
Modeling Logic Gene Networks by means of
Probabilistic Dynamic P Systems

LUIS VALENCIA–CABRERA1, MANUEL GARCÍA–QUISMONDO1 , MARIO

J. PÉREZ–JIMÉNEZ1 , YANSEN SU2 , HUI YU2 , LINQIANG PAN2

1 Research Group on Natural Computing

Dpt. of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

{lvalencia,mgarciaquismondo,marper}@us.es
2 Department of Control Science and Engineering, Huazhong University of Science

and Technology

1037 Luoyu Road, Wuhan, China

suyansen1985@163.com, yuhuihustac@gmail.com,

lqpan@mail.hust.edu.cn

Gene Regulatory Networks (GRNs) are a useful tool for biolo-
gists to understand the interactions among genes in living orga-
nisms. A special kind of GRNs known as Logic Networks (LNs)
has been recently introduced. These networks consider that the
state of one or more genes can influence a third one. There-
fore, genes influence each other by means of logic operations.
The improved Logic Analysis of Phylogenetic Profiles (LAPP)
method proposes an algorithm to capture the dynamics of this
kind of networks. In this paper we provide a formalization of
LNs and we also introduce a Membrane Computing model for
LNs which reproduces their dynamics according to the improved
LAPP method. Eventually, some conclusions and future work
are outlined.

Keywords: Bioinformatics, Genetics, Gene networks, Membrane Com-
puting, Modelling, LAPP, Logic networks

1

1 INTRODUCTION

Membrane Computing [10] has been an useful modelling framework for
biochemical modelling since its beginning. As a natural evolution of this
research field, genetic networks have also been modelled by means of P
systems. In this work, we propose a Membrane Computing model for a
specific type of gene networks. This type is known as Logic Networks (LN),
which can be generated by Logical Analysis of Phylogenesis Profiles (LAPP)
[1], a method for constructing logic networks out of statistical data. In these
networks, gene states can be influenced by single gene or by combinations of
multiple genes. We restrict these combinations to at most two genes, that
is the most usual case in the real life. Our model intends to capture the
behaviour of a specific algorithm, known as the Improved LAPP Method [17].
This algorithm provides mechanisms to combine different influences on the
same gene. It is worth pointing out that we are interested in reproducing the
behaviour of the Improved LAPP Method, rather than contrast its accuracy
by using a P–system based approach. On the event of possible evolutions
of the Improved LAPP Method to capture better the dynamics of LNs, our
Membrane Computing framework is expected to be adapted to the resulting
versions of the Improved LAPP Method, thus providing itself a more accurate
tool to simulate the behaviour of LNs. To the best of our knowledge, our
model is the first Membrane Computing model to reproduce this behaviour.
This paper is structured as follows. Section 2 formalizes the gene networks
we consider in this work and describes the improved LAPP algorithm, whose
semantics are intended to be captured in this work. Section 3 introduces
the current state of the art about modelization of gene networks within
the framework of Membrane Computing. Section 4 presents the model
introduced and outlines the formal framework in which it is included. Section
5 describes a methodology for using MeCoSim interface to simulate the
dynamics of logic networks, including a toy example on a simple logic
network, in order to illustrate the interface and the model. Finally, Section
6 lists the conclusions obtained and proposes some open problems.

2 LOGIC NETWORKS

This section summarizes the concept of logic network and outlines a
procedure to construct them out of statistical genetic data. In addition, the
dynamics of logic networks and their dynamics, providing an algorithmic
approach for this purpose is described.

2

2.1 A Formalization of Logic Networks
In this work, we focus on the study of genes regarding their activity or
inactivity given a certain instant. This section gives a formal definition of
Logic Networks (LN), including its syntax and semantics.

Syntax of Logic Networks

An alphabet is a nonempty set. Given a finite alphabet Γ we denote Γ̄ =

{x̄ : x ∈ Γ}, where Γ ∩ Γ̄ = ∅. We also denote ¯̄x = x, for each x ∈ Γ ∪ Γ̄.
Definition 1 A gene g over a finite alphabet Γ is an element in Γ. The
behaviour of g is a mapping ϕg from N into {0, 1}. The state of g at any
instant t ∈ N is ϕg(t). If ϕg(t) = 1 (respectively, ϕg(t) = 0) we say that
gene g is active (respectively, inactive) at instant t.
Given a finite alphabet Γ and a gene g over Γ we consider the application ϕḡ
as follows: ϕḡ = 1− ϕg , that is, for each t ∈ N, ϕḡ(t) = 1− ϕg(t).
For each alphabet Σ ⊆ Γ we define the mapping lΣ from Σ ∪ Σ̄ into {0, 1}
as follows: lΣ(x) = 1, if x ∈ Σ, and lΣ(x) = 0 otherwise.

Definition 2 A logic network of size n over an alphabet Γ such that |Γ| ≥ n,
is a tuple (Σ, {f1

1 , . . . , f
α1
1 }, {f1

2 , . . . , f
α2
2 }) where:

1. Σ ⊆ Γ, |Σ| = n (Σ is the set of genes of the network).

