Evaluating ATTILA, a cycle-accurate GPU simulator

Miguel Angel Martinez del Amor

Department of Computer and Information Science
Norwegian University of Science and Technology (NJ)N
miguelan@stud.ntnu.no
Project supervisor: Lasse Natvig

lasse@idi.ntnu.no
26" January 2007

Abstract. As GPUs’ technology grow more and more, new sitouaare
needed to help on the task of designing new awthites. Simulators have
several advantages compared to an implementatientlyiin hardware, so they
are very useful in GPU development. ATTILA is a né®RU simulator that was
born to provide a framework for working with realp@&GL applications,
simulating at the same time a GPU that has antaathre similar to the current
designs of the major GPU vendors like NVIDIA or ATrhis architecture is
highly configurable, and also ATTILA gives a lot statistics and information
about what occurred into the simulated GPU durirggexecution. This project
will explain the main aspects of this simulatorthvan evaluation of this tool
that is young but powerful and helpful for researshand developers of new
GPUs.

1. Introduction

The main brain of computers is the CPU (CentralcBssing Unit), where the
instructions are executed, manipulating by this way data stored in memory. But
with the new applications that demand even moreuregs, the CPU is becoming a
bottleneck. There is a lot of works about how topiiove the CPI (Cycles per
Instruction) which is a good parameter for makingparisons between uniprocessor
architectures, and the search for parallelism éshtbst way to do it. It is possible to
parallelize the execution of each instruction byfqning this execution in stages. In
this manner, when an instruction is in the secdades the next operation can start
with the first stage, so an instruction can stafble finish the last one. It is similar to
the Henry Ford method for a car factory where thestruction pipeline is divided in
stages and one car can be only in each stage (hwwemn the same stage), now
imagine that a car is an instruction and the factisr the CPU. It is easy to
demonstrate that CPI value can achieve 1 withrtféthod, which is the perfect and
theoretical value although it was never achievedsé techniques and also all the
stages that each instruction is divided in areedgfiipeline If we try to use the
parallelism between instructions (loops, threads it iy possible to issue more than
one instruction per cycle, so the CPI can be Ibas bne. It can be done by using
multiple pipelines for multiple instructions, andither it was possible to achieve a

2 Miguel Angel Martinez del Amor

perfect value less than 1. Superscalar and VLIWigzctures are examples about this
kind of exploit parallelism.

Moreover, thread and process parallelism are ugeduitiprocessor architectures
as SMT (Simultaneous Multi Threading, several tseean be executed at the same
time in the same processor), UMA (Uniform MemorycAss, also called SMP, all
processor share the main memory) and NUMA (Non &fmif Memory Access, each
processor has a part of memory). But all of theésdskof parallelism have limits, and
in some fields it has still some troubles to fihdm. Other problem that CPUs have is
that they are for general purpose, so they mussiden all the possibilities making
more difficult the optimization of code executioh.solution for the last feature is to
make others specific systems that can help the ©Rtdprove the execution time.

In computer graphics the CPU needs to delegatbedstPU the calculations of
graphics instructions and data. GPU is a specifip@se processor that is optimized
for working with graphics which are based on strie@nfcontinuous source of data,
like buffers or arrays of elements). There was manyks trying to make a general
purpose CPU that could work with stream data, ifs¢ dne was on the 70’s and was
called Vector processor. Nowadays this idea is usedchnologies like MMX, SSE
or 3DNOW that help the CPU with graphics calculasio The key of the
optimizations that the stream specific purpose isgcture provides is based on the
independence between the elements of a strearhidmmanner, if a unit needs the
result stream from a previous one, it does not Havevait until this previous unit
finish with the entire stream, instead the unit start to make calculations with one
element of the stream at the same time that theique unit sends the processed
element. It means that there is an overlapping &etwinstructions that share
resources, and it is really powerful for workingtlwistreams. Graphic processors
(GPU, Graphic Processor Unit) use these kind ofiictures based on streaming
processing, and these processors are placed outed€PU for performing the
complex graphic calculations and being the resppbmgif refreshing the screen with
new frames in parallel with the execution of instrons on the CPU. The
technologies mentioned before (MMX, SSE or 3SDNOWYaer replace a GPU; they
just help the CPU and GPU to perform multimedia grapphic operations.

However, CPU and GPU have to cooperate if they what the system shows
good results with graphic operations. As it carséen in figure 1.1 (next page), CPU
and GPU are interconnected by the North Bridge tteireal communication is made
by the system memory (DRAM). So the CPU puts dath eode into the memory
while the GPU takes this data, makes the operatiodssends the information to the
output display.

The most complex graphic calculations are aboutggiphics on real time (i.e.
videogames), so newer GPUs are optimized for tinid &f applications. The pipeline
of 3D graphics is based on triangle and textureasting, which means that the main
goal is to transform 3D data (coordinates of trlangodels, easy to understand for
programmers) into pixels that are displayed or?fhescreen.

Evaluating ATTILA, a cycle-accurate GPU simulator 3

CPU
15.4 GB/s
6.4 GB/s Up to
) s or More 8 GB/s
System DRAM —~—— North Bridge ~—— GPU — To Display
[Up to 35 GB/s

South Bridge

Other Peripherals

Figure 1.1 The place of the GPU into a typical comper system (from [3]).
That is a Nvidia implementation for the GeForce arbitecture.

Graphics DRAM

Figure 1.2 shows a general pipeline architecturgfbdata. The input of the GPU
is 3D object coordinates (mainly from trianglesttjo to the Geometry Stage where
the 3D coordinates are translated to the spac®afadrdinates of the display. In the
last stage, Rendering, the correct colour of edghl ps calculated in base of the
associated colour, light hitting, textures and otbiéects as alpha (translucent) and
fog of each Geometry stage’s output (also calleagrfrents). Furthermore, the
Geometry stage can be divided into 2 stages. Tisé dine is the Transform and
Lighting stage which is the process of displayintheee-dimensional object onto a
two-dimensional screen, providing lighting effe¢ts the scene. The Rasterization
(also called Triangle Setup in [1]) sets up ang tiie triangle, and makes fragments
for the next stages (Rendering). A fragment isgtiita pixel (sometimes these two
terms are not distinguished, like in Direct3D sfieation), it has attributes like
colour and depth, and multiple fragments correspiandne pixel (i.e. when using
blending or transparency functions). Applicatioski® (Al, camera, interaction ...)
and scene level task (collisions ...) are alwaysqueréd by the CPU (software),
because these are general purpose programs.

APPLICATION TASK
l GEOMETRY STAGE
SCENE LEVEL TASK ——» —» REMNDER STAGE [—w DISPLAY
} * Transformation & Lighting H Rasterization :
! |
I
i '

coordinates of 3D ohjects fragments (x,y,depth,...}
(%,¥,2)

Figure 1.2 Abstract architecture of the graphic pigeline.

4 Miguel Angel Martinez del Amor

Not all of these stages were implemented on th& fBraphic Card that just
displayed the lines into the screen, so the otleges were made as a software
process by the CPU. With the evolution of transstnd hardware, it was possible to
implement the pipeline into the GPU; meanwhile @BU just works with the
application tasks and scene level physics, givintpé GPU triangle coordinates from
the results.

The most complex stage and the bottleneck of GPthdésRendering Stage (it
calculates the colour and position of pixels). Ag¢ tbeginning GPUs were able to
output only one pixel in several cycles. Becausthisfbottleneck, CPUs were able to
output more triangles than the GPU could handle.o Tselutions were taken:
pipelining and parallelism. Nowadays a GPU has abb® parallel pipelined
rendering processors, it was very easy becauseniagd3D graphics is a repetitive
task and it is possible to do with different pixatthe same time. With these changes,
the CPU and the access to 3D data into the mensobgdoming the bottleneck of
graphics rendering, so the best solution for thithat the GPU takes more workload
than the CPU, in this case, place the stage Tremsémd lighting into the GPU and
improve the access of the GPU to the memory ({33.BXpress).

The pipeline with all the graphics stages impleradnbn hardware was called
fixed function pipeline. Although it was fasteretimplementation of all the pipeline
on hardware had a constant behaviour, that isways performs the same operations
with 3D data. Consequently, this pipeline was tetible for graphic programmers in
case of, for example, changing the API or makingew kind of operation with the
vertices.

The solution (and nowadays the most used method$ tea develop a
programmable pipeline where the GPU can executdl grayrams calledshaders
over the vertices and fragments. Figure 1.3 (negiep shows a general view of this
new programmable graphic pipeline. A shader iseagbf code that program certain
parts of the graphics pipeline, and there are twmeds: vertex shaders (replace
Transform and Lighting stage) and fragment shadieyglace the texturing, colour
sum and fog). These shader codes use low-level udygs, such as
ARB_Vertex_Program, ARB_Fragment_Program and D& Shading languages.
However there are high-level languages with compitbat make easy the complex
programming task. Some of the high-level language<gd and GLSlang

There are a widely amount of work research forrei@PUs. Now it is possible to
execute general purpose code using a GPU as dfadmemasion to streams (i.e.
GPGPU project invww.gpgpu.orf, but sometimes it is not more efficient than a
CPU because there are some limitations as sai2ll.irspme new compilers, like the
BrookGPU project [10], try to help with the task afaking general purpose
applications for GPU, but they are still in devetmgnt. Other future work is to
implement unified shader units on the GPU, thajpis, vertex and fragments units in
a general one. Vertex and fragment shaders arenstarsand their union can be
performed relatively easy. It provides better perfance in some cases; for example,

1 Cg is a high-level shading language developed byIINM. Homepage is at
http://developer.nvidia.com/page/cg_main.html

2 GLSlang is a high-level shading language that Wi introduced with OpenGL 2.0.
Homepage is dittp://developer.3dlabs.com/documents/glsimanpagiex.htm

Evaluating ATTILA, a cycle-accurate GPU simulator 5

when it is needed more vertex shaders than frago@tg and then, it is possible to
share resources because of the use of unified shads. Future shading languages

will support this novel architecture, like Shadeod#l 4.0 in Direct3D and GLSlang
in OpenGL 2.0.

Transform & Lighting

FPrimitive Assembly,
Culling, Ferspective
Division, Viewport

Mapping

Color Sum and Frog

Alpha Test, Depth Test,
Stencil Test

\—‘ Frame Buffer Blending ‘

(@)

Wertex Shader

FPrimitive Assembly,
Culling, Perspective
Division, Viewport

MMapping
Fragment Shader

Alpha Test, Depth Test,
Stencil Test

\—‘ Frame Buffer Blending ‘
(b)

Figure 1.3 Overview of the GPU pipeline. (a) A fixé function pipeline. (b) A
programmable function pipeline, with vertex and fragment shader units.

As it can be seen, the task of developing a noraitecture for GPU purpose is
hard, like for CPU purpose is. Simulators are adgtaol that can help to GPU
developers to investigate new technologies witlaophysical implementation. A new
simulator was done by the department of computehi@cture of polytechnic
university of Catalonia, with almost all the codgbfic. The name of the project and
also of the simulator is ATTILA. This simulator &ycle accurate and execution
driven, and provides a wide set of statistics peainits the researcher to analyse the

6 Miguel Angel Martinez del Amor

new architecture. The urge that this simulator aahieve for the development and
test of new GPU architectures has to be considéehed,is the reason because this
report makes an evaluation of this tool.

In section 2 it will be commented some previousterl works. Section 3 will
explain in detail the simulator: architectures th&TTILA can simulate, an
introduction to the source code and statistics ithatovides. Section 4 will make an
evaluation of the simulator, executing testprogran®©penGL and a discussion of
the weak and strong sides of ATTILA. Finally, sentb gives a general conclusion of
the report and comments some possible work to rwoatin a not so far future.

At the end of this paper there are also four apijpesd Appendix A contains a
small dictionary of abbreviations and terms that balp to the understanding of this
paper. So if one does not know the meaning of alwast look for it in Appendix A.
Appendix B and C contains more information and itietbout the simulator. The
former (B) has the collection of statistics thatTALA provides; the latter (C) shows
an introduction to the configuration of ATTILA byapameters. As a bonus for this
paper, Appendix D comments how ATTILA can improve tsimulation time by
parallelizing some code.

2. Antecedents and related work

The previous works about ATTILA are the presentaiand works made by the
authors, which are Victor Moya del Barrio, Carlosn2alez, Jordi Roca, Chema Solis
and Agustin Fernandez from the department of coemparchitecture of the
Polytechnic University of Catalonia (Spain), and gBo Espasa from Intel in
Barcelona. These works can be found on [8]. “An EodEnd, Highly Detailed
Simulator for the ATILA GPU Microarchitecture” [5nd “ATTILA: A cycle-Level
Execution-Driven Simulator for Modern GPU Architets” [6] explain the
simulator on detail (the most used for this pap@r], [12] and [13] are works that
uses ATTILA as the basis for their experiments|(ides a little explanation of the
simulator).

But ATTILA is not the only choice for simulate GPaichitectures. There are
previous frameworks like QSilver (see [14] or theonte page
http://gsilver.cs.virginia.edumvork from the University of Virginia), SM (insidthe
project Sh, which is a metaprogramming language pimgrammable GPUs (see
home page dtttp://libsh.org/index.htm] one interesting paper that talks about SM is
[15]) and one developed by NVIDIA, NVEmulate (ofuree it can simulate only
NVIDIA architectures, in special, GeForce Serieg support GLSlang and a wide
set of OpenGL, the webpage ish#tp://developer.nvidia.com/object/nvemulate.Btml

Evaluating ATTILA, a cycle-accurate GPU simulator 7

3. ATTILA in detall

3.1 GPU simulated architecture

The architectures that ATTILA can simulate are base a common pipeline that
can support real 3D graphic data going througktages. This baseline pipeline uses
techniques developed from the main GPUs manufastsiech as ATl and NVIDIA,
and others from many researchers at universitiess ibased on the OpenGL
specification, in the manner that D3D (Direct3Dhi#t supported yet (but it is being
in development). By this way, the pipeline is reéalyvork with real data like modern
GPUs do, but for simplicity, some stages was ngilémented such as the fog and
alpha stages (they are simulated by fragment sh@dgrams). This section makes an
overview of the baseline pipeline that ATTILA caimslate with an explanation of
the general architecture simulated (to know howdofigure it with parameters, see
Appendix C) and a short explanation of the impletagon on code (as a beginning
for configure a whole new pipeline).

3.1.1 Architectures based on the baseline pipeline

For a good understanding, on figure 3.1 (next pabeje is a scheme of the
simulated pipeline where the red lines (or linethait arrows) are control wires and
the data go through the black wires (or lines \aiftows). It is supposed that between
two connected stages by data wires there is a bulfiere the first stage stores its
outputs and the next takes its inputs. It impliest ttach stage run independently in
terms of synchronization from the others, in otherds, each stage can work with
different latencies without waiting to the previctage. Below the pipeline there are
details of the boxes ROPz (Z and Stencil testsqd8hand ROPc (color write), and
following the scheme there is an explanation ohestage of the pipeline, that is, the
task that each box has.

