compose the complete moving 

picture. The frame rate, the rate at which sequential frames are presented, varies 
according to the video standard in use. In North America and Japan, 30 frames per 
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second is the broadcast standard, with 24 frame/s now common in production for 
high-definition video. In much of the rest of the world, 25 frame/s is standard. 
(Source: www.wikipedia.org).  

 
Framework: In software development, a framework  is a defined support 

structure in which another software project can be organized and developed. A 
framework may include support programs, code libraries, a scripting language, or 
other software to help develop and glue together the different components of a 
software project.  In this report means to the set of tools and steps that ATTILA has 
for the development of GPU architectures for OpenGL. (Source: www.wikipedia.org). 

 
Frustum volume: In 3D computer graphics, the viewing frustum or view 

frustum  is the region of space in the modeled world that may appear on the screen; it 
is the field of view of the notional camera. The exact shape of this region varies 
depending on what kind of camera lens is being simulated, but typically it is a frustum 
of a rectangular pyramid. The planes that cut the frustum perpendicular to the viewing 
direction are called the near plane and the far plane. Objects closer to the camera than 
the near plane or beyond the far plane are not drawn. Often, the far plane is placed 
infinitely far away from the camera so all objects within the frustum are drawn 
regardless of their distance from the camera. (Source: www.wikipedia.org). 

G 

GCC: Originally named the GNU C Compiler, because it only handled the C 
programming language, GCC 1.0 was released in 1987, and the compiler was 
extended to compile C++ in December of that year. Front ends were later developed 
for Fortran, Pascal, Objective-C, Java, and Ada, among others. (Source: 
www.wikipedia.org). 

 
GDDR3: (Graphics Double Data Rate 3) is a graphics card-specific memory 

technology, designed by ATI Technologies. (Source: www.wikipedia.org). 
 
GLES: See OpenGL ES. 
 
GLSlang: (OpenGL Shading Language) is a high level shading language based 

on the C programming language. It was created by the OpenGL ARB to give 
developers more direct control of the graphics pipeline without having to use 
assembly language or hardware-specific languages. (Source: www.wikipedia.org). 

 
GPGPU: (General-Purpose Computing on Graphics Processing Units) is a recent 

trend in computer science that uses the Graphics Processing Unit to perform the 
computations rather than the CPU. The addition of programmable stages and higher 
precision arithmetic to the GPU rendering pipeline have allowed software developers 
to use the GPU for non graphics related applications. Because of the extremely 
parallel nature of the graphics pipeline the GPU is especially useful for programs that 
can be cast as stream processing problems. (Source: www.wikipedia.org). 
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GPU: (Graphics Processing Unit (also occasionally called Visual Processing Unit 

or VPU)) is a dedicated graphics rendering device for a personal computer, 
workstation, or game console. Modern GPUs are very efficient at manipulating and 
displaying computer graphics, and their highly parallel structure makes them more 
effective than typical CPUs for a range of complex algorithms. (Source: 
www.wikipedia.org). 

H 

 

I 

ISA: (Instruction Set Architecture) is (a list of) all instructions, and all their 
variations, that a processor can execute. (Source: www.wikipedia.org). 

J 

 

K 

 

L 

Library : is a collection of subprograms used to develop software. Libraries 
contain "helper" code and data, which provide services to independent programs. This 
allows code and data to be shared and changed in a modular fashion. Some 
executables are both standalone programs and libraries, but most libraries are not 
executables. Executables and libraries make references known as links to each other 
through the process known as linking, which is typically done by a linker. (Source: 
www.wikipedia.org). 

 
Linux : is a free open-source operating system based on Unix. Linux was 

originally created by Linus Torvalds with the assistance of developers from around 
the globe. Linux was developed under the GNU General Public License and the 
source code is freely available to everyone. (Source: www.orafaq.com).  
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M 

 
Mingw32: (Min imalist GNU for Windows) is a software port of the GNU 

toolchain to the Win32 platform. MinGW includes a set of Windows header files 
(W32API) for native Win32 development. It was originally a fork of Cygwin (version 
1.3.3). (Source: www.wikipedia.org). 