2. For each j, 1 ≤ j ≤ α1, f
j
1 = (gj,11 , gj,21 , ωj1, op

j
1), where:

• gj,11 , gj,21 ∈ Σ.

• ωj1 is a real number in [0, 1] which represents the uncertainty
of unary interaction j (see [17], noting that ωj1 is equivalent to
U(B|A), with B = gj,21 and A = gj,11).

• opj1 is a mapping from N into {−1, 0, 1} which can be of one of
the following types: spj , sij , wpj , wij . These kinds of functions
are defined as follows: for each t ∈ N:

– spj(t) = ϕgj,11
(t)− ϕḡj,11 (t) (strong promotion)

– sij(t) = −spj1(t) (strong inhibition)

– wpj(t) = ϕgj,11
(t) (weak promotion)

– wij(t) = −wpj1(t) (weak inhibition)

These operations provide the contribution from f j1 to gene gj,21 in
conjunction with ωj1 in order to know its state at instant t+ 1.

3

3. For each j, 1 ≤ j ≤ α2, f
j
2 = (gj,12 , gj,22 , gj,32 , ωj2, op

j
2), where:

• gj,12 , gj,22 , gj,32 ∈ Σ ∪ Σ̄.

• ωj2 is a real number in [0, 1] which represents the uncertainty of
binary interaction j (see [17], noting that ωj2 is equivalent to
U(C|f(A,B)), with C = gj,32 , A = gj,12 , B = gj,22 and f = f j2).

• opj2 is a mapping from N into {−1, 1} which can be of one of
the following types: andj , orj , xorj . These kind of functions are
defined as follows: for each t ∈ N,

andj(t) = [ϕ
g
j,1
2

(t) · ϕ
g
j,2
2

(t)− ϕ
g
j,1
2

(t) · ϕ
g
j,2
2

(t)] · (2 · lΣ(gj,32)− 1)

orj(t) = [ϕ
g
j,1
2

(t) + ϕ
g
j,2
2

(t)− ϕ
g
j,1
2

(t) · ϕ
g
j,2
2

(t)−

ϕ
g
j,1
2

(t) + ϕ
g
j,2
2

(t)− ϕ
g
j,1
2

(t) · ϕ
g
j,2
2

(t)] · (2 · lΣ(gj,32)− 1)

xorj(t) = [(1− ϕ
g
j,1
2

(t)) · ϕ
g
j,2
2

(t) + (1− ϕ
g
j,2
2

(t)) · ϕ
g
j,1
2

(t)

−(1− ϕ
g
j,1
2

(t)) · ϕ
g
j,2
2

(t) + (1− ϕ
g
j,2
2

(t)) · ϕ
g
j,1
2

(t)] · (2 · lΣ(gj,32)− 1)

where b̄ denotes 1− b, for each b ∈ {0, 1}.
These operations provide the contribution from f j2 to gene gj,32 in
conjunction with ωj2 in order to know its state at instant t+ 1.

Next, operations f j1 and f j2 (Figures 1 and 2) are informally described.

FIGURE 1: Behaviour of unary operations f j1

spj and wpj

ϕgj,11
(t) spj(t) wpj(t)

1 1 1

0 −1 0

sij and wij

ϕgj,11
(t) sij(t) wij(t)

1 −1 −1

0 1 0

Note 1 Let us point out that, in graphic representations of operations f j1 in
the network, only genes in Σ appear.

4

FIGURE 2: Behaviour of binary operations f j2

andj

ϕ
g
j,1
2

(t) ϕ
g
j,2
2

(t) andj(t)

1 1 1

1 0 −1

0 1 1

0 0 1

In this example gj,12 ∈ Σ and gj,22 , gj,32 ∈ Σ̄

orj

ϕ
g
j,1
2

(t) ϕ
g
j,2
2

(t) orj(t)

1 1 −1

1 0 1

0 1 1

0 0 1

In this example gj,12 , gj,22 ∈ Σ̄ and gj,32 ∈ Σ

xorj

ϕ
g
j,1
2

(t) ϕ
g
j,2
2

(t) xorj(t)

1 1 1

1 0 −1

0 1 −1

0 0 1

In this example gj,12 , gj,22 ∈ Σ and gj,32 ∈ Σ̄

Note 2 In this example genes gj,12 , gj,22 , the membership of g ∈ Σ

(respectively, g ∈ Σ̄) is translated into arrow–type operation→ (respectively,
a). If gj,32 ∈ Σ̄ then we denote — upon gene gj,32 .

Semantics of logic networks

Next, we introduce a semantics for logic networks. Let LN = (Σ, f1, f2) be
a logic network with n nodes (genes) from Σ = {g1, . . . , gn} according to

5

Definition 2. A configuration of the logic network LN at instant t is a tuple
(ϕg1(t), . . . , ϕgn(t)) which describes the state of every gene gi at that instant.