8 Miguel Angel Martinez del Amor

Command Processor

Vertex Fetch |
H||| Y Memory
i e S = Controller
| Primitive Assembly | = ROP }—’ =
* || | | - i Memaory
| Clipping | ~.‘_R('j_pzn_i-. % = g_' % Controller
- o =
vl 3| (B 5 DAC
| Triangle Setup | F= ROP, 30”4 - @ g CME‘E”Ol'l'V
* || g J ontroller
Rasterization | | ROPz =] Memory
4 | e T T L | Controller
| Hierarchical Z }—_ i

)
o T
ltar
Z Cache Colar
Registar Cache
Cache
Addrass

Y Shader

Figure 3.1 Scheme of the ATTILA supported pipelingfrom [6]).

- Command processor controls (red wires) the whole pipeline, buffers

and the transactions of batches (set of vertices) the system memory
to the GPU memory, and receives the commands santthe processor
and forwards them to the pipeline.

- Vertex fetch or Streamer. requests vertex input attributes and converts

them into internal format (4 component 32 bit flpaint vectors) for the

vertex shader. It is supported both plain vertexitatte buffers and

indexed vertex buffers. The former is a naturadastn of vertices like

arrays that can be stored in internal buffers imgeted by a full

associative cache. The latter is used for the retrsm a vertex is shared
between two or more adjacent triangles by assogath index to each
one. For example when the TRIANGLE_FAN mode in Gpkens used

and one vertex is shared between all the triandéfimed. A cache is
used to reuse these indexed vertices by using aection with the

output of the vertex shader (to store post-caledlathading vertices),
and then, avoid repetitive calculations when usingred vertices.

- Vertex shader. is the programmable unit explained in the intrctchn.

It takes a batch (a stream of vertices) processethd Streamer and
executes a vertex shader program (provided by then@and Processor)
over them. The vertex shader unit was implementadguas reference
the ARB_vertex_program specification, so for supipgrDirect3D it is

Evaluating ATTILA, a cycle-accurate GPU simulator 9

needed also to change the shader implementatiowet&r, not all the
features of the ARB specification are supported, the implemented
ones are enough for simulating frames from noveiemlike Doom3 or
Quake4.

The vertex shader units can be shared with therfeag shaders
ones, that is, it can be used a unified shader miydthis way, there are
mainly two simulator binaries: one that supportsied shader units and
another one that supports separated shader urétsauBe vertex and
fragment shaders are similar, it will be explainkd whole shader unit
as unified. So for the understanding of the sepdratodel, it is enough
to divide the part of vertex shader in one groupimifs and the part of
fragment shaders in other.

o0 Shader units This architecture supports unified shader units
where, as mentioned so far, the units used forexeend
fragment shading are the same (it is optional kexdhere is
other version of the simulator for non-unified sead
architecture). This unit has an ALU based on SIMD
architecture of 4 component 32 bit float point westand scalar
ALUs to support fragment shading.

The shader on detail can be seen on the bottorgofef
3.1, where there are two separated parts, onethathLU and
register file, and another with the texture unitertex Shaders
use only the ALU and register file, whereas Fragn&maders
use the whole unit (ALU, texture ALU and textureclea). As
each shader unit can support the execution of aktlerads at
once, they can execute vertex and fragment progiEnike
same time without interaction between them (thread
information contains if it is a vertex or a fragmehader and
the execution is performed only if there is fresogrces in the
shader unit).

A small cache is used to reduce the usage of thmame
bandwidth for texture accesses and it is basedhertexture
cache architectures from Hakura and Gupta resda@fchsing
a 256 byte cache line that can store 8x8 32 bikel[Tde, with
4 sets and 16 lines per set that implies a cacHé d€Bs. As
said before, shader units are based on the ARB (I8#h
ARB_Vertex_program and ARB_Fragment _program) that
comprises an ALU and four registers files (as carsbéen on
figure 3.2 (next page)): for input attributes (Re@dly), for
output attributes (Write Only), temporal regist@Read/Write)
and for constants (Read Only, with values configujest
before the simulation). Each register is a 4 corapor32 bits
float point vector (the variable type of the ARB),exception
of the Temporal Bank that store 2 components 32 \®ttors.
Furthermore, it was defined others 4 kinds of regssfiles:
Address Register Bank (store integers), ConditiondeC
Register (store an integer), Boolean Constant Bestkre

10

Miguel Angel Martinez del Amor

Booleans) and Texture Sampler (defines textureinnisage).
The number of registers per bank depends on thd kin
shader and on the shader version, thus havingfpues that a
shader unit can represent: Fragment or Vertex Shzated on
model version 1.0, Fragment or Vertex Shader baseghodel
version 2.0 and unified shader. For example, theabar of
registers for the constant bank is 96 in vertexdshd.0 and
256 in the version 2.0.

One shader can fetch more than one instructiorfi(pmed
as a parameter) and the shader architecture impteme
multithreading, hiding the latencies that instrond and
texture memory access have. The required numbéireads
depends on the kind of shader: 12 threads are érfougertex
shader, but fragment shader needs up to 112 thizewmise
the leverage of texture accesses’ large latencidso the
number of physical instruction registers (instromtimemory
size) varies, from 96 to 448 in that order.

Constant Input
Register File Register Filz
Ghudx 12 bits L0/ 16 = 4= 32 bits
L
Taxt d :
exture Temporal

Unit ALU Register Filz
I2x=2x32 bits

L 1r4 I_-'

Qutput
Ragister File Fhysical Register
2/10 4 12 bits File

Figure 3.2 Unified Shader model based on the ARB spification (from [6]).

- Primitive Assembly: assembles the vertices from the vertex shader
output into rendering primitives. It can be seenfigare 3.1, below the
Vertex Fetch box. It supports five kinds of Opentgangle primitives:
lists, fans, strips, quad lists, and quad strips,itocan not support lines
or points yet what implies that the primitives g@sirlines and lines strip
will be ignored and not showed into the output.sThnit uses a small
memory to store the last vertices and assembladheobject (triangle),
and also it uses some specific registers that alsrnis queue.

- Clipper unit: selects the triangles that are completely origirtinside

Evaluating ATTILA, a cycle-accurate GPU simulator 11

the view frusturd volume. It can be seen on figure 3.1, below the
Primitive Assembly box, called as Clipping. It usasbuffer for the
clipped triangles and several registers as clippedgles (store the
count of triangles clipped) and frustumClip thatrksas a flag.

- Rasterization: makes fragments from the culled triangles. It pases
the Triangle Setup, Fragment Generator, Hierarttdicdest and the
Interpolator. However, as seen in the pipeline fritn® above scheme
(figure 3.1), Triangle Setup, Hierarchical Z, Z aB8tencil tests and
Interpolator stages are outside the Rasterizatiages but actually they
are all together in the same box on the source.coties stage is
represented in figure 3.1 as a box called Rastaizaplaced below the
Triangle Setup box.

o Triangle Setup. calculates several equations in order to
rasterize the primitives and do interpolation, theme, the
triangle edge equations and depth interpolatioratoj.

o Fragment Generator. uses an iterative algorithm for
transforming the area of a triangle projected anwiewport to
fragments. Each fragment will represent a pixet, ibis not a
pixel yet, for example it has some attributes as Kideen
coordinates, value of the three edge equationkeofdaspective
triangle, a cull flag and the depth (for Z tests).

Fragments are generated in a set called tile shageful for
achieving performance with the access to the memsing the
locality behavior and also for the implementatiohtioe Z
stages (Hierarchical Z buffer and Z compressior)e Tile's
size can be configured in 3 levels: the highestlmaset to the
fit of a memory page, the middle level to the fftab single
fragment processing unit in the pipeline and thalkst to the
fit of a HZ block or framebuffer cache lines. Théddie and
smallest level are set to 8x8 fragments. Moreavere are two
different implementations of Fragment Generatog based on
the algorithm described for Neon architecture ddrecursive
rasterization algorithm described by McCool.

o Hierarchical Z: removes non visible fragments at a very fast
rate as 8x8 fragments per cycle in the default igondtion.
Non visible fragments can be the ones culled byfthgment
generator or fragments outside the scissor windidvis stage
can be removed easily just changing a value ofrdigurator
parameter (called DisableHZ). For achieving thit fate, it is
used a cache and an on chip buffer that needH&{B for
resolutions of 4096x4096 with 8 bits of Z precisiditer that,
the fragment tiles are divided into fragment qua@s2
fragments) for the next stages. As we can see gurefi3.1,

3 View frustum: In3D computer graphigtheviewing frustum or view frustum is the region
of space in the modeled world that may appear enstieen; it is the field of view of the
notional camera. (Sourceww.wikipedia.org.

12

Miguel Angel Martinez del Amor

there are two ways where the outputs of this stagego: to the
Z and Stencil tests or to the Shaders. The forméne default
option; the latter is for supporting the OpenGLnsiard when
using alpha and fog modes, where it is supposédtikaalpha
testing is before the Z and Stencil tests but aftagment
shading. The problem is that alpha and fog calimriat are
made by a shader, so Shader Units (running as Fmagm
Shaders) can be seen as the Alpha and Fog stages no
implemented. Then, when alpha and/or fog are ubedoutput
of the HZ (Hierarchical Z) goes to the alpha utiitaf is, the
discontinuous line to Shader units) and the outpfitShader
units come back to the Z and Stencil tests.

o0 Z and Stencil tests makes a test of fragments using a buffer
for Stencil with 8 bits per element and a buffer fowith 24
bits. These tests are based on the OpenGL spéicificavhere
Stencil culls the fragments if they have the rightue into the
buffer (configured by the OpenGL code), and Z huffeakes a
strict test with the depth value of each fragm&ht Z buffer is
stored on the GPU memory, so a cache and a corigpress
algorithm are placed to reduce bandwidth usageZtlwache
has a size of 16KB, with 16 lines, 256 Bytes pee land 4
associatively; and the compression algorithm aaseatios of
1:2 or 1:4 without lose information. This stageaiso called
early Z because its use before the shader unis $tage is
represented by the ROPz box in figure 3.1, juserathe
Hierarchical Z stage.

o Interpolator unit : interpolates the attributes of the fragment
that passes the Z and Stencil tests across thatigenbeing
rendered, what is something necessary for fragnsbader
operations. This stage uses the perspective cedelotear
interpolation algorithm described on the OpenGL ABr
varying variables on the OpenGL Shading language.

Fragment Shader when unified shader model is selected, it is ubed
whole shader unit explained before, but if it isrking with a non
unified shader model, the Fragment Shader unitise the same of the
whole unified shader unit while the Vertex Shadeit ware just the
Shader Unit without the texture components (inithiglementation code
there is only one shader unit that implements thited model).

Color Write Unit : updates the framebuffer, where the outputs frames
are stored waiting for being drawn into the scréHme architecture of
this unit is similar to the Z and Stencil tests tJmihere the framebuffer
is stored into the GPU memory and then, it is wsedche with the same
configuration of the Z cache. Also it is supportgedast clear operation
of the buffer. This stage is represented as thed?R in figure 3.1.
DAC: is the unit in charge of dumping the framebuiféo the output.
In real GPUs the output is the screen, in the satoulthe output is a file
.ppm (see 3.3).

Evaluating ATTILA, a cycle-accurate GPU simulator 13

- Memory Controller: makes an interface with the GPU memory and
system memory. The access to the GPU memory isdbasethe
GDDR3 standard using a width of 64 bytes per 4asjchowever the
effective bandwidth is 64 bytes per cycle with 4mhels used on the
baseline pipeline. On the other hand, the acce#lset@ystem memory
can be simulated with AGP or PCI Express x16 bw® (¢hannels for
read and write).

In summary, the units of the pipeline that accees tie memory are:
CommandProcessor (it reads the commands that tHé €&fds to the GPU),
Streamer (it fetches and loads the vertices sem fthe CPU), ZSTencilTest (the
ZBuffer is stored on memory), ColorWrite (the fréoéfer is stored on memory),
DAC (it dumps the final frame to a file (simulatjoar to the video memory), and
TextureUnit (it access to the texture memory map).

The pipeline explained in this section is the basepipeline that the simulator
supports. It is possible to configure the pipelime parameters, for example, in
number of units, latencies or configuration of eland memory (see Appendix C
for further information), but none of these parangimplies a depth or novel change
to the pipeline, and if it is needed to changepipeline in the manner of include a
new rasterization algorithm (for example the Dir8EX rasterizer implementation) or
place a new stage on the pipeline it is sure tmatsimulator’s source code must be
modified.

3.1.2 Architectures not based on the baseline pipeé: Introduction to the source
code

In order to simulate a new architecture that diffeom the baseline pipeline and
the pipeline changed by the parameters supportethéysimulator, it is needed to
make a new code for that. ATTILA was also impleneentaking the idea of future
modifications in mind. The code is object-orientesing the C++ language) and
implements a model of boxes and signals that pesvath abstraction level helpful for
developers. Figure 3.3 (next page) representsettheced class diagram where it can
be seen the three main classes: Box, Signal anidtitsa

Statistics is an abstract class that is based epikg events using the method
inc(). The NumericStatistics class is defined trestthe number of times of one or
more events. All the instances of Statistics arenagad by other class called
StatisticsManager, where the Statistics objectstmed, dumps theirs values into the
output file in one cycle (by the method clock()dasearch by name into the set. Each
box (and also the caches) can use several Statigtistances for measuring
information. For further information about the ®&tdts that ATTILA supports, see
section 3.2 and Appendix B.

Signal is a class that models a buffer with a cpmfible latency; it means that
when data is wrote on the buffer it is not posstioleead it some cycles later. It is
common that each box has Signal instances for iapdtoutput. Usually there are
only two boxes related with one signal, one thateadata (this signal is an output for
it) and another that read data (this signal isrqouti for it). The class SignalBinder

14 Miguel Angel Martinez del Amor

manages all Signal instances on the system, whexr@assible to dump all the Signal
states or also it is possible to search a Signalamye.

SignalBinder StatisticsManager
- - find ()
+ registersignal(}
+ getSignal() + clock()
+ reseti)
1
e Box !
1n - oparent| 4oL ~ hame)
il
1.n 1.n
Sl o - Statistics
- name
- bandwidth + disable()
- clock() + enabled)
+
+ writel) et
+ read() T

MNumericStatistic

- TWalue

+ inc(y

Figure 3.3 Abstract class diagram of ATTILA simulator.

The stages and other functions of the pipelineimmemented as subclasses of
Box. A Box object has always input and output sigremd many Statistics objects,
thus, it is possible to say that these three ckaéBex, Signal and Statistics) are the
ingredients for a new pipeline.

A new functionality in the architecture can be impkented as a Box subclass,
without varying so much the rest of ATTILA’s codEherefore, the skeleton of the
pipeline is defined when the signals are associateshch box. Every Signal object
has a name that acts as identifier, and each kaixwhnts to use a signal have to
know the associated name. By this way, two conadotxes have to be agree on the
name of the share signal, hence the writer boxfthatthe signal as output has to call
the method newOutputSignal (in Box class), andréaeler box the newlnputSignal.
These functions register a signal into the SigrmadBr object on the first call, but on
the next, if the signal is already registered itines the respective Signal object.

Also this order can be seen easily again on thetsgnization of the stages, that
is, the execution of one cycle by each stage. eewion of each stage is done
sequentially using the method clock() that Box €lhas; firstly one stage executes a
cycle, and when this stage finish, the next oneecaatute its cycle. This order has to
respect the organization defined by the connectidgtis signals between the boxes, if
not, the simulation will crash because the datagssed in one stage can not go to the
next, in exception of parallel stages or just fonea stages (forward the information
but does not change any data). The sequential Baraf the stages is done by the
simulation loop which structure is showed in fig@rd. This portion of code shows a

Evaluating ATTILA, a cycle-accurate GPU simulator 15

non-unified architecture where several vertex aadriient shader units are simulated
by arrays of Box objects.