 
MMX : (MultiMedia eXtensions) is a SIMD instruction set designed by Intel, 

introduced in 1997 in their Pentium MMX microprocessors. It developed out of a 
similar unit first introduced on the Intel i860. It has been supported on most 
subsequent IA-32 processors by Intel and other vendors. (Source: 
www.wikipedia.org). 

N 

North Bridge: also known as the Memory Controller H ub (MCH ), is 
traditionally one of the two chips in the core logic chipset on a PC motherboard, the 
other being the Southbridge. Separating the chipset into Northbridge and Southbridge 
is common, although there are rare instances where these two chips have been 
combined onto one die when design complexity and fabrication processes permit it. 
(Source: www.wikipedia.org). 

 
NUMA : (Non-Uniform Memory Access or Non-Uniform Memory Architecture) 

is a computer memory design used in multiprocessors, where the memory access time 
depends on the memory location relative to a processor. Under NUMA, a processor 
can access its own local memory faster than non-local memory, that is, memory local 
to another processor or memory shared between processors. (Source: 
www.wikipedia.org). 

 
NVIDIA : NVIDIA Corporation  (NASDAQ: NVDA) is a major supplier of 

graphics processors (graphics processing units, GPUs), graphics cards, and media and 
communications devices for PCs and game consoles such as the original Xbox and the 
PlayStation 3. NVIDIA's most popular product lines are the GeForce series for 
gaming and the Quadro series for Professional Workstation Graphics processing as 
well as the nForce series of computer motherboard chipsets. (Source: 
www.wikipedia.org). 

O 

Object: In the programming paradigm, object-oriented programming, an object is 
an individual unit of run-time data storage that is used as the basic building block of 
programs. These objects act on each other, as opposed to a traditional view in which a 
program may be seen as a collection of functions, or simply as a list of instructions to 
the computer. Each object is capable of receiving messages, processing data, and 
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sending messages to other objects. Each object can be viewed as an independent little 
machine or actor with a distinct role or responsibility. Also, an object can be seen as a 
instance of a Class. (Source: www.wikipedia.org). 

 
Object-Oriented programming: (OOP) is a programming paradigm that uses 

"objects" to design applications and computer programs. It utilizes several techniques 
from previously established paradigms, including inheritance, modularity, 
polymorphism, and encapsulation. Even though it originated in the 1960s, OOP was 
not commonly used in mainstream software application development until the 1990s. 
Today, many popular programming languages (such as Java, JavaScript, C#, C++, 
Python, PHP, Ruby and Objective-C) support OOP. (Source: www.wikipedia.org). 

 
OpenGL: (Open Graphics L ibrary) is the premier environment for developing 

portable, interactive 2D and 3D graphics applications. It is a standard specification 
defining a cross-language cross-platform API for writing applications that produce 3D 
computer graphics (and 2D computer graphics as well). The interface consists of over 
250 different function calls which can be used to draw complex three-dimensional 
scenes from simple primitives. OpenGL was developed by Silicon Graphics. OpenGL 
operates on image data as well as geometric primitives (see the similarity with the 
architecture explained on section 3.1.1): 

 
 (Sources: www.opengl.org and www.wikipedia.org). 
 
OpenGL ES: (OpenGL for Embedded Systems) is a subset of the OpenGL 3D 

graphics API designed for embedded devices such as mobile phones, PDAs, and 
video game consoles. It is defined and promoted by the Khronos Group, a graphics 
hardware and software industry consortium interested in open APIs for graphics and 
multimedia. (Source: www.wikipedia.org). 

P 

PCI: (Peripheral Component Interconnect or PCI Standard) specifies a computer 
bus for attaching peripheral devices to a computer motherboard. (Source: 
www.wikipedia.org). 

