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Abstract. Classical database management can be flawed if the Know-
ledge database is built within a complex Knowledge Domain. We must
then deal with inconsistencies and, in general, with anomalies of several
types. In this paper we study computational and cognitive problems in
dealing qualitative spatial databases.

1 Introduction

Spatio-temporal representation and reasoning are topics that have attracted
quite a lot of interest in AI. Since the spatial notions used by the humans are
intrinsically qualitative, the reasoning about spatial entities, their properties and
the relationship among them, are central aspects in several intelligent systems.
But the problem is far to be solved in general. The spatial reasoning is more
complex than the temporal one. The higher dimension of the things is not the
unique problem. The topology is, in qualitative terms, hard to represent by for-
malisms with amenable calculus. The semantic of these representations offers
incomplete support to our daily reasoning (the poverty conjecture: there is no
purely qualitative, general purpose kinematics). Different ontologies have been
proposed, but these are not of general purpose.

Among them, the theory called Region Connection Calculus (hereafter re-
ferred as RCC), developed by Randell, Cui and Cohn [3] have been extensively
studied in AI [10], and in the field of Geographic Information Systems [1]. A
common deficiency of the theories representing topological knowledge, is that
either the full theory is computationally unacceptable or they fail to meet ba-
sic desiderata for these logics [8]. For constraint satisfaction problems there are
algorithms to work with the relational sublanguage, and tractable subsets of
the calculus RCC-8 (a relational sublogic of RCC) have been found [10]. The
intractability of the full theory is mainly due to the complexity of its mod-
els (topological spaces with separation properties [6]). We propose a practical
approach (using an automated theorem prover) to investigate the verification
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problem of knowledge bases written in the language of RCC. In general, due
to the complexity of the theories involved, the knowledge base may be incon-
sistent, although the environment was well represented by the relational part of
the database. For a proper understanding of our framework, it is important to
point out the following characteristics of the problem:

– The knowledge database has not ever completed (the user will write new
facts in the future). Thus the difficulties begin with the future introduction
of data.

– The intensional theory of the database is not clausal. Thus, is highly possible
that Reiter’s axiomatization of database theory [11] becomes inconsistent.
Nevertheless, the self database represents a real spatial configuration.

– The knowledge base does not contain facts about all the relationships of the
RCC language. It seems natural that only facts on primary relationships
appear (we have selected for our work the relations Connect, Overlaps and
Part-of, that one can consider as the primary relationships).

The above characteristics are important in order to classify the anomalies. The
first one may produce inconsistencies that the user can repair, but the second one
is a logical inconsistency and it is hard to solve. Thus, we have to reason with
inconsistent knowledge. The last characteristic implies that the (logic-based)
deduction of new knowledge must replace to solving methods for CSP.

Our problem is only an interesting example of the more general problem of
cleaning incomplete databases in the Semantic Web: the cleaning agent must
detect anomalies in knowledge bases written by the user (in structured text),
and associated to a complex ontology. It is necessary to point out that it is
not our aim to find inconsistencies in the domain knowledge. In [5] the authors
it is shown an application of an automated theorem prover (the SNARK sys-
tem) to provide a declarative semantics for languages for the Semantic Web, by
translating first the forms from the semantic markup languages to first-order
logic. The translation allows to apply the theorem prover to find inconsistencies.
Our problem is not exactly that. We assume that the domain knowledge (the
RCC theory and eventually the composition table for the relations of figure 3)
is consistent, and that it is highly possible that RCC jointly with the database
becomes inconsistent. However, in one of the experiments the theorem prover
found an error in the composition table for the RCC-8 of [3]. Our problem has
also another interesting aspect: the data inserted have not any spatial indexing.

2 The theory of RCC

The Region Connection Calculus is a topological approach to qualitative spa-
tial representation and reasoning where the spatial entities are non-empty re-
gular sets1 (a good introduction to the theory is [3]). The primary relation
between such regions is the connection relation C(x, y), which is interpreted

1 A set x of a topological space is regular if it agrees with the interior of its closure.
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Fig. 1. Cleaning service process

as “the closures of x and y intersect”. The axioms of RCC are two basic ax-
ioms on C, A1 := ∀x[C(x, x)] and A2 := ∀x, y[C(x, y) → C(y, x)], plus several
axioms/definitions on the main spatial relationships (see fig. 2).