/™ Simulation loop. *f
for{cycle = , end = FAL3E: lend: cyclet+)

cottnProc-»=clock{ocyole) ;
memController-=clock{cyele) ;
streamer->clock{cycle) ;

for{i = ;1 < ziwP.gpu.nunWVohaders,; i++})

i
wshFetch[i]->clock{cycle) ;
wshhecExec[i] ->clock{cycle)

primhissem—rclock{cycle) ;
clipper—->=clock{cycle)
rast-rclock{cyole)

for{i = ; 1 < giwmP.gpu.nuwFShaders; i++})
{
fzhFetch[i]-=clock{cyole)
fshhecExec[i] ->clock{cycle) ;
for{j = ;] < simP.fsh.texturelnits;: j4++)
textlnit[i * simP.fsh.texturelnits 4+ j]->=clocki{cyole)

for{i = ;1 < giwmP.gpu.numStamplnit=s; i+4+)

{
zitencil[i]-=clock{cycle)
colorrite[i]->clock{cycle) ;

dac-=clock{cycle) ;

Figure 3.4 Main loop of the execution of the simular.

3.2 Statistics and measures provided

The most important component of ATTILA is, undoubiie the wide kind of
statistics that it provides. It is essential beeastatistics permit to analyze the results
of the simulations, in other words, the main goA® TILA is to simulate a GPU
architecture, test it with graphic data from rggplications and analyze the tests using
the collection of several statistics about the satad architecture. ATTILA provides
up to 204 different statistic variables that measll the components of the pipeline.

When a simulation finishes, the statistics are estointo an output file called
stats.csv. It can be opened with Microsoft Excet@mpatible (i.e. Open Office Calc

16 Miguel Angel Martinez del Amor

or an editor as Notepad) and has a structure ofowsé: each column represents the
values of each statistic variable, and each rowessmts the range of cycles showed
into the first column. A statistic variable is aucer that characterizes the number of
times an event happened inside a range of cyciggrd=3.5 shows the first column of
stats.csv (the range of cycles) and the statisti@ble BlockedThreads. For example,
the first value of BlockedThreads, 42048, means ltetween the cycles 0 and 9999,
there were 42048 blocked threads.

Cycles BlockedThreads_ShF-FSO

0..9999 42048
10000..19999 55032
20000..29999 10632
30000..39999 17472
40000..49999 13824
50000..59999 53952
60000..69999 46848
70000..79999 26112
80000..89999 32640
90000..99999 19200
100000..109999 21696
110000..119999 19848
120000..129999 28920
130000..139999 0

Figure 3.5. Example of columns from file stats.csv.

The format of a variable’s name is like this:
what_unit-id

Where “what” means what is measured (on the laatngke, BlockedThreads),
“unit” means the unit where the measure is apf&dt- is Fragment Shader) and “id”
means the instance of the unit measured (FSO Brigment Shader with id 0).

In Appendix B there are a summary of the statisticiables and units that
ATTILA can measure, from hits and misses of theesgwcaches to culled fragments.
It can be showed that there are a wide range d@diblas that measure the behavior of
the simulated architecture. As explained in sect®h.2, it is also possible to
implement your own statistic variables in case gead something else.

3.3 ATTILA’s framework

One of the purposes of the ATTILA project was te@@xe real applications with
the simulator, as a real GPU does in the real [lfe.achieve this, the authors
developed a framework that permits the simulatoddotests with real OpenGL
applications (a Direct3D framework is in constran)i. This framework has 4 stages
and it is composed of 6 elements, as seen on figére

Evaluating ATTILA, a cycle-accurate GPU simulator 17

Collect Verify Simulate Analyze
[©penGL Application]

GLInterceptor

Trace A 4 *

| GLPlayer] £ 24t]

——
: ’
| Vendor OpenGL Driver | | Vendor OpenGL Driver | |A(ti]aOpenGLDriVer‘
h 4

\d -
[[ATTR300 or Nividia XXX _| § [[ATIR300 or Hvidia XXX _] § | Atlila Simulalor E gt

| Frame Buffer | | Frame Buffer | | Frame Buffer | | Signal Visualizer |

Luec? Heet

Figure 3.6. Adaptation of the diagram of OpenGL ATTILA’s framework
from [6]

The first stage is calle@ollect and it is the step where the data from the real
applications is captured as a trace file. The elgrased here is GLInterceptor that is
composed in others two elements: opengl32.dil ahtC@nfig.ini. The latter is the
configuration file for GLInterceptor, and the forms a library that will be used by
the real application as the real OpenGL libraryisTilbrary dumps all the OpenGL
API calls into a trace file, and also forwards tadls to the real library, permitting to
continue with the application’s execution. The wayuse it is just to copy the two
files commented above to the same folder of thdigatjmn’s binary. See that the
library is a .dll file, which means that it can beed only in a Windows platform.
Only the Simulate and Analyze stages can be dotte imux platforms. After the
execution of the application, three files will beeated: tracefile.txt (that has the API
function calls and parameters, for example, gIBggin QUADS)),
BufferDescriptors.dat (that keeps the buffers mmnby a pointer parameter (the
value of the pointer is now an identifier that irde the Buffer Descriptors file) and
MemoryRegions.dat (that stores the data passedragsan a number of OpenGL
API calls (glTexImage2D for example)).

The second stage is callg@rify, and it is where a verification of the trace fie
performed. It ought to be done to verify the cotmess of the traces before the
execution with the simulator. The element GLPlaiemsed in this stage and it
permits to run the trace calls into the real OpemiBizer again. Then, it is possible to
see if the trace was well done. GLPlayer has twemehts: GLPlayer.exe and
GLPConfig.ini. The former is the program that exesuthe trace and the latter is the
configuration file.

The third stage is calle8imulate Here there are a distinction between Linux,
Cygwin and Mingw32, and Visual Basic environmentsa Visual Basic system is
used, the ATTILA OpenGL Driver (gllib.a) will be ilized, if not, the gl2attila tool
has to be used. Both of them have the same behawranslate the OpenGL calls
from the trace into AGP transactions for ATTILA. & Hriver permits the simulator to
execute the trace directly, while gl2attila is agmam that translates the OpenGL
trace to an AGP transaction trace file that the uttor can execute. It is
recommended to place the simulator (unified or uoified version) and
configuration file (renamed to bGPU.ini) into thanse folder of the traces (or vice
versa, place the trace files into the simulatoddo) or changes the configuration file.

18 Miguel Angel Martinez del Amor

The forth stage is callednalyze and it is where the simulator outputs are
analyzed. The output files that the simulator pdesiin the third stage involve the
frame dumped (framex.pnm), the statistics (stats.esplained on section 3.2) and
the debug file (Signals in figure 3.6, that cor@mss to the file signaltrace.txt, the
documentation does not explained yet how to useTtt)s is the stage where the
developers or researchers have to take the infamé&iom the simulator and make
their conclusions.

4. Evaluation of the simulator

The next tests was run in a bounds of a systemhémathese features: processor
Intel Pentium M750 at 1,86Ghz, 2MB of Cache L2, 402B of memory with
technology DDR2 and a graphic card ATI MOBILITY RADN X600SE with 256
MB HyperMemory (128 MB shared and 128 MB dedicatdd)e environment used
was Cygwin with a Windows XP SP2 Operating Systémevery simulation, the
ATTILA version was the one from 13/01/07 (17/01/6% Prey traces) and the
configuration file was ATTILA-rei-580.ini (see fadd confs).

4.1 Installation of ATTILA

ATTILA simulator is a non-commercial simulator. Shproduct is distributed by
the authors, and nowadays it can be found in th&lAA’s log [8]. There are mainly
two distributions: with just the binaries (plus Qafer and GLInterceptor) and with
only the source code of the simulator (no GLPlaygther GLInterceptor included).
This section will explain how to use and compile gimulator distribution built on
October of 2006. This version had some problemsnwdmnpiling, nowadays fixed
by updates from December of 2006, explained aéttieof the section too.

The installation and usage of the binaries is \&@nyple, just decompress the file
and then use the folder according to the systend,usither Linux (folder
“binpack/linux”) or Windows (folders “binpack/cygwi, “binpack/mingw32” or
“binpack/vs2005”). Each folder has the binaries biGdhd bGPU-Uni, the former is
the binary that corresponds to the implementatiom GPU with non-unified shaders,
and the latter corresponds to unified shader achite. But ATTILA's framework
has more elements than the simulator, like GLIetetar and GLPlayer that are used
for capturing the OpenGL calls in a trace and nepheem, respectively (more detalil
on the next section). The files for these two eletmeare placed in the folder
“binpack/vs2005” that limits the use of them ontya Windows system (there are not
files for Linux yet). The explanation of the pardere and way of use are in the file
USAGE.txt, for each element provided for the ATTIsAramework.

The installation of the source code is a bit mareglex, but not difficult. The
most important thing is to be sure that we are gisaim operating system and
environment compatible with the simulator, thatWgindows with Cygwin software
installed, Windows with Mingw32 software installed/indows with Visual Studio
2005 installed or Linux using a gcc version 3. Xt(lader), all of them running in a 32
bit system. If the simulator is tried to be comgilato another environment, it is very

Evaluating ATTILA, a cycle-accurate GPU simulator 19

probable that it can not. The problem of this loartability is due to the pre-compiled
file gllib.a, provided to simulate an OpenGL drivfer the simulated graphic card.
The code of this library is not public available,the compilation of the simulator is
restricted to the different versions of gllib.a fimuon the folder “lib”. The way of
choosing one is to change the name of the rightdicording to the system used to
gllib.a, in the same directory “lib".

The compilation of the simulator depends on therenment used: when Visual
Basic 2005 just open the created project on thadefolvin32 and compile it with the
options that Visual Basic provides; when Linux, @jgor Mingw32 just edit the file
makefile.defs in the manner that the variable GPHAME has as value the absolute
address of the folder where the files are placéa. dreation of the executable files is
performed by makefile when a non Visual Basic emwvinent is used. This makefile
has several options that are used like:

make exec mode

make is the Unix instruction for executing a malkefrhe parameter exec can be
bGPU (compile only the non-unified shader simulatersion), bGPU-uni (compile
only the unified shader simulator version) or abroipile both versions). The
parameter mode indicates the format of the fin&cesable files that can be debug
(the executable file can be debugged (use of tkkeogtion —g)), profiling (it is the
simple version of the simulator), optimized (itused the optimization options that
gcc provides) or verbose (the simulator will givketlae execution information in the
standard output).

At the date of this current report there was a newsion built on December of
2006 (see [8]) that help to compile the simulat@thwinux in an easier and more
portable way than the October version explainethis section. In this version, the
library gllib.a is not used in Linux, Cygwin and iMjw32 anymore, where there were
portability problems in special with Linux enviroemts. The way to proceed to
compile is the same than before, in exception afosing any gllib library because
now the job of this library is performed by a pragr called gl2attila (provided into
the binaries distribution). The previous librararislates the OpenGL API calls to
AGP transactions, and now gl2attila translates @penGL API call trace into an
AGP transaction trace file, which can be used tlyexrs an input for the simulator.

4.2 Running OpenGL testprograms on ATTILA

4.2.1 Testprograms selected

The best way to understand ATTILA and one goahef turrent report is to work
with the simulator. As explained on section 3.3, TAOA framework is prepared to
work with applications that use the OpenGL API, ethineans that programs that use
another API different to OpenGL as Direct3D or OpeénES (OpenGL for
Embedded Systems) is not going to work. GLIntermejstable to trace only OpenGL
API calls by the substitution of the real OpenGlrdiry with the provided library.
This provided library (opengl32.dil, see sectior8)3cannot capture Direct3D or
OpenGL ES because mainly two reasons: an applicdtat uses OpenGL ES, for

20 Miguel Angel Martinez del Amor

example, is not going to search and use the fileng[32.dll, and the libraries

OpenGL and OpenGL ES do not have the same entriesroat in several functions,

and it implies that it does not work anymore witle turrent framework for OpenGL
(it is needed to develop a new framework for tibsalry (see the explanation of the
author in [9]), for example, the one for Direct3Duinder construction).

However, the task of choosing OpenGL testprograam®i easy. The problem is
that GLInterceptor (GLPlayer and the simulator talmes not support calls that
implements a complex behaviour (i.e., reading datffiers, handling 'objects’ (like
textures or vertex buffers)) or extended functitorsATI or NVIDIA GPUs. Section
3.1.1 shows that it is supported only ARB shader plémentations
(ARB_vertex_program and ARB_fragment_program),leotestprograms must have
disabled options as GLSlang or shader objectsajfftpns because ATTILA only
implements a minimum set of OpenGL API.

The variety of applications that can be traced erecuted is very small, even
more, the authors recommend using the applicatibas they tested before; other
program out of these tests is likely going to failso it is possible (and recommend
by the authors too) to implement applications thsgs just the OpenGL calls that
ATTILA implements. The list of OpenGL functions qguted was published in the
simulator version of 13/1/2006.

The programs tested and recommended by the awthar¥olumetric Lighting Il
(by Humus fwww.humus.cd) Unreal Tournament 2004only tested with NVIDIA
cards), Doom3, Quake4, Prey and Chronicles of RiddEach game needs a
configuration that allows to ATTILA trace and wonkth them. Also can be possible
to work with games using engines based on Doom3Jin€ (Quake4 and Prey are),
but it is not sure because not all was tested. Evere, the traces captured depend on
the GPU that the system has due to the no implatient of specific OpenGL
extensions (for ATl or NVIDIA). In this case, it wdried to capture traces from the
Unreal Tournament 2004 Demo, but it was not posdildcause, as said before, the
system uses an ATl GPU or maybe the usage of ttwerect demo version (that the
authors did not try). Moreover, in this work, sealegames out of these tests was tried
to be traced and simulated with ATTILA. Some ofrtheere: Angeles (San Angeles
Observation OpenGL ES version example by Jetro &altp://iki.fi/jetro), an
OpenGL ES application translated to OpenGL and watled by GLInterceptor, but
it uses a mode called colorMaterialMode and it @& supported in the simulator;
traces from the OpenGL ES version was not possibtapture), HalfLife (the game
crashes after the execution and the simulatiomtgpassible), Quake3 (similar effect
than with HalfLife) and GoogleEarth (the applicatiorash before been executed, so
it is not possible to take traces). Even more, s#v@penGL ES applications were
tested and it was not possible to capture it, &b lsefore. It was tried to change the
file libGLES_CM.dIl (the OpenGL ES library) with ¢hopengl32.dll (the OpenGL

4 Unreal Tournament 2004 has to be configured thi¢hfollowing options in the configuration
file (system/UT2004.ini): activate the use of OpénG driver
(OpenGLDrv.OpenGLRenderDevice) and not Direct3Divate rendered vertex buffer and
disable vertex shader.

5 A game that use the Doom3 engine like Quake4, Preyhe same Doom3 has to be
configured with the configuration file with the rteoptions: disable two sided stencil, index
buffers and copyToTexture, and enable arb2 renaldr gnd vertex buffers.

Evaluating ATTILA, a cycle-accurate GPU simulator 21

library provided with ATTILA), and of course it shed because several call entries
was not found.