In order to define a transition step from t to t + 1 in a logic network LN ,
we must compute ϕgi(t+ 1), for 1 ≤ i ≤ n, from the configuration of LN at
any instant t. For that, we introduce some previous concepts and notations.

• Let f j1 = (gj,11 , gj,21 , ωj1, op
j
1) be a unary operation by which node gj,11

acts on node gj,21 . We define the action of gj,11 on gj,21 at instant t,
denoted by action(gj,21 |g

j,1
1)(t), as follows:

action(gj,21 |g
j,1
1)(t) = opj1 · ω

j
1

• Let f j2 = (gj,12 , gj,22 , gj,32 , ωj2, op
j
2) be a binary operation by which

nodes gj,12 and gj,22 act on node gj,32 . We define the action of gj,12

and gj,22 on gj,32 at instant t, denoted by action(gj,32 |g
j,1
2 , gj,22)(t), as

follows:

action(gj,32 |g
j,1
2 , gj,22)(t) = opj2 · ω

j
2

• Next we define the total effect of the action on gene i as follows:

Action(gi, t) = Action1(gi, t) +Action2(gi, t), being

Action1(gi, t) =
∑

1 ≤ j ≤ α1

g
j,2
1 = gi

action(gj,21 |g
j,1
1)(t)

Action2(gi, t) =
∑

1 ≤ j ≤ α2

g
j,3
2 = gi

action(gj,32 |g
j,1
2 , gj,22)(t)

Then, gi(t+ 1) is defined as follows:

ϕgi(t+ 1) =

{
1, if ϕgi(t) +Action1(gi, t) +Action2(gi, t) ≥ 0.5,

0, otherwise

Taking into account this concept of logic networks and its associated
dynamics, we introduce a model within the framework of Membrane
Computing to reproduce the behaviour of these networks. In next section, this
model and the formal framework which defines its semantics are described.

6

3 MODELLING GENE NETWORKS IN MEMBRANE COMPUT-
ING

This section introduces some previous works on the modelling of biochemical
systems by means of P systems, focusing on gene networks. Later on, the
formal framework in which our model is based (that is, PDP systems) is
defined, so as to outline the syntax and semantics of the model introduced.

3.1 Previous works
Since its introduction by Gheorghe Paun [12], Membrane Computing
has been applied as a modelling framework for biological phenomena
at a microscopical level. One of its main features is the capability of
modelling different comparments by means of membranes interconnected by
communication rules. The idea is that the reactions which take place may
differ according to the compartment in which they occur. Some traditional
approaches such as Ordinary Differential Equations (ODEs) already allowed
this feature. For instance, Kawai [7] proposed a multidimensional stochastic
ODE system. This system describes the evolution of the concentration of
chemical drugs inside biological tissues such as liver, guts and muscles.
Although ODEs are a well–known framework for biomolecular systems, they
require some assumptions on the system to be modelled. Specifically, they
require that the differential in the concentration of substances within each
compartment is constant. In addition, their accuracy fails when the number
of molecules taken into account is too small. This is due to their continuous
nature, that is, the numbers of molecules of the modelled substances are
approximated to a real number. This approximation works well when the
number of molecules is high, but it does not reflect reality appropriately
on scenarios which consider only a few molecules. A different approach
from the field of Membrane Computing can help sort out these constraints
from biomolecular phenomena. In contrast to ODEs, the computational
devices in this field, P systems, do not need to make these assumptions.
That is, they reproduce faithfully scenarios with few molecules and non-
constant concentration differentials. There also exists another advantage
of P systems over ODEs, the modularity of the system. A system is
considered to be modular if small changes in the behaviour of the modelled
system, usually entails a relatively small change in the model. ODE–
based models have not this practical property. The model introduced in
this paper aims to characterize the behaviour of a thoroughly studied kind
of biomolecular systems known as Genetic Regulatory Networks (GRNs).

7

Informally speaking, GRNs are directed graphs in which vertices represent
genes, whereas edges represent interactions between them. The dynamics of
these networks are heavily influenced by the variations in the concentrations
of the biochemical substances which interact with the genes, such as proteins.
These variations of concentrations have been specially studied within the field
of Membrane Computing, in order to understand the evolution of GRNs (see
[6] for an example). To the best of our knowledge, the previously existing
models of gene GRNs based on Membrane Computing do not reflect the case
in which the combination of states of two genes influence the state of a third
one. Bowers et al. [1, 2] claim that these scenarios are not rare on GRNs. In
order to reflect them, they describe a statistical procedure to construct GRNs
out of experimental data considering these interactions . In their procedure,
they set thresholds to the frequency in which gene states are interrelated.
The idea is to identify which combined gene states encode interactions and
which ones are just coincidences. However, there is still open the question
about how to simulate the influences of several interactions on a single gene.
Shmulevich et al. [15] propose a solution by combining different influences
on a gene by means of logic gates. In contrast to Bowers, they also maintain
the probabilistic information within the constructed GRN, permitting a more
thorough understanding of the interaction between genes and more data to
simulate the evolution of their states. This problem has been addressed in
a different manner by Wang et al. [17]. In their work, they propose an
algorithm known as improved Logic Analysis of Philogenetic Profiles method
(improved LAPP method). In their work, they assign a weight to each gene
interaction. This weight is equal to its probability to occur. On each step,
the sum of all weights on each influenced gene, plus an influence assigned
to its own previous state, is computed in order to calculate a state weight.
Eventually, they define the state of the gene in the next step by thresholding
it against 0.5. That is, if the previous sum is greater or equal to 0.5, then the
gene is active. Otherwise, it is inactive.
In our work, we formalize the concept of Logic Network. We also propose a
Membrane Computing model to capture the behaviour of the improved LAPP
method. For its simulation, the model has been specified on P–Lingua [4]. In
addition, we propose a methodology for the simulation and analysis of Logic
Networks, based on a custom–designed interface on MeCoSim.