ADC : DC(x, y) ↔ ¬C(x, y) (x is disconnect from y)
AP : P(x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
APP : PP(x, y) ↔ P(x, y) ∧ ¬P(y, x) (x is proper part of y)
AEQ : EQ(x, y) ↔ P(x, y) ∧ P(y, x) (x is identical with y)
AO : O(x, y) ↔ ∃z[P(z, x) ∧ P(z, y)] (x overlaps y)
ADR : DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
APO : PO(x, y) ↔ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (x partially overlaps y)
AEC : EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x is externally connected to y)
ATPP : TPP(x, y) ↔ PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x is a tangential prop. part of y)
ANTPP : NTPP(x, y) ↔ PP(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is a nontang. prop. part of y)

Fig. 2. Axioms of RCC

The set of eight jointly exhaustive and pairwise disjoint relations shown in
fig. 3 form the relational calculus RCC-8, that has been deeply studied by J.
Renz and B. Nebel [10]. In that work the CSP problems associated to RCC-8
are classified in terms of (un)tractability. These problems are, in some cases,
tractable, but the relational language can be too weak for some particular ap-
plications. The consistency/entailment problems in the full theory RCC have a
complex behaviour. If we consider topological models, the problem is computa-
tionally unacceptable. The restriction of the problems to nice regions of R2 is
also hard to compute [7].

The problem of a good representation of a model by a knowledge base arises.
Concretely, we must consider three classes of models: the class of all models
(according to the classical definition from first order logic), the class of the topo-
logical models, and the topological model Rn where the constants are interpreted
as the regular sets under study (the intended model). Formally,
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Fig. 3. The eight basic relations of RCC-8

Definition 1. Let Ω be a topological space, and X be a finite set of constants.
A structure Θ is called a topological model on Ω if it has the form

〈R(Ω)/∼, CΘ, {aΘ : a ∈ X}〉
where R(Ω) is the class of regular sets, ∼ is the equivalence relation “the clo-
sures agree”2, CΘ is the intended interpretation of C and whenever a ∈ X,
aΘ ∈ R(Ω)/∼.

Every structure is expanded to one in the full language of RCC, by the natural
interpretation of the other relationships.

Theorem 1. [6] If Ω is a nontrivial connected T3-space, then the natural ex-
pansion of any topological structure on Ω to the full language is a model of RCC.

3 Towards an automated argumentative reasoning

The logic-based argument theory is a formalism to reason with inconsistent
knowledge [4]. An argument is a pair 〈Π, ϕ〉 where Π is consistent and Π ` ϕ.
The argumentative structure of K is an hierarchy of arguments which offers a
method to obtain useful knowledge from K with certain properties. Also, it pro-
vides a method to evaluate the robustness of an argument via argument trees
[2]. However, this approach can not be directly applied on huge databases, since
it needs, for example, to find all maximally consistent subsets of the database.
The problem can be solved in practice by adapting the notion of argument to an
automated theorem prover. For this work we choose OTTER [9], a resolution-
based automated theorem prover, as inference system. Since it is not our aim
to describe the methodology we need to work with the theorem prover, we sim-
ply assume that the system works in autonomous mode, a powerful feature of
OTTER.

Definition 2.

1. An O-argument (an argument for OTTER) is a pair 〈Π, ϕ〉 such that OTTER
obtains a refutation of Π ∪ {¬ϕ} (that we write Π `O ϕ).

2. If 〈Π, φ〉 is an O-argument, the length of 〈Π, φ〉, denoted as len(〈Π,φ〉), is
the length of the refutation of Π ∪ {¬ϕ} by OTTER.

2 The relation is necessary because of the extensionality of P given in the axiom AP.
With this relation, the mereological relation EQ agree with the equality.