The chosen testprograms was Doom3 (with the trdeepfovided in the log
page), Prey and Volumetric Lighting Il. They wastésl by the authors and show how
to work with pre-captured traces (Doom3), a welbkm program that works
perfectly with ATTILA (Volumetric Lighting 1) anda game that does not work
wholly with ATTILA (Prey). Another reason becaudeey was chosen is the real
graphic data that they provide (in the other haedcan make our programs, but they
don't provide the reality and power than a profesal application offers to
ATTILA).

4.2.2 Execution and collection of data

The way to capture traces, simulate and collect staistics is the same as
explained on section 3.3 for ATTILA’s framework. tinis section it will be presented
some examples that show how ATTILA works and sospeets to take in account
when using the simulator.

Finally, figure 4.1 shows a summary of what wasdbldo and what not with the
testprograms selected and many others, with thelator version on 17/1/2007. This
last version can simulate traces from Prey witHfarn shader version (before there
was an infinite loop with shaders and it neversi@d the simulation for frames from
the game, but yes from the loading screen). Thegishowed are approximately, that
is, it is the mean of two simulations, but it caarywfrom different Operating Systems
and computers.

Volumetric Angeles
o Prey Dooms3 Quake3 | (OGLES
Lighting 1l .
version)
Traces OK
captured OK OK (downloaded) OK FAILED
Gl2attila OK OK OK FAILED | FAILED
translation
Playable
by FAILED FAILED OK FAILED FAILED
GLPlayer
Simulation
with
) OK OK OK FAILED FAILED
uniform
shaders
Simulation
W'th non- OK FAILED FAILED FAILED FAILED
uniform
shaders
Time of 12m 53sec| 24m 51sec| 13m 22sec
simulation | 1frame | 800" frame| 200" frame | TAILED FAILED

Figure 4.1. Summary of what ATTILA can do and whatnot (version of
17/1/2007).

22 Miguel Angel Martinez del Amor

4.2.2.1 Captures from testprograms

GLInterceptor has to be copied into the applicaborary folder (opengl32.dll and
GLlconfig.ini) for the capture of traces from thestprograms (first stage of the
framework). So for the Volumetric Lighting Il (VLI just copy these files into the
folder VolumetricLightingll, for Prey into the maifolder. The Doom3 traces were
taken from [8]; it was created and posted by théh@s, so just decompress these
files into a folder to work with them.

Once the files from GLInterceptor have been copieds possible to configure
this tool by opening the file GLIconfig.ini and aige some options like lastFrame
(how many frames to capture, consider that 25 feaomerespond to one second) or
outputFile (the default name is tracefile.txt). &klhg the parameter startFrame (from
which frame start to capture) is not recommendeaxhbee it can have some problems
later with the simulation, so GLInterceptor doeg sopport very well a hot start
(however, the simulator does). If the applicatiaeds a special configuration (see
4.1.1), try to configure it before executing theogmam. VLIl does not need any
special configuration, and Prey needs to add aadgd# some options (the options for
a game that uses the Doom3’s engine). When evagyikiconfigured, play a bit and
GLInterceptor will work automatically.

Note that if the startFrame parameter is configued (recommended), then
GLInterceptor will start to capture frames from theginning of the first usage of
OpenGL. In most games, menu and loading screensnatemented by OpenGL. It
means that GLInterceptor will trace both menu aratling screens, as seen on figure
4.2. This figure shows that the first frames frontrace always corresponds to this
kind of screens that not correspond to the rendepart of the game (the interactive
and real game, not screens, videos, presentationsmemu), which is the most
interesting part to simulate. In Doom3 traces (¥}tBare are a loading screen capture,
whereas in Prey traces a presentation, the meRb)(d4nd loading screen (4.2c) was
captured. So be fast when loading the game for mgatkie traces, if not, maybe you
will not have time to start the game.

Angeles is an application with two versions, one €@penGL and other for
OpenGL ES. As show in figure 4.1, GLInterceptor wasable to capture traces from
this application on its version using OpenGL E% (teason is in section 4.2.1). But
GLlInterceptor was able to take a trace from Opené@ision, but as seen after that, it
was not possible to make the translation with gil2atThe trace from Quake3 also
was captured, but this game always finished with esror panic when using
GLInterceptor.

Evaluating ATTILA, a cycle-accurate GPU simulator

Escape Velocity

AR

@

\ 4 W

(b)

23

24 Miguel Angel Martinez del Amor

Load Game

| Name F Date Time

5 T [08:27pm
AutoSave: On The Run Ty 7| "18:26pm
4 : D7 08:25pm.
3 i 08:22pm*
AutoSave: Escape Velocity

AutoSave: Last Call |

AutoSave: Last Call 2

AutoSave: Last Call

Figure 4.2. When capturing traces from the first fame, GLInterceptor will
dump into the trace also the frames correspondingotloading screens and menus.
In this work there was captured (a) a loading scre®from Doom3, (b) a loading

screen from Prey and (c) loading menu interactionrbm Prey.

4.2.2.2 Replay of the captured traces

After finishing the application, some files are atied. These files are the traces,
and their names are tracefile.txt, MemoryRegiortsashel BufferDescriptors (if not
other names were chosen), as explained on secBof@m this point, only the trace
files are necessary (not game’s files), so theylmamoved to other folder (always
the three together) or keep them in the same fodoher copy GLPlayer and the
simulator to it.

Then, it is possible to go to the second stagehefftamework, Verification.
Configure GLPlayer by the file GLPconfig.ini (maybi® most important is the name
of the input file), and execute GLPlayer. In thiorky GLPlayer did not work
correctly with VLII and Prey traces: it did not shany frame and even more, it
delete the content of the trace files (for examyble,trace from Prey that is about 200
MB, after the execution of GLPlayer the trace beedmonly 1KB). The traces that
GLPlayer can play are from Doom3 (downloaded diyefitom the authors, not
captured with GLInterceptor in this work).

Evaluating ATTILA, a cycle-accurate GPU simulator 25

Figure 4.3 illustrates an example of GLPlayer.sltjust a window that shows
information like the number of frame, the resolatissed and the current frame. The
speed of this play can be modified with the confagion file, but by default it goes a
bit more slowly, because the most important is ¢oable to see the frames and
capture them for making a posterior check withsineulated ones.

M Showing frame 200 - Using resolution read from tracefile: 640x480

Figure 4.3. GLPlayer showing the fram 200 from Daom3 trace file. Volumetric
Lighting 2 and Prey could not be played.

4.2.2.3 Execution of the simulator with captureatts

If the traces were checked but GLPlayer could ey them, it is still possible to
go to the next stage, Simulation. In particular,RElyer was not able to play VLI
and Prey traces, however, the simulator could sitetdome frames correctly. For it,
one version (Unified or non-Unified) of the simuathas to be selected, and copied
together with one configuration file to the tradetder. Remember that if Linux,
Cygwin or Mingw32 environment are used, then giRattas to be executed before
the simulator (bGPU). Gl2attila also needs the samefiguration file that the
simulator will use (in this test, the example cgnfition file of ATTILA-rei-580.ini).
In this work the simulator was executed within tmunds of Cygwin, so in every
case gl2attila.exe was utilized by typing gl2attile N, with N equals to the number
of frames to translate (usually the whole tracegegqaals to the number of frames
captured). For example, ./gl2attila tracefile.tRDJtranslation used for Prey trace). It

26 Miguel Angel Martinez del Amor

is possible to add other parameter after N, whickams the starting frame
(gl2attila.exe N M). It was tried but it did not vkowell when skipping frames in the
simulation with ATTILA simulator. So it is recommeéed to capture and translate
frames (gl2attila) starting always with the firsahe, and then, it will be possible to
skip and simulate frames different to the frame beni.

The execution of the simulator is easy just typimg name of the binary (bGPU
for non-unified version and bGPU-Uni for unifiedrsmn), following the AGP trace
translated by gl2attila (the common name is attdaefile.gz) and N M, two optional
numbers that means the number of frames to simudatk the starting frame
respectively. For example, ./bGPU-uni attila.tréleejz 1 800 (execution used for
Prey, starting from the frame 800 and simulatingy ame frame, the frame 88D
The time of simulation of one frame depends onapplication to simulate, which
frame and the position of the frame (time elapswdskeking the frame inside the
trace depends of how many frames to skip for reggtiie frame to simulate). As said
before, a trace is captured from the first framehef application; in a game it means
that it will be captured the menu and loading secrem (see section 4.2.2.1). The
simulation of a loading screen frame takes abouse&fbnds for traces from Doom3,
but a frame from the rendering part (interactivengp takes about 13 simulation’s
minutes.

Even more, the choice of one version is importahere are two versions, one for
non-unified shaders and other for unified shad&re version most tested by the
authors and compatible is the unified one, whetleason-unified is no longer tested
because is based in a contemporary GPU but notwsas a unified architecture.
That is the reason because the non-unified vemsahs only with VLII, but not with
Doom3 or Prey (it returns a simulator bug erroe@ft2 minutes of simulation). As
seen in figure 4.1, the non-unified version hasbfgms with some applications;
however, the unified version could simulate evergllsranslated trace file by
gl2attila.

Figures 4.4b and 4.4c show the outputs from the-umified simulator with
Doom3 and Prey. They were not simulated correbtly,it was possible to have some
statistics corresponding till the cycle 717730 Bmom3 and cycle 2996339 for Prey.
Figure 4.4a shows how the finish of a well exeaqutid the simulator is, in this case,
using the non-unified version with VLII traces. &lly, figure 4.4d shows the error
returned by gl2attila with the trace from QuakeRisTirace contains an API call that
ATTILA can not support, or maybe the trace is nalvinish because the bad exit
that the game experiments when using GLIntercedfita not clear the reason).

As seen on the captured screens in figure 4.4sithelator returns “B” and “.”
consecutively during the simulation. A “B” meansathtan OpenGL draw call (or
batch) has been fully processed and a “.” indicéitas a number of cycles (10K by
default) has passed.

Evaluating ATTILA, a cycle-accurate GPU simulator 27

L5 Skipped
L6 Skipped
5?7 Skipped
L8 Skipped

raceDriverAGP: inextAGPTransaction<> ->» Dizabling preload...
Dumping frame 59

et 2: Size 65536 Last B Max @

F
F

of swap. Cycle 55%64

of swap. Cycle 55%64

of swap. Cycle 55%64

of swap. Cycle 55%64

Cycle 59185 Color Buffer Dumped.
B .B_B.BEB_BBB.BB

B

P
auap. Cycle 15268617
swap. Gycle 1528617
swap. Gycle 1528617
swap. Gycle 1528617
1574984 Color Buffer Dumped.

rame 186 Skipped
rame 187 Skipped

_Frame 188 Skipped

F
F

rame 189 Skipped
rame 198 Skipped

_Frame 191 Skipped

F
F
F
3
F

D

D

B
D

=

rame 192 Skipped
rame 193 Skipped
rame 194 Skipped
Frame 195% Skipped
rame 196 Skipped
rame 197 Skipped
IraceDrluerﬁGP::nextHGPIransactiun() —2» Diszabling preload...
umplng frame 198

ite => End of swap. Cycle 341591

ite => End of swap. Cycle 341591

ite => End of swap. Cycle 341591

ite =» End of swap. Cycle 341591
AC =» Cycle 344732 Color Buffer Dumped.
B.BEBEBBBHE. BEBBE . EBEBBBEBEBE . BEBEB. BBBBB BEBE . EBE.BBEEE . BEEE. BEEEEE . . EBEEEEBBE . BE|
B. .BBEB.BEBEE.BBE.BEB.B.BEBBEEBE.B. .BEEEBE. . . EBBEBEEBB . BEEE B....BFile: sup|
ort.cpp Line: 33
Signal:writeGen => Error. Max. BX exceeded (read conflict). Signal "US6::Shad
rCommand" cycle 17738.

(b)

.Frame 795% Skipped
Frame 796 Skipped
Frame 797 Skipped
.Frame 798 Skipped
.TraceDriverAGP: inextAGPTransaction{> —-»> Disabling preload...

Dumping frame 799
Color“rlte =» End of swap. Cycle 718827
End of swap. Cycle 918627
i End of swap. Cycle 918627
Colorilrite -) End of swap. Cycle 918627
DAC =» Cycle 213168 Color Buffer Dumped.

.BEEB.BEEEEBBBEEEEBBEEE .. BEBEEBBEE . BBBB BHEBEEBE . EBEEBBEBEEEEBBE . EEBBBEEEBBBE . EEBEEB
BEEEBBE . BEEBEEEBEEE_ BEREEBEEEE . BEEEEEEEEEEEE . BB . BEEEE . BEEEBED . BEEEEEEE.B. .BE.BEE
B . BEEEEB . BEEEBBE . EEEBBEE . BEBBEE . BEEEEEBBEEEE . BBEEEEBEBEEE . BBEHREEEEBBEBEEE . BBEEE . BEB
BBBBBB BE.EEBBH. BBBBBBB BBEEEE. BBBBBBBBBBBBB B. BB BE.E.BB.EB. B BE.B.BB. BBBBBBB

BB .BBBB
B. BBBBBB BEEEEBB. .B. BBBBBB....BBBB BB. BBBBBBB BBBBBBBBB BBBBBBBBBBBB BBBB BEBEBBB
[BEE . EEBBEE . EBB . BEBBE . BEEBBEBE . BBEEEEEBBEE . EEBBEEEE . BEE . EEBB . EBEBEBB . EEBBBE.E. .B.B

B.BEB B.B.EEE.B.EBBE...BE.BBEB.BEBB.BE.EB.E.B.B.BEEEER.BEE.EB. BERBEBE . EEBBEB
E . BEBBBEBBBBEE . BEB. BEREBEE . BEB.BE.B.B_B.BEE. BRBBEB.BE. B.BBEBERBEBEEEBE.BBEEBEEE
.EEBBBEEE . BBEEEEE . BEEEEBEE . EERB. BEEBBEE . . BBBEEEEBEBEEEEEE . BEEEEBBEEE . BBBEEBBBBEEE)
(BE . BEEBBEEEEEB.BE. BE . BEE . BEEEEEBE . EEEEBBEE . EEBBEEEE . BEEEBBE . BBBBBBBB BEEEEBBEE . BB
[BEEEBEE . BEEBEBEB.B.BBEBEB.BEBEBFile: .._“supportssupport.cpp Line:

Signal:writeGen => Error. Max. B¥ exceeded <(read conflict). Slgnal "UES : :Shad
erCommand” cycle 2996339.

28 Miguel Angel Martinez del Amor

./gl2attila.exe tracefile_txt 58@
Simulator Parameters.

Simulation Start Frame = @

OptimizedDynamicMemory => FAST_MNEW_DELETE enabhled. Ignoring third bucket?
Conuverting 588 frames.

TraceDriver: Setting resolution to 1824x768
File: ..“ssupportssupport.cpp Line: 33
TextureOhject: :Mipmap:set2D => Unexpected internal format

(d)

Figure 4.4. Output of ATTILA non-unified version (b GPU) for (a)
Volumetric Lighting 11, (b) Doom3 and (c) Prey. (d) Shows the error returned by
gl2attila with a trace from Quakelll.