 
PCI Express: is an implementation of the PCI connection standard that uses 

existing PCI programming concepts, but bases it on a completely different and much 
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faster full duplex, multi-lane, point to point serial physical-layer communications 
protocol. (Source: www.wikipedia.org). 

 
Pixel: (short for Picture Element, using the common abbreviation "pix" for 

"picture") is a single point in a graphic image. Each such information element is not 
really a dot, nor a square, but an abstract sample. With care, pixels in an image can be 
reproduced at any size without the appearance of visible dots or squares; but in many 
contexts, they are reproduced as dots or squares and can be visibly distinct when not 
fine enough. The intensity of each pixel is variable; in color systems, each pixel has 
typically three or four dimensions of variability such as red, green and blue, or cyan, 
magenta, yellow and black. (Source: www.wikipedia.org). 

 
Pixmap: is a three-dimensional array of bits. Also, a pixmap is normally thought 

of as a two-dimensional array (matrix) of pixels. 

Q 

 

R 

Render: is the process of generating an image from a model, by means of 
computer programs. The model is a description of three dimensional objects in a 
strictly defined language or data structure. It would contain geometry, viewpoint, 
texture and lighting information. The image is a digital image or raster graphics 
image. The term may be by analogy with an "artist's rendering" of a scene. 
'Rendering' is also used to describe the process of calculating effects in a video editing 
file to produce final video output. (Source: www.wikipedia.org). 

S 

Shader: is a piece of code that programs certain parts of the graphic pipeline. 
Specifically, it is a set of instructions, a computer program used in 3D computer 
graphics to determine the final surface properties of an object or image, executed by 
the GPU. This often includes arbitrarily complex descriptions of texture mapping, 
light absorption, diffusion, reflection, refraction, shadowing, surface displacement and 
post-processing effects. There are two types: vertex shader and fragment shader. 
(Source: www.wikipedia.org). 

 
SIMD : (Single Instruction, Multiple Data) is a technique employed to achieve 

data level parallelism, as in a vector or array processor. (Source: www.wikipedia.org). 
An operation (performed by a unit) over two arrays using this technique will make the 
calculation over each element, issuing the resulting array element by element to the 
next unit. By this way it is not needed to wait for the realization of the operation (A) 
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over the whole array for continuing with the next operation (B) that needs the 
resulting array from the previous operation (A). 

 
SMP: (Symmetric Multi Processor) is a multiprocessor computer architecture 

where two or more identical processors are connected to a single shared main 
memory. Most common multiprocessor systems today use SMP architecture. (Source: 
www.wikipedia.org). SMP is also called UMA. 

 
SMT: (Simultaneous Multithreading) is a technique for improving the overall 

efficiency of superscalar CPUs. SMT permits multiple independent threads of 
execution in the same superscalar processor to better utilize the resources provided by 
modern processor architectures. (Source: www.wikipedia.org).  

 
SSE: (Streaming SIMD Extensions, originally called ISSE, Internet Streaming 

SIMD Extensions) is a SIMD (Single Instruction, Multiple Data) instruction set 
designed by Intel and introduced in 1999 in their Pentium III series processors as a 
reply to AMD's 3DNow! (which had debuted a year earlier). (Source: 
www.wikipedia.org). 

 
Stencil: Stenciling, like z-buffering, enables and disables drawing on a per-pixel 

basis. You draw into the stencil planes using GL drawing primitives, then render 
geometry and images, using the stencil planes to mask out portions of the screen. 
Stenciling is typically used in multipass rendering algorithms to achieve special 
effects, such as decals, outlining, and constructive solid geometry rendering. (Source: 
OpenGL bluebook). 

 
Stream: is applied to hardware as well as software. There it defines the quasi-

continuous flow of data which is processed in dataflow languages as soon as the 
program state meets the starting condition of the stream. (Source: 
www.wikipedia.org). 