The argumentative structure can not be directly translated, because of the con-
sistency notion. An associated automated model finder, MACE, may be consid-
ered for a complete description. By example, the argument class A∃(K) may be
adapted: AO∃(K) = {〈Π,ϕ〉 : Π is consistent w.r.t. MACE and Π `O ϕ}.

4 Anomalies in complex knowldege bases

From now on, we will consider fix a topological model Θ, the spatial model
whith we will work, and K a database representation of Θ (that is, Θ |= K).
To simplify we assume that the model satisfies the unique names axiom. Three
theories describe the model: the formalization of Reiter’s database theory TDB(K),
the theory RCC(K), whose axioms are those of K plus RCC, and RCC(TDB(K)). The
three theories has a common language, LK. The following is an intuitive ontology
of the anomalies in RCC-databases suggested by the experiments:

A1: The contradictions of the base due to the bad implementation of the data
(e.g. absence of some knowledge)

A2: The anomalies due to the inconsistency of the model: the theorem prover
derives from the database the existence of regions which do not have a name
(possibly because they have not been introduced by the user yet). This
anomaly may also be due to the Skolem’s noise, produced when we work
with the domain closure axioms but the domain knowledge is not clausal.

A3: Disjuntive answers (a logical deficiency).
A4: Inconsistency in the Knowledge Domain.

As we remarked, the anomalies come from several sources: the set may be incon-
sistent with the Domain Knowledge due to formal inconsistencies produced by
wrong data, the database is not complete with respect to a basic predicate (the
user will continue introducing data), etc. In fig. 4 the most common problem
is shown. The system shows arguments with the Skolem function of the clausal
form of AO to questions as “gives us a region which overlaps a”.

The Skolem functions come from four axioms of RCC, AP, AO, ATPP and ANTPP,
when they are clausified. It is possible to give a spatial interpretation of such
functions. Even if THE spatial regions are semialgebraic sets, the Skolem func-
tions can be semialgebraically defined [12]. In the practice, the spatial interpre-
tation may be thought as a partial function. For example, the Skolem function
for AO, fO(x, y) gives the intersection region of x and y, if O(x, y). This idea allow
us to eliminate useless results of type (A2) extending the theory RCC with a
partial axiomatization of the intersection (see the first three axioms of figure 6).

5 Consistent databases and arguments

Definition 3. Let Θ be a topological model. The graph of Θ, ΘG, is the sub-
structure of Θ whose elements are the interpretation of the constants.

Definition 4. Let K be a set of formulas.
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Database an OTTER’s proof

------------------------------------------------------------------------

all x (x=A|x=B). 1 [] x=x.

A!=B. 5 [] x!=A|y!=B|O(x,y).

all x y (x=A&y=B|x=B&y=A|x=A&y=A|x=B&y=B->O(x,y)). 14 [] P($f1(x,y),x)|

-O(x,y).

all x y (x=A& y=B|x=B& y=A|x=A&y=A|x=B&y=B->C(x,y)).16 [] -P(x,A)|$Ans(x).

all x y ((exists z (P(z,x)&P(z,y)))<->O(x,y)). 27 [hyper,5,1,1] O(A,B).

all x (P(x,A)->$Ans(x)). 65 [hyper,14,27]

P($f1(A,B),A).

66[binary,65.1,16.1]

$Ans($f1(A,B)).

Fig. 4. A simple anomaly and an O-argument

1. The world of K, W(K), is the set of the interpretations in Θ of the constants
in the language of LK.

2. Consider an interpretation of the Skolem functions of the clausal form of
RCC. The cognitive neighborhood of K, Γ (K), is the least substructure of
the expansion of Θ to the clausal language of RCC, containing W(K).

It seems that the consistency of an argument depends only on its cognitive
neighborhood. It is true for arguments with enough credibility.