4.2.2.4 Analysis of ATTILA's outputs

When the execution of the simulator finishes (occttyeor incorrectly), the outputs
files are placed in the same folder than the sitould hese files were explained on
section 3.3 and involve two images, one showingfitte frame simulated and other
a latency map (a per fragment quad map storingxkeution latency of the last quad
written in a framebuffer position, see [5]), andtatistic file. There is not so much
information about what is the purpose or the cotepheeaning of the latency map.

An example of the statistic file is figure 3.5, aebmples of outputs frames are
shown on figure 4.5. As seen in this figure, thgpats frames are exactly as shown in
a real GPU. But not always it is like this, for exale, on [5] there is a comparison
between two frames from Unreal Tournament 2004 taede are some differences
(problems when simulating). Of course, a frame tlwas not perfectly simulated
means that the statistics will show data that ratesponds to the reality. In the
example from [5], the fragments that correspontins or letches in the forest have
not a correct value, so the statistics about tfreggnents can be incorrect. However,
these statistics are very near to the reality, toed most part of these frames are
correct. In short, if a simulation finishes cortgcthe data, frames and statistics can
be enough for making conclusions about the ardhitesimulated.

The way to check simulated frames is more or lgsgtuition if GLPlayer did
not work with the trace. For example, we can sagttie frame from Doom3 (4.5b) is
ok if it is compared with the frame from GLPlayéiggre 4.3). But the frames from
figures 4.5a (VLII) and 4.5c (Prey), that come framaces that GLPlayer could not
play, have to be checked with intuition: just dethére is some typical problems with
the rendering (shadows, objects, lights... missirgjraistakes) or try to play again to
the game, capture the frame manually and seehbatimulated frame is ok. In any
case, every capture from figure 4.5 seems to hecor

Evaluating ATTILA, a cycle-accurate GPU simulator 29

(b)

30 Miguel Angel Martinez del Amor

Figure 4.5. Frames simulated from (a) Volumetric Lghting Il (frame 60), (b)
Second level of Doom3 (frame 200), and (c) Secomy¢l of Prey Demo (frame
800)

Once the frame is checked, the statistics can baezband analyzed. The problem
with the file stats.csv is that it is too big arastioo many columns, so some programs
like Microsoft Office Excel will open only a limihumber of columns (commonly
255). The problem of opening the .csv file witheatteditor is that it is no longer
understandable because the use of the separatacthd’;” make difficult to follow
what a column means (while the size of a numbehdst, the name of the column is
too long, so they are not synchronized). Fortugatekere are some cheats about how
to open a file .csv with Excel that has more th&b Zolumns: making some
conversions to .txt and importations in Excel (adifficult) or writing a macro (see
http://support.microsoft.com/kb/272729

The variables measured are shown on Appendix B, feord this data it is
possible to make some graphics like shown on figuée In this example it can be
possible to take some conclusions, for exampleydidg.6b shows that the fetch stage
of texture units works well because there are aohach fetches failed in comparison
with the fetches OK.

Threads

700

600

500

400

300

200

100

Evaluating ATTILA, a cycle-accurate GPU simulator

Blocked Threads on Vertex Shader 0

31

WA

A
IR LI -

L e e 4 e e LA i i s s B 204 4 s e s e e B ML e) < na n)

1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Cycles (from 210000 to 769999)

@)

70000

60000

50000

40000 -

Fetches

30000 -

20000 -

10000 -

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136
Cycles

(b)

N R V K —o— Blocked Threads on Vertex Shader 0

Fetches OK
DOFailed Fetches

32 Miguel Angel Martinez del Amor

Resource Utilization

mamory shader texture unit ROP

(©)

Figure 4.6. Examples of graphics with statistics fyrm (a) Prey (Blocked threads
on vertex shader between cycles 210000 and 76999B).VLII (Fetches OK vs
Fetches Failed on the Texture Unit of Fragment Shaat 0 during all the
execution 1048574). (c) Doom3 (from [6], resourcdilization at frame 377 using
a thread window with 3 Texture Units).

4.3 Discussion about ATTILA

Now that the internal architecture and the way ofking were explained, it is
time to make a discussion about ATTILA. Weak andrgy sides will be analyzed
and finally a conclusion will be described at th eof this section. The discussion
will be made from a point of view of users, thatthis case, a user is a GPU
developer.

As commented on section 3.1.2, a depth change\vasojoing more far away
than the parameters and modifying the source cbde.simulator’s source code is
easily to change because it is object oriented amd organized. But on the most
cases, these depth changes imply a transformatiadheoATTILA’'s OpenGL library
(now gl2attila or gllib.a before). For example, wheedeveloper would like to support
GLSlang in his new simulated GPU (and maybe a nesigth for a future graphic
card) he is not able to implement it because Gktejgtor and gl2attila have to be
able to capture and translate GLSlang code. Othxample is when a novel
architecture like several GPUs on chip is tested, then the library has to be able to
share and distribute the workload among the newuress. The problem is that the
source code of the ATTILA’'s OpenGL library is ngpem, so for these cases the
solution is to build an own library that can sugpbese new features, or if it can be
important, ask the authors for a new version oflitivary.

Nowadays the lack of documentation for ATTILA ispeoblem for users. It is
necessary to contact the author by the ATTILA nhiall distribution when having
doubts. The only documentation available is ther@wcode, some files that the
author posted in the last versions, papers andrtefrom the authors and the mail
list. Sometimes they are helpful (for example, whestalling ATTILA or executing
and capturing traces), but in many cases they eremough (for example, the code
has to be read when trying to understand the statigariables, which is a hard task).
On the definition of good software, as well as hgvihe binaries, libraries and source

Evaluating ATTILA, a cycle-accurate GPU simulator 33

code, it is included documentation and manuals Bud.it is lightening with a mail
list [9], where the author and even the communftysers answer questions as soon
as possible. But this problem will be finally salveith time by the authors; they are
planning to public some documentation on the wett m®nths.

The simulator is quite inefficient in terms of tilspent for simulations. For only
one frame from Doom3 it can take from 13 to 20 resun a single processor, and
more or less the same in a core duo. The codeiegdlan section 3.1.2 can show the
reason (figure 3.4): In each cycle, each stagettasgait to the previous for being
executed (and just one cycle), when in a real GPtdbés not happen (each stage
executes one cycle at the same time). That thevatimn of using buffers is having
stand alone stages (that is, stages that do nenddpr timing). One solution for this
problem can be seen on Appendix D. This Appendbaised on a previous work [18]
from the same author of this current report, aralvshhow to improve the simulation
time of ATTILA using parallelization methods. Monexr, there is a lot of
intercommunication between the different componéntxes, the simulated stages of
the GPU) even if it is just an "l am ready" or thé&usy" signal.

Also the current OpenGL framework does not offegad compatibility with
many applications. Firstly, GLInterceptor and thendator can not work with
applications out of OpenGL (not with Direct3D or én&L ES), and inside OpenGL
programs the wide of choice is too small. Just spnograms are known that work
with ATTILA (see section 4.1), and it does not pde/to the developer a perfect
framework where work and test his GPU architectith the programs that he wants
to use. Moreover, the use of the framework is ehibnly for Windows platforms,
and do not permit to the developer works only inIKIystems (as it is known that
most developers and researchers work with non-Wisdsystems). In these cases,
the solution is that the developer has to makeodws framework, but not the
simulator because the code is portable (not higbily, can be used in Windows,
Linux, Cygwin and Mingw32).

GlLlInterceptor can have potentially another bad etsp&he capture of the
OpenGL API calls can show the internal OpenGL cbdeaviour, and then, it is
possible to have the OpenGL code with some invermggneering of, for example, a
game engine. GLInterceptor is very helpful and eeed ATTILA wants to work
with real applications, but it has to be manipudatarefully because it is possible to
infringe some intellectual laws. But this problesnpiotential and not completely real
because one can always monitor what is happenihgigystem, including API calls,
and the real code is still coded inside the birsarg nobody can read it.

But not all are bad aspects, now talking aboutnstrgides we can see that
ATTILA can support real data for testing the arebitre. The part of OpenGL
supported is small, but maybe enough for most dgest. If ATTILA could simulate
frames from complex games like Doom3, Prey or Unfearnament 2004, it means
that it is relatively powerful and with time it casimulate a lot of OpenGL
applications.

Another good aspect of ATTILA is that it has a vetyuctural source code. As
seen on section 3.1.2, this source code is objsmtted, implementing boxes that
cover the details of each part of the pipeline. SEhdoxes, signals and statistic
managers can help to the construction of a newitantbre, with the bounds of a
structural code with abstractions and other gogubets from the object-orientation.

34 Miguel Angel Martinez del Amor

Of course, it can not be possible without an opmiree code. The code available is
just from the simulator, the rest of the framew@@LInterceptor and GLPlayer) are
private code, and if it is needed to change, themew framework must be

implemented as commented so far.

Finally it is good to comment that the lots of stids and the wide set of
parameters that configure highly the pipeline helft to analyze with detail and
work with a lot of different architectures with ATIA, respectively. Without the
statistics it is impossible to understand and arealhe architecture simulated, so the
high number of statistics (about 204 variablesgnsugh, and if it is not, Statistic
Manager helps to add new statistics to the ardhitec

In conclusion, ATTILA is a completely framework foesearching new GPU
architectures. It is still young: slow on simulatsy not compatible with the most
graphic applications, and so on. Now it providegoad environment for working
with graphics, and helps to research and develep@ieU applications with the tools
that it provides. Among time of development, it Iwile possible to achieve a
compatible and a comfortable (maybe with a GUI)wator.

5. Conclusions and future work

This project made an evaluation of the new GPU ktou called ATTILA.
Firstly I made an introduction to GPUs, some aspettdesign and current general
architecture of the majority graphic cards. Afteat | made a thorough explanation
of the simulator: simulated architecture, architee$ that ATTILA can simulate,
introduction to the source code, statistics andftiimework that ATTILA provides.
When this theory was explained, | exposed some reqpees with ATTILA when
installing, choosing testprograms and running tremthe simulator. Afterwards, |
was able to make an evaluation and some conclusionsection 4.3 with the
information recompiled on sections 3 and 4.

Some conclusions that can be taken out from tlugept are:

- The evolution and technology of GPUs go separatetym the
development of CPUs. That is because GPUs work etitler kind of
data and they can have a specialized architedtusea good reason for
developing new simulators for only GPUs.

- ATTILA provides a good environment because it sufgporeal
applications and gives a collection of classesabjdcts that help to the
design of a new architecture.

- The simulators for CPUs are more developed than GRldlators, it is
because the discipline about GPUs is younger tHRIdsCbut with time
it will be as important as CPUs, with a lot of sadte and tools that
helps to research in this area.

This simulator is still young and with time it che powerful. Some future works
that can be interesting to develop are:
- Make a good documentation, with examples and expilam of every
detail like the statistics.

Evaluating ATTILA, a cycle-accurate GPU simulator 35

- Make ATTILA more compatible with graphic applicatg support for
Direct3D and OpenGL ES, support of a more wideos&@penGL (that
is, support of more OpenGL applications).

- More help to the user, not only the code, maybaJatBat interactively
show how the architecture is working and change &n easy way. Or
even more, a support for modules, making possibleddd easily a new
device like memory or another GPU.

- Make ATTILA more efficient. For example, parallediit allowing the
developers to execute the simulator in a multipssoe faster than in a
single processor (see Appendix D).

Finally | hope that this work can help to understamn bit better the simulator
ATTILA, and encourage to GPU researchers use thisulator because it is
interesting for test new architectures and features

36 Miguel Angel Martinez del Amor

References

[1] Thomas Scott Crow. “Evolution of the graphicakopessing unit”. Dec. 2004.
www.cse.unr.edu/~fredh/papers/thesis/023-crow/GRalfdf

[2] Pedro Trancoso, Maria Charalambous. “Exploringapbics Processor Performance for
General Purpose Applications”. 2005.
http://www?2.cs.ucy.ac.cy/~pedro/publications/dsd2@@u.pdf

[3] Emmett Kilgariff, Randima Fernando. “The GeFo&&eries GPU Architecture”. Chapter
30. 2005. Mc Graw Hill.
http://download.nvidia.com/developer/GPU_Gems_2/GB&ms2_ch30.pdf

[4] Pushkar Joshi, Leslie lkemoto. “Harnessing @fU for General Purpose Computation: A
case study”. 17 dec. 2004www.cs.berkeley.edu/~ppj/publications/gpu_paper.pdf

[5] Victor Moya del Barrio. “An end to end, highlyetailed simulator for the ATILA GPU
microarchitecture”. 2005ttp://personals.ac.upc.edu/vmoya/docs/ATILASIm.pdf

[6] Victor Moya, Carlos Gonzéalez, Jordi Roca, Agusfiernandez and Roger Espasa.
“ATTILA: A cycle-level execution-driven Simulatoof modern GPU architectures”. 2006.
http://personals.ac.upc.edu/vmoya/docs/ISPASS%204%ZILASIm.pdf

[7] Ziyad S. Hakura, Anoop Gupta. “The design andlgsis of a cache architecture for texture
mapping”. ISCA 1997.

[8] Victor Moya del Barrio. “ATTILA log”. http://personals.ac.upc.edu/vmoya/log.html

[9] Victor moya del Barrio. “ATTILA GPU Simulator Mg List".
http://tech.groups.yahoo.com/group/attilasim

[10] I. Back, T. Foley, D. horn, J. Sugerman, K.dratian, M. Houston, and P. Hanrahan.
Brook for GPUs: Stream Computing on Graphics Hardwa€M Transactions on
Graphics, 23(3):777-786. 2004.

[11] Jordi Roca, Victor Moya, Carlos Gonzalez, Chebudis, Agustin Fernandez and Roger
Espasa. “Workload Characterization of 3D games”. 0620
http://personals.ac.upc.edu/vmoya/docs/lISWC-Watlpdf

[12] Victor Moya, Carlos Gonzalez, Jordi Roca, Agud$ternandez and Roger Espasa. “Shader
Performance Andlisis on a Modern GPU Architecture”. 2005.
http://personals.ac.upc.edu/vmoya/docs/vmoya-SRadtErmance.pdf

[13] Victor Moya, Carlos Gonzalez, Jordi Roca, Agusfernandez and Roger Espasa. “A
Single (Unified) Shader GPU Microarchitecture formiiedded Systems”. 2005.
http://personals.ac.upc.edu/vmoya/docs/Embedded@RPU.

[14] J. W. Sheaffer, D. Luebke, and K. Skadron. Fhexible Simulation Framework for
Graphics Architectures”. 2004. http://gsilver.cegunia.edu/gh2004.pdf

Evaluating ATTILA, a cycle-accurate GPU simulator 37

[15] Tiberiu S. Popa. “Compiling Data Dependent Gonflow on SIMD GPUs”. 2004.
http://gsilver.cs.virginia.edu/

[16] Miguel Angel Martinez del Amor. “GPU ARCHITECTURE 2006.
www.idi.ntnu.no/~thorvan/tdt24/GPU%20ARCHITECTURE.ppt

[17] Miguel Angel Martinez del Amor. “ATTILA SIMULAOR”. 2006.
www.idi.ntnu.no/~thorvan/tdt24/ATTILA%20SIMULATOR.gp

[18] Miguel Angel Martinez del Amor. “PARALLELIZATDN OF ATTILA SIMULATOR
WITH OPENMP”. 2006.

www.idi.ntnu.no/~thorvan/tdt24/PARALLELIZATION%200FZOATTILA%20SIMULA
TOR%20WITH%200PENMP.ppt

38 Miguel Angel Martinez del Amor

APPENDIX A: DEFINITIONS AND ABBREVIATIONS

3D Objects Objects that represent the objects of the modelerd. The
coordinates are expressed on 3D coordinates.