8

3.2 A Formal framework: Population Dynamics P systems
Definition 3 A Population Dynamics P system (PDP systems, for short) of
degree (q,m) with q,m ≥ 1, taking T ≥ 1 time units, is a tuple

(G,Γ,Σ, T,RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})
where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements
are called environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet for the objects that
can be present in the environments;

• T is a natural number that represents the simulation time of the system;

• RE is a finite set of communication rules among environments of the
form

(x)ej
p−−→ (y1)ej1 . . . (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (l = 1, . . . , h) and p(t) ∈
[0, 1], for each t(1 ≤ t ≤ T). Function p depends on the variables
x, j, j1, . . . , jh. If p(t) = 1, for each t, then we omit the probabilistic
function. These rules verify the following: for each environment ej and
for each object x, the sum of functions associated with the rules from
RE whose left-hand side is (x)ej coincides with the constant function
equal to 1.

• µ is a rooted tree consisting of q membranes, with the membranes
injectively labeled by 1, . . . , q. The skin membrane is labeled by
1. We also associate electrical charges from the set {0,+,−} with
membranes.

• R is a finite set of evolution rules of the form r : u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ are multisets over Γ, i ∈ {1, . . . , q}, and α, α′ ∈
{0,+,−}.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable
function whose domain is {1, . . . , T} and its range is [0, 1], verifying
the following:

? For each u, v ∈ Γ∗, i ∈ {1, . . . , q} and α, α′ ∈ {0,+,−}, if
r1, . . . , rz are the rules from R whose left-hand side is u[v]αi and
the right-hand side have polarization α′, then

∑z
j=1 frj (t) = 1,

for 1 ≤ t ≤ T .

9

? If (x)ej is the left-hand side of a rule r ∈ RE , then none of the
rules ofR has a left-hand side of the form u[v]α0 , for any u, v ∈ Γ∗

and α ∈ {0,+,−}, having x ∈ u.

• For each j (1 ≤ j ≤ m), M1j , . . . ,Mqj are multisets over Γ,
describing the objects initially placed in the q regions of µ, within the
environment ej .

A system as described in the previous definition can be viewed as a
set of m environments e1, . . . , em linked between them by the arcs from
the directed graph G. Each environment ej contains a P system, Πj =

(Γ, µ,R,M1j , . . . ,Mqj), of degree q, such that M1j , . . . ,Mqj represent
the initial multisets for this environment, and every rule r ∈ R has a
computable function fr,j associated with it.

The tuple of multisets of objects present at any instant in the m

environments and at each of the regions of each Πj , together with the
polarizations of the membranes in each P system, constitutes a configuration
of the system at that instant. At the initial configuration we assume that all
environments are empty and all membranes have a neutral polarization.

We assume that a global clock exists, marking the time for the whole
system, that is, all membranes and the application of all rules (both from
RE and R) are synchronized in all environments.

The P system can pass from one configuration to another by using the
rules from R = RE ∪

⋃m
j=1RΠj as follows: at each transition step, the

rules to be applied are selected according to the probabilities assigned to
them, and all applicable rules are simultaneously applied in a maximal way.
After the application of the selected rules, no further rule can be applied to
the remaining objects. For each j (1 ≤ j ≤ m) there is just one further
restriction, concerning the consistency of charges: in order to apply several
rules of RΠj simultaneously to the same membrane, all the rules must have
the same electrical charge on their right-hand side.

When a communication rule between environments

(x)ej
p−−→ (y1)ej1 . . . (yh)ejh

is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh, respectively. At any instant t, 1 ≤ t ≤ T , for each
object x in environment ej , if there exist communication rules whose left-
hand side is (x)ej , then one of these rules will be applied. If more than
one communication rule can be applied to an object, the system selects one
randomly, according to their probability which is given by p(t).

10

4 A FAMILY OF P SYSTEMS BASED ON LOGIC NETWORKS

In this work, we present a family of P systems, known as Logic Network
Dynamic P systems (LN DP systems). These P systems aim to capture the
behaviour of the improved LAPP method [17]. An LN DP system is described
within an expansion of PDP systems.