Definition 5. An undercut of 〈Π1, φ〉 is an argument 〈Π,¬(φ1∧· · ·∧φn)〉 where
{φ1, . . . , φn} ⊆ Π1. The undercut is called local if Γ (Π) ⊆ Γ (Π1)

Definition 6. An argument 〈Π,α〉 is more conservative than 〈Π ′, β〉 if Π ⊆ Π ′

and β `O α.

Definition 7. Let T be a set of formulas, and let φ be a formula of the clausal
language of T.

– A clause has Skolem’s noise if it has occurrences of Skolem function symbols.
– The degree of credibility of an argument 〈Π,φ〉 is

gr(〈Π, φ〉) =
len(〈Π,φ〉)− |{η ∈ ProofO(Π, φ) : η has Skolem’s noise}|

len(〈Π,φ〉)

The degree of credibility estimates the robustness of the argument according
to the use of Skolem functions in the proof, functions which become ghost regions
(the credibility degree of the argument shown in fig. 4 is 4/7).

Theorem 2. If gr(〈Π, φ〉) = 1 then 〈Π, φ〉 ∈ A∃(RCC(TDB(K))) and Γ (Π) |=
Π + φ.



Corollary 1. If gr(〈Π, φ〉) = gr(〈Π ′, φ′〉) = 1 and the first argument is an
undercutting of the second one, then

– Γ (Π) 6⊆ Γ (Π ′) (there is not local undercutting with degree of credibibility 1).
– If 〈Π, φ〉 is a maximal conservative undercutting, then Γ (Π ′) ( Γ (Π).

The above corollary relates undercutting arguments and spatial configurations,
and it may be useful to estimates the size of argument trees [2].

Definition 8. Let K be a knowledge database for Θ. The base K

– is C-complete if whenever a, b ∈ LK, if Θ |= C(a, b), then C(a, b) ∈ K.
– is extensional for P if whenever a, b ∈ LK

P(a, b) /∈ K =⇒ ∃c ∈ LK [C(c, a) ∈ K ∧ C(c, b) /∈ K]

– is refined if whenever a, b ∈ LK

O(a, b) ∈ K =⇒ ∃c ∈ LK [{P(c, a), P(c, b)} ⊆ K]

– recognize frontiers if whenever a, b ∈ LK such that Θ |= P(a, b)

Θ |= TPP(a, b) ⇐⇒ ∃c ∈ LK [{C(c, a), C(c, b)} ⊆ K ∧ {O(c, a), O(c, b)} ∩ K = ∅]

Theorem 3. If K has the above four properties, then ΘG ¹W(K)|= RCC(TDB(K)).

An useful parameter of the graph of Θ is the compactness level.

Definition 9. The compactness level of Θ is the least n > 0 such that the
intersection of any set of regions of ΘG is equal to the intersection of n regions
of the set.

In general, a database is not refined. Notice that when a database K is refined,
the Skolem function fO is interpretable within W(K). Thus, we can add to the
database a set of axioms with basic properties of such function, and f0 can be
syntactly defined in K, and simplified by compactness level, if possible. If it is
not refined, the partial definition is also useful (see fig. 7).

6 Experiments

We now report experiments with a spatial database on the relationships among
three types of regions: counties, districts, and available maps on Andalućıa, a
Spanish autonomous region. The system works on a database built with the re-
lationships of connection (Connect), nonempty-intersection (common subregion,
Overlaps), and part-of (Part-of). Thus there exists hidden information, knowl-
edge with respect to other topological relations among regions, not explicit in
the database, that the theorem prover might derive (and, eventually, add to the
database). The graph of Θ is formed by 260 regions, approximately, for which
we have a database with 34000 facts (included the first-order formalization of



K = {〈Connect : SE04, SE05〉, 〈Connect : SE04, Map− 941〉,
〈Overlaps : Map− 920, SE04〉, 〈Part− of : SE04, SEVILLA〉 · · · }

Fig. 5. Partial view of the autonomous region and some facts from the database

databases, but the number can be reduced using some features of the theorem
prover). This database has been made by hand, and possibly, it contains errors.
The processed database has 40242 clauses (the processing takes 6.5 seconds).
It has been used OTTER 3.2 on a computer with two Pentium III (800 Mhz)
processors and 256 Mb RAM. The machine runs with Red Hat Linux operating
system 7.0.