3DNOW!: is the name of a multimedia extension created ADD for its
processors, starting with th&6-2 in 1998. It is an addition ddIMD instructions to
the traditionalx86 instruction setdesigned to improve @PUs ability to perform the
vector processingequirements of many graphic-intensive applicaiofSource:
www.wikipedia.org.

AGP: The AcceleratedsraphicsPort (also calledAdvancedGraphicsPort)) is a
high-speed point-to-point channel for attachinggraphics cardto a computeis
motherboard primarily to assist in the acceleration3i computer graphicsSome
motherboards have been built with multiple indememdAGP slots. AGP is currently
being phased out in favor BICl Express(Source www.wikipedia.org.

Al (Artificial Intelligence) can be defined as the study of methmydsvhich a
computercan simulate aspects lofiman intelligence(Sourcewww.wikipedia.org.

ALU: (Arithmetic Logic Unit) is adigital circuit that calculates an arithmetic
operation (like an addition, subtraction, etc.) d&mgic operations (like an Exclusive
Or) between two numbers. The ALU is a fundamentalding block of thecentral
processing uniof a computer. (Sourcemww.wikipedia.org.

Alpha: In computer graphigsalpha compositing is the process of combining an
image with a background to create the appearanganial transparency. (Source:
www.wikipedia.org.

API: (Application Programming Interfacg is a source codeinterface that a
computer system or program library provides in otdesupport requests for services
to be made of it by eomputer program(Source www.wikipedia.org.

ARB: (The OpenGLArchitectureReview Board) is an industry consortium that
currently governs the OpenGL specification. It visned in 1992, and defines the
conformance tests, approves the OpenGL specifitatal advances the standard. On
July 31, 2006, it was announced that the ARB vabemiansfer control of the OpenGL

Evaluating ATTILA, a cycle-accurate GPU simulator 39

specification to Khronos Group. As of November 20€# voting members are
3Dlabs, Apple Computer, ATI, Dell, IBM, Intel, Nviy SGI and Sun Microsystems,
plus other contributing members. Microsoft was dgioal voting member, but left in
March 2003. (Sourcevww.wikipedia.org.

ARB_Vertex_Program: Is a vertex shading language for OpenGL made R A

ARB_Fragment_Program: Is a fragment shading language for OpenGL made by
ARB.

ATI: ATl Technologies U.L.C, founded inl985 is a major designer gfraphics
processing unitandvideo display cardand a wholly owned subsidiary 8MD, as
of October 2006. (Sourcemw.wikipedia.org.

ATTILA : The name is based oAttila The Hun'. It is a cycle accurate GPU
simulator made by several authors (mainly Victor yislo in the Polytechnic
University of Catalonia.

B |

BrookGPU: is the Stanford UniversityGraphics group's compiler and runtime
implementation of the Broolstream programmindanguage for using modern
graphics hardware for non-graphical, @eneral purpose computatiof®€PGPU).
(Sourcewww.wikipedia.org.

Buffer: In computing a buffer is a region ofmemoryused to temporarily hold
output or input data. Buffers can be implementedither hardware or software, but
the vast majority of buffers are implemented intwafe. Buffers are used when there
is a difference between the rate at which datadégived and the rate at which it can
be processed, or in the case that these ratesasigble, for example in a printer
spooler (Sourcewww.wikipedia.org.

C++: is a general-purposeiigh-level programming languagavith low-level
facilities. It is a statically typedfree-form multi-paradigm languagesupporting
procedural programmingdata abstractignobject-oriented programminggeneric
programmingand RTTI. Since the 1990s, C++ has been one of the mosilgop
commercial programming languages. (Souvoew.wikipedia.org.

Cg: (C for Graphics) is a high-levethading languagereated byNVIDIA for
programmingvertex and pixel shader€g is based on th& programming language
and although they share the same syntax, someadsatfi C were modified and new

40 Miguel Angel Martinez del Amor

data types were added to make Cg more suitable pfogramming graphics
processing unit§Sourcewww.wikipedia.org.

Class In object-oriented programminglassesare used to group related variables
and functions. A class describes a collectiorenéapsulatedhstance variableand
methods(functions), possibly with implementation of thogges together with a
constructor function that can be used to createeatdjof the class. (Source:
www.wikipedia.org.

Class diagram Is a diagram that shows how the classes fronsdliece code of a
program are related and interconnected (relatipsdhetween classes).

CPI: (Cycles per instruction ¢lock cycles per instruction or clocks per
instruction) is a term used to describe one aspect pfogessor'performance: the
number ofclock cyclesthat happen when anstructionis being executed. It is the
multiplicative inverseof Instructions Per Cycl@PC). (Sourcewww.wikipedia.org.

CPU: (CentralProcessindJnit or sometimes simplgrocessor)is the component
in a digital computerthat interprets computer prograimstructionsand processes
data (Sourcewww.wikipedia.org.

Cygwin: is a collection offree softwaretools originally developed bZygnus
Solutionsto allow various versions dflicrosoft Windowsto act somewhat like a
Unix system. (Sourcevww.wikipedia.org.

D3D: see Direct3D.

DDR: In computing a computer busoperating withDouble Data Rate transfers
data on both the rising and falling edges of theck signal effectively nearly
doubling the data transmission rate without havingdeal with the additional
problems oftiming skewthat increasing the number of data lines wouldothice.
This technique has been used for finent side budJltra-3 SCS) theAGP bus,DDR
SDRAM (principal memory), and thelyperTransporbus onAMD's Athlon 64 X2
processors. (Sourceww.wikipedia.org.

Direct3D: is part of Microsofts DirectX API. Direct3D is only available for
Microsoft's variousNindows operating system@/Vindows 95and above) and is the
base for the graphics API on tiéox and Xbox 360 console systems. Direct3D is
used to rendethree dimensional graphicim applications where performance is
important, such as games. Direct3D also allowsiegiidns to run fullscreen instead
of embedded in a window, though they can still i window if programmed for
that feature. Direct3D usdsardware acceleratioif it is available on the graphic
board. (Sourcewww.wikipedia.org.

Evaluating ATTILA, a cycle-accurate GPU simulator 41

DRAM : (DynamicRandomAccessM emory) is a type ofandom access memory
that stores eadhit of data in a separatapacitowithin anintegrated circuit(Source:
www.wikipedia.org.

Driver: is a specific type oftomputer softwaretypically developed to allow
interaction with hardware devices This usually constitutes arnterface for
communicating with the device, through the speciftmmputer bus or
communications subsystem that the hardware is @betéo, providing commands to
and/or receiving data from the device, and on theroend, the requisite interfaces to
the operating systerandsoftware applicationgSourcewww.wikipedia.org.

E |

Environment: is a type oftomputer softwar¢hat assisteomputer programmers
in developing software. In this report means theteay and tools used for the
development of these simulations.

FAN mode In OpenGL, when defining the FAN mode for triamgheans that the
three first vertices defined correspond to thet firlangle, and the next vertices

defined make a triangle that has shared the faxtex defined and previous vertex.
vl

v

vl

v
(Source:

http://web.cs.wpi.edu/~matt/courses/cs563/talksf0ie Presentation/OpenGL_Pres
entation.htm)

Fog: is acloudin contact with the ground. In computer graphicsans that the
field of vision will be reduce.

Fragment: A fragment is a point in windows coordinates preeldd by rasterizer
stage that has attributes as color, depthhas the data necessary needed to generate
a pixel in the frame buffer One pixel (a dot of color) corresponds to mudipl
fragments.

Frame: is one of the many still images which compose thmplete moving
picture. The frame rate the rate at which sequential frames are presemates
according to the video standard in use. In Northefioa and Japan, 30 frames per

42 Miguel Angel Martinez del Amor

second is the broadcast standard, with 24 framae¥s common in production for
high-definition video. In much of the rest of theond, 25 frame/s is standard.
(Sourcewww.wikipedia.org.

Framework: In software development, &amework is a defined support
structure in which another software project candoganized and developed. A
framework may include support programs, colileraries a scripting languageor
other software to help develop andlue togetherthe different components of a
software project. In this report means to theafgbols and steps that ATTILA has
for the development of GPU architectures for Open(Slburce www.wikipedia.org.

Frustum volume: In 3D computer graphi¢sthe viewing frustum or view
frustum is the region of space in the modeled world thay mppear on the screen; it
is the field of view of the notional camera. Theaetxshape of this region varies
depending on what kind of camera lens is being ksited, but typically it is &rustum
of a rectangular pyramid. The planes that cut thstfim perpendicular to the viewing
direction are called theear planeand thefar plane Objects closer to the camera than
the near plane or beyond the far plane are notmr&iten, the far plane is placed
infinitely far away from the camera so all objeetithin the frustum are drawn
regardless of their distance from the camera. (Sowww.wikipedia.org.

G |

GCC: Originally named theGNU C Compiler, because it only handled tke
programming languageGCC 1.0 was released in 1987, and the compiles wa
extended to compil€++ in December of that year. Front ends were lateeldped
for Fortran Pascgl Objective-G Java and Ada, among others. (Source:
www.wikipedia.org.

GDDR3: (Graphics Double Data Rate 3) is a graphics card-specific memory
technology, designed ATI Technologies(Sourcewww.wikipedia.org.

GLES: See OpenGL ES.

GLSlang: (OperGL ShadingLanguageg is ahigh levelshading language based
on the C programming languagdt was created by th©penGL ARBto give
developers more direct control of thgaphics pipelinewithout having to use
assembly language or hardware-specific languageswr¢e www.wikipedia.org.

GPGPU: (GeneralPurposeComputing onGraphicsProcessingJnits) is a recent
trend in computer sciencehat uses th&raphics Processing Unib perform the
computations rather than ti@PU. The addition of programmable stages and higher
precision arithmetic to the GPtgndering pipelindave allowedsoftware developers
to use the GPU for non graphics related applicatiddecause of the extremely
parallel nature of the graphics pipeline the GPBEsgecially useful for programs that
can be cast agtream processingroblems. (Sourcevww.wikipedia.org.

Evaluating ATTILA, a cycle-accurate GPU simulator 43

GPU: (GraphicsProcessingUnit (also occasionally calledisual ProcessingJnit
or VPU)) is a dedicated graphics rendering device fompersonal computer
workstation or game consoleModern GPUs are very efficient at manipulatingl an
displaying computer graphigsand their highly parallel structure makes thenrano
effective than typical CPUs for a range of complexalgorithms (Source:
www.wikipedia.org.

ISA: (Instruction Set Architecturg is (a list of) all instructions, and all their
variations, that a processor can execute. (Souns®:.wikipedia.org.

Library : is a collection ofsubprogramsused to develogsoftware Libraries
contain "helper" code and data, which provide sswito independent programs. This
allows code and data to be shared and changed tnodular fashion. Some
executablesare both standalone programs and libraries, but riloraries are not
executables. Executables and libraries make refeseknown asinks to each other
through the process known ksking, which is typically done by énker. (Source:
www.wikipedia.org.

Linux: is a free open-sourc@perating systenmbased onUnix. Linux was
originally created by Linus Torvalds with the atmice of developers from around
the globe.Linux was developed under the GNU General Public Licearsd the
source codés freely available to everyone. (Sourgevw.orafag.com

44 Miguel Angel Martinez del Amor

M

Mingw32: (Minimalist GNU for Windows) is a software portof the GNU
toolchainto the Win32 platform. MinGW includes a set of Windows headiesf
(W32API) for native Win32 development. It was originallyaak of Cygwin (version
1.3.3). (Sourcewww.wikipedia.org.

MMX : (MultiM edia &tensions) is &SIMD instruction setdesigned byintel,
introduced in 1997 in theiPentiumMMX microprocessorslt developed out of a
similar unit first introduced on théntel i86Q It has been supported on most
subsequent |A-32 processors by Intel and other vendors. (Source:
www.wikipedia.org.

North Bridge: also known as theMemory Controller Hub (MCH), is
traditionally one of the two chips in the core lbghipseton aPC motherboardthe
other being th&outhbridge Separating the chipset into Northbridge and Smidge
is common, although there are rare instances whwrse two chips have been
combined onto onedie when design complexity and fabrication processsi it.
(Sourcewww.wikipedia.org.

NUMA : (Non-Uniform Memory Access oMNon-Uniform Memory Architecture)
is acomputer memorgesign used imultiprocessorswhere the memory access time
depends on the memory location relative to a psmredJnder NUMA, a processor
can access its own local memory faster than noaklmemory, that is, memory local
to another processor or memory shared between gsoce (Source:
www.wikipedia.org.

NVIDIA : NVIDIA Corporation (NASDAQ: NVDA) is a major supplier of
graphics processorgr@aphics processing unit&PUs),graphics cardsand media and
communications devices f®Csandgame consolesuch as the originadbox and the
PlayStation 3 NVIDIA's most popular product lines are tli&eForceseries for
gaming and th&uadroseries for Professional Workstation Graphics pseirgy as
well as the nForce series of computermotherboard chipsets (Source:
www.wikipedia.org.

Object: In theprogramming paradignobject-oriented programmingnobject is
an individual unit ofrun-time data storag¢hat is used as the basic building block of
programs. These objects act on each other, as eppos traditional view in which a
program may be seen as a collectiofuaictions or simply as a list ofistructionsto
the computer. Each object is capable of receivilgssagesprocessing data, and

Evaluating ATTILA, a cycle-accurate GPU simulator 45

sending messages to other objects. Each objediecaiewed as an independent little
machine or actor with a distinct role or responiibiAlso, an object can be seen as a
instance of a Class. (Sourgeww.wikipedia.org.

Object-Oriented programming: (OOP) is aprogramming paradignthat uses
"objects" to design applications and computer paog. It utilizes several techniques
from previously established paradigms, includin@heritance modularity
polymorphism andencapsulationEven though it originated in the 1960s, OOP was
not commonly used in mainstream software applicatievelopment until the 1990s.
Today, many populaprogramming languagesuch aslava JavaScript C#, C++,
Python PHP, RubyandObjective-G support OOP. (Sourcemw.wikipedia.org.

OpenGL: (Open GraphicsLibrary) is the premier environment for developing
portable, interactive 2D and 3D graphics appligatiolt is a standard specification
defining a cross-langua@eoss-platformAPI for writing applications that produ@&D
computer graphicéand2D computer graphicas well). The interface consists of over
250 different function calls which can be used tawd complex three-dimensional
scenes from simple primitives. OpenGL was develdpefiilicon GraphicsOpenGL
operates on image data as well as geometric pvisit{see the similarity with the
architecture explained on section 3.1.1):

IMAGING PATH

m Unpack Pieels — Pieel Operations ——» Im:g@ﬂa;nerlurmn

Display Lints L Taxrure Memery]' """ = Operations |—-" TO FRAME BUFFER l‘:'g

GEOMETRY PATH
5 ¥

W Unpack Vertices —# Vertex Operations — Geomstric Rasterization

(Sourceswww.opengl.organdwww.wikipedia.org.

OpenGL ES. (OpenGL for EmbeddedSystems) is a subset of tiigpenGL 3D
graphicsAPI designed forembedded devicesuch asmobile phonesPDAs and
video game consoledt is defined and promoted by théronos Groupa graphics
hardware and software industtgnsortiuminterested in open APIs for graphics and
multimedia. (Sourcevww.wikipedia.org.