 
STRIP mode: In OpenGL, when defining the STRIP mode for lines, triangles or 

quads means that the first vertices defined will construct a first object (line, triangle or 
quad) and the next vertex defined will make a new object with the union of the last 
vertices defined. There are examples for Line Strip, for Triangle Strip and for Quad 
Strip, respectively: 

   
(Source: 

http://web.cs.wpi.edu/~matt/courses/cs563/talks/OpenGL_Presentation/OpenGL_Pres
entation.html). 
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T 

Texel: (Texture Element (also Texture Pixel)) is the fundamental unit of texture 
space, used in computer graphics. Textures are represented by arrays of texels, just as 
pictures are represented by arrays of pixels. 

 
Texture: an image used in computer rendering to give color and other apparent 

surface characteristics ("textures") to 3D objects. 
 
Tile: A pixmap can be replicated in two dimensions to tile a region. The pixmap 

itself is also known as a tile. In this report it can be seen as a set of pixels, texels or 
fragments. (Source: 
http://barossa.ac3.edu.au/SGI_Developer/books/XLib_WinSys/sgi_html/go01.html). 

 
Triangle: is one of the basic shapes of geometry. Because of this, every 3D object 

can be represented approximately as a set of multiple triangles. 

U 

UMA : (Uniform Memory Access) is a computer memory architecture used in 
parallel computers. All the processors in the UMA model share the physical memory 
uniformly. Peripherals are also shared. Cache memory may be private for each 
processor. In an UMA architecture, accessing time to a memory location is 
independent from which processor makes the request or which memory chip contains 
the target memory data. (Source: www.wikipedia.org). 

V 

Vertex: is a corner of a polygon (where two sides meet) and, in OpenGL, a vertex 
can have associated several parameters as 3D coordinates, colour, depth, alpha, etc. 

 
Visual Studio: is Microsoft's flagship software development product for computer 

programmers. It centers on an integrated development environment which lets 
programmers create standalone applications, web sites, web applications, and web 
services that run on any platforms supported by Microsoft's .NET Framework. 
(Source: www.wikipedia.org). 

 
VLIW : (Very Long Instruction Word) refers to a CPU architectural approach to 

taking advantage of instruction level parallelism (ILP). A processor that executes 
every instruction one after the other (i.e. a non-pipelined scalar architecture) will have 
very poor performance. The performance can be improved by executing different sub-
steps of sequential instructions simultaneously (this is pipelining), or even executing 
multiple instructions entirely simultaneously as in superscalar architectures. (Source: 
www.wikipedia.org). In this kind of architectures, the processor always issue and 
execute the same number of instructions at the same time (always 4 or 8, depending 
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on the configuration of the processor). For that, the compiler has to dispose the 
instructions to the processor in a correct order avoiding interactions and bad results. 
The instruction nop (not an operation, do not do anything) is used to fill the places of 
instructions that can not be executed at the same time that the other (for example, two 
instructions where one need the result of the other operation). 

W 

Windows: is the name of several families of proprietary operating systems by 
Microsoft. They can run on several types of platforms such as servers, embedded 
devices and, most typically, on personal computers. (Source: www.wikipedia.org). 

X 

 

Y 

 

Z 

Z: see Z-buffering. 
 
Z-buffering : is the management of image depth coordinates in three-dimensional 

(3-D) graphics, usually done in hardware, sometimes in software. It is one solution to 
the visibility problem, which is the problem of deciding which elements of a rendered 
scene are visible, and which are hidden. The painter's algorithm is another common 
solution which, though less efficient, can also handle non-opaque scene elements. Z-
buffering is also known as depth buffering. (Source: www.wikipedia.org). 
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APPENDIX B: OUTPUT STATISTIC VARIABLES 

NAME UNIT CODE (to be explained by the author in 
future documentation, but the majority 
understandable) 