The database is C-complete but it is not refined. Thus, it is highly possible
that the theorem prover detects anomalies of type (A2). It recognize acciden-
tally the frontiers, and its compactness level is 2. The compactness level can
be axiomatized and incorporated to the theory if we use the (partial) spatial
interpretation of the Skolem function as partial intersection (see figure 6). This
option allows us to obtain more acceptable results, reducing the anomalies (A2)
and obtaining more arguments (see fig. 7)

Int(x, x) = x P(x, y) → Int(x, y) = x

O(x, y) → Int(x, y) = Int(y, x)
O(y, z) ∧ O(x, Int(y, z)) → Int(x, Int(y, z)) = Int(Int(x, y), z)

O(y, z) ∧ O(x, Int(y, z)) →
8<:Int(x, Int(y, z)) = Int(y, z)∨

Int(x, Int(y, z)) = Int(x, y)∨
Int(x, Int(y, z)) = Int(x, z)

9=;
Fig. 6. An axiomatization of fO (as Int) when the compactness level is 2



P(x,Jaen) -> $Ans(x)

Exp. CPU time (sec.) generated clauses results (A1) (A2) (A3)

(R1) 54.21 175 1 0 0 0

(R1)+ 55,20 180 1 0 0 0

(R2) 59 671 25 102 1 0

(R2)+ 60,26 677 25 0 2 0

(R3) 316 19,812 232 0 5 1

(R3)+ 320 31,855 287 0 5 1

(R4) 54.79 570 1 0 1 0

(R4)+ 55.6 575 1 0 1 0

Fig. 7. Experiment on the behaviour of OTTER on a question without and with (+)
axiomatization of the compactness level

PP(x, Huelva) -> $Ans(x)

Exp. CPU time (sec.) generated clauses results (A1) (A2) (A3) (A4)

(R1) 2395.31 195,222 1 113 0 0 0

(R2) 2400 201,797 8 113 0 0 0

(R3) 2514.46 287,088 14 117 0 1 0

(R4) 54.15 286 0 1 0 0 0

Fig. 8. Statistics for a complex question

We selected the predicates Part-of, Proper-part, Externally-connect
as targets of the experiments. Several results are in figures, 7, 8 and 9. (R1)
shows the first correct answer to the question, (R2) shows the results 5 seconds
later, (R3) shows the first useless result and (R4) shows statistics for the first
error found.

It is not our aim to use the theorem prover as a simple database program-
ming language. The idea is to ask to the system complex questions which are
unsolvable by constraint satisfaction algorithms or simple SQL commands. The
questions are driven to obtain knowledge on spatial relationships not explicit in
the database (as Proper-part or boolean combination of complex spatial rela-
tions). Some of the questions require an excessive CPU time. Surprisingly, the
time cost is justified: the theorem prover thought all the time on the database
and it found many errors of the type (A1), errors which are not acceptable. The
number of useless arguments of type (A2) obtained can be significatively reduced
by the spatial interpretation of fO function (see fig. 7).

As we remarked earlier, the theorem prover found an error in the composition
table of RCC ( type (A4)) working on a complex question (see fig. 9).

7 Conclusions and future work

In this paper we have focused on practical paraconsistent reasoning with quali-
tative spatial databases using logic-based argumentative reasoning. The problem



EC(x, Sevilla) -> $Ans(x):

CPU time (sec.) generated clauses results (A1) (A2) (A3) (A4)

3845 11,673,078 25 113 0 6 72

Fig. 9. Statistics of an experiment when the composition table of [3] produces errors

is an example of cleaning databases within complex domain knowledge, which
is a promising field of applications in the Semantic Web. A spatial meaning of
the arguments has been shown. The next challenge is to model the robustness
of an argument estimating the number of arguments for or against a particular
sequent by topological parameters on the graph of the model. The estimation
will be useful when we work with very large spatial information.
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