P |

PCI: (PeripheralComponent nterconnect oPCIl Standard) specifies a&computer
bus for attaching peripheral devices to acomputer motherboard (Source:
www.wikipedia.org.

PCI Express is an implementation of th€Cl connection standard that uses
existing PCI programming concepts, but bases i @ompletely different and much

46 Miguel Angel Martinez del Amor

faster full duplex, multi-lane, point to poirgerial physical-layer communications
protocol. (Sourcewww.wikipedia.org.

Pixel: (short for Picture Element, using the common abbreviation "pix" for
"picture") is a single point in a graphic imageckauch information element is not
really a dot, nor a square, but an abstsachple With care, pixels in an image can be
reproduced at any size without the appearancesdiflgidots or squares; but in many
contexts, they are reproduced as dots or squatksaanbe visibly distinct when not
fine enough. Théntensity of each pixel is variable; in color systems, epotel has
typically three or four dimensions of variabilitych asred, green and bly®r cyan,
magenta, yellow and blackSource www.wikipedia.org.

Pixmap: is a three-dimensional array of bits. Also, anpép is normally thought
of as a two-dimensional array (matrix) of pixels.

| Q

Render. is the process of generating an image from a indme means of
computer programs. The model is a description oféethdimensional objects in a
strictly defined language or data structure. It ldooontain geometry, viewpoint,
texture and lighting information. The image is digital image or raster graphics
image The term may be by analogy with an “artist's szimd)" of a scene.
'Rendering' is also used to describe the procesalatfilating effects in a video editing
file to produce final video output. (Sourceww.wikipedia.org.

Shader. is a piece of code that programs certain partthefgraphic pipeline.
Specifically, it is a set of instructions, @mputer progranused in3D_computer
graphicsto determine the final surface properties of ajectbor image, executed by
the GPU. This often includes arbitrarily complexscigptions oftexture mapping
light absorptiondiffusion, reflection refraction shadowing surfacedisplacemenand
post-processingffects. There are two types: vertex shader aagnient shader.
(Sourcewww.wikipedia.org.

SIMD: (Single Instruction, M ultiple Data) is a technique employed to achieve
data level parallelism, as invectoror array processofSourcewww.wikipedia.org.
An operation (performed by a unit) over two arragig this technique will make the
calculation over each element, issuing the resuléirray element by element to the
next unit. By this way it is not needed to wait fbe realization of the operation (A)

Evaluating ATTILA, a cycle-accurate GPU simulator 47

over the whole array for continuing with the nexiecation (B) that needs the
resulting array from the previous operation (A).

SMP: (Symmetric Multi Processor) is amultiprocessorcomputer architecture
where two or more identical processors are condetdea single sharednain
memory Most common multiprocessor systems today use SidRitecture. (Source:
www.wikipedia.org. SMP is also called UMA.

SMT: (SimultaneousM ultithreading) is a technique for improving the overall
efficiency of superscalarCPUs SMT permits multiple independerthreads of
execution in the same superscalar processor terhegitize the resources provided by
modernprocessor architecture@Source www.wikipedia.org.

SSE (StreamingSIMD Extensions, originally calledSSE, InternetStreaming
SIMD Extensions) is aSIMD (Single Instruction, Multiple Datajnstruction set
designed byntel and introduced in 1999 in thdientium Il series processors as a
reply to AMD's 3DNow! (which had debuted a year earlier). (Source:
www.wikipedia.org.

Stencil: Stenciling, like z-buffering, enables and disabieawing on a per-pixel
basis. You draw into the stencil planes using Gawdng primitives, then render
geometry and images, using the stencil planes tekmat portions of the screen.
Stenciling is typically used in multipass renderiafgorithms to achieve special
effects, such as decals, outlining, and constracidid geometry rendering. (Source:
OpenGL bluebook).

Stream: is applied tohardwareas well assoftware There it defines the quasi-
continuous flow of data which is processeddmtaflow languagesas soon as the
program state meets the starting condition of the stream. (Smurc
www.wikipedia.org.

STRIP mode In OpenGL, when defining the STRIP mode for linemngles or
guads means that the first vertices defined witistnuct a first object (line, triangle or
guad) and the next vertex defined will make a néyed with the union of the last
vertices defined. There are examples for Line Sfop Triangle Strip and for Quad
Strip, respectively:

Ve V3 w0 vz vé v3 . v
w1
vl I'E] Vo y2 vE
vl 4 vi 5 wd
(Source:

http://web.cs.wpi.edu/~matt/courses/cs563/talksi®ie Presentation/OpenGL Pres
entation.htm.

48 Miguel Angel Martinez del Amor

Texel: (Texture Element (alsoTexture Pixl)) is the fundamental unit of texture
space, used ioomputer graphicsTextures are represented by arrays of texelsapis
pictures are represented by arraypigéls

Texture: an image used in computer rendering to give cala other apparent
surface characteristics ("textures") to 3D objects.

Tile: A pixmap can be replicated in two dimensiondil® a region. The pixmap
itself is also known as #le. In this report it can be seen as a set of pixebsls or
fragments. (Source:
http://barossa.ac3.edu.au/SGI_Developer/books/X0inSys/sgi_html/go01.htrl

Triangle: is one of the basishape®f geometry Because of this, every 3D object
can be represented approximately as a set of nauttipngles.

UMA: (Uniform Memory Access) is acomputer memonarchitecture used in
parallel computersAll the processors in the UMA model share thegitgl memory
uniformly. Peripherals are also shared. Cache mgmaay be private for each
processor. In an UMA architecture, accessing tirmeat memory location is
independent from which processor makes the requeshich memory chip contains
the target memory data. (Sourgevw.wikipedia.org.

Vertex: is a corner of a polygon (where two sides mesed), & OpenGL, a vertex
can have associated several parameters as 3D wat&sli colour, depth, alpha, etc.

Visual Studio: is Microsoft's flagship software development product for coraput
programmers. It centers on dntegrated development environmewtich lets
programmers creatstandalone applicationsveb sites web applicationsand web
servicesthat run on anyplatforms supported by Microsoft'sNET Framework
(Sourcewww.wikipedia.org.

VLIW : (Very Long InstructionWord) refers to aCPU architectural approach to
taking advantage oinstruction level parallelisn{ILP). A processor that executes
every instruction one after the other (i.e. a pgrelinedscalar architecture) will have
very poor performance. The performance can be ivgutdy executing different sub-
steps of sequential instructions simultaneouslis (#pipelining), or even executing
multiple instructions entirely simultaneously assuperscalaarchitectures. (Source:
www.wikipedia.orgd. In this kind of architectures, the processoraglsvissue and
execute the same number of instructions at the $enee(always 4 or 8, depending

Evaluating ATTILA, a cycle-accurate GPU simulator 49

on the configuration of the processor). For thag tompiler has to dispose the
instructions to the processor in a correct ordeiding interactions and bad results.
The instruction nop (not an operation, do not dgtleing) is used to fill the places of
instructions that can not be executed at the saneethat the other (for example, two
instructions where one need the result of the atperation).

w |

Windows: is the name of several families pfoprietary operating system®y
Microsoft They can run on several types of platforms suxlseavers embedded
devices and, most typically, gersonal computerg¢Source www.wikipedia.org.

Z: see Z-buffering.

Z-buffering : is the management of image depth coordinatebraetdimensional
(3-D) graphics, usually done lmardware sometimes isoftware It is one solution to
the visibility problem which is the problem of deciding which elemerita oendered
scene are visible, and which are hidden. phmter's algorithms another common
solution which, though less efficient, can alsodiamon-opaque scene elements. Z-
buffering is also known adepth buffering. (Source www.wikipedia.org.

50 Miguel Angel Martinez del Amor

APPENDIX B: OUTPUT STATISTIC VARIABLES

NAME UNIT CODE (to be explained by the author |in
future documentation, but the majority
understandable)

AccessQueueOccupation TU (Texture unit)

AddressALUBusyCycles TU

AddressCalculationFinished TU

AllocateFailed CW-SU

AllocateOK CW

AnisotropyRatio TU

BackFacingTriangles TS (Triangle Setup)

Batches CP (Command Processor)

BilinearSamples TU

BlendedFragments CW

BlockCommands ShDX FS (Fragment Shader)

BlockedInstructions ShDx FS

BlockedThreads ShF FS

Blocks ShF FS

BytesRead CP

BytesWritten CP

Clear CP

ClippedTriangles CLP

ColorWriteReadBytes MC (Memory Controller)

ColorWriteReadTransactions MC

ColorWriteTransactions MC

ColorWriteWriteBytes MC

ColorWriteWriteTransactions MC

CommandProcessorReadBytes MC

CommandProcessorReadTransactions MC

CommandProcessorTransactions MC

CommandProcessorWriteBytes MC

CommandProcessorWriteTransactions MC

CulledFragments CW SU HZ ZST

CulledHZFragments HZ (Hierarchical Z)

CulledOutsideFragments HZ

CulledTriangles TS

DACReadBytes MC

DACReadTransactions MC

DACTransactions MC

DACWriteBytes MC

DACWriteTransactions MC

DataCycles00 - 03 MC

Evaluating ATTILA, a cycle-accurate GPU simulator

51

Degenerated PA

Draw CP
EmptyCycles ShF FS
EndCommands ShDX FS
EndFragment CP
EndGeometry CP
ExecutedInstructions ShDX FS
FailedFragments ZST SU (Z-Stencil)
FakedInstructions ShDX FS
FetchBankConflicts TU
FetchCycles FS

FetchFailed CW SU zZST
FetchOK CW SU ZST
FetchStallAddress TU
FetchStallFetch TU
FetchStallReadyRead TU
FetchStallWaitRead TU
FetchedInstr ShF FS
FetchesFailed TU
FetchesOK TU
FetchesSkiped TU

Fetches StL
FilterALUBuUsyCycles TU
FinishedThreads ShF

Frames CP
FreeThreads ShF
FrontFacingTriangles TS
GeneratedFragments TT

HitsAlloc CW InC TU ZST
HitsFetch CW InC TU ZST
HitsHZCache HZ

Hits StOC
IndexesSent StF

Indices Stc StL StOC
InputActivelnputAttributes ShF
InputActiveOutputAttributes ShF
InputFragments CW FFU HZ ZST
InputRegisters ShF
InputTriangles CLPFFUTSTT
InputVertices FFU

Inputs ShF StL
IntStampQueuesOccupation FFU
InterpolatedFragments FFU
LogicOpFragments CW
MappedAttributes StL

52 Miguel Angel Martinez del Amor

MemTransactions StL
MemoryPreload CP
MemoryReadBytes MC
MemoryReadTransactions MC
MemoryRead CP
MemoryRequestLatency Tu
MemoryRequests TU
MemoryTransactions MC StF
MemoryWriteBytes MC
MemoryWriteTransactions MC
MemoryWrite CP
MissFailAlloc CW InC TU ZST
MissFailFetch CW InC TU ZST
MissFailMissAlloc TU
MissFailMissFetch TU
MissFailReqQueueAlloc TU
MissFailReqQueueFetch TU
MissFailReserveAlloc TU
MissFailReserveFetch TU
MissOKAlloc CW Inc TU ZST
MissOKFetch CW InC TU ZST
MissesAlloc CW InC TU ZST
MissesFetch CW InC TU ZST
MissesHZCache HZ

Misses StOC
NoFetches StL

NoReads StL
NoReadyCycles ShF
OpenPagePenalty00 - 01 MC
OpenPages01 - 03 MC
OutputAttributes Stc
OutputFragments FFU HZ ZST
OutputTriangles CLPFFUTS
OutputVertices FFU

Outputs ShF StC
OutsideFragments CW ZST
OutsideTriangleFragments HZ
OutsideViewPortFragments HZ
PassedFragments ZST
PreloadTransactions MC
RAWDependence CW ZST
RastStampQueuesOccupation FFU
ReFetchedInstr ShF
ReadBankConflicts TU
ReadBytesMemoryBuss00 — 03 MC

Evaluating ATTILA, a cycle-accurate GPU simulator 53
ReadBytesMemory TU
ReadBytesSystemBus MC
ReadBytes CW InC StF StL TU ZST
ReadFailed CW ZST
ReadOK CWzZST
ReadToWritePenalty00 — 03 MC
ReadTransactions CW TU ZST
ReadsFail CW TU ZST
ReadsFailedTU TU
ReadsHZBuffer HZ
ReadsOKTU TU
ReadsOK CW InC TU ZST
Reads StL
ReadyreadQuewueOccupation TU
ReadyThreads ShF
RegisterWrites CP
RemovedInstructions ShDX
ReplayCommands ShDX
RequestQueueOccupation TU
RequestedTriangles TSTT
Requests PA StC
ResultQueueOccupation TU
ShadedFragments FFU
ShadedStampQueuesOccupation FFU
ShadedTriangles FFU
ShadedVertices FFU
ShaderOutputs StC
SplittedAttributes StL
StreamerFetchReadbytes Mc
StreamerFetchReadTransactions MC
StreamerLoaderTransactions MC
StreamerLoaderWriteBytes MC
StreamerLoaderWriteTransactions MC
Swap CP
SystemDataCycles 00 — 01 MC
Systemreadbytes MC
SystemReadTransactions MC
SystemTransactions MC
SystemWriteBytes Mc
SystemWriteTransactions Mc
TestStampQueuesOccupation FFU
TestedFragments ZST
TextureRequests ShDX TU
TextureResultLatency TU
TextureResults TU

54 Miguel Angel Martinez del Amor

TextureUnitReadBytes MC
TextureUnitReadTransactions MC
TextureUnitWriteTransactions MC
TrianglelnputQueueOccupation FFU
TriangleOutputQueueOccuaption FFU
Triangles PA
UnblockCommands ShDX
Unblocks ShF
Unreserves CW TU ZST
UnusedCycles MC
UpdatesHZ HZ
UsedResources ShF
VertexInputQueueOccupation FFU
VertexOutputQueueOccupation FFU
Vertices PA
WaitReadWindowOccupation TU
WriteBytesMemoryBus 00 — 03 MC
WriteBytesSystemBus MC
WriteBytes CW InC TU ZST
WriteFailed CW ZST
WriteOK ZST
WriteToReadPenalty00 — 03 MC
WriteTransactions CP CW ZST
WritesFail CW TU ZST
WritesHZBuffer HZ
WritesOK CW InC TU ZST
ZStencilTestReadBytes MC
ZStencilTestReadTransactions MC
ZStencilTestTransactions MC
ZStencilTestWriteBytes MC
ZStencilTestWriteTransactions MC

Evaluating ATTILA, a cycle-accurate GPU simulator 55

APPENDIX C: PARAMETERS

In this appendix the parameters that configure AM&ILA architecture will be
explained. This appendix complements the sectidril3so it is interesting to read
them at the same time. Here only the most interggiarameters will be explained,
because there are about 215 different parameterse@ all the parameters, just have
a look to one configuration file (ATTILA-rei-5xx.ijin the folder confs.

The parameters are defined in a configurationtfilg has a structure as shown in
figure C.1. Label says the unit that will be configd, and parameter corresponds to
an aspect of this unit to configure.