An LN DP system ΠLN of degree (q,m) with q,m ≥ 1, taking T ≥ 1

time units, is a tuple

ΠLN = (G,Γ,Σ, T, RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m},
{Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:

• (G, Γ, Σ, T , RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤
q, 1 ≤ j ≤ m}) is a PDP system.

• {fr,j = 1 : r ∈ R, 1 ≤ j ≤ m}.

• For each j (1 ≤ j ≤ m), Mj are multisets over Γ, describing the
objects initially placed in environment ej .

That is, an LN DP system can be viewed as a PDP system whose initial
multisets are placed in the environments of the system. The improved
LAPP method is a deterministic algorithm, so probabilities associated to
communication rules are not necessary. Thus, they are not used in LN
DP systems. In practical terms, LN DP System rules do not compete for
objects. That is, the multisets associated to the left–hand sides of any two
rules associated to any membrane in a system are disjoint. As the PDP
system framework requires every rule to have an associated probability, the
probability associated to every rule in LN DP Systems is equal to 1. The
PDP System framework also requires that the sum all probabilities of these
rules with the same left–hand side (that is, all rules within the same block) is
equal to 1. As the multisets associated to the left–hand sides of any two rules
associated to any membrane in a system are disjoint, there are not any two
rules with the same left–hand side. Thus, that property is conserved in LN
DP Systems.

11

4.1 The model
Here a model for a family of LN DP systems is presented. For a given
network, each gene is represented by a P system with a single membrane
inside an environment. The state of each gene in the network at every
moment will be coded by the presence of a counter (1: active; 0: inactive)
in its environment. This model covers every P system in this family, so the
multisets, rules, etc. depend on the specific instance of a LN. The general
model requires the use of parameters in our constructs, as explained at the end
of this subsection. Let LN be a logic network. Let ng, nu, nb be the number
of genes, unary and binary interactions, respectively. Let m = ng+nu+nb.
The model consists of the following PDP system of degree (1, n),

ΠLN = (G,Γ,Σ, T, RE , µ,R, {Mij : 0 ≤ i ≤ q−1, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:
• G is a directed graph containing a node (environment) for each gene,

unary or binary interaction, following this order.

• In the alphabet Γ, we represent gene states, interaction types,
contribution weights and targets, as outlined below.

Γ = {ai, bi, ci : 0 ≤ i ≤ 1} ∪ {go, d0} ∪ {unopj , binopj : 1 ≤ j ≤ 4} ∪
{auxDesti,gj,1,k : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb+ nu} ∪
{desti,gj,1,tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb} ∪
{desti,gj,1,untk−nb,1+ng+nb : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu} ∪
{etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb :

0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu} ∪
{eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{eFi,(untk,1+ng+nb) : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu} ∪
{clockj : 0 ≤ j ≤ cc+ 3}

– Object go triggers the start of a new cycle in the evolution of the
gene states. Objects clocki synchronize some steps of the cycle,
such as the sum of the different contributions to each gene as a
result of the interactions of each cycle.

– Objects ai represent the gene state: (a0: inactive; a1: active).
Objects bi represent the weight of the interactions (including self–
influence interactions).

– Objects unopj , 1 ≤ j ≤ 4 participate in the unary interactions,
representing strong promotion, strong inhibition, weak promotion
and weak inhibition, respectively. Objects binopj , 1 ≤ j ≤ 3

participate in the binary ones, representing or, and and xor.

12

– Objects desti,j,k, auxDesti,j,k, ei,k, ci and eFi,k are auxiliary
objects involved in the interactions.

• The environment alphabet is Σ = Γ \ {d0}

• Each cycle evolution from a real network configuration to the next one
involves 15 computational steps, so T = 15 ·Cycles, where Cycles is
the number of cycles to simulate.

• µ = []1 is the membrane structure.

• The initial multisets are:

– Mgk,1 = { a1
gk,3 , a0

1−gk,3,go : 1 ≤ k ≤ ng}. That is, inside
each gene environment (labelled by gk,1), we have its gene state
(a1:active or a0:inactive), depending on the introduced value gk,3,
0 or 1. Object go triggers the start of a cycle.

– Mng+ti,1 = { binopti,2 : 1 ≤ i ≤ nb}. That is, inside each
binary interaction environment (labelled by ng+ ti,1, we have an
object (binopti,2) representing the interaction (or, and, xor).

– Mng+nb+unti,1 = { unopunti,2 : 1 ≤ i ≤ nu}. That is,
inside each unary interaction environment (labelled by ng +

nb + unti,1, we have an object (unopunti,2) representing the
interaction (strong or weak promotion or inhibition).

• The rules of R and RE to apply are showed below. They are put
together to follow the sequential order of execution. Environment rules
start with re and skeleton rules start with rs.