AccessQueueOccupation TU (Texture unit) 
AddressALUBusyCycles TU 
AddressCalculationFinished TU 
AllocateFailed CW-SU  
AllocateOK CW 
AnisotropyRatio TU 
BackFacingTriangles TS (Triangle Setup) 
Batches CP (Command Processor) 
BilinearSamples TU 
BlendedFragments CW 
BlockCommands ShDX FS (Fragment Shader) 
BlockedInstructions ShDx FS 
BlockedThreads ShF FS 
Blocks ShF FS 
BytesRead CP 
BytesWritten CP 
Clear CP 
ClippedTriangles CLP 
ColorWriteReadBytes MC (Memory Controller) 
ColorWriteReadTransactions MC 
ColorWriteTransactions MC 
ColorWriteWriteBytes MC 
ColorWriteWriteTransactions MC 
CommandProcessorReadBytes MC 
CommandProcessorReadTransactions MC 
CommandProcessorTransactions MC 
CommandProcessorWriteBytes MC 
CommandProcessorWriteTransactions MC 
CulledFragments CW SU HZ ZST 
CulledHZFragments HZ (Hierarchical Z) 
CulledOutsideFragments HZ 
CulledTriangles TS 
DACReadBytes MC 
DACReadTransactions MC 
DACTransactions MC 
DACWriteBytes MC 
DACWriteTransactions MC 
DataCycles00 - 03 MC 
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Degenerated PA 
Draw CP 
EmptyCycles ShF FS 
EndCommands ShDX FS 
EndFragment  CP 
EndGeometry CP 
ExecutedInstructions ShDX FS 
FailedFragments ZST SU (Z-Stencil) 
FakedInstructions ShDX FS 
FetchBankConflicts TU 
FetchCycles FS 
FetchFailed CW SU ZST 
FetchOK CW SU ZST 
FetchStallAddress TU 
FetchStallFetch TU 
FetchStallReadyRead TU 
FetchStallWaitRead TU 
FetchedInstr ShF FS 
FetchesFailed TU 
FetchesOK TU 
FetchesSkiped TU 
Fetches StL 
FilterALUBusyCycles TU 
FinishedThreads ShF 
Frames CP 
FreeThreads ShF 
FrontFacingTriangles TS 
GeneratedFragments TT 
HitsAlloc CW InC TU ZST 
HitsFetch CW InC TU ZST 
HitsHZCache HZ 
Hits StOC 
IndexesSent StF 
Indices Stc StL StOC 
InputActiveInputAttributes ShF 
InputActiveOutputAttributes ShF 
InputFragments CW FFU HZ ZST 
InputRegisters ShF 
InputTriangles CLP FFU TS TT 
InputVertices FFU 
Inputs ShF StL  
IntStampQueuesOccupation FFU 
InterpolatedFragments FFU 
LogicOpFragments CW 
MappedAttributes StL 
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MemTransactions StL 
MemoryPreload CP 
MemoryReadBytes MC 
MemoryReadTransactions MC 
MemoryRead CP 
MemoryRequestLatency Tu 
MemoryRequests TU 
MemoryTransactions MC StF 
MemoryWriteBytes MC 
MemoryWriteTransactions MC 
MemoryWrite CP 
MissFailAlloc CW InC TU ZST 
MissFailFetch CW InC TU ZST 
MissFailMissAlloc TU 
MissFailMissFetch TU 
MissFailReqQueueAlloc TU 
MissFailReqQueueFetch TU 
MissFailReserveAlloc TU 
MissFailReserveFetch TU 
MissOKAlloc CW Inc TU ZST 
MissOKFetch CW InC TU ZST 