[LABEL1]
ParameterNamell = valuell
ParameterNamel12 = valuel?2

[LABELZ2]
ParameterName?21 = value21
ParameterName22 = value22

Figure C.1. Scheme of the configuration file.

- [COMMANDPROCESSOR]: for the configuration of the @mand
Processor. One parameter is PipelinedBatchRendgiloyv to process
register writes (AGP_REG_WRITE) and non locked mgmaploads
(AGP_WRITE) while the rest of the pipeline is reridg).

- [STREAMERY]: for the configuration of the Streamdr\ertex Fetch. It
can be configured by up to 13 parameters as Ind#ésiSBize or
VerticesCycle.

- [VERTEXSHADERY]: for the configuration of the Verteshader (every
vertex shader will have the same structure, butnified shaders are
used, then in the same shader unit can be mixgdxvand fragment
shader) with up to 14 parameters, as Executabla@ibreScalarALU (it
is a Boolean variable that only take the true védtuepixel (or fragment)
shader, the only one that supports scalar ALUSs)tchRate,
InputsPerCycle,....

- [PRIMITIVEASSEMBLY]: for the configuration of the dmmitive
Assembly. The parameters in order to configure thiage are
VerticesCycle, InputBusLatency, AssemblyQueueSihe Gize of the
memory that stores the last vertices) and Tria@jlek.

- [CLIPPER]: some parameters that configure the @lipgtage can be
ClipperUnits and ExeclLatency, supporting up to Eapeeters.

- [RASTERIZER]: for the configuration of the whole Rerizer stage.

56 Miguel Angel Martinez del Amor

o The parameters for configuring the Triangle Setuge a
TrinaglelnputLatency, TriangleSetupOnShader,
StampsPerCycle, etc.

o0 The parameters for configuring the Fragment Geoerstage
can be RecursiveMode, GenWidth, GenHeight, ScartVedtt.

0 The parameters for configure the HZ can build wHZ cache
or latencies, for example, HZCachelLines, HZCachegire,
HZAccessLatency, amongst others.

o One important parameter for configuring the Intéapar stage
is Numinterpolators.

- [ZSTENCILTEST]: Z and Stencil tests can be confagliin a separately
section from the Rasterizer. Some parameters canudmd for
configuring the ZCache (ZCacheWays, ZCachLines) ather about
the compression unit (CompressionUnitLatency, D&@bmpression).
The number of the total of parameters is 19 pararset

- [FRAGMENTSHADER]: In any case, the parameters fonfiguring
the Fragment Shader are the same than for the ¥8Hader, plus the
parameters for configuring the Texture Units, suchs
TextureBlockDimension, TextureCacheWays, TwolevetlieeCache,
TextureCacheWaysL1, against others.

- [COLORWRITE]: The parameters placed below this laban be
StampsperCycle, ColorCacheWays, ColorCachelLinelrQaeueSize,
etc.

- [DAC]: It can be configured by the parameters BR®®ixel,
BlockSize, DecompressionUnitLatency (in case of Gsenpression of
frames, but it can be always dismissed to onlydechecause the dump
into a file is out of the GPU work), RefreshFrameof.the stage DAC.

- [MEMORYCONTROLLER]: This unit can be highly configed by
parameters, such as MemorySize, MemoryFrequencyndigBusses,
BankGranularity (size of banks), ReadLatency, Watency,
MemoryPageSize, etc.

The bus width of Command Processor, Streamer, ZBte®DAC and
TextureUnit can be configured with the parametessm@andProcessorBusWidth (on
the baseline configuration is 8, and not 64 like ithe others),
StreamerFetchBusWidth, StreamerLoaderBusWidth, rtHRusWidth,
DACBusWidth and TextureUnitBusWidht.

Evaluating ATTILA, a cycle-accurate GPU simulator 57

APPENDIX D: PARALLELIZATION OF ATTILA

This section is based on the miniproject [18] amdhier information found on the
mail list [9]. The ideas exposed here are as thetbigy were not tested before in a
real machine yet but seem that can make the siowulet achieve a better
performance.

As commented on the conclusion from section 4.3TIAA is a cycle-accurate
simulator but inefficient when simulating. One slation takes a lot of time when
simulating, but it is logic when thinking that:

- The CPU has to do a work (simulation) that is viesfficient if it is not
used specific hardware like GPU or other SIMD dgattures.

- ATTILA is a cycle-accurate simulator, where evemthis simulated on
detail.

- The simulator code uses sequential model, with $oxed a lot of
sometimes “useless” signals between them.

But it is possible to make the simulator more éffit trying some methods over
the code like parallelization, avoiding change wiwle design of the source code.
We can see the way of working of the simulatorhia main loop (called from the
main function, file bGPU.c, see figure D.1) angipossible to see two aspects:

A% Simulation loop. */
for{cycle = , end = FALSE; lend; cvclet+)

/ Each stage (or
comProc->olock{cycle) ; / bOX) is executed
Ll

memController->clock{cycle) ; for one CyCle In a
sequential order

streamser->clock{cycle)

for(i = : 1« giwP.gpu.numShaders: i++)
{
srshFetchl[i]l->=clock{cyocle)

wshbecExec[i]->clock{cyole)

¥

primissem-rclock{cycle) ;
clipper->clock{cycle) ;
rast->clock{cycole) [

for(i = 0; i < ziwP.gpu.nuwF3haders; i++)
{
fshFetch[i]-»clock{cycle) ;
fshDecExec[i]->clock{cyole) ;
for{j = :] <« siwmP.fsh.texturelnits: j++)
textimit[i * siwmP.fsh.texcurelUnits + j]l->clock{cycle)

H

for(i = ;1 < sinwP.gpu.nuoStanplUnits; i++)
i
zitencil[i]->=clock{cycle)
colorWrite[i]l-»clockicyole)
H

dac->clock{cycle) ;

Figure D.1. Main loop of ATTILA simulator.

58 Miguel Angel Martinez del Amor

- Itis sequential, first simulate one cycle in omx,band then simulate the
next.

- Each box has input signals and output signals. €Sigr@al is a class that
implements a kind of buffer with a cycle of delaiyhen, each box
simulates a single cycle stage (or stages) usicey ltata and signal data
produced in another box. But the data that coma® fthe signals was
produced at least one cycle in the past so there@mdata dependences
between boxes simulating the same cycle.

Taking in account these aspects, it is possibgivte solutions to many problems
that statistics and experience can show us. Ordyprwblems will be seen here:

- Problem 1: Statistics show that the most of sintatime is used on
shaders (fragment shaders and their texture umsp ZStencilTest
takes so much time when doing depth or stencil gzagbke stencil
shadows engines as Doom3).

The solution for this problem can be the implemgotaof parallel
fragment shaders, but not in a sequential impleatiemt as currently
are, that is, with a parallel paradigm. For thape@MP will be applied
over the existing code (s@avw.openmp.or)y The parallelization of the
Fragment Shaders can be easy if we put a barriewéiting before
going to the next stage. Each Fragment Shader haspat and an
output private signal that only the boxes connegtéh them can read,
that is, there is not interaction between the FreaginShader Units (as
commented before). See figure D.2 for an example hofw
implementation should be.

for{cycle = 0, end = FALSE; lend; cyclet+)
I S,

commProc->clock{cycle)

memController—>clock{cycle)

streamer->clock{cycle) ;

for(i = 0; i < simP.gpu.nunVShaders; i++) EaCh itel’ation iS dOne

. by one thread, with an
wshFetch[i] ->clock{cycle)
vehDecExec[i]->clock{cyele) : implicit barrier at the end

H

primissem—>clock(oyole) :
clipper-»clock({cyele) ;
rast—>clocki{cyele) ;

e for the paralleli zation of the Fragment Shaders simulation
omp_set_num threads{simP.gpu.nueFShaders) ;
#pragua parallel

{

#pragma omp for privete(i,j) schedule(static,BL)
for(i = 0; i < simP.gpu.numFShaders; it++)
{
fshFetch[i]l->clock{eyole)
fshbecExec[i] ->clock{cyole) :
for{j = 0: j < simP.fsh.texturelUnits: J++)
textUnit[i * simP.fsh.textureUnics + j]->clock{cycle) ;

for(i =

{

;i < simF.gpurTremSHemp
zotencil[i] -rFclock{cyocle)
colorWrite[i]->clockicyele) ;

3

dac->clock{cycle)

Figure D.2. Parallelization of fragment shaders wit OpenMP.

Evaluating ATTILA, a cycle-accurate GPU simulator 59

Problem 2: In each cycle, each stage has to wéiietprevious for being
executed (and just one cycle), when in a real GPibés not happen
(each stage executes one cycle at the same time).

The extensible model that ATTILA uses allows upavallelize the
execution of each stage in an “easy” way. The &oiuor that problem
can be the execution in parallel of each stagegustie buffers with
locks for the connections and barriers at the eheazh stage for
simulating only one cycle per stage at the same {and no more). This
solution is not easy. We have to implement a look the signals
(buffers), statistics dumps, and not go to panidenahen there is no
data in a signal. On the first cycles, all the btdfare empty, so each
stage has to wait or perform an empty cycle (inepkon of the first
stage). With time, data will go through the buffesd stages. For
example, when a fragment is created it has to gbdmext stages, but
for going from one stage to the next one, it hawdd at least one cycle.
At the end, if it is possible to have an unlimitedmber of processors
(for execute the thread of each stage in each psocethe slower box
or 'stage’ would be the one determining the siroulspeed, like in a real
GPU or processor.

This scheme is shown on figure D.3. One thread siffiulate the
clock system, and is the one that synchronize therdhreads (stages).
In figure D.4 there are two example implementatiafth OpenMP and
PThreads. The implementation in Pthreads was albe ttompiled and
executed, but not in a multiprocessor. These amesmeas that can
work well with the simulator.

loop: cycle++

stagel stageZ stages staged

Figure D.3. Scheme of the execution in parallel dfie stages.

60 Miguel Angel Martinez del Amor

cycle = 0;
end = FALSE:
conwProcReady = false; vertexShaderReady = false;
#pragma omp parallel sections shared (end, cyole,cormProcReady, vertexShaderReady, ...) private(oldeyole)
{
oldeyele = —1:;
#pragma owp sSection
while {!end) {
A wrait for the next eycle and not end yet
while (cvycole<=oldeycle && lend)
if {(end) break;
#pragma omp atomic
commProcReady = false;

conmwProc->clock({cycle)

#pragma omp atomic
comoProcReady = true;

#pragma omp atomic
oldoycle=cycle;

#pragma owp flush comwProcReady

#pracma omp section

#pragma omp mAsSter

while {lend) {
while (cormProcReady != true && vertexihaderBeady != true && ...}
#praqoa owp atomic
cyclet+t

A Test "end" value in aatomic way

(@)

prthread t *fragmentBox;
cout<<"Using Fragwent Shaders Units with threadsinin";

void % FThread{void *arg)

{

fragmentBox = new pthread t[simP.gpu.numF3haders]; int i=% {(int *)arg);
fres(arg)
primissem->clock{cycole) fshFetchl[il->clock(cycle);

clipper->clock{cycle)

fshDecExec[i]->clock{cycle) ;
for(int j = 0; j < simP.fsh.texturelnits; j++)
textUnit[i % SiwP.fsh.textureUnits + j]->clock{cycle):

rast->clock{cycle) ; return
}

for{i = ;1< siwP.gpu.nueF3haders; i++)

1

¢ If we give the number i as the parameter of the thread, it can be changed before the use
idir=new u3Zbit:

*idin=1i;

pthread create{&{fragmentBox[1]}), HULL, FThread, idin}):

}
for{i = ;1 < simP.gpu.nuwF3haders: i++)
1
pthread join {fragwentBox[i]l, HULL);
H
for{i = ;1< siwP.gpu.nunStampUnits; i++)
{
zitencil[i]->clock{cycle)
colorWrite[i]->clock{cyole) s
H

(b)

Figure D.4. Example implementation of the executiom parallel of each stage
using (a) OpenMP and (b) PThreads

Evaluating ATTILA, a cycle-accurate GPU simulator 61

Content table

1. INTRODUCGCTIONcuuttitiiiiiiiitiitetieeee e e mmeiitieeie ettt e e e e e e e e e e s e reeeeees 1
2. ANTECEDENTS AND RELATED WORKcuttiiiiiiiieiiiiiiiiiieieeeeeeeee e 6
. ATTILA IN DETAIL ottt 7
3.1GPUSIMULATED ARCHITECTUREcctttttuttuiuaaaaaaaeeeeeessntnnnaaaaaaaaeaaaaaaeeees 7
3.1.1 Architectures based on the baseline pipeline...............occociiiiinneee. 7
3.1.2 Architectures not based on the baseline pipelntroduction to the
SOUICE COUEB . .uiii i iiiiieeeie it e e e e e e eeemeet e s e e e e e e e e et eeeea et e s eeeaeaaaaaeeeeenesnes 13
3.2 STATISTICS AND MEASURES PROVIDED.......ceeetieieiiiiiiiiiiaaaaeeeaaaaeeeeenennnns 15
S.3ATTILA’ S FRAMEWORKuuuiiieeeaeiaeeeetittataaa e e e e e e e e e e eeeeeeeesbaaba e e e e eaaeeas 16
4. EVALUATION OF THE SIMULATORoitiiiiiiiiiiies ettt 18
4. 1INSTALLATION OF ATTILA L.ttt e 18
4.2 RUNNING OPENGL TESTPROGRAMS OMATTILA ...oviiiiiiiiiiiiiieeeeeee 19
4.2.1 Testprograms Selected.............uvvieemmmmmereeeeeee e 19.
4.2.2 Execution and collection of data........cccceecveriiiiiiiiieiiiiiii e, 21
4.2.2.1 Captures from teStPrograms.......... e« eeeeeeeeeaarimeieeeeeaeeasaaanneeeeeas 21
4.2.2.2 Replay of the captured traCes....... e iciviiieiieeee e 24
4.2.2.3 Execution of the simulator with capturetCés............ccccceevviee e, 25
4.2.2.4 Analysis Of ATTILA'S OULPULSeeiiiicee e 28
4.3DISCUSSION ABOUTAT TILA ... 32
5. CONCLUSIONS AND FUTURE WORKccooiiiiiiiiceiiiieeeeeeee s 34
REFERENCESottt ettt et e e e e e e e e e e e s e snnnneee 36
APPENDIX A: DEFINITIONS AND ABBREVIATIONS.......... oo 38
APPENDIX B: OUTPUT STATISTIC VARIABLEScc e, 50
APPENDIX C: PARAMETERSooiiiiiiiiiiiii e 55

APPENDIX D: PARALLELIZATION OF ATTILA ..ot e, 57

62 Miguel Angel Martinez del Amor

Figures table

Figure 1.1... Page 3.
Figure 1.2... Page 3.
Figure 1.3... Page 5.

Figure 3.1... Page 8.

Figure 3.2... Page 10.
Figure 3.3... Page 14.
Figure 3.4... Page 15.
Figure 3.5... Page 16.
Figure 3.6... Page 17.

Figure 4.1... Page 21.
Figure 4.2... Pages 23- 24.
Figure 4.3... Page 25.
Figure 4.4... Pages 27-28.
Figure 4.5... Pages 29-39.
Figure 4.6... Pages 31-32.

Figure C.1... Page 55.

Figure D.1... Page 57.
Figure D.2... Page 58.
Figure D.3... Page 59.
Figure D.4... Page 60.