– Cycle start, and contribution of each gene over its state: rs1,i ≡
go ai[]1−−→ cibi

max∗ib0
thresholdclock0[]1 : 0 ≤ i ≤ 1

– For each source gene environment:

∗ Auxiliary objects auxDest for all possible interactions from
the source gene are created:
re2,i,j,k ≡ (ci−−→{auxDesti,gj,1,k : {1 ≤ k ≤ nb+ nu}})gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng
∗ Destination objects are created for each possible binary

interaction, including information about the target interaction
environment tk,1 + ng:
re3,i,j,k ≡ (auxDesti,gj,1,k −−→ desti,gj,1,tk,1+ng)gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb

13

∗ The same is done for each possible unary interaction, in-
cluding information about the target interaction environment
untk − nb, 1 + ng + nb:
re4,i,j,k ≡ (auxDesti,gj,1,k −−→ desti,gj,1,untk−nb,1+ng+nb)gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu

– For each actual interaction, in the gene environments, objects
ei,k (value i and target k) are created for the contribution of
each source gene involved in an interaction, from their source
values tk,4 and tk,6 (binary interactions) and untk−nb,4 (unary
interactions):
re5,i,k ≡ (desti,tk,3,tk,1+ng −−→ etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng)tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re6,i,k ≡ (desti,tk,5,tk,1+ng −−→ etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng)tk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re7,i,k ≡ (desti,untk−nb,3,untk−nb,1+ng+nb−−→

euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb)untk−nb,3

: 0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu

– Sending the values to the interaction environments:
re8,i,k ≡ ()tk,1+ng(ei,tk,1+ng)tk,3 −−→(ai)tk,1+ng()tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re9,i,k ≡ ()tk,1+ng(ei,tk,1+ng)tk,5 −−→(ai)tk,1+ng()tk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re8,i,k ≡ ()untk−nb,1+ng+nb(ei,untk−nb,1+ng+nb)untk−nb,3 −−→

(ai)untk−nb,1+ng+nb()untk−nb,3

: 0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu

– Evaluating the result of the interactions (1/2).

∗ Binary interactions ot type or:
rs11 ≡ binop1 a0

2[]1−−→ binop1 c0[]1
rs12 ≡ binop1 a1

2[]1−−→ binop1 c1[]1
rs13 ≡ binop1 a1 a0[]1−−→ binop1 c1[]1

∗ Binary interactions ot type and:
rs14 ≡ binop2 a1

2[]1−−→ binop2 c1[]1
rs15 ≡ binop2 a0

2[]1−−→ binop2 c0[]1
rs16 ≡ binop2 a1 a0[]1−−→ binop2 c0[]1

∗ Binary interactions ot type xor:
rs17 ≡ binop3 a1

2[]1−−→ binop3 c0[]1
rs18 ≡ binop3 a0

2[]1−−→ binop3 c0[]1
rs19 ≡ binop3 a1 a0[]1−−→ binop3 c1[]1

∗ Unary interactions of types strong promotion, strong inhi-
bition, weak promotion and weak inhibition, respectively:
rs23,i ≡ unop1 ai[]1−−→unop1 ci[]1 : 0 ≤ i ≤ 1

rs24,i ≡ unop2 ai[]1−−→unop2 ci−1[]1 : 0 ≤ i ≤ 1

rs25,i ≡ unop3 ai[]1−−→unop3 ci
i[]1 : 0 ≤ i ≤ 1

rs26,i ≡ unop4 ai[]1−−→unop4 c1−i
i[]1 : 0 ≤ i ≤ 1

14

– Evaluating the result of the interactions (2/2).
For each interaction, objects of type eF are generated and sent to
the target gene environment, depending on the previous result ci
and the type of the contribution (+ or -).
re27,i,k ≡ (ci)tk,1+ng()tk,7 −−→

()tk,1+ng(eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng)tk,7
: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb

re28,i,k ≡ (ci)untk,1+ng+nb()untk,5 −−→
()untk,1+ng+nb(eFi,(untk,1+ng+nb))untk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nu

– The contribution of each interaction is calculated from the
previously generated objects of type eF . These rules generate
bi objects whose multiplicity depends on the weight of the
interaction.
rs29,i,k ≡ eFi,(tk,1+ng)[]1−−→ bi

tk,9 []1 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
rs30,i,k ≡ eFi,(untk,1+ng+nb)[]1−−→ bi

untk,6 []1 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu

– Once the contribution of all the interactions over each gene has
been received, the global influence over the gene is calculated.
The next rule removes each pair of objects (b1,b0), whose
contributions cancel each other.
rs31 ≡ b1 b0[]1−−→[]1

– The clock objects control the cycle flow, ensuring that all the
contributions caused by the interactions and auto-influences have
reached the target genes.
rs32,i ≡ clocki−1[]1−−→ clocki[]1 : 1 ≤ i ≤ cc+ 3