MissesAlloc CW InC TU ZST 
MissesFetch CW InC TU ZST 
MissesHZCache HZ 
Misses StOC 
NoFetches StL 
NoReads StL 
NoReadyCycles ShF 
OpenPagePenalty00 - 01 MC 
OpenPages01 - 03 MC 
OutputAttributes Stc 
OutputFragments FFU HZ ZST 
OutputTriangles CLP FFU TS 
OutputVertices FFU 
Outputs ShF StC 
OutsideFragments CW ZST 
OutsideTriangleFragments HZ 
OutsideViewPortFragments HZ 
PassedFragments ZST 
PreloadTransactions MC 
RAWDependence CW ZST 
RastStampQueuesOccupation FFU 
ReFetchedInstr ShF 
ReadBankConflicts TU 
ReadBytesMemoryBuss00 – 03 MC 
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ReadBytesMemory TU 
ReadBytesSystemBus MC 
ReadBytes CW InC StF StL TU ZST 
ReadFailed CW ZST 
ReadOK CWZST 
ReadToWritePenalty00 – 03 MC 
ReadTransactions CW TU ZST 
ReadsFail CW TU ZST 
ReadsFailedTU TU 
ReadsHZBuffer HZ 
ReadsOKTU TU 
ReadsOK CW InC TU ZST 
Reads StL 
ReadyreadQuewueOccupation TU 
ReadyThreads ShF 
RegisterWrites CP 
RemovedInstructions ShDX 
ReplayCommands ShDX 
RequestQueueOccupation TU 
RequestedTriangles TS TT 
Requests PA StC 
ResultQueueOccupation TU 
ShadedFragments FFU 
ShadedStampQueuesOccupation FFU 
ShadedTriangles FFU 
ShadedVertices FFU 
ShaderOutputs StC 
SplittedAttributes StL 
StreamerFetchReadbytes Mc 
StreamerFetchReadTransactions MC 
StreamerLoaderTransactions MC 
StreamerLoaderWriteBytes MC 
StreamerLoaderWriteTransactions MC 
Swap CP 
SystemDataCycles 00 – 01 MC 
Systemreadbytes MC 
SystemReadTransactions MC 
SystemTransactions MC 
SystemWriteBytes Mc 
SystemWriteTransactions Mc 
TestStampQueuesOccupation FFU 
TestedFragments ZST 
TextureRequests ShDX TU 
TextureResultLatency TU 
TextureResults TU 
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TextureUnitReadBytes MC 
TextureUnitReadTransactions MC 
TextureUnitWriteTransactions MC 
TriangleInputQueueOccupation FFU 
TriangleOutputQueueOccuaption FFU 
Triangles PA 
UnblockCommands ShDX 
Unblocks ShF 
Unreserves CW TU ZST 
UnusedCycles MC 
UpdatesHZ HZ 
UsedResources ShF 
VertexInputQueueOccupation FFU 
VertexOutputQueueOccupation FFU 
Vertices PA 
WaitReadWindowOccupation TU 
WriteBytesMemoryBus 00 – 03 MC 
WriteBytesSystemBus MC 
WriteBytes CW InC TU ZST 
WriteFailed CW ZST 
WriteOK ZST 
WriteToReadPenalty00 – 03 MC 
WriteTransactions CP CW ZST 
WritesFail CW TU ZST 
WritesHZBuffer HZ 
WritesOK CW InC TU ZST 
ZStencilTestReadBytes MC 
ZStencilTestReadTransactions MC 
ZStencilTestTransactions MC 
ZStencilTestWriteBytes MC 
ZStencilTestWriteTransactions MC 
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APPENDIX C: PARAMETERS 