– If objects b0 are present, then the next state of the gene will be
inactive. The object d0 is created inside the membrane labelled
by 1, and in a subsequent step will imply a new change of the
charge of the membrane. Otherwise, any objects b1 are removed,
becoming the state of the gene active. The remaining objects
(not used destination objects, for example) are removed from the
configuration.

rs33 ≡ b0[]−1 −−→[d0]−1
rs34 ≡ b1[]−1 −−→[]−1

rs35,i,j,k ≡ desti,j,tk,1+ng []−1 −−→[]−1 : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb
rs36,i,j,k ≡ desti,j,untk−nb,1+ng+nb[]−1 −−→[]−1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu

rs37 ≡ [d0]−1 −−→[]+1

– Once the last step of the cycle is reached, the state of the gene
is set to active (1) or inactive (0) depending of the charge of

15

membrane labelled by 1. Although electrical charges are no
part of gene regulation, its use is required to set the state of the
skin membrane of each environment, ensuring that all remaining
objects d0 are removed. In addition, the corresponding go

objects are generated, the clock is removed and the charge of the
membrane is reset to 0.
rs38 ≡ clockcc+3[]+1 −−→ go a0[]01
rs39 ≡ clockcc+3[]−1 −−→ go a1[]01

TABLE 1: Parameters

Parameter Description
General parameters for the system

ng Number of genes in the network
nb Number of binary interactions
nu Number of unary interactions
threshold Maximum strength for an interaction
cc Clock control

Gene configuration parameters
gi,1 Gene number (id)
gi,3 Initial state of the gene

Binary interactions parameters
ti,1 Binary interaction number (id)
ti,2 Interaction type (or: 1, and: 2, xor: 3)
ti,3 1st source gene number (id)
ti,4 1st source gene contribution (positive: 1, negative: 0)
ti,5 2nd source gene number (id)
ti,6 2nd source gene contribution (positive: 1, negative: 0)
ti,7 Destination gene number (id)
ti,8 Influence over destination gene (positive: 1, negative: 0)
ti,9 Strength of the destination

Unary interactions parameters
unti,1 Unary interaction number (id)
unti,2 Interaction type (strong promotion: 1, inhibition: 2; weak ones: 3, 4)
unti,3 Source gene number (id)
unti,4 Source gene contribution (positive, negative)
unti,5 Destination gene number (id)
unti,6 Influence over destination gene (positive, negative)

16

4.2 LN state interpretation
After the P system takes a predefined number of computation steps, the
output information is analysed. This output information is encoded as the
multiplicity of objects a1 and a0. Environments with an object a1 represent
active genes (a0 represent inactive genes). Due to the nature of the system,
membrane genes cannot have objects a1 and a0 simultaneously. If no object
a1 or a0 is present within the membrane gene, then this membrane gene
cannot be evaluated yet. That is, it will take some additional computation
steps for the gene network to reach an evaluable state.

5 SIMULATION OF LOGIC NETWORKS IN MECOSIM

We have specified the model from section 4.1 on P–Lingua. This specification
adheres to P–Lingua version 4 standard, available at [8]. Moreover, we
have also developed a custom interface with MeCoSim [9, 11] to ease the
introduction of specific data. MeCoSim defines a software interface with
input and output tables and mappings from input data into model parameters.
Then, it uses P–Lingua to simulate the model.
In this section, we define a methodology to simulate and analyse LNs. We
start from a LN, possibly obtained by applying LAPP to a set of genetic
profiles from real–life phenomena. Then, we instantiate its corresponding LN
DP system. To do so, we load the model specification (available at [8]) and fill
in the input tables. Following, we click on Simulation > Simulate!

and visualize the results. The whole process is depicted in figure 3.

FIGURE 3: Methodology Overview

These results can be contrasted against real data, when available. These
data are composed of initial and final network states. This assay is known as
experimental validation [3], in contrast to formal validation.

17

As an example of application, figure 4 depicts a case study on a toy, 3–gene
network extracted from [14]. In this example, all interactions have the same
weight (say 100), so they are omitted from the picture. For a more detailed
description of the whole process and a real–life case study, see [16].

FIGURE 4: Toy Example - MeCoSim Interface - Input Data

Network structure Network transitions

Genes and interactions input tables

Results chart

18

6 CONCLUSIONS

In this work, we have presented a model for Genetic Networks based on P
Systems. In contrast to ODEs, P systems do not require assumptions on the
modelled phenomena, and display desirable features such as modularity [13].
The type of Gene Networks we have modelled are known as Logic Networks,
in which one or more genes interact in order to influence another one. This
model consists of a P system family (namely Logic Network Dynamic P
Systems or LN DP systems) defined as an extension of Population Dynamic
P Systems (PDP Systems), a Membrane Computing framework successfully
applied on ecological modelling [3]. Our work proves the versatility of PDP
systems by applying them to a completely different scenario from its original
target phenomena. In addition, we provide a methodology to the simulation
of LN DP systems on MeCoSim, illustrated with a toy example on a Gene
Regulatory Network (GRN) taken from the literature [14].
As an additional complementary work, we propose the application of this
model for large logic networks, such as Arabidopsis thaliana, a well–studied
plant in systems biology. In this line, a first work has been published in [16].
We intend to keep this track by applying more well–grounded simulation
methods, such as the Gillespie algorithm [5]. Another proposed line of work
consists on a further enhancement by applying random mutations to the genes
comprising the network. That is to say, we take into account dynamics in
which gene states are not deterministically dictated by network interactions,
but also subjected to random modifications. This enhancement could shed
light into non–deterministic cell differentiation processes, so as to compare
these new dynamics with the ones displayed by the deterministic model
proposed here.