In this appendix the parameters that configure the ATTILA architecture will be 
explained. This appendix complements the section 3.1.1, so it is interesting to read 
them at the same time. Here only the most interesting parameters will be explained, 
because there are about 215 different parameters. To see all the parameters, just have 
a look to one configuration file (ATTILA-rei-5xx.ini) in the folder confs.  

The parameters are defined in a configuration file that has a structure as shown in 
figure C.1. Label says the unit that will be configured, and parameter corresponds to 
an aspect of this unit to configure. 

 
   [LABEL1] 
   ParameterName11 = value11 
   ParameterName12 = value12 
   … 
 
   [LABEL2] 
   ParameterName21 = value21 
   ParameterName22 = value22 
   … 
 

Figure C.1. Scheme of the configuration file. 
 

- [COMMANDPROCESSOR]: for the configuration of the Command 
Processor. One parameter is PipelinedBatchRendering (allow to process 
register writes (AGP_REG_WRITE) and non locked memory uploads 
(AGP_WRITE) while the rest of the pipeline is rendering). 

- [STREAMER]: for the configuration of the Streamer of Vertex Fetch. It 
can be configured by up to 13 parameters as IndexBufferSize or 
VerticesCycle. 

- [VERTEXSHADER]: for the configuration of the Vertex Shader (every 
vertex shader will have the same structure, but if unified shaders are 
used, then in the same shader unit can be mixed vertex and fragment 
shader) with up to 14 parameters, as ExecutableThreads, ScalarALU (it 
is a Boolean variable that only take the true value for pixel (or fragment) 
shader, the only one that supports scalar ALUs), FetchRate, 
InputsPerCycle,…. 

- [PRIMITIVEASSEMBLY]: for the configuration of the Primitive 
Assembly. The parameters in order to configure this stage are 
VerticesCycle, InputBusLatency, AssemblyQueueSize (the size of the 
memory that stores the last vertices) and TrianglesCycle. 

- [CLIPPER]: some parameters that configure the Clipper stage can be 
ClipperUnits and ExecLatency, supporting up to 5 parameters. 

- [RASTERIZER]: for the configuration of the whole Rasterizer stage.  
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o The parameters for configuring the Triangle Setup are 
TrinagleInputLatency, TriangleSetupOnShader, 
StampsPerCycle, etc. 

o The parameters for configuring the Fragment Generator stage 
can be RecursiveMode, GenWidth, GenHeight, ScanWidth, etc. 

o The parameters for configure the HZ can build up the HZ cache 
or latencies, for example, HZCacheLines, HZCacheLineSize, 
HZAccessLatency, amongst others. 

o One important parameter for configuring the Interpolator stage 
is NumInterpolators. 

- [ZSTENCILTEST]: Z and Stencil tests can be configured in a separately 
section from the Rasterizer. Some parameters can be used for 
configuring the ZCache (ZCacheWays, ZCachLines), and other about 
the compression unit (CompressionUnitLatency, DisableCompression). 
The number of the total of parameters is 19 parameters. 

- [FRAGMENTSHADER]: In any case, the parameters for configuring 
the Fragment Shader are the same than for the Vertex Shader, plus the 
parameters for configuring the Texture Units, such as 
TextureBlockDimension, TextureCacheWays, TwoLevelTextureCache, 
TextureCacheWaysL1, against others. 

- [COLORWRITE]: The parameters placed below this label can be 
StampsperCycle, ColorCacheWays, ColorCacheLines, ColorQueueSize, 
etc. 

- [DAC]: It can be configured by the parameters BytesPerPixel, 
BlockSize, DecompressionUnitLatency (in case of use Compression of 
frames, but it can be always dismissed to only 1 cycle because the dump 
into a file is out of the GPU work), RefreshFrame … of the stage DAC. 

- [MEMORYCONTROLLER]: This unit can be highly configured by 
parameters, such as MemorySize, MemoryFrequency, MemoryBusses, 
BankGranularity (size of banks), ReadLatency, WriteLatency, 
MemoryPageSize, etc. 

 
The bus width of Command Processor, Streamer, ZStencil, DAC and 

TextureUnit can be configured with the parameters CommandProcessorBusWidth (on 
the baseline configuration is 8, and not 64 like in the others), 
StreamerFetchBusWidth, StreamerLoaderBusWidth, ZStencilBusWidth, 
DACBusWidth and TextureUnitBusWidht. 
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APPENDIX D: PARALLELIZATION OF ATTILA 

This section is based on the miniproject [18] and further information found on the 
mail list [9]. The ideas exposed here are as theory; they were not tested before in a 
real machine yet but seem that can make the simulator to achieve a better 
performance.  