7 ACKNOWLEDGEMENTS

Luis Valencia–Cabrera, Manuel Garcı́a-Quismondo and Mario J. Pérez-
Jiménez are supported by project TIN2012-37434 from “Ministerio de
Ciencia e Innovación” of Spain, co-financed by FEDER funds and “Proyecto
de Excelencia con Investigador de Reconocida Valı́a P08-TIC-04200” from
Junta de Andalucı́a. Manuel Garcı́a-Quismondo is also supported by the
National FPU Grant Programme from the Spanish Ministry of Education.

19

REFERENCES

[1] Peter M. Bowers, Shawn J. Cokus, Todd O. Yeates, and David Eisenberg. (2004). Use
of logic relationships to decipher protein network organization. Science, 5705(306):2246–
2249.

[2] Peter M. Bowers, Brian D. O’Connor, Shawn J. Cokus, Eniat Sprinzak, Todd O. Yeates,
and David Eisenberg. (2005). Utilizing logical relationships in genomic data to decipher
cellular processes. the FEBS journal, 272(1):5110–5118.

[3] M.Angels Colomer, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, and Agustı́n Riscos-
Nez. (2012). Comparing simulation algorithms for multienvironment probabilistic p
systems over a standard virtual ecosystem. Natural Computing, 11:369–379.

[4] Manuel Garcı́a-Quismondo, Rosa Gutiérrez-Escudero, Miguel A. Martı́nez del Amor,
Enrique Orejuela-Pinedo, and Ignacio Pérez-Hurtado. (September 2009). P-lingua
2.0: A software framework for cell-like P systems. International Journal of Computers,
Communications and Control, IV:234–243.

[5] Daniel T. Gillespie. (1977). Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361.

[6] Thomas Hinze, Sikander Hayat, Thorsten Lenser, Naoki Matsumaru, and Peter Dittrich.
(2007). Hill kinetics meets P systems: A case study on gene regulatory networks
as computing agents in silico and in vivo. In George Eleftherakis, Petros Kefalas,
Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Workshop on Membrane
Computing, volume 4860 of Lecture Notes in Computer Science, pages 320–335. Springer.

[7] Reiichiro Kawai. (2012). Nonnegative compartment dynamical system modelling with
stochastic differential equations. Applied Mathematical Modelling, page in press.

[8] P Lingua Web Page, (February 2009). http://www.p-lingua.org.

[9] MeCoSim Web Page, (July 2010). http://www.p-lingua.org/mecosim.

[10] Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. (2010). The Oxford Handbook
of Membrane Computing. Oxford University Press, Inc., New York, NY, USA.

[11] Ignacio Pérez-Hurtado, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez, M. A. Colomer,
and Agustı́n Riscos-Núñez. (2010). MeCoSim: a general purpose software tool for
simulating biological phenomena by means of P systems. IEEE Fifth International
Conference on Bio-inpired Computing: Theories and Applications (BIC-TA 2010), I:637–
643.

[12] Gheorghe Păun. (2000). Computing with membranes. Journal of Computer and System
Sciences, 61:108–143.

[13] Francisco José Romero-Campero and Mario J. Pérez-Jiménez. (2008). A model of the
quorum sensing system in vibrio fischeri using P systems. Artificial Life, 14(1):95–109.

[14] Thomas Schlitt and Alvis Brazma. (2007). Current approaches to gene regulatory network
modelling. BMC Bioinformatics, 8(Suppl 6):S9.

[15] Ilya Shmulevich and Edward R. Dougherty. (2010). Probabilistic Boolean Networks - The
Modeling and Control of Gene Regulatory Networks. SIAM.

[16] Luis Valencia-Cabrera, Manuel Garcı́a-Quismondo, Yansen Su, Mario J. Pérez-Jiménez,
Hui Yu, and Linqiang Pan. (February 2013). Analysing gene networks with PDP
systems. Arabidopsis thaliana, a case study. In Proceedings of 11th Brainstorming Week
on Membrane Computing (BWMC13), in press. Sevilla, Spain. Fénix Editora.

[17] Shudong Wang, Yan Chen, Qingyun Wang, Eryan Li, Yansen Su, and Dazhi Meng. (2010).
Analysis for gene networks based on logic relationships. Journal of Systems Science and
Complexity, 23:999–1011. 10.1007/s11424-010-0205-0.

20