As commented on the conclusion from section 4.3, ATTILA is a cycle-accurate 
simulator but inefficient when simulating. One simulation takes a lot of time when 
simulating, but it is logic when thinking that: 

- The CPU has to do a work (simulation) that is very inefficient if it is not 
used specific hardware like GPU or other SIMD architectures. 

- ATTILA is a cycle-accurate simulator, where everything is simulated on 
detail. 

- The simulator code uses sequential model, with boxes and a lot of 
sometimes “useless” signals between them. 

 
But it is possible to make the simulator more efficient trying some methods over 

the code like parallelization, avoiding change the whole design of the source code.  
We can see the way of working of the simulator in the main loop (called from the 
main function, file bGPU.c, see figure D.1) and it is possible to see two aspects:  

 

 
Figure D.1. Main loop of ATTILA simulator. 

Each stage (or 
box) is executed 
for one cycle, in a 
sequential order 
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- It is sequential, first simulate one cycle in one box, and then simulate the 
next. 

- Each box has input signals and output signals. One signal is a class that 
implements a kind of buffer with a cycle of delay. Then, each box 
simulates a single cycle stage (or stages) using local data and signal data 
produced in another box. But the data that comes from the signals was 
produced at least one cycle in the past so there are no data dependences 
between boxes simulating the same cycle. 

Taking in account these aspects, it is possible to give solutions to many problems 
that statistics and experience can show us. Only two problems will be seen here: 

- Problem 1: Statistics show that the most of simulation time is used on 
shaders (fragment shaders and their texture units). Also ZStencilTest 
takes so much time when doing depth or stencil passes (like stencil 
shadows engines as Doom3). 

The solution for this problem can be the implementation of parallel 
fragment shaders, but not in a sequential implementation as currently 
are, that is, with a parallel paradigm. For that, OpenMP will be applied 
over the existing code (see www.openmp.org). The parallelization of the 
Fragment Shaders can be easy if we put a barrier for waiting before 
going to the next stage. Each Fragment Shader has an input and an 
output private signal that only the boxes connected with them can read, 
that is, there is not interaction between the Fragment Shader Units (as 
commented before). See figure D.2 for an example of how 
implementation should be. 

 

 
Figure D.2. Parallelization of fragment shaders with OpenMP. 

Each iteration is done 
by one thread, with an 
implicit barrier at the end 
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- Problem 2: In each cycle, each stage has to wait to the previous for being 
executed (and just one cycle), when in a real GPU it does not happen 
(each stage executes one cycle at the same time).  

The extensible model that ATTILA uses allows us to parallelize the 
execution of each stage in an “easy” way. The solution for that problem 
can be the execution in parallel of each stage, using the buffers with 
locks for the connections and barriers at the end of each stage for 
simulating only one cycle per stage at the same time (and no more). This 
solution is not easy. We have to implement a lock for the signals 
(buffers), statistics dumps, and not go to panic mode when there is no 
data in a signal. On the first cycles, all the buffers are empty, so each 
stage has to wait or perform an empty cycle (in exception of the first 
stage). With time, data will go through the buffers and stages. For 
example, when a fragment is created it has to go to the next stages, but 
for going from one stage to the next one, it has to wait at least one cycle. 
At the end, if it is possible to have an unlimited number of processors 
(for execute the thread of each stage in each processor) the slower box 
or 'stage' would be the one determining the simulator speed, like in a real 
GPU or processor. 

This scheme is shown on figure D.3. One thread will simulate the 
clock system, and is the one that synchronize the other threads (stages). 
In figure D.4 there are two example implementations with OpenMP and 
PThreads. The implementation in Pthreads was able to be compiled and 
executed, but not in a multiprocessor. These are some ideas that can 
work well with the simulator. 

 

 
Figure D.3. Scheme of the execution in parallel of the stages. 
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(a) 

 

 
 

(b) 
 

Figure D.4. Example implementation of the execution in parallel of each stage 
using (a) OpenMP and (b) PThreads 

… 
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